Abstract:
Abstract—This paper introduces an enhanced version of the Capuchin Search Algorithm (CapSA) called ECapSA. CapSA draws inspiration from the collective intelligence of Capuchin monkeys and has shown success in solving real-world problems. However, it may encounter challenges handling complex optimization tasks, such as premature convergence or being trapped in local optima. ECapSA employs a local escaping mechanism operating the abandonment limit concept to exploit potential solutions and introduce diversification trends. Additionally, the ECapSA algorithm is improved by integrating the principles of the cooperative island model, resulting in the iECapSA. This
modification enables better management of population diversity and a more optimal balance between exploration and exploitation. The efficiency of iECapSA is validated through a series of experiments, including the IEEE-CEC2014 benchmark functions
and training the feedforward neural network (FNN) on seven biomedical datasets. The performance of iECapSA is compared to other metaheuristic techniques, namely differential evolution (DE), sine cosine algorithm (SCA), and whale optimization algorithm
(WOA). The results of the comparative study demonstrate that iECapSA is a strong contender and surpasses other training algorithms in most datasets, particularly in terms of its ability to avoid local optima and its improved convergence speed.