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P300-Speller is one of the most popular paradigm for constructing Brain
Computer Interface (BCI) system that allows subjects to type letters by focusing
on a specific target on a computer screen. When BCI system recognises a
different command than the subject’s intentions, an Error-Related Potentials
(ErrP) occurs from the subject’s brain as a response. Researchers aim to build
classifiers for detecting ErrPs for single subjects. The aim of this work is to
build a transfer learning classifier for detecting ErrPs across multiple subjects.
We propose two different ensemble approaches for ErrP detection; Random
Forest (RF) and ensemble linear Support Vector Machines (SVMs). The effect
of different parameters and methods in a pre-processing stage are studied in
order to find the best combination for increasing the detection sensitivity and
specificity among different subjects. We obtain 68% Area Under Curve (AUC)
at F3 electrode across multiple subject by using the ensemble linear SVM. We
show that the F3 and C2 are the best electrodes for detecting ErrP. We also
show that it is possible to extract the most useful features from centro-frontal
electrodes by using 30 PCA components. We obtain 78% (AUC) by using RF
with 32 features. To support our work, we compare our results with the Linear
SVM classifier where our results were superior. We concluded that both RF and
ensemble linear SVM can cope with the heterogeneity among different subjects.
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Abstract

P300-Speller is one of the most popular paradigm for constructing Brain

Computer Interface (BCI) system that allows subjects to type letters by

focusing on a specific target on a computer screen. When BCI system recog-

nises a different command than the subject’s intentions, an Error-Related

Potentials (ErrP) occurs from the subject’s brain as a response. Researchers

aim to build classifiers for detecting ErrPs for single subjects. The aim of

this work is to build a transfer learning classifier for detecting ErrPs across

multiple subjects. We propose two different ensemble approaches for ErrP de-

tection; Random Forest (RF) and ensemble linear Support Vector Machines

(SVMs). The effect of different parameters and methods in a pre-processing

stage are studied in order to find the best combination for increasing the de-

tection sensitivity and specificity among different subjects. We obtain 68%

Area Under Curve (AUC) at F3 electrode across multiple subject by using

the ensemble linear SVM. We show that the F3 and C2 are the best elec-

trodes for detecting ErrP. We also show that it is possible to extract the most

useful features from centro-frontal electrodes by using 30 PCA components.

We obtain 78% (AUC) by using RF with 32 features. To support our work,

we compare our results with the Linear SVM classifier where our results were

superior. We concluded that both RF and ensemble linear SVM can cope

with the heterogeneity among different subjects.
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Chapter 1

Introduction

Brain Computer Interface (BCI) is a communication system that can be used

to detect characteristics and extract the patterns of the brain signals from

a technique to determine the subject’s intent [72, 58]. There are a variety

of techniques which are used to read the activity of a brain such as Elec-

troencephalography(EEG), Electromyography (EMG), etc. EEG is one of

the most popular techniques available to record signals from the nerves in

the scalp[68]. One type of BCI that uses natural responses of the subject’s

brain to external visual stimuli is called a P300-Speller [57]. This type allows

subjects to type letters by focusing on a specific target on a computer screen.

Unfortunately, the nature of the brain signals in non-invasive techniques,

especially EEG, has highly complex and low signal-to-noise ratio (SNR) in

addition to misinterpret the signals from the computer sometimes [25, 46].

Thus, it is difficult to use BCI outside the research laboratory. To overcome

these problems, several approaches have been explored. One approach that

has been proposed for detecting errors in EEG-based BCI is an Error related-

potential (ErrP) by means of cerebral orders that generates a response after
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the subject receives feedback.

In general, BCI systems require extensive subject training [39]. The main

aim of this work is to build a transfer learning classifier for detecting the ErrP

across multiple subjects (no need for previous training among subjects). This

classifier is used for detecting ErrP within the Context of P300-speller. It

also aims to improve the final decision of P300 classifier to achieve a reli-

able BCI system. This may allow disabled individuals to interact with their

environment in real life and a robust BCI system with high accuracy which

might be achieved.

In this work, we apply Random Forest (RF) as one of the state of the

art techniques that are used in classification to discriminate the ErrP across

multiple human subjects. RF is an ensemble machine learning technique pro-

vides embedded classification and feature selection approach. Since RF can

capture interaction and complex relationships in the data [22], it can cope

with the heterogeneity among different subjects.

In addition to the RF, we propose a new ensemble machine learning

technique that can effectively detect the ErrP by combining multiple linear

Support Vector Machines (SVMs). We refer to it as ensemble linear SVM. In

addition we use Principal Component Analysis (PCA) to extract the most

useful features from Anterior Cingulated Cortex region.
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1.1. CONTRIBUTIONS

1.1 Contributions

This thesis contributes to the field of BCI by detecting ErrP signals. We

achieved the following contributions:

1. Unlike the existing work which focus on single subjects when detect-

ing ErrP, we apply comprehensive methodology for building a transfer

learning classifier to detect ErrP among a wide array of subjects. To

deal with the possible heterogeneity of signals across multiple human

subjects, we study two ensemble approaches RF and ensemble linear

SVM.

2. We apply state of the art techniques that are used in pre-processing

steps exhibit different performance to figure out the most useful pa-

rameters across multiple human subjects.

3. We compare our results with a linear SVM technique, which is com-

monly used in a BCI system to support this study. Unlike many existing

studies which rely on accuracy as a performance measure, we use the

area under ROC curves since this measure is more comprehensive than

accuracy.

1.2 Thesis Outline

This research is organised as the following: we provide an introduction and

our contributions in chapter 1. The rest of this thesis is organised as what

follows: In chapter 2, we provide a background related to this work and

a summary of some previous works related to our work. In chapter 3, we

describe a benchmark and our methodology of this thesis. In chapter 4, we
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1.2. THESIS OUTLINE

provide our results and discussion. Finally, we provide conclusion, two block

diagrams of how a real-time detector works and future work in chapter 5.
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Chapter 2

Background

In this chapter, the theoretical background needed to understand the remain-

ing parts of the thesis is presented. This chapter is organised as follows. In

the first section, the concepts of BCI are explained. In the second section,

we describe Electroencephalogram (EEG) then we describe the P300-Speller,

including the concepts of ErrP in the third section. The signal pre-processing

methods (BSS and Buterworthfilter) will be describe in the section four. The

fifth section describes features extraction that contains the concepts of Prin-

ciple Component Analysis (PCA) as a feature extractions tool. The sixth

section describes Linear Support Vector Machine (SVM) and Random For-

est(RF). The seventh section describes a Receiver Operating Characteristics

(ROC) that will be used in this work to evaluate our results. The final section

covers the literature review related to this work.

2.1 Brain Computer Interface(BCI)

Brain Computer Interface (BCI), also referred to as a brain machine in-

terface (BMI), Human Computer Interaction (HCI) or sometimes called a

Mind-Machine Interface (MMI), is mainly used as one of the most promis-
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2.2. ELECTROENCEPHALOGRAM (EEG)

ing systems, which provides a direct communication link between the sub-

ject’s brain to a computer for reflecting their intentions to the external world

[26, 49, 2].

There are three main types of BCI: invasive BCI, partially invasive BCI

and non-invasive BCI[30, 34]. An invasive BCI is any BCI technology which

involves implanting a foreign device into the subject’s brain, while noninva-

sive BCI is recorded from the scalp directly such as EEG. Partially invasive

BCI are implanted inside the skull of the subject.

There are certain set of phases that must be considered when design-

ing a BCI system: data acquisition, pre-processing, features extraction and

classification[55]. Figure 2.1 illustrates the block diagram of the BCI. The

first step represents an EEG technique in signal acquisition stage, which

are used to capture the brain activity. In the pre-processing stage, fil-

ters are used to increase the signal-to-noise ratio and to avoid artifact in

a suitable form for feature extraction. The feature vectors are often of high

dimensionality[50, 14]. To reduce the dimensionality of the features, feature

selection can be performed. In this step, the most useful features are chosen,

while other are omitted. Finally, the classification stage classifies the features

from feature extraction stage in order to decipher the subject’s intentions.

2.2 Electroencephalogram (EEG)

An electroencephalogram (EEG) is a non-invasive technique that reads elec-

trical activity generated by the brain from the scalp surface after being
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2.2. ELECTROENCEPHALOGRAM (EEG)

Figure 2.1: Block diagram of the BCI work process

attached to electrodes on the subject’s scalp [72]. In Figure 2.2, the non-

invasive EEG electrodes on the subject’s scalp is shown. It measures the

brain’s electrical activity to be viewed as brain waves and provide them to a

BCI system. In the field of neuroscience, EEG reflects the firing of neurons

in the subject’s brain[70]. It is characterised by easy of use, high temporal

resolution and has low setup cost[3]. It is the most common type of non-

invasive BCI[30, 76].

Figure 2.2: EEG electrodes [42]

In general, BCI has four different types of EEG activity patterns, which
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2.3. BCI P300-SPELLER

are used as the BCI system inputs: The P300 event-related potentials (ERP),

sensorimotor rhythms (SMR), slow cortical potentials (SCP) and steady-

state visually evoked potentials (SSVEP) [24, 43]. The ERP is one of the

most reliable and popular activity pattern in the EEG recording used for

constructing BCI systems, but it is not easy to be detected [72]. It occurs as

changes in EEG in the response of the stimulus such as visual stimulus. It

has different components as shown in Figure 2.3.

Figure 2.3: Components of Event Related Potentials (ERP) [20]

2.3 BCI P300-Speller

P300 is one type of ERP components typically that evoke a positive peak,

visible in EEG at about 300 ms after the stimulus onset[62, 51, 52, 11]. One

of the greatest advantages of the P300 is that it does not require intensive

subject training [20]. It appears as a positive peak about 300 ms after the

stimulus onset.
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2.3. BCI P300-SPELLER

P300-Speller paradigm presents one of the most widely BCI system [20].

The first one was designed by Farwell and Donchin [18]. It exploits the

P300 component of ERP to enable a subject to type letters by focusing on

a specific target on a computer screen. It is very effective in detecting the

characters[51].

In this paradigm, there is a 6× 6 matrix of symbols. It has 26 letters of

alphabet and 10 digits (See figure 2.4). Each row and column of the matrix is

flashed in random order[59]. By analysing the P300 using a machine learning

classifier, it is possible to identify the target letter by identifying the row and

column. The selected row and column have one common letter.

P300-Speller paradigm has been modified in many ways such as modify

the way of random flashing. [73] proposed a random flashing way to improve

the spelling accuracy by constructing six pairs of groups of six letters instead

of the traditional way of the random flashing. After the analyses of the P300,

the target letter is shown on the centre of the screen to get feedback.

There are several barriers to be handled in P300: First, detecting the

P300 in a single trial is very difficult, and the number of repetitions is prede-

termined for each user to get the best trade-off between speed and accuracy.

Increasing the number of trials leads us to increase the time needed to ob-

tain stable and reliable (ERP)[54]. The second problem is the nature of

the brain signals, especially non-invasive techniques (e.g. EEG) have a high

complexity and low signal-to-noise ratio of the ERP. Noisy EEG data can

be challenging due to the low signal-to-noise ratio[45]. The third problem

is related to the system, sometimes BCI misinterprets the signal related to
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2.3. BCI P300-SPELLER

Figure 2.4: P300-Speller[63]

P300 classification[46]. All these factors increased the need to look for a way

to detect errors by a technique that gets the P300 accurately and fast.

2.3.1 Error Related Potential(ErrP)

The error-related potential (ErrP) is an ERP generated from the subject’s

brain as a response when a BCI recognises a different command than the sub-

ject’s intentions. It was first proposed by Falkenstein in 1991[16]. A different

command is generated when a subject makes a mistake or the BCI misinter-

prets the subject’s intent[61]. It is generated at the end of each trial after

the feedback onset[60, 46]. Recently, ErrPs have been used as feedback in-

structions for some devices to correct the errors[23]. It has been proposed for

detecting errors in BCI system to reduce the number of errors and trials[11].

The shape and latency times of ErrP depending on the kind of paradigm[9].

There are different types of ErrPs characteristics that were discovered:

response ErrP is the most known one . It occurs when subjects perform an
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2.3. BCI P300-SPELLER

incorrect response action to a stimulus. Feedback ErrP occurs when subject

has to be made aware of the mistake through an external feedback. Inter-

action ErrP (ErrPi) occurs when the system behaves differently from the

subject intent, or the subject generates an error by himself (eg. changes his

mind)[74, 71]. Some authors make no distinction between them [60]. In this

thesis, we will make no distinction between them, either.

The vast majority of the authors reported that ErrP is centralised from a

few electrodes: [Cz], [Cz and FCz] and fronto-central areas[9]. See figure 2.5

for the location of these electrodes. Each electrode has a letter and a num-

ber. The letter identifies the lobe (F: Frontal, T: Temporal, C: Central, P:

Parietal and O:Occipital) and the number identifies the hemisphere location.

Figure 2.5: EEG channel montage[46]
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2.4. PRE-PROCESSING OF ERRP DATA

To analyse ErrP, we follow the same steps which are shown in Figure 2.1

to find out the ErrP characteristics by extracting signals. The main aim of

the classifier is to make a decision about the ErrP signals in two classes, one

of them is for correct trial, when the system behaves the same as intent of

the subject, and other is for error trial. If there is an error, other options

will be taken into account to correct it like using language models[1]. It is

used to correct the target letter. In our research, we will focus on detecting

ErrP signals without focusing on error correction.

The length of signals depend on an experiment, but typically is 600ms[8].

Recently, Spuler [69] shows that a window of 200 ms to 900 ms for classifi-

cation ErrPs gave the best results in motor-imagery. The motor-imagery is

a mental process in which a subject imagines a movement [47].

2.4 Pre-processing of ErrP data

The classification of ErrP in EEG data is difficult due to the low signal-to-

noise ratio (SNR) and artifacts noise often produced by the eye movements or

blink of the subject during EEG recordings [32]. To overcome these problems,

there are methods to remove noise without removing the useful information

of EEG signals, such as Blind Source Separation (BSS) and butterworth filter

types, which are described in the next sections.

2.4.1 Blind Source Separation (BSS)

BSS is a common way used to recover the source signals from mixtures of

unknown signals without prior information about the sources[35, 12]. The

basic block diagram of the BSS process is shown in Figure 2.6. In this figure,
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2.4. PRE-PROCESSING OF ERRP DATA

X is a mixture of unknown signals that has the mixed source vector S(n),

noise and interference signals to produce X(n).

Figure 2.6: The basic block diagram of the BSS[12]

An optimisation algorithm like Independent Component Analysis (ICA)[13],

which is now a standard to find a matrix W (the inverse of A) of BSS. It has

the capability to separate and extract the source signals Y(n)[12, 64]. W is

used to restore the source signals including noise and artifacts. The basic

idea of ICA is shown in figure 2.7. BSS can be expressed as[48]:

Am×m.Sm×n=Xm×n Where A represents an mixing matrix m×m, and Y =

WX ∼= S.

Figure 2.7: The basic idea of ICA[27]
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2.4. PRE-PROCESSING OF ERRP DATA

ICA has many algorithms. One of them is called fastICA[28], which is

used to estimate independent components for solving the BSS problem. It

supports good accuracy and fast speed and it can be easily considered as a

scalar shifted version of an ICA algorithm [64]. The algorithm of fast ICA

is[12, 4]:

Algorithm 1 The algorithm of fast ICA

1. Initialise randomly vector w(0) and normalise it to unity. Let k = 1.

2. Update w(k) = Ê{x(w(k−1)Tx)3}−3w(k−1) by using Newton phase.

The expectation operator can be estimated using a large number of

samples.

3. Normalise w(k) to unity length. w(k) = w(k)
||w(k)||2 .

4. If |wT (k)w(k− 1)| is not close to 1, then set k = k+ 1 and repeat step

2, Otherwise, output vector w(k).

5. If there are n independent components to be estimated, then the above

algorithm run for n times.

The BSS algorithm is used to overcome the eye noise (eye movements

and blink) in ERP during multi-channel EEG recording[77, 33]. Joyce[31]

described a completely automated method for eliminating eye noise using

BSS algorithm and Electrooculography(EOG) channels. EOG is a technique

used for measuring the standing corneal-retinal potential (CRP) [66]. Flag

those components that invert.

This algorithm demonstrates how to use the BSS algorithm for cleaning

the eye noise from EEG data. It consists of five steps:

1. Decompose the EEG data onto a set of components using a BSS algo-
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2.4. PRE-PROCESSING OF ERRP DATA

rithm.

2. Reverse the sign on all lower and horizontal EOG channels (i.e., mul-

tiply signals by -1) and again decompose data onto components using

a BSS algorithm.

3. identify the components that correlate above a certain level (correlation

threshold) with the pre-processed lower and horizontal EOG channel

data.

4. Flag BSS components with high power in the low frequency band.

5. Remove from the data those components identified in Step 2, and those

that were identified in both Steps 3 and 4.

2.4.2 Filtering

Filtering is a pre-processing step. It is used to improve the signal-to-noise

ratio[75]. Infinite Impulse Response (IIR) filters are widely used in many

applications, such as EEG signal processing[75]. The general equation of an

N th order IIR filter can be expressed as follows:

y(n) =
M∑
i=0

bix(n− i)−
N∑
i=0

aiy(n− j) (2.1)

Where bi and ai are the coefficients that define the filter, N is the order

of filter, n: the point that is to be calculated, x: input signal. A filter can

be characterised by its frequency response : low pass, high pass, band stop

and band pass.

The transfer function of IIR filters can be expressed as follows:

H(z) =

∑M
i=0 biz

−i

1 +
∑N

j=0 ajz
−j

(2.2)
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The Butterworth filter is a type of the IIR filters. This type is an analogue

filter that was described by Stephen Butterworth in 1930[7]. It has been

originally used to allow a certain frequency to pass to its output and reject

all other frequencies. The transfer function for butterworth filter is[67]:

|H(Ω)| = 1√
1 + ( Ω

Ωp
)2N

(2.3)

Where Ωp is the cutoff frequency and Ω is the analog frequency of the

first specifications.

2.5 Features extraction

In EEG signals, the features can be applied to a classifier directly from the

raw data, but in this method there is no clear patterns [38, 41]. It is important

to understand what features are used. A great variety of features extraction

methods are used in the ERP data. The most known of these methods that

are used to enhance the classification accuracy is[42]: ICA used as a features

extraction tool and Principal Component Analysis (PCA).

2.5.1 Principle Component Analysis (PCA)

PCA is a statistical algorithm that is used to extract the important features,

reveal features that are sometimes hidden from confusing data-sets and re-

duce a complex data to a lower dimension as a set of principal components

[65]. Figure 2.8 illustrates the basic idea of PCA.

Figure 2.8: The basic idea of PCA.
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As a first step, the mean of all the data points in each of the data dimen-

sions is computed and subtracted for each dimension defined as:

X =

∑N
i=0 xi
N

(2.4)

Where x: data point, X is the mean and N is the number of data points.

Secondly, calculating a covariance matrix of the result data from the first

step. The covariance between X and Y is:

Cov(X, Y ) =

∑N
i=0(Xi −X)(Yi − Y )

N
(2.5)

Since the data is m dimensional, the covariance matrix will be m x m

between dimensions. The covariance matrix for an imaginary square dimen-

sional (m×m) will be:

C =



Cov(X,X) Cov(X, Y ) · · · Cov(X,m)

Cov(Y,X) Cov(Y, Y ) · · · Cov(Y,m)

...
...

. . .
...

Cov(m,X) Cov(m,Y ) · · · Cov(m,m)


(2.6)

Where Cov(X,X) is also the variance.

In the third step, we calculate the eigenvectors and eigenvalues from a

covariance matrix. The eigenvalues of C are defined as:

|C − λI| = 0 (2.7)

where I is the m x m identity matrix. Let λ is the eigenvalue. The eigen-
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2.6. CLASSIFICATION OF ERRP

vectors of C are defined as:

λiui = Cui (2.8)

where ui is the eigenvector. Each of the eigenvector is closely related

to an eigenvalue. The eigenvectors are sorted in descending order by the

eigenvalue, and are called principal components. The highest eigenvector

values are the components of the greater significance and the lower ones can

be ignored. This is called the dimensional reduction [44]. Finally, we choose

k components to form a projection matrix W (every column represents an

eignen vector). We use this matrix to transfer the original data-set onto the

new subspace can be defined as:

y = W T × x (2.9)

2.6 Classification of ErrP

This section gives a brief overview of linear Support Vector Machine (SVM)

and Random Forest (RF) in order to better understand the classifiers that

are used in this thesis.

2.6.1 linear Support Vector Machine(SVM)

In this section, we briefly describe the formulation of linear SVM. SVM is a

machine learning technique that was initiated in [10] for binary classification.

Let (x1, y1), (x2, y2), ..., (xN , yN) is the training dataset , where xi ∈ Rn and

yi ∈ {−1,+1}.

Linear SVM cycles a hyperplane across the training dataset to design an

optimal hyperplane that separates classes(See figure 2.9). This hyperplane
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creates a margin between the classes.

The optimal hyperplane is defined by the equation of:

F (x) = ~w.x− b = 0 (2.10)

where ~w is a vector of weights and b is the bias that would classify the training

data correctly. The margin m is defined by:

m =
1

||w||2
(2.11)

The total margin is:

m =
2

||w||2
(2.12)

Figure 2.9: Linearly Separable SVM[5]

Minimising the ~w will maximise the separability. The maximising margin

can be expressed as a Primal optimisation problem:

min
w,b

1

2
||~w||2 subject to yi(~w.~xi − b) ≥ 1,∀i (2.13)

In the boundary of the margin, there are supporting hyperplanes parallel
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and equidistant vectors called support vectors (α). Any data on or above

the boundary is class +1, and any data on or bellow the boundary is class

-1. They are defined by the following equations of:

F (x) = ~w.x− b = +1 (2.14)

F (x) = ~w.x− b = −1 (2.15)

A new data xi can be classified by evaluating the sign of F (x) with:

F (x) = sgn(~wTx+ b)

= sgn(
N∑
i=0

αiyi(xi.x)− b)
(2.16)

2.6.2 Random Forest (RF)

Random Forest (RF) is an ensemble learning method developed by [6] in

2001 for classification and regression. It runs efficiently on large data, han-

dles thousands of input variables and gives estimates of important variables

[36]. It generates a different subset of variables from the training data (See

Figure 2.10). It aims to train many decision trees and let them vote for the

popular class [17]. A randomly selected subset of variables is used to split

each node.

In RF, the part of training samples is taken out to estimate error and

variable importance. The class assignment is made by the number of votes

from all of the trees. In the regression the average of the results is used.

The random forests algorithm is as follows[40]:
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Figure 2.10: Random Forest

1. Draw ntree bootstrap samples from the original data.

2. For each of the bootstrap samples, grow a tree with the following: at

each node, rather than choosing the best split among all predictors,

randomly sample mtry of the predictors and choose the best split from

among those variables.

3. Predict new data by aggregating the predictions of the ntree trees (i.e.,

majority votes for classification, average for regression).

An estimate of the error rate can be obtained, depending on the training

data, by the following[40]:

1. At each bootstrap iteration, predict the data which is not in the boot-

strap sample (what Breiman calls ”out-of-bag”, or OOB, data) using

the tree grown with the bootstrap sample.

2. Aggregate the OOB predictions as an on the average. Each data point

would be out-of-bag around 36% of the times, so aggregate these pre-

dictions.

3. Calculate the error rate, and call it the OOB estimate of error rate.
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2.7 A receiver operating characteristics (ROC)

A Receiver Operating Characteristics (ROC) is a graphical tool that used for

evaluating, organising and selecting a binary classifier based on their perfor-

mance [19]. There are two class labels in the binary classifier (positive and

negative) and they are not totally separated, so each classifier has four pos-

sible outcomes (True Positive, false negative, true negative, false positive).

These possible outcomes are shown as a matrix called common confusion

matrix. See table 2.1.

Table 2.1: A confusion matrix
Positive Negative

Yes
True

Positives
False

Positives

No
False

Negatives
True

Negatives

Based on the common confusion matrix, we can calculate sensitivity and

specificity as shown in equations 2.1 and 2.2:

Sensitivity =
True Positive

True Positive+ False negative
(2.17)

Specificity =
True Negative

True Negative+ False Positive
(2.18)

ROC plots sensitivity on y-axis and (1 specificity) on x-axis for vary-

ing cut-off points of test values [37]. In ROC analysis, distributions of test

results for positive and negative defined by threshold and shown by its sen-

sitivity and specificity. Each threshold ranging from 0 to 1. To find optimal

threshold point from ROC curve, we can use methods to give equal weight

to sensitivity and specificity.
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We use the area under ROC in this study because ROC curve are more

comprehensive than other measures, such as accuracy. ROC lets use observe

the trade-off between sensitivity and specificity for all possible thresholds in

the study, rather than one value. So looking at the ROC curve is a way to as-

sess the model independent of the choice of a threshold.To obtain the optimal

cut-off point, we calculate the distance for each observed cut-off point, and

locate the point where the distance is minimum. The value of Area Under

Curve (AUC) is between 0 and 1 (or 0 and 100%). This value can be used

to evaluate the classifier. The larger this value is the better classifier is. For

a random classifier (random guess) the area under the ROC curve equals to

50%.

2.8 Literature review

Some studies have already presented ErrP detection and a few studies have

been conducted so far on the online ErrP detection. Since most of the data

for this thesis comes from Margaux et al.[46], it is important to start with

their achievements. They presented the first online P300-Speller that can

detect and correct ErrP. They used the 5DAWN algorithm[56] that provides

orthogonal linear spatial filter. There were five sessions and used the first

four spelling sessions for detecting ErrP, the last session is used ErrP to cor-

rect the trial. The length of the window in their work ranges from 200ms

to 600ms. They also used a mixture of multi-dimensional Gaussian model

as a classifier. To evaluate the ErrP classification, the common confusion

matrix was used, and three quantitative measures were also used to evaluate
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the error correction. They used the second best guess of a trial to correct a

target letter.

Margaux et al.[46] also used bit rate imperfect measure of BCI perfor-

mance to compare the spelling accuracy with and without online correction.

It gives the opportunity to spell the letter again. They also computed the dif-

ference between responses to correct and incorrect feedback at Cz electrode.

They found a negative ErrP between 250 and 500 ms followed by a positive

Errp between 350 and 550 ms in the feedback signal. For the spelling of the

letter, the performance was 64% for fast mode and 80% ±18 in slow mode,

while the sensitivity, specificity and accuracy in error detection was obtained

63%, 88% and 78%, respectively.

In other study by Margues et al.[53], the data by 32 electrodes was

recorded, using 10-10 system. They used a Bandpass filter between 0.1 and

20Hz and down sampling data at 100Hz. They also corrected the errors of

the eye movements using ICA algorithm. The length of the window was

1-600ms. They used a xDWAN as a spatial filter. They used a two-class

naive Bayes classifier. Their result was that specificity was above 90%, while

sensitivity depended on the size of the training set.

Combaz et al.[9] had two groups of subjects. Each group was used in an

experiment. The first group consisted of six subjects, whose data was ob-

served by the researchers to elicit ErrP and compare their results with their

previous study. It aimed to study the possibility of detecting ErrP using sev-

eral classifiers and measuring their accuracy. In their two experiments, they

used ultra low-power 8-channel wireless placed over the frontal, central and
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parietal areas of the brain. The data was sampled-down to 80 data points.

In the detection of P300 ERP, the signal was filtered between 0.3 and 15 Hz

using Butterworth filter with zero-phase 3rd order, and then they cut the

feedback into 800 ms from the stimulus onset. Finally, they built a linear

support vector classifier with a 10 cross-validation to detect ERP.

The second group had two new subjects, they used the classifier from the

first experiment online to detect the P300-Speller. In the detecting ErrP,

the length of the feedback was 2 seconds and the signal was filtered by zero-

phase 3rd Butterworth filter between 0.5 and 15 Hz. They explored that

the ErrP was 320 ms negative peak followed by 450 positive peak in Fz and

FCz. They analysed the difference between the responses to the erroneous

feedback. They corrected the feedback by the sampled-down the signals from

1000 Hz to 100 Hz. They studied the influence of the amount of the train-

ing data of the classification of ErrP. To test the classifying of the feedback

responses, they used a Fisher Linear Discriminant Analysis (FLDA) and a

linear SVM. Before that, the signals were filtered between 0.5 and 30 Hz us-

ing zero-phase 4th order Butterworth filter. They finally confirmed the SVM

outperformed the FLDA for all the subjects except one subject.

Mainsah et al.[45] compared the improvement of various corrective algo-

rithms accuracy, and they compared the performance of spelling correction

with ErrP and non-ErrP offline. In P300 classification, they used data from

the first session to train a Linear Discriminant Analysis(LDA) classifier. In

the second session, They used a LDA classifier to train ErrP classification.

Seno et al.[11] worked on the first online ErrP detection method. They
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applied a dual classifier processing module to handle both P300 Speller and

ErrP classification. In P300, a genetic algorithm was used to extract fea-

tures. For training the features, they used a logistic classifier. During the

training, the speller was used in a copy mode only. In the ErrP detection,

they first used data from Fz to Cz electrodes in the 10-20 system. Then,

they filtered the EEG signals by 1-10Hz bandpass filter. After that, they de-

veloped an determined significant intervals automatically by using the t-test,

and Density-based spatial clustering of applications with noise (DBSCAN)

algorithm[15] to fill holes and small intervals from t-test for classification into

a logistic classifier. Finally, they reached the accuracy of about 60%.

The summary of literature review is described in table 2.2.

Table 2.2: Summary of literature review: papers with quantitative results
are mentioned in the table.
Cite Pre-processing Window Classifier Results

[46]
- Downsampling into 100Hz
- 1-20Hz Bandpass filter
- 5DWAN spatial filter

200-600
ms

Multidimensional
Gaussian model

Accuracy: 78%

[53]
- Downsampling into 100Hz
- 0.1-20Hz Bandpass filter
- xDWAN spatial filter

1-600ms
Two-class naive
Bayes classifier

- Specificity is
above 90%
- Sensitivity depending
on the size of training
set.

[9]

- Downsampling into 100Hz
Two experiments:
- 0.5-15Hz 3rd Butterworth
- 0.5-30Hz 3rd Butterworth

2 sec
Two experiments:
FLDA
Linear SVM

linear SVM
outperforms
FLDA

[45]
- Downsampling to 80 points
(800 ms to 80 points)
- 0.3-15Hz 3rd Butterworth

1-800ms Linear SVM Not available

[11] - 1-20Hz Bandpass filter - Logistic classifier Accuracy: 60%
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Chapter 3

Data and Methods

This chapter introduces the data and our methodology that are used in this

thesis. In the first section of this chapter, we describe the data-sets. In the

second section, we describe our methodology to detect ErrP.

3.1 Data-set

In this section, we introduce the data sets that we use to conduct our ex-

periments. These data was taken from Perrin et al. [46] who collected EEG

data from twenty six healthy subjects. The data sample rate was 600 Hz

and down-sampled at 200 Hz. It was recorded at 56 electrodes placed at

standard positions of the 10-20 system. EOG also was recorded to track the

eye movements that cause eye noise. The subjects were asked not to blink

their eyes during feedback presentation. The size of data equals 13.8 GB.

For each subject, the EEG data is collected under five sessions. The de-

scription of the data is shown in table 3.1. The details of the sessions of each

subject are shown in appendix 1.
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After the last flash of each trial during each session, feedback are pre-

sented about 1.3 seconds (260 data points) at the centre of a visual field.

This period is used to detect the ErrP. The feedback is displayed in the mid-

dle of the screen in a large font. The subject is instructed to keep looking at

the screen and wait for the feedback. For each subject, the sessions from one

to four consist of 240 samples, while the fifth session consists of 100 samples.

Each subject has 340 samples. The subjects participate in the same sessions

but they did not show the same amount of errors. A standard matrix 6× 6

is applied in P300-Speller.

There are two types of spelling copy conditions in our benchmark, corre-

sponding to short and long trials:

1. A fast mode (each item was flashed 4 times).

2. A slow mode (each item was flashed 8 times).

Table 3.1: Description of the dataset
Subject
Number

Total
corrects

Total
errors

Subject
Number

Total
corrects

Total
errors

1 273 67 14 215 125
2 220 120 15 320 20
3 141 199 16 211 129
4 273 67 17 226 114
5 142 198 18 261 79
6 316 24 19 224 116
7 307 33 20 236 104
8 246 94 21 312 28
9 286 54 22 313 27
10 309 31 23 221 119
11 225 115 24 239 101
12 189 151 25 197 143
13 178 162 26 181 159
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3.2 Methodology

To detect the ErrP across multiple subjects, it is important to design an

appropriate methodology which enable us to identify the error or correct

the feedback across multiple human subjects. This section introduces to the

reader the methodology, which is used in this thesis. Figure 3.1 shows our

entire methodology details and the steps that are performed in this thesis.

Our methodology is based on two main classifiers: RF and a proposed new

ensemble linear SVM. We employ RF to figure out the best parameters of

the pre-processing steps in addition to detect the ErrP. We also apply our

ensemble linear SVM to detect the ErrP as an alternative. In addition,

we compare these two classifiers with the state of the art method for Errp

detection, which is based on a single linear SVM.

Figure 3.1: The working process of this thesis.

The first part of the research focuses on extracting the feedback period
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that contains ErrP. We select the electrodes over frontal-central regions,

which generate ErrP[21] and we ignore other data. The frontal-central elec-

trodes namely are in the positions in figure 2.5: (F7, F5, F3, F1, Fz, F2, F4,

F6, F8, FC5, FC3, FC1, FCz, FC2, FC4, FC6, C5, C3, C1, Cz, C2, C4 and

C6). We use this data in our experiments.

Depending on the outcome of the first portion, we apply the pre-processing

steps. The following are the key methodologies utilised in the process of the

pre-processing steps (see figure 3.2).

Figure 3.2: The block diagram of the pre-processing steps.

The BSS algorithm, which is explained in chapter 2, is used to eliminate

the eye noise from EEG electrodes. We study the impact of changing the

different correlation thresholds on the ability of BSS algorithm to correct

data across multiple human subjects. To study the correlation threshold

impact, we use data from Cz electrode, which is usually selected to detect

ErrP[29]. We evaluate the impact by using 10-fold cross validation with RF

as follows:

1. Apply RF to the raw data.

2. Apply BSS algorithm with different correlation thresholds with RF.

3. Compare their results and identify the impact of BSS algorithm to

correct the data across multiple human subjects.
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After applying the BSS algorithm, we apply Butterworth filter in order

to improve the signal-to-noise ratio. In this phase, we apply a butterworth

filter with different parameter (order and cutoff frequencies) that we have

identified by research to figure out the most useful parameters across multi-

ple human subjects. Most of the previous studies use 10Hz or 20Hz lowpass

butterworth filter with 5th order[8]. The (0.5Hz - 30Hz) bandpass butter-

worth filter and (0.3Hz - 15 Hz) bandpass butterworth filter with 3rd order

also is applied in [9, 45]. To figure out the best butterworth filter, we use

data from previous experiment that is used for correcting data. We used

the same steps in the previous evaluation process (Cz electrode, 10-fold cross

validation with RF).

After we use BSS and Butterworth filter to enhance signals, we study the

effects of changing the length of the window in ErrP across multiple human

subjects. According to the literature review, the researchers use 600 ms as

the length of the window after the feedback onset, and sometimes get rid

of the first 200 ms. They suggest that it is enough to detect ErrP signals

in P300-Speller. Recently, [69] shows that a window of 200 ms to 900 ms

for classification ErrPs can give the best results in the motor imagery, but

not in P300-Speller. In this phase, we study how changing the length of the

window impacts the ability of RF classifier across multiple human subjects,

by using the same steps of the previous evaluation process. In this phase, we

apply three steps:

1. Study how getting rid of the first 200 ms impacts the classification.

2. After that, we study adding the length of the window till it reaches

900ms and 1300ms on the classification.
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3. Compare their results to identify the best length of the window of ErrP

in P300-Speller across multiple human subjects.

After the pre-processing parameters are obtained, we apply them on other

electrodes to evaluate the importance of each electrode under frontal-central

regions by using RF and a new ensemble linear SVM that we propos. Here,

we aim to identify the most useful electrode across multiple human subjects.

This gives the researchers useful information to build a P300-Speller classifier

with a few number of electrodes.

Figure 3.3: The block diagram of our new ensemble linear SVM.

The main idea of our new ensemble linear SVM is applying many linear
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SVM classifiers. The basic block diagram of the ensemble linear SVM is

shown in figure 3.3. We divide the collected data on each subject into train-

ing and testing data by applying 10-fold cross validation. The training data

from each subject is used to build a linear SVM classifier. We use them to

build the ensemble linear SVM. We choose the best score from mutli linear

SVMs by voting. We use the testing data from the other subjects each time

to test our ensemble linear SVM. We exclude the test data from the subject

who was involved in the training as figure 3.4. We repeat the cross validation

in our ensemble linear SVM 10 times and all previous steps for fronto-central

electrodes. The number of the linear SVMs equals the number of the sub-

jects. This ensemble classifier is used as a transfer learning classifier to detect

ErrP among a wide array of subjects.

Like the existing work, which focuses on single subjects when detecting

ErrP, we divide data collected on each subject into training and testing data

by applying 10-fold cross validation, then we apply the linear SVM for each

subject independently to evaluate the importance of each electrode under

frontal-central regions.

In our benchmark, we have 23 electrodes that cover frontal-central re-

gions. The number of features over these regions is high. To reduce and

extract the most useful features, we use the PCA algorithm, which is de-

scribed in chapter 2. We study different numbers of the components and

the number of RF trees. Once the best features are obtained, we apply the

linear SVM across multiple subjects to compare its result with our results to

support this work. Finally, we try to add meta data to features.
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Figure 3.4: Building an ensemble linear SVM classifier and choosing the best
value by voting.

35



Chapter 4

Experiments and Results

This chapter presents the results of the experiments that are conducted on

the benchmark. We begin by presenting the results of splitting data. In the

second section, we view the effects of correcting data. In the third section,

the results of using butterworth filter are shown. The fourth section presents

the results of changing the length of the window. The fifth section gives the

results of using RF over central-frontal electrodes. In section six, we shows

the results of applying the feature extractions. Finally, we compare our

results of our ensemble linear SVM and RF with the results of linear SVM.

All the experiments are performed by using the freely available R packages:

Signal, randomForest, pROC, caret, LinearSVM and AUC. We use the same

steps in the previous evaluation process to evaluate PCA.

4.1 Splitting data

In our methodology, we intentionally splited the data to get feedback period

that contains the ErrP. For each subject, we extracted 340 samples. Each

sample has 6240 features collected from 23 EEG electrodes (260x23=5980

data points), and EOG electrode (260 data points). The number of samples

36



4.2. BSS ALGORITHM

is 340x26=8840 for all the subjects. They equal the number of the labels

in our benchmark. We described our data as two dimensional matrix that

contains 8840 samples x 6240 features. Each 260 features reflect the data of

an electrode. We applied RF for an experiment on the raw data from Cz

electrode. Figure 4.1 shows the ROC of this experiment. The AUC of the

features from raw Cz data equals 61% when mtry=65.

Figure 4.1: The ROC of the raw data at Cz using RF with AUC=61%.

4.2 BSS algorithm

In this section, after we got ErrP, nine experiments are performed. We tested

different values of correlation thresholds to study the ability of BSS algorithm

to correct the data from eye noise across multiple subjects. The values are

range from 0.1 to 0.9. Figure 4.2 shows the results of these experiments. We
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noticed that using BSS algorithm that is based on EOG can correct EEG

data when the threshold equals 0.7 across multiple human subjects. The

high value of the threshold confirms that the subjects did not blink during

the feedback presentation.

Figure 4.2: The AUC of BSS thresholds over Cz using RF.

We improved the result using BSS algorithm. Figure 4.3 shows the AUC

for the raw data and the corrected data using RF. The AUC of the corrected

data equals 63.6% when mtry is 130.
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Figure 4.3: The ROC of BSS over Cz using RF with AUC=63.6%.

4.3 Filtering

After the corrected data (data without eye noise) was performed, we applied

different parameters of Butterworth filter in four experiments using:

1. 5th order 10 Hz Lowpass Butterworth filter.

2. 5th order 20 Hz Lowpass Butterworth filter.

3. 3th (0.5Hz - 30 Hz) Bandpass Butterworth filter.

4. 3th (0.3Hz - 15 Hz) Bandpass Butterworth filter.

The AUC of these experiments are: 63.8% (mtry=65), 64.2% (mtry =130),

58.8%(mtry=130) and 62.4% (mtry=130) respectively. Figure 4.4 shows the

ROC of these experiments. It can be clearly noticed that the best parameters
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of butterworth filter are 5th order 20 Hz low Butterworth filter on all the

subject. Figure 4.5 shows the AUC difference between the corrected data

and the data after applying the butterworth filter.

Figure 4.4: The ROC of Butterworth filters using RF with different orders

and frequencies.
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Figure 4.5: The ROC difference between the filtered and corrected data using

RF with AUC=63.6% and 64.2%.

4.4 The length of the window

After we applied the butterworth filter, we studied the impact of the change

of the length of the window. We intentionally applied two experiments for

the length that the researchers prefer (1ms-600ms and 200ms-600ms). In

these experiments, we also aimed to study the impact of the first 200 ms.

The result of the experiments are shown in Figure 4.6. The AUCs are 63.5%

(mtry=60) and 62.8% (mtry=81) respectively. We noticed that the first 200

ms have important features, and we can not avoid this part of the window.

41



4.4. THE LENGTH OF THE WINDOW

Figure 4.6: The ROC curve over the first 200 ms using RF with AUC=63.5%

and 62.8%.

Recently, [69] shows that the window of 200 ms to 900 ms for classifica-

tion ErrPs gives the best results in the motor-imagery. Depending on the

previous experiments, we added the first 200ms to this length and applied

it with the previous parameters. Figure 4.7 shows the difference between

the 1ms-900ms and the feedback period. The AUC of these experiments are

64.3% (mtry=90) and 64.3% (mtry=130) respectively. We noticed that the

optimal length of the window on all the subjects is from 1ms to 900ms and

we reduced the number of the features from 260(1300 ms) to 180(900ms) on

each electrode.
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Figure 4.7: The ROC curve over the length of the windows 1-1300ms and

1-900ms using RF.

Depending on the previous pre-processing steps, figure 4.8 shows the AUC

difference between the raw data and the data after prepossessing. We noticed

the importance of the pre-processing steps.
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Figure 4.8: The ROC of data before and after pre-processing steps using RF

with AUC=61.6% and 64.3%.

4.5 Selecting electrodes

According to the parameters that we found in the previous experiments, we

applied RF and our ensemble linear SVM for each electrode over the frontal-

central regions to evaluate the importance of each one across multiple human

subjects. Besides, our ensemble linear SVM shows the result of applying the

testing data from the other subject on each electrode. The result of our lin-

ear SVM are shown in tables 4.1, 4.2 and 4.3.

The results of 23 experiments using RF on each electrode across multiple

human subjects are described in table 4.4.
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Table 4.1: The AUC of our ensemble linear SVM for different electrodes
under multiple human subjects.

Iter# F7 F5 F3 F1 Fz F2 F4 F6
1 0.661 0.671 0.68 0.659 0.663 0.655 0.636 0.662
2 0.651 0.668 0.663 0.651 0.647 0.649 0.643 0.646
3 0.641 0.652 0.653 0.648 0.642 0.641 0.629 0.631
4 0.653 0.657 0.657 0.654 0.650 0.649 0.634 0.643
5 0.653 0.655 0.656 0.650 0.646 0.648 0.634 0.641
6 0.659 0.663 0.664 0.658 0.654 0.656 0.640 0.648
7 0.661 0.666 0.666 0.659 0.654 0.657 0.639 0.649
8 0.658 0.665 0.665 0.658 0.649 0.653 0.635 0.646
9 0.657 0.664 0.663 0.655 0.645 0.648 0.632 0.644
10 0.658 0.665 0.664 0.656 0.646 0.649 0.632 0.646

Table 4.2: The AUC of our ensemble linear SVM for different electrodes
under multiple human subjects.

Iter# F8 FC5 FC3 FC1 FCz FC2 FC4 FC6
1 0.674 0.671 0.661 0.642 0.645 0.613 0.625 0.657
2 0.661 0.667 0.644 0.642 0.638 0.624 0.621 0.642
3 0.651 0.653 0.639 0.627 0.627 0.612 0.617 0.623
4 0.660 0.658 0.645 0.637 0.633 0.617 0.625 0.635
5 0.659 0.652 0.641 0.637 0.628 0.617 0.620 0.633
6 0.666 0.661 0.649 0.646 0.639 0.625 0.624 0.640
7 0.665 0.662 0.649 0.646 0.639 0.625 0.619 0.637
8 0.661 0.660 0.647 0.646 0.636 0.624 0.619 0.634
9 0.657 0.656 0.642 0.642 0.632 0.620 0.618 0.632
10 0.657 0.657 0.641 0.642 0.632 0.622 0.615 0.632

Table 4.3: The AUC of our ensemble linear SVM for different electrodes
under multiple human subjects.

Iter# C5 C3 C1 Cz C2 C4 C6
1 0.658 0.648 0.651 0.613 0.622 0.616 0.598
2 0.643 0.647 0.647 0.634 0.628 0.626 0.606
3 0.633 0.635 0.629 0.62 0.611 0.610 0.595
4 0.646 0.642 0.637 0.627 0.621 0.615 0.603
5 0.645 0.640 0.634 0.624 0.618 0.607 0.594
6 0.653 0.648 0.642 0.631 0.624 0.614 0.598
7 0.654 0.649 0.640 0.632 0.624 0.613 0.594
8 0.652 0.649 0.639 0.634 0.623 0.610 0.591
9 0.648 0.645 0.635 0.629 0.618 0.607 0.589
10 0.649 0.646 0.636 0.630 0.619 0.609 0.591
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Table 4.4: The AUC for RF across multiple human subjects on each electrode
Electrode AUC Electrode AUC
C1 0.64 F6 0.62
C2 0.65 F7 0.57
C3 0.62 F8 0.61
C4 0.65 FC1 0.63
C5 0.61 FC2 0.65
C6 0.64 FC3 0.63
Cz 0.64 FC4 0.64
F1 0.64 FC5 0.62
F2 0.64 FC6 0.65
F3 0.62 FCz 0.63
F4 0.63 Fz 0.64
F5 0.58

The result of our ensemble linear SVM is 68% and the result of RF equals

65% across multiple human subjects. We notice that the result of our en-

semble linear SVM outperforms the RF when we use one electrode across

multiple human subjects.

Like the existing work [46], which focus on single subjects when detecting

ErrP, we divide data collected on each subject into training and testing data

by applying 10-fold cross validation, then we apply a linear SVM classifier

for each subject independently to evaluate the importance of each electrode

under frontal-central regions. The result of these experiments are shown in

appendix 2.

The average of AUCs of the linear SVM is 87% at C2 electrode using the

testing data from the same subject independently. We noticed that the C2

or F3 electrode are the best electrodes for detecting ErrP across one subject.

Based on the results, we suggest using them instead of the Cz electrode.
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4.6 Feature extractions

After the pre-processing steps, we can perform features extraction to improve

our results. It is an important step to extract the most useful features. We

used features over frontal-central regions. In this phase, we applied a variety

of features extraction methods like Autoregressive (AR), ICA ... and we

found that PCA is the best one. After that, we test a different number of

components to figure out the best parameter of PCA. Figure 4.9 shows the

AUCs of RF with running different number of components. We noticed that

the results are improved when the number of the components equals 30 and

the AUC of RF is 71% when mtry=30.

Figure 4.9: The AUC of PCA components over frontal-central regions.

4.7 Comparison of our results with Linear

SVM

We used the parameters that we have found in the pre-processing and feature

extraction steps to compare our results of our ensemble linear SVM and RF
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with the results of linear SVM, which is commonly used in ErrP to support

this study. The AUC of our ensemble linear SVM is 68% and the AUC of RF

equals 71% when mtry=30 with extracted features using PCA across multiple

human subjects. Thus, we apply linear SVM on the data of all the subjects.

The AUC of the linear SVM equals 60%. Our result of RF outperforms the

result of the linear SVM and our ensemble linear SVM. Figure 4.10 shows

the AUC difference between RF and linear SVM. This result supports our

methodology of work.

Figure 4.10: The comparison between linear SVM and RF without any meta

data with the AUC=71% and 60%.

In a different way, we tried to change the number of trees in RF. Figure

4.11 shows the AUCs of the number of different trees. We notice that when

we increase the number of trees, the AUC of RF is increased. The AUC stays

after 300 and the result almost remain the same with AUC equals 74% when
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mtry=30.

Figure 4.11: The AUC over difference RF trees.

Our results confirms that the RF can cope with the heterogeneity among

different subjects and our ensemble linear SVM can figure out the best elec-

trode.

In a different way, we tried to add some meta data to the PCA compo-

nents. We added the type of the spelling mode as a meta feature. Figure 4.12

shows the AUC difference of the RF before and after adding the meta data

to the PCA components. The AUC of RF after adding meta data equals

78% when mtry=32. Again we used the linear SVM to compare its result

with our result of RF. Figure 4.13 shows the AUC difference between the lin-

ear SVM and the RF. RF outperforms the linear SVM and this supports our

methodology. Finally, we detected the ErrP with 78% AUC using 32 features.
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Figure 4.12: The comparison between PCA components with and without

meta data with AUC=74% and 78%.
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Figure 4.13: The comparison between RF and linear SVM with meta data.

The AUC=76% and 78%.
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Chapter 5

Conclusion and Future Work

In this chapter, we conclude the work performed in this thesis by summarising

our contributions. In second section, we introduce two block diagrams of how

a real-time detector works. In the third section, we will also suggest some

future research directions that can provide the others with new steps.

5.1 Conclusion

In this thesis, we proposed new ensemble methods to detect the ErrP using

two main classifiers: RF and ensemble linear SVM. We applied the RF ma-

chine learning technique to figure out of the best of the parameters of the

pre-processing steps that can work across multiple subjects. We corrected

the data by using BBS algorithm to avoid the noise often produced by the eye

movements or the eye blinks. We found that the best value of the correlation

threshold equals 0.7 across multiple subjects. After that, we noticed that

20Hz lowpass butterworth filter with 5th order can improve the signal-to-

noise ratio without removing the useful information of ErrP signals. In the

next step, we tried to find the best length of the window of ErrP. We found

that the length of the window is between 1ms to 900ms after the feedback
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onset is the optimal one. We evaluated the importance of each electrode

under frontal-central regions. Our ensemble linear SVM outperforms the RF

for each electrode in the frontal-central regions. We suggested using F3 as a

main electrode instead of the Cz electrode. We obtained 68% AUC by using

our ensemble linear SVM with the data at F3. We showed that it is possible

to extract the most useful features from centro-frontal electrodes by using

PCA with 30 components. To support our work, we compared our results

with Linear SVM. We noticed that RF can detect the ErrP signals, because

it can cope with the heterogeneity among different subjects. We added the

type of spelling as meta data. Finally, we obtained 78% Area Under Curve

(AUC) by using RF with features that is extracted from the centro-frontal

electrodes across multiple subjects.

5.2 A real-time detector

In this section, we introduce two block diagrams of how a real-time detector

works. Based on our methodology, there are two main block diagrams of

how a real-time detector works. First, using our ensemble linear SVM as a

main classifier with the data from the F3 electrode, and using RF for the

electrodes over frontal-central regions, which generate ErrP[21].

Figure 5.1 shows the block diagram of how a real-time detector works

when we use RF as main classifier. The first step focuses on extracting the

feedback period that contains ErrP from EEG. In this step, we select the

electrodes over frontal-central regions, which generate ErrP[21] and we ig-

nore other data. We select the window is between 1ms to 900ms after the

feedback onset.
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5.2. A REAL-TIME DETECTOR

Figure 5.1: Block diagram of how a real-time detector works when using RF

Depending on the outcome of the first portion, we apply the pre-processing

methods over these electrodes. We use BSS algorithm to correct data with

the correlation threshold value equals 0.7. After applying the BSS algorithm,

we apply 20Hz lowpass butterworth filter with 5th order in order to improve

the signal-to-noise ratio. After we use BSS and Butterworth filter to enhance

signals, we use the transformation matrix of PCA components to transfer the

original data-set onto 30 components, then we apply the trained RF classifier

to classify the components.

Figure 5.2 shows another block diagram of how a real-time detector when

we use our ensemble linear SVM as main classifier. THe first step we extract
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Figure 5.2: Block diagram of how a real-time detector works when using our
ensemble linear SVM

the window is between 1ms to 900ms after the feedback period that contains

ErrP from F3 electrode. Depending on the outcome of the first portion, we

apply the same methods which are shown in Figure 5.1: BSS algorithm and

lowpass butterworth filter. Finally, we apply the trained our ensemble linear

SVM to classify the data after applying pre-processing methods.

5.3 Future Work

In this thesis, we have succeeded in implementing a classifier that can be

applied across multiple subjects without any need for prior training sessions.

This classifier is to be used in the P300-speller. This classifier could be

connected and tested on a real mechanical device in the future. Also, rather

than using RF and our ensemble linear SVM classifiers to detect the ErrP,
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it may be a good idea to use these classifiers to correct the target letter.
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Appendix A

Appendix

A.1 The description of the subjects’ sessions

Table A.1: The description of the subjects’ sessions
Subject name Session # Target % Non target %
S01 1 50 0.83 10 0.17
S01 2 49 0.82 11 0.18
S01 3 45 0.75 15 0.25
S01 4 49 0.82 11 0.18
S01 5 80 0.80 20 0.20
S02 1 50 0.83 10 0.17
S02 2 43 0.72 17 0.28
S02 3 36 0.60 24 0.40
S02 4 35 0.58 25 0.42
S02 5 56 0.56 44 0.44
S03 1 31 0.52 29 0.48
S03 2 30 0.50 30 0.50
S03 3 20 0.33 40 0.67
S03 4 24 0.40 36 0.60
S03 5 36 0.36 64 0.64
S04 1 52 0.87 8 0.13
S04 2 53 0.88 7 0.12
S04 3 46 0.77 14 0.23
S04 4 50 0.83 10 0.17
S04 5 72 0.72 28 0.28
S05 1 25 0.42 35 0.58
S05 2 34 0.57 26 0.43
S05 3 28 0.47 32 0.53
S05 4 24 0.40 36 0.60
S05 5 31 0.31 69 0.69
S06 1 59 0.98 1 0.02
S06 2 57 0.95 3 0.05
S06 3 55 0.92 5 0.08
S06 4 56 0.93 4 0.07
S06 5 89 0.89 11 0.11
S07 1 56 0.93 4 0.07
S07 2 53 0.88 7 0.12
S07 3 57 0.95 3 0.05
S07 4 53 0.88 7 0.12
S07 5 88 0.88 12 0.12
S08 1 46 0.77 14 0.23
S08 2 48 0.80 12 0.20
S08 3 45 0.75 15 0.25
S08 4 42 0.70 18 0.30
S08 5 65 0.65 35 0.35
S09 1 53 0.88 7 0.12
S09 2 48 0.80 12 0.20
S09 3 49 0.82 11 0.18
S09 4 57 0.95 3 0.05
S09 5 79 0.79 21 0.21
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Table A.2: The description of the subjects’ sessions
Subject name Session # Target % Non target %
S10 1 53 0.88 7 0.12
S10 2 55 0.92 5 0.08
S10 3 55 0.92 5 0.08
S10 4 58 0.97 2 0.03
S10 5 88 0.88 12 0.12
S11 1 46 0.77 14 0.23
S11 2 42 0.70 18 0.30
S11 3 42 0.70 18 0.30
S11 4 39 0.65 21 0.35
S11 5 56 0.56 44 0.44
S12 1 41 0.68 19 0.32
S12 2 41 0.68 19 0.32
S12 3 33 0.55 27 0.45
S12 4 33 0.55 27 0.45
S12 5 41 0.41 59 0.59
S13 1 38 0.63 22 0.37
S13 2 30 0.50 30 0.50
S13 3 25 0.42 35 0.58
S13 4 35 0.58 25 0.42
S13 5 50 0.50 50 0.50
S14 1 37 0.62 23 0.38
S14 2 44 0.73 16 0.27
S14 3 42 0.70 18 0.30
S14 4 42 0.70 18 0.30
S14 5 50 0.50 50 0.50
S15 1 58 0.97 2 0.03
S15 2 58 0.97 2 0.03
S15 3 57 0.95 3 0.05
S15 4 56 0.93 4 0.07
S15 5 91 0.91 9 0.09
S16 1 44 0.73 16 0.27
S16 2 41 0.68 19 0.32
S16 3 38 0.63 22 0.37
S16 4 35 0.58 25 0.42
S16 5 53 0.53 47 0.47
S17 1 54 0.90 6 0.10
S17 2 43 0.72 17 0.28
S17 3 36 0.60 24 0.40
S17 4 34 0.57 26 0.43
S17 5 59 0.59 41 0.41
S18 1 51 0.85 9 0.15
S18 2 46 0.77 14 0.23
S18 3 46 0.77 14 0.23
S18 4 45 0.75 15 0.25
S18 5 73 0.73 27 0.27
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Table A.3: The description of the subjects’ sessions
Subject name Session # Target % Non target %
S19 1 44 0.73 16 0.27
S19 2 45 0.75 15 0.25
S19 3 43 0.72 17 0.28
S19 4 38 0.63 22 0.37
S19 5 54 0.54 46 0.46
S20 1 43 0.72 17 0.28
S20 2 46 0.77 14 0.23
S20 3 42 0.70 18 0.30
S20 4 41 0.68 19 0.32
S20 5 64 0.64 36 0.36
S21 1 58 0.97 2 0.03
S21 2 58 0.97 2 0.03
S21 3 56 0.93 4 0.07
S21 4 55 0.92 5 0.08
S21 5 85 0.85 15 0.15
S22 1 57 0.95 3 0.05
S22 2 56 0.93 4 0.07
S22 3 54 0.90 6 0.10
S22 4 55 0.92 5 0.08
S22 5 91 0.91 9 0.09
S23 1 42 0.70 18 0.30
S23 2 36 0.6 24 0.4
S23 3 39 0.65 21 0.35
S23 4 43 0.72 17 0.28
S23 5 61 0.61 39 0.39
S24 1 54 0.90 6 0.10
S24 2 51 0.85 9 0.15
S24 3 46 0.77 14 0.23
S24 4 37 0.62 23 0.38
S24 5 51 0.51 49 0.49
S25 1 42 0.70 18 0.30
S25 2 43 0.72 17 0.28
S25 3 26 0.43 34 0.57
S25 4 32 0.53 28 0.47
S25 5 54 0.54 46 0.46
S26 1 35 0.58 25 0.42
S26 2 37 0.62 23 0.38
S26 3 30 0.50 30 0.50
S26 4 39 0.65 21 0.35
S26 5 40 0.40 60 0.60

6261 0.70 2579 0.30

A.2 The results for applying linear SVMs on

each subject independently
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A.2. THE RESULTS FOR APPLYING LINEAR SVMS ON EACH
SUBJECT INDEPENDENTLY

Table A.4: The AUC of different electrodes using a linear SVM on each
subject

Sub # F7 F5 F3 F1 Fz F2 F4 F6
1 0.74 0.77 0.74 0.81 0.89 0.88 0.82 0.81
2 0.83 0.91 0.86 0.85 0.84 0.88 0.88 0.84
3 0.84 0.88 0.94 0.95 0.94 0.92 0.93 0.98
4 0.79 0.74 0.67 0.66 0.69 0.67 0.75 0.83
5 0.71 0.75 0.84 0.86 0.82 0.88 0.83 0.78
6 0.84 0.88 0.84 0.83 0.87 0.88 0.92 0.88
7 0.83 0.83 0.94 0.98 0.99 0.98 0.93 0.76
8 0.88 0.81 0.85 0.86 0.9 0.96 0.97 0.95
9 0.91 0.98 0.95 0.99 1 0.99 0.98 0.99
10 1 1 1 1 0.99 0.97 0.95 0.95
11 0.67 0.74 0.75 0.78 0.8 0.85 0.87 0.85
12 0.89 0.86 0.76 0.74 0.72 0.7 0.74 0.74
13 0.82 0.88 0.93 0.91 0.92 0.85 0.85 0.84
14 0.82 0.84 0.81 0.91 0.93 0.91 0.89 0.75
15 1 1 1 1 1 1 0.98 0.97
16 0.67 0.74 0.75 0.74 0.75 0.76 0.9 0.75
17 0.77 0.83 0.81 0.85 0.85 0.84 0.85 0.83
18 0.79 0.78 0.75 0.72 0.77 0.74 0.75 0.73
19 0.78 0.93 0.87 0.83 0.82 0.81 0.82 0.78
20 0.64 0.67 0.65 0.76 0.76 0.78 0.79 0.67
21 0.87 0.96 0.89 0.96 0.88 0.88 0.97 1
22 0.67 0.77 0.76 0.78 0.86 0.88 0.78 0.82
23 0.7 0.74 0.75 0.86 0.85 0.87 0.81 0.8
24 0.69 0.84 0.95 1 0.94 0.89 0.82 0.77
25 0.61 0.6 0.64 0.6 0.6 0.62 0.67 0.57
26 0.69 0.64 0.64 0.58 0.69 0.65 0.64 0.64
Avg. 0.79 0.82 0.82 0.84 0.85 0.85 0.85 0.82
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Table A.5: The AUC of different electrodes using a linear SVM on each
subject

Sub # F8 FC5 FC3 FC1 FCz FC2 FC4 FC6
1 0.57 0.77 0.75 0.86 0.85 0.88 0.9 0.89
2 0.9 0.88 0.86 0.83 0.89 0.86 0.86 0.83
3 0.85 0.9 0.92 0.9 0.92 0.93 0.93 0.91
4 0.82 0.74 0.71 0.66 0.7 0.72 0.78 0.77
5 0.82 0.8 0.83 0.88 0.85 0.87 0.85 0.79
6 0.89 0.87 0.82 0.79 0.82 0.88 0.92 0.93
7 0.91 0.84 0.96 0.98 0.98 0.98 1 0.97
8 0.94 0.82 0.88 0.88 0.94 0.95 0.95 0.96
9 0.97 0.97 0.99 0.98 1 1 0.99 0.98
10 1 0.97 1 1 1 0.98 1 1
11 0.73 0.76 0.78 0.79 0.85 0.89 0.88 0.82
12 0.78 0.76 0.77 0.78 0.76 0.77 0.75 0.78
13 0.84 0.9 0.9 0.87 0.85 0.81 0.83 0.88
14 0.82 0.78 0.84 0.88 0.88 0.89 0.87 0.83
15 0.97 1 0.98 1 1 0.98 0.98 0.97
16 0.71 0.76 0.74 0.76 0.77 0.84 0.86 0.84
17 0.85 0.89 0.9 0.93 0.91 0.87 0.85 0.91
18 0.77 0.77 0.73 0.75 0.78 0.76 0.76 0.76
19 0.57 0.81 0.88 0.85 0.8 0.82 0.86 0.8
20 0.7 0.65 0.75 0.78 0.72 0.79 0.74 0.72
21 0.89 0.94 0.94 0.99 0.98 0.94 1 0.98
22 0.77 0.82 0.76 0.79 0.85 0.92 0.87 0.85
23 0.77 0.75 0.78 0.78 0.88 0.78 0.79 0.76
24 0.81 0.84 0.94 0.98 1 1 0.79 0.84
25 0.6 0.7 0.69 0.67 0.61 0.71 0.74 0.67
26 0.74 0.58 0.64 0.53 0.71 0.65 0.72 0.68
Average 0.81 0.82 0.84 0.84 0.86 0.86 0.86 0.85

62
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SUBJECT INDEPENDENTLY

Table A.6: The AUC of different electrodes using a linear SVM on each
subject

Sub # C5 C3 C1 Cz C2 C4 C6
1 0.77 0.82 0.82 0.79 0.86 0.81 0.83
2 0.86 0.86 0.84 0.83 0.9 0.83 0.82
3 0.88 0.9 0.91 0.89 0.91 0.93 0.93
4 0.76 0.73 0.68 0.73 0.77 0.76 0.87
5 0.84 0.85 0.84 0.86 0.87 0.85 0.88
6 0.88 0.88 0.78 0.83 0.86 0.94 0.93
7 0.91 0.94 0.96 0.98 0.98 0.98 0.98
8 0.95 0.89 0.94 0.93 0.97 1 0.97
9 1 0.98 0.99 1 0.99 0.98 0.95
10 1 0.97 0.97 1 1 1 1
11 0.8 0.81 0.81 0.81 0.81 0.85 0.81
12 0.82 0.75 0.79 0.75 0.77 0.82 0.74
13 0.87 0.85 0.88 0.88 0.91 0.9 0.88
14 0.8 0.84 0.91 0.84 0.87 0.85 0.9
15 1 1 1 0.98 0.97 0.97 0.94
16 0.76 0.81 0.83 0.85 0.77 0.86 0.73
17 0.82 0.94 0.91 0.93 0.9 0.88 0.9
18 0.79 0.97 0.78 0.76 0.8 0.74 0.88
19 0.79 0.86 0.85 0.85 0.89 0.86 0.75
20 0.72 0.79 0.88 0.73 0.82 0.8 0.72
21 1 0.96 0.96 0.97 1 1 0.96
22 0.7 0.76 0.82 0.93 0.94 0.94 0.91
23 0.69 0.78 0.86 0.9 0.84 0.8 0.77
24 0.81 0.78 0.81 0.84 0.94 0.73 0.7
25 0.64 0.72 0.77 0.71 0.74 0.73 0.72
26 0.61 0.56 0.65 0.68 0.73 0.63 0.64
Average 0.83 0.85 0.86 0.86 0.88 0.86 0.85
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