
Palestine Polytechnic University

Deanship of Graduate Studies and Scientific

Research

Master of Informatics

A Stable Clustering Algorithm for VANETs

Submitted By

Eng. Omar Baradia

A Thesis Submitted in Partial Fulfillment of Requirements for The

Degree of Master's of Informatics

October 24

II

The undersigned hereby certify that they have read, examined, and recommended to the
Deanship of Graduate Studies and Scientific Research at Palestine Polytechnic University the
approval of a thesis entitled: "Hybrid stable clustering algorithm", submitted by Omar
Ibrahim Baradia in partial fulfillment of the requirements for the degree of Master in Informatics.

Graduate Advisory Committee:

Dr. Liana Tamimi (Supervisor), Palestine Polytechnic University.

Signature: Date:

Dr. Radwan Tahboub (Internal committee member), Palestine Polytechnic University.

Signature: Date:

Dr. Ahmad S Alsadeh (External committee member).

Signature: Date:

Thesis Approved

Signature: Date:

22-01-2024

III

DECLARATION

I declare that the Master’s Thesis entitled "Hybrid stable clustering algorithm", is my original

work, and hereby certify that unless stated, all work contained within this thesis is my

independent research and has not been submitted for the award of any other degree at any

institution, except where due acknowledgment is made in the text.

Eng. Omar Baradia

Signature: Date: 24/10/2023.

IV

DEDICATION

I dedicate my dissertation work to my family and many friends. A special feeling
of gratitude to my loving parents, Ibrahim Baradia and Arwa Abufara whose words
of encouragement and push for tenacity ring in my ears. My brothers have never
left my side and are very special, especially Khalid Baradiah for helping me
develop my programing skills.

I also dedicate this dissertation to my many friends who have supported me
throughout the process. I will always appreciate all they have done.

V

ACKNOWLEDGEMENT

I would like to express my deep gratitude and respect to the people who helped me
in completing this work. I would like to express thanks to my supervisor, Dr. Liana
Al Tamimi, for her support and guidance throughout the work.

VI

TABLE OF CONTENTS

Subject Page

DEDICATION IV

ACKNOWLEDGEMENT V

TABLE OF CONTENTS VI

LIST OF FIGURES IX

LIST OF TABLES X

LIST OF ABBREVIATIONS XI

ABSTRACT XII

Chapter 1: Introduction 1

1.1 Thesis Overview 1

1.2 Problem Statement and Its Significance 3

1.3 Research Objectives 3

1.4 Research Methodology 3

1.5 Research Contributions 4

1.6 Thesis Organization 4

Chapter 2: Background and Literature Review 5

2.1 Wireless technology 5

The IEEE 802 family 6

The Mac Layer 7

The PHY Layer 8

2.2. Fundamentals of VANETs 9

Introduction to Ad Hoc Networks 9

VII

MANETs and VANETs 11

Possible applications on VANETs 12

Techniques for retrieving position 13

Clustering 13

2.3. Literature review 17

 Stable clustering algorithms 18

 Summary and discussion 21

 Summary of the chapter 24

Chapter 3: Methodology and Implemented Algorithms 24

3.1 Overview 24

3.2 A Center-Based Secure and Stable Clustering Algorithm 25

3.3 Stable Clustering Algorithm for vehicular ad hoc networks (SCalE) 30

3.4 Hybrid Stable Clustering Algorithm for vehicular ad hoc networks (HSCA) 35

Chapter 4: The Simulation Environment, Results, and Performance Evaluation 42

4.1 Operating system 42

Network simulator NS-3 43

Eclipse 47

SUMO 48

 4.2 Initial files and description 50

 4.3 Theoretical comparison of CBSC, SCalE, hybrid algorithm 50

 4.4 Comparison of Algorithms for Stable Clustering in VANETs 51

4.4.1 Simulation parameters 15

4.4.2 Simulation comparison of CBSC, SCalE, hybrid algorithm 25

Chapter 5: Conclusion and Future Work 69

References 71

Appendix 73

VIII

LIST OF FIGURES

Figure Description Page

2.1 ISO/OSI layer model 6

2.2 802 LLC, MAC and PHY 6

2.3 WLAN infrastructure mode 7

2.4 WLAN ad hoc mode 8

2.5 An example of ad hoc network 10

2.6 Clustering, the fundamentals 14

3.1 Link rupture example 29

3.2 Files that were implemented in order to simulate the CBSC algorithm and
how they were included

30

3.3 Files that were implemented in order to simulate the SCalE Algorithm and
how they were included

35

3.4 Initialize vehicle cluster 36

3.5 The direction angle θ(k) between two positions 36

3.6 Proposed solution for more stability in the HSCA algorithm. 14

3.7 Files that were implemented in order to simulate the HSCA algorithm and
how they were included

41

4.1 The main components of a nodes 44

4.2 Simulations scenario 49

4.3 Effect of number of nodes on CH Life Time 53

4.4 Effect of number of nodes on CM Life Time 53

4.5 Effect of number of nodes on average cluster head changes 54

4.6 Effect of number of nodes on packet loss 55

4.7 Effect of number of nodes on cluster formation time 56

4.8 Effect of cluster range on CH Life Time 57

4.9 Effect of cluster range on CM Life Time 57

IX

4.10 Effect of cluster range on average cluster head changes 58

4.11 Effect of cluster range on average cluster head changes 59

4.12 Effect of cluster range on average cluster formation time 60

4.13 Effect of mobility speed on CH Life Time 61

4.14 Effect of mobility speed on CM Life Time 61

4.15 Effect of mobility speed on CH changes Life Time 62

4.16 Effect of mobility speed on Packet Loss 63

4.17 Effect of mobility speed on cluster formation time 63

4.18 Effect of random mobility speed on CH Life Time 64

4.19 Effect of random mobility speed on CM Life Time 65

4.20 Effect of random mobility speed on CH changes 66

4.21 Effect of random mobility speed on Packet Loss 66

4.22 Effect of mobility speed on cluster formation time 67

X

LIST OF TABLES

Table Description Page

2.1 Summary of the basic characteristic of MANETs and VANETs 12

2.2 Summary of previous studies (Advantages & Disadvantages) 22

2.3 Summary of previous studies (Metrics Performance) 23

4.1 Theoretical comparison of CBSC, SCalE, and hybrid algorithm. 50

4.2 Baseline parameters used in the simulations 52

4.3 The percentage of improvement in the new algorithm (HSCA) 68

.

XI

LIST OF ABBREVIATIONS

Symbol Description

CAM Cooperative Awareness Message

CATRB Clustering algorithm using the traffic regularity of buses

CBSC Center-Based Secure and Stable Clustering Algorithm

CECGP Center-based Stable Evolving Clustering Algorithm with Grid Partitioning

CH Cluster Head

CM Cluster Member

DSRC Dedicated Short-Range Communication

DSSS Direct Sequence Spread Spectrum

FHSS Frequency Hopping Spread Spectrum

GPS Global Positioning System

HSCA Hybrid Stable Clustering Algorithm

IP Internet Protocol

ITS Intelligent Transportation Systems

LAN Local Area Networks

LLC Logical Link Control layer

LT Life Time

LTE Long Term Evolution

MABSC-CD Multi-Agent-Based Stable Clustering and Collision Detection

MAC Medium Access Control

MAN Metropolitan Area Networks

MANETs Mobile Ad Hoc Networks

MLME MAC Layer Management Entity

MPDU Protocol Data Units

XII

OBU On Board Unit

OFDM Orthogonal Frequency Division Modulation

PHY Physical Layer

PLCP Physical Layer Convergence Protocol

PLME Physical Layer Management Entity

PMD Physical Medium Dependent

QoS Quality of Service

SUMO Simulation of Urban Mobility

TDMA Time Division Multiple Access

UDP User Datagram Protocol

V2V Vehicle to Vehicle

VANET Vehicular Ad Hoc Network

WAVE Wireless Access in Vehicular Environment

WLAN Wireless Local Area Network

XIII

Abstract

Despite the clear advantages offered by Vehicular Ad-hoc Networks (VANETs) over
Mobile Ad-hoc Networks (MANETs), which stem from their ability to regulate vehicular
movement according to traffic laws, including actions like stopping, slowing down, and
changing lanes, VANETs still grapple with instability issues. These issues result from various
factors such as high-speed vehicle behaviors, frequent vehicle joinings and departures, link
failures, and alterations in network topology.

Numerous algorithms have been developed to enhance network stability in terms of
maintaining vehicles within a cluster for extended periods, whether they serve as cluster heads or
cluster members, minimizing packet loss rates, and achieving this stability with minimal message
and packet exchanges to avoid network bottlenecks. Most of these algorithms focus on
organizing and clustering vehicles based on their mobility patterns.

Stability means the continuity of communication between vehicles on the one hand and the
base station on the other hand, thus delivering packets close to real time, and thus an almost
non-existent rate of data loss. In the proposed algorithm, this means a group of vehicles that
travel together at close distances and in the same direction along the distance traveled.

This thesis primarily investigates two well-known clustering algorithms: the Center-Based
Secure and Stable Clustering algorithm (CBSC) and the Scalable Clustering algorithm (SCalE).
CBSC determines clustering centers based on vehicle density to maximize cluster size, while
also considering vehicle speed, acceleration, and distance between vehicles for cluster head
selection. However, CBSC overlooks vehicle behaviors that could lead to link disruptions when
vehicles make turns or exit highways. On the other hand, SCalE aims to address these issues by
using vehicle behavior as a criterion for cluster head selection, focusing on stable vehicles that
are less likely to leave the road. It employs differences in speeds and positions to choose cluster
heads, ultimately extending the cluster members' lifetimes.

However, the authors of SCalE did not account for scenarios where vehicles travel in
opposite directions, briefly coming close to each other and the cluster head before moving away,
which affects cluster duration. To address this, the proposed Hybrid Stable Clustering Algorithm
(HSCA) was introduced. HSCA strives to create clusters where vehicles travel closely together
for longer distances and durations. It uses vehicle density to determine cluster centers and adopts
the cluster head selection method from SCalE, focusing on vehicle behavior while disregarding
vehicles traveling in different directions.

HSCA has demonstrated its effectiveness across various simulation scenarios, including
changes in the number of vehicles, their speeds, and cluster ranges. Despite resulting in more
cluster compared to the previous algorithms, HSCA maintains consistent result quality due to its
focus on selecting cluster elements based on behavior and movement direction. Additionally,

XIV

changes in vehicle speeds and locations are accommodated within the cluster head election
process, ensuring adaptability to different simulation scenarios.

We did not mention the security aspects. Although we meant to talk about Wi-Fi, we mentioned

it because communication between vehicles is based on this technology.

Based on the experiments that were conducted, it was found that the proposed algorithm (HSCA)
was able to outperform its counterparts (SCalE and CBSC) in the improvement rate. It was able
to outperform SCALE in all cases that were tested with a high percentage, and it was also able to
outperform the CBSC algorithm in most scenarios, and we clarified Reasons why it is not
superior in some scenarios.

 The proposed algorithm achieved an improvement rate of 45% in terms of CH life time
compared to CBSC when changing the number of nodes, and 196% compared to SCALE.

 Likewise, in CM life time, HSCA achieved an improvement of 89% compared to CBSC and
230% improvement compared to SCALE. When implementing the scenario of changing the
number of nodes and knowing the impact of this on the time required to form a cluster, the
HSCA algorithm achieved a better improvement compared to CBSC and SCALE by 22% and
46.46.85%, respectively. The proposed algorithm was able to outperform SCALE in terms of CH
and CM life time under the cluster range change, while the results were close to CBSC, where
the improvement rate was 117% and 19%, respectively. The same was true for CM life time,
where the percentage was 57% and 2.9%, respectively. While the effect of mobility speed was
remarkable, the proposed algorithm achieved an improvement of 187% compared to SCale in
terms of CH life time and 116% in terms of CH life time.

Keywords: VANET, CM, CH, SCalE, CBSC, HSCA.

1

Chapter 1

Introduction
In this chapter, we will review the work methodology in this thesis, starting with

defining the problem statement and the motive for submitting it. We started this chapter
with an overview of the thesis in the section 1.1, indicating the research problem statement,
objectives, benefits, and main contributions are discussed in section 1.2 to 1.5, and finally
in section 1.6 we briefly outline the main structure of the thesis.

1.1 Thesis Overview

Vehicular Ad-hoc Networks (VANETs) represent a cutting-edge technological
advancement that continues to evolve. These networks have played a pivotal role in
enhancing intelligent transportation systems, enabling the integration of modern
technologies into vehicles. This includes features like GPS based tracking systems, robust
communication networks, and direct communication capabilities among vehicles
facilitated by a specialized unit called the On Board Unit (OBU) [4].

These specialized modules enable vehicles equipped with them to communicate in
various ways. They use vehicle-to-vehicle (V2V) technology for communication between
vehicles, vehicle-to-infrastructure (V2I) technology, and even vehicle-to-roadside
communication [1]. Vehicular Ad-hoc Networks (VANETs) are a crucial component of
Intelligent Transportation Systems (ITS). [16] They play a vital role in solving many
challenges and aid decision-making processes in various scenarios, with traffic congestion
and emergency route planning being among the most significant [6].

In VANETs, communication methods can generally be divided into two categories
based on the radio interfaces they rely on [1]. One category uses dedicated short-range
communication (DSRC) as its foundation, while the other leverages existing cellular
technologies. Moreover, thanks to advancements like Long Term Evolution (LTE) and
delivery technology, these networks are constantly evolving to ensure scalability,
performance efficiency, stability, and security. This is particularly important due to the
rapid progress in communication technologies and the integration of LTE networks and
handover technology. To enhance network performance, clustering vehicles that use these
networks together has been widely recognized as an effective solution [1]. The primary
aim of this approach is to manage the flow of data between vehicles. However, because
vehicles are highly mobile and dynamic, they tend to reorganize into clusters frequently,
which can challenge the stability of these clusters.

There are various types and clustering in VANET. Topology, mobility, and contextual
information are all types of information that can be used for VANET clustering. Both V2V

2

and V2I can be used to collect this information either locally or globally. Researchers have
been recently encouraged to explore the possibility of leveraging V2I to create efficient,
stable, and high-performance VANET clusters through rapid development and expansion
of road infrastructure [2].

Clustering technology has been used to improve connectivity by grouping nodes in a
geographic area together based on their mobility [2].

This thesis proposes a hybrid clustering technique in which the CBSC and SCalE
algorithms are combined in the process of selecting Cluster Head (CH), Cluster Member
(CM) distribution, and forming strong clusters. The new algorithm, called HSCA, has been
adapted to combine the features of the two algorithms.

Where selection index is used to determine the centers of clusters instead of the Metric
(M) used in the CBSC algorithm. In this case, we ensure that we overcome the link rupture
problem that occurs when two vehicles meet in opposite directions, which helps increase
life time.

In addition to relying on cluster head back up in the SCalE algorithm in order to speed
up the maintenance process, a custom mobility helper was developed to know the behavior
of each node, and the Global Positioning System (GPS) was achieved through the mobility
model [12], as this model contains a parameter to determine the speed of each vehicle and
another parameter to determine the vehicle's coordinates.

Wireless Fidelity (WiFi) technology (IEEE 802.11) was used to send CAM
(Cooperative Awareness Message) messages between vehicles every one second to identify
neighboring vehicles in order to maintain vehicle communication between each other and
ensure that each vehicle follows the CH [6].

Several experiments have been performed with change in parameter, the results were
taken at different numbers of nodes, different mobility speed for nodes and different
range of cluster. The HSCA algorithm is evaluated using the NS-3 simulation system. The
results showed using the advantages of CBSC in locating clusters and SCalE suitability
metric in the proposed algorithm reduced cluster head changes which approved cluster
head lifetime more than CBSC and more than SCalE. In addition to almost non-existent
loss of packages due to the long time of the vehicle within the cluster, and the location of
the vehicle played a major role in determining the cluster to which the vehicle belongs, so
an increase in the number of nodes leads to an increase of cluster head life time and
Cluster member life time , this is due to the increase in the size of the cluster and the
density of the distribution of nodes, also the accurate factors used to elect suitable cluster
head , so packets loss will be minimal and cluster formation will be as fast as possible
but will take less than CBSC and SCalE algorithms.

3

1.2 Problem Statement and Its Significance

Despite the restrictions imposed by Vehicular Ad-hoc Networks (VANETs) to regulate
the movement of vehicles, these networks were not able to reach the required degree of
stability, as there is still data loss, loss of communication between network elements and
other problems caused by the behavior of vehicles in this network, which increase with
Network expansion, and development of communication technologies provided by these
networks the issue of arriving at a clustering model that achieves the desired goals of using
security networks for reliability, security and stability has become an important issue for
research [4].

When we talk about stability, one of the most important factors of network stability
depends on how long vehicles stay within a single cluster. The longer they stay, the more
stable the network is, and the longer the cluster lives, the more stable the network becomes
[1]. Current algorithms show different performance when we talk about how long a vehicle
stays. Most stable as a cluster leader (CH life time), and the same is true for CM lifetime.

The CBSC algorithm showed a noticeable effect on improving network stability, but
it failed to outperform the SCalE algorithm in terms of CH lifetime and CM lifetime.
Therefore, these two algorithms can be made more efficient by combining their
characteristics into one algorithm in order to reach the best results and achieve stability.

1.3 Research Objectives

The main purpose of our research is to build a stable clustering algorithm that
outperforms CBSC and SCalE and is more stable as follows:

This work aims to:

 Increase CH lifetime rate.

 Increase CM lifetime rate.
 Increase stability by reducing data loss and increasing time per cluster.

 Reduce the packet loss rate.

1.4 Research Methodology
Our Methodology can be summarized as:

 Studying current clustering algorithms and identifying their advantages and
disadvantages.

 Proposing a hybrid algorithm to improve VANET network performance.
 Choosing a suitable simulator and simulating the algorithm.
 Assessing the proposed algorithm performance by contrasting it with the CBSC and

SCalE algorithms.

4

1.5 Research Contributions
The main contributions of this thesis:

 Proposing hybrid approach combining CBSC and SCalE algorithms and adopt the
behavior of vehicles and the direction of movement in clustering process.

 Increase stability, as stability means the continuity of communication between
vehicles on the one hand and the base station on the other hand [3], thus delivering
packets close to real time, and thus an almost non-existent rate of data loss.

 Choosing cluster centers based on the density of vehicles, thus covering the largest
possible number of nodes (vehicles).

 Choosing a cluster head based on precise criteria directly related to the nature of
the mobility of VANET network vehicles, which is a major reason for the instability
of this type of network.

 Reducing the time for choosing a cluster head by appointing a backup cluster head.

 Reducing the number of changes and interruptions in the network by relying on the
behavior and direction of vehicle movement in choosing the cluster head.

 Building a simulation model to test the new algorithm and compare it with other
algorithms.

1.6 Thesis Organization
In chapter 2, we did some background research and looked at what others have studied.

We also talked more about wireless technology, and the fundamentals of VANETs,
compared VANETs and MANETs again, and summarized the main characteristics of these
networks. In chapter 3, we took a deep dive into three different methods: CBSC, SCalE,
and our own hybrid algorithm. We tested them in different situations with various settings
to see how they performed. We also explained how these methods work. In chapter 4 we
created a virtual environment to simulate how our new algorithm performs. We collected
data and compared it to how CBSC and SCalE do. This helped us figure out if our method
was better. In chapter 5, we summarize everything we have learned in this thesis. We drew
conclusions based on our research and suggested what could be studied in the future.

5

Chapter 2

Background and Literature Review
 In this chapter, present two types of Ad-hoc Networks. Mobile Ad-hoc Networks
(MANET) and Vehicular Ad-hoc Networks (VANETs), the advantages, characteristics,
applications and types of communications, for each network and the difference between
them.

 The primary objective of this study is to examine the essential approaches and strategies
utilized to improve the reliability and functionality of the VANET network, particularly in
difficult conditions. Furthermore, it aims to investigate the specific functions of various
network components and evaluate their influence on the overall stability and performance
of the network. By conducting this analysis, a comprehensive comprehension of the
network's behavior and the factors that affect its stability and performance can be acquired.

 This literature review concentrates on analyzing multiple algorithms to identify primary
areas for improvement, aiming to enhance stability in the VANET network. Additionally,
it explores the potential of implementing clustering methods to boost stability, control, and
effectiveness in information exchange.

 By examining these aspects, the study aims to provide valuable insights into strategies
that can optimize the stability and overall performance of the VANET network.

2.1 Wireless Technology
Over the last few years, the technology for wireless communications has made

tremendous advantages. It allows very high mobility, efficient working and is almost
extremely economical.

Wireless technologies are categorized into two main groups: large-area technologies and
local area technologies. Large-area technologies, such as Global System for Mobile
communication (GSM), General Packet Radio Service (GPRS), or Universal Mobile
Telecommunication Service (UMTS), offer moderate bandwidth. On the other hand, local
area technologies like WLAN (Wireless Local Area Network) provide a much higher
bandwidth. This thesis will primarily focus on WLAN, the latter category. There are two
distinct standards for Wireless LAN: HIPERLAN, established by the European

6

Telecommunications Standards Institute (ETSI), and 802.11, developed by the Institute of
Electrical and Electronics Engineers (IEEE). Currently, the 802.11 standard
overwhelmingly dominates the market, with well-engineered implementing hardware.
Therefore, it is advisable to concentrate on this particular standard [7].

 The IEEE 802 family

The WLAN protocols of the IEEE 802.11, as referenced in [7], are included in the 802
family, which establishes standardization for both Local Area Networks (LAN) and
metropolitan area networks (MAN). The 802 family incorporates a shared Logical Link
Control layer (LLC), which is standardized in 802.2. The network layer, typically utilizing
the Internet Protocol (IP) and its routing protocols such as Ad-hoc On-demand Distance
Vector (AODV) or Dynamic Source Routing protocol (DSR) for mobile Ad-hoc-networks
(as illustrated in Figure 2.1), is positioned on top of the LLC [8].

Figure 2.1: ISO/OSI layer model [8]

The MAC and PHY layers, which are part of the Media Access Control and physical layer
respectively, are combined within the same standard subgroup beneath the LLC. Numerous
standard subgroups exist for Ethernet and wireless LAN, as specified in 802.11, as
illustrated in Figure 2.2.

Figure 2.2: 802 LLC, MAC and PHY [8]

7

 The Mac Layer

The MAC layer consists of a series of protocols that are in charge of overseeing and
organizing the utilization of a shared medium. The Station Management Entity (SME)
and the MAC Layer Management Entity (MLME) are responsible for controlling the
MAC layer [7].

 The Operation Modes

The IEEE 802.11 standards, specifies two different ways to configure a network: Ad-
hoc and infrastructure.

 The infrastructure mode employs stationary network access points, as depicted in
Figure 2.3, to facilitate communication among mobile nodes. Typically, these access points
are linked to landlines to enhance the local area network's capacity by connecting wireless
nodes to other wired nodes. In the event of overlapping service areas of access points,
mobile nodes may be transferred between them. This configuration bears a striking
resemblance to contemporary cellular networks worldwide.

Figure 2.3: WLAN infrastructure mode

 In an Ad-hoc network, computers are assembled to establish a network spontaneously.
As depicted in Figure 2.4, the network lacks a predetermined structure, fixed points, and
typically allows each node to communicate with any other node within its communication
range. These networks are commonly referred to as Mobile Ad-hoc Networks (MANET).

8

Figure 2.4: WLAN Ad-hoc mode

 The PHY Layer

The physical layer itself can again be divided into two parts:

 The Physical Layer Convergence Protocol (PLCP).

 The Physical Medium Dependent (PMD).

Responsible for the control of these sublayers is the Physical Layer Management Entity
(PLME).

 The Physical Layer Convergence Protocol (PLCP) provides a mechanism for
converting the MAC sublayer protocol data Units (MPDU) into a framing format that is
suitable for the transmission and reception of data and management information using the
associated Physical Medium Dependent (PMD) system. Additionally, the PLCP is
responsible for functions such as carrier sensing, clear channel assessment, and basic error
correction.

 The PMD directly interacts with the physical medium and performs fundamental bit
transmission functions within the network. Its primary responsibilities include encoding
and modulation. Spread spectrum technologies are employed to mitigate the susceptibility
of the signal to narrowband interference and frequency-dependent fading. These
technologies expand the narrowband signal into a broadband signal using a specialized
code. In older systems, Frequency Hopping Spread Spectrum (FHSS) has been utilized,
while newer systems implement Direct Sequence Spread Spectrum (DSSS) or Orthogonal
Frequency Division Modulation (OFDM) [8].

9

2.2 Fundamentals of Vehicular Ad-hoc Networks
(VANETs)
 In this section, we will explore the fundamental concepts and terminology related to
VANETs, prior to delving into the presentation of basic clustering algorithms and
techniques. The concepts discussed include Ad-hoc networks, the distinctions between
VANETs and MANETs, as well as their potential applications. The subsequent discussion
highlights the necessity for clustering and its relevance to VANETs. Lastly, a concise
overview of the fundamental techniques for retrieving a vehicle's position is provided.

 One could even contemplate the possibility of combining these two modes into a hybrid
network structure. This would enable the provision of internet access to a large number of
mobile nodes through a limited number of base stations. However, it is important to note
that there is currently no established standard for such a hybrid mode.

Introduction to Ad-hoc Networks

 The term "Ad-hoc network" pertains to wireless networks that are decentralized, as
illustrated in Figure 2.5. The fundamental characteristic of such networks is that they do
not rely on a preexisting infrastructure. An Ad-hoc network is a collection of devices that
possess equal status on the network and are free to associate with any other network device
within the link range. During the communication process between nodes, the participants
of the same network typically need to establish a backbone of the network before
attempting to exchange messages with each other. Clustering is a well-known technique
for creating a backbone of the network .

 Alternatively, communication could be made efficient through an excessive exchange
of broadcast messages, known as 'flooding.' However, this technique would inundate the
network with redundant messages and lead to contention and collision problems.
Clustering aims to create groups of nodes in such a way that they can communicate with
each other with the minimum possible exchange of redundant messages. Before
proceeding, it is necessary to analyze what decentralization means and what advantages
this technique offers in Ad-hoc networks [10].

10

Figure 2.5: An example of Ad-hoc network [6]

 Networks can be categorized into two primary classifications based on their
organizational structure. They can either be centralized or decentralized.

 A centralized network is one where the planning and decision-making activities,
such as clustering or other issues, are concentrated within a specific node or group of
nodes. In this type of network, these nodes possess a high level of awareness regarding
the exact topology of the rest of the network. On the other hand, decentralized networks
are characterized by the dispersion of decision-making to nearly all nodes within the
network. It is evident that the centralized version is unsuitable for Ad-hoc networks,
particularly due to the absence of preexisting infrastructure. Therefore, it is impossible
for a specific node to have knowledge of the exact position of all other nodes, which
becomes even more challenging when considering node mobility [7].
 The decentralized nature of Ad-hoc networks makes them well-suited for various
applications where reliance on central nodes is not feasible. Firstly, the scalability of
wireless Ad-hoc networks compared to wireless managed networks must be
considered. The minimal configuration and quick deployment of Ad-hoc networks
make them suitable for emergency situations such as natural disasters or military
conflicts, as well as in locations where network infrastructure cannot be taken for
granted. The presence of dynamic and adaptive routing protocols enables the rapid
formation of Ad-hoc networks. However, it is important to note that there are
theoretical and practical limitations to the overall capacity of such networks [7][8].

11

MANETs and VANETs

 MANET is an abbreviation for mobile Ad-hoc network. A MANET is a network
formed by a group of mobile devices that are connected wirelessly, without relying on a
fixed infrastructure. These devices have the ability to self-configure and can move freely
in any direction, resulting in frequent changes in the network links. Additionally, each
device in the network acts as a router, forwarding traffic that is not related to its own use.
Therefore, it is necessary for each device to have a mechanism for maintaining and
updating this information in order to effectively route traffic. MANETs can operate
independently or be connected to the larger Internet. It is important to note that MANETs
may experience frequent network disconnections, particularly in areas with low vehicle
density. The high mobility of the nodes in such networks can also result in strict delays in
message transmission [18].

 Numerous algorithms have been proposed for Mobile Ad-hoc Networks (MANETs)
with the aim of enhancing the stability of the routing infrastructure and reducing the
number of exchanged messages between nodes, as well as minimizing packet drops
resulting from erroneous routing decisions, among other factors [1].

 Vehicular Ad-hoc Networks (VANETs) are a specific type of Mobile Ad-hoc
Networks (MANETs). The term VANET refers to a network of vehicles that communicate
with each other in an Ad-hoc manner, similar to MANETs, which are characterized by their
rapid and dynamic changes. Both VANETs and MANETs lack a pre-established
infrastructure and central control. Furthermore, devices in both networks are free to move
in any direction, but in VANETs, movement is restricted to predefined roads. Additionally,
the speed of vehicles in VANETs is limited by factors such as speed limits, congestion
levels, and traffic control mechanisms, such as traffic lights and stop signs [18].

 It is worth noting that future vehicles may be equipped with advanced capabilities, such
as antennas with longer transmission ranges, extensive on-board storage capacities, more
processing power, and rechargeable sources of energy. These capabilities can be easily
achieved in VANETs but not in MANETs. Table 2.1 below presents a comparative analysis
of the main characteristics of VANETs and MANETs.

12

Table 2.1: Summary of the basic characteristic of MANETs and VANETs [18].

Parameter MANET VANET

Cost of production Cheap Expensive

Change of the network
topology

Slow Frequent and very fast

Mobility Low High

Node density Sparse Dense and frequently
variable

Bandwidth Hundred kps Thousand kps

Range Up to 100m Up to 500m

Node lifetime Depends on power
resource

Depends on lifetime of
vehicle

Moving pattern on nodes Random Regular

Position acquisition Using ultrasonic Using GPS, RADAR

Possible applications on VANETs

 There are several appealing applications for VANETs. Firstly, it is worth mentioning
that due to the similarities between VANETs and MANETs, many applications of
MANETs can also be utilized for VANETs. However, there are differences in the specific
details. In VANETs, vehicles must proceed in an organized manner and are restricted to
roadsides, as opposed to the random movement of vehicles in MANETs. The interactions
with roadside equipment can also be accurately characterized [1] [18].

 One of the most crucial applications is the enhancement of driving safety by assisting
drivers in avoiding collisions and providing alternative routes between highway entries
and intersections. This can be easily implemented using GPS and navigation systems.
Additionally, drivers can receive traffic jam reports, high-speed tolling information, and
the fastest routes to their destinations. Future applications could include cruise control
systems that automatically adjust to maintain safe distances between vehicles or alert
drivers of emergency vehicles in the vicinity [4].

13

 Another highly useful application is the ability to transform a traffic jam into
productive work time by allowing drivers to download and read emails. The system could
also enable Voice over Internet Protocol (VoIP) services such as Google-Talk or Skype for
communication between employees.

 Furthermore, Intravehicular Communications (IVC) can be utilized to provide comfort
applications such as file exchange, interactive communications, weather information, and
the locations of gas stations or restaurants near the requester. In addition to IVC, Road
Vehicle Communications (RVC) applications can also be implemented.
In conclusion, the potential applications of VANETs encompass a wide range of areas
including traffic management, road monitoring, entertainment, and contextual information
[6].

Techniques for Retrieving Position

Prior to proceeding, it is imperative to acknowledge that all algorithms necessitate
access to certain position information in order to operate effectively. Each vehicle must
possess either a proficient method for ascertaining its absolute position within the
confines of a city or road framework, or its relative position in relation to other vehicles.
The most renowned techniques employed for this purpose include:

 GPS.

 Doppler effect from where we export the Doppler Value.

 Received Signal Strength (RSS).

On the following algorithms, the technique that was used to retrieve position
information is GPS.

Clustering

As mentioned earlier, VANET are networks without a fixed infrastructure, and the
precise layout of the network is not known to every node within it. Therefore, in order to
prevent excessive message flooding, it is necessary to establish a backbone for the network
prior to vehicles initiating message exchanges. In our particular scenario, we aim to create
an abstract framework over the network, allowing regional modifications to remain
imperceptible to the entire network. This objective can be accomplished through the
implementation of clusters.

Clustering is essentially the procedure of forming specific subgroups within the overall
network structure. To provide a more precise definition, a paper titled "A Survey of
Clustering Schemes for Mobile Ad-hoc Networks" [17] describes it as follows: "In a
clustering scheme, mobile nodes are organized into distinct virtual groups, and they are

14

grouped together based on their geographic proximity within the same cluster. Specific
rules determine how nodes within a cluster behave differently from those outside the
cluster." This process of grouping nodes based on certain criteria helps organize and
manage the network effectively.

 All the nodes are classified to one of the following 3 categories which is also shown in
the Figure 2.6:

1. Cluster heads of the cluster: they have to rebroadcast the message to every member
of the group and they act as the local coordinators for their cluster,

2. Cluster members: they just receive the message within the cluster without
rebroadcasting it to anyone else.

3. Orphan nodes (standalone): which are mainly ex-members of a cluster that
currently do not belong to any cluster.

In some classification algorithms we may find gateways: they rebroadcast the message
to their neighboring heads of the clusters and they are used for communication between
clusters.

Figure 2.6: Clustering, the fundamentals.

The fundamental benefits of clustering can be succinctly outlined as follows:

1. The spatial reutilization of resources, wherein two clusters that are not adjacent to
each other can employ the same frequency or code on a non-overlapping multicast
structure [5].

15

2. The utilization of a virtual backbone, comprised of cluster heads and gateways, to
prevent excessive data flooding [5].

3. The enhanced stability and scalability of the network, particularly for regular members,
as local modifications do not necessitate visibility and updating across the entire network
[6].

In addition, it is important to consider the cost associated with creating and
maintaining clusters in such networks when discussing the advantages of clustering. Firstly,
it should be noted that in order to maintain clustering structures, nodes in certain pairs must
exchange messages periodically. The frequency of these message exchanges varies
depending on the mobility patterns of the nodes. However, in a rapidly changing network,
a sufficient number of messages must be exchanged, which leads to energy and bandwidth
consumption [6].

Secondly, certain cluster schemes may require the complete rebuilding of the cluster
structure throughout the entire network when certain local events occur, such as a node
leaving (referred to as the ripple effect or re-clustering) [1][6].

Thirdly, many clustering schemes operate in two phases: cluster formation and cluster
maintenance. Some of these schemes assume that during the cluster formation phase, the
nodes maintain their positions, which is not accurate in realistic scenarios. In this case, the
time required for cluster formation, known as the computation round, must also be taken
into consideration. This time can vary depending on the algorithm, and the nodes cannot
remain stationary for an extended period [1].

There are numerous algorithms proposed for clustering in Mobile Ad-hoc Networks
(MANETs) and Vehicular Ad-hoc Networks (VANETs). It is important to mention that
protocols designed for MANETs are not suitable for VANETs [18]. This is because
MANET protocols do not consider the unique characteristics of VANETs, particularly in
terms of movement patterns, making them unsuitable for intravehicular communication.
MANET routing protocols can be classified into three major categories:

1. Proactive protocols: These protocols maintain and update routing information
between all nodes in a network at all times.

2. Reactive protocols: Route determination is invoked on a demand or need basis.

3. Hybrid protocols: These protocols combine proactive and reactive elements. An
example of such a protocol is the zone routing protocol.

In our case, the reactive algorithms are more suitable in order to reduce flooding
messages.

16

 A beacon based algorithm is the only applicable kind of algorithm on VANETs. In
VANET, stability pertains to the network's ability to maintain its connectivity and
performance despite node mobility, network congestion, and other factors that may affect
its operation. Clustering plays a crucial role in enhancing the stability of the collaborative
environment by reducing communication overhead and improving the network's scalability
and reliability. Clustering algorithms can group vehicles based on location, speed, and other
parameters, thereby reducing the number of messages transmitted and improving network
performance [5].

 Cluster stability is often affected by cluster fragmentation and size [3]. Given the
importance of network stability and its ability to handle traffic promptly, it is prioritized as
a measure for evaluating cluster performance. To achieve optimal performance, the cluster
must exhibit stability, less overhead, long CH, and long CMs [4].

 This study focuses on the methods and techniques employed to develop a stable and
usable VANET network, even under adverse conditions. It examines the role of each
network component and its impact on overall stability and performance. The paper
investigates several algorithms to identify areas for improvement and increase stability in
the VANET network. It also explores how clustering can contribute to stability, control,
and effective information exchange.

 The performance metric for stability in VANET CH life time, CM life time, average
cluster head change, packet loss, and cluster formation time are important performance
metrics in VANET that affect the stability and efficiency of communication [1].

 The following performance metrics are crucial in assessing the efficacy of clustering
algorithms and protocols in VANET:

- Cluster Head Lifetime: This metric represents the duration during which a node fulfills
the role of a cluster head. A prolonged cluster head lifetime results in a more stable
network, as frequent alterations in cluster heads have the potential to disrupt
communication and escalate overhead [6].

- Cluster Member Lifetime: This metric signifies the duration for which a node maintains
its membership within a cluster. A prolonged lifespan as a cluster member also enhances
network stability, as frequent alterations in cluster members can lead to communication
disruptions and heightened overhead [6].

- Average Cluster Head Change: This metric denotes the frequency at which a node
transitions between its roles as a cluster head and a cluster member, or vice versa. A
substantial average cluster head change indicates network instability, as frequent
alterations in cluster heads can impede communication and escalate overhead [6].

17

- Packet Loss: This metric represents the proportion of packets that are lost during the
process of transmission. A substantial packet loss rate signifies network instability, as the
loss of packets can lead to delays, retransmissions, and heightened overhead [6].

- Cluster Formation Time: This metric denotes the time taken for a cluster to form. A
longer cluster formation time can indicate network instability, as it can lead to
communication delays and increased overhead [6].

By optimizing these performance metrics, it is possible to enhance the stability and
efficiency of communication in VANET and ensure reliable and timely message delivery
[1][3].

The stability means the continuity of communication between vehicles on the one hand and
the base station on the other hand, thus delivering packets close to real time, and thus an
almost non-existent rate of data loss. In the proposed algorithm, this means a group of
vehicles that travel together at close distances and in the same direction along the distance
traveled [15].

2.3 Literature review
Cluster algorithms in VANET can be classified into two primary categories: cluster

establishment with CH selection and cluster formation, and cluster maintenance. The
former type focuses on the initial creation of clusters and the selection of appropriate
CHs. The latter type, cluster maintenance, involves ensuring the ongoing stability and
efficiency of the clusters once they have been formed [2].

By implementing these clustering algorithms, the VANET network can enhance
communication, improve coordination, and optimize information exchange among nodes
within clusters, thereby leading to enhanced overall network performance and stability
[15]. The stability of the cluster is enhanced in cluster maintenance through the prediction
of link failures among the nodes.

A CH is selected by determining the network parameters, while the other nodes are
considered as cluster members. The CH assumes full responsibility for internal cluster
communication. The internal communication within a cluster utilizes two specific routing
methods known as intra cluster communication and internal cluster communication.
Additionally, the formation of clusters also reduces the excessive load on the nodes in the
VANET. The cluster plays a crucial role in radio transmission by accessing channels that
minimize collisions and interference in communication information [1].

18

 Stable clustering algorithms

In this section, a succinct overview of the algorithms studied and their operational
mechanisms will be presented.

 Communication in Vehicular Ad-hoc Networks (VANETs) can be broadly
classified into two groups based on the radio interfaces employed. One group of
approaches relies on Dedicated Short-Range Communication (DSRC) as the
underlying technology. The other group involves the utilization of existing cellular
technologies that are already in use. Given the rapid advancements in mobile cellular
networks, some researchers propose leveraging the existing infrastructure and
technologies for VANET communications. Various techniques have been suggested to
effectively manage VANETs and make use of the established mobile cellular networks
for data transmission. As a result, there has been a quest for a dependable clustering
approach in VANETs to mitigate frequent cluster reformation [1] [15].

A. CBSC algorithm:

 In cluster-based Vehicular Ad-hoc Networks (VANETs), a clustering algorithm is
utilized to establish clusters from a group of unlabeled nodes. Within this framework,
all vehicles present in the clusters transmit their data to a base station referred to as an
evolved Node B (eNodeB), which is an integral part of the cellular network
infrastructure. The management of the clusters is undertaken by the eNodeB. To
facilitate effective communication between the eNodeB and the CMs, a CH serves as
an intermediary. Within a cluster, a vehicle assumes the role of a CH and gathers data
from all CMs using the 802.11p communication standard. Subsequently, the CH
establishes communication with the eNodeB utilizing a technology such as TLE [1].

1. Cluster head selection

 A relative mobility metric, denoted as M, has been devised for the purpose of
selecting an optimal Cluster Head (CH) in CH elections. The objective is to identify a
CH that can effectively prolong the lifespan of the cluster and minimize the frequency
of CH reselection. The relative mobility metric evaluates disparities in terms of
maximum acceleration, maximum speed, and relative location between a given vehicle
and all other vehicles within the same cluster. A smaller value of M, speed, and
acceleration indicates a lower relative mobility compared to other vehicles in the
cluster. These factors are incorporated into the CH selection metric to enhance cluster
stability and reduce the occurrence of CH reselection [1].

2. Cluster Maintenance and Reforming

 The transient nature of cluster existence can be ascribed to the capricious and
dynamic nature of traffic. The recurrent or instantaneous reconstitution of clusters is

19

not a viable remedy. The authors in [1] proffer a cluster maintenance algorithm to
alleviate the frequency and expense of cluster reformation.

B. CEC-GP algorithm:

The research conducted by the Center-based Stable Evolving Clustering Algorithm
with Grid Partitioning (CEC-GP) [2] has placed a greater emphasis on clustering in
VANETs. Some existing methods for clustering VANETs utilize statistical clustering
techniques such as K-means or other models that incorporate density measurements.

This study specifically focuses on research that utilizes base stations on the road,
which are increasingly prevalent in today's infrastructure, to perform clustering in
VANETs. The aim is to leverage the expanding range of V2I communication for LTE and
to enable a global view-based clustering approach, which enhances stability and
predictability in decision-making. To achieve this, the paper explores the clustering of
VANETs in a highway environment using a center-based approach.

 The initial stage of data summarization, known as the grid-partitioning step, plays a
crucial role in dividing the environment into grids. This step serves as the fundamental
basis for the approach, which incorporates vehicle motion information. Each grid serves as
a higher-level entity that assists in determining the creation of outliers or clusters during
the grouping of information. The approach is outlined as a comprehensive framework for
clustering Vehicular Ad-hoc Networks (VANETs), encompassing tasks such as assigning,
selecting a cluster head, merging, and eliminating clusters.

C. CATRB algorithm:

 The Clustering Algorithm using Traffic Regularity of Buses (CATRB) is a method
that considers the mobility characteristics of vehicles, such as velocity, position, and
direction, to address the issue at hand [3]. In order to estimate the distribution of other
vehicles in space and time, the algorithm also takes into account fixed bus routes.
CATRB selects the most suitable Cluster Head (CH) in the Vehicular Ad-hoc Network
(VANET) by utilizing the in center, circumcenter, and centroid of an equilateral
triangle. By being centrally located within the cluster, the resulting CH effectively
manages the entire system. Furthermore, the proximity between the CH and Cluster
Members (CMs) allows for convenient and successful data transfer. The authors of this
study conducted simulations using real traffic data from Taipei, which demonstrated
that the proposed strategy significantly enhances cluster stability by reducing the
likelihood of CH changes [3].

 In CATRB, a three-stage method is employed to address various issues in VANET.
In the first stage, the algorithm records the Traffic Congestion History Table (TCHT)
of each Bus Node (BN), as well as the Cluster Head Table (CHT) and Cluster Member
Table (CMT) of the vehicle node. In the second stage, a CH election procedure is

20

suggested to minimize cluster fragmentation and enhance stability. BNs determine the
ideal CH to achieve this goal. Finally, in the third stage, a secondary CH election
process is proposed to reduce cluster instability caused by clusters with an excessive
number of nodes [3].

D. SC-GDRV algorithm:

In the paper titled "A Stable Clustering Approach based on Gaussian Distribution and
Relative Velocity in VANETs" (SC-GDRV) [4], a novel approach was proposed for the
analysis of clusters in VANETs. This approach utilized the average speed of vehicles and
the standard deviation to classify clusters into two distinct levels of stability.

The first level consisted of the most stable clusters, which encompassed approximately
68% of the vehicles. The second level included the less stable clusters, encompassing about
95% of the vehicles. Within these clusters, any vehicle with a velocity equal to or close to
the average value could be chosen as the Cluster Head (CH) [4].

By employing this approach, SC-GDRV aimed to establish stable clusters based on a
statistical analysis of vehicle velocities. The selection of CHs based on relative velocities
and adherence to the average value contributed to enhancing the stability and effectiveness
of communication within the VANET network [4].

 The objective of this research is to enhance network stability and dynamically reduce
the topology. The Gaussian normal distribution principle is utilized to accept and reject
compounds during the cluster formation process, in addition to the method of velocities
and standard deviation. Clustering is employed to reduce Routing Overhead and improve
message delivery. The role of the algorithms is divided into two parts, and each section has
its own functions [4]:

• Cluster formation: Create clusters, CH selection, Set CM, Getaway, and Assist
Connection.

• Cluster maintenance: Improve the links, describe leaving, joining vehicles, and
merging clusters.

 The utilization of a normal distribution (also known as a Gaussian distribution) was
employed due to its efficacy in representing random phenomena. A significant association
exists between the size of the sample and the likelihood of the samples conforming to a
Gaussian distribution. By reducing the recommended velocity limit, the stability of the
clusters will be enhanced.

21

The proposed solution is based on creating two types of clusters [4]:

• Type 1: The quantity of automobiles present in a designated section of the roadway
is computed, and the mean and standard deviation of their velocities are determined.
The preponderance of the curve denotes 68% of the vehicles, which are the most
consistent, while approximately 32% of the vehicles, which have an impact on the
stability of the network, are excluded. The chosen vehicles exhibit similar speeds.

• Type 2: This category comprises 95% of the vehicles as per the curve and can be
utilized to establish a stable cluster while eliminating 5%. The inter-vehicle velocity
in this category is higher than that of the first type.

E. MABSC-CD algorithm:

The Multi-Agent-Based Stable Clustering and Collision Detection (MABSC-CD)
technology introduces a novel approach known as the Dynamic Clustering Technique. This
technique has been developed to address the issue that arises when a vehicle leaves the
Cluster within a network. In addition to resolving traffic congestion problems, the
technology also identifies and reports congested areas. Furthermore, a routing protocol
algorithm has been devised in the Base Station (BS) to account for mobility and overcome
routing problems. In the event of congestion or collision detection, an alternative route is
promptly sought, taking into consideration the mobility of the BS node and Sensor Node
when making routing decisions [5].

 This study has introduced a potential solution for addressing traffic congestion
and collisions within the VANET network. A novel technology has been developed to
detect instances of traffic collisions, and the weight factor has been utilized to select
CH. The efficacy of this new approach has been demonstrated through its ability to
minimize data loss and enhance data transfer rate.

F. SCalE algorithm:

 The Stable Clustering algorithm for vehicular Ad-hoc networks (SCalE) is
introduced, which presents a stable cluster head selection scheme that utilizes the
knowledge of the vehicle's behaviors [6]. This algorithm employs a clustering technique
where neighboring vehicles are grouped into clusters, with one vehicle elected as a
Cluster Head (CH) in each cluster. Within these clusters, each vehicle (Cluster Member
CM) communicates with Unmanned Aerial Vehicles (UAVs) or base stations through the
CH of their respective cluster. The algorithm incorporates two key features: the utilization
of the vehicle's behavior knowledge to efficiently select CHs, and the inclusion of a
backup CH to ensure the stability of the cluster structures.

 Summary and discussion

 In this section, a comparative analysis is presented in Table 2.2, outlining the merits
and demerits of each algorithm under study. Furthermore, Table 2.3 delves into the
algorithms studied and compared, with a focus on the three most crucial factors that impact

22

stability in VANETs networks, namely, CH duration, CM duration, and the number of
clusters in each network.

 As the network is more stable when the value of CH duration and CM duration
increases and the value of Number of clusters decreases.

Table 2.2: Summary of previous studies (Advantages & Disadvantages)

Algorithm Advantages Disadvantages

CBSC [1] 1-Enhance the dependability and efficacy of
communication.
2-Furnishes a cluster maintenance algorithm
to curtail the frequency and expense of
cluster reforming, thereby augmenting the
steadiness of the system.

It has been observed that it does not surpass
ScalE in terms of the average CH lifetime.

CEC-GP
[2]

1-The inclusion of multi-level data
aggregation enables improved clustering
decisions through the reduction and
summarization of data.
2-The integration of base stations along the
road facilitates efficient, reliable, and high-
performing clustering in VANETs.

The study fails to consider the expenses
associated with the implementation of the
suggested clustering model, which could be
substantial and impede its practical utility.

CATRB
[3]

1-Enhances cluster stability through a
reduction in the frequency of cluster head
transitions.
2-Incorporates the mobility attributes of
vehicles, including velocity, position, and
direction, to augment cluster stability.

1-The algorithm requires each vehicle to
calculate the route with the minimum cost
for every destination in the network.
2-This calculation can be time-consuming
and may cause a delay in the transmission
of data.

SC-GDRV
[4]

1-Reducing congestion and enhancing
message delivery.
2-Increase the network stability and reduce
the topology dynamic by integrating the
normal probability distribution function.

1-The proposed scheme was evaluated
using a vehicle system consisting of only
21 vehicles, which may limit the
generalizability of the results.

MABSC-
CD [5]

1-Improved head life of the cluster
2-Increased stability, especially in difficult
cases such as congestion and traffic
accidents.
3-Addresses the problem of traffic
congestion and detects and reports
congested areas.

1-Power consumption is high in the
proposed method.

SCalE [6] 1-Enhance the cluster stability in average CH
lifetime and reduce the data loss rate.

1-It needs a complex infrastructure in order
to be able to get all the requirements of this
algorithm.
2-Compared to CBSC the average Life
Time of CM was lower.

23

Table 2.3: Summary of previous studies (Metrics Performance)

Algorithm CH Duration CM Duration # of Clusters

CBSC Medium High Low
CEC-GP Medium High Low
CATRB Low Medium Medium

SC-GDRV High Low Low
MABSC-CD Low Low Low

ScalE High Low Medium

Upon comparison between CBSC and CEC-GP, it is apparent that these two algorithms
exhibit similar performance characteristics. However, comprehensive testing has revealed
that the performance of CEC-GP deteriorates as traffic density increases. In contrast, CBSC
utilizes image processing techniques, making it more responsive to dense clusters.
Consequently, as traffic density intensifies, the CH (Cluster Head) duration proves to be
more advantageous in CBSC. Additionally, as per the findings from experiments conducted
by the research team at [1], CBSC demonstrated complete superiority over SCalE.
However, it fell short of surpassing SCalE in terms of CH lifetime.

In the CATRB algorithm, a new algorithm was not developed to reduce the number of
clusters. Instead, a new algorithm was employed to expedite the selection of a new CH
each time, and thus, the issue of CH duration remained unresolved.

Regarding the SC-GDRV algorithm, there has been an enhancement in the duration of
CH (Cluster Head) due to the highly efficient method employed in selecting the most stable
compound to serve as CH. However, it is important to note that this method primarily relies
on clustering vehicles with similar speeds together, which can result in a substantial
increase in the number of clusters or a decline in the quality of the resulting cluster.
Furthermore, the effectiveness of this method is dependent on the speed of data processing,
with a higher number of vehicles and their speeds leading to increased energy consumption
during cluster formation, thereby causing instability.

On the other hand, the MABSC-CD algorithm has succeeded in reducing the number
of clusters by implementing a dynamic cluster that can adapt its radius and size based on
the speed and density of the vehicles. However, it has not shown improvement in the
lifetime of CH and CM (Cluster Member), as the author has indicated a significant decrease
in CH duration with increasing speed.

 According to the findings presented in Table 2.3, it is evident that there is no single
category that can be universally applied to all network scenarios. For instance, while the

24

CBSC algorithm effectively enhances stability in VANETs networks, it encounters
challenges in terms of infrastructure requirements, as it necessitates advanced technology
in each vehicle. Additionally, the control of the Cluster Head time rate poses a potential
issue, which can have a detrimental impact on network stability in certain cases.
Consequently, it is advisable to combine the strengths of multiple algorithms to create a
hybrid and dynamic approach that can adapt to the overall network situation.

 This survey aims to investigate stable clustering algorithms with the objective of
identifying the most suitable algorithm that maintains crucial metrics for network stability.
The algorithms are categorized based on their ability to sustain the lifetime of Cluster
Heads (CH) and Cluster Members (CM). Algorithms that exhibit higher capabilities in
preserving these factors generally have longer average cluster lifetimes. Additional metrics
considered in the survey include data loss rate and average cluster formation time for each
algorithm.

 The survey thoroughly examines the advantages and disadvantages of each algorithm
in terms of their requirements, performance, and methodology. Table 2.3 clearly
demonstrates that the CBSC and SCalE algorithms outperform other algorithms across
most parameters. However, it is worth noting that CBSC falls short in terms of CH lifetime
when compared to SCalE, resulting in a higher average CH change and reduced stability
for CBSC.

Summary of the chapter

The technology used in VANET networks was discussed, the most important basics of the
network were studied, and the difference between VANET and MANET networks was
learned. Then the clustering process, its importance and use were discussed. Then a review
of the literature was conducted on a set of algorithms for the clustering process, while
examining the pros and cons of each one. These algorithms, and suggestions for future
improvement methods.

25

Chapter 3

Methodology and Implemented Algorithms

3.1 Overview
A clustering algorithm must endeavor to uphold cluster stability and preserve the

cluster contents and structure for an extended period. Failure to do so will result in frequent
re-clustering processes, which will ultimately diminish the communication's performance.

In the upcoming sections, we will delve into the details of three distinct algorithms.
The first algorithm, known as the Center-Based Secure and Stable Clustering algorithm
(CBSC), is introduced in [9] CBSC employs direction vectors, identifies the centers of
denser vehicle areas, and utilizes intersections to form a smaller number of more stable
clusters.

The second algorithm, the Stable Clustering Algorithm for vehicular Ad-hoc networks
(SCalE), is presented in the paper [10]. SCalE incorporates stable nodes into the leader
election process by assessing node behavior (whether they will remain or leave) and
maintaining a backup of qualified cluster header candidates.

The third algorithm is the proposed algorithm, called Hybrid Stable Clustering
Algorithm (HSCA), which acts as (CBSC) at the two phases. The first phase is cluster
formation (initial clustering) and the second one is cluster maintenance (progressive). It
will be implemented only the algorithm related to retrieval of a node’s position through
GPS, but the difference at cluster head election, where will follow SCalE head election
method.

This chapter is devoted to the exposition of the three algorithms that were previously
mentioned. Firstly, the algorithm with fundamental procedures, equations, and figures is
presented. Subsequently, notes pertaining to its implementation are presented alongside the
algorithm.

3.2 A Center-Based Secure and Stable Clustering
Algorithm

The proposed algorithm, known as CBSC (Center-Based Secure and Stable
Clustering), is a distributed clustering algorithm based on mobility. Its main objective is to
prioritize cluster stability. By stability, we refer to the coherence and consistency within
clusters [1]:

26

 Long cluster head duration with low rate of cluster head change.

 Long cluster member duration.

The aforementioned objective shall be attained through the establishment of clusters,
wherein the cluster heads and their respective members shall maintain the minimum
distance and minimum relative velocity. The algorithm employed for this purpose
utilizes GPS technology to furnish the positional data of the vehicles.

Security is not the scope of the thesis; we did not mention the security aspects.
Although we meant to talk about Wi-Fi, we mentioned it because communication
between vehicles is based on this technology.

CBSC

A clustering algorithm forms clusters out of a collection of unlabeled nodes. All cars
in cluster-based VANETs deliver their data to a base station used in cellular network
infrastructure evolved Node B (eNodeB). The vehicles are then managed by clusters using
eNodeB. To facilitate communication between eNodeB and CMs, a CH serves as a
messenger. A vehicle serves as a CH in a cluster, gathering data from all CMs through
802.11p and communicating with the eNodeB over TLE. In the study [1], the authors made
the following assumptions regarding cluster:

 Both 802.11p and LTE interfaces are incorporated within each vehicle.

 GPS devices have been installed in each vehicle, thereby providing precise
geolocation information.

 Every vehicle is aware of its destination, maximum speed, and acceleration.
In [1] provides a center detection-based clustering approach based on these assumptions.

 Cluster Head Selection

A relative mobility metric M is developed for CH election in order to choose an
optimal CH that can lengthen the cluster lifetime and lower the frequency of CH
reselection. The relative mobility metric measures the differences in maximal acceleration,
maximum speed, and relative location between one vehicle and every other vehicle in the
same cluster. A lower relative mobility than other vehicles in this cluster is indicated by a
smaller M, speed and acceleration, are added to the CH selection metric to make the cluster
stabled and decrease the CH reselection frequency [1]. To select an appropriate CH:

 Step1: For a vehicle k, which is in the cluster clusteri, the position difference between
it and all other 𝑁 vehicles in the same cluster clusteri is:

𝐷௞ = ∑ ඥ(𝑥௞ − 𝑥௡)ଶ + 𝑥(𝑦௞ − 𝑦௡)ଶே
௡ୀଵ . . (1) [1]

27

 Step 2: The speed difference between K and all other N vehicles in the same cluster is:

𝑉௞ = ∑ |𝑣௞ − 𝑣௠|ே
௡ୀଵ . . (2) [1]

 Step 3: maximal acceleration difference between k and all other N vehicles in the same
cluster is:

𝐴௞ = ∑ |𝑎௞ − 𝑎௠|. . (3) ே
௡ୀଵ [1]

The relative mobility metric M is:

𝑀௞ = 𝛼
஽ೖ

௠௔௫{஽೙|∀௡∈஼೔}
+ 𝛽

௏ೖ

௠௔௫{௏೙|∀௡∈஼೔}
+ 𝛾

஺ೖ

௠௔௫{஺೙|∀௡∈஼೔}
. . (4) [1]

Where 𝛼, 𝛽, and 𝛾 are weighted coefficients. 𝛼+𝛽+𝛾 = 1.

They can be adjusted to fit the different traffic conditions. When the traffic condition

is good and all vehicles are driving at a similar speed, the distance between vehicles has a

greater effect. Thus, the value of 𝛼 should be higher than the other two. When vehicles are

driving at high speed, the value of 𝛽 is higher than the other two. When the vehicles enter

an area which speed limit changes continually, a higher 𝛾 should be considered.

The relative mobility metric 𝑀evaluates the relative position, speed, and maximal

acceleration differences between one vehicle and all other vehicles in the same cluster. A

smaller 𝑀 indicates the vehicle has lower relative mobility than other vehicles in this

cluster.

Algorithm 1: Cluster head selection algorithm in CBSC [1]
Input: Vehicles in one cluster
Output: Cluster head o of the corresponding cluster
Set M 𝑚𝑖𝑛 = +∞;
for each vehicle 𝑘 do:
 Calculate the relative mobility metric M_𝑘;
 If 𝑀𝑘 < 𝑀𝑚𝑖𝑛 then
 M𝑚𝑖𝑛 = M𝑘;
 K=0;
 end
end
return 0;

28

So, the CBSC algorithm behaves as in algorithm 2.

Algorithm 2: Clustering Algorithm in CBSC [1]
Input: Vehicle set V
Output : initial clusters
Initialize center set C = Ø;
Locate the centers and add them into C;
Initialize point set P= C;
while P # Ø do
 for each point p in P do
 Initialize node set cluster = Ø ;
 for each vehicle in V do
 if dep <R then
 add e into clusterp
 Remove e from V;
 end
 end
 if clusterp ≠ Ø then
 Call cluster head selection algorithm;
 Return set clusterp;
 end
 Add the intersection nearest to 𝑝 which meets the conditions into 𝑃;
 end
 Remove 𝑝 from 𝑃;
end
while v ≠Ø do
 for each point c in C do
 Select an element e in V nearest to c;
 Initialize set clustere= {𝑒};
 Remove e from V;
 Set e as CH;
 for each vehicle v in 𝑉 do
 if 𝑑𝑒v ≤ 𝑅 then
 Add V into clustere;
 Remove V from 𝑉;
 end
 end
 Return clustere;
 end
end

 Cluster Maintenance and Reforming

The cluster lifetime is merely brief due to the unpredictable and mobile nature of
traffic. Reforming clusters regularly or in real time is not practical. It suggests a cluster
maintenance algorithm to reduce cluster reforming's frequency and cost. The cluster
maintenance process is divided into four steps:

1. No Connections between CH and CM.

29

2. No Connections between eNodeB and CH.
3. A Vehicle Joins the Network.
4. Two Clusters Are Too Close.

Algorithm3: Cluster maintenance algorithm in CBSC [1]
Input: Initial clusters and vehicle set V
Output: New clusters
if the eNodeB cannot reach a CH then
 Call Cluster Head Selection Algorithm;
end
if the CH cannot reach a CM then
 Remove the CM;
 Notice eNodeB;
end
if the distance between two CHs ≤ 𝑅 for a period Δ𝑡 then
 Merge the two clusters into one cluster;
 Call the Cluster Head Selected Algorithm;
end
if a CM cannot reach the CH then
 if it can receive a signal from CHs then
 Join the cluster whose signal of CH is strongest;
 end
 else
 Notice eNodeB;
 The node performs as a CH;
 end
end

 Notes about the algorithm:

In order to increase the stability of this algorithm, the direction of movement of the
vehicle must be taken into consideration. So, to demonstrate the advantage of grouping
vehicles, an example presented on Figure 3.1.

Figure 3.1: Link rupture example [1]

30

Link rupture event is more likely to occur between vehicles A, B and D. Analytically,
five vehicles are moving towards an intersection and vehicle B is turning onto a new street,
whereas the other 4 vehicles are continuing straight on the same road. A connection is
established between vehicles A and E. Communication is possible on two routes: one via
vehicle B (route A-B-D-E) and the other via vehicle C (route A-C-D-E). As vehicle B is
turning left and vehicle A is continuing straight, the former route is more likely to be
ruptured after a certain time. Consequently, the selection of the second route is more
suitable and adds more stability and reliability to the communication path between the 2
vehicles (A and F).

Figure 3.2: Files that were implemented in order to simulate the CBSC algorithm and
how they were included.

3.3 Stable Clustering Algorithm for vehicular Ad-hoc
networks (SCalE)

This clustering algorithm groups neighboring vehicles into a cluster and selects two of
them as the cluster head and backup cluster head, respectively. The stability of the cluster
structures is achieved by the use of knowledge of the vehicle’s behavior in the cluster-head
selection as well as the use of the backup cluster head to enable efficient maintenance of
the cluster structure.

Presenting a stable cluster head selection scheme that is achieved using the knowledge
of the vehicle’s behaviors [6].

31

This Algorithm uses a clustering technique; neighboring vehicles are grouped into one
cluster, with a particular vehicle elected as a Cluster Head (CH) in each cluster. Each
vehicle (Cluster Member CM) in this cluster communicates with Unmanned Aerial
Vehicles (UAVs) or base stations through the CH of the associated cluster. Two features
are incorporated into the algorithm:

1. Knowledge of the vehicle's behavior for efficient selection of CHs.
2. Employment of a backup CH to maintain the stability of cluster structures.

 Cluster Head election:

The choice of CH is based on index Sigh K (ξk). It is an indicator that is calculated by
exchanging messages between the network and each K vehicle, this message is known as
Cooperative Awareness Message (CAM) and containing information relevant to safety
related applications (vehicle speed and position) and the vehicle with the lowest index ξk
is chosen as CH and the remaining compounds are CMs.

 Step 1: Vehicle Behavior (𝐵௞) the value is set to 1 if the vehicle intends to leave the
system and to 0 otherwise.

𝐵௞ = ൜
1, 𝑖𝑓 𝑘 𝑖𝑠 𝑙𝑒𝑎𝑣𝑖𝑛𝑔 𝑡ℎ𝑒 𝑟𝑜𝑎𝑑 𝑤𝑎𝑦

0, 𝑖𝑓 𝑘 𝑖𝑠 𝑛𝑜𝑡 𝑙𝑒𝑎𝑣𝑖𝑛𝑔 𝑡ℎ𝑒 𝑟𝑜𝑎𝑑 𝑤𝑎𝑦
. . (1) [6]

It is used to filter out unstable vehicles as cluster head.

 Step 2: Relative Mean Speed (𝑆௞): The stability of the clusters can degrade rapidly in
a highly mobile environment. It represents a measure of the stability of a vehicle in a
VANET. It calculates by take the difference in Velocities (V) between the vehicle (k)
and all Neighboring (N) vehicles within its range, the value is between 0 and 1.

𝑆௞ =
∑ |𝑣௞ − 𝑣௡|ே

௡ୀଵ

𝑁 ∙ 𝑚𝑎𝑥{Ω𝑘}
. . (2) [6]

 Where the normalizing factor is the maximum value of the set Ω𝑘. This is defined
as the set of all the vehicles speed differences |𝑣௞ − 𝑣௡|within the set Φ௞, provided
the vehicles are moving (v > 0), and is formally expressed as Ω𝑘 = {|𝑣௞ − 𝑣௡| | (𝑣௞,
𝑣௡) > 0; Ɐn Ε Φ௞}. . (3) [6].

 Step 3: Mean relative distance (𝐷௞)): indicates that the neighboring vehicles are closer
to the potential CH. by GPS coordinates of two vehicles k and n ,we can calculate the
distance between the two at an arbitrary time as [6] :

∆𝑥௞,௡ = |𝑥௞ − 𝑥௡|. . (4)

∆𝑦௞,௡ = |𝑦௞ − 𝑦௡|. . (5)

32

 Consequently, the mean relative distance 𝐷௞ of vehicle k is defined as the mean
Euclidean distance. Furthermore, normalizing by the maximum value of the set 𝑍௞
makes 𝑆௞ and 𝐷௞ comparable:

𝐷௞ =
∑ ටൣ∆𝑥௞,௡൧

ଶ
+ ൣ∆𝑦௞,௡൧

ଶே
௡ୀଵ

𝑁 ∙ 𝑚𝑎𝑥{𝑍௞}
. . (6) [6]

 The set 𝑍௞ is composed of all the Euclidean distances between the vehicles
belonging to the set Φ௞, that is:

𝑍௞ = ቊටൣ∆𝑥௞,௡൧
ଶ

+ ൣ∆𝑦௞,௡൧
ଶ

|∀𝑛 ∈ Φ௞|ቋ . . (7) [6]

 Step 4: The value of ξ௞ is calculated by adding 𝑆௞ + 𝐷௞ , and when the CAM is
periodically exchanged between vehicles, each vehicle records the values and
exchanges them with other vehicles, and the vehicle with the lowest index becomes
CH.

ξ௞ = 𝑆௞ + 𝐷௞ . . (8)
 Aa such will always fall in the range [0 , 2]. Upon periodical exchange of CAMs
amongst all the vehicles in the system, the kth vehicle can record a list of all CH
selection indexes ξ belonging to every nth vehicle in its neighbor’s set Φ௞. The set of
all ξ for every neighbor’s set Φ௞ is therefore defined as:

Ψ௞ = {ξ௞|∀𝑛 ∈ Φ௞}. . (9)
 Denoting (k) as the ID of the vehicle k, the vehicle will be selected CH if its CH
selection index ξ௞ is found to be smaller tha𝑛 ξ௡ , the selection index of any other
vehicle n in range, that belongs to the set Φ௞:

𝐶𝐻 = ൛𝛾௞|ξ(𝛾௡) ≤ 𝑚𝑖𝑛{Ψ௞}ൟ. . (10)

So, Cluster Head Election Algorithm:

Algorithm 4: Cluster head election algorithm in SCalE [6]
Require: ¥k in the system that do not belong to a cluster yet
for each kth vehicle do
 Evaluate ξ௞ using (2), (6) and (8)
end for
for each kth vehicle do
 if k is in range of a CHi then
 k CMi
 else
 Start CH election process:
 Eliminate unstable vehicles with (1)
 if (10) then
 k CHi
 end if
 end if
end for
go to CLUSTER MAINTENANCE

33

 Cluster Maintenance or Reforming:

The rest of the maintenance phase is described in Cluster Maintenance Algorithm,
which is designed to minimize cluster changes for every possible event, namely for the
following situations:

1. The CH leaves the network, that is the vehicle will turn at the next intersection.
2. The CH is within the communication range of at least another CH.
3. A CM loses connection with the CH.
4. A new vehicle joins the network.

If a CH leaves the system, it will put its 𝐶𝐻஻௞௣ in charge of the cluster. All the CMs

in cluster Ө௜ can therefore still hold onto the original cluster structure and avoid going
through the clustering process again. In the case a 𝐶𝐻௜ can hear at least another 𝐶𝐻௜ but

the backup cluster head of cluster Ө௜, 𝐶𝐻஻௞௣
௜ , is not in range of the other 𝐶𝐻௜, then the

𝐶𝐻஻௞௣
௜ will become the new 𝐶𝐻௜, without the need of a new election.

Algorithm5: Cluster Maintenance Algorithm in SCalE [6]

for each 𝐶𝐻௜ do

 𝐶𝐻௜ chooses the 𝐶𝐻஻௞௣
௜

end for
if 𝐶𝐻௜ leaves system then

 𝐶𝐻஻௞௣
௜ 𝐶𝐻௜

end if
if 𝐶𝐻௜ is in range of another 𝐶𝐻௜ then

 if 𝐶𝐻஻௞௣
௜ is not in range of CHj then

 𝐶𝐻஻௞௣
௜ 𝐶𝐻௜

 else
 merge cluster Ө௜ and Ө௝

 end if
end if
if 𝐶𝑀௜ is not in range of 𝐶𝐻௜then
 go to CLUSTER HEAD ELECTION
end if
if new vehicle k enters the system then
 go to CLUSTER HEAD ELECTION
end if

34

 Notes about the algorithm:

What if vehicle search for a new potential strong cluster head, and finds it, but flow at
opposite direction? This algorithm addresses the problem of nodes leaving the road, but
does not address the problem of the previous scenario.

For the above scenario, if the vehicle is joined to the cluster, it will not be long-lived
in this cluster. Therefore, the direction of the vehicle must be taken into account.

 Files produced and description
1. <algorithm name>_main.cc: As described in the section (5.5) Initial files and

description. There is a call of the SCalE algorithm start application function at the
end of the file.

2. node-movements.h and node-movements.cc: As described in the section (5.5)
Initial files and description

3. custom-mobility-helper.h and custom-mobility-helper.cc: As described in the
section (5.5) Initial files and description.

4. v2v-control-client-helper.h and v2v-control-client-helper.cc: As described in
the section (5.5) Initial files and description, and pass simulation parameters to
SCalE algorithm application.

5. Cluster-cam.h and cluster.cc: These two files implement the class "ClusterCam"
which represent nodes degree (CH, CM, standalone) and node nighbours
information(imsi, clusterId, speed, position,address, chaddress).

6. Cms-cluster-header.h & Cms-cluster-header.cc: These two files implement the
classes of packet meta data header as:
1. CMSClusterInfoHeader: Packet meta data header to exchange info with other

nodes.
2. CMSIntiateClusterHeader: Packet meta data header to initialize cluster.
3. CMSFormClusterHeader: Packet meta data header to start head election

algorithm.
4. CMSCheckConnection: Packet meta data header to check connection with

other nodes and update nighbours.
5. CMSMaintenance: Packet meta data header to reform /maintenance cluster.

7. scale.h and scale.cc: These two files implement the class "SCalEAlgorithm"

35

Figure 3.3: Files that were implemented in order to simulate the SCalE Algorithm and
how they were included.

3.4 Hybrid Stable Clustering Algorithm for Vehicular
Ad-hoc Networks (HSCA)

This algorithm has been proposed in this work to take the advantages of the two
previous algorithms and improve the problems they face, so this clustering algorithm
groups neighboring vehicles into a cluster and selects two of them as the cluster head and
cluster head backup cluster head, respectively.

The stability of the cluster structures is achieved by selecting only neighbors with the
same direction and the use of knowledge of the vehicle’s behavior in the cluster-head
selection as well as the use of the backup cluster head to enable efficient maintenance of
the cluster structure.

The proposed algorithm will work according to the CBSC algorithm in all cases and
an improved method will be used for the Election of CH as the current method depends on
the periodic re-election procedure, the proposed algorithm will work on Adaptive re-
election Parameters for CH election used in SCalE will be used instead of those used in
CBSC, because based on the study of both algorithms, it has been found that the method
used to select the CH in the SCalE algorithm was based on more accurate factors and the
method of data processing and calculation is better.

 Locate centers of clusters:

After receiving the beacon messages, the system analyzes vehicles’ position
information and detects the centers of the ranges where the vehicle density is higher than
in other areas and without overlap with other centers.

36

 Initialize vehicle cluster:

Every vehicle in a range of the cluster center then it will be a member of this cluster.

Figure 3.4: Initialize vehicle cluster [6]

 Cluster Head election:

 Step 1: Vehicle Direction (𝑉௞ௗ): The direction type is decided by the angle from the
current position to the destination. For vehicle k, whose destination position is (𝑥’௞,
𝑦’௞), the direction angle 𝜃௞ is

Figure 3.5: The direction angle 𝜃௞ between two positions

𝑉௞ௗ =

⎩
⎨

⎧
1 , 𝜙௞ ∈ [−45, 45[

2 , 𝜙௞ ∈ [45, 135[

3 , 𝜙௞ ∈ [135, −135[

4 , 𝜙௞ ∈ [−45, −135[

..(1)

37

 Step 2: Vehicle Behavior (𝐵௞) the value is set to 1 if the vehicle intends to leave
the system and to 0 otherwise. For vehicle k, whose initial position (𝑥௞, 𝑦௞) and
destination. Position (last position in generated trace file) is (𝑥’௞, 𝑦’௞), the direction
angle 𝜃௞ is

𝐵௞ = ൜
1 , ∅௞ ∈ [45, 135[| ∅௞ ∈ [−45, −135[

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. . (2) [6]

 Step 3: Relative Mean Speed (𝑆௞): The stability of the clusters can degrade rapidly
in a highly mobile environment. It represents a measure of the stability of a vehicle
in a VANET. It calculates by taking the difference in velocities between the vehicle
k and all Neighboring N vehicles within its range, the value is between 0 and 1.

𝑆௞ =
∑ |𝑣௞ − 𝑣௡|ே

௡ୀଵ

𝑁 ∙ 𝑚𝑎𝑥{Ω௞}
. . (3)[6]

Where the normalizing factor is the maximum value of the set Ω௞. This is defined
as the set of all the vehicle's speed differences |𝑣௞ − 𝑣௡| within the set Φ௞ ,
provided the vehicles are moving (v > 0), and is formally expressed as:

Ω௞ = {|𝑣௞ − 𝑣௡| | (v௞ , v௡) > 0; ∀𝑛∃Φ௞}. . (4)

 Step 3: Mean relative distance (𝐷௞): indicates that the neighboring vehicles are
closer to the potential CH. By GPS coordinates of two vehicles k and n, we can
calculate the distance between the two at an arbitrary time as :

∆𝑥௞,௡ = |𝑥௞ − 𝑥௡|. . (5)

∆𝑦௞,௡ = |𝑦௞ − 𝑦௡|. . (6)

Consequently, the mean relative distance D௞ of vehicle k is defined as the mean
Euclidean distance. Furthermore, normalizing by the maximum value of the set Z௞
makes S௞ and D௞ comparable:

D௞ =
∑ ටൣ∆𝑥௞,௡൧

ଶ
+ ൣ∆𝑦௞,௡൧

ଶே
௡ୀଵ

𝑁 ∙ 𝑚𝑎𝑥{Z௞}
. . (7)[6]

The set Z௞ is composed of all the Euclidean distances between the vehicles
belonging to the set Φ௞, that is:

Z௞ = ቊටൣ∆𝑥௞,௡൧
ଶ

+ ൣ∆𝑦௞,௡൧
ଶ

 | ∀𝑛Φ௞ቋ . . (8)[6]

 Step 4: The value of ξ௞ is calculated by adding S௞ + 𝐷௞, and when the CAM is
periodically exchanged between vehicles, each vehicle records the values and

38

exchanges them with other vehicles, and the vehicle with the lowest index becomes
CH.

ξ௞ = S௞ + 𝐷௞ . . (9)[6]

In addition, as such will always fall in the range [0, 2]. Upon periodical exchange of

CAMs amongst all the vehicles in the system, the kth vehicle can record a list of all CH

selection indexes ξ௞ belonging to every nth vehicle in its neighbor’s set Φ௞. The set of all

ξ for every neighbor’s set Φ௞ is defined as [6]:

Ψ௞ = {ξ௞ | ∀𝑛Φ௞}. . (10)

Denoting k as the ID of the vehicle k, the vehicle will be selected CH if its CH selection

index ξ௞ is found to be smaller than ξ௡, the selection index of any other vehicle n in range,

that belongs to the set Φ௞ [6]:

𝐶𝐻 = ൛𝛾௞ | ξ(𝛾௞) ≤ 𝑚𝑖𝑛{Ψ௞}ൟ. . (11)

So, Cluster Head Election Algorithm:

Algorithm 6: Cluster head election algorithm in HSCA
Input: Vehicles in one cluster
Output: Cluster head o of the corresponding cluster
Set ξ 𝑚𝑖𝑛 = +∞;
for each vehicle 𝑘 do
 Calculate the selection index ξ୩;
 if ξ୩ < ξ୫୧୬then
 ξ 𝑚𝑖𝑛 = ξ୩;
 k = 0;
 end
end
return 0;

In this algorithm, the [1] and [6] algorithms were combined together in HSCA.

39

Algorithm 7: Clustering algorithm in HSCA [1]
Input: Vehicle set V
Output: initial clusters
Initialize center set C = Ø;
Locate the centers and add them into C;
Initialize point set P= C;
while P # Ø do
 for each point p in P do
 Initialize node set cluster = Ø ;
 for each vehicle in V do
 if dୣ୮ < R then
 add e into clusterp
 Remove e from V;
 end
 end
 if cluster୮ ≠ Ø then
 Call cluster head selection algorithm;
 Return set cluster୮;
 end
 Add the intersection nearest to 𝑝 which meets the conditions into 𝑃;
 end
 Remove 𝑝 from 𝑃;
end
while v ≠ Ø do
 for each point c in C do
 Select an element e in V nearest to c;
 Initialize set clusterୣ = {𝑒};
 Remove e from V;
 Set e as CH;
 For each vehicle v in 𝑉 do
 if dୣ୴ ≤ 𝑅 then
 Add V into clusterୣ
 Remove V from 𝑉;
 end
 end
 Return clusterୣ;
 end
end
 Cluster Maintenance and Reforming

The cluster lifetime is merely brief due to the unpredictable and mobile nature of
traffic. Reforming clusters regularly or in real time is not practical. In [1] suggest a cluster
maintenance algorithm to reduce cluster reforming's frequency and cost. The cluster
maintenance process is divided into four steps:

1. No Connections between CH and CM

40

2. No Connections between eNodeB and CH
3. A Vehicle Joins the Network.
4. Two Clusters Are Too Close.

Algorithm 8: Cluster maintenance algorithm in HSCA [1]
Input: Initial clusters and vehicle set V
Output: New clusters
if the eNodeB cannot reach a CH then
 Call Cluster Head Selection Algorithm;
end
if the CH cannot reach a CM then
 Reomve the CM;
 Notice eNodeB;
end
if the distance between two CHs ≤ 𝑅 for a period Δ𝑡 then
 Merge the two clusters into one cluster;
 Call the Cluster Head Selected Algorithm;
end
if a CM cannot reach the CH then
 if it can receive a signal from CHs then
 Join the clusterwhose signal of CH is strongest;
 end
 else
 Notice eNodeB;
 The node performs as a CH;
 end
end

 Notes about the algorithm:

This algorithm addressed the problem of vehicles leaving the road and improved the
accuracy of the metric used for cluster head election. However, more stability can be
obtained by clustering vehicles traveling in the same direction by choosing cluster centers,
for each direction separately or reducing the cluster range so that it is at most equal to the
width of the four lanes in each direction as shown in Figure 3.6.

41

 Figure 3.6: Proposed solution for more stability in the HSCA algorithm

So stable vehicles will travel together with cluster members (CH & CM) Lifetimes
will become longer, and the number of vehicle state changes will be less.

Figure 3.7: Files that were implemented in order to simulate the HSCA algorithm and
how they were included.

42

Chapter 4

The Simulation Environment, Results, and the
Performance Evaluation

 In the previous chapter three based mobility clustering algorithms have been discussed.
So, in this chapter, we will present the technologies used to simulate those algorithms that
will be simulated and discussed with several experiments that will be performed, with
many different simulation parameters and values that may affect the simulation results
(quality of clustering algorithm).

4.1 Operating System

Ubuntu is a computer operating system based on the Debian GNU/Linux -distribution.
Linux is a general name for a UNIX-like computer operating system based on the Linux
kernel and gathered for libraries and system programs developed within the limits of the
project GNU. Their development is one example of free and open-source software
collaboration. This means that all the underlying source code can be used for freely viewed,
modified and redistributed, both commercially and non-commercially, by anyone under the
terms of the GNU GPL and other free software licenses. Ubuntu is chosen as the operating
system because:

1. No need to acquire a license. Distributions of Ubuntu can be downloaded for free,
for example, from the Internet, or order a free CD with it by mail.

2. It is possible to have all the latest updates to the necessary applications that the
open-source world has to offer.

43

3. It is easy to find and install all necessary applications, programming environments.

The version of Linux is Ubuntu 18.04.6 with the code name "bionic".

 Network Simulator Ns-3

NS-3 is a discrete-event network simulator that primarily serves the purpose of
simulating Ad-hoc networks. Preceding iterations include ns-1 and ns-2, while the present
iteration is known as ns-3. This software is specifically designed to cater to the needs of
research and educational endeavors [13].

The development of Ns-3 project started in 2006 and it is open-source. It is
implemented in C++ and Python and it is licensed under the GNU GPL (General Public
License). The workflow on ns includes the following four steps:

1. Implementation of protocol models.

2. Setup the simulation scenario.

3. Running the simulation.

4. Analysis of the simulation results.

Some basic components of the program are:

1. NS, the simulator itself has Nam, the network animator to visualize ns (or other)
output.

2. Pre-processing component for Traffic and topology generators.

3. Post-processing for Simple trace analysis (in Awk, Perl or Tcl).

 NS3 Basics [13]

The NS3 network simulator is implemented in the C++ programming language and
employs Python scripts for the compilation and execution of code. Simulations are
primarily written in C++ and the waf build tool [12], which is written in Python, is
utilized for code compilation and execution. While it is feasible to write simulation
scripts in Python, it should be noted that due to the prevalent usage of C++ among
users, obtaining assistance from other users may not be as readily available.

 Simulation Components

To understand how NS3 simulation works, we need to understand how a simulation is
built. The main components we need to get started with are:

1. Nodes: A node represents a network host. It is defined as a type named ns3::Node.
When a node is created, it is created without a position. A node’s position is only

44

needed if it uses a wireless communication device since that’s how signal propagation
is calculated.

The main components of a nodes are:

a. Net devices:
A node has the capability to contain a list of net devices, which is a subclass of
ns3::NetDevice. Net devices possess the ability to access the pointer to their
respective node. This implies that if an object of a net device is pointed to, the node
in which it is contained can be accessed by utilizing the GetNode function. Net
devices may contain the implementation of PHY & MAC within the same class,
such as CsmaNetDevice, or they may have PHY & MAC implemented in separate
classes, as in WifiNetDevice.

b. A list of applications
A node has the capability to store a collection of applications, which is implemented
as a subclass of ns3::Application. Users have the ability to define the start and stop
times for these applications. Similar to network devices, applications can retrieve
their associated node using the GetNode method, thereby gaining access to the
node's network devices as well.

Figure 4.1: The main components of nodes

45

2. Channels:
In order to facilitate the transmission of data between devices, it is necessary to
establish a channel object, which serves as a subclass of ns3::Channel. Devices
within the same broadcast domain will collectively utilize a single channel object.
For instance, in the case of an Ethernet network (where Ethernet devices are
implemented in ns3::CsmaNetDevice), all devices within the network will share a
common ns3::CsmaChannel object. It is possible to define specific properties for the
channel, such as propagation delay and data rate. In the context of WiFi simulation,
all nodes will share a channel object of type ns3::YansWifiChannel.

The characteristics of propagation loss and delay are determined by separate classes,
such as ns3::LogDistancePropagationLossModel and
ns3::ConstantSpeedPropagationDelayModel. It is important to note that for these
models to function accurately, the nodes must have a MobilityModel installed, which
enables the specification of wireless signal loss and delay based on the distance
between them.

3. Packets: Data is exchanged with objects of type Packet. In ns-3, IP segments and data-
link frames are also considered as packets. Headers can be added or removed from a
packet, thereby altering its size. Additionally, packet tags can be utilized to attach
supplementary information to a packet without modifying its content. Further details
regarding packet tags will be discussed later in this document.

4. Event:

If one desires a certain action to occur after a specified duration, it is necessary to
arrange an event that executes a function. This can be achieved by utilizing the
function's pointer (using the "&" symbol) and providing any relevant parameters to be
passed to said function (if applicable) (see Appendix 1.A).
The following demonstrates how one can schedule the execution of the function
"DoSomething" to occur after a 3-second interval. Additionally, it includes the passing
of arguments "x" and "y". It should be noted that this example pertains to a
straightforward scenario where functions are not encapsulated within a C++ class.

There may arise situations where it becomes imperative to execute certain code
periodically. For instance, one may wish to periodically display simulation data or
write to a file every second. It is indeed possible to create a function that schedules a
recurring call to itself every second. It is crucial to remember to schedule the initial
call to the function as well (see Appendix 1.B).

5. Smart Pointers and ns3::Object

In the C++ programming language, it is possible to create a pointer to an object by
utilizing the * symbol and the new keyword, as demonstrated in the preceding

46

section. The ns-3 framework incorporates the concept of smart pointers, provided
that the C++ classes are derived from the ns3::Object class. It is worth noting that the
Ptr class template is employed in conjunction with the aforementioned classes. This
is the approach employed by ns-3 to implement smart pointers, which is similar to
the boost library. The majority of classes within ns-3 utilize Ptr<T>, where T
represents the type name, to generate pointers to objects. This approach offers
various functionalities, including type checking, casting, and invoking constructors.
When it comes to object creation, instances of an ns-3 class that is a descendant of
ns3::Object can be created using the CreateObject function. For instance, to create a
single node (ns3::Node), the following code can be utilized (refer to Appendix 2.A).

This effectively invokes the default constructor of the Node class, which does not
require any parameters. It is important to bear in mind that, in most cases, it is
preferable to create nodes using the NodeContainer class (refer to Appendix 2.B).

It is worth mentioning that certain classes within NS-3 are subclasses of
ns3::SimpleRefCount<T>, rather than ns3::Object. An example of a class falling into
this category is the Packet class, and objects of this type can be created using the Create
function (refer to Appendix 2.C).

A. Type checking and casting:
C++ is an object-oriented programming language that has inheritance of classes. In ns-

3, we have many abstract classes that are extended throughout ns-3. For example,
ns3::NetDevice is an abstract class because it has a pure virtual function Send. Some of the
subclasses of NetDevice are WifiNetDevice, CsmaNetDevice and many others. You will
see in the examples that we have a NetDeviceContainer, which contains pointers to objects
of types extending NetDevice, and ApplicationContainer which contains pointers to
objects of types extending the ns3::Application class.

We can examine the run-time type of an ns-3 object by using the function
GetInstanceTypeId(), which returns a value of type ns3::TypeId. In addition, most ns-3
classes are designed with a static function that returns the TypeId of a class.

Recall that nodes in ns-3 can have multiple net devices. The (Appendix 3.A) iterates
through the net devices of a node, and perform type casting on them.

Similar casting can be done with objects in ApplicationContainer, as ns-3 applications are
subclasses of ns3::Application (Appendix 3.B).

If you need to create a C++ class that is compatible with ns-3 smart pointer
functionalities, you need to extend the ns3::Object and create the functions
GetInstanceTypeId and GetTypeId.

B. Object Aggregation

47

In ns-3, an object of a type that is a subclass of ns3::Object can be associated with
another object that is a subclass of ns3::Object using the AggregateObject. You can only
aggregate a single object of a given type to another object. When two objects are
aggregated, you can use the function GetObject on one object to retrieve a pointer to the
other.

For example, if you have two classes ClassOne and ClassTwo that are both subclasses
of ns3::Object, you can perform (Appendix 4.A).

Object aggregate is used to implement mobility in ns-3. Nodes created in ns-3 have no
mobility information, so no position or velocity. Nodes without mobility can only be used
in wired communication because it does not need position information to determine
reception. You do not need to use AggregateObject yourself to give nodes position, but you
may need to use GetObject to determine the mobility information of a node (Appendix
4.B).

This is convenient because all simulation nodes are contained in the global NodeList
container. So, we can inquire about nodes positions anywhere in our code. In addition, we
may aggregate objects of our own user-defined classes to nodes (like center class that will
be explained later), and have that information available anywhere in the code.

 Eclipse

For the sake of convenience in code usage and spelling, We opted to utilize Eclipse.
Eclipse is a comprehensive software development environment that encompasses an
integrated development environment (IDE) and an expandable plug-in system. It is
primarily coded in Java and can be employed for the creation of applications in Java,
as well as other languages such as C, C++, COBOL, Python, Perl, PHP, and more,
thanks to its diverse range of plug-ins. specifically employed the Eclipse CDT module
for C/C++ codes, as ns-3 is implemented in C++. Additionally, Eclipse includes a
highly advantageous debugging tool. Debugging is a systematic process aimed at
identifying and minimizing the number of bugs or defects present in a computer
program.

 Installation:

Prior to beginning the installation of Eclipse, it is imperative to install the sun-java6-
jre package with the assistance of the package manager. This manager can be utilized
to install the Eclipse IDE, and subsequently, through the Eclipse interface, the Eclipse
C/C++ Development Tools (CDT) and other plugins can be installed to facilitate a
more convenient working environment. Alternatively, one can simply download the
"Eclipse IDE for C/C++ Developers" distribution from the official website at
http://eclipse.org/.

48

Before proceeding with the installation of ns-3, it is necessary to prepare the system
accordingly. The ns-3 core necessitates the presence of a gcc/g++ installation of version
3.4 or higher, as well as python 2.4 or a more recent version. Detailed instructions for
the proper installation of all the prerequisites for ns-3 can be found on the webpage
http:://www.nsnam.org/wiki/index.php/Installation. Additionally, on this page,
instructions for the installation of ns-3 itself can be found, although it is advisable to
download the latest version from the official site at http://www.nsnam.org/.

 Configure ns-3 in Eclipse:

When initiating Eclipse, it is advisable to modify the workspace to the directory that
houses the ns-3 files (e.g., home/username/repos). Proceed to create a new empty C/C++
project with a name identical to the folder name of the ns-3 project (e.g., "ns3.7"). Once
the creation of the empty project is complete, it will automatically populate with the
necessary ns-3 files. This process ensures a convenient working environment for ns-3
files.

 SUMO

The acronym SUMO represents Simulation of Urban Mobility and is governed by the
GPL (GNU General Public License). It is an open source software that is utilized for
the development and simulation of highly portable, microscopic, and continuous road
traffic packages that are specifically designed to manage extensive road networks. In
greater detail, a network file generated by SUMO has the capability to describe the
traffic associated with a particular section of a map. This file comprises the roads of the
network, including intersections or junctions, as well as the traffic lights of the map.
The file format is XML (eXtensible Markup Language), but it is not intended to be
manually edited. There are certain programs (NETGEN, NETCONVERT) that are
associated with SUMO and facilitate the creation of networks in a user-friendly manner.
Additionally, SUMO provides a diverse range of extensions to enable efficient
communication with other programs, such as ns3, which is essential for our simulation.

 The format of the network

In a conceptual sense, it can be stated that a SUMO network can be characterized as a
directed graph wherein the roads serve as the edges and the intersections/junctions act as
the nodes. To delve deeper into the matter, additional aspects of traffic are associated with
the following details:

1. Each street/road comprises multiple lanes.

2. Specific attributes such as position, shape, and speed limit can be attributed to each lane.

3. The right-of-way regulations are taken into consideration.

49

4. The connections between lanes, which correspond to junctions/intersections, are
accounted for.

5. The placement and operational logic of the traffic lights are also considered.

 The Simulation Network

Having explored the basic components of both SUMO and NS3, we can move on to
the presentation of the topologies of the network that were used for the simulation.

The topology simulates the movement of 560 nodes in a highway. The topology
consists of a highway scenario of 8 lanes, 4 in each direction is implemented. The highway
section is 6 km long and an additional side exit is placed at the 3 km mark for both
directions, as seen in Figure 5-2. The side exit is accessible only to vehicles driving on or
that move to (due to the lane changing model) the side lane. The probability that a vehicle
on the side lane leaves the network at the side exit is p = 0:7.

During the simulation, they were constructed 100 nodes – vehicles of same type (car).
The vehicles varied slightly in the maximum velocity that they could move and the
minimum gap that represents the minimum distance that they have to keep from the car
that moves in the front. The details about the movement of the vehicles were declared in
the "highwar_rou.xml" file.

Figure 4.2: Simulations scenario

Highway of four lanes for each moving direction. Length of road section is 6Km and
2 side exits are placed at 3Km to allow vehicles driving on or moving to the side lane to
leave the highway. Arrival rate of cars = 5 car/min for illustrative purpose only.

50

4.2 Initial files and description
To streamline the code implementation process for all algorithms, initial files were

generated to read the network that is prepared for simulation and to load the position details
of each node into memory. These files, which exhibit near-identical characteristics across
all algorithms in (Appendix 5.A).

If the user does not provide an adequate number of arguments, the program is
terminated by providing the user the message "Please enter the number of nodes and the
period of times that the program runs as the second and the third parameter. Also, give the
file name that declares the movement and log file name. This file creates nodes, assign its
movements, sets the transmission radio of the nodes that participate in the simulation, and
install algorithms applications to these nodes.

Finally, at the end of the file, there is a call to the main function of each of the three
algorithms that were implemented (Appendix 5.B).

4.3 Theoretical Comparison of CBSC, SCalE, hybrid
algorithm

Depending on the theoretical goals of each of the mentioned algorithms and the ways
to achieve them, we are supposed to get the following results:

Table 4.1: Theoretical comparison of CBSC, SCalE, hybrid algorithm.

Algorithm Parameters
for CH
election

Data
Routing

Index Advantages Disadvantages

CBSC Speed
difference
(Vk),
acceleration
Difference
(Ak).

Multi hop
Routing

Relative
Mobility
Metric
(M)

-Improve the reliability
and efficiency of
communications.
-Able to outperform
SCalE average CH life
time, packet loss rate
and average CM life
time.

-Require significant
infrastructure
investment to install
GPS devices and
802.11p and LTE
interfaces in every
vehicle, which can be
costly and
time-consuming.
-It fails to outperform
ScalE in Average CH life
time.

51

SCalE Vehicle
Behavior
(Bk),
Relative
Mean
Speed (Sk),
Mean
relative
distance
(Dk)

From
Cluster
Head to
UAV

Lowest
Index
(ξk)

Enhance the
cluster stability
in average CH
lifetime and
reduce data loss
rate.

-It need a complex
infrastructure in
order to be able to
get all the
requirements of this
algorithm.
-Compared to CBSC
the average Life
Time of CM was
lower.

HSCA Vehicle
Behavior
(Bk),
Relative
Mean
Speed (Sk),
Mean
Relative
distance
(Dk

Multi hop
Routing

Lowest
Index
(ξk)

-Improve the
reliability and
efficiency of
communications.
-Enhance the
cluster stability
in average CH
lifetime and
reduce data loss
rate.

Require significant
infrastructure
investment to install
GPS devices and
802.11p and LTE
interfaces in every
vehicle, which can be
costly and
time-consuming.

4.4 Comparison of Algorithms for Stable Clustering in
VANETs

4.4.1 Simulation Parameters:

Since the proposed algorithm depends on the vehicles mobility, which includes speed ,
position and direction, the simulation parameters must be related to that, so we chose
different values for these parameters, and since VANET networks depend on
communication between vehicles through Wi-Fi technology, which represents the cluster
domain, therefore we must choose Different values of the communication field between
the vehicles and its head, and conduct simulations of these values on a different number of
vehicles .

52

Table 4.2: Baseline parameters used in the simulations

Parameter Value

Simulator version NS3

Mobility Model ConstantVelocityModel

MAC layer protocol IEEE 802.11

Antenna Model Omni-Antenna

Channel type Wireless

Simulation area 6 km highway in both direction

Maximum Speed of nodes 0.001, 0.01, 0.03 (Km/S)

Packet size 512 (byte)

Simulation time 4032 s

Cluster range 100,200,300,450 (m).

Vehicles Number 250 vehicles

4.4.2 Simulation comparison of CBSC, SCalE, hybrid algorithm
 Since the proposed algorithm depends on the vehicles mobility, which includes speed,
position and direction, the simulation parameters must be related to that, so we chose
different values for these parameters, and since VANET networks depend on
communication between vehicles through Wi-Fi technology, which represents the cluster
domain, therefore we must choose Different values of the communication field between
the vehicles and its head, and conduct simulations of these values on a different number of
vehicles.
 Several experiments were performed, and the results were taken at different numbers
of nodes, different mobility speed for nodes and different range of cluster.

 Effect of numbers of nodes:

This section shows the results from our simulation experiments when varying the number
of nodes (vehicles), between 100 nodes,200 nodes, 450 nodes and 560 nodes.

53

Figure 4.3: Effect of number of nodes on CH Life Time

Figure 4.4: Effect of number of nodes on CM Life Time

Figures 4.3 and 4.4 show the Effect of number of nodes on CH life time.

 In CBSC Algorithm, an increase in the number of nodes leads to an increase of cluster
head life time and Cluster member life time, this is due to the increase in the size of the
cluster and the density of the distribution of nodes, the clusters centers will be as close as

0
1
2
3
4
5
6
7
8
9

10

100 200 450 560

CH
 L

ife
 T

im
e

(s
ec

on
d)

Nodes Number(vehicle)

CH Life Time

CBSC SCAlE Hybrid

0

1

2

3

4

5

6

7

8

9

100 200 450 560

CM
 L

ife
 T

im
e

(s
ec

on
d)

Nodes Number(vehicle)

CM Life Time

CBSC SCAlE Hybrid

54

possible to all points and when electing the most appropriate one, we have elected the best
node among the largest possible number of nodes.

In SCalE Algorithm, any increase in the number of nodes leads to a little increase of
cluster head life time and Cluster member life time, this is due to the increase of the
number of adjacent nodes, But the centers of the clusters, represented by the coordinates
of the cluster header's position, quickly change, so there will be a large number of cluster
head and cluster members state changes with each increase in the number of nodes.

In HSCA Algorithm , as CBSC algorithm , after locating the centers of clusters, the
number of clusters always remains constant, while the number of its elements changes, as
if the cluster is a fixed circular patch that vehicles pass through, and thus a specific
number of state changes for the elements of this cluster, as it moves from one cluster to
another until reaching the target position , so it will be There is a limited number of times
the vehicle's state changes, and these vehicles will remain within this cluster from the
time they enter the cluster range until they exit it, so a long life time for the cluster
members and cluster head.

Figure 4.5: Effect of number of nodes on average cluster head changes

Figure 4.5 shows the effect of number of nodes on average cluster head changes.

In CBSC Algorithm, we have elected the best node among the largest possible number of
nodes. Therefore, cluster head re-election will be limited to cluster head leaving the
cluster and therefore few state changes.

0

2

4

6

8

10

12

100 200 450 560

Av
er

ag
e

Cl
us

te
r H

ea
d

Ch
an

ge
s(

tim
es

)

Nodes Number(vehicle)

Average Cluster Head Changes

CBSC SCAlE Hybrid

55

In SCalE Algorithm, the centers of the clusters, represented by the coordinates of the
cluster header's position, quickly change, so there will be a large number of cluster head
and cluster members state changes with each increase in the number of nodes.

In HSCA Algorithm, vehicles will remain within this cluster from the time they enter the
cluster range until they exit, so it will be There is a limited number of times the vehicle's
state changes.

Figure 4.6: Effect of number of nodes on packet loss

Figure 4.6 show the Effect of number of nodes on packet loss.

In CBSC Algorithm, long CH and CM life time cause Less packets will lose, these cases
of packet loss will be limited to cases of nodes leaving the cluster before the packet
arrives, and these cases are very few.

In SCalE Algorithm, a high packet loss rate will appear because the high rate of Nodes
degree changes (CM-CH).

In HSCA Algorithm, a non-existent loss of packages due to the long time of the vehicle
within the cluster, and less status changes, so long connection time with neighbor’s
vehicles.

0

2

4

6

8

10

12

14

16

100 200 450 560

To
ta

l P
ac

ke
t L

os
s(

pa
ck

et
)

Nodes Number(vehicle)

Packet Loss

CBSC SCAlE Hybrid

56

Figure 4.7: Effect of number of nodes on cluster formation time

Figure 4.7 shows the Effect of number of nodes on cluster formation time.

 In CBSC Algorithm, cluster formation time will be increased by the increase of the
number of nodes, due to cluster head suitability metric calculation time for all nodes.

In SCalE Algorithm, cluster formation time will take long because of the large number of
messages exchanged between nodes .

In HSCA Algorithm, cluster formation will be as fast as possible, this is due to the
increase in the size of the cluster and the density of the distribution of nodes, Once the
cluster formation packet arrives, the cluster is formed.

 Effect of cluster range:

This section shows the results from our simulation experiments when varying the cluster
range, between 80m ,150m, 200m and 250 m.

0

0.5

1

1.5

2

2.5

3

3.5

100 200 450 560

Cl
us

te
r

Fo
rm

at
io

n
Ti

m
e

(s
ec

on
d)

Nodes Number(vehicle)

cluster formation time

CBSC SCAlE Hybrid

57

Figure 4.8: Effect of cluster range on CH Life Time

Figure 4.9: Effect of cluster range on CM Life Time

Figure 4.8 and 4.9 show the Effect of cluster range on CH life time and CM life time
respectively.

 In CBSC Algorithm, an increase in the cluster range leads to an increase of cluster head
life time and Cluster member life time, this is due to the increase in number of nodes that
covered by cluster.

0

1

2

3

4

5

6

80 150 200 250

CH
 L

ife
 T

im
e

(s
ec

on
d)

Cluster range (meter)

CH Life Time

CBSC SCAlE Hybrid

0

1

2

3

4

5

6

7

80 150 200 250

CM
 L

ife
 T

im
e

(s
ec

on
d)

Cluster range (meter)

CM Life Time

CBSC SCAlE Hybrid

58

In SCalE Algorithm, increasing cluster range cause less cluster head and cluster member
life time, because the centers of the clusters, represented by the coordinates of the cluster
header's position, quickly change, so there will be a large number of cluster head and
cluster members state changes.

As for HSCA Algorithm, any increase of cluster range means wide coverage area, which
will be more useful to increase cluster head and member’s life time.

Figure 4.10: Effect of cluster range on average cluster head changes

In CBSC Algorithm, an increase in the cluster range leads to an increase in number of
nodes that covered by cluster, and will stay for as long as possible at this cluster, which
means less cluster head changes.

In SCalE Algorithm, increasing cluster range cause large number of cluster head changes
will because none fixed cluster’s centers.

In HSCA Algorithm, any increase of cluster range means wide coverage area of nodes, so
less cluster head changes.

0

2

4

6

8

10

12

80 150 200 250

Av
er

ag
e

Cl
us

te
r H

ea
d

Ch
an

ge
s

(t
im

es
)

Cluster range(meter)

Average Cluster Head Changes

CBSC SCAlE Hybrid

59

Figure 4.11: Effect of cluster range on average cluster head changes

As Figure 4.11 shows:

In CBSC Algorithm, an increase in the cluster range leads to more stable in cluster
connections and less packet loss.

In SCalE Algorithm, increasing cluster range means less cluster head and cluster member
life time, so, high packet loss.

 In HSCA Algorithm, any increase of cluster range means more stable in network and
minimal packet loss.

0

2

4

6

8

10

12

14

100 200 450 250

To
ta

l P
ac

ke
t L

os
s(

pa
ck

et
)

Cluster Range (meter)

Packet Loss

CBSC SCAlE Hybrid

60

Figure 4.12: Effect of cluster range on average cluster formation time

In CBSC Algorithm, Large cluster range means more and more nodes with the same
cluster, so more calculation and cluster formation time.

In SCalE Algorithm, any loss of connection means more time to cluster formation or
maintenance, Large number of packet should be waited before cluster formation.

In HSCA Algorithm, once the cluster formation packet arrives, the cluster is formed .

 Effect of mobility speed:

This section shows the results from our simulation experiments when varying the vehicles
mobility speed, between 5km/s ,15km/s, 20km/s and 30 km/s.

0

0.5

1

1.5

2

2.5

80 150 200 250

Cl
us

te
r f

or
m

at
io

n
tim

e
(s

ec
on

d)

Cluster range (meter)

cluster formation time

CBSC SCAlE Hybrid

61

Figure 4.13: Effect of mobility speed on CH Life Time

Figure 4.14: Effect of mobility speed on CM Life Time

Figures 4.13 and 4.14 show the Effect of mobility speed on CH Life Time and CM life time
respectively.

0

1

2

3

4

5

6

7

8

9

5 15 20 30

CH
 li

fe
 ti

m
 (s

ec
on

d)

Vehicles speed (km/s)

CH Life Time

CBSC SCAlE Hybrid

0

1

2

3

4

5

6

7

8

5 15 20 30

CM
 li

fe
 ti

m
e(

se
co

nd
)

Vehicles speed (km/s)

CM Life Time

CBSC SCAlE Hybrid

62

In CBSC Algorithm, as shown at this figure, the Varity of speed will decrease cluster head
and cluster member’s life time, because it will leave its cluster after shortest time due to its
high speed.

In SCalE algorithm, any increase in mobility speed will cause less stability in cluster, less
cluster head and members life time, each node will move far and far from other node
(cluster head or member.

In HSCA, For the same reason in CBSC algorithm, high speed cause quick departure
from the cluster, but it will stay at cluster as long as it’s at cluster range, so cluster head
and member life time dependent on cluster range when nodes move with high speed.

Figure 4.15: Effect of mobility speed on CH changes Life Time

In CBSC Algorithm, as shown at this figure, the Varity of speed will decrease cluster head
and cluster member’s life time, so will cause more number of cluster head changes.

In SCalE algorithm, as shown in figure 4.15, any increase in mobility speed will cause
less stability in cluster, and more cluster head changes.

In HSCA Algorithm, the number of cluster head changes dependent on cluster range.

0

1

2

3

4

5

6

7

8

9

5 15 20 30

Av
er

ag
e

Cl
us

te
r H

ea
d

Ch
an

ge
s

(t
im

es
)

Vehicles speed(km/s)

Average Cluster Head Changes

CBSC SCAlE Hybrid

63

Figure 4.16: Effect of mobility speed on Packet Loss

In CBSC and HSCA, the packet loss rate dependent on cluster range, so at high speed,
large cluster range means less packet loss and vice versa.

In SCalE, high speed means high packet loss rate and connection failures.

Figure 4.17: Effect of mobility speed on cluster formation time

0
1
2
3
4
5
6
7
8
9

10

5 15 20 30

To
ta

l P
ac

ke
t L

os
s(

pa
ck

et
)

Vehicles speed(km/s)

Packet Loss

CBSC SCAlE Hybrid

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.7

5 15 20 30

Cl
us

te
r F

or
m

at
io

n
Ti

m
e

(s
ec

on
d)

Vehicles speed (km/s)

cluster formation time

CBSC SCAlE Hybrid

64

As shown at above figure, the Varity of speed does not have any effect on cluster formation
time at any algorithm.

 Effect of mobility speed randomization:

This section shows the results from our simulation experiments when the vehicles mobility
speed is random speed between 1km/s and 50km/s.

In this experiment, we fixed the number of nodes at 250 nodes, the cluster range was 150
meters, and the speed was random for each vehicle. The results were the following:

Figure 4.18: Effect of random mobility speed on CH Life Time

0

0.5

1

1.5

2

2.5

3

3.5

1-20 1-40 1-60

CH
 L

ife
 T

im
e(

se
co

nd
)

Random vehicle speed range(km/s)

CH Life Time

CBSC SCalE HSCA

65

Figure 4.19: Effect of random mobility speed on CM Life Time

Figures 4.18 and 4.19 show the Effect of random mobility speed on CH Life Time and CM
life time respectively.

In CBSC Algorithm, as shown at this figure, the random of speed will random cluster head
and cluster member’s life time, because it will leave its cluster after random time.

In SCalE algorithm, any change in mobility speed will cause change stability in cluster,
less cluster head and members life time.
In HSCA, For the same reason in CBSC algorithm, random speed cause random
departure from the cluster, but it will stay at cluster as long as it’s at cluster range, so
cluster head and member life time dependent on cluster range when nodes move with
random speed.

0

0.5

1

1.5

2

2.5

3

1-20 1-40 1-60

CM
 L

ife
 T

im
e(

se
co

nd
)

Random vehicle speed range(km/s)

CM Life Time

CBSC SCalE HSCA

66

Figure 4.20: Effect of random mobility speed on CH changes

In CBSC Algorithm, as shown at this figure, the random of speed will random cluster head
and cluster member’s life time, so will cause random number of cluster head changes. In
SCalE algorithm, as shown in figure 4.20, any change in mobility speed will cause less
stability in cluster, and random cluster head changes. In HSCA Algorithm, the number of
cluster head changes dependent on cluster range.

0

5

10

15

20

25

30

35

40

45

1-20 1-40 1-60

Av
er

ag
e

Cl
us

te
r H

ea
d

Ch
an

ge
s(

tim
es

)

Random vehicle speed range(km/s)

Average Cluster Head Changes

CBSC SCalE HSCA

0

10

20

30

40

50

60

70

80

1-20 1-40 1-60

Pa
ck

et
 L

os
s(

pa
ck

et
)

Random vehicle speed range(km/s)

Packet Loss

CBSC SCalE HSCA

67

Figure 4.21: Effect of random mobility speed on Packet Loss

In CBSC and HSCA, the packet loss rate dependent on cluster range, so at high speed,
large cluster range means less packet loss and vice versa.

In SCalE, random speed means random packet loss rate and connection failures.

Figure 4.22: Effect of mobility speed on cluster formation time

As shown at Figure 4.22, the random of speed does not have any effect on cluster formation
time at any algorithm.

Simulation summary:

From previous experiments, we conclude that any change in the number of vehicles directly
affects the results of the algorithm. As the number of vehicles increases, there is a need to
cover a larger number of vehicles at varying speeds, in addition to the fact that the area
covered by the Wi-Fi communication signal is relatively small given the distances it travels.
Vehicles. Therefore, it can be said that in order for stability to be achieved, the speed limits
of the vehicles must be restricted so that they remain close to each other and within the
cluster range for the largest possible period.

The main factor in increasing the stability of the network is the restricted speed and cluster
range.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1-20 1-40 1-60

cl
us

te
r f

or
m

at
io

n
tim

e
(s

ec
on

d)

Random vehicle speed range(km/s)

Cluster formation time

CBSC SCalE HSCA

68

 The percentage of improvement in each case can be calculated through the following
equation: % Optimization in HSCA=(((HSCA-CBSC)/CBSC)*100).

Each of the values can be obtained through the graphs shown previously, and the following
are some improvement percentages:

The percentage of improvement in the new algorithm (HSCA) in terms of CH life time
compared to the previous two algorithms (CBSC and SCalE)in the case of changing the
number of nodes was as follows:

Table 4.3 (The percentage of improvement in the new algorithm (HSCA))

of nodes CBSC SCalE HSCA %HSCA Vs. CBSC %HSCA Vs. SCalE
100 5 2.95 6.43 28.6% 117.9%
200 4.85 2.56 6.47 33.4% 152%
450 4.96 2.67 7.12 43.54% 166.7%
560 5.1 2 9 76% 350%

Average improvement percentage=sum of improvement percentages in each case/4 .

 Based on the experiments that were conducted, it was found that the proposed
algorithm (HSCA) was able to outperform its counterparts (SCalE and CBSC) in the
improvement rate. It was able to outperform SCALE in all cases that were tested with a
high percentage, and it was also able to outperform the CBSC algorithm in most scenarios,
and we clarified Reasons why it is not superior in some scenarios.

 The proposed algorithm achieved an improvement rate of 45% in terms of CH life time
compared to CBSC when changing the number of nodes, and 196% compared to SCALE.

 Likewise, in CM life time, HSCA achieved an improvement of 89% compared to
CBSC and 230% improvement compared to SCALE. When implementing the scenario of
changing the number of nodes and knowing the impact of this on the time required to form
a cluster, the HSCA algorithm achieved a better improvement compared to CBSC and
SCALE by 22% and 46.46.85%, respectively. The proposed algorithm was able to
outperform SCALE in terms of CH and CM life time under the cluster range change, while
the results were close to CBSC, where the improvement rate was 117% and 19%,
respectively. The same was true for CM life time, where the percentage was 57% and 2.9%,
respectively. While the effect of mobility speed was remarkable, the proposed algorithm
achieved an improvement of 187% compared to SCale in terms of CH life time and 116%
in terms of CH life time.

69

Chapter 5

Conclusion and Future Work
This chapter concluded our work on the thesis in Section 5.1. Section 5.2 highlights

opportunities for further study.

With the great development in applications supported by (VANETs) and the
contributions it has made in the field of driver's assistance, traffic efficiency and road
safety and others .The issue of the stability of these networks remains one of the work
priorities for the development of these networks. According to the algorithms reviewed,
the hybrid algorithm can be relied upon this process. There will be no interruption in
communications, a short delay time in sending and receiving packets, and long-life time of
cluster members.

The behavior of vehicles on the roads is of great importance in the classification
process. By observing this behavior, it is possible to reach a data transfer control model
that guarantees its arrival at the lowest possible time and cost.

Comparing the simulation results that were presented in the previous chapter, we find
that the quality of the clustering is directly proportional to the range of the cluster.
Therefore, to obtain a better performance of the proposed algorithm, the cluster range
should be chosen as the largest range that is close to the data transmission range allowed
by Wi-Fi connections. As for mobility speed, it is inversely proportional to the criteria for
evaluating the quality of the proposed algorithm, so to obtain the desired results from this
algorithm, the speed must be small as possible. Cluster formation time can be simply
reducing by decrease the number of simulation nodes.

There are cases and scenarios in which a number of vehicles that may be the cluster
header leave the road, thus interrupting communication between the vehicles and the base
station.

Given the presence of technologies for obtaining location and direction, such as GPS
and the Internet, which are equipped with most network vehicles, we proposed the
improvement, given that there is no additional cost, as all the technologies required for this
improvement are already present in the vehicles.

In the future, there are so many enhancements we can do to evolve the hybrid algorithm
performance, and it is as follows:

 Linking between the clusters through get ways to facilitate the movement of
vehicles between the clusters.

70

 Adding improvements to routing protocols, such as "AODV" to ensure that packets
are delivered in an almost real time, and therefore higher accuracy in the algorithm
results and shorter cluster formation time.

71

References
[1] X. Cheng and B. Huang, ‘A Center-Based Secure and Stable Clustering Algorithm for

VANETs on Highways’, Wireless Communications and Mobile Computing, vol. 2019,
pp. 1–10, 01 2019.

[2] M. Talib, A. Hassan, Z. Abas, A. Mohammed, and T. Abbas, ‘A Center-Based Stable
Evolving Clustering Algorithm with Grid Partitioning and Extended Mobility Features
for VANETs’, 09 2020.

[3] H.-W. Tseng, R.-Y. Wu, and C.-W. Lo, ‘A stable clustering algorithm using the traffic
regularity of buses in urban VANET scenarios’, Wireless Networks, vol. 26, 05 2020.

[4] M. Talib, A. Hassan, B. Hussin, Z. Abas, Z. Talib, and Z. Sabah, ‘A Novel Stable
Clustering Approach based on Gaussian Distribution and Relative Velocity in VANETs’,
International Journal of Advanced Computer Science and Applications, vol. 9, 05 2018.

[5] G. Liu, N. Qi, J. Chen, C. Dong, and Z. Huang, ‘Enhancing clustering stability in
VANET: A spectral clustering-based approach’, China Communications, vol. 17, pp.
140–151, 2020.

[6] G. Rossi, Z. Fan, W. H. Chin, and K. Leung, ‘Stable Clustering for Ad-hoc Vehicle
Networking’, 03 2017, pp. 1–6.

[7] ‘IEEE Standard for Information Technology - Telecommunications and information
exchange between systems - Local and Metropolitan networks - Specific requirements -
Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
specifications: Higher Speed Physical Layer (PHY) Extension in the 2.4 GHz band’,
IEEE Std 802. 11b-1999, pp. 1–96, 2000.

[8] ‘Evolution of 802.11 (physical layer)’. [Online]. Available:
https://www.okob.net/texts/mydocuments/80211physlayer/.

[9] X. Cheng and B. Huang, ‘A Center-Based Secure and Stable Clustering Algorithm for
VANETs on Highways’, Wireless Communications and Mobile Computing, vol. 2019,
pp. 1–10, 01 2019.

[10] G. Rossi, Z. Fan, W. H. Chin, and K. Leung, ‘Stable Clustering for Ad-hoc Vehicle
Networking’, 03 2017, pp. 1–6.

[11] ‘SUMO at a Glance - SUMO Documentation’. [Online]. Available:
https://sumo.dlr.de/docs/SUMO_at_a_Glance.html.

[12] E, ‘Simulation of Urban MObility’, 29-Jun-2023. [Online]. Available:
http://sourceforge.net/apps/mediawiki/sumo/index.php?title=Main_Page.

[13] ‘ns-3Tutorial---Tutorial’.[Online].Available:
https://www.nsnam.org/docs/tutorial/html/index.html.

[14] E, ‘Simulation of Urban MObility’, 29-Jun-2023. [Online]. Available:
http://sourceforge.net/apps/mediawiki/sumo/index.php?title=Tools/TraceExporte.

[15] O. Baradia and L. Jalalaltamimi, "Stable Clustering Algorithms for VANETs: A Survey,"
2023 International Conference on Information Technology (ICIT), Amman, Jordan,
2023, pp. 637-642, doi: 10.1109/ICIT58056.2023.10226088.

[16] D. Kakan and Rayamajhi, Anjan & C. Mashrur. ‘Vehicle-to-vehicle (V2V) and vehicle-
to-infrastructure (V2I) communication in a heterogeneous wireless network –

72

Performance evaluation ‘, Transportation Research Part C: Emerging Technologies. 68.
168-184. 10.1016/j.trc.2016.03.008.

[17] J. Y. Yu and P. H. J. Chong, "A survey of clustering schemes for mobile Ad-hoc networks,"
in IEEE Communications Surveys & Tutorials, vol. 7, no. 1, pp. 32-48, First Qtr. 2005, doi:
10.1109/COMST.2005.1423333.

[18] Singh, A., Kumar, M., Rishi, R., Madan, D.K. "A Relative Study of MANET and VANET:
Its Applications, Broadcasting Approaches and Challenging Issues." In: Meghanathan, N.,
Kaushik, B.K., Nagamalai, D. (eds) Advances in Networks and Communications. CCSIT
2011. Communications in Computer and Information Science, vol 132. Springer, Berlin,
Heidelberg. https://doi.org/10.1007/978-3-642-17878-8_63

73

Appendix
These attachments were mentioned throughout this thesis. They were arranged from 1 to
5 based on what was mentioned during the thesis.
Appendix 1.A
void DoSomething (double x, double y)
{
std::cout << Now().GetSeconds() << " : x=" << x << " y=" << y << std::endl;
}
int main (int args, char* argv[])
{
Simulator::Schedule (Seconds (3), &DoSomething, x, y);
...
}

Appendix 1.B
void PrintTheTime ()
{
std::cout << "Simulation time is: " << Now().GetSeconds() << std::endl;
//Schedule the next call after 1 second from now.
Simulator::Schedule (Seconds (1), &PrintTheTime);
}
...
int main (int args, char* argv[])
{
...
//schedule the first call after 1 second from the start of the simulation
Simulator::Schedule (Seconds (1), &PrintTheTime);
...
}

Appendix 2.A
Ptr<Node> some_node = CreateObject <Node> ();

Appendix 2.B
NodeContainer nodes;
nodes.Create (4); //Creates 4 nodes
Ptr<Node> n0 = nodes.Get (0); //pointer to node 0

Appendix 2.C
//Create a zero-payload packet
Ptr <Packet> p1 = Create <Packet> ();
//Create a packet with a payload of size 100 bytes (all zeros)
Ptr <Packet> p2 = Create <Packet> (100);

74

Appendix 3.A
//NodeList is a global list of all simulation nodes.
Ptr<Node> node = NodeList::GetNode (0);
for (uint32_t i=0; i<node->GetNDevices(); i++)
{
NetDevice dev = node->GetDevice (i);
if (dev->GetInstanceTypeId() == WifiNetDevice::GetTypeId())
{
Ptr<WifiNetDevice> wifi_dev = DynamicCast <WifiNetDevice> (dev);

}
else if (dev->GetInstanceTypeId() == CsmaNetDevice::GetTypeId())
{
Ptr<CsmaNetDevice> wifi_dev = DynamicCast <CsmaNetDevice> (dev);
//Maybe do something with it.
}
}

Appendix 3.B
ApplicationContainer apps = //some code;
Ptr<UdpEchoServer> server0 = DynamicCast <UdpEchoServer> (apps.Get(0));

Appendix 4.A
Ptr <ClassOne> obj_one = CreateObject <ClassOne> ();
Ptr <ClassTwo> obj_two = CreateObject <ClassTwo> ();
obj_one->AggregateObject (obj_two); //Now the two objects are associated
//...
Ptr <ClassTwo> s1 = obj_one->GetObject <ClassTwo> (); //s1 points to the same address as obj_two
Ptr <ClassOne> s2 = obj_two->GetObject <ClassOne> (); //s1 points to the same address as obj_one
//The following will cause a runtime error because you cannot aggregate two objects of the same type
Ptr <ClassTwo> tmp_two = CreateObject <ClassTwo> ();
obj_one->AggregateObject (tmp_two); // error!

Appendix 4.B
#include "ns3/mobility-module.h"
NodeContainer nodes;
nodes.Create (4);
MobilityHelper mob;
mob.SetMobilityModel ("ns3::ConstantPositionMobilityModel"); //stationary nodes
mob.Install (nodes); // Perform aggregation between every Node and ConstantPositionMobilityModel
//So far, all nodes are positioned at 0,0,0. Let's change the position of node 0
Ptr <Node> n0 = nodes.Get (0);
//the following works because MobilityModel is a subclass of ConstantPositionMobilityModel
Ptr <MobilityModel> mob_n0 = n0->GetObject <MobilityModel> ();
Vector previous_pos = mob_n0->GetPosition ();
//Set the position to 10,15,0. The unit is meters
mob_n0->SetPosition (Vector (10,15,0));
std::cout << "Node was at " << previous_pos << " now in " << mob_n0->GetPosition () << std::endl;

75

Appendix 5.A
<algorithm name>_main.cc: Which contains the call of the main function. During the execution of the
program, it is designed to accept at least four arguments with a certain order:
a)traceFile : the name of the file that contains the simulation details and has been produced with the
TraceExporter (the SUMO’s extension that was described previously).
b)nodeNum :number of nodes that participate in the simulation.
c)duration : the period of times that the simulation lasts.
logFile : the name of the simulation log file.

Appendix 5.B
•node-movements.h and node-movements.cc: These two files implement the class "NodeMovement" which
represents the structure of details read from the input simulation file that is declared by the user. Each node
keeps its nodeID, its position (int x, int y), its behavior, and its velocity (which is the total velocity on the x
and y axes).
•custom-mobility-helper.h and custom-mobility-helper.cc: These two files implement the class
"CustomMobilityHelper" which parse the input simulation file that is declared by the user and assigns
extracted information to its related nodes.
v2v-control-client-helper.h and v2v-control-client-helper.cc: These two files implement the class
"V2VControlClientHelper" which installs algorithms application script on the network nodes and pass
parameters from the main program

