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Abstract

The differential transform method was firstly introduced by Zhou before thirty years

ago. This method is a semi-analytical numerical method for solving differential equa-

tions. Indeed, the differential transform method is based on Taylor series expansion,

in a different manner, in which the differential equation is converted into a recur-

rence relation to get a series solution in terms of polynomials.

This thesis is mainly concerned with the differential transform method for both

ordinary and partial differential equations. Firstly, we use the one dimensional dif-

ferential transform method to solve initial value problems as well as boundary value

problems for ordinary differential equations. In addition, we present recent modifi-

cations of differential transform method that improve its algorithm.

Secondly, we solve initial and boundary value problems for partial differential equa-

tions by using two dimensional differential transform method, reduced differential

transform method and Laplace differential transform method.
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Chapter 1

Introduction

1.1 Overview

In real world, many physical and natural phenomena are formulated as differential

equations. Most of these differential equations are nonlinear. So there are difficul-

ties in finding the exact or analytical solutions caused by the nonlinear part [27, 38].

Many methods have been proposed to solve or approximate nonlinear differential

equations [4, 27]. For example, the Adomian Decomposition Method (ADM), Varia-

tional Iteration Method (VIM), Homotopy Analysis Method (HAM), and Homotopy

Perturbation Method (HPM), see [2, 3, 24, 25, 35]. But these methods need calcu-

lations with some restrictions, also in some cases to get a good convergence more

terms are needed.

There is a need for a method that handel nonlinear terms easily without any re-

strictions and with less size of computations. Indeed, the so called Differential

Transform Method (DTM) which gives a series solutions can overcome some of the

above difficulties.

The DTM is very effective numerical and analytical method for solving different

types of differential equations as well as integral equations. This method converts

1



2 Chapter 1. Introduction

the differential equations into a recurrence relations, then by Taylor series expansion,

with a different approach, we obtain convergent series solutions.

The concept of DTM was first introduced by Zhou in 1986 to solve linear and

nonlinear initial value problems in electrical circuit analysis [49]. Later, the DTM

has been applied to solve different problems. Some of these problems are enumerated

in the following discussion:

1. Eigenvalue problems: Chen and Ho (1996) in [10] used the DTM to solve

eigenvalue problems. They took the differential transformation of Sturm-

Lioville problem and made some calculations to get eigenvalues and eigen-

functions. Hassan (2002) solved the eigenvalue problems by DTM in [17]. In

2007, he applied the DTM on the one-dimensional planar Bratu problem which

is a nonlinear eigenvalue problem, see [18].

2. Initial value problems: Jang and Chen (2000) in [29] used the DTM to

approximate the solutions of linear and nonlinear initial value problems. Ïbis

in [27] used DTM to get approximate analytical solution of nonlinear Emden-

Fowler equation which is singular initial value problem. Ïbis showed that this

method is reliable to solve this kind of equations. Also, Hassan (2004) in [19]

solved higher order initial value problems, and in (2008) (see[22]) he made

a comparison between DTM and ADM for solving initial value problems of

partial differential equations and gave some examples to emphasize that the

solution obtained from DTM coincides with the approximate solution of ADM

and analytical solution. Recently, several authors have considered the initial

value problems by the DTM, see [13, 16, 33, 38, 44].
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3. Boundary value problems: Hassan (2009) in [21] solved linear and non-

linear boundary value problems by choosing boundary value problems with

different orders to show that the DTM has high accuracy solution comparing

with the exact one. See [4, 23, 26, 28].

4. Partial differential equations: Chen and Ho (1999) in [9] used the so called

two-dimensional differential transform method (TDDTM) to get a series solu-

tion of partial differential equations. Ayaz (2003) in [6] applied the TDDTM

to solve initial value problems for partial differential equations and compare

the result with decomposition method. Also, the reduced differential trans-

form method (RDTM) was used by Haghbin and Hesam (2012) in [16] to solve

Sawada-Katera equations as an effective and convenient alternative method.

Alquran et al. (2010) in [5] use the Laplace DTM to solve non-homogeneous

linear partial differential equations. Also, in (2015) Kumari use the Laplace

DTM to solve wave equations and wave-like equations, see [30].

5. Integral and integro-differential equations: Volterra integral equations

were solved by Tari et al. (2009) in [45]. Kajani and Shehni (2011) in [46]

solved nonlinear Volterra integro-differential equations. Two-dimensional non-

linear Volterra integro-differential equations were considered by Darania et al.

(2011) in [12].

6. System of differential equations: Ayaz (2004) in [7] and Hassan (2008) in

[22] used the DTM to solve system of differential equations. Also see [36, 41].

7. Delay differential equations: Delay differential equations were solved by

DTM by Karakoç and Bereketoglu (2009) in [31].



4 Chapter 1. Introduction

This thesis is concerned with the DTM for several types of differential equations.

Firstly, we present the definition of DTM with some basic theorems. Then we apply

this method for ordinary differential equations. Indeed, we solve linear and nonlin-

ear initial value problems as well as boundary value problems. Moreover, we use

the DTM to solve second order boundary value problems with the linear shooting

method to get the same or more close solution to the exact one.

Next, we present some modifications of the DTM to simplify the solution, or to

increase the efficiency of the method. These modifications include the modification

of the DTM by using the Adomain polynomials, in which we calculate the Adomain

polynomials instead of differential transform of nonlinear functions. Also, the modi-

fication of the DTM by using Laplace transform and Padé approximation to handle

the periodic behavior of the solution.

Then we introduce the main procedures of the DTM for solving partial differen-

tial equations. Namely, we present the TDDTM, the RDTM and the Laplace DTM.

1.2 Outline

This thesis contains four chapters. In these chapters we present the basics of DTM

and we solve different differential equations by this method.

Chapter 1 was the introduction chapter. It contains the history of DTM and a

short literature review.
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Then Chapter 2 considers the basic definition and main theorems of differential

transform. In addition we solve several examples of initial and boundary value

problems using DTM. At the end of this chapter a result for solving second order

boundary value problems by differential transform with linear shooting method is

given.

In Chapter 3 we give some modifications of the DTM to solve some problems easily.

For instance, we use the Adomain polynomials instead of the differential transform

of the nonlinear functions. Also, we modify the DTM by using Laplace transform

and Padé approximation to handel the periodic behavior of the solution.

Chapter 4 is devoted to present the TDDTM for solving partial differential equa-

tions. Also we discuss the RDTM and Laplace DTM.



Chapter 2

DTM for ordinary differential

equations

In this chapter, the definition and theorems of the DTM are introduced. Then we

present a reliable and efficient procedure to calculate the differential transform for

some nonlinear functions. After that, we apply the differential transform method to

obtain approximate solutions of linear and nonlinear initial value problems as well

as boundary value problems. In addition, results concerning differential transform

with linear shooting method for solving second order boundary value problems are

given. Furthermore, some physical models equations are also presented at the end

of this chapter.

As mentioned before, the concept of differential transform was first introduced by

Zhou in 1986 [49]. It was applied to solve linear and nonlinear initial value problems

in electric circuit analysis. Later, several researches have been conducted in applying

differential transform method to different types of equations. These researches con-

firm the fact that this method is reliable, efficient as well as having a wider applica-

bility, see [4, 11, 23]. Results in this chapter can be found in [4, 11, 23, 26, 27, 38, 42].

6



2.1. Basics of DTM 7

2.1 Basics of DTM

In this section, we introduce the definition of one-dimensional differential transform

or simply the DTM. Then some basic theorems are given and proved by this defini-

tion.

Definition 2.1. The differential transform of a function 𝑦(𝑥) is defined as follows

𝑌 (𝑘) =
1

𝑘!

[︂
𝑑𝑘𝑦(𝑥)

𝑑𝑥𝑘

]︂
𝑥=0

, (2.1)

where 𝑦(𝑥) is the original function and 𝑌 (𝑘) is the transformed function. Differential
inverse transform of 𝑌 (𝑘) is defined as

𝑦(𝑥) =
∞∑︁
𝑘=0

𝑌 (𝑘)𝑥𝑘 ≈ 𝑦𝑁(𝑥) =
𝑁∑︁
𝑘=0

𝑌 (𝑘)𝑥𝑘. (2.2)

By substituting equation(2.1) in (2.2) we get

𝑦(𝑥) =
∞∑︁
𝑘=0

𝑥𝑘

𝑘!

𝑑𝑘𝑦(𝑥)

𝑑𝑥𝑘

⃒⃒⃒⃒
𝑥=0

, (2.3)

which implies that the concept of differential transform is derived from Taylor series
expansion.

In the previous definition we consider the case when 𝑥 = 0, but it is true for any

fixed real number 𝑥 = 𝑥0.

Through this thesis, we use small letter to denote the original function and cap-

ital letter to denote the transformed function.

The next theorems are the main theorems that can be derived from equations (2.1)

and (2.2).



8 Chapter 2. DTM for ordinary differential equations

Theorem 2.1. If 𝑓(𝑥) = 𝛼𝑔(𝑥)+𝛽ℎ(𝑥), then 𝐹 (𝑘) = 𝛼𝐺(𝑘)+𝛽𝐻(𝑘), where 𝛼 and
𝛽 are constants.

Proof. Let 𝑓(𝑥) be the original function, then the differential transform of 𝑓(𝑥) is
given by

𝐹 (𝑘) =
1

𝑘!

𝑑𝑘𝑓(𝑥)

𝑑𝑥𝑘

⃒⃒⃒⃒
𝑥=0

=
1

𝑘!

𝑑𝑘(𝛼𝑔(𝑥)) + (𝛽ℎ(𝑥))

𝑑𝑥𝑘

⃒⃒⃒⃒
𝑥=0

=
1

𝑘!

[︂
𝑑𝑘(𝛼𝑔(𝑥))

𝑑𝑥𝑘
+

𝑑𝑘(𝛽ℎ(𝑥))

𝑑𝑥𝑘

]︂
𝑥=0

=
1

𝑘!
𝛼
𝑑𝑘𝑔(𝑥)

𝑑𝑥𝑘

⃒⃒⃒⃒
𝑥=0

+
1

𝑘!
𝛽
𝑑𝑘ℎ(𝑥)

𝑑𝑥𝑘

⃒⃒⃒⃒
𝑥=0

= 𝛼𝐺(𝑘) + 𝛽𝐻(𝑘).

Theorem 2.2. If 𝑓(𝑥) = 𝑔(𝑥)ℎ(𝑥), then 𝐹 (𝑘) =
𝑘∑︁

𝑟=0

𝐺(𝑟)𝐻(𝑘 − 𝑟).

Proof. Let 𝑓(𝑥) = 𝑔(𝑥)ℎ(𝑥) be the original function, then from Leibnitz formula for
the nth derivative of a product we have

𝑑𝑛(𝑔(𝑥)ℎ(𝑥))

𝑑𝑥𝑛
=

𝑛∑︁
𝑟=0

(︂
𝑛

𝑟

)︂
𝑑𝑟𝑔(𝑥)

𝑑𝑥𝑟

𝑑𝑛−𝑟ℎ(𝑥)

𝑑𝑥𝑛−𝑟
. (2.4)

Now, by using (2.4) the differential transform of 𝑓(𝑥) is given by

𝐹 (𝑘) =
1

𝑘!

𝑑𝑘𝑓(𝑥)

𝑑𝑥𝑘

⃒⃒⃒⃒
𝑥=0

=
1

𝑘!

[︃
𝑘∑︁

𝑟=0

(︂
𝑘

𝑟

)︂
𝑑𝑟𝑔(𝑥)

𝑑𝑥𝑟

𝑑𝑘−𝑟ℎ(𝑥)

𝑑𝑥𝑘−𝑟

]︃
𝑥=0

=
1

𝑘!

[︃
𝑘∑︁

𝑟=0

𝑘!

𝑟!(𝑘 − 𝑟)!

𝑑𝑟𝑔(𝑥)

𝑑𝑥𝑟

𝑑𝑘−𝑟ℎ(𝑥)

𝑑𝑥𝑘−𝑟

]︃
𝑥=0

=
𝑘∑︁

𝑟=0

𝐺(𝑟)𝐻(𝑘 − 𝑟).
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The next theorem is a generalization of the previous one.

Theorem 2.3. If 𝑓(𝑥) = 𝑔1(𝑥)𝑔2(𝑥)...𝑔𝑛(𝑥), then

𝐹 (𝑘) =
𝑘∑︁

𝑘𝑛−1=0

𝑘𝑛−1∑︁
𝑘𝑛−2=0

...

𝑘2∑︁
𝑘1=0

𝐺1(𝑘1)𝐺2(𝑘2 − 𝑘1)...𝐺𝑛(𝑘 − 𝑘𝑛−1).

Proof. By using mathematical induction, the statement is true for 𝑛 = 2 by Theorem
2.2. Assume that the statement is true for 𝑛 = 𝑚 . Now, for 𝑛 = 𝑚+ 1, we have

𝑓(𝑥) = (𝑔1(𝑥)𝑔2(𝑥)...𝑔𝑚(𝑥))𝑔𝑚+1(𝑥).

Let 𝑔(𝑥) = 𝑔1(𝑥)𝑔2(𝑥)...𝑔𝑚(𝑥), by Theorem 2.2 we get

𝐹 (𝑘) =
𝑘∑︁

𝑘𝑚=0

𝐺(𝑘𝑚)𝐺𝑚+1(𝑘 − 𝑘𝑚),

where 𝐺(𝑘𝑚) is the transformed function of 𝑔(𝑥). Then

𝐹 (𝑘) =
𝑘∑︁

𝑘𝑚=0

⎛⎝ 𝑘𝑚∑︁
𝑘𝑚−1=0

𝑘𝑚−1∑︁
𝑘𝑚−2=0

...

𝑘2∑︁
𝑘1=0

𝐺1(𝑘1)𝐺2(𝑘2 − 𝑘1)...𝐺𝑚(𝑘𝑚 − 𝑘𝑚−1)

⎞⎠𝐺𝑚+1(𝑘−𝑘𝑚).

The statement is true for 𝑛 = 𝑚+ 1, so it is true for 𝑛 ≥ 2.

Theorem 2.4. If 𝑓(𝑥) = 𝑥𝑛, then

𝐹 (𝑘) = 𝛿(𝑘 − 𝑛) =

{︃
1 if 𝑘 = 𝑛,

0 if 𝑘 ̸= 𝑛.

Proof. Let 𝑓(𝑥) be the original function, then the differential transform of 𝑓(𝑥) is
given by

𝐹 (𝑘) =
1

𝑘!

𝑑𝑘𝑓(𝑥)

𝑑𝑥𝑘

⃒⃒⃒⃒
𝑥=0

=
1

𝑘!

𝑑𝑘𝑥𝑛

𝑑𝑥𝑘

⃒⃒⃒⃒
𝑥=0

.
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From differentiation rule we have

𝑑𝑘𝑥𝑛

𝑑𝑥𝑘
= 𝑛(𝑛− 1)(𝑛− 2)...(𝑛− 𝑘 + 1)𝑥𝑛−𝑘.

So,

𝐹 (𝑘) =
𝑛(𝑛− 1)(𝑛− 2)...(𝑛− 𝑘 + 1)

𝑘!
𝑥𝑛−𝑘.

If 𝑛 = 𝑘,

𝐹 (𝑘) =
𝑘(𝑘 − 1)(𝑘 − 2)...1

𝑘!
,

so,
𝐹 (𝑘) = 1.

If 𝑛 ̸= 𝑘, and 𝑥 = 0 we get
𝐹 (𝑘) = 0.

Then

𝐹 (𝑘) = 𝛿(𝑘 − 𝑛) =

{︃
1 if 𝑘 = 𝑛

0 if 𝑘 ̸= 𝑛.

Theorem 2.5. If 𝑓(𝑥) =
𝑑𝑛𝑔(𝑥)

𝑑𝑥𝑛
, then 𝐹 (𝑘) = (𝑘 + 1)(𝑘 + 2)...(𝑘 + 𝑛)𝐺(𝑘 + 𝑛).

Proof. Let 𝑓(𝑥) be the original function, then the differential transform of 𝑓(𝑥) is
given by

𝐹 (𝑘) =
1

𝑘!

𝑑𝑘𝑓(𝑥)

𝑑𝑥𝑘

⃒⃒⃒⃒
𝑥=0

=
1

𝑘!

𝑑𝑘 𝑑𝑛𝑔(𝑥)
𝑑𝑥𝑛

𝑑𝑥𝑘

⃒⃒⃒⃒
𝑥=0

=
1

𝑘!

𝑑𝑘+𝑛𝑔(𝑥)

𝑑𝑥𝑘+𝑛

⃒⃒⃒⃒
𝑥=0

=
(𝑘 + 𝑛)!

𝑘!

[︂
1

(𝑘 + 𝑛)!

𝑑𝑘+𝑛𝑔(𝑥)

𝑑𝑥𝑘+𝑛

]︂
𝑥=0

= (𝑘 + 1)(𝑘 + 2)...(𝑘 + 𝑛)𝐺(𝑘 + 𝑛).
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The following theorems give the differential transform of some functions.

Theorem 2.6. If 𝑓(𝑥) = 𝑒𝑥, then 𝐹 (𝑘) =
1

𝑘!
.

Proof. Let 𝑓(𝑥) be the original function, then the differential transform of 𝑓(𝑥) is
given by

𝐹 (𝑘) =
1

𝑘!

𝑑𝑘𝑓(𝑥)

𝑑𝑥𝑘

⃒⃒⃒⃒
𝑥=0

=
1

𝑘!

𝑑𝑘𝑒𝑥

𝑑𝑥𝑘

⃒⃒⃒⃒
𝑥=0

=
1

𝑘!
𝑒𝑥
⃒⃒⃒⃒
𝑥=0

=
1

𝑘!
.

Theorem 2.7. If 𝑓(𝑥) = 𝑒𝜆𝑥, then 𝐹 (𝑘) =
𝜆𝑘

𝑘!
, where 𝜆 is constant.

Proof. Let 𝑓(𝑥) be the original function, then the differential transform of 𝑓(𝑥) is
given by

𝐹 (𝑘) =
1

𝑘!

𝑑𝑘𝑓(𝑥)

𝑑𝑥𝑘

⃒⃒⃒⃒
𝑥=0

=
1

𝑘!

𝑑𝑘𝑒𝜆𝑥

𝑑𝑥𝑘

⃒⃒⃒⃒
𝑥=0

=
1

𝑘!
𝜆𝑘𝑒𝜆𝑥

⃒⃒⃒⃒
𝑥=0

=
𝜆𝑘

𝑘!
.

Theorem 2.8. If 𝑓(𝑥) = sin(𝑤𝑥+𝛼), then 𝐹 (𝑘) =
𝑤𝑘

𝑘!
sin

(︂
𝑘𝜋

2
+ 𝛼

)︂
, where 𝑤 and

𝛼 are constants.
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Proof. Take the differential transform of 𝑓(𝑥) = sin(𝑤𝑥+ 𝛼)

𝐹 (𝑘) =
1

𝑘!

𝑑𝑘 sin(𝑤𝑥+ 𝛼)

𝑑𝑥𝑘

⃒⃒⃒⃒
𝑥=0

=
𝑤𝑘

𝑘!
sin

(︂
𝑘𝜋

2
+ 𝛼

)︂
.

Theorem 2.9. If 𝑓(𝑥) = cos(𝑤𝑥 + 𝛼), then 𝐹 (𝑘) =
𝑤𝑘

𝑘!
cos

(︂
𝑘𝜋

2
+ 𝛼

)︂
, where 𝑤

and 𝛼 are constants.

Proof. Take the differential transform of 𝑓(𝑥) = cos(𝑤𝑥+ 𝛼)

𝐹 (𝑘) =
1

𝑘!

𝑑𝑘 cos(𝑤𝑥+ 𝛼)

𝑑𝑥𝑘

⃒⃒⃒⃒
𝑥=0

=
𝑤𝑘

𝑘!
cos

(︂
𝑘𝜋

2
+ 𝛼

)︂
.

Theorem 2.10. If 𝑓(𝑥) = (1 + 𝑥)𝑏, then 𝐹 (𝑘) =
𝑏(𝑏− 1)...(𝑏− 𝑘 + 1)

𝑘!
, where 𝑏 is

constant.

Proof. Take the differential transform of 𝑓(𝑥) = (1 + 𝑥)𝑏

𝐹 (𝑘) =
1

𝑘!

𝑑𝑘(1 + 𝑥)𝑏

𝑑𝑥𝑘

⃒⃒⃒⃒
𝑥=0

=
𝑏(𝑏− 1)...(𝑏− 𝑘 + 1)(1 + 𝑥)𝑏−𝑘

𝑘!

⃒⃒⃒⃒
𝑥=0

=
𝑏(𝑏− 1)...(𝑏− 𝑘 + 1)

𝑘!
.
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Theorem 2.11. If 𝑓(𝑥) =
∫︁ 𝑥

0

𝑔(𝑡) 𝑑𝑡, then 𝐹 (𝑘) =
𝐺(𝑘 − 1)

𝑘
, for 𝑘 ≥ 1.

Proof. Take the differential transform of 𝑓(𝑥)

𝐹 (𝑘) =
1

𝑘!

𝑑𝑘
∫︀ 𝑥

0
𝑔(𝑡)𝑑𝑡

𝑑𝑥𝑘

⃒⃒⃒⃒
𝑥=0

=
1

𝑘!

𝑑𝑘−1𝑔(𝑥)

𝑑𝑥𝑘−1

⃒⃒⃒⃒
𝑥=0

=
1

𝑘(𝑘 − 1)!

𝑑𝑘−1𝑔(𝑥)

𝑑𝑥𝑘−1

⃒⃒⃒⃒
𝑥=0

=
𝐺(𝑘 − 1)

𝑘
.

2.2 The differential transform for some nonlinear

functions

In this section, we calculate the differential transform for some nonlinear functions.

These calculations based on the differentiation and Theorems 2.1 - 2.5. Here, we

refer to [27, 38].

Theorem 2.12. If 𝑓(𝑦) = 𝑦𝑚, then

𝐹 (𝑘) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑌 𝑚(0) if 𝑘 = 0,

1

𝑌 (0)

𝑘∑︁
𝑟=1

(𝑚+ 1)𝑟 − 𝑘

𝑘
𝑌 (𝑟)𝐹 (𝑘 − 𝑟) if 𝑘 ≥ 1.

Proof. If 𝑘 = 0, by using Definition 2.1 we have,

𝐹 (0) = 𝑦𝑚(0) = 𝑌 𝑚(0). (2.5)

If 𝑘 ≥ 1, differentiate 𝑓(𝑦) = 𝑦𝑚 with respect to 𝑥, we get

𝑑𝑓(𝑦)

𝑑𝑥
= 𝑚𝑦𝑚−1𝑑𝑦(𝑥)

𝑑𝑥
. (2.6)
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Multiply both sides of Equation (2.6) by 𝑦(𝑥), we get

𝑦(𝑥)
𝑑𝑓(𝑦)

𝑑𝑥
= 𝑚𝑓(𝑦(𝑥))

𝑑𝑦(𝑥)

𝑑𝑥
. (2.7)

Apply the DTM on Equation (2.7)

𝑘∑︁
𝑟=0

𝑌 (𝑟)(𝑘 − 𝑟 + 1)𝐹 (𝑘 − 𝑟 + 1) = 𝑚

𝑘∑︁
𝑟=0

(𝑟 + 1)𝑌 (𝑟 + 1)𝐹 (𝑘 − 𝑟),

then

(𝑘+1)𝑌 (0)𝐹 (𝑘+1) = 𝑚
𝑘∑︁

𝑟=0

(𝑟+1)𝑌 (𝑟+1)𝐹 (𝑘−𝑟)−
𝑘∑︁

𝑟=1

𝑌 (𝑟)(𝑘−𝑟+1)𝐹 (𝑘−𝑟+1),

or

(𝑘 + 1)𝑌 (0)𝐹 (𝑘 + 1) = 𝑚
𝑘+1∑︁
𝑟=1

𝑟𝑌 (𝑟)𝐹 (𝑘 − 𝑟 + 1)−
𝑘∑︁

𝑟=1

𝑌 (𝑟)(𝑘 − 𝑟 + 1)𝐹 (𝑘 − 𝑟 + 1)

=
𝑘+1∑︁
𝑟=1

((𝑚+ 1)𝑟 − 𝑘 − 1)𝑌 (𝑟)𝐹 (𝑘 − 𝑟 + 1),

putting 𝑘 instead of 𝑘 + 1 gives

𝑘𝑌 (0)𝐹 (𝑘) =
𝑘∑︁

𝑟=1

((𝑚+ 1)𝑟 − 𝑘)𝑌 (𝑟)𝐹 (𝑘 − 𝑟),

from this, we have

𝐹 (𝑘) =
1

𝑌 (0)

𝑘∑︁
𝑟=1

[︂(︂
(𝑚+ 1)𝑟 − 𝑘

𝑘

)︂
𝑌 (𝑟)𝐹 (𝑘 − 𝑟)

]︂
. (2.8)

From (2.5) and (2.8) we get,

𝐹 (𝑘) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑌 𝑚(0) if 𝑘 = 0,

1

𝑌 (0)

𝑘∑︁
𝑟=1

(𝑚+ 1)𝑟 − 𝑘

𝑘
𝑌 (𝑟)𝐹 (𝑘 − 𝑟) if 𝑘 ≥ 1.
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Theorem 2.13. If 𝑓(𝑦) = 𝑒𝑎𝑦, then

𝐹 (𝑘) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑒𝑎𝑌 (0) if 𝑘 = 0,

𝑎
𝑘−1∑︁
𝑟=0

𝑟 + 1

𝑘
𝑌 (𝑟 + 1)𝐹 (𝑘 − 𝑟 − 1) if 𝑘 ≥ 1.

Proof. If 𝑘 = 0, by using Definition 2.1 we have,

𝐹 (0) = 𝑓(𝑦)

⃒⃒⃒⃒
𝑥=0

= 𝑒𝑎𝑦(0) = 𝑒𝑎𝑌 (0). (2.9)

Now, differentiate 𝑓(𝑦) with respect to 𝑥

𝑑𝑓(𝑦)

𝑑𝑥
= 𝑎𝑒𝑎𝑦

𝑑𝑦(𝑥)

𝑑𝑥
= 𝑎𝑓(𝑦)

𝑑𝑦(𝑥)

𝑑𝑥
. (2.10)

By taking differential transform to both sides of Equation (2.10), we get

(𝑘 + 1)𝐹 (𝑘 + 1) = 𝑎
𝑘∑︁

𝑟=0

(𝑟 + 1)𝑌 (𝑟 + 1)𝐹 (𝑘 − 𝑟),

putting 𝑘 instead of 𝑘 + 1 gives

𝐹 (𝑘) = 𝑎
𝑘−1∑︁
𝑟=0

𝑟 + 1

𝑘
𝑌 (𝑟 + 1)𝐹 (𝑘 − 𝑟 − 1), 𝑘 ≥ 1. (2.11)

From (2.9) and (2.11) we get

𝐹 (𝑘) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑒𝑎𝑌 (0) if 𝑘 = 0,

𝑎
𝑘−1∑︁
𝑟=0

𝑟 + 1

𝑘
𝑌 (𝑟 + 1)𝐹 (𝑘 − 𝑟 − 1) if 𝑘 ≥ 1.
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Theorem 2.14. If 𝑓(𝑦) = ln(𝑎+ 𝑏𝑦), 𝑎+ 𝑏𝑦 > 0, then

𝐹 (𝑘) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ln(𝑎+ 𝑏𝑌 (0)) if 𝑘 = 0,

𝑏

𝑎+ 𝑏𝑌 (0)
𝑌 (1) if 𝑘 = 1,

𝑏

𝑎+ 𝑏𝑌 (0)

[︃
𝑌 (𝑘)−

𝑘−2∑︁
𝑟=0

𝑟 + 1

𝑘
𝐹 (𝑟 + 1)𝑌 (𝑘 − 𝑟 − 1)

]︃
if 𝑘 ≥ 2.

Proof. If 𝑘 = 0, by using Definition 2.1 we have

𝐹 (0) = 𝑓(𝑦)

⃒⃒⃒⃒
𝑥=0

= ln(𝑎+ 𝑏𝑦(0)) = ln(𝑎+ 𝑏𝑌 (0)). (2.12)

Now, by differentiating 𝑓(𝑦) with respect to 𝑥 we get

𝑑𝑓(𝑦)

𝑑𝑥
=

𝑏

𝑎+ 𝑏𝑦

𝑑𝑦(𝑥)

𝑑𝑥
,

or

𝑎
𝑑𝑓(𝑦)

𝑑𝑥
= 𝑏

[︂
𝑑𝑦(𝑥)

𝑑𝑥
− 𝑦

𝑑𝑓(𝑦)

𝑑𝑥

]︂
. (2.13)

Taking the differential transform of Equation (2.13) we obtain

𝑎𝐹 (𝑘 + 1) = 𝑏

[︃
𝑌 (𝑘 + 1)−

𝑘∑︁
𝑟=0

𝑟 + 1

𝑘 + 1
𝐹 (𝑟 + 1)𝑌 (𝑘 − 𝑟)

]︃
,

putting 𝑘 instead of 𝑘 + 1 gives

𝑎𝐹 (𝑘) = 𝑏

[︃
𝑌 (𝑘)−

𝑘−1∑︁
𝑟=0

𝑟 + 1

𝑘
𝐹 (𝑟 + 1)𝑌 (𝑘 − 𝑟 − 1)

]︃
, 𝑘 ≥ 1. (2.14)

Substituting 𝑘 = 1 in Equation (2.14), we get

𝐹 (1) =
𝑏

𝑎
[𝑌 (1)− 𝐹 (1)𝑌 (0)] (2.15)

=
𝑏

𝑎+ 𝑏𝑌 (0)
𝑌 (1).
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We can rewrite Equation (2.14) as

𝐹 (𝑘) =
𝑏

𝑎+ 𝑏𝑌 (0)

[︃
𝑌 (𝑘)−

𝑘−2∑︁
𝑟=0

𝑟 + 1

𝑘
𝐹 (𝑟 + 1)𝑌 (𝑘 − 𝑟 − 1)

]︃
, 𝑘 ≥ 2. (2.16)

From (2.12), (2.15) and (2.16) we have

𝐹 (𝑘) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ln(𝑎+ 𝑏𝑌 (0)) if 𝑘 = 0,

𝑏

𝑎+ 𝑏𝑌 (0)
𝑌 (1) if 𝑘 = 1,

𝑏

𝑎+ 𝑏𝑌 (0)

[︃
𝑌 (𝑘)−

𝑘−2∑︁
𝑟=0

𝑟 + 1

𝑘
𝐹 (𝑟 + 1)𝑌 (𝑘 − 𝑟 − 1)

]︃
if 𝑘 ≥ 2.

Theorem 2.15. If 𝑓(𝑦) = sin(𝑎𝑦) and 𝑔(𝑦) = cos(𝑎𝑦), then

𝐹 (𝑘) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

sin(𝑎𝑌 (0)) if 𝑘 = 0,

𝑎

𝑘−1∑︁
𝑟=0

𝑘 − 𝑟

𝑘
𝐺(𝑟)𝑌 (𝑘 − 𝑟) if 𝑘 ≥ 1

and

𝐺(𝑘) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

cos(𝑎𝑌 (0)) if 𝑘 = 0,

−𝑎
𝑘−1∑︁
𝑟=0

𝑘 − 𝑟

𝑘
𝐹 (𝑟)𝑌 (𝑘 − 𝑟) if 𝑘 ≥ 1.

Proof. If 𝑘 = 0, by using Definition 2.1 we have

𝐹 (0) = 𝑓(𝑦)

⃒⃒⃒⃒
𝑥=0

= sin(𝑎𝑦(0)) = sin(𝑎𝑌 (0)). (2.17)
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Now, for 𝑘 ≥ 1 differentiate 𝑓(𝑦) with respect to 𝑥 to get

𝑑𝑓(𝑦)

𝑑𝑥
= 𝑎 cos(𝑎𝑦)

𝑑𝑦(𝑥)

𝑑𝑥
(2.18)

= 𝑎𝑔(𝑦)
𝑑𝑦(𝑥)

𝑑𝑥
.

Applying the differential transform to both sides of Equation (2.18) gives

(𝑘 + 1)𝐹 (𝑘 + 1) = 𝑎

𝑘∑︁
𝑟=0

(𝑘 − 𝑟 + 1)𝐺(𝑟)𝑌 (𝑘 − 𝑟 + 1),

replacing 𝑘 + 1 by 𝑘 yields:

𝑘𝐹 (𝑘) = 𝑎

𝑘−1∑︁
𝑟=0

(𝑘 − 𝑟)𝐺(𝑟)𝑌 (𝑘 − 𝑟),

or

𝐹 (𝑘) = 𝑎
𝑘−1∑︁
𝑟=0

𝑘 − 𝑟

𝑘
𝐺(𝑟)𝑌 (𝑘 − 𝑟). (2.19)

From (2.17) and (2.19) we obtain,

𝐹 (𝑘) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

sin(𝑎𝑌 (0)) if 𝑘 = 0,

𝑎
𝑘−1∑︁
𝑟=0

𝑘 − 𝑟

𝑘
𝐺(𝑟)𝑌 (𝑘 − 𝑟) if 𝑘 ≥ 1.

The proof is similar for 𝑔(𝑦) = cos(𝑎𝑦).

Theorem 2.16. If 𝑓(𝑦) = sinh(𝑎𝑦) and 𝑔(𝑦) = cosh(𝑎𝑦), then

𝐹 (𝑘) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

sinh(𝑎𝑌 (0)) if 𝑘 = 0,

𝑎

𝑘−1∑︁
𝑟=0

𝑘 − 𝑟

𝑘
𝐺(𝑟)𝑌 (𝑘 − 𝑟) if 𝑘 ≥ 1
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and

𝐺(𝑘) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

cosh(𝑎𝑌 (0)) if 𝑘 = 0,

𝑎

𝑘−1∑︁
𝑟=0

𝐹 (𝑟)𝑌 (𝑘 − 𝑟) if 𝑘 ≥ 1.

Proof. If 𝑘 = 0, by using Definition 2.1 we have

𝐹 (0) = 𝑓(𝑦)

⃒⃒⃒⃒
𝑥=0

= sinh(𝑎𝑦(0)) = sinh(𝑎𝑌 (0)). (2.20)

Now, for 𝑘 ≥ 1 differentiating 𝑓(𝑦) with respect to 𝑥, we obtain

𝑑𝑓(𝑦)

𝑑𝑥
= 𝑎 cosh(𝑎𝑦)

𝑑𝑦(𝑥)

𝑑𝑥
(2.21)

= 𝑎𝑔(𝑦)
𝑑𝑦(𝑥)

𝑑𝑥
.

Applying the differential transform to both sides of Equation (2.21) gives

(𝑘 + 1)𝐹 (𝑘 + 1) = 𝑎
𝑘∑︁

𝑟=0

(𝑘 − 𝑟 + 1)𝐺(𝑟)𝑌 (𝑘 − 𝑟 + 1),

replacing 𝑘 + 1 by 𝑘 yields

𝑘𝐹 (𝑘) = 𝑎
𝑘−1∑︁
𝑟=0

(𝑘 − 𝑟)𝐺(𝑟)𝑌 (𝑘 − 𝑟)

or

𝐹 (𝑘) = 𝑎

𝑘−1∑︁
𝑟=0

𝑘 − 𝑟

𝑘
𝐺(𝑟)𝑌 (𝑘 − 𝑟). (2.22)

From (2.20) and (2.22) we obtain,

𝐹 (𝑘) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

sinh(𝑎𝑌 (0)) if 𝑘 = 0,

𝑎

𝑘−1∑︁
𝑟=0

𝐺(𝑟)𝑌 (𝑘 − 𝑟) if 𝑘 ≥ 1.

For 𝑔(𝑦) = cosh(𝑎𝑦), the proof is similar.
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2.3 Linear initial value problems

In this section, we give solutions for linear initial value problems by using differential

transform method. The technique is explained through examples.

Example 2.1. Consider the first order linear initial value problem

1− 𝑑𝑦

𝑑𝑥
+ 𝑦 = 0, (2.23)

with an initial condition
𝑦(0) = 𝑎. (2.24)

Solution. By applying the DTM on Equation (2.23) in view of Section 2.2 we have

𝛿(𝑘)− (𝑘 + 1)𝑌 (𝑘 + 1) + 𝑌 (𝑘) = 0.

This leads to the following recurrence relation

𝑌 (𝑘 + 1) =
1

(𝑘 + 1)
[𝑌 (𝑘) + 𝛿(𝑘)], (2.25)

and from initial condition (2.24) we get

𝑌 (0) = 𝑎. (2.26)

Using recurrence relation (2.25) and (2.26) for 𝑘 = 0, 1, ..., 4 we get the following

𝑌 (0) = 𝑎, 𝑌 (1) = 𝑎+ 1, 𝑌 (2) =
𝑎+ 1

2
, 𝑌 (3) =

𝑎+ 1

6
, 𝑌 (4) =

𝑎+ 1

24
.

We can write the solution as

𝑦(𝑥) ≈
4∑︁

𝑘=0

𝑌 (𝑘)𝑥𝑘

≈ 𝑎+ (𝑎+ 1)𝑥+
𝑎+ 1

2
𝑥2 +

𝑎+ 1

6
𝑥3 +

𝑎+ 1

24
𝑥4.
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Where the exact solution of this example is

𝑦(𝑥) = −1 + (𝑎+ 1)𝑒𝑥.

Note that the first terms of the Taylor series expansion of the exact solution equal

first terms of the solution obtained by the DTM. To obtain extra terms we should

consider extra values for 𝑘 ≥ 4.

Example 2.2. Consider the second order linear initial value problem

𝑑2𝑦

𝑑𝑥2
+ 3

𝑑𝑦

𝑑𝑥
+ 2𝑦 = 24 (2.27)

with initial conditions
𝑦(0) = 10 and 𝑦′(0) = 0. (2.28)

Solution. By applying the DTM on Equation (2.27)

(𝑘 + 1)(𝑘 + 2)𝑌 (𝑘 + 2) + 3(𝑘 + 1)𝑌 (𝑘 + 1) + 2𝑌 (𝑘) = 24𝛿(𝑘). (2.29)

We get the following recurrence relation

𝑌 (𝑘 + 2) =
1

(𝑘 + 1)(𝑘 + 2)
(−3(𝑘 + 1)𝑌 (𝑘 + 1)− 2𝑌 (𝑘) + 24𝛿(𝑘)). (2.30)

The initial conditions become

𝑌 (0) = 10 and 𝑌 (1) = 0. (2.31)

Using recurrence relation (2.30) and conditions (2.31) for 𝑘 = 0, 1, 2, ... we get the

following

𝑌 (0) = 10, 𝑌 (1) = 0, 𝑌 (2) = 2, 𝑌 (3) = −2, 𝑌 (4) =
7

6
, ...
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We can write the solution as

𝑦(𝑥) =
∞∑︁
𝑘=0

𝑌 (𝑘)𝑥𝑘 (2.32)

= 10 + 2𝑥2 − 2𝑥3 +
7

6
𝑥4 + ... (2.33)

Where the exact solution of this example is

𝑦(𝑥) = 12− 4𝑒−𝑥 + 2𝑒−2𝑥 (2.34)

Note that the first terms of the Taylor series expansion of the exact solution equal

the first terms of the solution obtained by the DTM.

For more examples see [33, 42].

2.4 Nonlinear initial value problems

In this section, we apply the DTM to solve nonlinear initial value problem. By using

theorems in Section 2.2 we decompose the nonlinear terms. Therefore the solution

can be obtained by iteration procedure. Next, we consider several examples with

different forms of nonlinearity.

Example 2.3. Consider the nonlinear initial value problem

𝑦′′(𝑥) + 2(𝑦′(𝑥))2 + 8𝑦(𝑥) = 0, 0 ≤ 𝑥 < ∞ (2.35)

with initial conditions
𝑦(0) = 0 and 𝑦′(0) = 1. (2.36)
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Solution. Apply the DTM on Equation (2.35), we have

(𝑘 + 1)(𝑘 + 2)𝑌 (𝑘 + 2) + 2
𝑘∑︁

𝑟=0

(𝑟 + 1)(𝑘 − 𝑟 + 1)𝑌 (𝑟 + 1)𝑌 (𝑘 − 𝑟 + 1) + 8𝑌 (𝑘) = 0.

Thus, we get the following recurrence relation

𝑌 (𝑘+2) =
−1

(𝑘 + 1)(𝑘 + 2)

[︃
2

𝑘∑︁
𝑟=0

(𝑟 + 1)(𝑘 − 𝑟 + 1)𝑌 (𝑟 + 1)𝑌 (𝑘 − 𝑟 + 1) + 8𝑌 (𝑘)

]︃
,

(2.37)

from the initial condition (2.36) we get

𝑌 (0) = 0 and 𝑌 (1) = 1. (2.38)

Using recurrence relation (2.37) and (2.38) for 𝑘 = 0, 1, ..., 4 we get the following

𝑌 (0) = 0, 𝑌 (1) = 1, 𝑌 (2) = −1, 𝑌 (3) = 0, 𝑌 (4) = 0.

For 𝑘 ≥ 3, 𝑌 (𝑘) = 0, so we can write the solution as

𝑦(𝑥) =
∞∑︁
𝑘=0

𝑌 (𝑘)𝑥𝑘

= 𝑥− 𝑥2.

Which is the exact solution.

Example 2.4. Consider the nonlinear initial value problem

𝑥𝑦′′(𝑥) + 8𝑦′(𝑥) + 18𝑎𝑥𝑦 = −4𝑎𝑥𝑦 ln 𝑦, 𝑥 > 0 (2.39)

with initial conditions
𝑦(0) = 1 and 𝑦′(0) = 0. (2.40)
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Solution. Apply the DTM on Equation (2.39)

𝑘∑︁
𝑟=0

𝛿(𝑟 − 1)(𝑘 − 𝑟 + 1)(𝑘 − 𝑟 + 2)𝑌 (𝑘 − 𝑟 + 2)

+ 8(𝑘 + 1)𝑌 (𝑘 + 1) + 18𝑎
𝑘∑︁

𝑟=0

𝛿(𝑟 − 1)𝑌 (𝑘 − 𝑟)

= −4𝑎
𝑘∑︁

𝑟=0

𝑟∑︁
𝑘1=0

𝛿(𝑘1 − 1)𝑌 (𝑟 − 𝑘1)𝐹 (𝑘 − 𝑟), (2.41)

where 𝐹 (𝑘)is the transformed function of 𝑓(𝑦) = ln 𝑦.

Now, we simplify (2.41) to get

𝑘(𝑘 + 1)𝑌 (𝑘 + 1) + 8(𝑘 + 1)𝑌 (𝑘 + 1) + 18𝑎
𝑘∑︁

𝑟=0

𝛿(𝑟 − 1)𝑌 (𝑘 − 𝑟)

= −4𝑎
𝑘∑︁

𝑟=0

𝑟∑︁
𝑘1=0

𝛿(𝑘1 − 1)𝑌 (𝑟 − 𝑘1)𝐹 (𝑘 − 𝑟),

Then we get the following recurrence relation

𝑌 (𝑘 + 1) =
−18𝑎

(𝑘 + 1)(𝑘 + 8)

𝑘∑︁
𝑟=0

𝛿(𝑟 − 1)𝑌 (𝑘 − 𝑟)

− 4𝑎

(𝑘 + 1)(𝑘 + 8)

𝑘∑︁
𝑟=0

𝑟∑︁
𝑘1=0

𝛿(𝑘1 − 1)𝑌 (𝑟 − 𝑘1)𝐹 (𝑘 − 𝑟), (2.42)

from (2.40) we get

𝑌 (0) = 1 and 𝑌 (1) = 0. (2.43)

Using recurrence relation (2.42) and (2.43) for 𝑘 = 0, 1, 2, ... we get the following

series solution

𝑦(𝑥) =
∞∑︁
𝑘=0

𝑌 (𝑘)𝑥𝑘

= 1− 𝑎𝑥2 +
1

2
𝑎2𝑥4 − 1

6
𝑎3𝑥6 +

1

24
𝑎4𝑥8 − 1

120
𝑎5𝑥10 +

1

720
𝑎6𝑥12 + ...
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which is the Taylor series expansion of the exact solution 𝑒−𝑎𝑥2
.

Note: The result is computed by MAPLE program.

2.5 Boundary value problems

In this section, we solve boundary value problems by the DTM. Like the previous

sections, we get a recurrence relation after applying the DTM on the given ordinary

differential equation, but there is a difference in finding the transformed boundary

conditions. We need to solve a system of linear equations by using the original

boundary conditions to get a series solution for the given boundary value problem

from the recurrence relation. This is illustrated in the next examples.

Example 2.5. Consider the fifth-order linear boundary value problem

𝑦(5)(𝑥) = 𝑦(𝑥)− 10𝑒𝑥 − 5𝑥𝑒𝑥 + 𝑥2𝑒𝑥, (2.44)

with boundary conditions

𝑦(0) = 0, 𝑦′(0) =
4

5
, 𝑦′′(0) =

−1

5
,

𝑦′(1) = −2.265234857, 𝑦′′(1) = −8.245454881. (2.45)

Solution. Applying the DTM on Equation (2.44) gives the following recurrence

relation

(𝑘+1)(𝑘+2)(𝑘+3)(𝑘+4)(𝑘+5)𝑌 (𝑘+5) = 𝑌 (𝑘)− 10

𝑘!
−5

𝑘∑︁
𝑟=0

𝛿(𝑟 − 1)

(𝑘 − 𝑟)!
+

𝑘∑︁
𝑟=0

𝛿(𝑟 − 2)

(𝑘 − 𝑟)!
,
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or

𝑌 (𝑘 + 5) =
𝑘!

(𝑘 + 5)!

[︃
𝑌 (𝑘)− 10

𝑘!
− 5

𝑘∑︁
𝑟=0

𝛿(𝑟 − 1)

(𝑘 − 𝑟)!
+

𝑘∑︁
𝑟=0

𝛿(𝑟 − 2)

(𝑘 − 𝑟)!

]︃
. (2.46)

Applying the DTM on boundary conditions at 𝑥 = 0 gives the following transformed

boundary conditions

𝑌 (0) = 0, 𝑌 (1) =
4

5
, 𝑌 (2) =

𝑦′′(0)

2!
=

−1

10
,

𝑌 (3) =
𝑦′′′(0)

3!
= 𝑎, 𝑌 (4) =

𝑦(4)(0)

4!
= 𝑏.

Using Definition 2.1 for 𝑘 = 0, 1, ..., 15, at 𝑥 = 1 and transformed boundary condi-

tions, we get the following linear system of two equations

15443560997

435891456000
+

239595841

79833600
𝑎+

148284463

37065600
𝑏 = −2.265234857, (2.47)

−20554253119

7783776000
+

39972241

6652800
𝑎+

239595841

19958400
𝑏 = −8.245454881. (2.48)

Solving (2.47) and (2.48) for 𝑎 and 𝑏 give

𝑎 = −0.4333333329 and 𝑏 = −0.2500000003.

For 𝑘 = 1, 2, ..., 15 we get the following series solution

𝑦(𝑥) = 0.8𝑥− 0.1𝑥2 − 0.4333333329𝑥3 − 0.2500000003𝑥4 − 0.08333333333𝑥5

− 0.01972222222𝑥6 − 0.003611111111𝑥7 − 0.0005357142856𝑥8

− 0.00006613756615𝑥9 − 0.000006889329806𝑥10

− 6.062610229× 10−7𝑥11 − 4.425872481× 10−8𝑥12

− 2.505210838× 10−9𝑥13 − 8.029521927× 10−11𝑥14

+ 3.823581866× 10−12𝑥15.

The calculation in this example made by MAPLE program.
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Figure 2-1 shows that DTM give high accuracy solution. The exact solution values

is taken from [26].

Figure 2-1: The exact solution together with the solution obtained from DTM.

Example 2.6. Consider the sixth-order linear boundary value problem

𝑦(6)(𝑥) = 𝑦(𝑥) + 15𝑒𝑥 + 10𝑥𝑒𝑥 + 𝑥3𝑒𝑥, (2.49)

with boundary conditions

𝑦(0) = 10, 𝑦′(0) = −25

8
, 𝑦′′(0) = −5

3
,

𝑦(1) = −3.397852287, 𝑦′(1) = −2.831543570, 𝑦′′(1) = 3.397852297. (2.50)

Solution. Applying the DTM on Equation (2.49) gives the following recurrence
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relation

(𝑘 + 1)(𝑘 + 2)(𝑘 + 3)(𝑘 + 4)(𝑘 + 5)(𝑘 + 6)𝑌 (𝑘 + 6) =

𝑌 (𝑘) +
15

𝑘!
+ 10

𝑘∑︁
𝑟=0

𝛿(𝑟 − 1)

(𝑘 − 𝑟)!
+

𝑘∑︁
𝑟=0

𝛿(𝑟 − 3)

(𝑘 − 𝑟)!
,

or

𝑌 (𝑘 + 6) =
𝑘!

(𝑘 + 6)!

[︃
𝑌 (𝑘) +

15

𝑘!
+ 10

𝑘∑︁
𝑟=0

𝛿(𝑟 − 1)

(𝑘 − 𝑟)!
+

𝑘∑︁
𝑟=0

𝛿(𝑟 − 3)

(𝑘 − 𝑟)!

]︃
. (2.51)

Applying the DTM on boundary conditions at 𝑥 = 0 gives the following transformed

boundary conditions

𝑌 (0) = 10, 𝑌 (1) = −25

8
, 𝑌 (2) =

𝑦′′(0)

2!
= −5

6
,

𝑌 (3) =
𝑦′′′(0)

3!
= 𝑎, 𝑌 (4) =

𝑦(4)(0)

4!
= 𝑏, 𝑌 (5) =

𝑦(5)(0)

5!
= 𝑐.

Using Definition 2.1 for 𝑘 = 0, 1, ..., 15, at 𝑥 = 1 and boundary conditions, we get

the following linear system of three equations

− 4113595263593

1046139494400
+

217949331601

217945728000
𝑎+

151201

151200
𝑏+

332641

332640
𝑐 = −3.397852287

− 4841688336097

1046139494400
+

43591307761

14529715200
𝑎+

60481

15120
𝑏+

151201

30240
𝑐 = −2.83154357

− 29911705387

37362124800
+

889750903

148262400
𝑎+

20161

1680
𝑏+

60481

3024
𝑐 = 3.397852297.

Solving the above system of equations for 𝑎, 𝑏 and 𝑐 gives

𝑎 = 0.3124999935, 𝑏 = 0.2500000111 and 𝑐 = 0.08506943967.
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For 𝑘 = 1, 2, ..., 15 we get the following series solution

𝑦(𝑥) = −3.125𝑥− 0.8333333333𝑥2 + 0.35124999935𝑥3 + 0.2500000111𝑥4

− 0.08506943967𝑥5 − 0.02083333333𝑥6 + 0.004340277778𝑥7

+ 0.0008267195767𝑥8 + 0.0001457093252𝑥9

+ 0.00002342372142𝑥10 + 0.000003387253807𝑥11

+ 4.384118967× 10−7𝑥12 + 5.088709516× 10−8𝑥13

+ 5.326249539× 10−9𝑥14 + 5.061466495× 10−10𝑥15.

Figure 2-2 shows that DTM give high accuracy solution. The exact solution values

is taken from [26].

Figure 2-2: The exact solution together with the solution obtained from DTM.

For more examples refer to [4, 23, 26, 28].
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2.6 DTM with linear shooting

In solving initial value problems the initial conditions are transformed directly to the

values 𝑌 (𝑘), for 𝑘 = 0 or 𝑘 ≥ 1, i.e we obtain the values 𝑌 (0) and may 𝑌 (1), 𝑌 (2), ...

directly. But the situation is different for boundary value problems. In boundary

value problems usually we require to solve linear system of equations that use the

boundary conditions to obtain the values of 𝑌 (0) or 𝑌 (1), 𝑌 (2), ... as in the previous

section.

In this section, we apply the linear shooting method to solve the second order

boundary value problems. In this method we can solve the second order bound-

ary value problems by combination of two initial value problems.

We see that solving initial value problems by the DTM give a series solution that

converges fast to the exact solution, this gives us a motivation to use this solution

in solving second order linear boundary value problems by linear shooting method.

Consider the second order linear boundary value problem

𝑦′′ = 𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 + 𝑟(𝑥), (2.52)

for 𝑎 ≤ 𝑥 ≤ 𝑏, subject to

𝑦(𝑎) = 𝛼 and 𝑦(𝑏) = 𝛽.

Suppose that (2.52) has a unique solution, we can use linear shooting method to

find this approximate unique solution by dividing this problem into two initial value
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problems, see[8]. So we have

𝑢′′ = 𝑝(𝑥)𝑢′ + 𝑞(𝑥)𝑢+ 𝑟(𝑥), (2.53)

subject to

𝑢(𝑎) = 𝛼 and 𝑢′(𝑎) = 0

and

𝑣′′ = 𝑝(𝑥)𝑣′ + 𝑞(𝑥)𝑣, (2.54)

subject to

𝑣(𝑎) = 0 𝑎𝑛𝑑 𝑣′(𝑎) = 1.

Let 𝑢(𝑥) and 𝑣(𝑥) be solutions of the initial value problems (2.53) and (2.54) respec-

tively. These solutions are obtained by applying the DTM on (2.53) and (2.54).

Define

𝑦(𝑥) = 𝑢(𝑥) +
𝛽 − 𝑢(𝑏)

𝑣(𝑏)
𝑣(𝑥), (2.55)

where 𝑣(𝑏) ̸= 0. It is clearly that 𝑦(𝑥) is a solution of the boundary value problem

(2.52).

The next examples will illustrate the idea.

Example 2.7. Consider the second-order linear boundary value problem

𝑦′′(𝑥)− 𝑦(𝑥)− 2− 𝑥2 = 0, (2.56)

where 0 ≤ 𝑥 ≤ 2, with boundary conditions

𝑦(0) = 1, 𝑦(2) = 𝑒2 + 4. (2.57)
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Solution. Divide (2.56) into two initial value problems⎧⎨⎩𝑢′′(𝑥)− 𝑢(𝑥)− 2− 𝑥2 = 0,

𝑢(0) = 1, 𝑢′(0) = 0

and ⎧⎨⎩𝑣′′(𝑥)− 𝑣(𝑥) = 0,

𝑣(0) = 0, 𝑣′(0) = 1.

After applying DTM on these initial value problems we get the following solutions

𝑢(𝑥) ≈ 1 +
3

2
𝑥2 +

5

24
𝑥4 +

1

144
𝑥6 +

1

8064
𝑥8 +

1

725760
𝑥10.

𝑣(𝑥) ≈ 𝑥+
1

6
𝑥3 +

1

120
𝑥5 +

1

5040
𝑥7 +

1

362880
𝑥9 +

1

39916800
𝑥11.

By shooting the solution is

𝑦(𝑥) = 1 +
3

2
𝑥2 +

5

24
𝑥4 +

1

144
𝑥6 +

1

8064
𝑥8 +

1

725760
𝑥10 + 0.1594000096𝑥

+ 0.02656666827𝑥3 + 0.001328333413𝑥5 + 0.0000316269603𝑥7 + 4.392636949× 10−7𝑥9

+ 3.993306317× 10−9𝑥11. (2.58)

Now, By applying the DTM on Equation (2.56) for 𝑘 = 1, 2, ..., 11 we get the

following series solution

𝑦(𝑥) = 1 + 0.1594000065𝑥+
3

2
𝑥2 + 0.2656666775𝑥3 +

5

24
𝑥4 + 0.1328333388× 10−2𝑥5

+
1

144
𝑥6 + 0.3162698542× 10−4𝑥7 +

1

8064
𝑥8 + 4.392636863× 10−7𝑥9

+
1

725760
𝑥10 + 3.993306239× 10−9𝑥11. (2.59)
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By comparing these two solutions with 𝑦(𝑥) = 𝑒𝑥 + 𝑥2 which is the exact solution

we see that the solution obtained from the DTM with shooting is almost the same

as the solution obtained by DTM without shooting. by zooming this figure solution

obtained from the DTM with shooting is closer to the exact one. See Figure 2-3.

Figure 2-3: The solution obtained by DTM with shooting , the solution obtained
by DTM without shooting and the exact one in Example 2.7.

Example 2.8. Consider the second-order linear boundary value problem

𝑦′′(𝑥) +
1

2𝑥
𝑦′(𝑥)− 3 = 0, (2.60)

where 0 ≤ 𝑥 ≤ 1, with boundary conditions

𝑦(0) = 1, 𝑦(1) = 3. (2.61)

Solution. Divide (2.60) into two initial value problems⎧⎨⎩𝑢′′(𝑥) + 1
2𝑥
𝑢′(𝑥)− 3 = 0,

𝑢(0) = 1, 𝑢′(0) = 0

and ⎧⎨⎩𝑣′′(𝑥) + 1
2𝑥
𝑣′(𝑥) = 0,

𝑣(0) = 0, 𝑣′(0) = 1.
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After applying DTM on those two initial value problems we get the following solu-

tions

𝑢(𝑥) = 1 + 𝑥2.

𝑣(𝑥) = 𝑥.

By shooting the solution is

𝑦(𝑥) = 1 + 𝑥+ 𝑥2. (2.62)

Now, By applying the DTM on Equation (2.60) for 𝑘 = 1, 2, ..., 11 we get the

following series solution

𝑦(𝑥) = 1 + 𝑥+ 𝑥2 (2.63)

By comparing these two solutions with 𝑦(𝑥) = 1+
√
𝑥+𝑥2 which is the exact solution

we see that the solution obtained from DTM with shooting is almost the same as

the solution obtained by DTM without shooting, see Figure 2-4.

Figure 2-4: The solution obtained by DTM with shooting is the same as solution
obtained DTM without shooting in Example 2.8.
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2.7 Solution of physical models by the DTM

Many problems in mathematical physics are described by initial value problems. So

the aim of this section is to solve special forms of differential equations by using

DTM, see [13, 27].

The Emden-Fowler equation:

The Emden-Fowler equation is a second order ordinary differential equations with

initial conditions ( singular initial value problem) which have been used to model

several phenomena in mathematical physics and astrophysics. The following form

is the Emden-Fowler equation

𝑦′′(𝑥) +
𝑎

𝑥
𝑦′(𝑥) + 𝑏𝑓(𝑥)𝑔(𝑦(𝑥)) = 0,

subject to

𝑦(0) = 𝑐, 𝑦′(0) = 0.

Where 𝑎, 𝑏, 𝑐 are constants.

The following example is taken from [27].

Example 2.9. Consider the nonlinear second order initial value problem

𝑦′′(𝑥) +
5

𝑥
𝑦′(𝑥) + 8𝑎(𝑒𝑦 + 2𝑒

𝑦
2 ) = 0, 0 < 𝑥 (2.64)

with initial conditions
𝑦(0) = 0 and 𝑦′(0) = 0. (2.65)

Solution. Multiply both sides of Equation (2.64) by 𝑥 gives

𝑥𝑦′′(𝑥) + 5𝑦′(𝑥) + 8𝑎𝑥(𝑒𝑦 + 2𝑒
𝑦
2 ) = 0. (2.66)
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Apply the differential transform method on Equation (2.66)

𝑘∑︁
𝑟=0

𝛿(𝑟 − 1)(𝑘 − 𝑟 + 1)(𝑘 − 𝑟 + 2)𝑌 (𝑘 − 𝑟 + 2) + 5(𝑘 + 1)𝑌 (𝑘 + 1)

+ 8𝑎

[︃
𝑘∑︁

𝑟=0

𝛿(𝑟 − 1)(𝐸1(𝑘 − 𝑟) + 2𝐸2(𝑘 − 𝑟))

]︃
= 0.

where 𝐸𝑖(𝑘) = 𝑏
∑︀𝑘−1

𝑟=0
𝑟+1
𝑘
𝑌 (𝑟 + 1)𝐸𝑖(𝑘 − 𝑟 − 1), i=1,2 is the differential transform

of 𝑒𝑏𝑦.

We get the following recurrence relation

𝑌 (𝑘 + 1) =
−8𝑎

(𝑘 + 1)(𝑘 + 5)

𝑘∑︁
𝑟=0

𝛿(𝑟 − 1)(𝐸1(𝑘 − 𝑟) + 2𝐸2(𝑘 − 𝑟)), (2.67)

the initial conditions become

𝑌 (0) = 0 and 𝑌 (1) = 0. (2.68)

Using recurrence relation (2.67) and conditions (2.68) for 𝑘 = 0, 1, 2, ... we get the

following

𝑌 (0) = 0, 𝑌 (1) = 0, 𝑌 (2) = − 2𝑎, 𝑌 (3) = 0,

𝑌 (4) = 𝑎2, 𝑌 (5) = 0, 𝑌 (6) = − 2

3
𝑎3, 𝑌 (7) = 0,

𝑌 (8) =
1

2
𝑎4, 𝑌 (9) = 0, 𝑌 (10) = − 2

5
𝑎5, ...

We can write the solution as

𝑦(𝑥) =
∞∑︁
𝑘=0

𝑌 (𝑘)𝑥𝑘

= −2𝑎𝑥2 + 𝑎2𝑥4 − 2

3
𝑎3𝑥6 +

1

2
𝑎4𝑥8 − 2

5
𝑎5𝑥10 + ...

which equal the Taylor series of the exact solution −2 ln(1 + 𝑎𝑥2).
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The standard Lane-Emden equation:

The standard Lane-Emden equation is a second order ordinary differential equation

arising in the study of stellar interiors, it is also called the polytropic differential

equations.

The following example is taken from [27].

Example 2.10. Consider the nonlinear second order initial value problem

𝑦′′(𝑥) +
2

𝑥
𝑦′(𝑥) + 𝑦𝑚(𝑥) = 0, 0 < 𝑥,𝑚 ≥ 0 (2.69)

with initial conditions
𝑦(0) = 1 and 𝑦′(0) = 0. (2.70)

Solution. By multiplying both sides of Equation (2.69) by 𝑥, we get

𝑥𝑦′′(𝑥) + 2𝑦′(𝑥) + 𝑥𝑦𝑚(𝑥) = 0. (2.71)

Apply the differential transform on Equation (2.71), we obtain

𝑘∑︁
𝑟=0

𝛿(𝑟−1)(𝑘−𝑟+1)(𝑘−𝑟+2)𝑌 (𝑘−𝑟+2)+2(𝑘+1)𝑌 (𝑘+1)+
𝑘∑︁

𝑟=0

𝛿(𝑟−1)𝐺(𝑘−𝑟) = 0,

(2.72)

where 𝐺(𝑘) is the differential transform of 𝑔(𝑦) = 𝑦𝑚.

Hence, we get the following recurrence relation

𝑌 (𝑘 + 1) =
−1

(𝑘 + 1)(𝑘 + 2)
𝐺(𝑘 − 1), (2.73)

the initial conditions become

𝑌 (0) = 1 and 𝑌 (1) = 0. (2.74)
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Using recurrence relation (2.73) and conditions (2.74) for 𝑘 = 0, 1, 2, ... we get the

following

𝑌 (0) = 1, 𝑌 (1) = 0, 𝑌 (2) =
−1

6
, 𝑌 (3) = 0,

𝑌 (4) =
𝑚

120
, 𝑌 (5) = 0, 𝑌 (6) =

−𝑚(8𝑚− 5)

3.7!
, ...

For 𝑚 = 1 we can write the solution as

𝑦(𝑥) =
∞∑︁
𝑘=0

𝑌 (𝑘)𝑥𝑘

= 1− 1

6
𝑥2 − 1

120
𝑥4 − 1

5040
𝑥6 +

1

362880
𝑥8 − 1

39916800
𝑥10 + ... (2.75)

which equal the Taylor series exact solution
sin𝑥

𝑥
.

2.8 On the convergence analysis

In this section, we present two theorems about the convergence of the DTM for a

class of singular boundary value problems, these theorems are due to Lin et al. [47].

Consider the singular boundary value problem of the form

𝑦′′(𝑥) +
𝑓(𝑥)

𝑥(𝑥− 1)
𝑦′(𝑥) +

𝑔(𝑥)

𝑥(𝑥− 1)
𝑁(𝑦(𝑥)) =

ℎ(𝑥)

𝑥(𝑥− 1)
, 0 < 𝑥 < 1,

subject to

𝑦(0) = 𝑝, 𝑦(1) = 𝑞.

where 𝑓(𝑥), 𝑔(𝑥) and ℎ(𝑥) are known and continuous functions on (0, 1), also𝑁(𝑦(𝑥))

is a nonlinear function of 𝑦.
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Theorem 2.17. Consider the following two singularly linear boundary value prob-
lems

𝑥(1− 𝑥)𝑦′′(𝑥) + (1− 𝑥)𝑦′(𝑥) + 𝑔(𝑥)𝑦(𝑥) = 𝑓(𝑥), 0 < 𝑥 < 1, (2.76)

where 𝑓(𝑥) = 𝑓0 + 𝑓1𝑥+ 𝑓2𝑥
2 + ... and 𝑔(𝑥) = 𝑔0 + 𝑔1𝑥+ 𝑔2𝑥

2 + ....
If there exist a fixed 𝑛 such that 𝑛 ≥ 𝑚, | 𝑓𝑘 |≤ 𝑀𝑟𝑘 for some fixed 𝑀 , 0 < 𝑟 < 1, all
𝑘 ≥ 𝑛, and all 𝑌 (𝑛) ≤ 𝑀𝑟𝑛, then the numerical solution using the DTM absolutely
converges.

Proof. Let 𝑔(𝑥) = 𝑔0 for simplicity. By applying the DTM on (2.76) we have

𝑘∑︁
𝑖=0

𝛿(𝑖− 1)(𝑘 − 𝑖+ 1)(𝑘 − 𝑟 + 2)𝑌 (𝑘 − 𝑖+ 2)

−
𝑘∑︁

𝑖=0

𝛿(𝑖− 2)(𝑘 − 𝑖+ 1)(𝑘 − 𝑖+ 2)𝑌 (𝑘 − 𝑖+ 2) + (𝑘 + 1)𝑌 (𝑘 + 1)

−
𝑘∑︁

𝑖=0

𝛿(𝑖− 1)(𝑘 − 𝑖+ 1)𝑌 (𝑘 − 𝑖+ 1) + 𝑔0𝑌 (𝑘) = 𝐹 (𝑘), (2.77)

by simplifying (2.77) we obtain the following recurrence relation

𝑌 (𝑘 + 1) =
1

(𝑘 + 1)2
[𝐹 (𝑘) + (𝑘2 + 𝑔0)𝑌 (𝑘)]. (2.78)

Now,

|𝑌 (𝑘 + 1)| ≤ 1

(𝑘 + 1)2
[𝑀𝑟𝑘 + |𝑘2 + 𝑔0|𝑀𝑟𝑘]

= 𝑀𝑟𝑘
[︂
1 + 𝑘2 + |𝑔0|
(𝑘 + 1)2

]︂
, 𝑘 ≥ 𝑛 ≥ 𝑚 (2.79)

Let 𝑟 =
[︂
1 + 𝑘2 + |𝑔0|
(𝑘 + 1)2

]︂
, so for 𝑘 is large enough 𝑟 < 1. By induction the hypothesis

is true. Then we have

|𝑦(𝑥)| ≤
∞∑︁
𝑘=0

|𝑌 (𝑘)|𝑥𝑘 ≤
∞∑︁
𝑘=0

|𝑌 (𝑘)| ≤ 𝑀

∞∑︁
𝑘=0

𝑟𝑘.

Hence,

|𝑦(𝑥)| ≤ 𝑀

1− 𝑟
.



40 Chapter 2. DTM for ordinary differential equations

Theorem 2.18. Consider the following two singularly linear boundary value prob-
lems

𝑥(1− 𝑥)𝑦′′(𝑥) + (1− 𝑥)𝑦′(𝑥) + 𝑔(𝑥)𝑦(𝑥) + 𝑦2(𝑥) = 𝑓(𝑥), 0 < 𝑥 < 1, (2.80)

where 𝑓(𝑥) = 𝑓0 + 𝑓1𝑥+ 𝑓2𝑥
2 + ... and 𝑔(𝑥) = 𝑔0 + 𝑔1𝑥+ 𝑔2𝑥

2 + ....
If there exist a fixed 𝑛 such that 𝑛 ≥ 𝑚, | 𝑓𝑘 |≤ 𝑟𝑘, 0 < 𝑟 < 1, all 𝑘 ≥ 𝑛, and all
𝑌 (𝑛) ≤ 𝑟𝑛, then the numerical solution using the DTM absolutely converges.

Proof. Let 𝑔(𝑥) = 𝑔0 for simplicity. By applying the DTM on (2.80) we have

𝑘∑︁
𝑖=0

𝛿(𝑖− 1)(𝑘 − 𝑖+ 1)(𝑘 − 𝑖+ 2)𝑌 (𝑘 − 𝑖+ 2)

−
𝑘∑︁

𝑖=0

𝛿(𝑖− 2)(𝑘 − 𝑖+ 1)(𝑘 − 𝑖+ 2)𝑌 (𝑘 − 𝑖+ 2) + (𝑘 + 1)𝑌 (𝑘 + 1)

−
𝑘∑︁

𝑖=0

𝛿(𝑖− 1)(𝑘 − 𝑖+ 1)𝑌 (𝑘 − 𝑖+ 1) + 𝑔0𝑌 (𝑘)

+
𝑘∑︁

𝑖=0

𝑌 (𝑖)𝑌 (𝑘 − 𝑖) = 𝐹 (𝑘),

by simplifying the above relation we obtain the following recurrence relation

𝑌 (𝑘 + 1) =
1

(𝑘 + 1)2
[𝐹 (𝑘) + (𝑘2 + 𝑔0)𝑌 (𝑘)−𝐵(𝑘)], (2.81)

where 𝐵(𝑘) =
∑︀𝑘

𝑖=0 𝑌 (𝑖)𝑌 (𝑘 − 𝑖).

Also we have |𝐵(𝑘)| ≤ (𝑘 + 1)𝑟𝑘 since |𝑌 (𝑖)𝑌 (𝑘 − 𝑖)| ≤ 𝑟𝑖𝑟𝑘−𝑖 = 𝑟𝑘.

Now,

|𝑌 (𝑘 + 1)| ≤ 1

(𝑘 + 1)2
[𝑟𝑘 + |𝑘2 + 𝑔0|𝑟𝑘 + (𝑘 + 1)𝑟𝑘]

= 𝑟𝑘
[︂
1 + 𝑘2 + |𝑔0|+ 𝑘 + 1

(𝑘 + 1)2

]︂
, 𝑘 ≥ 𝑛 ≥ 𝑚 (2.82)

Let 𝑟 =

[︂
1 + 𝑘2 + |𝑔0|+ 𝑘 + 1

(𝑘 + 1)2

]︂
, so for 𝑘 is large enough 𝑟 < 1. By induction the

hypothesis is true. Then we have

|𝑦(𝑥)| ≤
∞∑︁
𝑘=0

|𝑌 (𝑘)|𝑥𝑘 ≤
∞∑︁
𝑘=0

|𝑌 (𝑘)| ≤
∞∑︁
𝑘=0

𝑟𝑘.
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Hence,

|𝑦(𝑥)| ≤ 1

1− 𝑟
.



Chapter 3

Modifications of DTM for ordinary

differential equations

The DTM is a powerful technique for solving linear and nonlinear ordinary differen-

tial equations as mentioned before. But sometimes when we solve nonlinear ordinary

differential equations we need hard calculations due to nonlinear terms. Therefore

the DTM is modified by using Adomain polynomials instead of the differential trans-

form of nonlinear terms. On the other hand, the DTM is modified by using Laplace

transform and Padé approximation to handel the periodic behavior of the solution.

3.1 DTM with Adomain polynomials

In this section, we give a brief summary of the Adomain Decomposition Method

(ADM) needed for the rest of the section. After that, we present a modification

of the DTM to solve a class of nonlinear singular boundary value problems. Next,

some examples are given to illustrate the idea.

42
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ADM for ordinary differential equations:

Many methods were proposed to solve nonlinear ordinary differential equations.

One of these methods is the Adomain decomposition method (ADM). The ADM is

a technique for solving algebraic equations, ordinary differential equations, partial

differential equations, integral and integro differential equations. This method was

developed by Adomain from 1970s to 1990s, see [2, 3].

Consider the nonlinear ordinary differential equation

ℱ𝑦(𝑥) = 𝑔(𝑥), (3.1)

where ℱ is a nonlinear ordinary differential operator which may be contain linear

and nonlinear terms.

Now, we decompose Equation (3.1) as follows:

� Decomposition of the linear term: We decompose the linear term into two

parts. The first part denoted by 𝐿𝑦 is the linear differential operator which

is the highest order derivative. The second part denoted by 𝑅𝑦 which is the

remainder of the linear part. So Equation (3.1) becomes

𝐿𝑦(𝑥) +𝑅𝑦(𝑥) +𝑁𝑦(𝑥) = 𝑔(𝑥), (3.2)

where 𝑁𝑦(𝑥) is the nonlinear terms. Solve (3.2) for 𝐿𝑦(𝑥) and take the inverse

of the operator to get

𝐿−1𝐿𝑦(𝑥) = 𝐿−1𝑔(𝑥)− 𝐿−1𝑅𝑦(𝑥)− 𝐿−1𝑁𝑦(𝑥). (3.3)

Here 𝐿−1 is the integration 𝑛 times, where 𝑛 is the highest order of the deriva-

tive, i.e.

𝐿−1 =

∫︁ 𝑥

0

∫︁ 𝑥

0

...

∫︁ 𝑥

0

· 𝑑𝑥 𝑑𝑥 ... 𝑑𝑥.
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Thus,

𝐿−1𝐿𝑦(𝑥) = 𝑦(𝑥)− 𝑦(0)− 𝑥𝑦′(0)− 𝑥2

2!
𝑦′′(0)− ...− 𝑥𝑛−1

(𝑛− 1)!
𝑦(𝑛−1)(0). (3.4)

By substituting (3.4) in (3.3), we have

𝑦(𝑥)−𝑦(0)−𝑥𝑦′(0)−𝑥2

2!
𝑦′′(0)−...− 𝑥𝑛−1

(𝑛− 1)!
𝑦(𝑛−1)(0) = 𝐿−1𝑔(𝑥)−𝐿−1𝑅𝑦(𝑥)−𝐿−1𝑁𝑦(𝑥).

� Decomposition of the unknown function 𝑦(𝑥): We decompose this func-

tion as an infinite series

𝑦(𝑥) =
∞∑︁
𝑛=0

𝑦𝑛(𝑥).

� Decomposition of the nonlinear terms: We decompose the nonlinear

terms 𝑁𝑦(𝑥) as a sum of polynomials called the Adomain polynomials and

denoted by 𝐴𝑛. i.e

𝑁𝑦(𝑥) =
∞∑︁
𝑛=0

𝐴𝑛,

To compute 𝐴𝑛, take 𝑁𝑦 = 𝑓(𝑦) to be a nonlinear function in 𝑦, where 𝑦 =

𝑦(𝑥), then the Taylor series expansion of 𝑓(𝑦) around 𝑦0 is given as

𝑓(𝑦) = 𝑓(𝑦0) + 𝑓 ′(𝑦0)(𝑦 − 𝑦0) +
1

2!
𝑓 ′′(𝑦0)(𝑦 − 𝑦0)

2 +
1

3!
𝑓 ′′′(𝑦0)(𝑦 − 𝑦0)

3 + ...,

but 𝑦 = 𝑦0 + 𝑦1 + 𝑦2 + 𝑦3 + ..., then

𝑓(𝑦) = 𝑓(𝑦0) + 𝑓 ′(𝑦0)(𝑦1 + 𝑦2 + 𝑦3 + ...) +
1

2!
𝑓 ′′(𝑦0)(𝑦1 + 𝑦2 + 𝑦3 + ...)2

+
1

3!
𝑓 ′′′(𝑦0)(𝑦1 + 𝑦2 + 𝑦3 + ...)3 + ....
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By expanding all terms we get

𝑁𝑦 = 𝑓(𝑦) = 𝑓(𝑦0) + 𝑓 ′(𝑦0)(𝑦1) + 𝑓 ′(𝑦0)𝑦2 + 𝑓 ′(𝑦0)𝑦3 + ...+
1

2!
𝑓 ′′(𝑦0)𝑦1

2

+
1

2!
𝑓 ′′(𝑦0)𝑦1𝑦2 +

1

2!
𝑓 ′′(𝑦0)𝑦1𝑦3 + ...+

1

3!
𝑓 ′′′(𝑦0)𝑦1

3

+
1

3!
𝑓 ′′′(𝑦0)𝑦1

2𝑦2 +
1

3!
𝑓 ′′′(𝑦0)𝑦1

2𝑦3 + ...

Now, let (𝑙)(𝑖) be the order of 𝑦𝑙𝑖 and (𝑙)(𝑖) + (𝑚)(𝑗) be the order of 𝑦𝑙𝑖𝑦𝑚𝑗.

Then 𝐴𝑛 consists of all terms of order 𝑛. So, we have

𝐴0 = 𝑓(𝑦0)

𝐴1 = 𝑓 ′(𝑦0)𝑦1,

𝐴2 = 𝑓 ′(𝑦0)𝑦2 +
1

2!
𝑓 ′′(𝑦0)𝑦

2
1,

𝐴3 = 𝑓 ′(𝑦0)𝑦3 +
2

2!
𝑓 ′′(𝑦0)𝑦1𝑦2 +

1

3!
𝑓 ′′′(𝑦0)𝑦

3
1,

𝐴4 = 𝑓 ′(𝑦0)𝑦4 +
1

2!
𝑓 ′′(𝑦0)(2𝑦1𝑦3 + 𝑦22) +

3

3!
𝑓 ′′′(𝑦0)𝑦

2
1𝑦2 +

1

4!
𝑓 (4)(𝑦0)𝑦

4
1,

...

or

𝐴0 = 𝑁(𝑦0)

𝐴1 = 𝑁 ′(𝑦0)𝑦1 =
𝑑

𝑑𝜆
𝑁(𝑦0 + 𝜆𝑦1)

⃒⃒⃒⃒
𝜆=0

,

𝐴2 = 𝑁 ′(𝑦0)𝑦2 +
1

2!
𝑁 ′′(𝑦0)𝑦

2
1 =

1

2!

𝑑2

𝑑𝜆2
𝑁(𝑦0 + 𝜆𝑦1 + 𝜆2𝑦2)

⃒⃒⃒⃒
𝜆=0

,

𝐴3 = 𝑁 ′(𝑦0)𝑦3 +
2

2!
𝑁 ′′(𝑦0)𝑦1𝑦2 +

1

3!
𝑁 ′′′(𝑦0)𝑦

3
1,

=
1

3!

𝑑3

𝑑𝜆3
𝑁(𝑦0 + 𝜆𝑦1 + 𝜆2𝑦2 + 𝜆3𝑦3)

⃒⃒⃒⃒
𝜆=0

𝐴4 = 𝑁 ′(𝑦0)𝑦4 +
1

2!
𝑁 ′′(𝑦0)(2𝑦1𝑦3 + 𝑦22) +

3

3!
𝑁 ′′′(𝑦0)𝑦

2
1𝑦2 +

1

4!
𝑁 (4)(𝑦0)𝑦

4
1,

=
1

4!

𝑑4

𝑑𝜆4
𝑁(𝑦0 + 𝜆𝑦1 + 𝜆2𝑦2 + 𝜆3𝑦3 + 𝜆4𝑦4)

⃒⃒⃒⃒
𝜆=0

.

...
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Hence,

𝐴𝑛 = 𝐴𝑛(𝑦0, 𝑦1, ..., 𝑦𝑛) =
1

𝑛!

𝑑𝑛

𝑑𝜆𝑛
𝑁

[︃
∞∑︁

𝑚=0

𝜆𝑚𝑦𝑚

]︃
𝜆=0

.

Now, substitute the above decompositions in (3.3), then solve it for 𝑦 to get

𝑦 = 𝜑0 + 𝐿−1𝑔(𝑥)− 𝐿−1

∞∑︁
𝑛=0

𝑅𝑦𝑛 − 𝐿−1

∞∑︁
𝑛=0

𝐴𝑛(𝑦0, 𝑦1, ..., 𝑦𝑛)

or
∞∑︁
𝑛=0

𝑦𝑛 = 𝜑0 + 𝐿−1𝑔(𝑥)− 𝐿−1

∞∑︁
𝑛=0

𝑅𝑦𝑛 − 𝐿−1

∞∑︁
𝑛=0

𝐴𝑛,

where

𝜑0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑦(0) if 𝐿 =
𝑑

𝑑𝑥
,

𝑦(0) + 𝑥𝑦′(0) if 𝐿 =
𝑑2

𝑑𝑥2

...

𝑦(0) + 𝑥𝑦′(0) +
𝑥2

2!
𝑦′′(0) + ...+

𝑥𝑛

𝑛!
𝑦(𝑛)(0) if 𝐿 =

𝑑𝑛+1

𝑑𝑥𝑛+1
.

Therefore

𝑦0 = 𝜑0 + 𝐿−1𝑔(𝑥),

𝑦𝑛+1 = −𝐿−1𝑅𝑦𝑛 − 𝐿−1𝐴𝑛.

To illustrate the ADM, we consider two examples, one for an initial value problem

and the other for a boundary value problem.
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Example 3.1. Consider the initial value problem

𝑦′(𝑥)− 𝑒−𝑦(𝑥) = 0, (3.5)

subject to
𝑦(0) = 0. (3.6)

Solution. We can rewrite the Equation (3.5) as

𝑦′(𝑥) = 𝑒−𝑦(𝑥).

Let 𝐿 =
𝑑

𝑑𝑥
, then

𝐿𝑦 = 𝑒−𝑦(𝑥). (3.7)

The Admain polynomials are

𝐴0 = 𝑒−𝑦0 ,

𝐴1 = −𝑦1𝑒
−𝑦0 ,

𝐴2 =
𝑒−𝑦0

2
(−2𝑦2 + 𝑦21),

𝐴3 =
𝑒−𝑦0

6
(−3𝑦3 + 2𝑦1𝑦2 − 𝑦31),

...

Take the

𝐿−1 =

∫︁ 𝑥

0

· 𝑑𝑥

of (3.7), we get

𝑦(𝑥) = 𝐿−1𝑒−𝑦(𝑥),

or
∞∑︁
𝑛=0

𝑦𝑛(𝑥) = 𝐿−1

∞∑︁
𝑛=0

𝐴𝑛.
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Hence,

𝑦0 = 𝜑0 + 𝐿−1𝑔(𝑥) = 0,

𝑦1 =

∫︁ 𝑥

0

𝐴0 𝑑𝑥 = 𝑥,

𝑦2 =

∫︁ 𝑥

0

𝐴1 𝑑𝑥 = −𝑥2

2
,

𝑦3 =

∫︁ 𝑥

0

𝐴2 𝑑𝑥 =
𝑥3

3
,

𝑦4 =

∫︁ 𝑥

0

𝐴3 𝑑𝑥 = −𝑥4

8
,

...

Then the solution is

𝑦(𝑥) = 𝑥− 𝑥2

2
+

𝑥3

3
− 𝑥4

8
+ ...

By comparing 𝑦(𝑥) up to 𝑥4 with ln(𝑥+ 1) which is the exact solution, we see that

𝑦(𝑥) is very close to the exact solution.

Figure 3-1: Comparison between the solution obtained from ADM and the exact
solution.
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Example 3.2. Consider the nonlinear boundary value problem

𝑦(6)(𝑥) =
1

64
𝑒−

𝑥
2

√︀
𝑦(𝑥), 0 < 𝑥 < 1, (3.8)

subject to

𝑦(0) = 1, 𝑦′′(0) =
1

4
, 𝑦(4)(0) =

1

16
, (3.9)

𝑦(1) =
√
𝑒, 𝑦′′(1) =

√
𝑒

4
, 𝑦(4)(1) =

√
𝑒

16
. (3.10)

Solution. Let 𝐿𝑦(𝑥) =
𝑑6𝑦(𝑥)

𝑑𝑥6
= 𝑦(6)(𝑥), so (3.8) becomes

𝐿𝑦(𝑥) =
1

64
𝑒−

𝑥
2

√︀
𝑦(𝑥), (3.11)

Now, take

𝐿−1 =

∫︁ 𝑥

0

∫︁ 𝑥

0

∫︁ 𝑥

0

∫︁ 𝑥

0

∫︁ 𝑥

0

∫︁ 𝑥

0

· 𝑑𝑥 𝑑𝑥 𝑑𝑥 𝑑𝑥 𝑑𝑥 𝑑𝑥

to both sides of (3.11) and use (3.9), to get

𝑦(𝑥)− 1− 𝑦′(0)𝑥− 1

8
𝑥2 − 1

6
𝑥3𝑦′′′(0)− 1

384
𝑥4 − 1

120
𝑥5𝑦(5)(0) =

1

64
𝐿−1(𝑒−

𝑥
2

√︀
𝑦(𝑥)),

thus,

𝑦(𝑥) = 1 + 𝑦′(0)𝑥+
1

8
𝑥2 +

1

6
𝑥3𝑦′′′(0) +

1

384
𝑥4 +

1

120
𝑥5𝑦(5)(0) +

1

64
𝐿−1(𝑒−

𝑥
2

√︀
𝑦(𝑥)),

or

∞∑︁
𝑛=0

𝑦𝑛(𝑥) = 1+𝑦′(0)𝑥+
1

2
𝑥2+

1

6
𝑥3𝑦′′′(0)+

1

24
𝑥4+

1

120
𝑥5𝑦(5)(0)+

1

64
𝐿−1

(︃
𝑒−

𝑥
2

∞∑︁
𝑛=0

𝐴𝑛(𝑥)

)︃
.
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The Adomain polynomials are

𝐴0 = 1,

𝐴1 =
𝑦1

2
√
𝑦1
,

𝐴2 =
1

2
√
𝑦0

(︂
𝑦2 −

𝑦1
2

4𝑦0
,

)︂
,

...

Now, Let

𝑦0(𝑥) = 1,

𝑦1(𝑥) = 𝑦′(0)𝑥+
1

2
𝑥2 +

1

6
𝑥3𝑦′′′(0) +

1

24
𝑥4 +

1

120
𝑥5𝑦(5)(0) +

1

64
𝐿−1(𝑒−

𝑥
2𝐴0),

= −1 +

(︂
𝑦′(0) +

1

2

)︂
𝑥+

(︂
𝑦′′′(0)

6
+

1

48

)︂
𝑥3 +

(︂
𝑦(5)(0)

120
+

1

3840

)︂
𝑥5 + 𝑒−

𝑥
2 ,

𝑦2(𝑥) =
1

64
𝐿−1(𝑒−

𝑥
2𝐴1),

...

So,

𝑦(𝑥) =
∞∑︁
𝑛=0

𝑦𝑛(𝑥)

=

(︂
𝑦′(0) +

1

2

)︂
𝑥+

(︂
𝑦′′′(0)

6
+

1

48

)︂
𝑥3 +

(︂
𝑦(5)(0)

120
+

1

3840

)︂
𝑥5 + 𝑒−

𝑥
2 + ...(3.12)

But by Taylor series

𝑒−
𝑥
2 = 1− 𝑥

2
+

𝑥2

8
− 𝑥3

48
+

𝑥4

384
− 𝑥5

3840
+ ...,

so (3.12) becomes

𝑦(𝑥) = 1 + 𝑦′(0)𝑥+
𝑥2

8
+

𝑦′′′(0)

6
𝑥3 +

𝑥4

384
+

𝑦(5)(0)

120
𝑥5 + ... (3.13)
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By using (3.10) and (3.16) for 𝑛 = 1 we have the following system of equations

433

384
+ 𝑦′(0) +

𝑦′′′(0)

6
+

𝑦(5)(0)

120
=

√
𝑒,

9

32
+ 𝑦′′′(0) +

𝑦(5)(0)

6
=

√
𝑒

4
,

1

16
+ 𝑦(5)(0) =

√
𝑒

16
.

After solving the previous system, we get

𝑦′(0) = 0.4098060,

𝑦′′′(0) = 0.1241728,

𝑦(5)(0) = 0.0405451.

Hence,

𝑦(𝑥) = 1 + 0.4098060𝑥+
1

8
𝑥2 + 0.0206955𝑥3 +

1

384
𝑥4 + 0.0003379𝑥5 + ...

DTM with Adomain polynomials:

Since there is no systematic methodology for calculating the differential transform

of the nonlinear functions the original DTM is modified via using Adomain polyno-

mials. In this modification which is called the DTM with Adomain polynomials we

calculate the Adomain polynomials instead of calculating the differential transform

of nonlinear functions to get a series solution easily, see Elsaid [14] and Xie et al. [48].

Consider the nonlinear singular boundary value problem which appears frequently

in applied science and engineering of the form

𝑦′′(𝑥) +
𝛼

𝑥
𝑦′(𝑥) = 𝑓(𝑥, 𝑦), 0 < 𝑥 ≤ 1, 𝛼 ≥ 1 (3.14)
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subject to the boundary conditions

𝑦′(0) = 0 and 𝑎𝑦(1) + 𝑏𝑦′(1) = 𝑐, (3.15)

where 𝑎, 𝑏 and 𝑐 are real constants, see[48].

Note : 𝑓(𝑥, 𝑦) is continuous and
𝜕𝑓

𝜕𝑦
≥ 0 exist and continuous to set a unique

solution.

Now, after applying the DTM on (3.14) we have the following recurrence relation

𝑌 (𝑘 + 1) =
𝐹 (𝑘 − 1)

(𝑘 + 1)(𝑘 + 𝛼)
, 𝑘 = 1, 2, ...𝑁 − 1

and from (3.15) we get the transformed conditions

Let 𝑌 (0) = 𝛽 and 𝑌 (1) = 0.

Where 𝐹 (𝑘) is the differential transform of the nonlinear function 𝑓(𝑥, 𝑦).

Let

𝑦(𝑥) ≈ 𝑦𝑁(𝑥) =
𝑁∑︁
𝑘=0

𝑌 (𝑘)𝑥𝑘
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be the solution of this problem, then

𝑦𝑁(𝑥) =
𝑁∑︁
𝑘=0

𝑌 (𝑘)𝑥𝑘

= 𝛽 +
𝑁∑︁
𝑘=1

𝑌 (𝑘)𝑥𝑘

= 𝛽 +
𝑁−1∑︁
𝑘=0

𝑌 (𝑘 + 1)𝑥𝑘+1

= 𝛽 +
𝑁−1∑︁
𝑘=1

𝑌 (𝑘 + 1)𝑥𝑘+1

= 𝛽 +
𝑁−1∑︁
𝑘=1

𝐹 (𝑘 − 1)

(𝑘 + 1)(𝑘 + 𝛼)
𝑥𝑘+1.

Now, the differential transform of the nonlinear function 𝑓(𝑦) as follows

𝐹 (0) = 𝑓(𝑌 (0)),

𝐹 (1) = 𝑌 (1)𝑓 ′(𝑌 (0)),

𝐹 (2) = 𝑌 (2)𝑓 ′(𝑌 (0)) +
1

2!
(𝑌 (1))2𝑓 ′′(𝑌 (0)),

𝐹 (3) = 𝑌 (3)𝑓 ′(𝑌 (0)) + 𝑌 (1)𝑌 (2)𝑓 ′′(𝑌 (0)) +
1

3!
(𝑌 (1))3𝑓 ′′′(𝑌 (0)),

...

Also, the Adomain polynomials of this function are given as

𝐴0 = 𝑓(𝑦0)

𝐴1 = 𝑓(𝑦0)𝑦1,

𝐴2 = 𝑓 ′(𝑦0)𝑦2 +
1

2!
𝑓 ′′(𝑦0)𝑦

2
1,

𝐴3 = 𝑓 ′(𝑦0)𝑦3 +
2

2!
𝑓 ′′(𝑦0)𝑦1𝑦2 +

1

3!
𝑓 ′′′(𝑦0)𝑦

3
1,

...
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By comparing the differential transform and the Adomain polynomials of the nonlin-

ear function 𝑓 we see that when we replace 𝑦𝑘 by 𝑌 (𝑘) they have the same structure.

Then the solution becomes

𝑦𝑁(𝑥) = 𝛽 +
𝑁−1∑︁
𝑘=1

𝐴𝑘−1

(𝑘 + 1)(𝑘 + 𝛼)
𝑥𝑘+1, (3.16)

where𝐴𝑘, 𝑘 = 0, 1, ..., 𝑁 are the Adomain polynomials given by the following formula

𝐴𝑘 =
1

𝑘!

𝑑𝑘

𝑑𝜆𝑘
𝑓

(︃
∞∑︁

𝑚=0

𝑌 (𝑚)𝜆𝑚

)︃
𝜆=0

.

By using (3.16), the boundary condition 𝑎𝑦(1) + 𝑏𝑦′(1) = 𝑐 becomes

𝑎

[︃
𝛽 +

𝑁−1∑︁
𝑘=1

𝐴𝑘−1

(𝑘 + 1)(𝑘 + 𝛼)

]︃
+ 𝑏

𝑑

𝑑𝑥

[︃
𝛽 +

𝑁−1∑︁
𝑘=1

𝐴𝑘−1

(𝑘 + 1)(𝑘 + 𝛼)
𝑥𝑘+1

]︃
𝑥=1

= 𝑐, (3.17)

by solving (3.17) for 𝛽 and substituting the value in (3.16) we obtain the solution.

Note that the DTM with Aomain polynomials called the improved DTM or sim-

ply IDTM.

The next two examples are taken from [48].

Example 3.3. Consider the nonlinear singular boundary value problem

𝑦′′(𝑥) +
2

𝑥
𝑦′(𝑥) = −𝑦5(𝑥), (3.18)

subject to the boundary conditions

𝑦′(0) = 0, 𝑦(1) =

√
3

2
. (3.19)
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Solution. After applying the IDTM on (3.18) we get

𝑌 (𝑘 + 1) =
𝐹 (𝑘 − 1)

(𝑘 + 1)(𝑘 + 2)
(3.20)

=
𝐴𝑘−1

(𝑘 + 1)(𝑘 + 2)
,

where 𝐹 is the differential transform of the nonlinear function −𝑦5(𝑥) and 𝐴𝑘 is the

Adomain polynomials.

Let

𝑌 (0) = 𝛽,

and from (3.19)

𝑌 (1) = 0.

The Aadomain polynomials of the function −𝑦5(𝑥) are

𝐴0 = −𝑌 5(0),

𝐴1 = −5𝑌 4(0)𝑌 (1),

𝐴2 = −10𝑌 3(0)𝑌 2(1)− 5𝑌 (0)4𝑌 (2),

𝐴3 = −10𝑌 2(0)𝑌 3(1)− 20𝑌 (0)3𝑌 (1)𝑌 (2)− 5𝑌 4(0)𝑌 (3),

...
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From (3.20) we have

𝑌 (2) = −1

6
𝛽5,

𝑌 (3) = 0,

𝑌 (4) =
1

24
𝛽9,

𝑌 (5) = 0,

𝑌 (6) = − 5

432
𝛽13,

𝑌 (7) = 0,

𝑌 (8) =
35

10368
𝛽17,

𝑌 (9) = 0,

𝑌 (10) = − 7

6912
𝛽21,

...

For 𝑁 = 10, we use (3.20) to obtain the following truncated series solution

𝑦10(𝑥) = 𝛽 − 1

6
𝛽5𝑥2 +

1

24
𝛽9𝑥4 − 5

432
𝛽13𝑥6 +

35

10368
𝛽17𝑥8 − 7

6912
𝛽21𝑥10. (3.21)

Now, solve (3.21) for 𝛽 using boundary condition at 𝑥 = 1,

𝛽 = 1.000553890.

Substituting 𝛽 value in (3.21) to get

𝑦10(𝑥) = 1.000553890− 0.1671287533𝑥2 + 0.04187483621𝑥4 − 0.01165769154𝑥6

+ 0.003407699551𝑥8 − 0.001024576736𝑥10. (3.22)
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By comparing solution in (3.22) by the solution obtained by DTM we see that

this solution is almost the same as the exact one

√︂
3

3 + 𝑥2
, see Figure 3-2.

Figure 3-2: Comparison between the solution obtained by DTM the solution ob-
tained by IDTM.

Example 3.4. Consider the nonlinear singular boundary value problem

𝑦′′(𝑥) +
1

𝑥
𝑦′(𝑥) = −𝑒𝑦(𝑥), (3.23)

subject to the boundary conditions

𝑦′(0) = 0, 𝑦(1) = 0. (3.24)

Solution. After applying the IDTM on (3.23) we get

𝑌 (𝑘 + 1) =
𝐹 (𝑘 − 1)

(𝑘 + 1)2

=
𝐴𝑘−1

(𝑘 + 1)2
, (3.25)

where 𝐹 (𝑘) is the differential transform of the nonlinear function −𝑒𝑦(𝑥) and 𝐴𝑘 is
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the Adomain polynomials.

Let

𝑌 (0) = 𝛽,

and from (3.24)

𝑌 (1) = 0.

The Aadomain polynomials of the function −𝑒𝑦(𝑥) are

𝐴0 = −𝑒𝑌 (0),

𝐴1 = −𝑌 (1)𝑒𝑌 (0),

𝐴2 = −𝑌 (2)𝑒𝑌 (0) − 1

2
𝑌 2(1)𝑒𝑌 (0),

𝐴3 = −𝑌 (3)𝑒𝑌 (0) − 𝑌 (1)𝑌 (2)𝑒𝑌 (0) − 1

6
𝑌 3(1)𝑒𝑌 (0),

𝐴4 = 𝑒𝑌 (0)(−𝑌 (4)− 𝑌 (3)𝑌 (1)− 1

2
𝑌 (2)2 − 1

2
𝑌 (2)𝑌 (1)2 − 1

24
𝑌 (1)4),

𝐴5 = 𝑒𝑌 (0)(−𝑌 (5)− 𝑌 (4)𝑌 (1)− 𝑌 (3)𝑌 (2)− 1

2
𝑌 (3)𝑌 (1)2 − 1

2
𝑌 (2)2𝑌 (1)

− 1

6
𝑌 (2)𝑌 (1)3 − 1

120
𝑌 (1)5),

𝐴6 = 𝑒𝑌 (0)(−𝑌 (5)𝑌 (1)− 𝑌 (4)𝑌 (2)− 1

2
𝑌 (4)𝑌 (1)2 − 1

2
𝑌 (3)2 − 𝑌 (3)𝑌 (2)𝑌 (1)

− 1

6
𝑌 (3)𝑌 (1)3 − 1

6
𝑌 (2)3 − 1

4
𝑌 (2)2𝑌 (1)2 − 1

24
𝑌 (2)𝑌 (1)4 − 1

720
𝑌 (1)6),

𝐴7 = 𝑒𝑌 (0)(−1

2
𝑌 (5)𝑌 (1)2 − 𝑌 (4)𝑌 (2)𝑌 (1)− 1

6
𝑌 (4)𝑌 (1)3

− 1

2
𝑌 (3)𝑌 (2)2 − 1

24
𝑌 (3)𝑌 (1)4 − 1

12
𝑌 (2)2𝑌 (1)3

− 1

120
𝑌 (2)𝑌 (1)5 − 𝑌 (5)𝑌 (2)− 𝑌 (4)𝑌 (3)− 1

2
𝑌 (3)2𝑌 (1)

− 1

6
𝑌 (2)3𝑌 (1)− 1

5040
𝑌 (1)7 − 1

2
𝑌 (3)𝑌 (2)𝑌 (1)2),
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𝐴8 = 𝑒𝑌 (0)(− 1

40320
𝑌 (1)8 − 𝑌 (5)𝑌 (3)− 1

2
𝑌 (4)2 − 1

2
𝑌 (3)2𝑌 (2)

− 1

24
𝑌 (2)4 − 1

720
𝑌 (1)6𝑌 (2)− 1

6
𝑌 (3)𝑌 (2)𝑌 (1)3 − 1

2
𝑌 (4)𝑌 (2)𝑌 (1)2

− 1

6
𝑌 (5)𝑌 (1)3 − 1

2
𝑌 (4)𝑌 (2)2 − 1

24
𝑌 (4)𝑌 (1)4 − 1

120
𝑌 (3)𝑌 (1)5

− 1

48
𝑌 (2)2𝑌 (1)4 − 𝑌 (5)𝑌 (2)𝑌 (1)− 𝑌 (4)𝑌 (3)𝑌 (1)− 1

4
𝑌 (3)2𝑌 (1)2

− 1

2
𝑌 (2)2𝑌 (1)𝑌 (3)− 1

12
𝑌 (2)3𝑌 (1)2),

...

Then we have

𝑌 (2) = −𝑒𝛽

4
,

𝑌 (3) = 0,

𝑌 (4) =
𝑒2𝛽

64
,

𝑌 (5) = 0,

𝑌 (6) = − 3𝑒3𝛽

2304
,

𝑌 (7) = 0,

𝑌 (8) =
10𝑒4𝛽

98304
,

𝑌 (9) = 0,

𝑌 (10) = − 76𝑒5𝛽

9830400
.

For 𝑁 = 10 the series solution is

𝑦10(𝑥) = 𝛽 − 𝑒𝛽

4
𝑥2 +

𝑒2𝛽

64
𝑥4 − 3𝑒3𝛽

2304
𝑥6 +

10𝑒4𝛽

98304
𝑥8 − 76𝑒5𝛽

9830400
𝑥10. (3.26)

Now, solve (3.26) for 𝛽 using boundary condition at 𝑥 = 1,

𝛽 = 0.31519599235,
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substituting 𝛽 value in (3.26) to get

𝑦10(𝑥) = 0.31519599235− 1

4
𝑒0.31519599235𝑥2 +

1

64
𝑒0.6303918470𝑥4 − 1

1152
𝑒0.9455877705𝑥6

+
5

49152
𝑒1.260783694𝑥8 − 19

2457600
𝑒1.575979618𝑥10,

= 0.3151959235− 0.3426319508𝑥2 + 0.02934916344𝑥4 − 0.002234658027𝑥6

+ 0.0003589055809𝑥8 − 0.00003738364589𝑥10.

Figure 3-3 present the previous solution and the exact solution 2 ln
4− 2

√
2

(3− 2
√
2)𝑥2 + 1

.

Figure 3-3: Comparison between the solution obtained by DTM and the solution
obtained by IDTM.

3.2 DTM with Laplace transform and Padé approx-

imation

In this section, we make a quick review of Laplace transform . Also we present the

Padé approximation definition and proceeder briefly in order to introduce another
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modification of the DTM which is DTM with Laplace transform and Padé approxi-

mation.

Laplace transform:

Definition 3.1. Let 𝑓(𝑥) be a function defined for 𝑥 ≥ 0, then the Laplace transform
of 𝑓(𝑥) denoted by ℱ(𝑠) = ℒ{𝑓(𝑥)} is defined as follows

ℱ(𝑠) = ℒ{𝑓(𝑥)} =

∫︁ ∞

0

𝑒−𝑠𝑥𝑓(𝑥)𝑑𝑥,

= lim
𝑎→∞

∫︁ 𝑎

0

𝑒−𝑠𝑥𝑓(𝑥)𝑑𝑥. (3.27)

Also, the inverse Laplace transform denoted by 𝐿−1{ℱ(𝑠)} is equal 𝑓(𝑥) if and only
if ℱ(𝑠) = ℒ{𝑓(𝑥)}.

The next table gives the Laplace transform of some functions calculated with

the help of Definition 3.1.

𝑓(𝑥) ℱ(𝑠)

1
1

𝑠

𝑥𝑛, 𝑛 = 1, 2, ...
𝑛!

𝑠𝑛+1

𝑒𝑏𝑥
1

𝑠− 𝑏
, 𝑠 > 𝑎

sin(𝑏𝑥)
𝑏

𝑠2 + 𝑏2

cos(𝑏𝑥)
𝑠

𝑠2 + 𝑏2

sinh(𝑏𝑥)
𝑏

𝑠2 − 𝑏2

cosh(𝑏𝑥)
𝑠

𝑠2 − 𝑏2

ℒ{𝑓 ′(𝑥)} 𝑠ℒ{𝑓(𝑥)} − 𝑓(0)

ℒ{𝑓 (𝑛)(𝑥)} 𝑠𝑛ℒ{𝑓(𝑥)} − 𝑠𝑛−1𝑓 ′(0)− 𝑠𝑛−2𝑓 ′′(0)− ...− 𝑠𝑓 (𝑛−1)(0)− 𝑓 (𝑛)(0)

Table 3.1: Laplace transform of some functions

Padé approximation:

Definition 3.2. Padé approximation is a ratio of two polynomials come from the
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Taylor series expansion of a function 𝑦(𝑥) and defined as

𝑃 𝑙
𝑚 =

𝑙∑︁
𝑛=0

𝑎𝑛𝑥
𝑛

𝑚∑︁
𝑛=0

𝑏𝑛𝑥
𝑛

,

where 𝑏0 = 1 by normalization.

Now, we can write the function 𝑦(𝑥) as

𝑦(𝑥) =
∞∑︁
𝑛=0

𝑐𝑛𝑥
𝑛.

Also,

𝑦(𝑥)− 𝑃 𝑙
𝑚 = 𝑂(𝑥𝑙+𝑚+1).

Thus,

∞∑︁
𝑛=0

𝑐𝑛𝑥
𝑛 =

𝑙∑︁
𝑛=0

𝑎𝑛𝑥
𝑛

𝑚∑︁
𝑛=0

𝑏𝑛𝑥
𝑛

,

or

𝑐0 + 𝑐1𝑥+ 𝑐2𝑥
2 + 𝑐3𝑥

3 + ... =
𝑎0 + 𝑎1𝑥+ 𝑎2𝑥

2 + 𝑎3𝑥
3 + ...

1 + 𝑏1𝑥+ 𝑏2𝑥 + 𝑏3𝑥3 + ...
. (3.28)

From (3.28) we obtain the following system of equations

𝑎0 = 𝑐0,

𝑎1 = 𝑐1 + 𝑐0𝑏1,

𝑎2 = 𝑐2 + 𝑐1𝑏1 + 𝑐0𝑏2,

𝑎3 = 𝑐3 + 𝑐2𝑏1 + 𝑐1𝑏2 + 𝑐0𝑏3,

𝑎4 = 𝑐4 + 𝑐3𝑏1 + 𝑐2𝑏2 + 𝑐1𝑏3 + 𝑐0𝑏4,

...
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where 𝑐𝑛 is given.

In order to solve the above system for 𝑎𝑛 and 𝑏𝑛 we take the numerator degree to

be 𝑙 and the denominator degree to be 𝑚, also we take the Taylor series expansion

of 𝑦(𝑥) up to 𝑥𝑙+𝑚. i.e. we want to solve the following system

𝑎0 = 𝑐0,

𝑎1 = 𝑐1 + 𝑐0𝑏1,

𝑎2 = 𝑐2 + 𝑐1𝑏1 + 𝑐0𝑏2,

𝑎3 = 𝑐3 + 𝑐2𝑏1 + 𝑐1𝑏2 + 𝑐0𝑏3,

𝑎4 = 𝑐4 + 𝑐3𝑏1 + 𝑐2𝑏2 + 𝑐1𝑏3 + 𝑐0𝑏4,

...

𝑎𝑙 = 𝑐𝑙 + 𝑐𝑙−1𝑏1 + 𝑐𝑙−2𝑏2 + ...+ 𝑐0𝑏𝑙,

0 = 𝑐𝑙+1 + 𝑐𝑙𝑏1 + 𝑐𝑙−1𝑏2 + ...+ 𝑐𝑙−𝑚+1𝑏𝑚,

0 = 𝑐𝑙+2 + 𝑐𝑙+1𝑏1 + 𝑐𝑙𝑏2 + ...+ 𝑐𝑙−𝑚+2𝑏𝑚,

...

0 = 𝑐𝑙+𝑚 + 𝑐𝑙+𝑚−1𝑏1 + 𝑐𝑙+𝑚−2𝑏2 + ...+ 𝑐𝑙𝑏𝑚.

The next example illustrates this approximation.

Example 3.5. Consider the exponential function 𝑒𝑥 .
The Maclaurin series of 𝑒𝑥 is 𝑓(𝑥) = 1 + 𝑥+ 1

2
𝑥2 + 1

6
𝑥3 + ....
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Solution. To find 𝑃 2
3 of 𝑓(𝑥) we must solve the following system of equations

𝑎0 = 1,

𝑎1 = 1 + 𝑏1,

𝑎2 =
1

2
+ 𝑏1 + 𝑏2,

0 =
1

6
+

1

2
𝑏1 + 𝑏2 + 𝑏3,

0 =
1

24
+

1

6
𝑏1 +

1

2
𝑏2 + 𝑏3,

0 =
1

120
+

1

24
𝑏1 +

1

6
𝑏2 +

1

2
𝑏3.

We obtain the following

𝑏1 = −3

5
,

𝑏2 =
3

20
,

𝑏3 = − 1

60
,

𝑎0 = 1,

𝑎1 =
2

5
,

𝑎2 =
1

20
.

Then so,

1 + 𝑥+
1

2
𝑥2 +

1

6
𝑥3 +

1

24
𝑥4 +

1

120
𝑥5 =

1 +
2

5
𝑥+

1

20
𝑥2

1− 3

5
𝑥+

3

20
𝑥2 − 1

60
𝑥3

.
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Figure 3-4 shows both the Padé approximation and Maclaurin series expansion of

𝑒𝑥 . Also, by zooming Figure 3-5 confirm the accuracy of Padé approximation.

Figure 3-4: The Padé approximation of 𝑓(𝑥).

Figure 3-5: The Padé approximation of 𝑓(𝑥).
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DTM with Laplace transform and Padé approximation:

This modification uses the series solution obtained by using DTM and take the

Laplace transform of this solution. After that we apply the Padé approximation.

To get the final solution by this modification we take the inverse Laplace transform

of the Padé approximation. this method can keep the periodic behavior of the so-

lution. The next examples illustrate the idea. The results are calculated by using

MAPLE. See [37, 39].

Example 3.6. Consider the following initial value problem

𝑦′′(𝑥) + 2𝑦2(𝑥) + 4𝑦(𝑥) = 1 + cos(4𝑥), (3.29)

subject to
𝑦(0) = 1 and 𝑦′(0) = 0. (3.30)

Solution. Firstly, we apply the DTM on (3.29) to obtain the following recurrence

relation

𝑌 (𝑘 + 2) =
1

(𝑘 + 1)(𝑘 + 2)

(︃
−2

𝑘∑︁
𝑟=0

𝑌 (𝑟)𝑌 (𝑘 − 𝑟)− 4𝑌 (𝑘) + 𝛿(𝑘) +
4𝑘

𝑘!
cos

(︂
𝑘𝜋

2

)︂)︃

Also from (3.30) we get

𝑌 (0) = 1 and 𝑌 (1) = 0. (3.31)

So, by using (3.31) and (3.31) for 𝑘 = 0, ..., 3 we have the following values

𝑌 (2) = −2,

𝑌 (3) = 0,

𝑌 (4) =
2

3
,

𝑌 (5) = 0,
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Thus, the series solution is

𝑦(𝑥) ≈ 1− 2𝑥2 +
2

3
𝑥4. (3.32)

Now, by taking Laplace transform of (3.32) we get

ℒ{𝑦(𝑥)} =
1

𝑠
− 4

𝑠3
+

16

𝑠5
. (3.33)

To simplify ℒ{𝑦(𝑥)} let 𝑠 =
1

𝑥
then (3.33) becomes

ℒ{𝑦(𝑥)} = 𝑥− 4𝑥3 + 16𝑥5. (3.34)

The 𝑃 3
3 of (3.34) equal

𝑃 3
3 =

𝑥

1 + 4𝑥2
, (3.35)

replacing 𝑥 by
1

𝑠
in (3.35)

𝑃 3
3 =

1

𝑠( 4
𝑠2
+ 1)

. (3.36)

After that, we take the inverse Laplace transform of (3.36) to get the following

solution

𝑦(𝑥) = cos(2𝑥).

By this method we obtain the solution in terms of cosine function.

Figure 3-6 shows that the solution obtained by DTM with Laplace transform and

Padê approximation, the DTM solution and the exact solution.

After zooming, Figure 4.24 show that the solution obtained by DTM with Laplace

transform and Padê approximation is closer than the DTM solution to the exact
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Figure 3-6: The solution obtained by DTM with Laplace transform and Padê
approximation and DTM solution together with the exact solution.

one.

Figure 3-7: Comparison between the solution obtained by DTM with Laplace
transform and Padê approximation and DTM solution.
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Example 3.7. Consider the following initial value problem

𝑦′′(𝑥)− 0.04(1− 𝑦2(𝑥))𝑦′(𝑥) + 𝑦(𝑥) = 0.04 sin(1.4𝑥), (3.37)

subject to
𝑦(0) = 1 and 𝑦′(0) = 0. (3.38)

Solution. Firstly, we apply the DTM on (3.37) to obtain the following recurrence

relation

𝑌 (𝑘 + 2) =
1

(𝑘 + 1)(𝑘 + 2)

(︃
0.04(𝑘 + 1)𝑌 (𝑘 + 1)− 𝑦(𝑘) + 0.04

(1.4)𝑘

𝑘!
sin

(︂
𝑘𝜋

2

)︂)︃

− 0.04

(𝑘 + 1)(𝑘 + 2)

(︃
𝑘∑︁

𝑟=0

𝑟∑︁
𝑚=0

(𝑚+ 1)𝑌 (𝑚+ 1)𝑌 (𝑟 −𝑚)𝑌 (𝑘 − 𝑟)

)︃
.

(3.39)

Also from (3.38) we get

𝑌 (0) = 1 and 𝑌 (1) = 0. (3.40)

So, by using (3.39) and (3.40) for 𝑘 = 0, ..., 6 we have the following values

𝑌 (2) = −0.5000000000,

𝑌 (3) = 0.009333330373,

𝑌 (4) = 0.04167186932,

𝑌 (5) = −0.003381330574,

𝑌 (6) = −0.001327519922,

𝑌 (7) = 0.0005989144050,

𝑌 (8) = −0.000008721286018,
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Thus, the series solution is

𝑦(𝑥) ≈ 1− 0.5000000000𝑥2 + 0.009333330373𝑥3 + 0.04167186932𝑥4 − 0.003381330574𝑥5

− 0.001327519922𝑥6 + 0.0005989144050𝑥7 − 0.000008721286018𝑥8. (3.41)

Now, by taking Laplace transform of (3.41) we get

ℒ{𝑦(𝑥)} =
1

𝑠
− 1

𝑠3
− 0.05599998224

𝑠4
+

1.000124864

𝑠5
− 0.4057596689

𝑠6
− 0.9558143438

𝑠7

+
3.018528601

𝑠8
− 0.3516422530

𝑠9
. (3.42)

Let 𝑠 =
1

𝑥
for simplicity then (3.42) becomes

ℒ{𝑦(𝑥)} = 𝑥− 𝑥3 + 0.05599998224𝑥4 + 1.000124864𝑥5 − 0.4057596689𝑥6 − 0.9558143438𝑥7

+ 3.018528601𝑥8 − 0.3516422530𝑥9. (3.43)

The 𝑃 4
4 of (3.43) equal

𝑃 4
4 =

𝑥+ 0.1703725200𝑥2 + 7.727570742𝑥3 + 0.1390053934𝑥4

1 + 0.1703725200𝑥+ 8.727570742𝑥2 + .2533779311𝑥3 + 7.717905020𝑥4
,

(3.44)

replacing 𝑥 by
1

𝑠
in (3.44)

𝑃 4
4 =

𝑠3 + 0.1703725200𝑠2 + 7.727570742𝑠+ 0.1390053934

𝑠4 + 0.1703725200𝑠3 + 8.727570742𝑠2 + .2533779311𝑠+ 7.717905020
. (3.45)

After that, we take the inverse Laplace transform of (3.45) to get the following

solution

𝑦(𝑥) = 0.0003101444994 cos(2.778582680𝑥)𝑒−0.07900300730𝑥

− 0.002314542034 sin(2.778582680𝑥)𝑒−0.07900300730𝑥

+ 0.9996898554 cos(0.9994074949𝑥)𝑒−0.006183252709𝑥

+ 0.01264447568 sin(0.9994074949𝑥)𝑒−0.006183252709𝑥.
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For more examples refer to [1, 37, 39].



Chapter 4

DTM for partial differential

equations

Partial differential equations are used to formulate several phenomena in real world.

For example, wave , heat and fluid flows. There are many methods to solve partial

differential equations, one of these methods is the DTM. In this chapter, we use the

so called Two Dimensional Differential Transform Method (TDDTM) to solve par-

tial differential equations. Then, we introduce the Reduced Differential Transform

Method (RDTM) and Laplace Differential Transform Method (LDTM) which used

also to solve this type of equations.

4.1 The TDDTM

In this section, we intoduce the TDDTM definition. Also, some theorems are given

to help us in solving partial differential equations. In addition, some examples are

presented to illustrate this method. For the material of this section we refer to

[15, 40, 43].

72
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Definition 4.1. Let 𝑦(𝑥, 𝑡) be a function of two variables which is analytic and
continuously differentiable on the nonnegative integers. Then the two dimensional
differential transform of the function 𝑦(𝑥, 𝑡) defined as follows

𝑌 (𝑘, ℎ) =
1

𝑘!ℎ!

[︂
𝜕𝑘+ℎ𝑦(𝑥, 𝑡)

𝜕𝑥𝑘𝜕𝑡ℎ

]︂
(𝑥,𝑡)=(0,0)

, (4.1)

where 𝑦(𝑥, 𝑡) is the original function and 𝑌 (𝑘, ℎ) is the transformed function. Dif-
ferential inverse transform of 𝑌 (𝑘, ℎ) is defined as

𝑦(𝑥, 𝑡) =
∞∑︁
𝑘=0

∞∑︁
ℎ=0

𝑌 (𝑘, ℎ)𝑥𝑘𝑡ℎ. (4.2)

By substituting equation(4.1) in (4.2) we get

𝑦(𝑥, 𝑡) =
∞∑︁
𝑘=0

∞∑︁
ℎ=0

𝑥𝑘𝑡ℎ

𝑘!ℎ!

𝜕𝑘+ℎ𝑦(𝑥, 𝑡)

𝜕𝑥𝑘𝜕𝑡ℎ

⃒⃒⃒⃒
(𝑥,𝑡)=(0,0)

. (4.3)

Definition 4.1 is true when (𝑥, 𝑡) = (𝑥0, 𝑡0).

The next theorem indicates the linearity property of the TDDTM.

Theorem 4.1. If 𝑦(𝑥, 𝑡) = 𝛼𝑢(𝑥, 𝑡) + 𝛽𝑣(𝑥, 𝑡), then 𝑌 (𝑘, ℎ) = 𝛼𝑈(𝑘, ℎ) + 𝛽𝑉 (𝑘, ℎ),
where 𝛼 and 𝛽 are constants.

Proof. Let 𝑦(𝑥, 𝑡) be the original function, then the differential transform of 𝑦(𝑥, 𝑡)
is given by

𝑌 (𝑘, ℎ) =
1

𝑘!ℎ!

𝜕𝑘+ℎ𝑦(𝑥, 𝑡)

𝜕𝑥𝑘𝜕𝑡ℎ

⃒⃒⃒⃒
(𝑥,𝑡)=(0,0)

=
1

𝑘!ℎ!

𝜕𝑘+ℎ(𝛼𝑢(𝑥, 𝑡)) + (𝛽𝑣(𝑥, 𝑡))

𝜕𝑥𝑘𝜕𝑡ℎ

⃒⃒⃒⃒
(𝑥,𝑡)=(0,0)

=
1

𝑘!ℎ!

[︂
𝜕𝑘+ℎ(𝛼𝑢(𝑥, 𝑡))

𝜕𝑥𝑘𝜕𝑡ℎ
+

𝜕𝑘+ℎ(𝛽𝑣(𝑥, 𝑡))

𝜕𝑥𝑘𝜕𝑡ℎ

]︂
(𝑥,𝑡)=(0,0)

=
𝛼

𝑘!ℎ!

𝜕𝑘+ℎ𝑢(𝑥, 𝑡)

𝜕𝑥𝑘𝜕𝑡ℎ

⃒⃒⃒⃒
(𝑥,𝑡)=(0,0)

+
𝛽

𝑘!ℎ!

𝜕𝑘+ℎ𝑣(𝑥, 𝑡)

𝜕𝑥𝑘𝜕𝑡ℎ

⃒⃒⃒⃒
(𝑥,𝑡)=(0,0)

= 𝛼𝑈(𝑘, ℎ) + 𝛽𝑉 (𝑘, ℎ).
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The next theorems give the two dimensional differential transform of some functions.

Theorem 4.2. If 𝑦(𝑥, 𝑡) =
𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
, then 𝑌 (𝑘, ℎ) = (𝑘 + 1)𝑈(𝑘 + 1, ℎ).

Proof. Let 𝑦(𝑥, 𝑡) be the original function, then the differential transform of 𝑦(𝑥, 𝑡)
is given by

𝑌 (𝑘, ℎ) =
1

𝑘!ℎ!

𝜕𝑘+ℎ𝑦(𝑥, 𝑡)

𝜕𝑥𝑘𝜕𝑡ℎ
|(𝑥,𝑡)=(0,0)

=
1

𝑘!ℎ!

𝜕𝑘+ℎ(𝜕𝑢(𝑥,𝑡)
𝜕𝑥

)

𝜕𝑥𝑘𝜕𝑡ℎ

⃒⃒⃒⃒
(𝑥,𝑡)=(0,0)

=
1

𝑘!ℎ!

[︂
𝜕(𝑘+1)+ℎ(𝑢(𝑥, 𝑡))

𝜕𝑥𝑘+1𝜕𝑡ℎ

]︂
(𝑥,𝑡)=(0,0)

= (𝑘 + 1)𝑈(𝑘 + 1, ℎ).

Similarly, when 𝑦(𝑥, 𝑡) =
𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
, then 𝑌 (𝑘, ℎ) = (ℎ+ 1)𝑈(𝑘, ℎ+ 1).

Theorem 4.3. If 𝑦(𝑥, 𝑡) =
𝜕𝑟+𝑠𝑢(𝑥, 𝑡)

𝜕𝑥𝑟𝜕𝑡𝑠
, then

𝑌 (𝑘, ℎ) =
(𝑘 + 𝑟)!(ℎ+ 𝑠)!

𝑘!ℎ!
𝑈(𝑘 + 𝑟, ℎ+ 𝑠).

Proof. Let 𝑦(𝑥, 𝑡) be the original function, then the differential transform of 𝑦(𝑥, 𝑡)
is given by

𝑌 (𝑘, ℎ) =
1

𝑘!ℎ!

𝜕𝑘+ℎ𝑦(𝑥, 𝑡)

𝜕𝑥𝑘𝜕𝑡ℎ

⃒⃒⃒⃒
(𝑥,𝑡)=(0,0)

=
1

𝑘!ℎ!

𝜕𝑘+ℎ(𝜕
𝑟+𝑠𝑢(𝑥,𝑡)
𝜕𝑥𝑟𝜕𝑡𝑠

)

𝜕𝑥𝑘𝜕𝑡ℎ

⃒⃒⃒⃒
(𝑥,𝑡)=(0,0)

=
1

𝑘!ℎ!

[︂
𝜕(𝑘+𝑟)+(ℎ+𝑠)(𝑢(𝑥, 𝑡))

𝜕𝑥𝑘+𝑟𝜕𝑡ℎ+𝑠

]︂
(𝑥,𝑡)=(0,0)

=
(𝑘 + 𝑟)!(ℎ+ 𝑠)!

𝑘!ℎ!
𝑈(𝑘 + 𝑟, ℎ+ 𝑠)
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Theorem 4.4. If 𝑦(𝑥, 𝑡) = 𝑢(𝑥, 𝑡)𝑣(𝑥, 𝑡), then

𝑌 (𝑘, ℎ) =
𝑘∑︁

𝑟=0

ℎ∑︁
𝑠=0

𝑈(𝑟, ℎ− 𝑠)𝑉 (𝑘 − 𝑟, 𝑠).

Proof. See [6].

Theorem 4.5. If 𝑦(𝑥, 𝑡) =
𝜕𝑢(𝑥, 𝑡)

𝜕𝑥

𝜕𝑣(𝑥, 𝑡)

𝜕𝑥
, then

𝑌 (𝑘, ℎ) =
𝑘∑︁

𝑟=0

ℎ∑︁
𝑠=0

(𝑟 + 1)(𝑘 − 𝑟 + 1)𝑈(𝑟 + 1, ℎ− 𝑠)𝑉 (𝑘 − 𝑟 + 1, 𝑠).

Proof. Let
𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
= 𝑢*(𝑥, 𝑡) and

𝜕𝑣(𝑥, 𝑡)

𝜕𝑥
= 𝑣*(𝑥, 𝑡). Then by using Theorem 4.2

and Theorem4.4 we get

𝑌 (𝑘, ℎ) =
𝑘∑︁

𝑟=0

ℎ∑︁
𝑠=0

𝑈*(𝑟, ℎ− 𝑠)𝑉 *(𝑘 − 𝑟, 𝑠)

=
𝑘∑︁

𝑟=0

ℎ∑︁
𝑠=0

(𝑟 + 1)(𝑘 − 𝑟 + 1)𝑈(𝑟 + 1, ℎ− 𝑠)𝑉 (𝑘 − 𝑟 + 1, 𝑠).

Similarly, if 𝑦(𝑥, 𝑡) =
𝜕𝑢(𝑥, 𝑡)

𝜕𝑡

𝜕𝑣(𝑥, 𝑡)

𝜕𝑡
, then

𝑌 (𝑘, ℎ) =
𝑘∑︁

𝑟=0

ℎ∑︁
𝑠=0

(𝑠+ 1)(ℎ− 𝑠+ 1)𝑈(𝑟, ℎ− 𝑠+ 1)𝑉 (𝑘 − 𝑟, 𝑠+ 1).

Theorem 4.6. If 𝑦(𝑥, 𝑡) = 𝑥𝑚𝑡𝑛, then 𝑌 (𝑘, ℎ) = 𝛿(𝑘 −𝑚)𝛿(ℎ− 𝑛), where

𝛿(𝑘 −𝑚) =

{︃
1 if 𝑘 = 𝑚,

0 if 𝑘 ̸= 𝑚.
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𝛿(ℎ− 𝑛) =

{︃
1 if ℎ = 𝑛,

0 if ℎ ̸= 𝑛.

Proof. Let 𝑦(𝑥, 𝑡) be the original function, then the differential transform of 𝑦(𝑥, 𝑡)
is given by

𝑌 (𝑘, ℎ) =
1

𝑘!ℎ!

𝜕𝑘+ℎ𝑦(𝑥, 𝑡)

𝜕𝑥𝑘𝜕𝑡ℎ

⃒⃒⃒⃒
(𝑥,𝑡)=(0,0)

=
1

𝑘!ℎ!

𝜕𝑘+ℎ(𝑥𝑚𝑡𝑛)

𝜕𝑥𝑘𝜕𝑡ℎ

⃒⃒⃒⃒
(𝑥,𝑡)=(0,0)

=

[︂
1

𝑘!

𝜕𝑘𝑥𝑚

𝜕𝑥𝑘

]︂
𝑥=0

[︂
1

ℎ!

𝜕ℎ𝑡𝑛

𝜕𝑡ℎ

]︂
𝑡=0

=

[︂
1

𝑘!

𝑑𝑘𝑥𝑚

𝑑𝑥𝑘

]︂
𝑥=0

[︂
1

ℎ!

𝑑ℎ𝑡𝑛

𝑑𝑡ℎ

]︂
𝑡=0

= 𝛿(𝑘 −𝑚)𝛿(ℎ− 𝑛).

Theorem 4.7. If 𝑦(𝑥, 𝑡) = 𝑥𝑚𝑒𝜆𝑡, then 𝑌 (𝑘, ℎ) = 𝛿(𝑘−𝑚)
𝜆ℎ

ℎ!
, where 𝜆 is constant.

Proof. Let 𝑦(𝑥, 𝑡) be the original function, then the differential transform of 𝑦(𝑥, 𝑡)
is given by

𝑌 (𝑘, ℎ) =
1

𝑘!ℎ!

𝜕𝑘+ℎ𝑦(𝑥, 𝑡)

𝜕𝑥𝑘𝜕𝑡ℎ

⃒⃒⃒⃒
(𝑥,𝑡)=(0,0)

=
1

𝑘!ℎ!

𝜕𝑘+ℎ(𝑥𝑚𝑒𝜆𝑡)

𝜕𝑥𝑘𝜕𝑡ℎ

⃒⃒⃒⃒
(𝑥,𝑡)=(0,0)

=

[︂
1

𝑘!

𝜕𝑘𝑥𝑚

𝜕𝑥𝑘

]︂
𝑥=0

[︂
1

ℎ!

𝜕ℎ𝑒𝜆𝑡

𝜕𝑡ℎ

]︂
𝑡=0

=

[︂
1

𝑘!

𝑑𝑘𝑥𝑚

𝑑𝑥𝑘

]︂
𝑥=0

[︂
1

ℎ!

𝑑ℎ𝑒𝜆𝑡

𝑑𝑡ℎ

]︂
𝑡=0

=
𝜆ℎ

ℎ!
𝛿(𝑘 −𝑚).
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Theorem 4.8. If 𝑦(𝑥, 𝑡) = 𝑥𝑚 sin(𝛼𝑡+𝛽), then 𝑌 (𝑘, ℎ) = 𝛿(𝑘−𝑚)
𝛼ℎ

ℎ!
sin

(︂
ℎ𝜋

2
+ 𝛽

)︂
,

where 𝛼 and 𝛽 are constants.

Proof. Let 𝑦(𝑥, 𝑡) be the original function, then the differential transform of 𝑦(𝑥, 𝑡)
is given by

𝑌 (𝑘, ℎ) =
1

𝑘!ℎ!

𝜕𝑘+ℎ𝑦(𝑥, 𝑡)

𝜕𝑥𝑘𝜕𝑡ℎ

⃒⃒⃒⃒
(𝑥,𝑡)=(0,0)

=
1

𝑘!ℎ!

𝜕𝑘+ℎ(𝑥𝑚 sin(𝛼𝑡+ 𝛽)

𝜕𝑥𝑘𝜕𝑡ℎ

⃒⃒⃒⃒
(𝑥,𝑡)=(0,0)

=

[︂
1

𝑘!

𝜕𝑘𝑥𝑚

𝜕𝑥𝑘

]︂
𝑥=0

[︂
1

ℎ!

𝜕ℎ sin(𝛼𝑡+ 𝛽)

𝜕𝑡ℎ

]︂
𝑡=0

=

[︂
1

𝑘!

𝑑𝑘𝑥𝑚

𝑑𝑥𝑘

]︂
𝑥=0

[︂
1

ℎ!

𝑑ℎ sin(𝛼𝑡+ 𝛽)

𝑑𝑡ℎ

]︂
𝑡=0

=
𝛼ℎ

ℎ!
𝛿(𝑘 −𝑚) sin

(︂
ℎ𝜋

2
+ 𝛽

)︂
.

Similarly, if 𝑦(𝑥, 𝑡) = 𝑥𝑚 cos(𝛼𝑡 + 𝛽), then 𝑌 (𝑘, ℎ) =
𝛼ℎ

ℎ!
𝛿(𝑘 − 𝑚) cos

(︂
ℎ𝜋

2
+ 𝛽

)︂
,

where 𝛼 and 𝛽 are constants.

Now, we explain the TDDTM through the following examples.

The following example is taken from [15].

Example 4.1. Consider the following nonlinear partial differential equation

𝑦𝑡𝑡(𝑥, 𝑡)− 𝑦(𝑥, 𝑡)𝑦𝑥𝑥(𝑥, 𝑡) = 1− 𝑡2 + 𝑥2

2
, 𝑥 ≥ 1, 𝑡 ≥ 0, (4.4)

with initial conditions

𝑦(𝑥, 0) =
𝑥2

2
, 𝑦𝑡(𝑥, 0) = 0 (4.5)
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Solution. By applying the TDDTM on Equation (4.4) we have

(ℎ+ 1)(ℎ+ 2)𝑌 (𝑘, ℎ+ 2)−
𝑘∑︁

𝑟=0

ℎ∑︁
𝑠=0

(𝑘 − 𝑟 + 1)(𝑘 − 𝑟 + 2)𝑌 (𝑘, ℎ− 𝑠)𝑌 (𝑘 − 𝑟 + 2, 𝑠)

= 𝛿(𝑘)𝛿(ℎ)− 1

2
𝛿(𝑘)𝛿(ℎ− 2)− 1

2
𝛿(𝑘 − 2)𝛿(ℎ),

This leads to the following relation

𝑌 (𝑘, ℎ+ 2) =
𝑘∑︁

𝑟=0

ℎ∑︁
𝑠=0

(𝑘 − 𝑟 + 1)(𝑘 − 𝑟 + 2)

(ℎ+ 1)(ℎ+ 2)
𝑌 (𝑘, ℎ− 𝑠)𝑌 (𝑘 − 𝑟 + 2, 𝑠)

+

(︀
𝛿(𝑘)𝛿(ℎ)− 1

2
𝛿(𝑘)𝛿(ℎ− 2)− 1

2
𝛿(𝑘 − 2)𝛿(ℎ)

)︀
(ℎ+ 1)(ℎ+ 2)

. (4.6)

From the first initial condition in (4.5) we get

∞∑︁
𝑘=0

𝑌 (𝑘, 0)𝑥𝑘 =
∞∑︁
𝑘=0

𝑥𝑘

𝑘!

𝑑𝑘(𝑥
2

2
)

𝑑𝑥𝑘
|𝑥=0,

thus,

𝑌 (𝑘, 0) =

⎧⎪⎨⎪⎩
1

2
if 𝑘 = 2,

0 otherwise.

Also, from the second initial condition we have

𝑌 (𝑘, 1) = 0, 𝑘 = 0, 1, ....
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Using the last new conditions and relation (4.6) we obtain the following

𝑌 (0, 2) =
1

2
,

𝑌 (1, 2) =
1

2
(6𝑌 (0, 0)𝑌 (3, 0) + 2𝑌 (1, 0)𝑌 (2, 0) + 0 = 0,

𝑌 (2, 2) =
1

2
(12𝑌 (0, 0)𝑌 (4, 0) + 6𝑌 (1, 0)𝑌 (3, 0) + 2𝑌 (2, 0)𝑌 (2, 0)− 1

2
= 0,

...

Continue in this way, we obtain

k/h 0 1 2 3 4 ...
0 0 0 1

2
0 0 ...

1 0 0 0 0 0 ...
2 1

2
0 0 0 0 0

3 0 0 0 0 0 ...
4 0 0 0 0 0 ...
... ...

Table 4.1: Valves of 𝑌 (𝑘, ℎ).

Hence, we can write the solution as

𝑦(𝑥, 𝑡) =
𝑥2 + 𝑡2

2

which is the exact solution.

Example 4.2. Consider the following nonlinear partial differential equation

𝑦𝑡𝑡(𝑥, 𝑡) = 𝑦𝑥𝑥(𝑥, 𝑡) + 𝑦(𝑥, 𝑡) + 𝑦2(𝑥, 𝑡)− 𝑥𝑡− 𝑥2𝑡2, 0 < 𝑥, 𝑡 > 0, (4.7)

with initial conditions
𝑦(𝑥, 0) = 0, 𝑦𝑡(𝑥, 0) = 𝑥 (4.8)

and boundary condition
𝑦(0, 𝑡) = 0. (4.9)
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Solution. By applying the TDDTM on Equation (4.7) we have

(ℎ+ 1)(ℎ+ 2)𝑌 (𝑘, ℎ+ 2) = (𝑘 + 1)(𝑘 + 2)𝑌 (𝑘 + 2, ℎ) + 𝑌 (𝑘, ℎ)

+
𝑘∑︁

𝑟=0

ℎ∑︁
𝑠=0

𝑌 (𝑟, ℎ− 𝑠)𝑌 (𝑘 − 𝑟, 𝑠)

− 𝛿(𝑘 − 1)𝛿(ℎ− 1)− 𝛿(𝑘 − 2)𝛿(ℎ− 2),

This leads to the following relation

𝑌 (𝑘, ℎ+ 2) =
1

(ℎ+ 1)(ℎ+ 2)
[(𝑘 + 1)(𝑘 + 2)𝑌 (𝑘 + 2, ℎ) + 𝑌 (𝑘, ℎ)

+
𝑘∑︁

𝑟=0

ℎ∑︁
𝑠=0

𝑌 (𝑟, ℎ− 𝑠)𝑌 (𝑘 − 𝑟, 𝑠)

− 𝛿(𝑘 − 1)𝛿(ℎ− 1)− 𝛿(𝑘 − 2)𝛿(ℎ− 2)]. (4.10)

From the first initial condition in (4.8) we get

𝑌 (𝑘, 0) = 0, 𝑘 = 0, 1, ....

Also, from the second initial condition we have

𝑌 (𝑘, 1) =

⎧⎨⎩1 if 𝑘 = 1,

0 otherwise.

From the boundary condition in (4.9) we get

𝑌 (0, ℎ) = 0, ℎ = 2, 3, ...,
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Using the last new conditions and relation (4.10) we obtain the following

𝑌 (0, 2) = 0,

𝑌 (1, 2) =
1

2
(6𝑌 (3, 0) + 𝑌 (1, 0) + 2𝑌 (0, 0)𝑌 (1, 0)) = 0,

𝑌 (2, 2) =
1

2
(12𝑌 (4, 0) + 𝑌 (2, 0) + 2𝑌 (0, 0)𝑌 (2, 0) + 𝑌 (1, 0)𝑌 (1, 0)) = 0,

...

By continue in this way, we obtain

k/h 0 1 2 3 4 ...
0 0 0 0 0 0 ...
1 0 1 0 0 0 ...
2 0 0 0 0 0 0
3 0 0 0 0 0 ...
4 0 0 0 0 0 ...
... ...

Table 4.2: Valves of 𝑌 (𝑘, ℎ).

Hence, we can write the solution as

𝑦(𝑥, 𝑡) =
∞∑︁
𝑘=0

∞∑︁
ℎ=0

𝑌 (𝑘, ℎ)𝑥𝑘𝑡ℎ = 𝑥𝑡.

which is the exact solution.

For more examples refer to [15, 40, 43].

4.2 The RDTM

When we use the TDDTM to solve partial differential equations sometimes we have

complex calculations. Therefore, in this section we introduce the concept of RDTM.

In addition, we give some basic theorems with proofs. See [16, 30, 32, 44].
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Definition 4.2. Let 𝑦(𝑥, 𝑡) be analytic and continuously differentiable function.
Then the reduced differential transform of the function 𝑦(𝑥, 𝑡) defined as follows

𝑌𝑘(𝑥) =
1

𝑘!

[︂
𝜕𝑘𝑦(𝑥, 𝑡)

𝜕𝑡𝑘

]︂
𝑡=0

, (4.11)

where 𝑦(𝑥, 𝑡) is the original function and 𝑌𝑘(𝑥) is the transformed function. Differ-
ential inverse transform of 𝑌𝑘(𝑥) is defined as

𝑦(𝑥, 𝑡) =
∞∑︁
𝑘=0

𝑌𝑘(𝑥)𝑡
𝑘. (4.12)

By substituting equation(4.11) in (4.12) we get

𝑦(𝑥, 𝑡) =
∞∑︁
𝑘=0

𝑡𝑘

𝑘!

𝜕𝑘𝑦(𝑥, 𝑡)

𝜕𝑡𝑘

⃒⃒⃒⃒
𝑡=0

. (4.13)

The next theorem indicates the linearity property of the RDTM.

Theorem 4.9. If 𝑦(𝑥, 𝑡) = 𝛼𝑢(𝑥, 𝑡)+𝛽𝑣(𝑥, 𝑡), then 𝑌𝑘(𝑥) = 𝛼𝑈𝑘(𝑥)+𝛽𝑉𝑘(𝑥), where
𝛼 and 𝛽 are constants.

Proof. Let 𝑦(𝑥, 𝑡) be the original function, then the differential transform of 𝑦(𝑥, 𝑡)
is given by

𝑌𝑘(𝑥) =
1

𝑘!

𝜕𝑘𝑦(𝑥, 𝑡)

𝜕𝑡𝑘

⃒⃒⃒⃒
𝑡=0

=
1

𝑘!

𝜕𝑘(𝛼𝑢(𝑥, 𝑡)) + (𝛽𝑣(𝑥, 𝑡))

𝜕𝑡𝑘

⃒⃒⃒⃒
𝑡=0

=
1

𝑘!

[︂
𝜕𝑘(𝛼𝑢(𝑥, 𝑡))

𝜕𝑡𝑘
+

𝜕𝑘(𝛽𝑣(𝑥, 𝑡))

𝜕𝑡𝑘

]︂
𝑡=0

=
𝛼

𝑘!

𝜕𝑘𝑢(𝑥, 𝑡)

𝜕𝑡𝑘

⃒⃒⃒⃒
𝑡=0

+
𝛽

𝑘!

𝜕𝑘𝑣(𝑥, 𝑡)

𝜕𝑡𝑘

⃒⃒⃒⃒
𝑡=0

= 𝛼𝑈𝑘(𝑥) + 𝛽𝑉𝑘(𝑥).

The following theorems give the reduced differential transform of some functions.
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Theorem 4.10. If 𝑦(𝑥, 𝑡) =
𝜕𝑟𝑢(𝑥, 𝑡)

𝜕𝑡𝑟
, then 𝑌𝑘(𝑥) =

(𝑘 + 𝑟)!

𝑘!
𝑈𝑘+𝑟(𝑥).

Proof. Let 𝑦(𝑥, 𝑡) be the original function, then the differential transform of 𝑦(𝑥, 𝑡)
is given by

𝑌𝑘(𝑥) =
1

𝑘!

𝜕𝑘𝑦(𝑥, 𝑡)

𝜕𝑡𝑘

⃒⃒⃒⃒
𝑡=0

=
1

𝑘!

𝜕𝑘(𝜕
𝑟𝑢(𝑥,𝑡)
𝜕𝑡𝑟

)

𝜕𝑡𝑘

⃒⃒⃒⃒
𝑡=0

=
(𝑘 + 𝑟)!

𝑘!(𝑘 + 𝑟)!

[︂
𝜕𝑘+𝑟𝑢(𝑥, 𝑡)

𝜕𝑡𝑘+𝑟

]︂
𝑡=0

=
(𝑘 + 𝑟)!

𝑘!
𝑈𝑘+𝑟(𝑥).

Theorem 4.11. If 𝑦(𝑥, 𝑡) =
𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
, then

𝑌𝑘(𝑥) =
𝜕

𝜕𝑥
𝑈𝑘(𝑥).

Proof. Let 𝑦(𝑥, 𝑡) be the original function, then the differential transform of 𝑦(𝑥, 𝑡)
is given by

𝑌𝑘(𝑥) =
1

𝑘!

𝜕𝑘𝑦(𝑥, 𝑡)

𝜕𝑡𝑘

⃒⃒⃒⃒
𝑡=0

=
1

𝑘!

𝜕𝑘(
𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
)

𝜕𝑡𝑘

⃒⃒⃒⃒
𝑡=0

=
𝜕

𝜕𝑥
𝑈𝑘(𝑥).

Theorem 4.12. If 𝑦(𝑥, 𝑡) = 𝑢(𝑥, 𝑡)𝑣(𝑥, 𝑡), then

𝑌𝑘(𝑥) =
𝑘∑︁

𝑟=0

𝑈𝑟(𝑥)𝑉𝑘−𝑟(𝑥).

Proof. Let 𝑦(𝑥, 𝑡) be the original function, then the differential transform of 𝑦(𝑥, 𝑡)
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is given by

𝑌𝑘(𝑥) =
1

𝑘!

𝜕𝑘𝑦(𝑥, 𝑡)

𝜕𝑡𝑘

⃒⃒⃒⃒
𝑡=0

=
1

𝑘!

𝜕𝑘(𝑢(𝑥, 𝑡)𝑣(𝑥, 𝑡))

𝜕𝑡𝑘

⃒⃒⃒⃒
𝑡=0

Now, the Leibnitz rule for partial derivatives of function of several variables

𝜕𝑘

𝜕𝑡𝑘
(𝑢(𝑥, 𝑡)𝑣(𝑥, 𝑡)) =

𝑘∑︁
𝑟=0

(︂
𝑘

𝑟

)︂
𝜕𝑟

𝜕𝑡𝑟
𝑢(𝑥, 𝑡)

𝜕𝑘−𝑟

𝜕𝑡𝑘−𝑟
𝑣(𝑥, 𝑡). (4.14)

By using (4.14) we get

𝑌𝑘(𝑥) =
1

𝑘!

[︃
𝑘∑︁

𝑟=0

(︂
𝑘

𝑟

)︂
𝜕𝑟𝑢(𝑥, 𝑡)

𝜕𝑡𝑟

⃒⃒⃒⃒
𝑡=0

𝜕𝑘−𝑟𝑣(𝑥, 𝑡)

𝜕𝑡𝑘−𝑟

⃒⃒⃒⃒
𝑡=0

]︃
,

=
1

𝑟!(𝑘 − 𝑟)!

[︃
𝑘∑︁

𝑟=0

𝜕𝑟𝑢(𝑥, 𝑡)

𝜕𝑡𝑟

⃒⃒⃒⃒
𝑡=0

𝜕𝑘−𝑟𝑣(𝑥, 𝑡)

𝜕𝑡𝑘−𝑟

⃒⃒⃒⃒
𝑡=0

]︃
,

=
𝑘∑︁

𝑟=0

𝑈𝑟(𝑥)𝑉𝑘−𝑟(𝑥).

Theorem 4.13. If 𝑦(𝑥, 𝑡) = 𝑥𝑚𝑡𝑛 then 𝑌𝑘(𝑥) = 𝑥𝑚𝛿(𝑘 − 𝑛), where

𝛿(𝑘 − 𝑛) =

{︃
1 if 𝑘 = 𝑛,

0 if 𝑘 ̸= 𝑛.

Proof. Let 𝑦(𝑥, 𝑡) be the original function, then the differential transform of 𝑦(𝑥, 𝑡)
is given by

𝑌𝑘(𝑥) =
1

𝑘!

𝜕𝑘𝑦(𝑥, 𝑡)

𝜕𝑡𝑘

⃒⃒⃒⃒
𝑡=0

=
1

𝑘!

𝜕𝑘(𝑥𝑚𝑡𝑛)

𝜕𝑡𝑛

⃒⃒⃒⃒
𝑡=0

=
𝑥𝑚

𝑘!

𝜕𝑘𝑡𝑛

𝜕𝑡𝑘

⃒⃒⃒⃒
𝑡=0

= 𝑥𝑚𝛿(𝑘 − 𝑛).
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Theorem 4.14. If 𝑦(𝑥, 𝑡) = 𝑥𝑚𝑡𝑛𝑢(𝑥, 𝑡), then 𝑌𝑘(𝑥) = 𝑥𝑚𝑈𝑘−𝑛(𝑥).

Proof. Let 𝑦(𝑥, 𝑡) be the original function, then the differential transform of 𝑦(𝑥, 𝑡)
is given by

𝑌𝑘(𝑥) =
1

𝑘!

𝜕𝑘𝑦(𝑥, 𝑡)

𝜕𝑡𝑘

⃒⃒⃒⃒
𝑡=0

=
1

𝑘!

𝜕𝑘(𝑥𝑚𝑡𝑛𝑢(𝑥, 𝑡))

𝜕𝑡𝑘

⃒⃒⃒⃒
𝑡=0

=
𝑥𝑚

𝑘!

𝜕𝑘𝑡𝑛𝑢(𝑥, 𝑡)

𝜕𝑡𝑘

⃒⃒⃒⃒
𝑡=0

= 𝑥𝑚

𝑘∑︁
𝑟=0

𝛿(𝑟 − 𝑛)𝑈𝑘−𝑟(𝑥)

= 𝑥𝑚𝑈𝑘−𝑛(𝑥).

Now, we apply the RDTM on the next examples.

Example 4.3. Consider the following nonlinear partial differential equation

𝑦𝑡(𝑥, 𝑡)− 𝑦(𝑥, 𝑡)𝑦𝑥𝑥(𝑥, 𝑡)− 𝑦2𝑥(𝑥, 𝑡)− 𝑦(𝑥, 𝑡) = 0, (4.15)

with initial condition
𝑦(𝑥, 0) =

√
𝑥. (4.16)

Solution. By applying the RDTM on Equation (4.15) we have

(𝑘 + 1)𝑌𝑘+1(𝑥)−
𝑘∑︁

𝑟=0

𝑌𝑟(𝑥)
𝜕2

𝜕𝑥2
𝑌𝑘−𝑟(𝑥)−

𝑘∑︁
𝑟=0

𝜕

𝜕𝑥
𝑌𝑟(𝑥)

𝜕

𝜕𝑥
𝑌𝑘−𝑟(𝑥)− 𝑌𝑘(𝑥) = 0,

This leads to the following relation

𝑌𝑘+1(𝑥) =
1

𝑘 + 1

[︃
𝑘∑︁

𝑟=0

𝑌𝑟(𝑥)
𝜕2

𝜕𝑥2
𝑌𝑘−𝑟(𝑥) +

𝑘∑︁
𝑟=0

𝜕

𝜕𝑥
𝑌𝑟(𝑥)

𝜕

𝜕𝑥
𝑌𝑘−𝑟(𝑥) + 𝑌𝑘(𝑥)

]︃
.(4.17)
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From the initial condition (4.16) we get 𝑌0(𝑥) =
√
𝑥.

Now, by using 𝑌0(𝑥) =
√
𝑥 and (4.17)we obtain

𝑌1(𝑥) = 𝑌0(𝑥)
𝜕2

𝜕𝑥2
𝑌0(𝑥) + (

𝜕

𝜕𝑥
𝑌0(𝑥))

2

+ 𝑌0(𝑥) =
√
𝑥,

𝑌2(𝑥) =
1

2

(︂
𝑌0(𝑥)

𝜕2

𝜕𝑥2
𝑌1(𝑥) + 𝑌1(𝑥)

𝜕2

𝜕𝑥2
𝑌0(𝑥) + 2

𝜕

𝜕𝑥
𝑌0(𝑥)

𝜕

𝜕𝑥
𝑌1(𝑥) + 𝑌1(𝑥)

)︂
=

√
𝑥

2!
,

𝑌3(𝑥) =
1

3

(︂
𝑌0(𝑥)

𝜕2

𝜕𝑥2
𝑌2(𝑥) + 𝑌1(𝑥)

𝜕2

𝜕𝑥2
𝑌1(𝑥) + 𝑌2(𝑥)

𝜕2

𝜕𝑥2
𝑌0(𝑥) + 2

𝜕

𝜕𝑥
𝑌0(𝑥)

𝜕

𝜕𝑥
𝑌2(𝑥)

)︂
+

1

3
𝑌2(𝑥) =

√
𝑥

3!
,

...

Hence, we can write the solution as

𝑦(𝑥, 𝑡) =
∞∑︁
𝑘=0

𝑌𝑘(𝑥)𝑡
𝑘,

=
√
𝑥+

√
𝑥𝑡+

√
𝑥

2!
𝑡2 +

√
𝑥

3!
𝑡3 + ...

=
√
𝑥𝑒𝑡.

Which is the exact solution.

Example 4.4. Consider the following nonlinear partial differential equation

𝑦𝑡𝑡(𝑥, 𝑡) = 𝑦𝑥𝑥(𝑥, 𝑡) + 𝑦(𝑥, 𝑡) + 𝑦2(𝑥, 𝑡)− 2𝑥𝑡− 4𝑥2𝑡2, 0 < 𝑥 ≤ 𝜋, 𝑡 > 0, (4.18)

with initial conditions
𝑦(𝑥, 0) = 0, 𝑦𝑡(𝑥, 0) = 2𝑥 (4.19)
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Solution. By applying the RDTM on Equation (4.18) we have

(𝑘 + 1)(𝑘 + 2)𝑌𝑘+2(𝑥) =
𝜕2

𝜕𝑥2
𝑌𝑘(𝑥) + 𝑌𝑘(𝑥) +

𝑘∑︁
𝑟=0

𝑌𝑟(𝑥)𝑌𝑘−𝑟(𝑥)

− 2𝑥𝛿(𝑘 − 1)− 4𝑥2𝛿(𝑘 − 2),

This leads to the following relation

𝑌𝑘+2(𝑥) =
1

(𝑘 + 1)(𝑘 + 2)

(︃
𝜕2

𝜕𝑥2
𝑌𝑘(𝑥) + 𝑌𝑘(𝑥) +

𝑘∑︁
𝑟=0

𝑌𝑟(𝑥)𝑌𝑘−𝑟(𝑥)

)︃
+

1

(𝑘 + 1)(𝑘 + 2)

(︀
−2𝑥𝛿(𝑘 − 1)− 4𝑥2𝛿(𝑘 − 2)

)︀
. (4.20)

From the initial condition (4.19) we get 𝑌0(𝑥) = 0.

Now, by using 𝑌0(𝑥) = 0 and (4.20) we obtain

𝑌1(𝑥) = 2𝑥,

𝑌2(𝑥) = 0,

𝑌3(𝑥) = 0,

...

Hence, we can write the solution as

𝑦(𝑥, 𝑡) =
∞∑︁
𝑘=0

𝑌𝑘(𝑥)𝑡
𝑘,

= 2𝑥𝑡.

Which is the exact solution.

For more examples refer to [16, 30, 32, 44].



88 Chapter 4. DTM for partial differential equations

4.3 The LDTM

In this section, we present the LDTM for solving partial differential equations. This

modification joint the Laplace transform with DTM to handel the deficiency come

from the unsatisfied boundary conditions in using DTM. An example is given to

illustrate this modification. For more examples see [5, 34].

Consider the partial differential equation of the form

𝑦𝑡𝑡(𝑥, 𝑡) + 𝑎0(𝑥)𝑦(𝑥, 𝑡) + 𝑎1(𝑥)𝑦𝑥(𝑥, 𝑡) + 𝑎2(𝑥)𝑦𝑥𝑥(𝑥, 𝑡) = 𝑓(𝑥, 𝑡), (4.21)

with initial conditions

𝑦(𝑥, 0) = 𝑔1(𝑥), 𝑦𝑡(𝑥, 0) = 𝑔2(𝑥), (4.22)

and boundary conditions

𝑦(0, 𝑡) = ℎ1(𝑡), 𝑦𝑥(0, 𝑡) = ℎ2(𝑡). (4.23)

To solve this problem by using LDTM we follow the next steps:

� Apply the Laplace transform with respect to 𝑡 on (4.21) we have

ℒ{𝑦𝑡𝑡(𝑥, 𝑡) + 𝑎0(𝑥)𝑦(𝑥, 𝑡) + 𝑎1(𝑥)𝑦𝑥(𝑥, 𝑡) + 𝑎2(𝑥)𝑦𝑥𝑥(𝑥, 𝑡)} = ℒ{𝑓(𝑥, 𝑡)},

which equals∫︁ ∞

0

𝑒−𝑠𝑡(𝑦𝑡𝑡(𝑥, 𝑡) + 𝑎0(𝑥)𝑦(𝑥, 𝑡) + 𝑎1(𝑥)𝑦𝑥(𝑥, 𝑡) + 𝑎+ 2(𝑥)𝑦𝑥𝑥(𝑥, 𝑡))𝑑𝑡

=

∫︁ ∞

0

𝑒−𝑠𝑡𝑓(𝑥, 𝑡)𝑑𝑡,
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after integrating we have

𝑠2𝑦*(𝑥, 𝑠)− 𝑠𝑦(𝑥, 0)− 𝑦𝑡(𝑥, 0) + 𝑎0(𝑥)𝑦
*(𝑥, 𝑠) + 𝑎1(𝑥)

𝑑

𝑑𝑥
𝑦*(𝑥, 𝑠)

+ 𝑎2(𝑥)
𝑑2

𝑑𝑥2
𝑦*(𝑥, 𝑠) = 𝑓 *(𝑥, 𝑠),

where 𝑦*(𝑥, 𝑠) = ℒ{𝑦(𝑥, 𝑡)}.

Now, by using (4.22) we obtain

𝑠2𝑦*(𝑥, 𝑠)− 𝑠𝑔1(𝑥)− 𝑔2(𝑥) + 𝑎0(𝑥)𝑦
*(𝑥, 𝑠) + 𝑎1(𝑥)

𝑑

𝑑𝑥
𝑦*(𝑥, 𝑠)

+ 𝑎2(𝑥)
𝑑2

𝑑𝑥2
𝑦*(𝑥, 𝑠) = 𝑓 *(𝑥, 𝑠). (4.24)

Also, we Apply the Laplace transform with respect to 𝑡 on (4.23), then the

boundary conditions become

𝑦*(0, 𝑠) = ℎ*
1(𝑠), 𝑦*𝑥(0, 𝑠) = ℎ*

2(𝑠). (4.25)

Hence, we get an initial value problem for ordinary differential equation.

� Apply the DTM on (4.24) and (4.25) to get the following solution

𝑦*(𝑥, 𝑠) =
∞∑︁
𝑘=0

𝑌 (𝑘)𝑥𝑘. (4.26)

� Take the inverse Laplace transform of (4.26) to get 𝑦(𝑥, 𝑡).

Now, we apply this modification on an example.

Example 4.5. Consider the following partial differential equation

𝑦𝑡𝑡(𝑥, 𝑡)− 𝑦𝑥𝑥(𝑥, 𝑡) = 𝛼𝑡𝑒𝑥, 𝑥, 𝑡 > 0 (4.27)
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subject to
𝑦(𝑥, 0) = 𝑏 cos𝑥, 𝑦𝑡(𝑥, 0) = 0, (4.28)

𝑦(0, 𝑡) = 𝛼(sinh 𝑡− 𝑡) + 𝑏 cos 𝑡, 𝑦𝑥(0, 𝑡) = 𝛼(sinh 𝑡− 𝑡). (4.29)

Solution. By applying the Laplace transform on (4.27) and by using (4.28) we get

𝑠2𝑦*(𝑥, 𝑠)− 𝑠𝑦(𝑥, 0)− 𝑦𝑡(𝑥, 0)−
𝑑2

𝑑𝑥2
𝑦*(𝑥, 𝑠) =

𝛼𝑒𝑥

𝑠2
,

or

𝑠2𝑦*(𝑥, 𝑠)− 𝑠𝑏 cos𝑥− 𝑑2

𝑑𝑥2
𝑦*(𝑥, 𝑠) =

𝛼𝑒𝑥

𝑠2
, (4.30)

also, by applying the Laplace transform on (4.29) we get

𝑦*(0, 𝑠) = 𝛼

(︂
1

𝑠2 − 1
− 1

𝑠2

)︂
+ 𝑏

𝑠

𝑠2 + 1
, 𝑦*𝑥(0, 𝑠) = 𝛼

(︂
1

𝑠2 − 1
− 1

𝑠2

)︂
. (4.31)

Now, apply the DTM on (4.30) to obtain the following relation

𝑠2𝑌 (𝑘)− 𝑏𝑠
𝑑𝑘 cos𝑥

𝑑𝑥𝑘
|𝑥=0 − (𝑘 + 1)(𝑘 + 2)𝑌 (𝑘 + 2) =

𝛼

𝑘!𝑠2
,

or

𝑌 (𝑘 + 2) =
− 𝛼

𝑘!𝑠2
+ 𝑠2𝑌 (𝑘)− 𝑏𝑠𝑑𝑘 cos𝑥

𝑑𝑥𝑘 |𝑥=0

(𝑘 + 1)(𝑘 + 2)
, (4.32)

also, on (4.31) to get

𝑌 (0) = 𝛼

(︂
1

𝑠2 − 1
− 1

𝑠2

)︂
+ 𝑏

𝑠

𝑠2 + 1
, 𝑌 (1) = 𝛼

(︂
1

𝑠2 − 1
− 1

𝑠2

)︂
. (4.33)

By using (4.32) and (4.33) we obtain the following

𝑌 (2) =
𝛼

2

1

𝑠2 − 1
− 𝑏

2

𝑠

𝑠2 + 1
− 𝛼

2𝑠2
,

𝑌 (3) =
𝛼

6

1

𝑠2 − 1
− 𝛼

6𝑠2
,

𝑌 (4) =
𝛼

24

1

𝑠2 − 1
+

𝑏

24

𝑠

𝑠2 + 1
− 𝛼

24𝑠2
.

...
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Thus,

𝑦*(𝑥, 𝑠) =
∞∑︁
𝑘=0

𝑌 (𝑘)𝑥𝑘,

= 𝛼

(︂
1

𝑠2 − 1
− 1

𝑠2

)︂
+ 𝑏

𝑠

𝑠2 + 1
+ 𝛼

(︂
1

𝑠2 − 1
− 1

𝑠2

)︂
𝑥

+

(︂
𝛼

2

1

𝑠2 − 1
− 𝑏

2

𝑠

𝑠2 + 1
− 𝛼

2𝑠2

)︂
𝑥2

+

(︂
𝛼

6

1

𝑠2 − 1
− 𝛼

6𝑠2

)︂
𝑥3

+

(︂
𝛼

24

1

𝑠2 − 1
+

𝑏

24

𝑠

𝑠2 + 1
− 𝛼

24𝑠2

)︂
𝑥4

+ ...

Hence,

𝑦(𝑥, 𝑡) = ℒ−1{𝑦*(𝑥, 𝑠)},

= 𝛼(sinh 𝑡− 𝑡) + 𝑏 cos 𝑡+ (𝛼 sinh 𝑡− 𝛼𝑡)𝑥+ (
𝛼

2
sinh 𝑡− 𝑏

2
cos 𝑡− 𝛼

2
𝑡)𝑥2

+ (
𝛼

6
sinh 𝑡− 𝛼

6
𝑡)𝑥3 + (

𝛼

24
sinh 𝑡+

𝑏

24
cos 𝑡− 𝛼

24
𝑡)𝑥4 + ...,

or

𝑦(𝑥, 𝑡) = 𝛼 sinh 𝑡(1 + 𝑥+
𝑥2

2
+

𝑥3

6
+

𝑥4

24
+ ...)

+ 𝑏 cos 𝑡(1− 𝑥2

2
+

𝑥4

24
+ ...)

− 𝛼𝑡(1 + 𝑥+
𝑥2

2
+

𝑥3

6
+

𝑥4

24
+ ...),

so

𝑦(𝑥, 𝑡) = 𝛼𝑒𝑥 sinh 𝑡+ 𝑏 cos 𝑡 cos𝑥− 𝛼𝑡𝑒𝑥.

Which is the exact solution.
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