dc.contributor.author |
Almasri, Ibrahim |
|
dc.date.accessioned |
2018-04-14T07:43:22Z |
|
dc.date.accessioned |
2022-05-22T08:27:51Z |
|
dc.date.available |
2018-04-14T07:43:22Z |
|
dc.date.available |
2022-05-22T08:27:51Z |
|
dc.date.issued |
2015-12-14 |
|
dc.identifier.issn |
2299- 3282 |
|
dc.identifier.uri |
http://localhost:8080/xmlui/handle/123456789/7853 |
|
dc.description.abstract |
Let ∝>0. By C_∝ we mean the terraced matrix defined by c_(nk= 1/n^p ) if 1≤k≤n and 0 if k>n. In this paper, we show that a necessary and sufficient condition for the induced operator on l^p, to be p- summing , is ∝>1;1≤p<∞. When the more general terraced matrix B, defined by b_nk= β_n if 1≤k≤n and 0 if k>n, is considered, the necessary and sufficient condition turns out to be ∑_n▒〖n^(q/p^* ) 〖|β_n |〗^q<∞〗 in the region 1/p+1/q=1. |
en_US |
dc.language.iso |
en_US |
en_US |
dc.publisher |
De Gruyter |
en_US |
dc.relation.ispartofseries |
Concrete operators; |
|
dc.subject |
Operator, Absolutely summing operators, Terraced Matrices. |
en_US |
dc.title |
Absolutely Summing Terraced Matrices |
en_US |
dc.type |
Article |
en_US |