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Abstract

The class of square real matrices of order n having a positive determinant and all other

minors up to order n − 1 nonpositive are called sign regular matrices with signature

(−1, . . . ,−1, 1). In this thesis, such matrices are introduced and a characterization of

them is presented which provides an easy test for their recognition based on the so-called

the Cauchon Algorithm. The value of the entry (2, 2) of the matrix resulting upon

application of the Cauchon algorithm to such a sign regular matrix plays a fundamental

role in our characterization. Therefore, the possible values of the entry (2, 2) are

explored. Finally, it is shown that all matrices lying between two matrices of this class

with respect to the so-called checkerboard ordering are contained in this class, too.
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Chapter 1

Preliminaries

In this chapter, we present some notation, definitions, and auxiliary results that will be

used throughout this thesis.

1.1 Introduction

Several classes of matrices play an important role in various branches of mathematics

and applied sciences [13],[18]. In this thesis, we will consider the class of sign regular

matrices which are the matrices whose minors of any fixed order have the same sign or

are allowed to vanish [8], [11]. Adm and Garloff in [4] worked on a special type of sign

regular matrices, namely matrices of order n having a negative determinant and all their

minors up to order n − 1 nonnegative. We are going to work on the opposite kind of

these matrices which are matrices having a positive determinant and all other minors

nonpositive.

In the current chapter, we present some notation that help us to introduce some

definitions, theorems, and lemmas that will be beneficial in showing our results.

In the next chapter, we present the definition of the sign regular, totally nonnegative

and totally nonpositive matrices. This will be followed by an introduction of the

Cauchon Algorithm, and some theorems that describe the relationship between the

totally nonnegative matrices and the Cauchon matrices. In addition, we introduce

the lacunary sequences with respect to a Cauchon matrix or a Cauchon diagram that

are very useful to facilitate the proofs of some theorems and help us to determine the

rank of matrices. Moreover, we present propositions that investigate the relationship

between the determinants of the submatrices of the intermediate matrices of the Cauchon

Algorithm, these propositions will play an important role in proving some of our new
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results.

In Chapter three, we present our new results by applying the Cauchon Algorithm on

totally nonpositive matrices and on matrices of order n having positive determinants and

all other minors nonpositive under the condition that the entry in the position (n, n) is

negative. We introduce some properties of the determinants of submatrices and the sign

of the entries of the matrices that we obtain after applying the Cauchon Algorithm. We

conclude this thesis by utilizing the obtained results to show the interval property of the

nonsingular matrices having a positive determinant and all other minors nonpositive.

1.2 Notation

In this section, we present some notation that will be helpful in introducing many

theorems and results in this thesis.

First of all, we denote by Rn,m the set of all real n−by−m matrices. For a given

positive integer n and for each l ∈ {1, . . . , n}, we define

Ql,n :=
{
q = (q1, · · · , ql) ∈ Nl : 1 ≤ q1 < q2 < · · · < ql ≤ n

}
.

That is Ql,n denotes the set of all strictly increasing sequences of l integers chosen

from {1, . . . , n}. Let α = (α1, . . . , αs, . . . , αl) ∈ Ql,n and s ∈ {1, . . . , l}. Then define

αŝ := (α1, . . . , αs−1, αs+1, . . . , αl), where the ’hat’ over s indicates that the entry αs has

to be discarded from the index sequence. Moreover, define αc to be the complement of

α, which its given by αc = {1, . . . , n}\{α1, . . . , αl}, where the indices are arranged in

increasing order.

The square submatrices of A = (aij) ∈ Rn,m are denoted by the following

A
[
i | j

]
= A

[
i1, i2, . . . , il|j1, j2, . . . , jl

]
:= (aik,jh)

l
k=1,h=1,

when i = (i1, . . . , il) ∈ Ql,n, j = (j1, . . . , jl) ∈ Ql,m, and l = 1, . . . ,min{n,m}.
If i = j, then they called principal submatrices, denoted by

A
[
i | i

]
= A

[
i
]
= A

[
i1, i2, . . . , il|i1, i2, . . . , il

]
:= (aik,ih)

l
k=1,h=1.

Moreover, the minors of A = (aij) ∈ Rn,m are the determinants of the square

submatrices of A, denoted by

detA
[
i | j

]
= detA

[
i1, i2, . . . , il|j1, j2, . . . , jl

]
:= det(aik,jh)

l
k=1,h=1.
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If i = j, then they are called principal minors. By convention, detA (ϕ) = 1.

For a matrix A ∈ Rn,n, the inverse of A, denoted by A−1 =
(
a−1
ij

)
, is given by

a−1
ij = (−1)i+j detA

[
1, . . . , j − 1, j + 1, . . . , n|1, . . . , i− 1, i+ 1, . . . , n

]
detA

, (1.1)

provided that detA ̸= 0.

For α = (α1, . . . , αl) ∈ Ql,n, a measure for the gap in an index sequence α is the

dispersion of α, denoted by d(α), and defined by d(α) := αl − α1 − l + 1. If d(α) = 0

we call α contiguous. Moreover, for β ∈ Ql,n, if d(α) = d(β) = 0 we call the submatrix

A[α|β] contiguous.

For distinct i,k ∈ Ql,n, we say that i = (i1, . . . , il) is greater than k = (k1, . . . , kl)

with respect to the lexicographical order, denoted by i ≥ k, if the first non-zero entry

in the sequence i1 − k1, i2 − k2, . . . , il − kl is positive or i = k. Moreover, we say that

i = (i1, . . . , il) is greater than k = (k1, . . . , kl) with respect to the colexicographical order,

denoted by i ≥c k if the first non-zero entry in the sequence il−kl, il−1−kl−1, . . . , i1−k1

is positive or i = k.

For p = 1, 2, . . . ,min{n,m}. the pth compound matrix of an n×m matrix A, denoted

by A[p], is the
(
n
p

)
×
(
m
p

)
matrix that consists of all p×pminors arranged in lexicographical

order, i.e.,

A[p] =

[
detA

[
i|j
]]

i∈Qp,n,j∈Qp,m,i≥j

,

For the matrix A = (aij) ∈ Rn,m, the notation 0 < A means that all the entries of A

are positive, i.e., aij > 0. Moreover, the notation 0 ≤ A means that all the entries of A

are nonnegative, i.e., aij ≥ 0, for all i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}.
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1.3 Auxiliary Results

In this section, we present some definitions and lemmas that will be helpful in introducing

and showing several theorems in this thesis.

In the following, we introduce the definition of matrix rank.

Definition 1.1. [17] Let A be an n×m matrix. Then rank A is the size of the largest

nonzero minor of A.

In the following, we present the definition of the right shadow and the left sahdow

of the submatrices.

Definition 1.2. [20] Let A = (aij) ∈ Rn,m. Then

(1) The right shadow of the submatrix

A
[
i+ 1, . . . , i+ r|j + 1, . . . , j + r

]
is the (i+ r)× (m− j) submatrix

A
[
1, . . . , i+ r|j + 1, . . . ,m

]
.

(2) The left shadow of the submatrix

A
[
i+ 1, . . . , i+ r|j + 1, . . . , j + r

]
is the (n− i)× (j + r) submatrix

A
[
i+ 1, . . . , n|1, . . . , j + r

]
.

Lemma 1.1. [9] Partition A ∈ Rn,n, n ≥ 3, as follows:

A =

 c A12 d

A21 A22 A23

e A32 f

 ,

where A22 ∈ Rn−2,n−2 and c, d, e, f are scalars. Define the submatrices

C :=

[
c A12

A21 A22

]
, D :=

[
A12 d

A22 A23

]
,

E :=

[
A21 A22

e A32

]
, F :=

[
A22 A23

A32 f

]
.
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Then

detA22 detA = detC detF − detD detE.

The previous lemma is the key of deducing the following lemma that will be used in

showing some theorems.

Lemma 1.2. [1] Let A ∈ Rn,m, α = (α1, . . . , αl) ∈ Ql,n, and β = (β1, . . . , βl−1) ∈
Ql−1,m−1 with 0 < d(β). Then for all η such that βl−1 < η ≤ m, k ∈ {1, . . . , l}, s ∈
{1, . . . , h}, and βh < t < βh+1 for some h ∈ {1, . . . , l − 2} or βl−1 < t < η the following

determinantal identity holds:

detA
[
αα̂k

| ββ̂s
∪ {t}

]
detA

[
α | β ∪ {η}

]
= detA

[
αα̂k

| ββ̂s
∪ {η}

]
detA

[
α | β ∪ {t}

]
+ detA

[
αα̂k

| β
]
detA

[
α | ββ̂s

∪ {t, η}
]
.

The following is an illustrative example of the previous lemma.

Example 1.1. Let A =



1 0 −1 1 −1 2

0 −2 3 0 −1 1

0 3 1 −1 2 −3

−1 2 0 1 −3 2

−3 0 2 −1 0 1

2 −1 0 3 0 −1


. Suppose α = (1, 2, 3, 4), β =

(1, 3, 4), η = 5, k = 3, s = 1, t = 2, and h = 1. By applying Lemma 1.2 we get

detA[1, 2, 4|2, 3, 4] · detA[1, 2, 3, 4, |1, 3, 4, 5] = detA[1, 2, 4|3, 4, 5] · detA[1, 2, 3, 4|1, 2, 3, 4]
+ detA[1, 2, 4|1, 3, 4] · detA[1, 2, 3, 4|2, 3, 4, 5],

∣∣∣∣∣∣∣∣
0 −1 1

−2 3 0

2 0 1

∣∣∣∣∣∣∣∣ ·
∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −1 1 −1

0 3 0 −1

0 1 −1 2

0 1 −1 2

−1 0 1 −3

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
−1 1 −1

3 0 −1

0 1 −3

∣∣∣∣∣∣∣∣ ·
∣∣∣∣∣∣∣∣∣∣
1 0 −1 1

0 −2 3 0

0 3 1 −1

−1 2 0 1

∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣
1 −1 1

0 3 0

−1 0 1

∣∣∣∣∣∣∣∣ ·
∣∣∣∣∣∣∣∣∣∣
0 −1 1 −1

−2 3 0 −1

3 1 −1 2

2 0 1 −3

∣∣∣∣∣∣∣∣∣∣
,

−8×−1 = 5×−26 + 6× 23 = 8.

The following lemma relates the minors of a given nonsingular matrix to the minors

of its inverse. In particular, it plays a fundamental role in proving that for a given n×n
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sign regular matrix A with a given signature, i.e., matrices whose minors of any fixed

order have a fixed sign or allowed to vanish, the matrix SA−1S−1 is a sign regular matrix

with the same signature, where S = diag (1,−1, . . . , (−1)n+1).

Lemma 1.3. [9] Let A ∈ Rn,n be nonsingular. Then for any nonempty subsets α, β ⊆
{1, . . . , n} with |α| = |β| the following equality holds

detA−1[α | β] = (−1)s
detA

[
βc | αc

]
detA

,

where s :=
∑

αi∈α αi +
∑

βi∈β βi.

We conclude this section by recalling the following famous identity. Assume B =

CD, where B is an n×m matrix, C is an n× r matrix, and D is an r×m matrix. Then

the Cauchy-Binet formula [20] states that for each i ∈ Qp,n , j ∈ Qp,m,

detB[i|j] =
∑

k∈Qp,r

detC[i|k] detD[k|j].

6



Chapter 2

Sign Regular Matrices And The

Cauchon Algorithm

In this chapter, we present the definition of sign regular matrices and some of its

properties. Interesting subclasses of the sign regular matrices are the totally nonnegative

and the totally nonpositive matrices. Therefore, we concentrate on them and introduce

some necessary and sufficient conditions for a given matrix to be in their classes by using

the Cauchon Algorithm.

2.1 Totally Nonnegative Matrices

In this section, we present the definition of sign regular matrices, totally nonnegative

matrices, and the Cauchon Algorithm. In addition, we will introduce a procedure that

will be helpful in constructing lacunary sequences for the Cauchon matrices which are

useful to prove many theorems in our thesis.

In the following, we present the definition of sign regular matrices.

Definition 2.1. An n ×m matrix A is called sign regular of order k, k ≤ min{m,n},
with signature ε = (ε1, ε2, . . . , εk) if for each j = 1, . . . , k, the sign of all of its minors

of order j coincides with εj or vanishes. If k = min{m,n}, then a sign regular matrix

of order k is simply called sign regular. Moreover, A is called strictly sign regular with

signature ε if it is sign regular with signature ε and all submatrices of A have nonzero

determinants.

In the following definition, we introduce the totally nonnegative matrices.

7



Definition 2.2. Let A be an n×m matrix. Then A is said to be totally nonnegative,

denoted by TN if A is sign regular of order k = min{n,m} with signature ε = (+1,+1, . . . ,+1),

i.e.,

detA
[
i|j
]
= detA

[
i1, . . . , il|j1, . . . , jl

]
≥ 0, (2.1)

for all i = (i1, . . . , il) ∈ Ql,n, j = (j1, . . . , jl) ∈ Ql,m, and all l = 1, . . . ,min{n,m}. If the
strict inequalities occur in (2.1), then the matrix A is called totally positive, denoted by

TP.

Since the compound matrices involve all the minors, Definitions 2.1 and 2.2 can be

rewritten by using the compound matrices concept as the following definition states.

Definition 2.3. Let A be an n × m matrix. Then it is said to be sign regular matrix

if all the nonzero entries in the pth compouned matrix have the same sign, it is said to

be totally nonnegative if all entries of the pth compound matrix of A are nonnegative,

p = 1, 2, . . . ,min{n,m}.

Example 2.1. Let A =


1 2 4

1 3 9

1 4 16

1 5 25

 .

To show that A is a sign regular matrix we compute all the pth compound matrices

of A for p = 1, 2, 3.

A[1] = A =


1 2 4

1 3 9

1 4 16

1 5 25


(41)×(

3
1)=4×3

, A[2] =



1 5 6

2 12 16

3 21 30

1 7 12

2 16 30

1 9 20


(42)×(

3
2)=6×3

, A[3] =


2

6

6

2


(43)×(

3
3)=4×1

.

It is clear that all the entries of A[1], A[2], and A[3] are nonnegative. Therefore, A is

a sign regular matrix with signature (+1,+1,+1). Hence A is a TN matrix. Moreover,

since all the entries are positive then the matrix A is TP .

In order to be ready to present some lemmas, propositions, and the Cauchon Algorithm,

we first need to present the following notation.

8



Define the set E◦ := {1, . . . , n} × {1, . . . ,m}\{(1, 1)}, E := E◦ ∪ {(n+ 1, 2)}.
Let (s, t) ∈ E◦. Then (s, t)+ := min{(i, j) ∈ E | (s, t) ≤ (i, j), (s, t) ̸= (i, j)}; here the

minimum is taken with respect to the lexicographical order.

In the following, we present the definition of the Cauchon diagram, Cauchon matrix

and the Cauchon Algorithm.

Algorithm 2.1. [12] [The Cauchon Algorithm] Let A ∈ Rn,m. As r runs in decreasing

order over the set E with respect to the lexicographical order, we define matrices

A(r) =
(
a
(r)
ij

)
∈ Rn,m as follows:

1. Set A(n+1,2) := A.

2. For r = (s, t) ∈ E◦, define the matrix A(r) =
(
a
(r)
ij

)
as follows:

(a) If a
(r+)
st = 0, then put A(r) := A(r

+).

(b) If a
(r+)
st ̸= 0, then put

a
(r)
ij :=

a
(r+)
ij − a

(r+)
it a

(r+)
sj

a
(r+)
st

, for i < s and j < t,

a
(r+)
ij , otherwise.

3. Set Ã := A(1,2); Ã is called the matrix obtained from A (by the Cauchon Algorithm).

Definition 2.4. An n × m Cauchon diagram C is a grid consisting of n · m squares

colored black and white, where each black square has the property that either every square

to its left (in the same row) or every square above it (in the same column) is black.

Example 2.2. (a) The following diagram is a Cauchon diagram, since its satisfying

the properity that for each black square either every square to its left or every

square above it is black.

9



Figure 2.1: An example of a Cauchon diagram

(b) The following diagram is not a Cauchon diagram. Since for the black square in

position (3,3) neither all squares above it are black nor all squares to the left of it

are black.

Figure 2.2: An example of a non-Cauchon diagram

We denote by Cn,m the set of the n ×m Cauchon diagrams, when n = m we write

Cn.

Definition 2.5. [16] An n ×m matrix A = (aij) is called Cauchon matrix if for each

aij with aij = 0 for some i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}, then asj = 0 for all

s = 1, . . . , i− 1 or ait = 0 for t = 1, . . . , j − 1.

By replacing zero entries by black squares and nonzero entries by white squares and

vice versa, the Cauchon diagram and Cauchon matrices will be used interchangeable.

10



Example 2.3. Let A =


8 5 4 1

5 4 4 1

5 4 4 1

1 1 1 1

 . Then by application of the Cauchon Algorithm

on A we obtain

A(5,2) = A, A(4,4) =


7 4 3 1

4 3 3 1

4 3 3 1

1 1 1 1

 , A(4,3) =


4 1 3 1

1 0 3 1

1 0 3 1

1 1 1 1

 ,

A(4,2) =


3 1 3 1

1 0 3 1

1 0 3 1

1 1 1 1

 = A(4,1), A(3,4) =


2 1 0 1

0 0 0 1

1 0 3 1

1 1 1 1

 ,

A(3,4) = A(3,3) = A(3,2) = A(3,1) = A(2,4) = A(2,3) = A(2,2) = A(2,1) = A(1,4) = A(1,3) = A(1,2) = Ã.

Its clear that Ã is not a Cauchon matrix since ã32 = 0 but ã31 ̸= 0 and ã12 ̸= 0.

Example 2.4. Let A =

4 4 4

4 8 8

4 8 16

 . Then by application of the Cauchon Algorithm on

A we obtain

A(4,2) = A, A(3,3) =

3 2 4

2 4 8

8 8 16

 , A(3,2) =

 1 2 4

−2 4 8

8 8 16

 = A(3,1),

A(2,3) =

 2 0 4

−2 4 8

8 8 16

 , A(2,2) =

 2 0 4

−2 4 8

8 8 16

 = A(2,1) = A(1,3) = A(1,2) = Ã.

It is clear that Ã is a Cauchon matrix since it satisfies Definition 2.5.

The following theorem gives necessary and sufficient conditions for a given matrix to

be totally nonnegative or totally positive by using the Cauchon Algorithm.

Theorem 2.1. [12] Let A ∈ Rn,m. Then A is totally nonnegative (totally positive) if

and only if 0 ≤ Ã (0 < Ã) and Ã is a Cauchon matrix.

By the above theorem, it is easy to show that the above matrices are not TN .
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Theorem 2.2. [12] Let A ∈ Rn,m be TN . Then A is a Cauchon matix.

The previous theorem states that one necessary condition for a given matrix A to be

TN is to be a Cauchon matrix while the converse is not true as the following example

illustrates.

Example 2.5. The following matrix

A =

 1 7 2

0 0 4

−5 6 9

 ,

satisfies the definition of a Cauchon matrix but clear that the matrix A is not TN since

the entry a31 = −5 which is not nonnegative.

In the following, we present the definition of a lacunary sequence that will be used

in introducing and proving some theorems.

Definition 2.6. [16] Let C ∈ Cn,m. We say that a sequence

γ :=
(
(ik, jk) , k = 0, 1, . . . , t

)
,

which is strictly increasing in both arguments is a lacunary sequence with respect to C

if the following conditions hold:

1. (ik, jk) /∈ C, k = 1, . . . , t.

2. (i, j) ∈ C for it < i ≤ n and jt < j ≤ m.

3. Let s ∈ {1, . . . , t− 1}. Then (i, j) ∈ C

(a) either for all (i, j), is < i < is+1 and js < j,

or for all (i, j), is < i < is+1 and j0 ≤ j < js+1

and

(b) either for all (i, j), is < i and js < j < js+1,

or for all (i, j), i < is+1, and js < j < js+1.

We call t the length of γ.

The following procedure will be beneficial to construct a lacunary sequence that will

be very useful in proving some theorems.
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Procedure 2.1. [2] Let A ∈ Rn,m be a Cauchon matrix. Construct the lacunary

sequence

γ =
((

ip, jp
)
, . . . , (i0, j0)

)
,

as follows: Put (i−1, j−1) := (n+ 1,m+ 1). For k = 0, 1, . . . , p, define

Mk :=
{
(i, j) | 1 ≤ i < ik−1, 1 ≤ j < jk−1, aij ̸= 0

}
.

If Mk = ϕ, put p := k − 1.

Otherwise, put (ik, jk) := maxMk, where the maximum is taken with respect to the

lexicographical order.

The following is an illustration example for the above procedure.

Example 2.6. Let A =


1 0 −3 −5

4 0 1 2

1 0 9 3

3 2 −4 6

. Then A is a Cauchon matrix and we use

Procedure 2.1 to construct a lacunary sequence as follows

(i−1, j−1) := (n+ 1,m+ 1) = (5, 5).

For the case that k = 0 we get

M0 :=
{
(i, j) | 1 ≤ i < 5, 1 ≤ j < 5, aij ̸= 0

}
,

i.e., (i0, j0) := maxM0 = (4, 4), since a4,4 = 6 ̸= 0.

For the case that k = 1 we get

M1 :=
{
(i, j) | 1 ≤ i < 4, 1 ≤ j < 4, aij ̸= 0

}
,

i.e., (i1, j1) := maxM1 = (3, 3), since a3,3 = 9 ̸= 0.

For the case that k = 2 we get

M2 :=
{
(i, j) | 1 ≤ i < 3, 1 ≤ j < 3, aij ̸= 0

}
,

i.e., (i2, j2) := maxM2 = (2, 1), since a2,2 = 0 and a2,1 = 4 ̸= 0.

For the case that k = 3 we get

M3 :=
{
(i, j) | 1 ≤ i < 2, 1 ≤ j < 1, aij ̸= 0

}
,

13



i.e., (i3, j3) := maxM3 = maxϕ.

Hence, the lacunary sequence is γ =
(
(i2, j2) , (i1, j1) , (i0, j0)

)
=

(
(2, 1), (3, 3), (4, 4)

)
.

Procedure 2.1 helps to deduce the following theorem that is used to calculate the

rank of a given matrix A from Ã, provided that Ã is Cauchon matrix.

Theorem 2.3. [2] Let A ∈ Rn,m be such that Ã is a Cauchon matrix. Then rankA =

p+1, where p is the length of the sequence which is obtained by application of Procedure

2.1 to Ã.

The following is an illustration example for the above theorem.

Example 2.7. Let A =

2 3 4

3 6 8

4 8 12

. Then after applying the Cauchon Algorithm to A

we get that Ã =

0.5 0 4

0 0.6 8

4 8 12

 which is a Cauchon matrix. By application of Procedure

2.1 to Ã we construct the lacunary sequance γ =
(
(1, 1), (2, 2), (3, 3)

)
, hence p = 2. Then

by Theorem 2.3 we get that rankA = p+ 1 = 2 + 1 = 3.

In the following theorem, we will present how to find the value of some minors of A

by using lacunary sequences with respeect to Ã, provided that Ã is Cauchon matrix.

Theorem 2.4. [2] Let A ∈ Rn,m be such that Ã = (ãij) is a Cauchon matrix and let

γ =
(
(ik, jk) , k = 0, 1, . . . , p

)
be a lacunary sequence. Then the following representation

holds:

detA
[
i0, . . . , ip | j0, . . . , jp

]
= ãi0,j0 ãi1,j1 · · · ãip,jp .

Corollary 2.1. [5] Let A ∈ Rn,n and assume that Ã = (ãij) is a Cauchon matrix with

ãii ̸= 0, i = 1, . . . , n. Then the following equality holds

detA = ã11 · · · ãnn.

Example 2.8. Suppose we have the same matrix A that we had in the Example 2.4.

Then the lacunary sequnces γ1 =
(
(2, 2), (3, 3)

)
and γ2 =

(
(1, 1), (2, 2), (3, 3)

)
. Hence by

Theorem 2.4 we obtain that

detA[2, 3|2, 3] =

∣∣∣∣∣8 8

8 16

∣∣∣∣∣ = ã22 · ã33 = 4 · 16 = 64,
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detA =

∣∣∣∣∣∣∣∣
4 4 4

4 8 8

4 8 16

∣∣∣∣∣∣∣∣ = ã11 · ã22 · ã33 = 2 · 4 · 16 = 128.

In the following two propositions and the lemma, we investigate the relationship

between the minors of the intermediate matrices of the Cauchon Algorithm. These

propositions will play important roles in proving some of the new results in this thesis.

Proposition 2.1. [12] Let A =
(
aij

)
∈ Rn,m and r = (s, t) ∈ E◦. Let ast ̸= 0,

α = (α1, . . . , αl) ∈ Ql,n and β = (β1, . . . , βl) ∈ Ql,m, where l ≤ min{n,m} such that

(αl, βl) = r. Then

detA(r
+)[α | β] = detA(r)[αŝ | βt̂] . ast.

The following is an illustration example for the above proposition.

Example 2.9. Suppose we have the same matrix A that we had in the Example 2.3.

Let r = (4, 3), α = (1, 2, 4) and β = (1, 2, 3). Then

detA(4,4)[1, 2, 4|1, 2, 3] =

∣∣∣∣∣∣∣∣
7 4 3

4 3 3

1 1 1

∣∣∣∣∣∣∣∣ = −1,

= detA(4,3)[1, 2|1, 2] · a43 =

∣∣∣∣∣4 1

1 0

∣∣∣∣∣ · 1 = −1.

Proposition 2.2. [12] Let A =
(
aij

)
∈ Rn,m and r = (s, t) ∈ E◦. Letα = (α1, . . . , αl) ∈

Ql,n, β = (β1, . . . , βl) ∈ Ql,m, where l ≤ min{n,m}, and (αl, βl) < r. If ast = 0, or if

αl = s, or if t ∈ {β1, . . . , βl} , or if t < β1, then

detA(r
+)[α | β] = detA(r)[α | β].

The following is an illustration example for the above proposition.

Example 2.10. Suppose we have the same matrix A that we had in the Example 2.3.

Let r = (3, 4), α = (1, 3), and β = (2, 3). Then

detA(4,2)[1, 3|2, 3] =

∣∣∣∣∣1 3

0 3

∣∣∣∣∣ = detA(3,4)[1, 3|2, 3] =

∣∣∣∣∣1 0

0 3

∣∣∣∣∣ = 3.
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Lemma 2.1. [12] Let A =
(
aij

)
∈ Rn,m, and let r = (s, t) ∈ E◦. Let δ = detA[α|β]

with α = (α1, . . . , αl) ∈ Ql,n, β = (β1, . . . , βl) ∈ Ql,m. Assume that ast ̸= 0 and that

αl < s while βh < t < βh+1 for some h ∈ {1, . . . , l} (by convention, βl+1 := m + 1).

Then

δ(r
+) = δ(r) +

h∑
k=1

(−1)k+hδ
(r)
βk→tas,βk

a−1
st .

The following is an illustration example for the above lemma.

Example 2.11. Suppose we have the same matrix A that we had in the Example 2.3.

Let r = (4, 2), α = (1, 2, 3) , β = (1, 3, 4), and t = 2. Then δ = detA[1, 2, 3, |1, 3, 4]
and h = 1.

δ(4,3)[1, 2, 3|1, 3, 4] = δ(4,2)[1, 2, 3|1, 3, 4] +
1∑

k=1

(−1)k+1 · δ(4,2)[1, 2, 3|2, 3, 4] · a41 · a−1
42∣∣∣∣∣∣∣∣

4 3 1

1 3 1

1 3 1

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
3 3 1

1 3 1

1 3 1

∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣
1 3 1

0 3 1

0 3 1

∣∣∣∣∣∣∣∣ = 0.

2.2 Totally Nonpositive Matrices

In this section, we introduce the definition of totally nonpositive matrices and some

important results on this class of matrices.

Definition 2.7. [9] Let A be an n×m matrix. Then A is said to be totally nonpositive

(t.n.p.) if A is a sign regular matrix of order k = min{n,m} with signature ε =

(−1,−1, . . . ,−1), i.e.,

detA
[
i|j
]
= detA

[
i1, . . . , il|j1, . . . , jl

]
≤ 0, (2.2)

for all i = (i1, . . . , il) ∈ Ql,n , j = (j1, . . . , jl) ∈ Ql,m, and all l = 1, . . . , k. In addition,

if A is nonsingular then we denote it by Ns.t.n.p. If the strict inequality occur in (2.2),

then the matrix A is called totally negative (t.n.).

In the following definition, we can write Definition 2.7 on t.n.p matrices by utilizing

the concept of compound matrices as follows.

Definition 2.8. Let A be an n×m matrix. Then it is said to be t.n.p. if all entries of

the pth compound matrix of A are nonpositive, p = 1, 2, . . . ,min{n,m}.
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Example 2.12. Let B =


−2 −5 −9 −15

−5 −5 −9 −15

−9 −9 −9 −15

−15 −15 −15 −15,

.
To show that A is a t.n.p matrix we compute all the pth compound matrices of A for

p = 1, 2, 3, 4.

B[1] = B =


−2 −5 −9 −15

−5 −5 −9 −15

−9 −9 −9 −15

−15 −15 −15 −15,


(41)×(

4
1)=4×4

,

B[2] =



−15 −27 −45 0 0 0

−27 −36 −105 0 −60 0

−45 −105 −195 −60 −105 −90

0 −36 −60 −36 −60 0

0 −60 −105 −60 −105 −90

0 0 −90 0 −90 −90


(42)×(

4
2)=6×6

,

B[3] =


−105 −180 0 0

−180 −450 −270 0

0 −270 −630 −360

0 0 −360 −360


(43)×(

4
3)=4×4

, B[4] =
[
−1080

]
(44)×(

4
4)=1×1

.

It is clear that all the entries of B[1], B[2], , B[3], and B[4] are nonpositive. Therefore,

B is a sign regular matrix with signature (−1,−1,−1,−1). Hence A is Ns.t.n.p..

The following theorem presents equivalent statements for a nonsingular matrix to be

t.n.p. using a few number of minors.

Theorem 2.5. [14] Let A =
(
aij

)
∈ Rn,n with 2 ≤ n be nonsingular. Then the following

three statements are equivalent:

(a) A is t.n.p.

(b) For any k ∈ {1, . . . , n− 1},

a11 ≤ 0, ann ≤ 0, an1 < 0, a1n < 0, (2.3)
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detA[α | k + 1, . . . , n] ≤ 0, for all α ∈ Qn−k,n, (2.4)

detA[k + 1, . . . , n | β] ≤ 0, for all β ∈ Qn−k,n, (2.5)

detA[k, . . . , n] < 0. (2.6)

(c) For any k ∈ {1, . . . , n− 1},

a11 ≤ 0, ann ≤ 0, an1 < 0, a1n < 0, (2.7)

detA[α | 1, . . . , k] ≤ 0, for all α ∈ Qk,n, (2.8)

detA[1, . . . , k | β] ≤ 0, for all β ∈ Qk,n, (2.9)

detA[1, . . . , k + 1] < 0. (2.10)

In the following theorem, two equivalent statements are given to present the relation

between a t.n.p. matrix and the matrix obtained by the Cauchon Algorithm.

Theorem 2.6. [5] Let A =
(
aij

)
∈ Rn,n have all entries negative except possibly a11 ≤ 0.

Then the following two properties are equivalent:

(i) A is a Ns.t.n.p. matrix.

(ii) Ã is a Cauchon matrix and Ã[1, . . . , n − 1] is a nonnegative matrix with positive

diagonal entries.

The following theorem indicates that the entries of Ã can be represented as ratios of

contiguous minors if A is Ns.t.n.p.

Theorem 2.7. [5] Let A =
(
aij

)
∈ Rn,n be Ns.t.n.p. with ann < 0. Then the entries ãkj

of the matrix Ã can be represented as (k, j = 1, . . . , n)

ãkj =
detA[k, . . . , k + p | j, . . . , j + p]

detA[k + 1, . . . , i+ p | j + 1, . . . , j + p]
,

with a suitable 0 ≤ p ≤ n− k, if j ≤ k and 0 ≤ p ≤ n− j, if k < j.

The following three theorems will play an important role in proving our main and

new results.

Theorem 2.8. [7] Let A ∈ R(n,m) of rank r, and ε a signature sequence. If

εk detA[α | β] ⩾ 0 for α ∈ Qk,n, β ∈ Qk,m, k = 1, 2, . . . ,min(n,m),

is valid whenever d(β) ⩽ m− r, then A is sign regular with signature ε.

Theorem 2.9. [1] Let A ∈ Rn,m be t.n.p. and let α = (i + 1, . . . , i + r), β = (j +

1, . . . , j + r) for some i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}, and 2 ≤ r < min{n,m} − 1. If

A[α | β] has rank r − 1, then
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(i) either the rows i + 1, . . . , i + r or the columns j + 1, . . . , j + r of A are linearly

dependent,

or

(ii) the right or left shadow of A[i+ 1, . . . , i+ r | j + 1, . . . , j + r] has rank r − 1.

The following theorem present that the principal minors of Ns.t.n.p. matrices are

negative.

Theorem 2.10. [19] Let A =
(
aij

)
∈ Rn,n be Ns.t.n.p. with a11 < 0 and ann < 0. Then

detA[α] < 0 for all α ∈ Qk,n, k = 1, 2, . . . , n.
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Chapter 3

Main Results

In this chapter, we present our results on the characterization of a special class of

sign regular matrices by applying the Cauchon Algorithm. In the first section, we will

extend some results to rectangular totally nonpositive matrices. In the second section,

we will introduce some characerizations and necessary and sufficent conditions for a

given square matrix to be in the class of matrices whose determinants are positive and

all other minors are nonpositive. We conclude this thesis by section three wherein we

show that the so-called interval property holds for the class of matrices considered in

section two.

3.1 Totally Nonpositive Matrices And The Cauchon

Algorithm

In this section, we will extend some results on totally nonpositive matrices, which will

be helpful in proving and deducing new results on the matrices we are interested in.

Here, we are interested in totally nonpositive matrices that do not contain zero rows

or zero columns. The following Lemma present that for a given totally nonpositive

matrix and the last entry is negative, then all entries in the last row and column are

negative or the matrix has a zero row or a zero column.

Lemma 3.1. Let A =
(
aij

)
∈ Rn,m be a t.n.p. matrix with anm < 0. Then all entries

in the last row and column are negative or A has a zero row or a zero column.

Proof. Firstly, assume aim = 0 for some i ∈ {1, . . . , n − 1}, i.e., the last column has a
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zero entry. Then for any j ∈ {1, . . . ,m− 1} consider

0 ≥ detA[i, n|j,m] = aijanm − aimanj

= aijanm ≥ 0,

since A is t.n.p., aim = 0, because anm < 0, we conclude that aij = 0 for all j =

1, . . .m− 1, i.e., A has a zero row. If ank = 0 for some k ∈ {1, . . . ,m− 1}, i.e., the last

row has a zero entry, we proceed similarly to conclude that A has a zero column.

In the following theorem, we investigate the entries of the intermediate matrices that

result by the application of the Cauchon Algorithm to a given t.n.p. matrix A. We

proceed parallel to the case of a Ns.t.n.p. matrix which was derived in [1].

Theorem 3.1. Let A = (aij) ∈ Rn,m be t.n.p. with anm < 0. If we apply the Cauchon

Algorithm on A, then the following properties hold

(i) All entries of A(n,t)[1, . . . , n− 1|1, . . . ,m− 1] are nonnegative for all t = 2, . . . ,m.

(ii) A(n,t)[1, . . . , n− 1|1, . . . , t− 1] is TN for all t = 2, . . . ,m.

(iii) A(n,t)[1, . . . , n− 1|1, . . . ,m− 1] is TN for all t = 2, . . . ,m.

(iv) A(n,2) is a Cauchon matrix.

(v) For t = 2, . . . ,m, detA(n,t)[α|β] ≤ 0 for all α ∈ Ql,n−1, β = (β1, β2, . . . , βl) ∈ Ql,m

with βl = m and l = 1, . . . ,min{n− 1,m}.

Proof. (i) If t = m, then set r = (n,m) ∈ E◦. By Proposition 2.1, we have

detA[i, n|j,m] = detA(r+)[i, n|j,m] = detA(r)[i|j] · anm = a
(r)
ij · anm,

for i ∈ {1, . . . , n−1}, j ∈ {1, . . . ,m−1}. Since A is t.n.p., i.e., detA[i, n|j,m] ≤ 0

and anm < 0 it follows that

a
(r)
ij ≥ 0 for all i = 1, . . . , n− 1 and j = 1, . . . ,m− 1.

This proves the case t = m.

Now for the other cases, let r = (n, t). Since the last row index in the underlying

submatrices of the following minors equals n, we apply Proposition 2.2 to conclude

that

detA(r+)[i, n|j, t] = · · · = detA[i, n|j, t] for all t ≤ m− 1. (3.1)
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By Proposition 2.1, we obtain

detA[i, n|j, t] = detA(r+)[i, n|j, t] = detA(r)[i|j] · ant
= a

(r)
ij · ant.

Now by Lemma 3.1, ant < 0 because A has no zero rows or columns and since the

right hand side is nonpositive by the total nonpositivity of A, we conclude that

a
(r)
ij ≥ 0. This completes the proof of (i).

(ii) If t = m, then by (i) A(n,m)[1, . . . , n− 1|1, . . . ,m− 1] is a nonnegative matrix.

Furthermore, it follows from Proposition 2.1 and Proposition 2.2 with r = (n,m)

that

0 ≥ detA[α1, . . . , αi, n|β1, . . . , βi,m] = detA(n+1,2)[α1, . . . , αi, n|β1, . . . , βi,m]

= detA(n,m)[α1, . . . , αi|β1, . . . , βi] · anm,

for all (α1, . . . , αi) ∈ Qi,n−1, (β1, . . . , βi) ∈ Qi,m−1, and i = 1, 2, . . . ,min{n−1,m−
1}. Since A is t.n.p. and anm < 0, we obtain

detA(n,m)[α1, . . . , αi|β1, . . . , βi] ≥ 0.

Hence A(n,m)[1, . . . , n− 1|1, . . . ,m− 1] is TN.

This proves the case t = m. For the other cases, let r = (n, t), t < m, and

α ∈ Qi,n−1, β ∈ Qi,t−1. Since the last row index in the underlying submatrices of

the following minors equals n, we apply Proposition 2.2 so that

detA(r+)[α1, . . . , αi, n|β1, . . . , βi, t] = · · · = detA[α1, . . . , αi, n|β1, . . . , βi, t] ≤ 0. (3.2)

Also by Proposition 2.1 with r = (n, t), we get

detA(r+)[α1, . . . , αi, n|β1, . . . , βi, t] = detA(r)[α1, . . . , αi|β1, . . . , βi] · ant.

Now by Lemma 3.1, ant < 0 and since the right hand side is nonpositive by the

total nonpositivity of A, we conclude by (3.2) that

detA(n,t)[α1, . . . , αi|β1, . . . , βi] ≥ 0.

Hence A(n,t)[1, . . . , n − 1|1, . . . , t − 1] is TN , for all t = 2, . . . ,m − 1. This the

completes proof of (ii).
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(iii) We will prove this statement by decreasing primary induction on the iteration

number t and secondary induction on the order of the minors l.

For t = m, A(n,m)[1, . . . , n− 1|1, . . . ,m− 1] is TN by (ii).

Suppose that A(n,t+1)[1, . . . , n − 1|1, . . . ,m − 1] is TN , we want to show that

A(n,t)[1, . . . , n−1|1, . . . ,m−1] is TN , i.e., 0 ≤ detA(n,t)[α|β] for all α ∈ Ql,n−1, β ∈
Ql,m−1.

For the case l = 1, all entries of A(n,t)[1, . . . , n − 1|1, . . . ,m − 1] are nonnegative

for t = 1, . . . ,m by (i).

Now assume the statement is true for all iterations m− 1, . . . , t+1 and all minors

of order 1, . . . , l−1. We want to show the claim for iteration t and minors of order

l.

Let α = (α1, . . . , αl) ∈ Ql,n−1 and β = (β1, . . . , βl) ∈ Ql,m−1.

If βl < t, then the matrix A(n,t)[α1, α2, . . . , αl|β1, β2, . . . , βl] is a submatrix of

A(n,t)[1, . . . , n− 1|1, . . . , t− 1] which is TN by (ii) and so detA(n,t)[α|β] ≥ 0.

If t < β1 or t is contained in β, then by Proposition 2.2 , we have

detA(n,t+1)[α|β] = detA(n,t)[α|β],

which implies by the induction hypothesis on t that

detA(n,t)[α|β] ≥ 0.

Hence it remains to consider the case, where there exists h, 1 ≤ h ≤ l − 1, such

that βh < t < βh+1 which implies d(β) > 0.

In order to prove the statement in this case we follow [1] and simplify the notation

where we proceed by setting

[α | β] := detA(n,t)[α | β], [α | β]+ := detA(n,t+1)[α | β]

and for j ∈ {1, . . . , h}, β′
ĵ
:=

(
β1, . . . , βj−1, βj+1, . . . , βl−1

)
, where β′

ĵ
has the length

of l − 2.

Now since d(β) > 0 and βh < t < βh+1, we use Lemma 1.2 to conclude that[
αk̂ | β

′
ĵ
∪ {t}

]
· [α | β] =[

αk̂ | β′
ĵ
∪ {βl}

]
·
[
α | β′

ĵ
∪
{
βj, t

}]
+
[
αk̂ | β′

ĵ
∪
{
βj

}]
·
[
α | β′

ĵ
∪ {t, βl}

]
, (3.3)

k = 1, . . . , l.

It follows from the induction hypothesis on l that the minors
[
αk̂ | β′

ĵ
∪ {t}

]
,
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[
αk̂ | β′

ĵ
∪ {βl}

]
, and

[
αk̂ | β′

ĵ
∪
{
βj

}]
are nonnegative because they have order

l − 1.

Furthermore, since t is contained in the column set of the submatrices corresponding

to the following minors, then by Proposition 2.2 we get that[
α | β′

ĵ
∪
{
βj, t

}]
=

[
α | β′

ĵ
∪
{
βj, t

}]+
,

and [
α | β′

ĵ
∪ {t, βl}

]
=

[
α | β′

ĵ
∪ {t, βl}

]+
.

Hence by induction on t the latter minors are also nonnegative.

Hence all of these equalities together imply that the left-hand side of (3.3) is

nonnegative. If 0 <
[
αk̂ | β′

ĵ
∪ {t}

]
for some k and j, then 0 ≤ [α|β], as desired. If

for all k, j,
[
αk̂ | β′

ĵ
∪ {t}

]
= 0, then it follows by the Laplace expansion on column

βl that
[
α | β′

ĵ
∪ {βl, t}

]
= 0. Then by Lemma 2.1 we have

detA(n,t)+ [α | β] = detA(n,t)[α | β].

Hence we obtain by induction on t that 0 ≤ detA(n,t)[α | β], as desired. This

completes the induction step for the proof of (iii).

(iv) Since the entries in the last row and last column of A are negative ( because

they are not changed when running the Cauchon Algorithm). By Theorem 2.1,

A(n,2)[1, . . . , n − 1|1, . . . ,m − 1] is a Cauchon matrix since by (iii) the latter

submatrix is TN . Hence A(n,2) is a Cauchon matrix.

(v) We prove the claim by decreasing primary induction on t and induction on l as

in the proof of statement (iii). For l = 1, since βl = m we are referring to the

entries in the last column which are negative by Lemma 3.1 as anm < 0 and

the fact that the entries of the last column and row do not change during the

application of the Cauchon Algorithm. If t = m, then by Proposition 2.2 we have

detA(n,m)[α | β] = detA[α | β] ≤ 0 since βl = m.

Suppose that the statement is true for all minors of order less than l (secondary

induction) and for all steps t + 1, . . . ,m − 1 (primary induction). Let α ∈ Ql,n−1
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and β = (β1, β2, . . . , βl) ∈ Ql,m with βl = m.

If t < β1 or t = βh for some h = 1, . . . , l, then by Proposition 2.2 we have

detA(n,t)+ [α | β] = detA(n,t)[α | β],

which implies by the induction hypothesis on t that detA(n,t)[α | β] ≤ 0.

If βh < t < βh+1 for some h = 1, . . . , l − 1, then by Lemma 1.2 we have[
αk̂ | β

′
ĵ
∪ {t}

]
· [α | β] =[

αk̂ | β
′
ĵ
∪ {βl}

]
·
[
α | β′

ĵ
∪
{
βj, t

}]
+
[
αk̂ | β

′
ĵ
∪
{
βj

}]
·
[
α | β′

ĵ
∪ {t, βl}

]
.

The minors
[
αk̂ | β′

ĵ
∪ {t}

]
,
[
α | β′

ĵ
∪
{
βj, t

}]
,
[
αk̂ | β′

ĵ
∪
{
βj

}]
are nonnegative by

(iii).

[
αk̂ | β′

ĵ
∪ {βl}

]
is nonpositive by the induction hypothesis on l,

[
α | β′

ĵ
∪ {t, βl}

]
=[

α | β′
ĵ
∪ {t, βl}

]+
by Proposition 2.2, and by the induction hypothesis on t the

latter minor is nonpositive. All of these inequalities yield

[
αk̂ | β

′
ĵ
∪ {t}

]
· [α | β] ≤ 0.

If 0 <
[
αk̂ | β′

ĵ
∪ {t}

]
for some k and j, then we have [α | β] ≤ 0.

If for all k, j,
[
αk̂ | β′

ĵ
∪ {t}

]
= 0, then proceeding parallel to the last part of (iii)

we get

detA(n,t+1)[α | β] = detA(n,t)[α | β].

Hence we obtain by induction on t that 0 ≤ detA(n,t)[α | β], as desired.

By sequentially repeating the steps of the proof of Theorem 3.1, we obtain the

following theorem.

Theorem 3.2. Let A =
(
aij

)
∈ Rn,m be t.n.p. with anm < 0. Then the following

statements hold:

(i) A(s,t)[1, . . . , s− 1 | 1, . . . , t− 1] is TN for all s = 2, . . . , n and t = 2, . . . ,m.

(ii) A(s,2)[1, . . . , s− 1|1, . . . , t− 1] is TN for all s = 2, . . . , n and t = 2, . . . ,m.

(iii) Ã[1, . . . , n− 1|1, . . . ,m− 1] is a nonnegative matrix.

(iv) Ã is a Cauchon matrix.
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3.2 Matrices Having A Positive Determinant and

All Other Minors Nonpositive

In this section, we employ the results obtained so far to investigate and characterize

the matrices having positive determinants and all other minors nonpositive by using the

Cauchon Algorithm.

A square matrix that has a positive determinant and all other minors nonpositive,

i.e., a nonsingular sign regular matrix with signature (−1,−1, . . . ,−1, 1), is denoted by

t.n.p+.

In the following theorem, we present some properties of the entries in the matrix

that we obtain after applying the Cauchon Algorithm to a t.n.p+ matrix.

Theorem 3.3. Let A = (aij) ∈ Rn,n be t.n.p+ and ann < 0. Then application of the

Cauchon Algorithm to A results in the following properties:

(1) ãii ̸= 0 for i = 3, . . . , n− 1.

(2) If ã2j = 0 for j > 2, then ã2i = 0 for all i = 2, . . . , j or ã1j = 0.

(3) If ãi2 = 0 for i > 2, then ãj2 = 0 for all j = 2, . . . , i or ãi1 = 0.

Proof. SinceA is a nonsingular matrix, the rows and columns ofA are linearly independent.

Moreover, since A is t.n.p+ we conclude that A[1, . . . , n|2, . . . , n] and A[2, . . . , n|1, . . . , n]
are t.n.p.. Let Ã be the matrix obtained by the application of the Cauchon Algorithm

to A. Hence by Theorem 3.2

Ã[1, . . . , n|2, . . . , n] and Ã[2, . . . , n|1, . . . , n]

are Cauchon matrices since all entries of the above matrices coincide with the corresponding

entries of the matrices obtained by the running the Cauchon Algorithm onA[1, . . . , n|2, . . . , n]
and A[2, . . . , n|1, . . . , n]. The reason is that the entries of the first column and first row

do not affect the calculation of the entries of A[1, . . . , n|2, . . . , n] and the entries of

A[2, . . . , n|1, . . . , n], respectively.

(1) We prove this statement by decreasing induction on i for i = n − 1, . . . , 3. Suppose

that ãjj > 0 for j = n − 1, . . . , i + 1 and ãii = 0. Since Ã[1, . . . , n|2, . . . , n] and

Ã[2, . . . , n|1, . . . , n] are Cauchon matrices, we distinguish between the following three

cases:
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Case (1) ãi,s = 0 for all s = 1, . . . , i− 1, i.e.,

Ã =



ã11 . . . ã1,i−1 ã1i ã1,i+1 . . . ã1,n

ã21 . . . ã2,i−1 ã2i ã2,i+1 . . . ã2,n
...

. . .
...

...
...

. . .
...

0 . . . 0 0 ãi,i+1 . . . ãi,n

ãi+1,1 . . . ãi+1,i−1 ãi+1,i ãi+1,i+1 . . . ãi+1,n

...
. . .

...
...

...
. . .

...

ãn,1 . . . ãn,i−1 ãn,i ãn,i+1 . . . ãnn


.

By applying Procedure 2.1 to Ã[i, . . . , n|1, . . . , n] we construct the lacunary sequence

γ =
(
(n, n), (n− 1, n− 1), . . . , (i+ 1, i+ 1)

)
for the Cauchon matrix Ã[i, . . . , n|1, . . . , n].

By Theorem 2.3 the rank of the matrix A[i, . . . , n|1, . . . , n] is equal to n−(i+1)+1 = n−i,

which is a contradiction to the linear independence of the rows of A.

Case (2) ãt,i = 0 for all t = 1, . . . , i− 1, i.e.,

Ã =



ã11 . . . ã1,i−1 0 ã1,i+1 . . . ã1,n
...

. . .
...

...
...

. . .
...

ãi−1,1 . . . ãi−1,i−1 0 ãi−1,i+1 . . . ãi−1,n

ãi1 . . . ãi,i−1 0 ãi,i+1 . . . ãi,n

ãi+1,1 . . . ãi+1,i−1 ãi+1,i ãi+1,i+1 . . . ãi+1,i

...
. . .

...
...

...
. . .

...

ãn,1 . . . ãn,i−1 ãn,i ãn,i+1 . . . ãnn


.

By applying Procedure 2.1 to Ã[1, . . . , n|i, . . . , n] we obtain the lacunary sequence γ =(
(n, n), (n− 1, n− 1), . . . , (i+ 1, i+ 1)

)
for the Cauchon matrix Ã[1, . . . , n|i, . . . , n]. By

Theorem 2.3 the rank of the matrix A[1, . . . , n|i, . . . , n] is equal to n − i, which is a

contradiction to the linear independence of the columns of A.

Case (3) ãis = 0 for all s = 2, . . . , i− 1 and ãi1 ̸= 0 and ãti = 0 for all t = 2, . . . i− 1

and ã1i ̸= 0.

Since Ã[1, . . . , n|2, . . . , n] and Ã[2, . . . , n|1, . . . , n] are Cauchon matrices, then Ã has the
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following form:

Ã =



ã11 ã12 . . . ã1,i−1 ã1,i ã1,i+1 . . . ã1,n

ã21 0 . . . 0 0 ã2,i+1 . . . ã2,n
...

...
. . .

...
...

...
. . .

...

ãi−1,1 0 . . . 0 0 ãi−1,i+1 . . . ãi−1,n

ãi1 0 . . . 0 0 ãi,i+1 . . . ãi,n

ãi+1,1 ãi+1,2 . . . ãi+1,i−1 ãi+1,i ãi+1,i+1 . . . ãi+1,n

...
...

. . .
...

...
...

. . .
...

ãn,1 ãn,2 . . . ãn,i−1 ãn,i ãn,i+1 . . . ãnn


.

By applying Procedure 2.1 to Ã[2, . . . , n|1, . . . , n] we construct the lacunary sequence γ =(
(n, n), (n− 1, n− 1), . . . , (i+ 1, i+ 1), (i, 1)

)
for the Cauchon matrix Ã[2, . . . , n|1, . . . , n].

By Theorem 2.3 the rank of the matrix A[2, . . . , n|1, . . . , n] is equal to n− i + 1. Since

i ≥ 3 then n− i+ 1 ≤ n− 2 which is a contradiction to the linear independence of the

rows of this matrix.

Hence

aii ̸= 0, for all i = n− 1, . . . , 3.

(2) Let ã2j = 0 for j > 2. Then since Ã[1, . . . , n|2, . . . , n] is a Cauchon matrix we get

that either ã2i = 0 for all i = 2, . . . , j − 1, or ã1j = 0.

(3) Let ãi2 = 0 for i > 2. Then since Ã[2, . . . , n|1, . . . , n] is a Cauchon matrix we get that

either ãj2 = 0 for all j = 2, . . . , i− 1, or ãi1 = 0.

Corollary 3.1. Let A = (aij) ∈ Rn,n be t.n.p+ and ann < 0. Then

(1) If ãij = 0 for i > 2 and i < j, then ãsj = 0 for all s = 1, . . . , i− 1.

(2) If ãij = 0 for j > 2 and i > j, then ãit = 0 for all t = 1, . . . , j − 1.

Proof. Since A = (aij) ∈ Rn,n is t.n.p+ and ann < 0. Then as in the proof of the above

theorem, Ã[1, . . . , n|2, . . . , n] and Ã[2, . . . , n|1, . . . , n] are Cauchon matrices.

(1) Suppose that ãij = 0 for i > 2 and i < j. We want to show that ãsj = 0 for all

s = 1, . . . , i− 1.

Suppose on the contrary that ãsj ̸= 0 for some s = 1, . . . , i − 1. Since ãij = 0, ãsj ̸= 0

for some s = 1, . . . , i− 1, and Ã[1, . . . , n|2, . . . , n] is a Cauchon matrix then ãik = 0 for

all k = 2, . . . , j − 1. Now since j > i we conclude that ãii = 0 for i > 2 which provides

a contradiction to Theorem 3.3 since ãii ̸= 0 for all i ≥ 3.
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(2) Suppose that ãij = 0 for j > 2 and i > j. We want to show that ãit = 0 for all

t = 1, . . . , j − 1.

Suppose on the contrary that ãit ̸= 0 for some t = 1, . . . , j − 1. Now since ãij = 0,

ãit ̸= 0 for some t = 1, . . . , j − 1 and Ã[2, . . . , n|1, . . . , n] is a Cauchon matrix then we

get that ãlj = 0 for all l = 2, . . . , i − 1. Now since i > j we conclude that ãii = 0 for

i > 2. This is a contradiction to Theorem 3.3 since ãjj ̸= 0 for all j ≥ 3.

In the following theorem, we present some properties for the matrix that we obtain

after applying the Cauchon algorithm to a t.n.p+ matrix, where the entry (2, 2) in the

obtained matrix equals zero.

Theorem 3.4. Let A = (aij) ∈ Rn,n be t.n.p+ with ann < 0, and let Ã = (ãij) be the

matrix obtained by the Cauchon Algorithm satisfying ã22 = 0. Then

(i) ã12, ã21 ̸= 0.

(ii) detA[1, . . . , n− 1|2, . . . , n], detA[2, . . . , n|1, . . . , n− 1] < 0.

(iii) detA[2, . . . , n− 1] < 0.

(iv) ãi,i−1, ãi−1,i > 0 for i = 3, . . . , n− 1.

(v) If ã2j = 0 for some j ∈ {4, . . . , n− 1} then ã1j = 0.

(vi) If ãi2 = 0 for some i ∈ {4, . . . , n− 1} then ãi1 = 0.

Proof. Since A is a t.n.p+ matrix, the rows and columns of A are linearly independent

and A[1, . . . , n|2, . . . , n] and A[2, . . . , n|1, . . . , n] are t.n.p. with ann < 0. By Theorem

3.2 we get that

Ã[1, . . . , n|2, . . . , n] and Ã[2, . . . , n|1, . . . , n]

are Cauchon matrices.

(i) Suppose by contradiction that ã12 = 0, then Ã looks like

Ã =



ã11 0 ã13 . . . ã1,n

ã21 0 ã23 . . . ã2,n

ã31 ã32 ã33 . . . ã3,n
...

...
...

. . .
...

ãn,1 ãn,2 ãn,3 . . . ãn,n


.
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By Theorem 3.3, ãii > 0 for i = 3, . . . , n−1. Applying Procedure 2.1 to Ã[1, . . . , n|2, . . . , n],
we obtain the lacunary sequence γ =

(
(n, n), (n− 1, n− 1), . . . , (3, 3)

)
. Hence by Theorem

2.3, the rank of the matrix A[1, . . . , n|2, . . . , n] is n − 2 which is a contradiction to the

linear independence of the columns of A[1, . . . , n|2, . . . , n]. For ã21 = 0, proceed similarly

as in the case ã12 = 0 and work on Ã
[
2, . . . , n|1, . . . , n

]
.

(ii) Since A is a nonsingular matrix then A−1 exist. Set the matrix C =
(
cij

)
:= SA−1S−1,

where S = diag (1,−1, . . . , (−1)n+1).

Now for α, β ∈ Ql,n, detS[α|α] = detS−1[α|α] = (−1)
∑

αi∈α αi+l and detS[α|β] = 0 for

α ̸= β. By using the Cauchy-Binet formula we get

detC[α|β] = detS[α|α] · detA−1[α|β] · detS−1[β|β]
= (−1)

∑
αi∈α αi+l · detA−1[α|β] · (−1)

∑
βi∈β βi+l

= (−1)
∑

αi∈α αi+βi · detA−1[α|β].

By using Lemma 1.3, we get

detC[α|β] = detA[βc|αc]

detA
. (3.4)

Since for l = 1, . . . , n− 1, detA[βc|αc] ≤ 0 and detA > 0, we obtain that detC[α|β] ≤ 0

for all l = 1, . . . , n− 1. Moreover, for α, β = (1, . . . , n),

detC = detS detA−1 detS−1

= detA−1

=
1

detA
> 0.

Hence C is t.n.p+.

Now by (3.4), we get that

c1n =
detA[1, . . . , n− 1|2, . . . , n]

detA
. (3.5)

We claim that c1n is negative by which we conclude that detA[1, . . . , n − 1|2, . . . , n] is
negative. Suppose to the contrary that c1n = 0. Since C is nonsingular, then the matrix

has neither a zero row nor a zero column. Hence we may assume that c1j, cin ̸= 0 for

some i ∈ {2, . . . , n}, j ∈ {1, . . . , n− 1}. Hence

0 ≥ detC[1, i|j, n] = c1jcin − c1ncij

= c1jcin,
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but since c1j, cin are negative, the right hand side is positive which is a contradiction.

Therefore, c1n < 0. Hence by (3.5)

detA[1, . . . , n− 1|2, . . . , n] < 0.

Now for detA[2, . . . , n|1, . . . , n− 1] we apply the same steps on cn1, where

cn1 =
detA[2, . . . , n|1, . . . , n− 1]

detA
, (3.6)

to conclude that

detA[2, . . . , n|1, . . . , n− 1] < 0.

(iii) Since ãii ̸= 0 for i = 3, . . . , n, we construct the lacunary sequance
(
(2, 2), (3, 3), . . . , (n, n)

)
with respect to the Cauchon matrix Ã[2, . . . , n|1, . . . , n], and by the signature of A we get

that the matrix A[2, . . . , n] is a t.n.p.. Hence by Theorem 3.2 we obtain that Ã[2, . . . , n]

is a Cauchon matrix. Moreover, by Theorem 2.4 we conclude that

detA[2, . . . , n] = ã22 · ã33 · · · ãnn = 0, (3.7)

since ã22 = 0. Application of Lemma 1.1 to the matrix A yields

det[2, . . . , n− 1] detA = detA[1, . . . , n− 1] detA[2, . . . , n]

− detA[1, . . . , n− 1|2, . . . , n] detA[2, . . . , n|1, . . . , n− 1].

Since detA > 0, detA[1, . . . , n− 1|2, . . . , n], detA[2, . . . , n|1, . . . , n− 1] < 0 by (ii), and

det[2, . . . , n] = 0 by (3.7), we conclude that

det[2, . . . , n− 1] < 0.

(iv) By the signature of A and Theorem 3.3, we get that the matrix A[i, . . . , n], i =

3, . . . , n− 1, are Ns.t.n.p., and ãii ̸= 0 for i = 3, . . . , n− 1.

Since A[i, . . . , n−1|i+1, . . . , n] and A[i+1, . . . , n|i, . . . , n−1] are principal minors for

the Ns.t.n.p. matrices A[1, . . . , n − 1|2, . . . , n] and A[2, . . . , n|1, . . . , n − 1] respectively,

then by Theorem 2.10 we conclude that

detA[i, . . . , n− 1|i+ 1, . . . , n] < 0, detA[i+ 1, . . . , n|i, . . . , n− 1] < 0, (3.8)

for i = 3, . . . , n− 1.

Application of Lemma 1.1 to A[2, . . . , n] yields

detA[3 . . . , n− 1] detA[2 . . . , n] = detA[2 . . . , n− 1] detA[3 . . . , n]

− detA[2 . . . , n− 1|3 . . . , n] detA[3 . . . , n|2 . . . , n− 1].
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Since detA[2 . . . , n] = 0, we get

detA[2 . . . , n− 1] detA[3 . . . , n] = detA[2 . . . , n− 1|3 . . . , n] detA[3 . . . , n|2 . . . , n− 1].

Because detA[2 . . . , n − 1] ̸= 0 from (ii) and ãii ̸= 0 for i = 3, . . . , n, by Procedure

2.1 we find the lacunary sequence
(
(3, 3), . . . , (n, n)

)
and by Theorem 2.4 we obtain

detA[3 . . . , n] ̸= 0, i.e.,

detA[2 . . . , n− 1|3 . . . , n], detA[3 . . . , n|2 . . . , n− 1] < 0.

Hence

detA[i− 1, . . . , n− 1|i, . . . , n], detA[i, . . . , n|i− 1, . . . , n− 1] < 0, (3.9)

for i = 3, . . . , n.

Now to prove that ãi,i−1, ãi−1,i > 0, we verify the following formulas

ãi,i−1 =
detA[i, . . . , n|i− 1, . . . , n− 1]

detA[i+ 1, . . . , n|i, . . . , n− 1]
, (3.10)

ãi−1,i =
detA[i− 1, . . . , n− 1|i, . . . , n]
detA[i, . . . , n− 1|i+ 1, . . . , n]

, (3.11)

by decreasing induction on i for i = n − 1, . . . , 3. For i = n − 1, by Lemma 3.1 we get

that ãn−1,n = an−1,n ̸= 0 and ãn,n−1 = an,n−1 ̸= 0. We construct the lacunary sequences(
(n− 2, n− 1), (n− 1, n)

)
and

(
(n− 1, n− 2), (n, n− 1)

)
for the matrices Ã[n−1, n|n−

2, n− 1] and Ã[n− 2, n− 1|n− 1, n], respectively. By Theorem 2.4 we conclude that

detA[n− 1, n|n− 2, n− 1] = ãn−1,n−2 · ãn,n−1,

detA[n− 2, n− 1|n− 1, n] = ãn−2,n−1 · ãn−1,n,

or equivalently,

ãn−1,n−2 =
detA[n− 1, n|n− 2, n− 1]

detA[n|n− 1]
,

ãn−2,n−1 =
detA[n− 2, n− 1|n− 1, n]

detA[n− 1|n]
.

Since by (3.9) detA[n − 1, n|n − 2, n − 1], detA[n − 2, n − 1|n − 1, n] < 0, we obtain

ãn−1,n−2, ãn−2,n−1 > 0.

Suppose that ãi,i−1, ãi−1,i > 0, for i = n − 1, . . . , k + 1, k ≥ 4. Now, for i = k,

ãk+1,k, ãk+2,k+1, . . . , ãn−1,n−2 ̸= 0 and ãk,k+1, ãk+1,k+2, . . . , ãn−2,n−1 ̸= 0 by induction

hypothesis. So we find the lacunary sequences
(
(k, k − 1), (k + 1, k), . . . , (n, n− 1)

)
and
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(
(k − 1, k), (k, k + 1), . . . , (n− 1, n)

)
for the matrices Ã[k, . . . , n|k − 1, . . . , n − 1] and

Ã[k − 1, . . . , n− 1|k, . . . , , n], respectively, and by Theorem 2.4 we conclude that

detA[k, . . . , n|k − 1, . . . , n− 1] = ãk,k−1 · ãk+1,k · · · ãn,n−1,

detA[k − 1, . . . , n− 1|k, . . . , , n] = ãk−1,k · ãk,k+1 · · · ãn−1,n.

Moreover, it follows by the induction hypothesis that

detA[k + 1, . . . , n|k, . . . , n− 1] = ãk+1,k · · · ãn,n−1,

detA[k, . . . , n− 1|k + 1, . . . , n] = ãk,k+1 · · · ãn−1,n,

which yields

ãk,k−1 =
detA[k, . . . , n|k − 1, . . . , n− 1]

detA[k + 1, . . . , n|k, . . . , n− 1]
,

ãk−1,k =
detA[k − 1, . . . , n− 1|k, . . . , n]
detA[k, . . . , n− 1|k + 1, . . . , n]

,

where detA[k, . . . , n|k−1, . . . , n−1], detA[k+1, . . . , n|k, . . . , n−1], detA[k−1, . . . , n−
1|k, . . . , , n], detA[k, . . . , n − 1|k + 1, . . . , n] are negative by (3.8) and (3.9). Thus

ãk,k−1, ãk−1,k > 0. Hence by induction hypothesis we get

ãi,i−1, ãi−1,i > 0, for i = 3, . . . , n− 1.

(v) By the signature of A, the matrix A[1, . . . , n|2, . . . , n] is a t.n.p. matrix with ann < 0.

By Theorem 3.2, the matrix Ã[1, . . . , n|2, . . . , n] is a Cauchon matrix. Now, since ã2j = 0

for some j ∈ {4, . . . , n− 1} and Ã[1, . . . , n|2, . . . , n] is a Cauchon matrix, by Definition

2.5 we obtain that either ã2k = 0 for all k = 2, . . . , j − 1 or ã1j = 0. Since ã23 ̸= 0 by

(iv) which excludes ã2k = 0 for all k = 2, . . . , j − 1, we get that ã1j = 0.

(vi) By the signature of A, the matrix A[2, . . . , n|1, . . . , n] is a t.n.p. matrix with ann < 0.

By Theorem 3.2, the matrix Ã[2, . . . , n|1, . . . , n] is a Cauchon matrix. Now, since ãi2 = 0

for some i ∈ {4, . . . , n − 1} and Ã[2, . . . , n|1, . . . , n] is a Cauchon matrix, by Definition

2.5 we obtain that either ãk2 = 0 for all k = 2, . . . , i− 1 or ãi1 = 0. Since ã32 ̸= 0 by (iv)

which exclude ãk2 = 0 for all k = 2, . . . , i− 1, we get that ãi1 = 0.

Remark 3.1. In Theorem 3.4, we did not rely on the value of ã22 in the proof of (ii),

and therefore (ii) is valid at any value of ã22 ≥ 0.

The next theorem presents necessary and sufficient conditions for a given matrix to

be t.n.p+ under certain conditions.
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Theorem 3.5. Let A = (aij) ∈ Rn,n have all entries negative, detA[1, . . . , n − 1] ≤ 0,

and Ã = (ãij) be the matrix obtained by the Cauchon Algorithm satisfying ã22 > 0. Then

A is t.n.p+ if and only if the following statements hold

(i) Ã is a Cauchon matrix.

(ii) ãin, ãni < 0 for all i = 1, . . . , n.

(iii) ãii > 0 for all i = 3, . . . , n− 1.

(iv) ãi,i−1, ãi−1,i > 0 for i = 2, . . . , n− 1.

(v) ã11 < 0.

(vi) ãij ≥ 0 for i = 1, . . . , n− 1, j = 2, . . . , n− 1, and i = 2, . . . , n− 1, j = 1.

Proof. To prove the necessity, let A be t.n.p+ with ann < 0 and ã22 > 0.

(i) SinceA is t.n.p+ with ann < 0, then as in the proof of Theorem 3.3, Ã[1, . . . , n|2, . . . , n]
and Ã[2, . . . , n|1, . . . , n] are Cauchon matrices. By Corollary 3.1 if ãij = 0 for some

i > 2 and i < j, then ãsj = 0 for all s = 1, . . . , i − 1 and if ãij = 0 for j > 2 or

i > j, then ãit = 0 for all t = 1, . . . , j − 1. If ã2j = 0 or ãi2 = 0 for some j > 2 or

i > 2, then by Theorem 3.3 and since ã22 > 0, we conclude that ã1j = 0 or ãi1 = 0.

Hence Ã is a Cauchon matrix.

(ii) It is clear that ãin = ain, ãnj = anj for all i, j = 1, . . . , n since the entries in the

last row and column do not change when applying the Cauchon Algorithm to the

matrix A. Moreover, since A is t.n.p+, then ain, anj ≤ 0 for all i, j = 1, . . . , n− 1.

By Lemma 3.1 and since Ã is a Cauchon matrix and A is nonsingular, then all

entries in the last row and column are negative.

(iii) Since A is t.n.p+ and ann < 0, then by Theorem 3.3 we get that ãii ̸= 0 for all

i = 3, . . . , n − 1. To prove the positivity of these entries, we will proceed using

decreasing induction on i = n− 1, . . . , 3.

For i = n − 1, since Ã is a Cauchon matrix, then
(
(n− 1, n− 1), (n, n)

)
is a

lacunary sequence for Ã. Moreover, since ãii ̸= 0 for i = n−1, n, then by Theorem

2.4 we have

0 ≥ detA [n− 1, n] = ãn−1,n−1 · ãnn ̸= 0,

since ãnn = ann < 0, we get that ãn−1,n−1 > 0.

Suppose that ãn−1,n−1, . . . , ãi+1,i+1 are positive. Since Ã is a Cauchon matrix, then(
(i, i), (i+ 1, i+ 1), . . . , (n, n)

)
is a lacunary sequence for Ã. Since ãii ̸= 0 for all

i = n, . . . , 3, then by Theorem 2.4 we get that
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0 ≥ detA [i, . . . , n] = ãii · ãi+1,i+1 · · · ãnn ̸= 0.

Since ãnn = ann < 0 and ãn−1,n−1, . . . , ãi+1,i+1 are positive by the induction

hypothesis, we conclude that ãii > 0. This completes proof of statement (iii).

(iv) By Theorem 3.4 and Remark 3.1,

detA[1, . . . , n− 1|2, . . . , n], detA[2, . . . , n|1, . . . , n− 1] < 0

By proceeding as in proof of Theorem 3.4, we conclude that

ãi,i−1, ãi−1,i > 0 for i = 2, . . . , n− 1.

(v) Since Ã is a Cauchon matrix, ã22 > 0, and ãii ̸= 0 for i = 3, . . . , n, then(
(1, 1), . . . , (n, n)

)
is a lacunary sequence for Ã. Since A is nonsingular with

detA > 0, then by Theorem 2.4

0 < detA = ã11 · ã22 · · · ãnn.

Since ãnn = ann < 0, ã22, . . . , ãn−1,n−1 are positive, then we conclude that ã11 < 0.

(vi) Since A is t.n.p+, then A
[
1, . . . , n|2, . . . , n

]
is t.n.p. and by Theorem 3.2 we

conclude that the matrix Ã
[
1, . . . , n− 1|2, . . . , n− 1

]
is a nonnegative matrix,

i.e.,

ãij ≥ 0, for all i = 1, . . . , n− 1, j = 2, . . . , n− 1. (3.12)

Now by the same steps on the matrix A
[
2, . . . , n|1, . . . , n

]
we get by Theorem 3.2

that the matrix Ã
[
2, . . . , n− 1|1, . . . , n− 1

]
is nonnegative, i.e.,

ãij ≥ 0, for all i = 2, . . . , n− 1, j = 1, . . . , n− 1. (3.13)

Hence by (3.12) and (3.13) we get that

ãij ≥ 0,

for all i = 1, . . . , n− 1, j = 2, . . . , n− 1, and for all i = 2, . . . , n− 1, j = 1, which

completes the proof of (v) and the first direction.
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For the converse direction, we aim at showing that the matrix A is t.n.p+. We will

prove that

detA[α|β] ≤ 0,

for all α, β ∈ Qk,n, k = 1, . . . , n− 1 and detA > 0.

To prove the latter inequality, since Ã is a Cauchon matrix, ann < 0, ã22 > 0, and by (iii)

and (v) we have that ãii ̸= 0 for all i = 1, . . . , n. Since
(
(1, 1), . . . , (n, n)

)
is a lacunary

sequence for Ã, we conclude by Corollary 2.1 that

detA[1, . . . , n] = detA = ã11 · ã22 · · · ãn−1,n−1 · ãnn.

Hence detA > 0.

In the same manner we obtain that detA[k, . . . , n] < 0 for k = 2, . . . , n−1. Moreover,

by following the proof of Theorem 3.9 in [1], we have

detA[α|β] ≤ 0,

for all α = (α1, . . . , αl) , β = (β1, . . . , βl) ∈ Ql,n with αl = n or βl = n. Hence A[2, . . . , n]

is Ns.t.n.p. by Theorem 2.5 and the fact that Ã[2, . . . , n] = ˜A[2, . . . , n].

Furthermore, in the same manner and by (iv), we have

detA[i, . . . , n|i− 1, . . . , n− 1] < 0,

detA[i− 1, . . . , n− 1|i, . . . , n] < 0,

for i = 2, . . . , n, and for k = 2, . . . , n,

detA[k, . . . , n|β] ≤ 0, for all β ∈ Qn−k+1,n−1,

detA[α|k, . . . , n] ≤ 0, for all α ∈ Qn−k+1,n−1.

In addition, since A[2, . . . , n] is Ns.t.n.p., we obtain for k = 3, . . . , n, that

detA[α|k − 1, . . . , n− 1] ≤ 0, for all α ∈ Qn−k+1,{2,...,n},

detA[k − 1, . . . , n− 1|β] ≤ 0, for all β ∈ Qn−k+1,{2,...,n}.

Hence by Theorem 2.5, A[2, . . . , n|1, . . . , n−1] andA[1, . . . , n−1|2, . . . , n] areNs.t.n.p.

In order to complete the proof, by employing Theorem 2.8, it is sufficient to show

that

detA[α|β] ≤ 0,
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for α = (s+ 1, . . . , s+ l) , β = (β1, . . . , βl) ∈ Ql,n with s = 0, 1, . . . , n − 1 − l, l =

1, . . . , n − 1 and βl < n. For l = 1, it is done by assumption. If s + 1 ≥ 2 and

β1 ≥ 2, then detA[α|β] ≤ 0 since A[α|β] will be a submatrix in A[2, . . . , n]. If s+ 1 ≥ 2

and β1 = 1, then A[α|β] will be a submatrix in A[2, . . . , n|1, . . . , n − 1] in this case

detA[α|β] ≤ 0 since A[2, . . . , n|1, . . . , n− 1] is a Ns.t.n.p. If s+ 1 = 1 and β1 ≥ 2, then

detA[α|β] ≤ 0 since A[α|β] is a submatrix in theNs.t.n.p.matrix A[1, . . . , n−1|2, . . . , n].
In the following we will only consider the case s+ 1 = 1 and β1 = 1.

By Lemma 1.2 and properties of determinants, we have

detA[s+ 2, . . . , s+ l|ββ̂1
] detA[s+ 1, . . . , s+ l, t1|β ∪ {t2}]

= detA[s+ 2, . . . , s+ l, t1|ββ̂1
∪ {t2}] detA[s+ 1, . . . , s+ l|β]

− detA[s+ 2, . . . , s+ l, t1|β] detA[s+ 1, . . . , s+ l|ββ̂1
∪ {t2}],

for all t1 > s+ l and t2 ∈ {1, . . . , n}\β.
After some arrangements of the latter equality, we have

detA[s+ 1, . . . , s+ l|β] detA[s+ 2, . . . , s+ l, t1|ββ̂1
∪ {t2}]

= detA[s+ 2, . . . , s+ l|ββ̂1
] detA[s+ 1, . . . , s+ l, t1|β ∪ {t2}]

+ detA[s+ 2, . . . , s+ l, t1|β] detA[s+ 1, . . . , s+ l|ββ̂1
∪ {t2}]. (3.14)

The minors detA[s+1, . . . , s+l, t1|ββ̂1
∪{t2}], detA[s+2, . . . , s+l|ββ̂1

], detA[s+2, . . . , s+

l, t1|β], and detA[s + 1, . . . , s + l|ββ̂1
∪ {t2}] are nonpositive since the corresponding

submatrices lie in A[2, . . . , n] or A[1, . . . , n− 1|2, . . . , n] or A[2, . . . , n|1, . . . , n− 1] which

are t.n.p. matrices. In the following we first consider the case l < n− 1.

For t1 = n or t2 = n, detA[s+ 1, . . . , s+ l, t1|β ∪ {t2}] ≤ 0.

If for t1 = n or t2 = n, and detA[s+2, . . . , s+ l, t1|ββ̂1
∪{t2}] < 0, then we conclude that

detA[s+1, . . . , s+ l|β] ≤ 0, as desired. Otherwise, detA[s+2, . . . , s+ l, t1|ββ̂1
∪{t2}] = 0

for t1 = n and t2 ∈ {1, . . . , n}\β or t2 = n and t1 > s+ l.

If detA[s+2, . . . , s+ l|ββ̂1
] < 0, then together with detA[s+2, . . . , s+ l, t1|ββ̂1

∪{n}] = 0

for t1 > s+ l, we conclude that A[2, . . . , n] is singular which is a contradiction.

Hence in the following we assume that detA[s + 2, . . . , s + l|ββ̂1
] = 0. By (3.14)

detA[s + 2, . . . , s + l, t1|β] detA[s + 1, . . . , s + l|ββ̂1
∪ {t2}] = 0 for all t1 > s + l and

t2 ∈ {1, . . . , n}\β.

If the rows of A[s+2, . . . , s+ l|β] or the columns of A[s+1, . . . , s+ l|ββ̂1
] are linearly

dependent, then detA[s+ 1, . . . , s+ l|β] = 0, as desired.
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Hence rows of A[s + 2, . . . , s + l|β] and columns of A[s + 1, . . . , s + l|ββ̂1
] are linearly

independent. Moreover, detA[s + 2, . . . , s + l, t1|β] = 0 for all t1 > s + l or detA[s +

1, . . . , s + l|ββ̂1
∪ {t2}] = 0 for t2 ∈ {1, . . . , n}\β, since otherwise by (3.14) we have a

nonzero quantity equals a zero quantity.

Whence by detA[s + 2, . . . , s + l, t1|β] = 0 for all t1 > s + l and linear independence of

the rows of A[s + 2, . . . , s + l|β] we conclude that rank A[2, . . . , n|β] ≤ l − 1 which is

a contradiction with the nonsingularity of A[2, . . . , n]. This completes the proof of the

theorem.

Now for case l = n − 1, then detA[s + 1, . . . , s + l|β] = detA[1, . . . , n − 1] which is

nonpositive by assumption.

The condition that A[1, . . . , n− 1] ≤ 0 in Theorem 3.5, is necessary to conclude that

a given matrix is t.n.p+ as the following example shows.

Example 3.1. Let A =

−6 −10 −2

−4 −7 −1

−5 −8 −1

. The application of the Cauchon Algorithm

yields

A(4,2) = A, A(3,3) =

 4 6 −2

1 1 −1

−5 −8 −1

 ,

A(3,2) =


2
8

6 −2
3
8

1 −1

−5 −8 −1

 = A(3,1), A(3,2) =

−
1
2

4 −2
3
8

1 −1

−5 −8 −1

 ,

A(2,2) =

−2 4 −2
3
8

1 −1

−5 −8 −1

 = A(2,1) = A(1,3) = A(1,2) = Ã.

It is clear that Ã satisfies all the conditions listed in Theorem 3.5, but the matrix A is

not t.n.p+ since detA[1, 2] =

∣∣∣∣∣−6 −10

−4 −7

∣∣∣∣∣ = 2 > 0.
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3.3 Matrix Intervals

In this section, we turn to study the intervals of matrices of the class t.n.p+.

Let A =
(
aij

)
, B =

(
bij

)
∈ Rn,n. Then A ≤ B is defined by ≤ B − A, this called

usual entry-wize partial ordering.

The checkerboard partial ordering is defined as follows. Let S := diag(1,−1, . . .,

(−1)n+1
)
and A∗ := SAS. Then we define

A ≤∗ B :⇔ A∗ ≤ B∗,

i.e.,

A ≤∗ B :⇔ (−1)i+jaij ≤ (−1)i+jbij, i, j = 1, . . . , n.

We consider matrix intervals with respect to this partial ordering, i.e., for A,B ∈ Rn,n

with A ≤∗ B let

[A,B] :=
{
Z ∈ Rn,n | A ≤∗ Z ≤∗ B

}
.

The matrices A and B are called the corner matrices. By I (Rn,n) we denote the set

of all matrix intervals of order n with respect to the checkerboard partial ordering. In

[1],[3],[5],[6], [10], the matrix intervals of NsTN and Ns.t.n.p. have been studied.

Lemma 3.2. [15] Let A,B,Z ∈ Rn,n and let A and B be nonsingular with 0 ≤ A−1, B−1.

If A ≤ Z ≤ B, then Z is nonsingular and B−1 ≤ Z−1 ≤ A−1.

Theorem 3.6. [5] Let [A,B] ∈ I (Rn,n) with Z ∈ [A,B]. If A and B are Ns.t.n.p. with

bnn < 0, then Ã ≤∗ B̃, Z̃ ∈ [Ã, B̃], and Z is Ns.t.n.p.

Theorem 3.7. Let [A,B] ∈ I (Rn,n) with Z ∈ [A,B]. If A and B are t.n.p+ matrices

with negative entries, then Z is t.n.p+.

Proof. First of all, since all entries of A =
(
aij

)
,B =

(
bij

)
are negative and Z =

(
zij

)
∈

[A,B], i.e.,

(−1)i+jaij ≤ (−1)i+jzij ≤ (−1)i+jbij, i, j = 1, . . . , n,

then all the entries of Z are negative, too.

Now using (1.1) for A−1 =
(
a−1
ij

)
of A to get

a−1
ij = (−1)i+j detA

[
1, . . . , j − 1, j + 1, . . . , n|1, . . . , i− 1, i+ 1, . . . , n

]
detA

, (3.15)
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where detA
[
1, . . . , j − 1, j + 1, . . . , n|1, . . . , i− 1, i+ 1, . . . , n

]
≤ 0 and detA > 0. Hence

if i + j is even, then a−1
ij ≤ 0 and if i + j is odd, then a−1

ij ≥ 0. Thus −SA−1S ≥ 0.

Proceeding in the same manner we obtain −SB−1S ≥ 0.

It is easy to see that −SAS ≥ −SZS ≥ −SBS since A ≤∗ Z ≤∗ B and by

−SA−1S ≥ 0, −SB−1S ≥ 0, we obtain by Lemma 3.2 that −SZS is nonsingular and

so Z is nonsingular. Moreover,

−SA−1S ≤ −SZ−1S ≤ −SB−1S. (3.16)

By Lemma 1.1, we get that

detA[2, . . . , n− 1] detA = detA[1, . . . , n− 1] detA[2, . . . , n]

− detA[1, . . . , n− 1|2, . . . , n] detA[2, . . . , n|1, . . . , n− 1]. (3.17)

Then we have two cases that depend on the value of detA[2, . . . , n− 1].

Case (1) detA[2, . . . , n− 1] = 0.

By (3.17) we get

detA[1, . . . , n−1] detA[2, . . . , n] = detA[1, . . . , n−1|2, . . . , n] detA[2, . . . , n|1, . . . , n−1].

Since detA[1, . . . , n − 1|2, . . . , n] detA[2, . . . , n|1, . . . , n − 1] ̸= 0 by Remark 3.1 we

get that A[1, . . . , n − 1] and A[2, . . . , n] are nonsingular, and since A is t.n.p+ we

get that A[1, . . . , n − 1] and A[2, . . . , n] are Ns.t.n.p. By (3.16), we also have that

detB[1, . . . , n−1] and detB[2, . . . , n] are negative since detA[1, . . . , n−1], A[2, . . . , n] <

0. Hence B[1, . . . , n− 1] and B[2, . . . , n] are Ns.t.n.p, too.

Now, since A ≤∗ Z ≤∗ B,

A[1, . . . , n− 1] ≤∗ Z[1, . . . , n− 1] ≤∗ B[1, . . . , n− 1],

it follows from Theorem 3.6, that Z[1, . . . , n−1] is Ns.t.n.p. because A[1, . . . , n−1] and

B[1, . . . , n − 1] are Ns.t.n.p with bn−1,n−1 < 0. Moreover, in the same manner we get

that Z[2, . . . , n], Z[1, . . . , n− 1|2, . . . , n], and Z[2, . . . , n|1, . . . , n− 1] are Ns.t.n.p. since

A[2, . . . , n], B[2, . . . , n], A[1, . . . , n−1|2, . . . , n], B[1, . . . , n−1|2, . . . , n], A[2, . . . , n|1, . . . , n−
1], B[2, . . . , n|1, . . . , n− 1] are Ns.t.n.p. (the latter follows by Remark 3.1) and

A[2, . . . , n] ≤∗ Z[2, . . . , n] ≤∗ B[2, . . . , n],

B[1, . . . , n− 1|2, . . . , n] ≤∗ Z[1, . . . , n− 1|2, . . . , n] ≤∗ A[1, . . . , n− 1|2, . . . , n],

B[2, . . . , n|1, . . . , n− 1] ≤∗ Z[2, . . . , n|1, . . . , n− 1] ≤∗ A[2, . . . , n|1, . . . , n− 1].
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Case (2) detA[2, . . . , n− 1] ̸= 0.

If A[1, . . . , n−1]
(
or A[2, . . . , n]

)
is Ns.t.n.p., then we proceed as in Case(1) to conclude

that Z[1, . . . , n − 1]
(
or Z[2, . . . , n]

)
is Ns.t.n.p. In the following, we consider the case

that A[1, . . . , n− 1] and A[2, . . . , n] are singular matrices. Define the matrix Aεij to be

the matrix obtained from A by adding a small real positive number ε to the entry aij,

i.e., Aεij := A + εEij, where Eij =
(
eij

)
is the standard basis matrix where the only

nonzero entry is eij = 1.

In the following, assume detA[1, . . . , n− 1] = 0 and put

Aε11 [1, . . . , n− 1] =


a11 + ε a12 . . . a1,n−1

a21 a22 . . . a2,n−1

...
... . . .

...

an−1,1 an−1,2 . . . an−1,n−1,

 .

By application of Laplace expansion to Aε11 [1, . . . , n− 1] along its first row, we get

detAε11 [1, . . . , n− 1] = (a11 + ε) detAε11 [2, . . . , n− 1]–a12 detAε11 [2, . . . , n− 1|1, 3, . . . , n− 1]

+ . . .+ (−1)1+n−1a1,n−1 detAε11 [2, . . . , n− 1|1, . . . , n− 2]

= ε detA[2, . . . , n− 1] + a11 detA[2, . . . , n− 1]

– a12 detA[2, . . . , n− 1|1, 3, . . . , n− 1]

+ . . .+ (−1)1+n−1a1,n−1 detA[2, . . . , n− 1|1, . . . , n− 2]

= ε detA[2, . . . , n− 1] + detA[1, . . . , n− 1].

The rigth hand side is negative, because ε > 0, detA[2, . . . , n−1] < 0, and detA[1, . . . , n−
1] = 0, and we conclude that Aε11 [1, . . . , n − 1] is nonsingular. Now, to show that

detAε11 [1, . . . , n − 1] is t.n.p., we firstly note that for i = (i1, . . . , il), j = (j1, . . . , jl) ∈
Ql,n−1, for i1 ̸= 1 or j1 ̸= 1

detAε11 [i1, . . . , il|j1, . . . , jl] = detA[i1, . . . , il|j1, . . . , jl] ≤ 0.

Moreover, for i1 = 1 and j1 = 1, then by Laplace expansion along the first row we get

that

detAε11 [1, i2, . . . , il|1, j2 . . . , jl] = detA[1, i2, . . . , il|1, . . . , jl] + ε detA[i2, . . . , il|j2 . . . , jl].

Since detA[1, i2, . . . , il|1, j2, . . . , jl], detA[i2, . . . , il|j2 . . . , jl] ≤ 0 and ε > 0 and therefore

detAε11 [1, i2, . . . , il|1, j2 . . . , jl] ≤ 0.
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Hence Aε11 [1, . . . , n−1] is Ns.t.n.p. In the same way we can conclude that Bε11 [1, . . . , n−
1] is a Ns.t.n.p matrix.

Since A ≤∗ Z ≤∗ B, we get that

Aε11 [1, . . . , n− 1] ≤∗ Zε11 [1, . . . , n− 1] ≤∗ Bε11 [1, . . . , n− 1].

By Theorem 3.6, since Aε11 [1, . . . , n − 1] and Bε11 [1, . . . , n − 1] are N.s.t.n.p matrices

with bn−1,n−1 < 0, we conclude that Zε11 [1, . . . , n− 1] is a Ns.t.n.p matrix. Since this is

true for all sufficiently small ε11 > 0, by letting ε11 → 0, we get that Z[1, . . . , n− 1] is a

t.n.p matrix.

Now, we continue by considering the matrix Z[2, . . . , n]. Since A ≤∗ Z ≤∗ B we have

Aεn−1,n−1 [2, . . . , n] ≤∗ Zεn−1,n−1 [2, . . . , n] ≤∗ Bεn−1,n−1 [2, . . . , n],

for all sufficiently small positive real numbers εn−1,n−1

By proceeding parallel to the case detA[1, . . . , n−1] = 0, we conclude that Z[2, . . . , n]

is a t.n.p.matrix. In the same way as in Case (1), Z[1, . . . , n−1|2, . . . , n] and Z[2, . . . , n|1, . . . , n−
1] are Ns.t.n.p. In the following, assume that detZ[2, . . . , n] < 0. Then by Theorem

2.6, z̃ii > 0 for i = 2, . . . , n− 1.

Now we will prove that the matrix Z̃ is a Cauchon matrix. Since Z[2, . . . , n] is t.n.p.,

by Theorem 3.2, and since Z̃[2, . . . , n] = ˜Z[2, . . . , n], we get that Z̃[2, . . . , n] is a Cauchon

matix. Now, to complete the proof, we investigate the entries in the first row and the

first column in Z̃. We will do it for the first column, and in the same way we proceed

for the first row.

Claim: z̃i1 ≥ 0 for i = 2, . . . , n− 1 and z̃i1 = 0 if z̃i2 = 0.

We proceed by decreasing induction on i.

For i = n−1, we consider the submatrix Z̃[n−1, n|1, . . . , n]. It is easy to show that this

matrix is a Cauchon matrix. Now, since all the entries in the last row are negative, we can

construct a lacunary sequence γ =
(
(n− 1, 1), (n, 2)

)
for the matrix Z̃[n− 1, n|1, . . . , n]

since z̃n2 = zn2 < 0. Hence by Theorem 2.4, we get

detZ[n− 1, n|1, 2] = z̃n−1,1 · zn2,

i.e.,

z̃n−1,1 =
detZ[n− 1, n|1, 2]

zn2
.
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The numerator and denominator of the last expression are nonpositive since the underlying

submatrices lie in Z[2, . . . , n|1, . . . , n− 1], hence z̃n−1,1 ≥ 0.

If z̃n−1,2 = 0, the sequence
(
(n− 1, 2), (n, 3)

)
is lacunary for the matrix Z̃[n −

1, n|1, . . . , n], whence

detZ[n− 1, n|2, 3] = z̃n−1,2 · z̃n3 = 0.

Thus, the matrix Z[n−1, n|2, 3] is of rank 1. By Theorem 2.9, either the rows n−1 and

n or the columns 2 and 3 are linearly dependent in Z[2, . . . , n|1, . . . , n − 1] which is a

contradiction to the nonsingularity of this matrix, or the right shadow of Z[n− 1, n|2, 3]
which is Z[2, . . . , n|2, . . . , n−1] has rank 1 which is a contradiction to the nonsingularity

of the principal submatrices of Z[2, . . . , n] since the latter matrix is Ns.t.n.p. and by

Theorem 2.10, its principal minors are negative. Hence the only option that is left is that

the left shadow of Z[n − 1, n|2, 3] which is Z[n − 1, n|1, 2, 3] has rank 1. The sequence(
(n− 1, 1), (n, 2)

)
is lacuanary for the matrix Z̃[n− 1, n|1, 2, . . . , n] and by Theorem 2.4

we get that

0 = detZ[n− 1, n|1, 2] = z̃n−1,1 · z̃n2.

Since z̃n2 = zn2 < 0, we get that z̃n−1,1 = 0.

As the induction hypothesis, suppose that z̃i1 ≥ 0 and z̃i1 = 0 if z̃i2 = 0 for i =

k + 1, . . . , n− 1. Then the matrix Z̃[k, . . . , n|1, . . . , n] is a Cauchon matrix. Define

(is, js) := min{(i, j) : is−1 < i ≤ n, js−1 < j ≤ n, z̃ij ̸= 0},

where the minimum is taken with respect to the colexicographical order with (i0, j0) =

(k, 1), s = 1, . . . , r. Assume that the sequence that is produced by this procedure is(
(k, 1), (i1, j1), . . . , (ir, jr)

)
. By the construction, it is easy to show that this sequence is

a lacunary sequence for the Cauchon matrix Z̃[k, . . . , n|1, . . . , n], ir = n and jr ≤ n− 1

since z̃ii > 0 for 2, . . . , n − 1 and zni < 0 for i = 1, . . . , n. Hence by Theorem 2.4, we

have

z̃k1 =
detZ[k, i1, . . . , ir|1, j1, . . . , jr]
detZ[i1, . . . , ir|j1, . . . , jr]

,

where the underlying submatrices in the numenator and domenator lie in

Z[2, . . . , n|1, . . . , n− 1]. Hence z̃k,1 ≥ 0, since the latter submatrix is Ns.t.n.p.

If z̃k2 = 0, then by the above procedure construct a lacunary sequence starting from

(k, 2) and call the resulting sequence
(
(k, 2), (α1, β1), . . . , (αs, βs)

)
. Then by Theorem

2.4, we get

z̃k2 =
detZ[k, α1, . . . , αs|2, β1, . . . , βs]

detZ[α1, . . . , αs|β1, . . . , βs]
= 0,
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where αs = n and βs ≤ n−1. By Theorem 2.7, the above ratio can be written as a ratio

of two contiguous minors as they lie in Z̃[2, . . . , n|1, . . . , n− 1]. Hence we obtain

z̃k,2 =
detZ[k, k + 1, . . . , k + s|2, 3, . . . , s+ 2]

detZ[k + 1, . . . , k + s|3, . . . , s+ 2]
= 0,

which implies that Z[k, k + 1, . . . , k + s|2, 3, . . . , s+ 2] has rank s.

By Theorem 2.9 and using the same arguments as above, the left shadow of Z[k, . . . , k+

s|2, . . . , s+2] has rank s. By construction and since z̃k2 = 0, it is easy to show that the

sequence
(
(k, 1), (α1, β1), . . . , (αs, βs)

)
is lacunary for Z̃[k, . . . , n|1, . . . , n].

Hence by Theorem 2.7, we get that

z̃k,1 =
detZ[k, α1, . . . , αs|1, β1, . . . , βs]

detZ[α1, . . . , αs|β1, . . . , βs]
= 0

since Z[k, α1, . . . , αs|1, β1, . . . , βs] lies in the left shadow of Z[k, . . . , k + s|2, . . . , s + 2],

we obtain z̃k1 = 0.

Hence Z̃ is a Cauchon matrix with z̃ii > 0 for i = 2, . . . , n − 1, and z̃nn < 0.

Furthermore,
(
(1, 1), . . . , (n, n)

)
is a lacunary sequence for the Cauchon matrix Z̃. By

Theorem 2.4, we get

z̃11 =
detZ

detZ[2, . . . , n]
< 0.

Since Z[2, . . . , n] is t.n.p and Z̃[2, . . . , n] = ˜Z[2, . . . , n] we conclude by Theorem 3.2 that

Z̃[1, . . . , n − 1|2, . . . , n − 1] is nonnegative and Z̃i1 ≥ 0 for i = 2, . . . , n − 1. Moreover,

since Z[1, . . . , n− 1|2, . . . , n] and Z[2, . . . , n|1, . . . , n− 1] are Ns.t.n.p. as in proof of (iv)

in Theorem 3.5 we get that z̃i,i−1, z̃i−1,i > 0 . Hence by Theorem 3.5, Z is t.n.p+.

For detZ[2, . . . , n] = 0, we work with Zε22 for sufficiently small ε22. It is easy to

show that Zε22 is t.n.p
+ by applying the above arguments on Zε22 . As ε22 → 0, we arrive

at Z is t.n.p+. This completes the proof.
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