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Abstract

In this thesis, we study the main well known results in graph theory. In particular, we study

many formulation and properties of finite simple graphs through their matrix representation

such as incidence and adjacency matrix, etc.

In addition, we compute the spectral of adjacency, Laplacian, and antiadjecency matrices of

some special graphs.

Furthermore, we compare the largest eigenvalue of antiadjecency matrices that is constructed

by some Boolean operations.



Introduction

In the eighteen century the The Königsberg bridge problem is the start of graph theory.

The Königsberg bridge originated in Königsberg, formally in Germany, now known as Kalin-

ingrad and it’s a part of Russia, the city had seven bridges, which connected two islands with

the main land by these bridges, on every Sunday afternoon the citizens in this city always

wondered whether was there any way to walk on all bridges once and only once. See figure 1.

Figure 1: The old town of Königsberg has seven bridges

Since no citizen could achieve this puzzle. In 1736 Euler come out with the solution, first

he draw a graph consisting of a node that represented the landmass and lines represented

brigades that connected the mass. See figure 2.

After that problem, graph theory developed rapidly by using many techniques and strate-

gies for solving various problems and applications in different fields.

The material of this thesis lies in four chapters, each contains basic definitions, examples

and important Theorems.
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Figure 2

Chapter one: In this chapter we begin with basic definitions and some basic theorems

needed in this work. It contains five sections. Section-1 contains the definition of undirected

graph and we present many types of graphs and examples. In section-2, we give some unary

and binary operations on graphs and cuts of edge and vertex. In section-3, we give the

definition of isomorphic graphs. In section-4, we present the directed graph and it’s related

concepts. In section-5, we display the definition of tree and other related concepts, such as

fundamental circuit and fundamental cut.

Chapter two: In this chapter we study the graph by using it’s representation incidence

matrix and other related matrices . It contains four sections. Section-1, contains the defini-

tion of incidence matrix of directed and undirected graph and some properties of this matrix

. In section-2, we define the rank and compute the determinant of directed and undirected

graphs. In section-3, we display the Moore-Penrose inverse to show a result on connected

graphs. In section-4, we define the circuit and cut matrices and other related matrices.

Chapter three: In this chapter we study the graph by using another type of matrix

representations such as adjecency matrix, Laplacian and antiadjecncy matrices. It contains

2



four sections. Section-1, contains the definition of adjecency matrix of graphs and some prop-

erties of these matrices, we use this matrix to compute the number of walks that have the

length k, also we characterize the the isomorphic graphs and finally we find it’s determinant

of such matrices. Section-2, contains the definition of Laplacian matrix of graphs and some

properties of this matrix and it’s relation with the incidence matrix. Section-3, contains the

definition of antiadjecency matrix of graphs and some related results. In section-4, we study

the Boolean operations and their adjacency and antiadjecency matrices.

Chapter four: In this chapter we study the spectral of graphs which is a useful way

to study their properties. It consists of four sections. Section-1, contains the characteristic

polynomial of adjacency matrix and some basic properties of it’s spectral, also we display

some type of graphs and their spectral properties. Section-2, contains some basic properties

of spectral of laplacian matrix. Section-3, contains some results on comparing the largest

eigenvalue of antiadjecency matrices resulted by Boolean operations. Section-4, contains the

Page rank application of spectral properties of link matrix.
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Chapter 1

Fundamentals of graph theory

This chapter is devoted to listing some definitions and results that will be used in succeeding

chapters. It is not intended to be an exhaustive study of any topic nor it is a complete list of

all of the facts which will be used in later chapters. Instead, it is intended to be a collection

of those results which will play important roles in what follows.

1.1 Definitions and Basic concepts

This section describes the graph in mathematics, we give the definition and description of

undirected graph and discuss some examples .

An undirected graph G=(V,E) is a collection of vertices (nodes, or points) that are

connected by edges (lines). G consists of a set of vertices V={v1, v2, ..., vn} and another set

of edge E ={e1, e2, ..., em}, a graph with at least two vertices is called a nontrivial graph.

Each edge ek in the set E is defined with unorderd pairs (vi,vj) of vertices. The vertices vi

and vj are called the end vertices of ek .

In Figure 1.1 an edge e3=(v3,v2) has v3 and v2 as end vertices, e3 and e5 share common

edge vertex and are called adjacent. Two vertices vi and vj are adjacent if there exist an

edge (vi,vj) that connect them. For example in figure 1.1 v3 and v4 are adjacent, an edge ek
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v3 v4

v2 v1

e1

e2
e3

e5
e4

Figure 1.1

is called self loop if it has the same vertex as both end vertex. If more than one edge have

the same pair of end vertices then these edges are called parallel in figure 1.1 for example

e1 and e2 are parallel.

Definition 1.1.1 Let G=(V,E) be undirected graph with vertex set V={v1, v2, ..., vn}, the

degree of a vertex v ε V, is the number of edges for which v is an end vertex, denoted

deg(v)or d(v).

The maximum degree of a graph G, denoted by ∆ (G) and the minimum degree of a

graph G denoted by δ (G) are defined as follows the maximum degree of G is the largest

vertex degree of G, and the minimum degree of G is the smallest vertex degree of G, for

example in figure 1.1 the maximum degree is 4 of vertex v2 and the minimum degree is 1 for

vertex v1. A vertex whose degree is 1 is called pendent vertex, also a vertex whose degree is

zero is called isolated vertex. For example in figure 1.1 it doesn’t has an isolated vertex but

it has v1 as a pendent vertex.

Theorem 1.1.1 [23] If G=(V,E) is an undirected graph with V= {v1, v2, ..., vn}and E ={e1, e2, ..., em},

then ∑n
i=1 d(vi) = 2m

5



Proof

Since the degree of a vertex v of a graph G=(V, E) is the number of edges for which v is an

end vertex. Let e=(vi,vj) be any edge of G, then e has two end vertices vi and vj, when we

sum the degrees of vertices, edge e get counted twice (once with end vertex vi and once with

end vertex vj). Thus the sum of degrees equal twice the number of edges. �

Corollary 1.1.1 [23] Every undirected graph with an even number of vertices is of odd

degree .

Proof

Let G=(V,E) be any graph with n vertices andm number of edges. If the vertices {v1, v2, ..., vk}

have odd degree and the vertices {vk+1, vk+2, ..., vn} have even degree Then by theorem 1.1.1∑n
i=1 d(vi) = 2m, that is

k∑
i=1

d(vi)u
n∑

i=k+1

d(vi) = 2m

therefore

k∑
i=1

d(vi) + (even number) = (even number)

k∑
i=1

d(vi) = (even number)

Here each d(vi) is odd number. So the number of odd degree vertices is always even.

Example 1.1.1 Consider the undirected graph G(V,E), G has a set of vertices {v1, v2, v3, v4, v5}

d(v1)=3, d(v2)=2, d(v3)=2, d(v4)=1 and d(v5)=0, Since d(v1)=3 and d(v4)=1 . Thus

the number of vertices that has an odd degree is even number.

Definition 1.1.2 A graph G(V,E) is said to be regular if all it’s vertices have the same

degree, if the degree of each vertex of G is k then G is said to be k-regular.
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v2 v1

v5

v3
v4

Figure 1.2

A subgraph of a graph G is a graph whose vertices and edges are contained in G. That

is if G is a graph with set of vertices V={v1, v2, ..., vn} and a set of edges E ={e1, e2, ..., em}

and H is a graph with set of vertices V={v1, v2, ..., vk} such that V(H)⊂ V(G) and E(H)⊂

E(G) then H is called a subgrah of G and G is called supergraph of H.

Definition 1.1.3 If V(H)=V(G) then H is called a spanning subgraph of G otherwise H is

called proper subgraph.

consider the graph G in figure 1.3

Figure 1.3

G has five vertices and it has a spanning subgraph S, it also has a proper subgraph H.

Definition 1.1.4 Let v be a vertex in a graph G then the open neighbourhood of v in G is

NG(v) = {u|e = (u, v) ∈ E(G)}

Also the closed neighbourhood of v is NG[v] = NG(v) ∪ {v}
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For example, in figure 1.1 N(v3)={v4, v2}, and N[v3]={v4, v2, v3}.

Definition 1.1.5 let G=(V,E) be any undirected graph and let V1 ⊂ V be any subset of

vertices in G. Then the induced subgraph G[ V1 ] is the graph whose edges set consists of all

edges between the vertices in V.

For example, the graph G[v1,v2,v3] in figure 1.4a is an induced subgraph of figure 1.1 .

v3

v2 v1

e3

e5
e4

(a) A vertex induced subgraph

v3 v4

v2

e2
e3

e4

(b) An edge induced subgraph

Figure 1.4: A subgraph of a graph G

Definition 1.1.6 let G=(V,E) be any graph and let E1 ⊂ E by any subset of edges of G.

Then the induced subgraph G[E1] is the graph which consists all vertices that are their end

points .

For example, the graph G[e2,e3,e4] in figure 1.4b is an induced edge subgraph of the graph

G in figure 1.1.

Definition 1.1.7 A walk in a graph G is a finite sequence v1e1v2...vk of graph vertices vi

and graph edges ei for 1 ≤ i ≤ k, where ei=(vi,vi+1) .

The walk vi-vk with an initial vertex vi and a terminal vertex vk is called vi-vk walk, with

length is the number of edges.
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Note 1.1.1 If the initial vertex and the terminal vertex are different then vi-vk walk is an

open walk, otherwise it is a called a closed walk.

Definition 1.1.8 A trail is a walk v1e1v2, ...vk with no repeated edges.

Definition 1.1.9 A trail with distinct vertices except possibly the initial and terminal ver-

tices when they are the same is called a path .

Definition 1.1.10 A closed path is called a circuit.

Note 1.1.2 If a graph G doesn’t have a circuit it is called circuitless graph.

v1 v2

v4
v3e3

e5 e2e1

e4

Figure 1.5: A graph for walks

Example 1.1.2 The graph in figure 1.5 contains many different walks, for example :

• The walk v1e1v3e2v2 is an open walk .

• The walk v1e1v3e4v4e5v1 is a closed walk also it is a trail with length 3.

• The walk v3e4v4e5v1 is a path but not a circuit .

• The walk v3e4v4e5v1e1v3 is a circuit.

The connectivity is an important concept in graph theory. Two vertices viand vj are called

connected if there is path vi-vj.

Definition 1.1.11 A graph G=(V,E) is connected if any pair of vertices are joined by at

least one path, otherwise the graph is called disconnected.

9



v1 v2

v3

v4
v5

(a) connected graph

v1 v2

v3 v6

v4
v5

(b) disconnected graph

Figure 1.6

For example, the graph in figure 1.6a is connected whereas the graph in figure 1.6b is dis-

connected.

Definition 1.1.12 A simple graph is a graph with no self loops and no parallel edges.

Definition 1.1.13 [7] A simple graph in which there exist an edge between every pair of

vertices is called a complete graph

A complete graph with n vertices is denoted by Kn. The graph of the first five complete

graphs are given in figure 1.7

Figure 1.7: Some complete graph

Remark 1.1.1 1. Kn has exactly n(n−1)
2

edges.

2. A complete graph Kn is a regular graph of degree n-1.

10



Definition 1.1.14 let G=(V,E) be any graph, then a complete subgraph of G is called a

clique graph .

For example in figure 1.8 the graph G with set of vertices V={v1, v2, v3, v4, v5} have a com-

plete subgraph with set of vertices V={v1, v2, v3}, so it’s a clique of G.

v1

v2 v5 v2

v3 v4
v3 v1

Figure 1.8: A graph with clique subgraph

Definition 1.1.15 A set V is a partitioned into k nonempty subsets V1, V2, ..., Vk if V1∪ V2∪

V3...∪ Vk= V and Vi∩ Vj = ∅, ∀i 6= j.

Definition 1.1.16 A graph G=(V,E) is said to be bipartite if it’s vertex set can be parti-

tioned into different sets V1 and V2 with V1 ∪ V2 = V and V1, V2 6= ∅ also V1 ∩ V2 = ∅ such

that every edge in E have an end vertex in V1 and another one in V2 .

Definition 1.1.17 A complete bipartite graph G=(V,E) is a bipartite graph that contains

all possible edges that have one end point in V1 and the other one in V2, we denote it by

Kn1,n2 where n1, n2 are the number of vertices in V1, V2 respectively .

Figure 1.9 display a bipartite graph with a complete bipartite graph

11



v3 v3

v1 v4 v1 v4

v2 v5
v2 v5

G K2,3

Figure 1.9: A bipartite graph

Definition 1.1.18 A component of a graph G=(V,E) is the maximal connected subgraph,

where maximality condition means that a subgraph H ⊆ G is a connected subgraph and for

any v ∈V(G), v /∈ V(H), G[V (H) ∪ {v}] is disconnected

The only component of a connected graph is the graph itself, moreover the components of a

nonconnected graph are all pieces it contains.

Example 1.1.3 In figure 1.10 the graph G have six vertices which is disconnected graph, it

has two components H and S (isolated vertex ).

Figure 1.10: A graph with its components

Since V (H) ∩ V (S) = ∅ and V (H) ∪ V (S) = V (G).

Definition 1.1.19 The nullity of a graph G=(V,E) with n vertices, m edges and k compo-

nents is the nonnegative integer µ (G)=m-n+k .

12



Definition 1.1.20 The rank of a graph G=(V,E) with n vertices, m edges and k components

is the nonnegative integer ρ (G)=n-k .

It is easy to see that µ (G)+ ρ (G)=m.

In figure 1.11 we have five edges, four vertices and two components then ρ (G)=4-2=2,

and µ (G)=5-4+2=3.

v1 v2

v4 v3

Figure 1.11

Definition 1.1.21 Let v1 and v2 be two vertices in a graph G, the distance between two

vertices is the length of a shortest path from v1 to v2 in G and is denoted d(v1, v2). If G is

disconnected and v1 and v2 in different components we say d(v1, v2) =∞.

Definition 1.1.22 The eccentricity of a vertex v in a graph G=(V,E) is the maximum dis-

tance between v and any other vertex in G, denoted by e(v) (i.e e(v) = max {d(v, vj)|vj ∈ V (G)}).

Definition 1.1.23 Let G=(V,E) be a graph with eccentricity e(v), the diameter of G is the

maximum eccentricity of G, denoted by diam(G)=max{e(v)|v ∈ V (G)}.

Definition 1.1.24 Let G=(V,E) is a graph with eccentricity e(v), the radius of G is the

minimum eccentricity of G, denoted by rad(G)= min{e(v)|v ∈ V (G)}.

Example 1.1.4 For the graph G in the figure 1.12 with set vertex {v1, v2, v3, v4, v5}, we can

obtain:

13



v1

v2 v5

v3 v4

Figure 1.12

• The distance d(v1, v4)=3 .

• The eccentricity e(v) of a vertex in graph G is 3, 2, 2, 3 and 2 respectively .

• The diameter of G = max{e(v)|v ∈ V (G)}=3.

• The radius= min{e(v)|v ∈ V (G)}=2 .

Theorem 1.1.2 [27] In any connected graph G

rad(G)≤ diam(G)≤ 2 rad(G)

Proof

By definition diam(G) equal the maximum distance between two vertices in G say u and v,

so d(u,v)=diam(G) and say w is a vertex for which e(w)=rad(G). Since rad(G) is distance

between two vertices, necessarily rad(G)≤ diam(G). Now

diam(G) = d(u, v)

≤ d(u,w) + d(w, v)

= 2 e(w)

= 2 rad(G)

�
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1.2 Graph operations and cuts

In this section we consider two types of operations on graphs and display the cut idea.

1.2.1 Operations on graphs

We consider some operations on graph. It will produce a new graph from the original by

applying operations such as union, intersection, etc. These operations are categorized as

unary which creates new graphs from an old one and binary operations create new graphs

from two initial graphs.

We have three unary operations on a graph as follows :

1. Let G=(V,E) be a graph and vi be any vertex in V(G), then the operation that obtained

by removing vi is an induce subgraph of V − vi is called the removal of a vertex.

2. Let G=(V,E) be a graph and ei = (vi, vj) be any edge in E(G), then the operation that

obtained by removing ei an induce subgraph of E−ei is called the removal of an edge.

Example 1.2.1 let G=(V,E) be a graph with set vertex {v1, v2, v3, v4} and set of edges

{e1, e2, e3, e4}

the following figure show examples of a graph G with removal of vertex v5 also with

removal of edge e4 respectively.

15



v2 v4

v1 v3 v5

G

v2 v4

v1 v3

G-v5

v2 v4

v1 v3 v5

G-e4

e2 e3
e4

e5

e6

e1

e2 e3
e4

e1

e2 e3

e5

e6

e1

Figure 1.13

3. A complement of a simple graph G=(V,E) is a graph having the same set of vertex but

it has a complement edge of G. In multigraph ( i.e graph that has a parallel edge) the

complement is not defined, also in a graph that is not multigraph but has self loops

it’s complement is defined by adding a self loop of every vertex that does not have the

self loop. One example of complement graph G is given below.

v1 v2

v3 v4

G

v1 v2

v3 v4

Ḡ

Figure 1.14: A graph with it’s complement

Definition 1.2.1 Two graphs are said to be vertex disjoint if they have no common vertices,

and to be edge disjoint if they have no common edges.

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs, then we define three different binary

operations on G1 and G2 as follow :

16



1. The union of any two graphs G1 = (V1, E1) and G2 = (V2, E2) is the new graph

G=(V1 ∪ V2,E1 ∪ E2). If G1 and G2 are disjoint, then we write their union G1+G2 as

vertex set as V1+V2 and the edge set as E1+E2 and the edges joining each vertex of

V1 with each vertex V2, one example of Union of two joint graphs in figure 1.15, also

the Union of disjoint graphs in fig 1.16.

v1 v2

v5

v3 v4

G1

v2

v5

v4

G2

v1 v2

v5

v3 v4

G1∪ G2

Figure 1.15: A union of joint graph

v1

v2

G1

v3

v4

v5

G2

v3

v1 v4

v2 v5

G1+G2

Figure 1.16: A union of disjoint graphs

2. The intersection of any two graphs G1 = (V1, E1) and G2 = (V2, E2) is a new graph

G=(V1 ∩ V2 , E1 ∩ E2). If G1 and G2 are edge disjoint then their intersection is a

null graph (i.e a graph with no vertices) , however if the vertex sets are disjoint then

their intersection is the empty graph (i.e a graph with no edges). One example of

17



intersection of two joint graph operation in figure 1.17.

v1 v2

v5

v3 v4

G1

v2

v5

v4

G2

v2

v5

v4

G1∩ G2

Figure 1.17: A intersection operation of graph

3. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs, their ring sum denoted by

G1

⊕
G2 is defined by G=(V,E) where the set vertex V=V1 ∪ V2 and the set of edges

E = (E1 ∪ E2)− (E1 ∩ E2).

v1 v2

v5

v3 v4

G1

v2

v5

v4

G2

v1 v2

v5

v3 v4

G1

⊕
G2

Figure 1.18: A ring sum operation of graph

Although union and intersection and ring sum have been defined for two graphs these

can be extended to any finite number of graphs.
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1.2.2 Cut on graphs

In this section we define a cut vertex, cut edge and blocks, and display some theorems on

cuts.

Definition 1.2.2 A vertex v ∈ V (G) is called cut-vertex if G-v4has more connected compo-

nents than G, i.e (k(G-v)>k(G))

For example v4 is a cut vertex in figure 1.19, since G-v4 has two components an isolated

vertex 2 and a subgraph with set of vertices {v1, v3, v5}, v4 is not the only cut vertex in G,

also v3 is cut vertex.

v1 v3 v1 v3

v2 v4
v5 v2 v5

Figure 1.19: A cut vertex example

Definition 1.2.3 An edge e ∈ E(G) is called cut edge (bridge) if G-e has more connected

components than G, i.e (k(G-e)>k(G)) .

For example e1 is a bridge in figure 1.20, since G-e1 has two components. Notice that e2 is

another bridge.

v1 v3 v1 v3

v2 v4
v5 v2 v4 v5

e1

e2 e4

e3 e5

e2 e4

e3 e5

Figure 1.20: A cut edge example
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Note 1.2.1 The only connected graph with a bridge but with no cut vertex is K2.

Definition 1.2.4 A nontrivial connected graph is called non separable if it has no cut vertex.

Otherwise it is called separable.

The graph G in figure 1.19 is separable .

Definition 1.2.5 A block is a maximal non separable subgraph. In other words a block is a

subgraph with as many edges as possible and no cut vertex.

In figure 1.21 the graph G has two cut vertices, v3 and v4 and it has three blocks .

v1 v3 v1 v3 v3

v2 v4
v5 v4 v5

v2 v4

Figure 1.21: A graph and its blocks graph

We have the following two results about cut vertex.

Theorem 1.2.1 [26] A vertex v is cut vertex of a connected graph G if and only if there

exist two vertices u and w distinct from v such that v lies in every u-w path.

Proof :

Assume G=(V,E) be a connected graph, and let v∈ V(G) be a cut vertex, we will prove that

v is on every u-w path of G. So if v is a cut vertex then G-v is disconnected, also it has at

least two components say G1 that contains u and G2 that contains w, so there does not exist

any u-w path in G-v. But G is connected, thus all such u-w paths went through vertex v.

Assume there exist u, w ∈ V(G) and u,w 6= v such that v lies on every u-w path. We will

prove that v is cut vertex. Then the vertices u and w are not connected in G-v. Thus the

graph G-v is not connected. Hence by definition 1.2.2 v is a cut vertex. �
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Theorem 1.2.2 [5] In a connected graph G=(V,E) with at least two vertices, G contains at

least two vertices that are not cut vertices.

Proof :

To the contrary, there exist a non trivial connected graph G with at most one non cut vertex.

Let u,v be two vertices in G with d(v,u)=diam(G). At least one of u,v is a cut vertex say v,

so G-v is disconnected graph, and let w be a vertex in a different component of G-v than u,

then every u-w path contains v. Hence

d (u,w) > d (u, v) = dim (G)

Contradiction. �

1.3 Isomorphic graphs

Definition 1.3.1 Two graphs G1=(V1,E1) and G2=(V2,E2) are said to be isomorphic if

there exist a bijection function f:V1 → V2, so that for any two vertices u and v the number

of edges connecting u to v is the same number of edges connecting f(u) to f(v).

Remark 1.3.1 To find an isomorphism f:V1 → V2, we must maintain the adjacency and

non adjacency between vertices. In other words if u and v are adjacent in G then f(u) and

f(v) are adjacent.

Example 1.3.1 let G1 and G2 be the two graphs in figure 1.22. To prove that the two graphs

are isomorphic we will find a bijection f:V1 → V2. Let

f=

v1 v2 v3 v4 v5

3 4 1 2 5

, then f is a bijection such that for every two vertices u and v in

G1 the number of edges connecting u,v is the same number of edges connecting f(u) to f(v).
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v1 v2 1 2

v5

v4
v3 4 3

5

Figure 1.22: The graphs are isomorphic

Note 1.3.1 If the two graph are isomorphic then they must have

• The same number of vertices.

• The same number of edges.

• The same degree for corresponding vertices.

• The same number of connected components .

• The same number of loops.

Using the previous point of common characteristics between isomorphic graphs, it easy to

prove the graphs are not isomorphic if any one fails, however we have seen that even if all

these characteristics are satisfied but the graphs are not isomorphic. In figure 1.23 we can

prove the two graphs satisfies the common characteristics but they are not isomorphic.

The graphs do not have the same number of adjacent vertices so we can’t find a bijection

that satisfies the condition that every two vertices u and v in G1 have the number of edges

as that of from f(u) to f(v).
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v1
v2 2

1 3

v5 v6

8 4

v7 v8

7
5

v4
v3

6

Figure 1.23: The graphs are not isomorphic

Theorem 1.3.1 If G1 is not simple graph and G2 is a simple graph then G1 and G2 are not

isomorphic.

Proof :

To the contrary, suppose that there exists a bijection f:V1 → V2 that gives G1 and G2 are

isomorphic. We have two cases :

First suppose G1 has a loop at any vertex say v then G2 must have a loop at f(v). But G2

is simple graph, a contradiction.

Suppose G1 has a multiple edge between any two vertices say v and u, then there must exists

a multiple edge between f(v) and f(u) in G2, but G2 is simple, so it does not have a multiple

edge, a contradiction. �

1.4 Directed graphs

In the last three sections we display several basic results in the theory of undirected graphs.

Undirected graphs are not sufficient for representing several situation. For example, the

streets map of a city, an electrical network is another example of a physical system whose

representation requires a directed graph and there is a lot of other applications. In this
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section we define a graph with notation of directed edge (arc) and display some definitions

and results in the theory of directed graphs.

Definition 1.4.1 A graph G=(V,E) with a set vertex V={v1, v2, ..., vn} and a set of edge

(arcs) E={e1, e2, ..., em} is called directed graph or (digraph) if each edge ek is an ordered

pair (vi,vj).

Figure 1.24a contains an example of a directed graph. Notice that the arc e1=(v4,v3) have

v4 is an initial vertex and v3 as a terminal vertex, we can’t say e1 and e2 parallel because

they have a different direction. The vertices u and v in G is called adjecent vertices if there

exist a path from u to v, so v2 and v3 are adjacent vertices, also e5 and e3 are adjacent edges.

v3 v4

v2 v1

e1

e2
e3

e5
e4

(a) A directed graph

v3 v4

v2 v1

e1

e2
e3

e5
e4

(b) underlying graph

Figure 1.24: Digraph G and its underlying graph

Definition 1.4.2 let G=(V,E) be a directed graph if replacing every arc in G by an undi-

rected edge then G is said to be underlying graph .

Figure 1.24 represents a graph G and it’s underlying graph.

Definition 1.4.3 Let G=(V,E) be a graph, if there is a digraph H such that G is underlying

graph of H then H is called an orientation of the graph G.
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v1 v1 v1

v2 v3
v2 v3 v2 v3

Figure 1.25: The graph G with two different orientations

Definition 1.4.4 An in-degree of a vertex v in a graph G is the number of arcs whose

terminal vertex is v and is denoted by deg−(v) or d−(v), also an out-degree of v is the

number of arcs whose initial vertex is v, denoted by deg+(v) or d+(v).

Definition 1.4.5 Let G=(V,E) be a graph with a set vertex V={v1, v2, ..., vn} and a set of

arcs E={e1, e2, ..., em}, the degree of a vertex v ∈V is the sum of out-degree and in-degree of

a vertex v.

For example, the out-degree and in-degree of the four vertices of the digraph shown in

figure 1.24a as follows

d−(v1) = 0 d−(v2) = 2 d−(v3) = 2 d−(v4) = 1

d+(v1) = 1 d+(v2) = 2 d+(v3) = 1 d+(v4) = 1

Theorem 1.4.1 The sum of in-degree of all vertices in a directed graph is equal to the sum

of the out-degree of all vertices.

Definition 1.4.6 Let v be a vertex in a digraph G then the in-neighborhood of v denoted

by N−G (v), is N−G (v) = {u|uv ∈ E(G)}, and the out-neighborhood is denoted by N+
G (v), is

N+
G (v) = {u|vu ∈ E(G)} .

A digraph H is a subdigraph of a digraph G if V(H)⊂ V(G) and E(H)⊂ E(G). Figure 1.26

is an example of a subdigraph of graph G in figure 1.24a
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v3 v4

e1

e2

Figure 1.26: A subdigrph of graph G

The walk, path, trail and circuit involving in a directed graph are defined exactly the

same way as in the case of undirected graph .

For example, in the digraph shown in figure 1.24a

• The walk v1e5v2e3v3 is an open walk .

• The walk v4e1v3e2v4 is a closed walk also it is a trail with length 2 and it is a circuit.

A digraph is connected if the underlying graph is connected, also the component of a digraph

G is a subdigraph of G that corresponds to the component of the underlying graph.

Definition 1.4.7 Let G=(V,E) be a digraph, G is strongly connected if between every two

vertices say u and v, there exist a directed u-v path and also a directed v-u path in G.

Definition 1.4.8 let G=(V,E) be a digraph, G is said to be weakly connected if the under-

lying graph is connected but not strongly connected.

Definition 1.4.9 A digraph G=(V,E) is quasi-strongly connected if there is at least one

vertex say v in G such that there exist a path from v to all the remaining vertices in G.

Every strongly connected digraphs are is connected, but connected digraphs are not

necessarily strongly connected, for example, in figure 1.27a a connected graph G is not

strongly connected since there is no path from v4 to v2, from v4to v1 and from v4 to v3.

Every quasi-strongly connected graph is connected, but a quasi-strongly connected graph is

not necessarily strongly connected, for example in figure 1.27b the quasi-strongly connected

G is not strongly connected because there is no path from v3 to v1.
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v4 v2

v3
v1

(a) connected graph

v1 v2

v3

(b) quasi-strongly connected

Figure 1.27

Union, intersection, ring sum and other operations involving directed graphs are defined

exactly by the same way as in the case of undirected graphs.

1.5 Tree, fundamental circuit and fundamental cut set

Among connected graphs, tree has a simple structure and is the most used in applications.

In this section we study tree, cut set and several results associated with them.

1.5.1 Tree

A graph G=(V,E) is said to be acyclic if it has no circuit. A tree is a connected acyclic graph

(forest). A connected subgraph of a tree is a subtree. Consider, for example, all graphs that

are shown in figure 1.28, they are all trees.

A spanning tree T of a connected graph G is a subtree, that includes all the vertices of

Figure 1.28
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that graph and a set of edges that makes it tree. For example the graph H in figure 1.29 is

a spanning tree of graph G.

The cospanning tree T∗ of a connected graph G is the subgraph of G having all vertices of

Figure 1.29

G and exactly those edges of G which are not in T. Note that a cospanning tree may not be

connected. For example, The graph S in figure 1.29 is a cospanning tree of the graph G .

The edges of a spanning tree T is called branch, and the other edge of corresponding cospan-

ning tree T∗ is called chord or links.

The following are two characterizations of a tree.

Theorem 1.5.1 [27] A connected graph is tree if and only if every edge is a bridge.

Proof :

Let G be a tree graph and let e=(u,w) is an edge in G, then the path u e w is the only path

between u and w. So deleting the edge e, the vertices u and w will not be connected, thus

in a tree every edge is a bridge.

Conversely, suppose G is a graph in which every edge in it is bridge, so G is connected.

Suppose G is not a tree, then there is at least one cycle C in G, let e in this cycle, so e can’t

be a bridge in G, so there is another path between u and w. This contradicts the hypothesis

that every edge is a bridge. Thus G is tree. �
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Theorem 1.5.2 [2] A connected graph with n vertices is a tree if and only if it has n-1

edges.

Proof :

Suppose G is a tree with n vertices, we will prove that G has n-1 edges by induction on n.

For n=1, the statement is true. Suppose it is true for all m, where 1 < m < n.

If we delete an edge e=(u,w) from G, so G becomes a disconnected graph with two compo-

nents G1=(V1,E1) and G2=(V2,E2), such that there is no common vertex between G1 and

G2.Thus the number of vertices in G1 and G2 is n1 and n2 respectively, so both G1 and G2

have the number of vertices less than n, the number of edges in both G1 and G2 together

is n1+n2-2=n-2 edges. Now if we connect the two graphs G1 and G2 by edge e, we get the

graph G. So G has ( n-2)+1=n-1 edges.

Conversely, let G be a connected graph with n vertices and n -1 edges. Suppose G is not

tree, so there is an edge e in G which is not a bridge. If we delete this edge we have a

connected subgraph G1=(V1,E1), Continue in this maner until we get a connected subgraph

G2=(V2,E2) in which every edge is a bridge. So it’s a tree with n vertices and it has n-1

edges, leading to a contradiction.

�

A digraph G=(V,E) is said to have root r if r∈ V and there is a directed path that starts in

r and ends in each v ∈V. A digraph is called directed tree if it has a root and it’s underlying

graph is a tree.

v1 v2

v3

Figure 1.30

For example, the graph in figure 1.30 has a root r=v1.
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It is clear that the graph has root r is a quasi strongly connected.

1.5.2 Fundamental circuit and fundamental cut

Let G be a connected graph with n vertices and m edges, and let T be a spanning tree with

n-1 branchs denoted by e1, . . ., en−1 and let the chords of the corresponding tree T∗ denoted

by e1, . . ., em−n+1. If we add an edge ei of T∗ to T, then T becomes a cyclic that contains

exactly one circuit say ci, where the circuit ci is called the fundamental circuit of the graph

G with respect to the chords of the spanning tree T. A fundamental set of circuits of the

graph G is the set of all the m-n+1 fundamental circuits c1, . . . , cm−n+1 of G with respect

to the spanning tree T.

For example in figure 1.31 the chords of G is {e3, e5, e7}, so we have 3 fundamental circuit

c1, c2, c3.

We find these fundamental cut sets in figure 1.32 that {e1, e3, e6, e7}, {e2, e3, e6, e7}, {e4, e7},

{e5, e6e7}.

e1 e2

e3

e4
e5

e7

e6

Figure 1.31

In section 1.2.2 we studied the definitions of cuts in graph, now we define the fundamental

cut set. Let us consider a graph G and it’s spanning tree T in the figure 1.32 . If we remove

the branch e1 from the spanning tree T, it divides the graph into two disjoint sets of vertices

{v1, v3, v4} and {v2, v5}. Cut set Q of a graph G will contain only one branch e1 from T, and

the remaining edges of Q are chords with respect to T. Such a cut set containing exactly one
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branch of a spanning tree T is called fundamental cut set with respect to T.

We find these fundamental cut sets in figure 1.32, that is {e1, e3, e6, e7}, {e2, e3, e6, e7}, {e4, e7}

and {e5, e6, e7}

v1 v1

v2 v3
v2 v3

v4 v5
v4 v5

e1 e2

e3

e4
e6

e7

e5

Figure 1.32
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Chapter 2

Incidence matrix and other related

matrices

In the last chapter we have studied graphs by graphical representation which is comfortable

for visual study but this is only possible when the number of edges and vertices small, a

matrix representation of a graph to computer is a very useful way to deal with a finite number

of graphs. Matrices and graphs have many important applications in a electrical networks

analysis and operation research, as well as in other fields. Representing the graph in matrix

form lies on the fact that many results of matrix algebra can be applied to study structural

proprieties of graph from an algebraic point of view. The graph can have representation in

many ways such as incidence matrix, adjacency matrix, etc. In this chapter we will talk

about the special type which is the incidence matrix and display other related matrices.

2.1 Incidence matrix of directed and undirected graphs

let G=(V,E) be a graph with set of vertices V={v1, v2, ..., vn} and set of edges E={e1, e2, ..., em}

and no self loop. The incidence matrix is an n× m matrix A=(aij) defined by
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aij=

 1 if vi is an end vertex of ej

0 other wise

For example, the graph G in the figure 2.1a with it’s incidence matrix A(G) are as follows

.

v1 v4
v5

v2
v3

e2

e6

e3

e5e4e1

(a)

e1 e2 e3 e4 e5 e6
↓ ↓ ↓ ↓ ↓ ↓


v1 → 1 1 0 0 0 1
v2 → 1 1 1 1 0 0

A = v3 → 0 0 1 0 1 0
v4 → 0 0 0 0 0 1
v5 → 0 0 0 1 1 0

(b)

It is clear that any entry of A is 0 or 1 and their incidence matrix is also known as binary

matrix .

We have the following observations about the incidence matrix:

• Each column of A(G) contains exactly two unit entry .

• Each vertex vi of V(G) has degree equals the number of unit entries corresponding to

vi .

• A row with single unit entry corresponding to a pendent vertex, also the row with all

entries is zero corresponding to an isolated vertex.

• Parallel edge in a graph produce identical columns in it’s incidence matrix.

• If a graph G is disconnected and consists of n components, then the incidence matrix

A(G) of G can be written in a block diagonal A(Gi) where the Gi′s are the components
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of G, for instance if G has two components G1 and G2 then the incidence matrix of G is

A(G)=

A(G1) 0

0 A(G2)


Where A(G1) and A(G2) are the incidence matrices of G1 and G2 respectively.

Now we will define an incidence matrix A=[aij] of a digraph G=(V,E) as follows

aij=


1 if vi is the initial vertex of ej

−1 if vi is the terminal vertex of ej

0 other wise

A digraph and it’s incidence matrix are shown in figure 2.2

v1 v4
v5

v2
v3

e2

e6

e3

e5e4
e1

(a)

A=



−1 −1 0 0 0 −1

1 1 −1 −1 0 0

0 0 1 0 1 0

0 0 0 0 0 1

0 0 0 1 −1 0


Figure 2.2: digraph with it’s incidence matrix

As the entries in A(G) are 0,1 or -1 and each column containes 1,-1 exactly once, then

the sum of each column is zero. Other proprieties are similar to those for undirected graph .

Definition 2.1.1 [13] The reduced incidence matrix Af for a graph G is a submatrix of

A(G) obtained by removing one row corresponding to a chosen vertex that is called reference

vertex.

2.2 Rank and determinant

In this section we introduce the rank of incidence matrix of directed and undirected graphs.

First we consider the rank and determinant of incidence submatrix of directed graph .
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Theorem 2.2.1 [7] If G is connected digraph with n vertices, then rank A(G)=n-1 .

Proof :

Let G be a connected graph with n vertices and m edges. let A(G) be an incidence matrix

and let x be a vector of left null space of A, that is, xTA=0, then if vi and vj are adjacent

xi-xj =0. Since G is a connected graph, all entries of x must be equal. Thus, the left null

space of A is at most one dimensional and the rank(A)≥n-1, also the rows of A are linearly

dependent, thus rank(A)≤n-1. Hence rank(A)=n-1. . �

If G is a disconnected graph the next result displays the rank of G.

Corollary 2.2.1 [26] If an n vertex graph has k components, then the rank of its all vertex

incidence matrix is equal n-k.

Proof :

Let G be non connected graph with G1, . . . Gk connected components, so by the proprieties

of the incidence matrix we can write A(G) as

A(G)=



A(G1) 0 · · · 0

0 A(G2) · · · 0

...
...

0 · · · 0 A(Gk)


Where Gi is an incidence matrix for i=1, . . ., k, so by theorem 2.2.1, rank of Gi=ni-1 then

rankA(G) = rankA(G1) + ...+ rankA(Gk)

= n1 − 1 + ...+ nk − 1

= n− k

. �

Remark 2.2.1 This confirms the well known result in linear algebra rank A(G)+ nullity

A(G) =m .
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Theorem 2.2.2 [20] Let G be a directed tree on n vertices then any submatrix of A(G) of

order n-1 is nonsingular.

Proof :

Let B be a submatrix of an incidence matrix A(G) created by the rows 1, 2, · · · , n-1, if we

add all rows of B to the last row of it, then this row is equal to the negative of the last

row of A(G). Let M be another submatrix of A(G) created by the rows 1, 2, · · · , n-2, n, so

det(B)= -det(M), by continuing in this manner if det(B)=0, then det(M)=0, we can show

that any square submatrix of order n-1 is singular. In fact, if we can show that any square

submatrix of order n-1 is singular, then all of them also are singular, by theorem 2.2.1 the

rank of A(G)=n-1, so at least one of these submatrices must be nonsingular. �

Now we consider the incidence matrix of an undirected graph to find it’s rank.

Theorem 2.2.3 [20] Let G be a connected undirected graph with n vertices and let A be the

incidence matrix of G.Then the rank of A is n-1 if G is bipartite and n otherwise.

Proof :

Let G be a bipartite graph, so G has two disjoint sets of vertices say X and Y. Orient each

edge of G from X to Y and let Ā be the incidence matrix of the directed graph G. Consider

the columns j1, · · · , jn−1 corresponding to the spanning tree of G and let B be a submatrix

of these columns, then by theorem 2.2.2 any n-1 rows of B are linearly independent and the

corresponding rows of incidence matrix of undirected graph G are also linearly independent

then rank(A)≥n-1. Let z be a vector defined as follow

zi=

 1 , i ∈ X

−1 , i ∈ Y

So zTA=0, and the rows of A are linearly dependent, thus rank A = n-1.

To show that the rank of A is n for a graph G, suppose x in Rn be a vectors such that

xTA=0, if the vertex vi and vertex vjare adjacent, then xi+xj=0. Since G is connected it

follows that | xi |= α, i=1, 2, . . ., n for some constant α, suppose G has an odd cycle let it
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v1, . . ., vk, then if we go around the cycle and use the preceding observation we get xi+xj=0

if vi and vj are adjacent, so we find α =−α, hence α=0. Thus if G has an odd cycle then

the rank of A is n. �

The next lemma gives a condition when the m columns of G are linearly independent.

Lemma 2.2.1 [20] Let G be a directed graph on n vertices. Columns j1,j2, ... ,jk of A(G)

are linearly independent if and only if the corresponding edge of G induce an acyclic graph.

Proof :

let G be a graph with n vertices and m edges. Consider j1,j2, ... ,jk and suppose there

is a cycle in the corresponding induced subgraph, without loss of generality. Suppose the

columns j1,j2, ... ,jp form a cycle. After relabeling the vertices if necessary, so we see that the

submatrix of the A(G) formed by j1,j2, ... ,jp columns, say M with n× p is of the form

B
0

,

where B is a matrix of order p incidence matrix of the cycle formed by the edges j1,j2, ... ,jp

with column sum zero. Thus B is singular and column j1,j2, ... ,jp are linearly dependent.

Conversely, suppose the edge j1,j2, ... ,jk induce an acyclic graph it’s tree, if it has K compo-

nents then by theorem 2.2.1 the rank of correspond submatrix formed by the columns j1,j2,

... ,jk is n-K, therefor the columns j1,j2, ... ,jk are linearly independent. �

Definition 2.2.1 A square matrix whose determinant is 0, 1,or -1 is called unimodular. A

matrix A(G) is totally unimodular if the determinant of every submatrix of A(G) has value

0, 1, or -1.

Theorem 2.2.4 [11] Let A(G) be the incidence matrix of a digraph G. Then A(G) is totally

unimodular.

Proof :

let A(G) be an incidence matrix of a digraph G. We must show that any k× k submatrix of
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A(G) has determinant 0, 1 or -1. We’ll use induction. For k=1, each entry in A(G) is either

0, 1 or -1. Assume the statements true for k-1. Consider a k× k submatrix B of A(G), we

have three cases :

• Case 1: B has a zero column, so determinant of B is zero.

• Case 2: If each column of B have a 1 and -1, then the determinant of B is zero.

• Case 3: If B has a column with only one non zero entry, which must be +1 or -1. Cal-

culating the determinant of B using this column and using the induction assumption,

the determinant must be 0, 1 or -1.

�

Corollary 2.2.2 If B is a non singular square submatrix of A(G) for a diagraph G, then

the determinant of B is ±1.

We can use the matrix Af to calculate the number of spanning trees in a diagraph G.

Theorem 2.2.5 (Binet-Cauchy formula). Let A and B be m×n and n×m matrices respec-

tively. If m≤n and C=AB, then

detC =
∑

1≤j1...jm≤n

A

 1 ... m

j1 ... jm

B

j1 ... jm

1 ... m



That is, the determinant of the product AB is equal to the sum of the products of all

possible minors of order m of A with corresponding minors of B of the same order

Lemma 2.2.2 [18] If B is a submatrix of order n-1 of A, then B is nonsingular if and only

if the edges corresponding to the columns of B determine a spanning subtree of a diagraph

G.
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Proof :

If H denotes the spanning subtree of G with n-1 edges corresponds to the columns of B, so

B is reduced incidence matrix of order n-1, by theorem 2.2.2 then B is non singular.

Let B is a non singular square submatrix of order n-1 of an incidence matrix. So it has a

rank n-1, hence H is connected, so H is tree. . �

Theorem 2.2.6 [12](Matrix Tree theorem). Let G be a directed graph, and let Af(G) be it’s

reduced incidence matrix. The number of spanning trees is det( Af(G) AT
f (G))

proof :

Let G be a graph with Af be the reduced incidence matrix of G, B and C be submatrices of

Af , the determinant of Af AT
f can be written by Binet Cauchy formula as

det(Af .A
T
f ) =

∑
1≤j1...jn−1≤m

B

 1 ... n− 1

j1 ... jn−1

C

j1 ... jn−1

1 ... n− 1


=
∑

det(B).det(BT )

=
∑

(detB)2

=
∑

B nonsingular

(detB(G))2 +
∑

B singular

(detB)2

by lemma 2.2.2 and lemma 2.2.2

det(Af .A
T
f ) =

∑
nonsingular B

1

= number of non singular (n-1)× (n-1) submatrices B of Af

= number of spanning trees of G

. �
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2.3 Moore-Penrose inverse

In this section, we study a relation between the incidence matrix and it’s generalized inverse

of connected diagraph.

Definition 2.3.1 A generalized inverse of any matrix An×m denotes by A+ , is any matrix

of order m×n that satisfies the condition AA+A=A .

Clearly, the matrix A+ is not unique, to make the generalized inverse unique, additional

conditions must hold

AA+A=A

A+AA+=A+

(AA+)T=AA+

(A+A)T=A+A

This leads to a unique Moore-Penrose inverse G.[25]

Theorem 2.3.1 [20] If G is connected digraph with n vertices, then I-AA+= 1
n
J . Where J

is a matrix in which all entries are ones

Proof :

Let G be a connected digraph and A be the incidence matrix of G. Let A+ be a Moore-

Penrose inverse of G so AA+A=A, then (I − AA+)A=0, any row of I-AA+ is in the left null

space of A that is spanned by the vector 1T , any row in I-AA+ is a multiple of any other

row. Since I-AA+ is symmetric, it follows that all elements of I-AA+ are nonzero constants

, since A cannot have right inverse. Now using the fact that I-AA+ is idempotent, so I-AA+

must equal 1
n
J . �

Remark 2.3.1 If A(G) is an n×m incidence matrix with rank r, there exist an n×r matrix

say R and an r×m matrix say S, both have the same rank r such that A=RS (this is called
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a full rank factorization of A) then

A+=S+ R+= ST
(
SST

)−1 (
RTR

)−1
RT

For example, in figure 2.3 the graph G with it’s incidence matrix

v3

v2 v1

e2 e3

e1

e4

(a)

A=


−1 0 1 −1

1 1 0 1

0 −1 −1 0



Figure 2.3: digraph with incidence matrix

A digraph G has a rank=2, there exist a 3×2 matrix say R and an 2×4 matrix say S,

both have the same rank r. Indeed R=


−1 0

1 1

0 −1

 and S=

1 0 −1 1

0 1 1 0



Notice that

R+=


2 1

1 2



−1 −1 1 0

0 1 −1

=1
3

−2 1 1

1 1 −2


and

S+=



1 0

0 1

−1 1

1 0



 3 −1

−1 2



−1

= 1
5



2 −1

1 3

−1 2

2 1


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Finally, A+=S+ R+= 1
15



−3 3 0

1 4 5

4 1 −5

−3 3 0



and I-AA+=


1 0 0

0 1 0

0 0 1

-


2
3
−1

3
−1

3

−1
3

2
3
−1

3

−1
3
−1

3
2
3

=1
3


1 1 1

1 1 1

1 1 1



2.4 Circuit and cut matrices

In this section we define another type of matrices which is important in many application

such as electrical network application [6] [13].

Definition 2.4.1 let G=(V,E) be a loopless graph with set of vertices V={v1, v2, ..., vn} and

set of edge E={e1, e2, ..., em}. We enumerate the circuits c1, . . . cl. Then the circuit matrix

of undirected graph is defined as

cij=

 1 if ei is in the cj

0 other wise

If G is a directed graph

cij=


1 if ci consists of ej and they are in the same direction

-1 if ci consists of ej and they are in the opposite direction

0 other wise

For example, the graph G that is shown in figure 2.3a have three circuits they are {e1, e3, e2},

{e4, e3, e2} and {e4, e1}, then their circuit matrix C(G) is as follows
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e1 e2 e3 e4
↓ ↓ ↓ ↓


c1 → 1 −1 1 0

C = c2 → 0 −1 1 1
c3 → −1 0 0 1

A Fundamental circuit matrix Cf of a graph G with n vertices and m edges is an (m-

n+1)×m submatrix of a circuit matrix which all rows corresponds to a set of fundamental

circuit, similarly if G is a connected digraph, a fundamental circuit matrix of G is defined as

the same of undirected graph but the direction of a fundamental circuit is the same as the

direction of the corresponding link in T∗.

The fundamental circuit matrix Cf in a connected graph G with n vertices and m edges

can be arranging the rows and columns, arranging the columns such that all the (m-n+1)

links correspond to the last column. An arranged matrix Cf has the form

Cf =

[
C∗ Im−n+1

]
v3

v2 v1

e2 e3

e1

e4

Figure 2.4

For example, the graph G in the figure 2.4 have two fundamental circuits, namely

{e2, e3, e1} and {e4, e1} and their fundamental circuit matrix Cf (G) is as follows

Cf =

−1 −1 1 0

−1 0 0 1


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Now we display another type of matrices, called a cut set matrix and is defined as follows

qij=

 1 if ei is in the Ij ( the cut is interpreted an edge set)

0 other wise

If G is a directed graph, then the cut matrix defined as follows

qij=


1 if ci consists of Ij and they are in the same direction

-1 if ci consists of Ij and they are in the opposite direction

0 other wise

For example,

v1 v2

v4 v3

e4

e3

e2
e1

Figure 2.5

The cuts of the undirected graph in figure 2.5 are I1={e4}, I2={e1, e2}, I3={e1, e3},

I4={e2, e3}, I5={e4, e2, e3}, I6={e1, e2, e3} and I7={e4, e2, e1}. The cut matrix is

e1 e2 e3 e4
↓ ↓ ↓ ↓



l1 → 0 0 0 1
l2 → 1 1 0 0

Q = l3 → 1 0 1 0
l4 → 0 1 1 0
l5 → 0 1 1 1
l6 → 1 1 1 0
l7 → 1 1 0 1
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For example,

v1 v2

v4 v3

e4

e3

e2
e1

Figure 2.6

The cuts of the digraph in figure 2.6 are I1={e4}, I2={e1, e2}, I3={e1, e3}, I4={e2, e3},

I5={e4, e2, e3}, I6={e1, e2, e3} and I7={e4, e2, e1}. The direction of a cut set is the same di-

rection of the first edge in each set, so the cut matrix is

Q=



0 0 0 1

1 −1 0 0

1 0 −1 0

0 1 −1 0

0 −1 1 1

1 −1 −1 0

−1 −1 0 1


A Fundamental cut matrix Qf of a graph G with n vertices and m edges is a submatrix

of a cut matrix in which all rows correspond to a set of a fundamental cuts, similarly if G is a

connected digraph, a fundamental cut matrix defined as the same as undirected graphs but

the direction of a fundamental cut is the same as the direction of the corresponding branch

of spanning tree T. If we rearrange the edges of G so that we have the branches first, then

the fundamental cut set becomes of the form Qf =

[
In−1 Q∗

]
.
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Chapter 3

Adjacency matrix and other related

matrix representations of graphs

3.1 Adjacency matrix of graphs

let G=(V,E) be a graph with set of vertices V={v1, v2, ..., vn} and set of edges (arcs)

E={e1, e2, ..., em}. Then the adjacency matrix is an n× n matrix D=(dij) where

dij=

 1 if vi and vj are adjacent

0 other wise

For example, the graph G in figure 3.1a with it’s adjacency matrix D(G) are given as

follows

v1
v2

v6

v5
v4

v3

(a)

v1 v2 v3 v4 v5 v6
↓ ↓ ↓ ↓ ↓ ↓


v1 → 0 1 0 0 0 0
v2 → 1 0 1 1 0 0

D = v3 → 0 1 0 1 0 0
v4 → 0 1 1 0 1 0
v5 → 0 0 0 1 0 0
v6 → 0 0 0 0 0 0

Figure 3.1: A graph with adjacency matrix
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The adjacency matrix is not unique, because we can relabel the vertices of the graph

which would cause simultaneous permutation of the rows and columns. So for example we

could have gotten the following as adjacency matrix of the graph in the figure 3.1a

D=



0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 1 0 1

1 0 1 0 0 1

0 0 0 0 0 1

0 0 1 1 1 0


We have the following observations about the adjacency matrix:

• If a graph has no self loops then the diagonal entries of D(G) are zero .

• A row with single entries corresponding to a pendent vertex, and the row with all

entries is zero corresponds to an isolated vertex.

• An adjacency matrix D(G) of a graph G is symmetric if G is an undirected graph .

• Two graph G1 and G2 are isomorphic if the adjacency matrix of any one graph can be

obtained form the other one by changing some rows or columns .

• If a graph is disconnected and consists of n components the adjacency matrix D(G) of

a graph G can be written in a block diagonal D(Gi), so if G has two components G1

and G2 the adjacency matrix of G is

D(G)=

D(G1) 0

0 D(G2)


Where D(G1) and D(G2) are adjacency matrices .

The following result computes the number of walks of length k between any two vertices .
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Theorem 3.1.1 [17] Let G be a graph with vertices v1,v2, ..., vn and adjacency matrix

D(G)=[dij] , then the entry dkij in row i and column j of Dk(G) is the number of distinct

vi-vj walks of length k in G .

Proof :

We will prove the theorem by induction on k

For k=1, we have the matrix D=D1 and any entry of D can be denoted by

dij=

1 if vi and vj are adjacent

0 otherwise

so there is a vi-vj walk of length one in G if vi and vj are adjacent. For the induction

hypothesis, assume that for a positive integer k, the number of vi-vj walks of length k in G

is dkij . We show that the entry dk+1
ij in Dk+1 gives the number of vi-vj walks of length k+1.

The entry dk+1
ij of a matrix Dk+1 is represented by

Dk+1=



dk+1
11 dk+1

12 . . . dk+1
1n

dk+1
21 dk+1

22 . . . dk+1
2n

.

. dk+1
ij

.

dk+1
n1 dk+1

n2 . . . dk+1
n3


=



dk11 dk12 . . . dk1n

dk21 dk22 . . . dk2n

.

. dkim

.

dkn1 dkn2 . . . dkn3





d11 d12 . . . d1n

d21 d22 . . . d2n

.

. dmj

.

dn1 dn2 . . . dn3


Thus the entry dk+1

ij can be obtained by taking the product of row i of Dk and column j

of D.

dk+1
ij =

n∑
m=1

dkimdmj = dki1d1j + dki2d2j + ...+ dkindnj

then every vi-vj walk of length k+1 consists of vi−vm walks of length k, and vm adjecent to

vj, then the total number of vi-vj walk of length k+1 in G is dk+1
ij .

. �
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Corollary 3.1.1 [20] Let G be a connected undirected graph with vertices set {v1, v2, ..., vn}

and let D(G) be an adjacent matrix of G. If vi and vj are vertices of G with d(vi , vj)=m,

then the matrices I,D1, D2, ... Dm are linearly independent .

Proof :

Let vi and vj are distinct vertices of a graph G, and let D(G) be an adjacency matrix such

that d(vi , vj)=m, then the shortest path between vi and vj is m so every element dij in

I,D1, D2, ... Dm−1 is zero by theorem 3.1.1, whereas the element dij of Dm is nonzero .

Hence I, D1, D2, ... Dm are linearly independent . �

In the previous chapter we defined the isomorphism between two graphs by creating a bi-

jection function between them, the next result display an important characterization of

isomorphism.

Theorem 3.1.2 [12] Let G1=(V1,E1) and G2=(V2,E2) with n=|V1|=|V2|, the homomor-

phism f:G1→ G2 is an ismorphism if and only if there exist a matrix P such that D(G2)=PD(G1)P−1

Where P is a n× n permutation matrix which comes from the identity matrix In upon per-

forming row permutations corresponding to f .

Proof :

suppose G1 is isomorphic to G2, then the rows and columns of D(G) are permuted cor-

respondingly. Thus D(G2)=PD(G1)P
−1 , where P is the corresponding row permutation

matrix, left multiply by P permutes the rows and right multiplication by P−1 permutes the

columns .

conversely, let D(G2)=PD(G1)P
−1, then there exist a mapping f:G1 → G2 with

ei = (vi, vj) ∈ E1 (i.e dij = 1)⇔ df(i)f(j) = 1
(
i.e ei =

(
vf(i), vf(j)

)
∈ E2

)
�
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Now, we compute the determinant of adjacency matrix.

Definition 3.1.1 A liner subgraph of a graph G is a subgraph of G whose components are

a single edge or cycles.

Theorem 3.1.3 [10] let D(G) be adjacency matrix of a simple undirected graph G then

detD(G) =
∑

H(−1)e(H)2c(H) where the summation is over spanning linear subgraphs H of

G, and e(H) and c(H) denote, respectively,the number of even components and the number

of cycles in H.

Proof :

let G be a graph with V(G)={v1, ..., vn} and let D(G)=dij be an adjacency matrix of G, the

determinant of D(G) is defined as

det D=
∑

π sgn (π) d1π(1)...dnπ(n)

Where π is a permutation on {1, 2, ...n}, sgn(π) is equal 1 or -1 according to whether π is

even or odd permutation and the term d1π(1)...dnπ(n) is zero if and only if the permutation

diπ(i)=0 for some 16 i6n, diπ(i)=0 if π (i)=i or π (i)=j such that vivj /∈ E(G). Other wise

d1π(1)...dnπ(n) is nonzero if and only if the permutation π is a product of disjoint cycles of

length at least 2. So the term sgn(π)d1π(1)...dnπ(n) = sgn(π) 1 . . .1=sgn(π). Each cycle of

length 2 in π corresponds to a single edge, also the cycle of length r>2 in π corresponds to

a cycle. Thus, each term in the expansion of detD gives rise to a linear subgraph H of G.

For any cycle of any subgraph sgn(π) is 1 or -1 according to whether it is even or odd cycle.

Hence sgn(π)=(−1)e(H) where e(H) is the number of even components of H. Moreover any

cycle of H has two different orientations. Hence, each undirected cycle of H with length at

least 3 yield two distinct even cycles.

�
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Example 3.1.1 Consider the graph G

v1

v2
v4

v3

Figure 3.2

There are three spanning liner subgraphs of G, given by H1, H2, H3 respectively

v1

v2
v4

v3

v1

v2
v4

v3

v1

v2
v4

v3

detA =
∑

H (−1)e(H) 2C(H) = (−1)2 20 + (−1)2 20 + (−1)1 21 = 0

3.2 Laplacian matrix

The second type of matrix representation of graphs is the Laplacian matrix, denoted by

L(G). If G is a graph with V(G)={v1, v2, · · · , vn} and E(G)={e1, e2, · · · , em}. The Lapla-

cian matrix is defined as follows:

L(G)=


di if i=j

-1 if i and j are adjacent

0 otherwise

Where di is the degrees of the ith vertices. This is closely related to adjacency matrix

and some time written as L= D̃−D, where D is adjacency matrix, D̃ is the diagonal matrix

with degrees of vertices on the diagonal.

For example, the laplacian matrix of the graph in figure 3.2 is
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L =



2 −1 0 −1

−1 3 −1 −1

0 −1 2 −1

−1 −1 −1 3



Remark 3.2.1 Let A be an incidence matrix of directed graph G, then L=AAT .

Some basic properties of the laplacian matrix are summarized below[3]:

1. L(G) is symmetric, positive semidefinite matrix.

2. The off-diagonal entries of L(G) are nonpositive (in fact, they are either 0 or -1).

3. The diagonal entries of L(G) are the vertex degree, also the rows sums and the columns

sum are all zero.

4. The rank of L(G) is n-k, where k is the number of connected components of G. In

particular if G is connected, then the rank of L(G) is n-1.

Proof :

let G be a graph with V(G)={v1, · · · , vn} and let D(G) be it’s adjacency matrix.

1. Recall L(G)= AAT . Let x be any vector in Rn so we will prove L is a positive semidef-

inite matrix (i.e xTLx ≥ 0)

xTLx = xTAATx = ‖Ax‖2 ≥ 0

For all x.

2. Trivial.
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3. Trivial.

4. Recall L(G)= A(G)A(G)T

rankL(G) = rankA(G)A(G)T = rankA(G)

So by using corollary 2.2.1, rank A(G)= n-k.

�

3.3 Antiadjecency Matrix

let G=(V,E) be a graph with set vertices V={v1, v2, ..., vn} and set of edges E={e1, e2, ..., em}.

Then the antiadjacency matrix is an n× n matrix B=(bij) defined by

bij=

0 if vi and vj are adjacent

1 other wise

In other words we can define the antiadjecency matrix as B= J-D, where J is an n ×n

matrix each entry is 1 and D is the adjacentcy matrix .

For example, the graph G in figure 3.3 with it’s antiadjacency matrix B(G) is given as follows

v1
v2

v5
v4

v3

(a)

B=



1 0 1 1 1

1 1 0 0 1

1 1 1 0 1

1 1 1 1 0

1 1 1 1 1


Figure 3.3: A graph with it’s antiadjacency matrix

-
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Definition 3.3.1 Hamiltonian path is a path between two vertices of a graph that visits each

vertex once and only once.

For example, the graph G in figure 3.4a has a Hamiltonian path v2 v3 v1 v4 , also the graph

G in figure 3.4b has no Hamiltonian path.

v1 v2

v4 v3

(a)

v1 v2

v4 v3

(b)

Figure 3.4

The determinant of antiadjecency matrix can be obtained by the next result.

Lemma 3.3.1 [20] Let G be a directed, acyclic graph with V(G)={v1, v2, ..., vn}. Let B be

the antiadjacency matrix of G, then detB=1 if G has a Hamiltonian path, and detB=0,

otherwise.

Proof :

Let G be a directed acyclic graph, suppose G has a Hamiltonian path say v1 e1 v2 ... vn, since

G is acyclic, there can’t be an edge form vi to vj for i≥j, hence bij=1 if i≥j, so b12 =b23=

... =bn−1n=0, then b12 in a matrix B equal 0, subtracting the second column from the first

one, then all entries of the first column is 0 except b11=1. Expand the determinant along

the first column and use that induction on n to complete the proof. then the determinant

equals 1.

Conversely, suppose G is a directed graph with no Humiliation path. Since G is the acyclic,

so G must have a vertex which is a source(i.e. a vertex of in-degree 1) and without loss of

generality let it be v1. In G-v1 there is a source say v2, continuing in this way, let vi be the
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source of G-{v1, v2, ...vi−1}, then there is no edge from vj to vi for i>j, hence bij=1 if i≥j,

since G has no Humiliation path, so there must exist vi in v1, v2, ... vn−1 such that bii+1=1,

let it be b12, so the first two columns are equal, then the determinant equal 0. �

The next result Computes the number of paths between any number of vertices in a directed

graph.

Theorem 3.3.1 [20] Let G be a directed, acyclic graph with V(G)={v1, v2, · · · , vn}. Let B

be the antiadjacency matrix of G, and Let

det(xB+I)=
∑n

i=1 cix
i

Then c0 = 1 and ci equals the number of directed paths of i vertices in G, i=1,2,· · · , n.

Proof :

let B be antiadjacency matrix of acyclic directed graph G.

det(xB + I) =
n∑
i=1

cix
i

= c0x
0 + c1x

1 + · · ·+ cnx
n

we can see that the coefficient of xi is the principle minor of B of order i. Any principle minor

matrix is an antiadjecency matrix by corollary 3.3.1 the determinant of principle minor of

order i is equal 1 if and only if the subgraph induced by corresponding vertices contains

a Hamiltonian path that can’t have another one, otherwise it containes a cycle. Thus the

nonsingular minor of order i equals the number of paths in G of i vertices.

�

3.4 Boolean Operations on adjacency and antiadjecency

matrices

In this section we will apply some Boolean operations on graph matrices . We introduce the

operations on two adjacency or two antiadjacency matrices of graphs and we consider four
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types of Boolean operations OR, AND, XOR and NXOR.

First we recall the Boolean operations, AND, OR, XOR and NXOR respectively by the

tables below

p q p∨q

1 1 1

1 0 1

0 1 1

0 0 0

p q p∧q

1 1 1

1 0 0

0 1 0

0 0 0

p q p⊕q

1 1 0

1 0 1

0 1 1

0 0 0

p q p ⊕̄ q

1 1 1

1 0 0

0 1 0

0 0 1

Let G be a graph with V(G) = {v1, · · · , vn} and E(G) = {e1, · · · , em}, we will define

Boolean operations for two adjacency and two antiadjacency matrices of graphs G1 and G2

respectively.

Let B (G1) and B (G2) be antiadjacency matrices of G1 and G2 in figure 3.5 respectively.

v1 v2

v3

(a)

v1 v2

v3

(b)

Figure 3.5

B(G1)=


1 1 0

0 1 1

0 0 1

 and B(G2)=


1 1 0

0 1 0

1 0 1


The following result shows what graph results by the OR product of some antiadjacency

matrices.

56



Theorem 3.4.1 [8] Let G1, G2, · · · , Gm be graphs of n vertices each with V(G1) =

V (G2) = · · · = V (Gm) = {v1, v2, · · · , vn}. Let B1, B2, · · · , Bm be the antiadjacency

matrices of G1, G2, · · · , Gm, respectively. Then, the OR product of B1, B2, · · · , Bm is an

antiadjacency matrix which represents a graph G with vivj ∈ E (G) if vi and vj are adjacent

vertices in all graphs G1, G2, · · · , Gm.

Proof :

let B1, B2, · · · , Bm be an antiadjacency matrices of the graphs G1, G2, · · · , Gm, and let M

be antiadjacency matrix of a graph G such that M=B1∨B2 · · · ∨ Bm, now any two vertices

of G are adjacent or not adjacent. Suppose vivj ∈E(M), then Mij=0, so

Mij = b1ij ∨ b2ij · · · ∨ bmij

= 0

Thus b1ij ∨ b2ij · · · ∨ bmij
= 0, if vivj are adjacent in all graphs.

Conversely, Suppose vivj ∈E(Gi) so b1ij = b2ij = · · · = bmij
= 0 then Mij=0 and thus vivj

∈E(G). �

For example, The antiadjacency matrix of G1∨ G2 in figure 3.5is


1 1 0

0 1 1

1 0 1


We can see that E (G1 ∨G2) = E (G1) ∩ E (G2) and thus the graph G is a subgraph of

G1 and G2.

The following result shows what graph is resulted by the AND product of some antiadjacency

matrices.

Theorem 3.4.2 [8] Let G1, G2, · · · , Gm be graphs of n vertices each. Let B1, B2, · · · , Bm

be the antiadjacency matrices of G1, G2, · · · , Gm, respectively. Then, the AND product of

B1, B2, · · · , Bm is an antiadjacency matrix which represents a graph G with vivj /∈ E (G) if
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vi and vj are not adjacent vertices in all graph G1, G2, · · · , Gm.

Proof :

The proof is similar to the proof of theorem 3.4.1 �

For example, The antiadjacency matrix of G1∧ G2 in figure 3.5 is


1 1 0

0 1 0

0 0 1


We can see that E (G1 ∧G2) = E (G1)∪E (G2) and thus the graph Gi is a subgraph of G.

The following theorem shows what graph is resulted by the XOR product of some anti-

adjacency matrices.

Theorem 3.4.3 [1] Let G1 and G2 be graphs of n vertices each with V(G1) = V (G2) =

{v1, v2, · · · , vn}. Let B1, B2 be the antiadjacency matrices of G1, G2 respectively. Then,

the XOR product of B1 and B2 is an antiadjacency matrix which represents a graph G with

vivj /∈ E (G) if and only if vi is adjacent to vj in one and only one of the graphs G1 or G2.

Proof :

let B1 and B2 be an antiadjacency matrices of graphs G1 and G2, and let M be antiadjacency

matrix of the graph G such that M=B1

⊕
B2, now any two vertices of G are adjacent or not

adjacent. Suppose vivj /∈E(G), then Mij=1, whice mean one and only one vivj are adjacent

in G1 and G2.

Conversely, without loss of generality, suppose vi and vj are adjacent in G1 but not adjacent

in G2, then Mij=b1ij
⊕

b2ij=1, thus vivj /∈E(G).

�
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For example, The antiadjacency matrix of G1

⊕
G2 in figure 3.5 is


0 0 0

0 0 1

1 0 0


For finite XOR products of graphs the following theorem shown that.

Theorem 3.4.4 [1] Let G1, G2, · · · , Gm be graphs of n vertices each with V(G1) =

V (G2) = · · · = V (Gm) = {v1, v2, · · · , vn}. Let B1, B2, · · · , Bm be the antiadjacency

matrices of G1, G2, · · · , Gm, respectively. Then, the XOR product of B1, B2, · · · , Bm is

an antiadjacency matrix which represent a graph G with vivj /∈ E (G) if and only if vi is not

adjacent to vj in an odd number of graphs.

Proof :

let B1, B2, · · · , Bm be an antiadjacency matrices of graphs G1, G2, · · · , Gm respectively,

and let M be antiadjacency matrix of a graph G such that M=B1

⊕
B2 · · ·

⊕
Bm. Suppose

vivj /∈E(G), then Mij=1, since vivj /∈ E(G) for odd number of graphs.

Conversely, without loss of generality, suppose vi and vj are not adjacent in odd number of

graphs, there is an odd number of entries in Bkij equal one, for k=1, · · · , m. Thus Mij=1,

vivj /∈E(G).

�

The following theorem shows what graph is resulted by the NXOR product of some an-

tiadjacency matrix.

Theorem 3.4.5 [1] Let G1, G2, · · · , Gm be graphs of n vertices each. Let B1, B2, · · · , Bm

be the antiadjacency matrices of G1, G2, · · · , Gm, respectively. Then, the NXOR product
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of B1, B2, · · · , Bm is an antiadjacency matrix which represents a graph G with vivj /∈ E (G)

if and only if vi is not adjacent to vj in an even number of graphs.

For example, the antiadjecency matrix of G1⊕̄ G2 in figure 3.5 is


1 1 1

1 1 0

0 1 1


Remark 3.4.1 1. Let G1 and G2 be two graphs with the same n vertices. Let D1 and D2

be their adjacency matrices, and let B1 and B2 be their antiadjacency matrices respec-

tively, and let (B1 ∧B2) and (B1 ∨B2) are antiadjecency matrices of L1=(G1 ∧G2)

and L2=(G1 ∨G2) respectively, and let (D1 ∧D2) and (D1 ∨D2) are adjacency matri-

ces of H1= (G1 ∧G2) and H2=(G1 ∨G2) respectively, so H1 = L2 and H2 = L1.

2. Let G1 and G2 be two graphs with the same n vertices. Let D1 and D2 be their adja-

cency matrices, and let B1 and B2 be their antiadjacency matrices respectively, and let

(B1 ⊕B2) and (B1⊕̄B2) are antiadjecency matrix of L1=(G1 ⊕G2) and L2=(G1⊕̄G2)

respectively, and let (D1 ⊕D2) and (D1⊕̄D2) are adjacency matrices of H1= (G1 ⊕G2)and

H2=(G1⊕̄G2) respectively, so H1 = L2 and H2 = L1.
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Chapter 4

Spectral properties of graphs

One of the most useful ways of studying large graphs is the study of the eigenvalues of

the matrices (i.e spectra of matrices ). By looking at these eigenvalues it is possible to get

information about the graph. In this chapter, we display properties of graph G from what

we know about the eigenvalues and compare some graphs that are produced by Boolean

operation.

4.1 Spectral of adjacency matrix

In this section we will find the eigenvalues of a graph G by using the adjacency matrix. All

graphs considered in this section are undirected graphs.

The characteristic polynomial of a graph G is the determinant of (λI −D(G)) where D is

adjacency matrix and it’s roots are the eigenvalues of a graph.

Theorem 4.1.1 [24]

let xn + a1x
n−1 + ...+ an be the characteristic polynomial of G, then

ai =
∑

H(−1)w(H)2c(H)

Where the summation is over all linear subgraphs H of order i of G, w(H) and c(H) denoted

respectively the number of components and the number of cycle components of H.
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Proof :

let G be a graph with V(G)= {v1, · · · , vn} and let D(G) be it’s adjacency matrix, recall

ai = (−1)i
∑

H detD where H is all induced subgraphs of order i of G. By theorem 3.1.3

detD(G)=
∑

H(−1)e(H)2c(H), so we can say det H=
∑

Hi
(−1)e(Hi)2c(Hi), where Hi is spanning

liner subgraph of G and e(Hi) and c(Hi) denotes the number of even components and number

of cycles of Hi respectively. The result follows from the fact that i and the number of odd

components of Hi have the same parity. �

The adjacency matrix of a graph G from example 3.1.1 is



0 1 0 1

1 0 1 1

0 1 0 1

1 1 1 0


The characteristic polynomial of this matrix is easily computed by theorem 3.1.3

det (xI −D) = x4 + a1x
3 + a2x

2 + a3x
1 + a4

a1 = 0 a2 = 5 (−1)1 20 = −5

a3 = 2 (−1)0 21 = 4 a4 = 2 (−1)2 20 + (−1)1 21 = 0

Now

det (xI −D) = x4 − 5x2 + 4x

Recall that if D is a n× n matrix. An eigenvalue of D is the number λ such that det(λI

-D)=0 and it’s corresponding eigenvector of D is a nonzero vector x such that (λI-D)x=0.

Some basic proprieties of eigenvalues are:

• The eigenvalues are exactly the numbers λ that make the matrix D-λI singular.

• If D is a real symmetric ( dij=dji) matrix, then all the eigenvalues are real, and there
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is an orthogonal basis of Rn consisting of eigenvectors .

• The product of all eigenvalues, including the multiple eigenvalues is the determinant

of D(G) (i.e
∏n

i=1 λi=det D(G).

• The sum of all eigenvalues, including the multiple eigenvalues is the trace of D(G) (i.e∑n
i=1 λi = Tr(D) =

∑n
i=1 dii) .

• The number of nonzero eigenvalues, including the multiple eigenvalues is the rank of

D.

• A set of eigenvectors of D, each corresponding to a different eigenvalue of D, is linearly

independent .

• The sum of the square of the eigenvalues is 2|E(G)| (i.e λ21 + λ22 + ...+ λ2n= 2|E(G)|).

Now we will give a survey of some of the relationships between the properties of some

graphs and the eigenvalues of it’s adjacency matrix .

4.1.1 Spectral of complete graph

Recall that for kn, the adjacency matrix D(G) is given by D=



0 1 1 . . . 1

1 0 1 . . . 1

...
...

...
. . .

...

1 1 1 . . . 0


Theorem 4.1.2 [2] For any positive integer n, the eigenvalues of kn are n-1 with multiplicity

1 and -1 with multiplicity n-1.

Proof :

let D(kn)=[dij] be adjacency matrix of a graph kn, so we can write D(kn) as Jn - In, where

Jn is an n×n matrix of all entries are ones, In is the identity matrix. So Jn is symmetric and

has rank 1, hence it has only one nonzero eigenvalue, which is n that equal the trace(Jn)
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with multiplicity 1 also it has another eigenvalue 0 with multiplicity n-1, the identity matrix

has only one eigenvalue 1 with multiplicity n. Thus the eigenvalues of D(kn) are n-1 and -1

with multiplicity 1, n-1 respectively.

�

4.1.2 Spectral of the bipartite and complete bipartite graph

Lemma 4.1.1 [20] Let G be a graph with vertices {v1, · · · , vn} and let D be the adjacency

matrix of G. Let

φλ (G) = det (λI −D) = λn + c1λ
n−1 + · · ·+ cn

Be the characteristic polynomial of A. Suppose c3 = c5 = · · · = c2k−1 = 0 then G has no odd

cycleS of length i, 3 ≤ i ≤ 2k− 1,. Furthermore the number of (2k+1) cycles in G is -1
2
c2k+1

Proof :

Suppose c3=0, then there are no triangles in G. Thus, any liner subgraph of order 5

must contain a cycle of 5 vertices. By theorem 4.1.1 if c5=0, then there are no cycles of 5

vertices in G, by continuing in this manner we find that if c3=c5 . . .=c2k−1=0, then any linear

subgraph with 2k+1 vertices must contain a cycle with 2k+1 vertices, hence by theorem 4.1.1

c2k+1 =
∑

(−1)w(H)2c(H)

Where the summation is over all 2k+1 cycles in G. For any 2k+1 cycle say H, w(H)=c(H)=1,

so c2k+1 is -2 the number of 2k+1 cycles in G.

�

Theorem 4.1.3 [20] Let G be a graph with vertices {v1, · · · , vn} and let D be the adjacency
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matrix of G, then the following conditions are equivalent

1. G is bipartite

2. If

φλ (G) = det (λI −D) = λn + c1λ
n−1 + · · ·+ cn

is the characteristic polynomial of D, then c2k+1=0, k=0,1, . . . .

3. The eigenvalues of D are symmetric with respect to the origin, i.e if λ ia an eigenvalue

of D with multiplicity k, then -λ is also an eigenvalue of D with multiplicity k.

Proof :

1⇒ 3 : Let G be bipartite graph, The adjacency matrix (n+m)× (n+m) of G can be written

in the form

D( G)=

 0 D

DT 0

. Let

x
y

 be a corresponding eigenvalue λ. Now

 0 D

DT 0


x
y

=λ

x
y


It follows that Dy=λx and DTx=λy. Also D(-y)=-λx and DTx=-λ(-y), therefore, -λ is

an eigenvalue and

 x

−y

 is it’s corresponding eigenvector, hence the eigenvalues of G are

symmetric.

It is clear that if we have k linearly independent eigenvectors of λ, the construction will

produce k linearly independent eigenvectors for -λ, thus the multiplicity of -λ is also k.

3⇒ 2 : If 3 holds, then we replace λ by -λ then the characteristic polynomial remains the

same, this means that the characteristic polynomial is an even function.

2⇒ 1 : Using notation of lemma 4.1.1, if c2k+1 = 0, k=1,2,... then G has no odd cycles and

hence G must be bipartite.

�
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Theorem 4.1.4 [22]. The adjacency matrix eigenvalues of the complete bipartite graph kp,q

are zero with multiplicity (p+q-2) and ±√pq.

Proof :

let kp,q be bipartite graph with bipartition (X,Y) where X have p vertices and Y have q

vertices. The adjacency matrix of kp,q is of the form D( kp,q)=

 0 Jp,q

Jq,p 0


Where Jr,s is r×s matrix whice all entry is once. So Jr,s is symmetric and has a rank 1, hence

the rank of D(kp,q)=rank Jp,q + rank Jq,p =1+1=2. So D(kp,q) has two nonzero eigenvalues

say λ and -λ, we know that the sum of the squares of the eigenvalues of D(kp,q) is equal to

twice the number of edges (i.e λ2 + (−λ)2=2|E(G)|), thus λ=±√pq. The tras of D(kp,q) is

zero, so the other eigenvalue is 0 with multiplicity p+q-2.

�

4.1.3 Spectral of regular graphs

Theorem 4.1.5 [2] Let G be a k-regular graph of order n, then

1. k is an eigenvalue of G.

2. If G is connected, every eigenvector corresponding to the eigenvalue k is a multiple of

1 and the multiplicity of k as an eigenvalue of G is one.

3. For any eigenvalue λ of G, |λ| ≤ k.

Proof :

1. Let D be adjacency matrix of graph G, then any rows of D contains k 1’s, thus the

vector 1 is an eigenvector of corresponding eigenvalue k.
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2. Let D be n×n adjacency matrix of a graph G and let xT=[x1, · · · , xn] be a positive

eigenvector of eigenvalue k. Let xj be the largest entry of x (i.e xj=max {x1, · · · , xn}).

The product of jth row of D with the vector x is

Djx=
∑

vi∈N(vj)
xi = xi1 + xi2 + · · ·+ xik = kxj

Proving the case when xi1 = xi2 = · · · = xik = xj.

Now let vi1, vi2, · · · , vik be neighbors in G. As before, the entries xp in a vector x that

corresponds to these neighbors must all equal to xj. G is a connected graph, so all

vertices of G have neighbors of vi. Repeating the same argument for all neighbors .

Hence x=xj[1, 1, · · · , 1]T , and every eigenvector of k is multiple of 1. The space eigen-

vector x of the eigenvalue λ is one dimensional and the multiplicity of the eigenvalue

k of A is 1.

3. Let λ be an eigenvalue of adjacency matrix of a graph G and let y be an eigenvector of

the eigenvalue λ. Let yj be the largest absolute value of the entries of Y. The product

of jth row of D with y.

Djx=
∑k

P=1 yip = λyj

So

|λ| |yj| =
∣∣∣∑k

p=1 yip

∣∣∣ ≤∑k
p=1 |yip| ≤ k |yj|

Thus |λ| ≤ k

�

4.2 Eigenvalues of Laplacian matrix

The Laplacian matrix of a graph and it’s eigenvalues can be used in several areas of mathe-

matical research and have various applications in physical and chemical theories.

In this section we will study the eigenvalues of an undirected graph G by using the Laplacian
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matrix.

For the graph in figure 3.2 the Laplacian matrix is given by

L=



2 −1 0 −1

−1 3 −1 −1

0 −1 2 −1

−1 −1 −1 3


With eigenvalues

0, 2, 4, 4

We can see that all the eigenvalues are real numbers. However there is one special

eigenvalue, namely 0. All other eigenvalues are non negative, so in fact we have the following

result.

Lemma 4.2.1 [14] The Laplacian matrix L(G) is singular and positive semidefinite.

Proof :

Let λ be an eigenvalue of a matrix L(G) with corresponding eigenvector V

(L(G)− λI)V = 0

λV = L(G)V

λ = V TL (G)V

λ = V TQQTV

λ =
(
QTV

)T
QTV ≥ 0

Furthermore, the summation of each column is zero so L(G) is singular. �

Remark 4.2.1 The eigenvector 1 of Laplacian matrix of G is an eigenvector of adjacent

matrix if and only if the graph is regular graph.
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Theorem 4.2.1 [15]

A graph G has k connected components iff the algebraic multiplicity of 0 in the Laplacian

is k.

Proof :

First we show that the multiplicity of the zero eigenvalue is at least the number of connected

components. Assume G is a graph with k connected components, so we have V(G1), V(G2),

. . ., V(Gk) are the disjoint sets of G. Define k vectors x1, x2, . . ., xk such that each entry is

define as

xj=


1√
|vi|

if j ∈ V(Gi)

1 other wise

So ‖xi‖ = 1 for i=1, 2, . . . k. Also 〈vi, vj〉 = 0, since vi and vj are disjoint. Thus Lxi=0,

hence there is a set of k orthonormal vectors that are all eigenvectors of L, with eigenvalue

0.

Now, to see that the number of 0 eigenvalues is at most the number of connected components,

we know xTLx =
∑

i<j,(i,j)∈E (vi − vj)2 is equal 0 if x is a constant in every connected com-

ponent. Now we will see there is no way of finding a k+1 vector x that is a zero eigenvector,

and orthogonal to x1, x2, . . ., xk. Notice that x must be nonzero in some coordinate, hence

suppose that x is nonzero in the coordinate vi, otherwise constant on all xi, in which case x

can not be orthogonal to xi, so there can be no k+1 eigenvector with 0 eigenvalue. �

4.3 Comparing the largest eigenvalue of matrices re-

sulted by Boolean operation

In this section we will compare the largest eigenvalue of matrices that is generated by Boolean

operation.

69



Let A be an n×n matrix. And let λ1 (A) denotes the largest eigenvalue of A. In [19] we can

show that if A is a nonnegative matrix, then λ1 (A) > 0. We need the following result.

Lemma 4.3.1 [20] If A and B are symmetric n×n matrices, then

λ1 (A+B) ≤ λ1 (A) + λ1 (B)

Proof :

Recall λ1 (A)=max‖x‖=1

{
xTAx

}
.

So,

λ1 (A+B) = max‖x‖=1

{
xT (A+B)x

}
≤ max‖x‖=1

{
xTAx

}
+max‖x‖=1

{
xTBx

}
≤ λ1 (A) + λ1 (B)

�

Theorem 4.3.1 [19] Let A and B be 0-1 matrices of order n×n. Let λ1 and µ1 be the largest

eigenvalue of A and B, respectively. If A≥B, then λ1 ≥ µ1

Lemma 4.3.2 [8] Let B1 and B2 be antiadjacency n×n matrices of G1 and G1 respectively.

Then,

(B1 ∨B2) + (B1 ∧B2) = B1 +B2 and consequently,

λ1 ((B1 ∨B2) + (B1 ∧B2)) = λ1 (B1 +B2) ≤ λ1 (B1 ∨B2) + λ1 (B1 ∧B2)

Proof :

Clear, by the definition of ∨, ∧ and lemma 4.3.1 �

Now, we can compare the largest eigenvalues between graphs joind by AND and OR opera-

tions on antiadjacency matrices.
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Theorem 4.3.2 [1] Let B1 and B2 be antiadjacency matrices of undirected graph with n

vertices. Then,

λ1 (B1 ∧B2) ≤ λ1 (B1) + λ1 (B2) and λ1 (B1 ∨B2) ≤ λ1 (B1) + λ1 (B2).

Proof :

Suppose B=B1 ∨B2, we know λ1 (B) ≥ 0.

Therefore

λ1 (B1 +B2)− λ1 (B) ≤ λ1 (B1 +B2)

By Lemma 4.3.1 and Lemma 4.3.2 we conclude

λ1 (B1 ∧B2) ≤ λ1 (B1 +B2)− λ1 (B)

≤ λ1 (B1 +B2) ≤ λ1 (B1) + λ1 (B2)

A similar proof works for the second inequality. �

Now, we can compare the largest eigenvalues between graphs connected by OR and XOR

operations on antiadjacency matrices.

Theorem 4.3.3 [1] Let B1 and B2 be antiadjacency matrices of directed graph. Then,

λ1 (B1 ⊕B2) ≤ λ1 (B1 ∨B2) ≤ λ1 (B1 +B2)

Furthermore, if the graphs are undirected then.

λ1 (B1 ⊕B2) ≤ λ1 (B1) + λ1 (B2)

Proof :

We know by lemma 4.3.2 B1 ∨B2 ≤ B1 +B2.

Also B1 ⊕B2 6 B1 ∨B2 ≤ B1 +B2

By Lemma 4.3.1 and theorem 4.3.1 we conclude

λ1 (B1 ⊕B2) 6 λ1 (B1 ∨B2)

≤ λ1 (B1) + λ1 (B2)
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Now, we can compare the largest eigenvalues between graphs joined by AND and NXOR

operations on antiadjacency matrices.

Theorem 4.3.4 [1] Let B1 and B2 be antiadjacency matrices of directed graph. Then,

λ1 (B1 ∧B2) ≤ λ1 (B1⊕̄B2)

Proof :

We know B1⊕̄B2 6 B1 ∨B2 ≤ B1 +B2

By Lemma 4.3.1 we conclude λ1 (B1 ∧B2) ≤ λ1 (B1⊕̄B2)

�

4.4 Page Rank Application

In 1998, Brin and Larry Page has presented a page rank algorithm, the aim of this algorithm

is to follow some difficulties with content-ranking algorithm of early search engines. Page

Rank (score) is a positive real number used to measure the importance of website page by

using hyperlinks between pages. A simple graph in figure 4.1 is for website represented by

a directed graph. Each page is represented by node vk. In figure 4.1 we have three Pages

or nodes. The links to page one are called backlinks for page one. The linking of a page

produce a diagraph such as figure 4.1. A page with no outgoing links is called dangling

node. In figure 4.1 each vertex has at least one outgoing link, so the graph has no outgoing

nodes. Also we can see that the graph is strongly-connected.
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Let xk be the number of pages that link to vertex x.

v2 v1

v3

Figure 4.1

To calculate the page rank(score) we find The eigenvectors corresponding to the largest

eigenvalue of 1, the link matrix is defined as

A =


1
ni

i ∈ Lj

0 o.w

Where

Lj is the set of pages that link to page i.

ni is the number of pages that are linked to page j.

For example, the link matrix A of the digraph G in figure 4.1 is

A =


0 0 1

2

1
2

0 1
2

1
2

1 0


The eigen values of A is λ1 = 1, λ2 = −1

2
, λ3 = −1

2

The eigen vector that is associated to λ=1 is


4

6

8


So we can see that page 3 is the most important page in research and the second one is page

2, then page 1.

Definition 4.4.1 A matrix An×n is called column stochastic if it is non negative and the

sum of the entries in each column is 1.
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Theorem 4.4.1 [21] If An×n is a stochastic matrix, then its eigenvalues λi have the property

|λi| ≤ 1

And λ=1 is always an eigenvalue of A.

Proof :

Since λ1 ≤ ‖A‖ and since A is stochastic matrix, then

λ1 ≤ ‖A‖ = 1

Where ‖.‖ is the ∞ or 1 matrix norm, depending on whether is row or column stochastic,

respectively. On other hand, let x∈Rn be a vector whice all entry are once. Because A

is stochastic, we either have Ax=x or xTA=xT (ATx 6= x) depending whether A is row or

column stochastic respectively. That is, λ = 1 is always an eigenvalue of A. But this also

means that λ1 ≥ 1, where combined with λ1 ≤ ‖A‖ = 1 implies that λ1 = 1, therefore, every

eigenvalue of A must satisfy λ1 ≤ 1 �

There are two challenges to the Page Rank algorithm, namely Nonuniqueness and Dan-

gling nodes.

4.4.1 Nonuniqueness.

The main goal of Page Rank algorithm is to find scores of pages and compare between

the pages by these scores. To calculate the Page Rank score we will find an eigen vectors

that corresponds to the eigen value 1, this will make our ranking to be unique. Since we

have only one eigenvector that represents the eigenvalue 1, which is true if the web is a

strongly connected digraph, but if the web is disconnected, then we can have a higher di-

mensional eigen space of eigenvalue 1. For example the link matrix of graph G in figure 4.2 is
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

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0


The eigen values are λ1 = 1, λ2 = 1, λ3 = −1, λ4 = −1

v1 v2

v4
v3

Figure 4.2

Theorem 4.4.2 [9] Let W be a web with r components W1, W2, . . ., Wr. Then the

eigenspace of the eigenvalue 1 is at least r-dimensional.

Proof :

Suppose we label the web by assigning the vertices in W1 first, then the vertices in W2,

etc., then the link matrix will have a block diagonal from like

A =



A1 0 · · · 0

0 A2 · · · 0

...
. . . 0

0 0 · · · Ar


Where A1 is the link matrix for the web W1. If each Ak is column stochastic, so each has

an eigenvector vk with eigenvalue 1, and that can be expanded into a eigenvector wk for A

by letting
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w1 =



v1

0

...

0


, w2 =



0

v2
...

0


, etc.

Each of these eigenvector is linearly independent and part of eigenspace V1 of eigenvalue.

�

For n pages with multiple subwebs we can generate unambiguous importance score as

follows

M=(1−m)A+mS

Where S is an n×n matrix with all entries are 1
n

that represent equal probabilities of jumping

to any page on web, that means S is a column stochastic matrix. m is a positive number

between 0 and 1, the original value of m used by Google was 0.15.

Now we will show that the matrix M has one-dimensional eigenspace corresponding to the

eigenvalue 1 when m>1

Theorem 4.4.3 [4] If M is a positive, column-stochastic matrix, then any eigen vector in

v1 (M) is of all positive or all negtaive component.

Proof :

Suppose there exist an eigen vector v of the matrix M.Since M is column-stochastic matrix

so for each column ∑n
i=1mij = 1

Also, M is positive, we know that

|mij| = mij
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Now suppose Mv=v. Therefore, ‖M‖1 = maxj
∑n

i=1 |mij|, we see that

‖v‖1 = ‖Mv‖1

=
n∑
i=1

∣∣∣∣∣
n∑
j=1

mijvj

∣∣∣∣∣
≤

n∑
i=1

n∑
j=1

|mij| |vj|

=
n∑
j=1

n∑
i=1

mij |vj|

=
n∑
j=1

|vj| = ‖v‖1

That means that the inequality must be an equality, so∑n
i=1

∣∣∣∑n
j=1mijvj

∣∣∣ ≤∑n
i=1

∑n
j=1 |mij| |vj|

The equality is true only if mij vj ≥ 0 for each i and j which implies vj ≥ 0 or if mijvj

≤ 0 for each i and j which implies vj ≤ 0. Furthermore, since

vi =
∑n

j=1mijvj

We must have that either all v are zero or all are positive (negative), since v is an eigenvector,

it is not the zero vector. �

Lemma 4.4.1 [4] Let v and w be linearly independent vectors in Rm, m≥2. Then for some

value of s and t that are not both zero, the vector x=sv+tw has both positive and negative

components.

Proof :

Let v and w be linearly independent vectors, so neither v nor w is zero. Let d=
∑

i vi. If

d=0, then v must contain componants of differant sign, and taking s=1 and t=0 yields the

conclusion.

If d6=0, set s=-
∑

i wi

d
, t=1 and x=sv+t. Since v and w are independent x 6=0,.However,∑

i xi = 0, we conclude that x has both positive and negative components. �
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Theorem 4.4.4 [4] If M is a positive, column-stochastic matrix, then v1 (M) has dimension

1.

Proof :

Suppose v and w are two linearly independent eigenvectors in the subspsce v1 (M), we

know x=sv+tw ∈ v1 (M) for any real numbers s and t that are not both zero, and x have

components that are all negative or all positive, by lemma 4.4.1 for some s and t the vector

x must contain a mixed sign, that is contradiction.

So we conclude that v1 (M) can’t contain two linearly independent vectors, and so has

diminution one.

4.4.2 Dangling nodes

A dangling node problem exists when a vertex in the web with out-degree is zero (i.e with

no links). This node produce a column of zeros in a links matrix. That implies that a link

matrix is not column stochastic, since some column may sum to zero.

To deal with this problem we have the following theorem Perron–Frobenius.

Theorem 4.4.5 [9] If A is a matrix with all positive entries, then A contains a real eigen-

value ρ such that :

1. For any other eigenvalue λ, we have |λ| < ρ.

2. The eigenspace of ρ is one-dimensional and there ia a unique eigenvector x=

[
x1 x2 · · · xp

]T
with eigenvalue ρ such that xi > 0 for all i and

∑p
i=1 xi = 1

This eigenvector is called the Perron vector.

For the proof of the theorem above we refer the reader to [16].
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For example, the link matrix of graph G in figure 4.3 is



0 1
3

1
3

0

0 0 1
3

0

0 1
3

0 0

1 1
3

1
3

0


. The eigen values are

λ1 = 0, λ2 = 0, λ3 = −1
3
, λ4 = 1

3

The eigenvector of ρ = 1
3

is



1
6

1
12

1
12

2
3


.

So we can see that page 4 is the most important page in research and the second one is page

1, then page 2 and 3.

v1 v2

v4
v3

Figure 4.3
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