DSpace Repository

Absolutely Summing Terraced Matrices

Show simple item record

dc.contributor.author Almasri, Ibrahim
dc.date.accessioned 2018-04-14T07:43:22Z
dc.date.accessioned 2022-05-22T08:27:51Z
dc.date.available 2018-04-14T07:43:22Z
dc.date.available 2022-05-22T08:27:51Z
dc.date.issued 2015-12-14
dc.identifier.issn 2299- 3282
dc.identifier.uri http://localhost:8080/xmlui/handle/123456789/7853
dc.description.abstract Let ∝>0. By C_∝ we mean the terraced matrix defined by c_(nk= 1/n^p ) if 1≤k≤n and 0 if k>n. In this paper, we show that a necessary and sufficient condition for the induced operator on l^p, to be p- summing , is ∝>1;1≤p<∞. When the more general terraced matrix B, defined by b_nk= β_n if 1≤k≤n and 0 if k>n, is considered, the necessary and sufficient condition turns out to be ∑_n▒〖n^(q/p^* ) 〖|β_n |〗^q<∞〗 in the region 1/p+1/q=1. en_US
dc.language.iso en_US en_US
dc.publisher De Gruyter en_US
dc.relation.ispartofseries Concrete operators;
dc.subject Operator, Absolutely summing operators, Terraced Matrices. en_US
dc.title Absolutely Summing Terraced Matrices en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account