Palestine Polytechnic University
College of IT and Computer Engineering

Department of Computer Engineering

Kinect based Teleoperation of a Humanoid Robot

Supervisor

Dr. Hashem Tamimi

Team Members
Mohannad Albustaniji
Eid Sonkrot
Huthaifa Rabae

2023-2024

Abstract

Teleoperation of robots has become increasingly important in a wide range of industries and
applications, from manufacturing and logistics to medicine and disaster response. The ability to remotely
control robots to perform complex tasks can significantly improve efficiency and safety, particularly in
hazardous or hard-to-reach environments. The goal of this project is to develop a teleoperation system that
can accurately replicate human movements using a Kinect sensor and a Nao robot. The system utilizes

inverse kinematics to enable the robot to mimic human movements.

Specifically, the system will leverage the Microsoft Kinect V2 sensor to capture 3D skeletal joint data
in real time, which will be processed and used to control the movements of the Nao robot. Choosing Kinect
v2 over image processing to extract human skeleton offers the benefits of dedicated depth sensing, accuracy,

and ease of integration.

We investigated two approaches to translate the human poses into the corresponding command on the
robot joint. The first one is based on Deep Learnings and the second one is based on inverse kinematics. In
the implementation, we decided to proceed with the second approach due to the time required to complete
the graduation project. The Inverse Kinematics approach works on a chain level such that each Kinect
skeleton chain is converted into Nao body chain. We work on 3 main chains in this project; head, arm and

leg.

As the result, we were able to make the Nao robot imitate human in many poses and situations. Success
was greater in individual chain movements than in complex movements and poses just as walking, mermaid

and seated, with small errors in terms of centimeters,

Acknowledgment

In the name of “Allah”, the Most Gracious, the Most Merciful, we praise and thank Allah for all the

blessings. Praise be to “Allah”, who gave us the knowledge, effort, and patience to complete this project.

First, we would like to thank our families, our mothers, fathers and brothers, who are our first supporters.
We thank our distinguished teachers who did not spare us any information or advice and did not hesitate to
answer our questions. We especially mention the supervisor of our project, Dr. Hashem Al-Tamimi, who
was with us in all stages of the project and made an effort to take great in choosing the best options to

achieve the project goals. We thank our colleagues who strengthened the spirit of competition within us.

Finally, thanks to Palestine Polytechnic University and all its employees, administrators and academics

for what they have provided and continue to provide in developing this lofty scientific edifice.

Contents

Chapter 1: INEOAUCTION ...eiiuiiiiiitic ettt e bt et e e e s e e 8
1.1 Project D@SCTIPTION ...vveeiiiieiiiiieiiee etttk a e et e ek e e e b e e n s e e eennn e e e 8
| 51531 1SS 1A PP R PP PUTRPTUPPPTTPPRI 9
1.3 REPOTE OULINE ...ttt ettt e ekt e et e e b e e e s e e nnnee e 10

Chapter 2: BacK@rOUNAcoooiiiiiiiieiic e 11
B B X 4 TS TP TP PP P PP PPPTR TP 11
2.2 Hardware back@IrOUNA..........ovviiiiiii e 11

2.2.1 HumManoid robOt (INAO)coiuvieieeiiiiee et e e e e e s 11
2.2.2 MICTOSOTE KINECE V2 ittt e e e e e et e e e e e e s e e bbb eeeeas 14
2.2.3 Microcontroller (Latte panda Intel Cherry Trail Z8350).......cccoiiiiiiiiiiiiiiee e 15
2.3 Software BaCKGIrOUNAc.vviiiiiiiiie e 18
2.3.1 Programming LanGUAZESceeiiiiiiiiiiiiiiiiiiieeeessssiiisseeee e e e s s s sibbsreeaa e e e e s s s sbbbbr e e e e e e e e s s nnnbbbbeeeaeeas 18
2.3.2 SIMUIALOT L.t 18
2.4 Algorithms and theoretical background...............ouuviiiiiiiiiiiiiii e 19
2.4.1 Inverse KINEMATICScccuuiiiiiiiiiiiie it 19
2.4.2 Deep Reinforcement ICarNINgooiiuviiiiiiiiieiiiiiiiiiii et e e e e ee e 22
243 DDPG ..ot 24
2.5 LItETAtUIE REVIEWiiiiiiiiiiiiii ettt ettt e ekt e e et e e e e bbb e e e e s nb b e e e e anbb e e e e s nnnne s 26
I 1110110 1S) o TP PP TR P TP PPPTRTTRTO 28

Chapter 3: SySteIM DESIZI ..ceeiiiiiiieeiiiii i e et e e e e e e s as 29
3.1 REQUITEIMENESee ettt e e ettt e ettt ettt ettt e ettt e e e ekt e e ookt e e e e kbt e e e e bbbt e e e e am bbb e e e e anbbe e e e e antbeaeeaas 29
3.2 HArdWare d@SIZMueeieiieiiiiee ittt e ettt ettt e e ekttt e e ekt e e e e ekt b e e e e s sbb e e e e e anbb e e e e e annreeeeans 30

3.2.1 SYSTEIM OVETVIEW ...uiteiieeiiiiiie e sttt e e ettt e e et e et e e e s bt e e e e e sttt e e e e st bt e e e e am b bt e e e e as bbb e e e e anbbe e e e e annbeeeeeannes 30
3.2.2 BIOCK QIAZTAIMN ...eiiiieiie ettt e e et e e st e e e et e e e e e e nnes 31

3.2.3 System PSEUAO COAES......cciuiiiiiiiiiiiieiiiie ettt 31

3.3 SysStem SOTEWAIE AESIZN....cciuviiiiiiiiiiiie it 33
3.3.1 INVETSE KINEIMALICS ...vvteiiiiieiieeiiieie e e ettt e e ettt e ettt e e e ettt e e e ettt e e e e asb bt e e e anbb e e e e e anbbe e e e e ansbneaeeannes 33
3.3, 2 DALASEL ...ttt e e e e e ettt e e e e e e e b b e et e e e e e e e e bbb e e e e e e eeeanns 34
3.3.3 INQUIAL NETWOTK ...ttt e et e e e et b e e e s et e e e s anbbe e e e e anees 36

34 SUIMIMATY .+ttt e e et e e e e et e e ekt e e e e R e e e e e e st e e e a et e e s e e e 38

Chapter 4: ImpPlementationcooiiiiiiiiiiiiii e e e e e 39

I 0218 (00 10T (0) s AP PO T TP PP PP TPPTPTPTON 39

O & 3 (A LN 1< | o PP 39

4.3 Software ConfIGUIATIONuvviiiiiiii e e e e e e e s s 41
4.3.1 Installing the required SOTWATEcoooiiiiiiiie e 42
4.3.2 Setting up the development ENVIFONMENToeviiiiiriiiiiiiei e 45
4.3.3 System Software Interconnection Implementationcccceevviviriiiiiiiie e 46
4.3.4 Inverse kinematics Implementationooeiiiiiiiiiiiiiiie e 49
4.3.5 DDPG Implementation and trainingceeeriiiiiiireeieeeensiiiiiineeeeeeesssssinsseeeeeseesssssssssseeeees 52

T Oy ;1 1 1<) 1 Lo OO PP PP PP PP PUPPPPTON 55

Chapter 5: TeSting and RESUILSiiiiiiiiiiiiiiiiiiie i r e e e e e a e 57

5.1 INEOAUCLION L. 57

5.2 HATAWATE TESTINEZ ...vvvvvtiiiieiiiiiiiiiiieei e e e e e ss ittt e e e e e e s sttt e et e e e e e s s s bbb e et e e e e e e s s s s bbb bt e e e e e e e s s nnbbbbeeneeeas 57

5.3 SOTIWATE T@SLINE ... eeteeiieiiee ettt e e e e e ettt e e e e st e e e et b e e e e e anbe et e e e anbbe e e e s annneeeeeannes 58

54 RESUIES ..ttt et e et e e e et e e e e R R et e e e b r e e e e e ann e e e annes 60
5.4.1 Model training T@SULILScoiiiiiiiiieieii e e 60
5.4.2 Inverse KinematiCs TESUILSueiiiiiiiiie ettt e e e e 61

Chapter 6: Conclusion and fUture WOTKcooiiiiiiiiiii e 65

LT B 00 1 1ed L1 10 TP TP P PP PP POPPPPPTPPPRP 65

0.2 FULUIE WOTK ...ttt ettt e e e ekttt e e et et e e s e st bt e e e e anb b e e e e e antneaeeeas 65

List of Figures

Figure 2-1 N0 COMPOMNEINLSvveiiiiiieiiiiieiiit ettt ettt e et e st e e e bt e e bt e e bn e e e snb e e e snb e e e anneeens 13
FIUIE 2-2 INAO JOINESeteiieii ettt ettt e et e e bt e e bt e e e e et e eennnee e 14
Figure 2-3 MiCTOSOft KINECLeiiiiiiiiiiiiiiiii et 15
Figure 2-4 Latte Panda intel cherry trail Z8350 COMPONENLSvvverivireriiieiiiieiiiee e 17
Figure 2-5 KiNECt SKEIBTOM.oiiiiiiiii i 19
Figure 2-6 Joints With ANEIESc.oiiiiiiii s 20
Figure 2-7 Deep Reinforcement Learning............ooooiiriiiiiiiiiiio e 23
Figure 2-8 Deep Neural NetWOTKoooiiiiiiiii e 24
Figure 3-1 SysStem DIaGTAm.......cooiiiiiiiiiiiie e 30
Figure 3-2 System BIock DIa@ramcoooiiiiiiiiiiiiiiccoiiee e 31
Figure 3-3 Stretches included in Datasetooooiiiiiiiiiiiii e 35
Figure 3-4 Actor and Critic Networks (RINN)oooiiiiiiiii e 37
Figure 4-1 Kinect INterCONMMECTION .. .uvvviriiieeiiiiiiiiiiiite e e e e e s s sttt e e e e e e s st e e e e e e e e s st b e e e e e e e s e s anbebbbreeeeeas 40
Figure 4-2 HOW t0 @€t NAOS TP ...uiiiiiiiiiiiicieei et e e et eeeas 41
Figure 4-3 WINdOwWs 10 HOMIE.........uuiiiiiiiiiiiiiiiiiiie et e s e e e e e e s eeeas 42
FAGUIE 4-4 WEDOTS TESHINEeiiieiiiiiiiiiiii ittt ettt e e e e e s e e e e e e e e s st bbb et e e e e e e s s e bbbt b e e eaeeas 43
FAgUIE 4-5 KINECT SELUD ..vvviiiiiiiiiiiiiiiiiiii ettt e e et e e e e e s s s bbb b et e e e e e e s s et bbb e e aaeeas 43
Figure 4-6 RabbitMQ INStallation.........eeiiiiiiiiiiiiiiiiiiie ettt e e e eeeeas 44
FAgUIE 4-7 CROTEZIAPNE ...vvvviiiiiiiiiiiiie ettt e e e e s s s bbb b et e e e e e e s e e bbb b e e eaeeas 45
Figure 4-8 Body BasiCS-WPE ... 46
Figure 4-9 Training APPIrOACKviiiiiiiii e e 53
Figure 5-1 Kinect v2 glitch (XamPpPle)cooiiiiiiiiiiiiie e 57
Figure 5-2 Choregraphe TESTINGccoiueiiiiiiiiiiee e e et e e et e e e e e e e anneeas 59
FAgUI@ 5-3 PrOJECT TESTINEveeeeeiiiiiie e ettt e ettt ettt e et e e e et e e e e st e e e s ant e e e e e annb e e e e e anrneeas 64

List of Tables

Table 1-1 Project SChEAUIEcociiiiiii e 10
Table 2-1 Literature reViews COMPATISOM.couureeisieeeirreessteeestreestrtestreeatreeasreeasneeessbeeessbeeesnbeeesneeennes 28
Table 5-1 rubric of evaluation CharaCteriStiCS.........uuiiiiiieiiiieriii et 61
Table 5-2 Chain level imitation teSting rESUILSc.eviiiiiiiiiii e 62
Table 5-3 Kinect dataset poses teStING TESULLScuvviiiiiiiiiiii s 63

Chapter 1: Introduction

The development of motion detection mechanisms enhances the development of new applications for
human motion analysis and reproduction. Kinect sensor and humanoid robot are two different technologies
with various trends and applications. We plan to create a new trend with this combination, developing an

interface whose applications will have future implications.

1.1 Project Description

The proposed system is designed to capture human motion data using a Kinect sensor and reproduce
the movements in real-time using NAO robots. The system consists of three main components: the Kinect

sensor, the microcontroller, and the NAO robot.

The Kinect sensor is a device that uses depth sensing technology to capture detailed motion data from
a human performer. Infrared wave is emitted and its reflection is detected by the Kinect sensor from the
environment [7], creating a 3D model of the performer's body. The sensor can track the position and

orientation of the performer's joints, providing information about their movements.

The motion data captured by the Kinect sensor is transmitted to a microcontroller using a wired USB
3.0 cable. The microcontroller processes the data and sends it to the NAO robot, which is equipped with
software that can analyze and reproduce the movements in real-time. The NAO robot is a humanoid robot
developed by Softbank Robotics, designed to mimic human movements and interact with humans in a
natural way. The robot is equipped with sensors and cameras that allow it to perceive its environment and

respond to external stimuli.

The system can be used to capture a wide range of human movements, from simple gestures to complex
dance routines. The NAO robot can reproduce the movements in real-time, allowing for immediate feedback

and analysis [8].

file:///C:/Users/mosaa/Downloads/Graduation%20Project.docx%23seven

Overall, the proposed system offers a cost-effective and efficient solution for capturing and analyzing
human motion data. The combination of the Kinect sensor and the NAO robot provides a flexible and
versatile platform for real-time reproduction of motion data, with potential applications in a wide range of

industries.

1.2 Benefits

1. To deliver an affordable and efficient method for capturing and analyzing human motion data
utilizing the Kinect sensor and NAO robot.

2. To foster the development of innovative applications in areas like physical therapy, sports training,
and entertainment, focusing on human motion analysis and replication.

3. To bolster research in human-computer interaction by offering a dynamic and adaptable platform to
explore interactions between humans and robots.

4. To enhance the application of robotics and Al in educational settings, providing practical learning

opportunities for students and researchers in robotics and computer science.

1.3 Report outline

Week 1 start from 1 Sep

Task/Week

QA plan

Project plan

Plan review

Project analysis

Requirements

Project design &

implementation
Testing

Documentation

Table 1-1 Project Schedule

10

Chapter 2: Background

2.1 Overview

This chapter serves as an introductory overview of the essential components and theoretical foundations
that shape our project. We will start by delving into the theoretical background, emphasizing recent
advancements in trigonometric equations and mathematical modeling.

Our project heavily relies on these mathematical principles, and a comprehensive grasp of their
fundamentals is imperative for its successful execution. Specifically, we will delve into the latest algorithms
and techniques in mathematical modeling, essential for empowering our teleoperation system to function
with precision and intricacy. This chapter aims to furnish readers with a solid understanding of the
fundamental concepts and methodologies employed in our project, laying the groundwork for a more

detailed exploration of our system in subsequent chapters

2.2 Hardware background

2.2.1 Humanoid robot (Nao)

NAO is a versatile humanoid robot created by SoftBank Robotics. NAO has become a benchmark in
the world of research and education with its advanced sensors and interactive capabilities, NAO can
adapt to any environment and interact with people in a natural way. It is fully programmable and
customizable, making it possible to create application solutions that enable it to perform tasks in

different areas based on all of his capabilities, including dialogue and motion [19].
Nao hardware specifications:

1. Dimensions:
o Height: 58 cm (22.8 inches)
e Width: 27 cm (10.6 inches)
o Depth: 22 cm (8.7 inches)
o Weight: Approximately 4.3 kg (9.5 Ibs.)
11

. Processing Unit:

e Intel Atom Z530 Processor (1.6 GHz)

. Memory:

e 1 GBDDR2 RAM
Storage:
e 2 GB Flash Memory
Sensors:
e Two HD cameras (resolution: 1280x960 pixels)
o Ultrasonic sensors for obstacle detection
o Touch sensors on the head, hands, and feet
e Inertial measurement unit (accelerometer and gyro-meter)
e 4 Microphones for sound localization and voice recognition
Connectivity:
e Wi-Fi (IEEE 802.11 b/g)
o Ethernet port (100 Mbps)
e USB 2.0 port

. Power:

o Battery: Lithium-ion battery

o Battery capacity: 4800 mAh with approximately 60-90 minutes of continuous operation

e Charging Time: Approximately 90 minutes
Operating System:
e Aldebaran NAOqi OS (based on Linux)

. Actuators:

e 25 Degrees of Freedom (DOFs) for joint movement

e Electric motors for actuation, including head, arms, hands, legs, and feet

10. Additional Features:

e Text-to-speech synthesis
e Voice and sound recognition

o LED lights for visual feedback

e Speaker for audio output

12

Figure 2.1, shows Nao Components:

Microphones (x4):
NAO detects the origin of sounds
and understands what you say.

Tactile sensors:
Menu to interact non-verbally with NAO

Speakers (x2):
NAO talks, prompts,
shares his story, plays music...

Eyeleds:

NAO uses color code to express
emotions and even play edutaining
color games with your children!

Battery:
NAO is free to navigate without being
connected to a power source.

Cameras (x2):
NAO recognizes pre-recorded faces,
pictures , reads books, imitates.

Prehensile hands with sensors:
To grasp small items and to work on
object exchange and turn-taking

Sonars (x4):
NAO detects whether something
stands closely in front of him.

Wifi Connection:
NAO can use information
from the web

Foot bumpers:
Another way to interact with NAO.

Figure 2-1 Nao Components [19]

13

The following image (Figure 2.2) explain Nao joints names, Field of motion and Direction

2.2.2 Microsoft Kinect v2

Kinect v2 is a depth-sensing camera developed by Microsoft, primarily used for capturing skeletal joint
data and depth information by a set of sensors shown in Figure 2.3. It offers an enhanced user experience
in motion tracking, gesture recognition, and 3D depth sensing. The operation principle of Kinect v2 is ToF

(Time-of-Flight) with modulation up to 130MHz, acquisition rate = 30Hz. In this section, we will explore

HeadPitch
RShoulderRoll
RShoulderPitch
REIbowRoll
REIbow Yaw

RHipYawPitch
RHipPitch
RHipRoll
RKneePitch
RAnklePitch
RAnkleRoll

_\')\ Y’i

Figure 2-2 Nao Joints [28]

the main components that Kinect works with [22][23].

1.

Depth Sensing: Kinect v2 utilizes an infrared depth sensor that captures the depth information of
the surrounding environment. It can measure the distance between the sensor and objects in its field
of view. It provides a depth resolution of up to 512x424 pixels, Field of view (H=70.6° x V=60°),

depth range (0.5-4.5) m, with ability to capture depth information with sub-millimeter precision

[23].

HeadYaw
LShoulderRoll
LShoulderPitch
LEIbowYaw
LEIbowRoll

LHipYawPitch
LHipPitch
LHipRoll
LKneePitch
LAnklePitch
LAnkleRoll

file:///C:/Users/mosaa/Downloads/Graduation%20Project.docx%23twenty

2. Color Camera: In addition to depth sensing, Kinect v2 is equipped with a high-definition RGB
color camera. It captures color images with a resolution of 1920x1080 pixels, FOV (H=84.1° x
V=53.8°), enhancing the visual fidelity of the captured data [23].

3. Infrared Camera: Kinect v2 includes an infrared (IR) camera that works in tandem with the depth
sensor. It measures the distance between the camera and objects by projecting IR patterns and
analyzing the distortion caused by their interaction with the environment [22].

4. Microphone Array: The device incorporates a built-in microphone array that enables voice
recognition and audio processing. This feature facilitates natural language interaction and voice

commands [23].

IR Emitter Color Sensor IR Depth Sensor
O -0
i .
/‘[\ 1
v
L] PrimeSense Chip

Lo

[Microphone Array]

1p0°

+500 -~ E el se°

Figure 2-3 Microsoft Kinect

2.2.3 Microcontroller (Latte panda Intel Cherry Trail Z8350)

The goal of using a microcontroller is processing data (send, process and delete). At the beginning we
chose Raspberry Pi 4 model B, but we did not continue with it because the architecture of its processor
which is ARM architecture. The problem is the Kinect for Windows SDK, which worked only on x86
architecture, so we looked for a microcontroller whose processor is based on x86. We chose Latte Panda
Intel Cherry Trail Z8350 because it achieved that requirement. A Latte Panda is a complete Windows 10
single board computer. It has everything a regular PC has and can do anything that a regular PC does. It is

15

compatible with almost every gadget like printers, joysticks, cameras and more. Any peripherals that work
on PC will work on a Latte Panda. A Latte Panda comes pre-installed with a full edition of Windows 10

Home edition, so users can run powerful tools such as Visual Studio, NodelJS, Java and more.

Latte panda Specifications [24]

According to [24], the following is the microcontroller specification
1. Processor:
e Intel® Cherry Trail Z8350 Quad Core @ 1.44 GHz
2. Co-processor Arduino integrated:
e ATmega32u4
3. Operation System:
e Windows 10
4. Memory:
e (DFR0418, DFR0444 2GB DDR3L), (DFR0419 4GB DDR3L)
5. Storage Capability:
e (DFR0418, DFR0444 32GB), (DFR0419 64GB)
6. GPU:
e Intel HD Graphics, 12 EUs @ 200-500Mhz, single-channel memory
7. Connectivity:
e USB 3.0 port and two USB 2.0 ports
e Wi-Fi802.11n 2.4G
¢ Bluetooth 4.0
e Supports 100Mbps Ethernet
8. Video output
e HDMI and MIPI-DSI
9. Onboard touch panel overlay connector
10. GPIO: 20 digital IO pins
11. Power:
e 5V/2A Power
12. Dimension of board

e 88mm x 70mm/3.46 x 2.76"

16

13. Packing Size:

e 110mm x 94mm x 30mm/4.33 x 3.70 x 1.18"
14. N.W.: 55¢
15. G.W.: 100g

16. Included:
e Latte Panda 4G/64GB

e WiFiantenna

Figure 2.4 Shows the Latte panda microcontroller components.

CPU GPIO Headers Arduino Pinout

Wi-Fi and Bluetooth 4.0

LAN

Audio Jack

Micro SD

Micro USB Power

Touch Connector Plug and Play Sensor Connectors

Intel® Atom® x5-28350, Quad-Core
1.92GHz CPU, 500MHz GPU

2/4G RAM DDRL3L
32/64GB eMMC

Display Connector

Figure 2-4 Latte Panda intel cherry trail 728350 Components [24]

17

2.3 Software Background

The software component of our project plays a crucial role in processing the data from the Kinect sensor
and controlling the Nao robot's movements. This section provides an overview of the algorithms,

programming languages and frameworks used in the development of our software.

2.3.1 Programming Languages

For our project, we have decided to use Python as the primary programming language (for Inverse
Kinematics and deep learning). Python is a popular language for scientific computing, data analysis, and
artificial intelligence due to its simplicity, readability, and vast library support. Also, we have decided to

use C# to read depth data from Kinect sensor.

2.3.2 Simulator

Webots is a robotics simulation software widely used in both academia and industry for robotics and
machine learning applications. It offers a virtual environment where developers can design, program, and

test their robot models before implementing them in real life [10]. Key features of Webots include:

1. Realistic Physics Simulation: Webots provides a realistic simulation of robot mechanics and
environmental interactions, essential for accurate testing of control algorithms.

2. Versatile Environment Customization: Users can design a variety of custom environments in
Webots, allowing for extensive testing of robot performance under different conditions.

3. Compatibility with Machine Learning Frameworks: Webots supports integration with popular
machine learning platforms like TensorFlow, enabling the development and testing of advanced
robot control algorithms.

4. Open-Source Availability: As an open-source platform, Webots allows for code modifications

and adaptations to fit specific project needs.

18

file:///C:/Users/mosaa/Downloads/Graduation%20Project.docx%23ten

2.4 Algorithms and theoretical background

In this section we will explain the algorithms and theoretical background of Inverse Kinematics and

Machine learning approaches.

2.4.1 Inverse Kinematics

Inverse kinematics refers to the mathematical process of determining the joint parameters that will
position a humanoid robot's limbs in a desired configuration. In the context of both humans and humanoid
robots, inverse kinematics is crucial for planning and controlling movements. It involves calculating the
joint angles or positions as shown in Figure 2.5 required to achieve a specific end-effector position or

orientation. ©® is the angle calculated by Inverse Kinematics approach form joints positions in 3D space

(X,Y,Z).

Figure 2-5 Kinect Skeleton

The given mathematical model comprises a series of computations aimed at explain the angles of

different joints within a robotic framework. These mathematical calculations constitute fundamental

19

elements in teleoperation systems, enabling management of robotic motion. Specifically, the model

delineates the following functionalities:

The explanation provided in Figure 2.6 aims to enhance the clarity of our calculations. By focusing on
the relationship between the three joints: shoulder, elbow, and wrist, we can observe two fixed distances:
the Upper Arm and forearm lengths. Leveraging this fixed aspect, we can construct a triangle utilizing these
lengths alongside other non-fixed distances. Employing inverse trigonometric functions, such as arctan,
allows us to determine the angles at which different motors need to rotate. This approach facilitates a deeper

understanding of the mechanics involved in coordinating the movements of these joints.

77777 Shoulder Joint (x_..V..Z.)

T
62 .°...

- A

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

F Or(narm

Elbow Joint (x_.. V.. Z.) Wrist Joint (x,,.. V... Z,,.)

Figure 2-6 Joints with Angles

1. Shoulder Pitch Computation (Right and Left): These calculations illustrate the pitch

angle of each shoulder, considering their spatial coordinates within a three-dimensional framework.
We determine the pitch motors utilizing both the Elbow and Shoulder joints, as indicated in

Equations (2.1) and (2.2).

20

e Case (Elbowy < Shouldery):

ShoulderPitch(9) = tan™?! ('Elbowy_smuldery|) (2.1)
|[Elbow,—Shoulder,|
e Case(Elbowy>=Shouldery):
ShoulderPitch(6) == — tan™1! ('Elbowz_smulderz') (2.2)
2 |Elbow,,—Shouldery|

2. Shoulder Roll Computation (Right and Left): These computations elucidate the roll angle of each
shoulder. Furthermore, in determining the shoulder roll, we employ both the Pitch of the EIbow and

the Shoulder. These calculations entail a singular case, as demonstrated in Equation (2.3).

(2.3)

ShoulderRoll(#) = tan™? ('E”"’W’C‘Sh"”’d”"')

|[Elbow,—Shoulder,|

3. Elbow Yaw Computation (Right and Left): This facet of the model computes the yaw angle for
each elbow, integrating factors such as the shoulder pitch and the spatial alignment of the elbow
concerning the shoulder, as depicted in Equation (2.4).

|Wrist,—Elbowy|
|Wrist,—Elbow,|

ElbowYaw(0) = —tan™?! () + ShoulderPitch(8) (2.4)

4. Elbow Roll Computation (Right and Left): These calculations ascertain the roll angle for each
elbow, taking into account the positions of the elbow joints alongside other pertinent factors.
Furthermore, the wrist joint is factored into the analysis. We opt to utilize the Shoulder Pitch angle
since the Yaw motors are contingent on Pitch. Although roll could serve as an alternative, Pitch is
favored due to its computational simplicity, particularly considering the complexity of the

calculations. Hence, four Equations (2.5, 2.6, 2.7, and 2.8) are necessary to address these

complexities.
Upper Arm = J(Shaldery - Elbowy)2 + (Sholder, — Elbow,)? + (Sholder, — Elbow,)? (2.5)
Fore Arm = J(Elbowy - Wristy)2 + (Elbow, — Wrist,)? + (Elbow, — Wrist,)? (2.6)
Shoulder_Wirst = J(Shouldery - Wristy)2 + (Shoulder,, — Wrist,)? + (Shoulder, — Wrist,)? (2.7)

21

ElbowRoll(0) = m — cos™ ! (

Upper Arm?+Fore Arm? —Shoulder_Wirstz) (2 8)
2-Upper Arm-Fore Arm .

5. Head Pitch Computation: The pitch angle of the head concerning the neck joint is calculated as
follows: Initially, the vertical distance (y) between the neck and head joints is determined by
subtracting the y-coordinate of the head joint from that of the neck joint, and likewise for the depth
distance (z). Subsequently, the pitch angle (Pitch) is computed using the arctangent function to
ascertain the angle whose tangent corresponds to the ratio of z to y, multiplied by.

This derived angle signifies the pitch angle of the head concerning the neck joint, as demonstrated

in Equation (2.9).

(2.9)

HeadPitch(6) = tan™* (M)

|Heady—Necky|

6. Hip Roll Computation: The roll angle of the hip joint in relation to the knee joint is calculated as
follows: Firstly, the horizontal distance (x) between the hip and knee joints is determined by
subtracting the x-coordinate of the knee joint from that of the hip joint, and similarly for the vertical
distance (y). Next, the angle (angle) is computed using the arctangent function to determine the
angle corresponding to the ratio of x to y. This angle signifies the roll angle of the hip joint

concerning the knee joint, as described in Equation (2.10).

HipRoll(#) = tan~? (M) (2.10)

|Hipy—Kneey|

7. Hip Pitch Computation: We determine the Pitch angle for the Hip by measuring the distance
between the Knee and Ankle along the X-axis and Y-axis, as illustrated in equation (2.11).

HipPitch() = — tan~1 (M) @2.11)

Kneey—Ankle
y y

2.4.2 Deep Reinforcement learning

Deep reinforcement learning (DRL) is a type of machine learning technique that enables agents to learn
how to make decisions in complex environments by trial and error. It combines deep learning and
reinforcement learning, two powerful techniques that have been successful in solving a variety of machine

learning problems [12].

22

Reinforcement learning involves training an agent to make decisions based on feedback received from
its environment as shown in Figure 2.7. The agent learns to take actions that maximize a reward signal,
which is a scalar value that indicates how well the agent is performing its task.

The goal of the agent is to learn a policy, which is mapping from states to actions that maximizes the

expected cumulative reward.

d Agent
State Reward Action
§; r a
‘:‘ Sie1
P, Environment
(a)
Reward r
AgentI Y
&
> I
p7 Controll i .
(‘6 il o Aciog) Epvironment
| Policy @ a
N I
i a5 A I

State §

Figure 2-7 Deep Reinforcement Learning

DRL combines two techniques by using deep neural networks to approximate the value function or

policy of the agent.

The deep neural networks in Figure 2.8 are used to represent the state-action value function, which is
used to select the best action in each state, or the policy function, which is used to directly map states to

actions.

This enables agents to learn from high-dimensional inputs, such as images and sensor readings, and

make decisions in complex and dynamic environments [17].

23

file:///C:/Users/mosaa/Downloads/Graduation%20Project.docx%23seventeen

Input layer : Hidden layers i Output layer

i : h, h, h : 0

e

N VALV

(X O\ /NN /
K

.
.
.
'
.

Input 1
Output 1

Input 2

Output n

Input n

Figure 2-8 Deep Neural network

2.4.3 DDPG

Deep Deterministic Policy Gradient (DDPG) is a reinforcement learning algorithm that combines the
ideas of Deep Learning and Policy Gradients with Q-Learning. The goal of the algorithm is to learn a
deterministic policy, which maps states to actions directly, as opposed to a stochastic policy, which maps
states to probability distributions over actions [14].

DDPG is based on the Actor-Critic method, which uses two neural networks: an Actor network and a Critic
network.

The Actor network is responsible for learning the policy, i.e., mapping the state to the action, while the
Critic network is responsible for learning the Q-value of the state-action pairs. The Q-value represents the
expected discounted future reward of taking a specific action from the current state.

DDPG has been shown to be effective in solving high-dimensional continuous control problems, such

as robotic arm control, locomotion, and manipulation tasks.

24

file:///C:/Users/mosaa/Downloads/Graduation%20Project.docx%23fourteen

Algorithm Deep Deterministic Policy Gradient

10:
11:
12:

13:

14:

16:
17:
18:

- BV A S A e

- Input: initial policy parameters €, Q-function parameters ¢, empty replay buffer D
: Set target parameters equal to main parameters Oy < 0, Grarg < @
repeat
Observe state s and select action a = clip(ug(s) + €, @row, @mign), where € ~ N
Execute a in the environment
Observe next state s’, reward r, and done signal d to indicate whether s is terminal
Store (s,a,r, s, d) in replay buffer D
If s is terminal, reset environment state.
if it’s time to update then
for however many updates do
Randomly sample a batch of transitions, B = {(s,a,r,s".d)} from D
Compute targets

y(rﬂ Sf? d) =r + ’Y(]' - d)Q¢targ(S’3 Mﬂtarg(sf))
Update Q-function by one step of gradient descent using
1 2
V(ﬁ@ Y (Qols,a) —y(r,s',d))
(s,a,r,sd)EB
Update policy by one step of gradient ascent using
1
Veﬁ Z Qo (s, 11(s))
seb

Update target networks with

C."i)targ — p@targ + (]- - :O)(f)

end for
end if

until convergence

25

2.5 Literature Review

Human body tracking has become a critical aspect of many applications, including gaming, sports
analysis, and medical rehabilitation.

The use of robotics in such applications has also grown in recent years, with robots being used to assist
in geriatric physiotherapy rehabilitation, imitating human actions for autism treatment, and lifting objects.
The aim of this literature review is to explore studies that have utilized the Kinect sensor and the NAO robot

to track human body movements.

Kinect Controlled NAO Robot for Telerehabilitation: This study explores NAO and a sensor called
Kinect V2 for remote arm exercises. Therapists can guide multiple patients simultaneously from different
locations through these exercises. By analyzing data from the Kinect sensor, the researchers developed a
new method to understand how the arm moves during rehabilitation. This remote exercise approach
provides real-time guidance to patients in various places, offering a convenient solution for those
uncomfortable with traditional therapy settings. The research highlights the potential of combining robots
and technology to enhance therapy outcomes and make rehabilitation more accessible. Overall, the
telerehabilitation scheme using NAO and Kinect V2 demonstrates promising results in improving patient

care and expanding the reach of rehabilitation services. [1].

Lower-body Control of Humanoid Robot NAO via Kinect: Humanoid robots have been concerned as it
can perform some movements as human, especially imitating human motion in real time with motion
tracking equipment's. To imitate human motion, there are still some challenges for the lower-body control
of robot due to the physical difference between human and robot. In this paper, we propose a joint angle-
based control (JAC) scheme for the lower-body control of humanoid robots to imitate human motion via
Kinect sensor. Due to factors such as noise, tracking error and robot joint constraints, the motion information
captured from the Kinect sensor applied to the robot directly will arise the problem of balance control. To
overcome it, we optimize the joint angles in the lower body of NAO and define a gain factor to compensate
the difference between the human motion and the robot so as to keep the balance of humanoid robot during
imitation. Experimental results show that the proposed control scheme works efficiently even when the

humanoid robot performs some complex movements such as standing on a single foot. [3].

26

file:///C:/Users/mosaa/Downloads/Graduation%20Project.docx%23one
file:///C:/Users/mosaa/Downloads/Graduation%20Project.docx%23three

Dynamic-goal Deep Reinforcement Learning for Industrial Robot Telemanipulation: We propose
Dynamic-goal Deep Reinforcement Learning (DGDRL) method to address the problem of robot arm motion
planning in telemanipulation applications. This method intuitively maps human hand motions to a robot
arm in real-time, while avoiding collisions, joint limits and singularities. We further propose a novel
hardware setup, based on the HTC VIVE VR system, that enables users to smoothly control the robot tool
position and orientation with hand motions, while monitoring its movements in a 3D virtual reality
environment. A VIVE controller captures 6D hand movements and gives them as reference trajectories to a
deep neural policy network for controlling the robot’s joint movements. Our DGDRL method leverages the
state-of-art Proximal Policy Optimization (PPO) algorithm for deep reinforcement learning to train the
policy network with the robot joint values and reference trajectory observed at each iteration. Since training
the network on a real robot is time-consuming and unsafe, we developed a simulation environment called
Robot Path which provides kinematic modeling, collision analysis and a 3D VR graphical simulation of
industrial robots. The deep neural network trained using Robot Path is then deployed on a physical robot
(ABB IRB 120) to evaluate its performance. We show that the policies trained in the simulation environment
can be successfully used for trajectory planning on a real robot. The the codes, data and video presenting

our experiments are available at https://github.com/kavehkamali/ppoRobotPath. [2].
These works form a crucial basis for a project leveraging deep reinforcement learning with Nao robots

and Kinect sensors for applications in education, entertainment, and healthcare we will show how Thes

research help us with implement and design our project in Table 2-1.

27

file:///C:/Users/mosaa/Downloads/Graduation%20Project.docx%23two

Study Title

Telerehabilitation
using NAO and

Kinect V2

Lower-body
Control of
Humanoid Robot

NAO via Kinect

Dynamic-goal
Deep
Reinforcement
Learning for
Industrial Robot

Telemanipulation

Main Objective Enable remote arm Achieve lower-body Implement dynamic-
exercises for control for NAO goal deep reinforcement
rehabilitation using humanoid robot via learning for robot
NAO and Kinect Kinect telemanipulation

Technology/Equipment | NAO humanoid robot, | NAO humanoid robot, | HTC VIVE VR system,

Used Kinect V2 sensor Kinect sensor VIVE controller, ABB

IRB 120 robot

Application Domain

Telerehabilitation

Humanoid robot control

Industrial robot

telemanipulation

Implementation

Real-time guidance for
remote arm exercises

using NAO and Kinect

Lower-body control
optimization for
humanoid robot using

Kinect

Real-time robot arm
control through hand
motions in a 3D VR

environment

Table 2-1 Literature reviews comparison

2.6 Summery

The "Kinect based teleoperation of a humanoid robot" project is designed to offer an affordable and
effective method for capturing and analyzing human motion data. This project is set to enable the real-time
replication of human movements with notable accuracy and fidelity. This project is also aimed at enhancing
research in human-computer interaction by providing a versatile platform to explore interactions between
humans and robots. It promises to encourage the integration of robotics and artificial intelligence in

educational settings. Furthermore, this initiative is expected to serve as a cost-effective alternative to more
28

traditional and expensive motion capture technologies. It will also pave the way for the development of new

applications in various domains, including physical therapy, sports training, and entertainment.

Chapter 3: System Design

In this chapter, we introduce a system designed to utilize a Nao 6 robot and Kinect v2 sensor for
capturing and emulating human movements. The objective is to equip the robot with the ability to learn and
replicate intricate human motions, thereby enabling it to execute tasks reliant on precise motor skills and
agility. The chapter will go throw into the system's fundamental aspects and constituents, encompassing
both hardware and software elements, explain the communication protocols between the robot and sensor,
and detailing the mathematical models employed for movement analysis and mapping. In addition to
machine learning, we will explore the utilization of mathematical models to interpret and replicate human
gestures. Furthermore, we will address the inherent challenges and constraints of the system, along with

prospects for enhancing its efficacy and broadening its scope in future endeavors.

3.1 Requirements

1. The system should enable human teleoperation of the Nao robot's motion using the Kinect sensor as
an input device.

2. The system should track the user's movements and translate them into corresponding movements
for the Nao robot within his possibilities and 25 degrees of freedom.

3. The system should perform complex movements and actions with accuracy in terms of centimeters.

4. The system shall be designed with modular architecture, ensuring that its components can be easily
upgraded or replaced. It shall support integration with additional technologies and platforms through
standardized interfaces and protocols.

5. The system's performance shall maintain or improve with the addition of new modules or integration

with different technologies.

29

3.2 Hardware design

The Hardware design section provides an overview of the architecture and components of a robotic

system designed to enable movement mimicking functionality as shown in Figure 3.1.

= Via Kinect Adapter

Figure 3-1 System Diagram

3.2.1 System overview

30

The robotic system is designed to mimic human movements using mathematical models [25]. The
system consists of various hardware and software components that enable the capturing and mapping of
human movements to robot movements. The system architecture includes sensors to capture human
movements, a controller to process the captured data, and actuators to control the robot's movements. The

end goal of the system is to enable the robot to replicate human movements accurately in real-time.

3.2.2 Block diagram

Figure 3.2 shows the main parts of the system and how they interact.

I 1 "-----------------------------I i -
i Nao Humanoid Robot i i Latte Panda ! i Kinect sensor !
1 1

i ; i Intel Cherry Trail 8350 ! ' '
1 1 1 1 1 1
1 1 L 1 1 1
1 1] 1 1 1
i [Joints] i i - Windows 10 i i [IR Emitters]_ i
i T i i - Kinect for Windows SDK i E [Senth Soneor J_ i
! ! e ! | d |

1 1 1
E [Set State] i I- Python 2.7 H E [RGB Camera J— i

1 1 1 1
i T]] a
L. 1 1 1
i [Wi-Fi module] E ! [0SB 3.0 ! i E

! I 1 i - 7

i | 1 ! ! H H
i i E Body tracking DATA |« i
! Processing i | i
! | Read data (C#) H i i
T N N SV

I | Rabbit MQ !

i Set position (Python2.7) E

i !

i ! i

1 1

i !

Figure 3-2 System Block Diagram

3.2.3 System Pseudo Codes

Procedure 1 shown below runs on Microsoft Kinect V2. First, initialize Kinect, provide it a power

supply, connect special adapter to it (USB B-type 3.0). Second, from settings select a resolution: 512x424

31

px, frame rate: 30 Frame Per Second and enable body tracking. Finally, inside loop, capture frames, read

body tracking data, then send it to Latte Panda.

PROCEDURE 1: KINECT SENSOR PSEUDO CODE
INITIALIZE Kinect
CONNECT Kinect to Kinect adapter
SELECT resolution, framerate
ENABLE Body Tracking
WHILE capturing frames:
CAPTURE frames (512x424@301ps)
READ Body tracking data
SEND Body tracking data to Latte Panda
ENDWHILE

[a—

A A T

Procedure 2 runs on Nao humanoid robot. Initialize Nao and authenticate it to Latte Panda. In loop
part, while Latte Panda sends Instructions; receive Instructions from Latte Panda, compile and regenerate
executable Instructions for Nao. Finally Execute Instructions for Nao to change his state as like as possible

to human state.

PROCEDURE 2: NAO ROBOT PSEUDO CODE
INITIALIZE Nao robot
AUTHENTICATE Latte Panda

WHILE Latte Panda sends Instructions:

1
2
3
4. RECY Instructions from Latte Panda using Wi-Fi
5 SET position

6

ENDWHILE

Procedure 3 runs on Latte Panda intel cherry trail z8350. At the beginning initialize Latte Panda intel
cherry trail z8350, install Windows 10, setup python and C#. Next step, implement mathematical models

and connect the Kinect adapter to USB 3.0 port on Latte Panda. Inside loop, receive body tracking data
32

from Kinect via Kinect adapter, execute the mapping algorithm, then convert the next state data set into
python Instructions for Nao to change his state and send instructions to Nao using

Wi-Fi.

PROCEDURE 3: LATTE PANDA INTEL CHERRY TRAIL Z8350 PSEUDO CODE

1. INITIALIZE Latte Panda

2. SETUP windows 10

3. SETUP Kinect for Windows SDK

4. SETUP Python, C#

5. IMPORT numpy, pika, TensorFlow, Naoqi, Microsoft Kinect(C#)
6. CONNECT Kinect adapter to USB 3.0 port in Latte Panda

7. WHILE data! = NULL:

8 RECEIVE Body Tracking DATA from Kinect via Kinect adapter
9 CONVERT 3D depth data into motor angles

10. SEND Instructions to Nao using Wi-Fi

11. ENDWHILE

3.3 System software design

The software system design segment offers insights into the architecture and design principles driving
the progression of our project. Here, we emphasize the overarching structure of the software framework
and the intricate interplay among its diverse components. By introducing the software system design at the
outset, our goal is to provide readers with a clear understanding of the system's holistic organization and
the logic guiding our design decisions. This preamble lays the groundwork for ensuing discussions on
training, implementation, and supplementary project facets, empowering readers to traverse the technical

intricacies armed with a firm understanding of the system's architecture and design fundamentals.
3.3.1 Inverse Kinematics

33

Definition

Finds the joint angles or positions needed to achieve a specific end-effector pose.

Complexity
Inverse kinematics problems can be complex, especially for robots with multiple joints and degrees of
freedom. In this project inverse kinematics for the Nao robot involves handling the complexity of multiple

joints and degrees of freedom (25 degree of freedom).

Challenges
e Singularities: Consider how to handle singularities and multiple solutions, especially when
mapping human movements to the robot's joint space.
e Real-world constrains: Account for physical limitations of the Nao robot, such as joint limits and

mechanical restrictions.

3.3.2 Dataset

3.3.2.1 Dataset Collection and Specifications

The primary dataset for training the Al model, which we got it from kaggle.com comprising data from
127 volunteers with varying heights and body sizes, was captured using the Kinect sensor [26]. To enrich
the dataset, particularly for leg movement analysis, an additional dataset which focuses on lower-body
motion, has been integrated. This dataset provides extensive and specialized leg movement data, enhancing

the model's ability to accurately recognize and replicate lower-body actions.

3.3.2.2 Pose Variations and Movements

Each volunteer performed a series of eight predefined positions or poses, including:
1. Y Stretch
2. SOMU Stretch
3. MERMAID Stretch
4. SEATED Stretch
5

TOWEL Stretch
34

6. WALL Stretch

In addition to these predefined poses, the volunteers also performed a range of movements that fall
under the same position category. This inclusion of movements allows for capturing more dynamic and

natural pose variations.

3.4.2.3 Data Collection Process

For each volunteer, a total of 240 frames were recorded. Each frame consists of 25 joint camera

MERMAID

SEATED WALL

coordinates in X, Y, and Z dimensions.

Figure 3-3 Stretches included in Dataset [26]

This joint coordinate provides a comprehensive representation of the human body's pose and

Movement. Look at figure 3.3.

3.4.2.4 Training and Testing Data Split

The recorded dataset consists of a total of 30,480 frames. To ensure an effective training process, the

dataset was split into two subsets: a training dataset and a testing dataset.

35

file:///C:/Users/mosaa/Downloads/Graduation%20Project.docx%23twentyeight

Approximately 72% of the frames, amounting to 21,926 frames, were used as the training data. This
larger portion of the dataset is dedicated to training the Al model to learn and imitate the desired poses
accurately [26].

The remaining 28% of the frames, approximately 8,554 frames, were reserved for testing the trained
model's performance. This testing dataset serves as an independent evaluation set to assess the AI model's

ability to generalize and reproduce the poses accurately [26].

3.3.3 Neural Network

We have two networks in this model:

Actor Network: The actor network is responsible for learning and generating the optimal probability
for the desired movements [25]. It takes the joint positions and movements as input and outputs the policy

that determines the next action to be taken by the Nao robot.

Critic Network: The critic network evaluates the actions taken by the actor network and estimates the
corresponding Q-value. The Q-value represents the expected cumulative reward associated with a particular
action given the current state of the environment. The critic network helps guide the actor network by
providing feedback on the quality of the chosen actions [25].

The neural networks, along with the DDPG algorithm, form an iterative process. During training, the
networks interact with the environment (represented by the Nao robot) by receiving sensory input from the
Kinect sensor and taking actions based on the learned policy. The resulting feedback and rewards from the
environment are used to update the networks' weights and improve their performance over time [25].

By employing this flow of steps and the interaction between the actor and critic networks with the
environment, we can train the neural network to learn and generate human-like movements based on the

provided dataset and the reinforcement learning framework.

36

Agent Actor
Action

A

A 4

Stagte[Environment j

Reward

Figure 3-4 Actor and Critic Networks (RNN) [27]

3.3.3.2 Reward function

The reward function in our project plays a crucial role in shaping the learning process of the agent and
guiding it towards the desired behavior. It quantifies the performance of the agent based on its actions and
the current state of the environment. The goal is to design a reward function that encourages the agent to

learn the desired movements and behaviors for the Nao robot.

In our project, we define the reward function to incorporate the concept of distance between the goal
angle and the current angle of the Nao robot's joints in the virtual environment. We calculate the difference

between the goal angle and the current angle and use it as a basis for assigning rewards.

dif ference = |goalangle — currentangle| (3.1

The reward function can be defined as in equation (3.2) [15]:
reward = e *difference (3.2)

In Equation 3.2, a is a scaling factor that determines the influence of the distance on the reward. A
higher a value results in a steeper reward decay as the distance increases, while a lower a value makes the
reward decay more gradually. By using the exponential function, we ensure that the reward decreases

exponentially as the distance between the goal and the current position increases.
37

file:///C:/Users/mosaa/Downloads/Graduation%20Project.docx%23fifteen

The purpose of this reward function is to encourage the Nao robot to move closer to the goal position,
as it will receive higher rewards for smaller distances. This incentivizes the agent to learn movements that

bring it closer to the desired goal and helps in training it to mimic human-like movements.

3.4 Summary

Chapter 3 presents a comprehensive design for a system that integrates a Nao 6 robot with a Kinect v2
sensor, aiming to replicate human movements with high precision. This intricate design encapsulates the
interplay between sophisticated hardware components and advanced software algorithms, including
mathematical models and deep learning.

The system's core is its ability to accurately track and translate human movements into robotic actions,
ensuring high fidelity in tasks requiring dexterity and fine motor skills. By detailing the requirements,
hardware architecture, and software strategies, including dataset utilization, neural network configurations,
and the rationale behind choosing Mathematical Models over traditional kinematics and machine learning,
the chapter lays a solid foundation for a future where robots can seamlessly mimic and assist in human-

centric tasks, demonstrating a significant leap in the field of robotics and human-robot interaction.

38

Chapter 4: Implementation

4.1 Introduction

In this chapter, we provide an in-depth exploration of the practical implementation of the system
outlined in Chapter 3. The implementation process encompasses the configuration of hardware components,
the setup of software systems, and the execution of algorithms essential for enabling the Nao 6 robot to
replicate human movements using the Kinect v2 sensor. We will delineate the steps taken, challenges faced,

and solutions applied during this crucial implementation phase.

4.2 Hardware Setup

The hardware setup for the system was a meticulous process, involving the assembly and
configuration of the Latte Panda, Kinect v2 sensor, and Nao robot. This setup was integral to the successful
implementation of the system, ensuring each component functioned correctly and communicated

effectively.
Step 1: Connecting Kinect to Latte Panda for Simulation

Interconnection: Connect Kinect v2 special port in Kinect sensor and USB 3.0 cable to power supply

adapter as show in figure 4-1

39

Figure 4-1 Kinect Interconnection

Kinect for Windows SDK Installation: The Kinect for Windows SDK and necessary drivers were installed
on the PC to facilitate the connection with the Kinect sensor. This setup enabled the capture and processing

of motion data for model training.

Step 2: Transitioning from PC to Latte Panda intel cherry trail z8350: the PC was used for training

because it had more resources power.

Preparing Latte Panda intel cherry trail z8350 with Windows 10 Home: The Latte Panda intel cherry
trail z8350 was set up with Windows 10, optimized for the system's requirements. The operating system
was chosen for its compatibility with the Kinect sensor and its ability to handle the computational needs of

the system.

Optimizing TensorFlow Model for Latte Panda: The trained TensorFlow model was transferred from the
PC to the Latte Panda. This process involved not only moving the model files but also ensuring they were

optimized for performance on the Latte Panda's hardware.

Step 3: Setting Up Nao Robot and Establishing Connectivity

Installing Choregraphe on PC/Latte Panda: Choregraphe software was installed for programming and
controlling the Nao robot. This software provided a user-friendly interface for creating robot behaviors and

ensuring seamless interaction with the system.

40

Establishing Wi-Fi Connectivity with Nao Robot: The Latte Panda was configured to connect with the
Nao robot via Wi-Fi. This wireless setup facilitated real-time control and data exchange, crucial for the
system's responsiveness and functionality. To get IP from Nao, hold the button as on the Figure 4.2 below:

In conclusion, the hardware setup process involved a strategic combination of simulation and model
training using Webots and TensorFlow on a PC, configuring the Latte Panda with Windows 10 Home, and
establishing a Wi-Fi connection with the Nao robot. This careful assembly and setup of the components laid
the groundwork for the successful functioning of the system, paving the way for the effective

implementation of the project objectives.

Figure 4-2 How to get Nao’s IP

4.3 Software Configuration

The software configuration phase was pivotal in the system's implementation, ensuring seamless
integration and functionality of all software components. This phase encompassed the installation and setup

of various tools, libraries, and frameworks on the Latte Panda and the PC.

41

4.3.1 Installing the required software

Operating System Setup: The Latte Panda was configured with Windows 10 Home, chosen for its
compatibility with the hardware components and suitability for the system's requirements. The PC was
configured with Windows 10 Pro, providing a robust and reliable platform to support the development and

simulation environment. Figure 4.3 shows the selection of Windows 10 Home

" A:h
@ ’@ Windows Setup
Select the operating system you want to install
Operating system Architecture Date modified "
Windows 10 Home st 11/19/2020
Windows 10 Home N x4 11/19/2020
Windows 10 Home Single Language »54 11/18/2020
Windows 10 Educaticn x4 11/19/2020
Windows 10 Education N x4 11/19/2020
Windows 10 Pro et 11/19/2020
Windows 10 Pro M et 11/19/2020 -
Description:
Windows 10 Home
Next

Figure 4-3 Windows 10 Home

TensorFlow Installation: Essential for machine learning tasks, TensorFlow was installed on both the Latte

Panda and the PC to handle deep learning models and process data from the Kinect sensor.
Webots Installation: Webots robotics simulation software was installed on the PC to facilitate a virtual

testing environment, crucial for developing and refining the model without constant physical testing. Figure

4.4 shows the Webots simulator window configured with Nao robot

42

File Edit View Simulation Build Overlays Tools Help

o [T « b

Aldebaran's Nao
0 © @ oo = B8
IMPORTABLE EXTERNPROTO

> @ TexturedBackgroundLight

> ™ Floor "floor"

degreeOfFreedom 25
customColor

controller "nao_demo”

Selection: Floor (Solid)

Position Velocity

Print EXTERNPROTO

» O @

tial unit (roll/pitch/yaw)
print foot sen

[71[8 e
[e]: turn all leds off
perform a tai chi move
wipe its forehead
print this help ge

print ultrasound sensors
: print accelerometer
print gyro
: print gp.
: print inertial unit (roll/pitch/yaw)
: print foot sen
: print foot bumpe
[Home][End]: print
[PageDown]: ope!
1[9]: change all le
: turn all leds off
erf tai chi move
wipe its forehead
: print this help m

Figure 4-4 Webots Testing

bottom camera image

Kinect Software Setup: The Kinect for Windows SDK and necessary drivers were installed on the PC,

enabling proper communication and data capture from the Kinect v2 sensor. Figure 4.5 explains

everything works well in Kinect for Windows SDK.

= SDK Browser (Kinect for Windows) v2.0

KINECT

for Windows

All

KINECT

for Windows

Difficulty: Beginne Language:

Kinect for Windows Documentation

KINECT
for Windows

Difficulty: Beginne Language:

Kinect Studio

KINECT

for Windows

Difficulty: Intermediate Language:

Visgal Gesture Builder - PREVIEW
KINECT

=

KINECT o

for Windows

(1)

(!) Update Configuration Definitions

Configuration V

@ Operating System

@ Processor Cores

@ Physical Memory (RAM)

@ Graphics Processor

(': USB Controller

@ Kinect Connected

@ Verify Kinect Software Installed

@ Verify Kinect Depth and Color Streams

Send feed

Figure 4-5 Kinect Setup [23]

that

43

Rabbit MQ Installation: Rabbit MQ was installed to facilitate data transfer from the Kinect to the Latte
Panda. This message broker was essential for reliable and efficient communication within the system.

Figure 4.6 shows the installing process of RabbitMQ Server.

Installing
Please wait while RabbitMQ Server 3.12.11is being installed. E

Installing RabbitMQ service...

Show details

Mullsoft Install System w3.06,1-1

< Back Mext = Cancel

Figure 4-6 RabbitMQ Installation

Choregraphe Installation: Choregraphe was installed to test all Nao motors if they work well. First
connect to Nao by setting its IP, second, use predefined movements in Choregraphe, Finaly drag the move

block to the workplace and play. Look at figure 4.7.

44

C Untitled* - Choregraphe (Connected to mohanad.local.)

File Edit Connection View Help

C@ e @G C¢CE@ A m) & (@ (¢ ¢ dl

j j g X i F X
Project objects o—{ 2 Jroot] & |Robotview
a

P G ¢ B, R (@

v 17 behavior_1

> [Fall Detector

+]16)

Fall Detector |55

: [
“ T
o

X

Box libraries =
. @
~ Motors

-
I
#Mawr Heat

8 Mator On/OFf

8 Rest

8 Set Stiffness
an

%

([show all logs Log Level: Info ~

Figure 4-7 Choregraphe

4.3.2 Setting up the development environment

Configuring Nao with Webots: Nao was set up in the Webots platform to simulate its movements and
interactions. This step was crucial for testing and validating the inverse kinematics models and the overall

system behavior.

Installing Python 2.7 and C# with Required Libraries:

e Python 2.7 Installation and Library Setup: Python was installed as a primary programming
language for the system due to its versatility and support for a wide range of libraries. The

installation included several specific libraries to enhance its functionality:

o naoqi: it is considered as driver to fully control Nao joints and sensors
o Pika 1.1.0: Pika, a RabbitMQ client library, was installed to provide an interface for Python
applications to connect and interact with RabbitMQ, enabling efficient message queuing and

dispatch.

45

o Pandas (as pd): Pandas, a powerful data analysis and manipulation library, was incorporated
for handling and processing structured data. It was imported as 'pd' for ease of use and
readability in the code.

o NumPy: This library was used for its extensive support for large, multi-dimensional arrays
and matrices, along with a collection of mathematical functions to operate on these arrays.

o Math: is a standard library module that provides mathematical functions and operations. It
includes a variety of functions for basic arithmetic operations, as well as more advanced
mathematical functions. We need from library trigonometric functions to implement inverse
kinematics.

o TensorFlow Agents (Tf agent): A specialized TensorFlow library for reinforcement
learning, TensorFlow Agents was included to implement and run the Deep Deterministic
Policy Gradient (DDPQ) algorithm, crucial for training the system in replicating human

movements.

C# Installation for Kinect Data Capture: C# was installed to handle the Kinect data capture. C#
is well-suited for interacting with the Kinect SDK and efficiently processing the sensor data. The
choice of C# for this task was based on its robustness and seamless integration with the Kinect for

Windows SDK, ensuring reliable and real-time capture of movement data from the Kinect sensor.

4.3.3 System Software Interconnection Implementation

4.3.3.1 Read Body Tracking Data (C#)

Kinect for windows SDK provides C# code to read Body Tracking data. We can install it as .sln
project and debugging it in Visual Studio. Figure 4.8 explain how to install .sIn Body Basics-WPF

Body Basics-WPF

bl @
®

Insta

Run

Figure 4-8 Body Basics-WPF [23]

To deal with Kinect v2, we should import Microsoft.Kinect.

The code performs 3 main missions:

46

1. Initialize Kinect

.kinectSensor = Kine .GetDefault();

.coordinateMapper = .kinectSensor.CoordinateMapper;

ion frameDescription = .kinectSensor.DepthFrameSource.FrameDescription;

.displayWidth = frameDescription.Width;
.displayHeight = frameDescription.Height;

.bodyFrameReader = .kinectSensor.BodyFrameSource.OpenReader() ;

.kinectSensor.IsAvailableChanged += .Sensor_IsAvailableChanged;

.kinectSensor.Open

Code Snippet 1

2. Declare bones list
le<JointType, JointType>>();

JointType>(JointType._Head, JointType.Neck)
JointType>(JointType.Neck, JointType.SpineShoulder))
JointType>(JointType.SpineShoulder, JointType.SpineMid
JointType>(JointType.SpineMid, JointType.SpineBase))
JointType>(JointType.SpineShoulder, JointType.ShoulderRight))
JointType>(JointType.SpineShoulder, JointType.ShoulderlLeft));
JointType>(JointType.SpineBase, JointType.HipRight))
JointType>(JointType.SpineBase, JointType.HiplLeft)

JointType>(JointType.ShoulderRight, JointType.ElbowRight));
JointType>(JointType.ElbowRight, JointType.WristRight)
JointType>(JointType.WristRight, JointType.HandRight))
JointType>(JointType.HandRight, JointType.HandTipRight));
JointType>(JointType.WristRight, JointType.ThumbRight));

JointType>(JointType.ShoulderLeft, JointType.ElbowlLeft
JointType>(JointType.ElbowlLeft, JointType.WristlLeft
JointType>(JointType WristLeft, JointType.HandLeft)
JointType>(JointType.HandLeft, JointType.HandTiplLeft));
JointType>(JointType.WristlLeft, JointType.ThumblLeft

JointType>(JointType.HipRight, JointType.KneeRight));
JointType>(JointType.KneeRight, JointType.AnkleRight))
JointType>(JointType.AnkleRight, JointType.FootRight));

JointType>(JointType.HipLeft, JointType.KneelLeft))
JointType>(JointType._KneelLeft, JointType.AnklelLeft)
JointType>(JointType.AnklelLeft, JointType.FootlLeft)

Code Snippet 2

3. Read skeleton data (frame by frame)

.bodyFrameReader. FrameArrived += . eReader_FrameArrivedAsyn

Code Snippet 3

4.3.3.2 Move Body Tracking Data (Rabbit MQ)
Send:
e Body tracking data sent from C# Body Basics project to python.

e Required library: RabbitMQ.Client

sendData(List<JointData> jointDatalist)

factory = Connecti /() { HostName = "localhost" };

C connection = factory.CreateConnection())

C channel = connection.CreateModel())
channel.QueueDeclare(queue: "
durable:
exclusive:
autoDelete:
arguments:

json = ~t.SerializeObject(jointDatalist);
bodyBytes ncoding .UTF8.GetBytes(json);

channel.BasicPublish(exchange: "",
routingKey: "joint_queue”,
basicProperties: '
body: bodyBytes);

Code Snippet 4

Receive:
e Body tracking data received form C# to python environment

e Required library: pika

recieveData()
connection = pika.Block nnection(pika.Co

channel = connection.channel()

channel.queue_declare(queue="'joint_qu

channel.basic_consume(queue="joint_queue',
on_messa llback=callback,
auto_ack=True)
channel.start_consuming()

Code Snippet 5

48

4.3.3.3 Set Nao Angles
As we will explain later, Nao angles will be set based on Inverse Kinematics from Kinect body tracking

data or a mathematical model. The set position python code is the same for both algorithms.
move(data_dict):

shoulderRight=dat
wRight=data_dict[

wristRight=data_dict["Wri

wristleft=data

elbowlLeft

shoulderleft

head i

kneeRight=d
hipLeft
kneelLef
ankelRight:
ankelleft
listAngles
listAngles.append(
angleRShoulderPitch(shoulderRight[@], shoulderRight[1], shoulderRight[2], elbowRight[@],
elbowRight[1
elbowRight[2])
listAngles.append(
angleRShoulderRoll(shoulderRight[®], shoulderRight[1], shoulderRight[2], elbowRight[@], elbowRight[1
elbowRight[2]))
listAngles.append(
angleRElbowRol1(shoulderRight[0], shoulderRight[1], shoulderRight[2], elbowRight[6], elbowRight[1
elbowRight[2], wristRight[0], wristRight[1], wristRight[2]))
listAngles.append(
angleRElbowYaw(elbowRight[0], elbowRight[1], elbowRight[2], wristRight[@], wristRight[1
wristRight[2], angleRShoulderPitch(shoulderRight[@], shoulderRight[1], shoulder!
elbowRight[@], elbowRight[1]
elbowRight[2])))
listAngles.append(
anglelLShoulderPitch(shoulderLeft[0], shoulderlLeft[1], shoulderlLeft[2], elbowlLeft[6
elbowLeft[2

elbowLeft[1

listAngles.append(
angleLShouderRoll(shoulderleft[0], shoulderLeft[1], shoulderlLeft[2], elbowLeft[0], elbowLeft[1l
elbowLeft[2]))
listAngles.append(
anglelLElbowRo11(shol Left[0], shoulderlLeft[1], shoulderlLeft , elbowleft[B], elbowlLeft[1
elbowLeft[2], wristLeft[e], istLeft[1], wristLeft[2]))
listAngles.append(
angleLElbowYaw(elbowLeft[0], elbowLeft[1], elbowLeft[2], wristLeft[0], wristlLeft[1
wristlLeft[2], anglelLShoulderPitch(shoulderleft[@], shoulderlLeft[1], shoulderlLeft[2]
elbowLeft[0], elbowlLeft[1]
elbowLeft[2])))
listAngles.append(angleHeadPitch(neck, head)
listAngles.append(angleHipRoll(hipRight,
listAngles.append(angleHipRoll(hi
listAngles.append(angleHipPitc
listAngles.append(angleHipPitch(hipLeft, ankellLeft))

sendAngles(listAngles, RobotIP, RobotPort)
printki)

Code Snippet 6

4.3.4 Inverse kinematics Implementation
Equations for Nao joints (6) and Kinect Skeleton (sides of a triangle) were developed and integrated into
the system. This involved creating mathematical models and algorithms to accurately translate human

movements captured by Kinect into robotic movements.

49

e Head Pitch

angleHeadPitch(neck, head):
y=neck[1]-head[1]
z=neck[2]-head[2]

Pitch=-2*math.atan(z/y)
return Pitch

Code Snippet 7

e Sholder Pitch
anglelShoulderPitch(y2, z: , yl1, z1):

if (y2 < yl1):
angle = math.atan(abs(y2 - y1) / abs(z2 - z1))
angle = math.degrees(angle)
angle = —(angle)
if (angle < -118):
angle = -117
return math.radians(angle)

angle = math.atan((z2 - z1) / (y2 - y1))
angle = math.degrees(angle)

angle = 90 - angle

return math.radians(angle)

Code Snippet 8

e Sholder Roll
angleRShoulderRoll(x2,

if(z2<zl):
test = z2
anderetest = z1
z2=anderetest
zl=test

if (z2 - z1 < 0.1):
z2 = 1.0
zl = 0.8
angle = math.atan((x2 - x1) / (z2 - z1))
angle = math.degrees(angle)
return math.radians(angle)

Code Snippet 9

Elbow Yaw

angleRElbowYaw(x2, y2, z2, x1, yl, zl,shoulderpitch):

if(abs(y2-y1)<0.2 abs(z2-z1) < 0.2

(shoulderpitch > 50)):
(shoulderpitch < 50)):

x1)<0.1 (y2-y1)<0. (shoulderpitch > 50)):
h.radians(96)

angle = math.atan(
angle = degrees(angle)
angle = — angle + (shoulderpitch)
angle = — angle
eturn math.radians(angle)

E

ath.radians(-9
x1)<0.1 abs(z:)<0. (shoulderpitch > 50)):

.radians(-9
)<0.1 abs(zZ)<B. (shoulderpitch > 50)):

x1)<0.1 ab /1)<0. (shoulderpitch > 50)):
rn math.radians(—90)

angle h.atan((z2 - z1) /
angle = h.degrees(angle)
angle = - angle + (shoulderpitch)
angle = — angle

rn math.radians(angle)

Code Snippet 10

Elbow Roll

angleRElbowRoll(x3, y3, z3, x2, y2, z2, x1, yl, zl):

bl ** 0.5

. (yl-y3)%*2 + (z1-z3)%*2
cl ** 0.5

cosB = (pow(lineA, 2) + pow(lineB,2) - pow(lineC,2))/(2#lineAxlineB)

acosB .acos(cosB)

angle .degrees(acosB)

angle

return th.radians(angle)

angleLElbowRoll1(x3, y3, z3, x2, y2, z2, x1, y1, zl):

2-y1)**2 + (z2-z1)**2
bl ** 0.5
(y1-y3)**2 + (z1-z3)**2
.5
cosB = (pow(lineA, 2) + pow(lineB,2) - pow(lineC,2))/(2#lineAxlineB)
acosB .acos(cosB)
angle th.degrees(acosB)
angle 180+ angle
return math.radians(angle)

Code Snippet 11

51

e Hip Roll and Hip Pitch

angleHipRoll(hip, knee):
x=hip[@]-knee[0]
y=hip[1]-knee[1]
angle=math.atan(x/y)
return angle

angleHipPitch(knee,ankel):
x=Kknee[0]-ankel[0]
y=knee[1]-ankel[1]
angle=math.atan(x/y)
return —angle

Code Snippet 12

4.3.5 DDPG Implementation and training

4.3.5.1 Description

In our training approach, we have selected inverse kinematics to serve as the reward function within the
DDPG algorithm (see Figure 4.9). The dataset itself forms the environment for the learning process.
Initially, the agent critic commences with a zero reward and undergoes updates grounded in the imitation
of inverse kinematics. As training progresses, the agent learns to optimize its actions based on the provided

inverse kinematics rewards, effectively refining its performance in the given environment.

52

At Actor

Action

A

—
‘ ™ Ei}— Sukc Dataset

Reward

Critic

T)
Nao Foot
pressure

Figure 4-9 Training Approach

4.3.5.2 Kinect v2 Dataset Selection for Training

For training our system, we selected the "3D Kinect Total Body Database for Back Stretches,"[26] a
specialized dataset captured using the Kinect V2 sensor. This dataset's specifications are particularly suited

for our project requirements [26]:

e Data Collection: Captured as a set of X, Y, Z coordinates at 60 fps during six different yoga-inspired
back stretches, providing a detailed representation of human back movements.

e Dataset Composition: Contains 541 files, each detailing position and velocity for 25 body joints,
including the head, neck, spine, shoulders, hips, wrists, knees, and feet.

e Standardization and Consistency: The Kinect was positioned at a height of 2 ft and 3 in, with
subjects 6.5 ft away from the camera, ensuring consistent data capture. Each participant completed
10 repetitions of each stretch, providing a rich set of repeated movement data.

e Participant Demographics: Data was collected from 9 adults aged 18-21, including 4 females and
5 males, offering a diverse range of motion data.

e Pre-processing: Velocity data was calculated using a discrete derivative equation, which was

applied to all body parts and axes individually, enhancing the data's utility for motion analysis.

53

4.3.5.3 DDPG Implementation
e Required libraries: TensorFlow, tf agents, math, pandas, numpy
e Procedures

1. Initial procedure

_—init__(self, supervisor):
self.nao obot(supervisor)
self.i=0

self._episode_step 10
self._step_counter=0

self.target_positions=[]
For item in Dataset[self.i].items():
elment item[1]:
et_positions.append(elment)
self.len_ osition=len(self.ta
self.curr positions = np.zeros(self.nao.num_joints)
self._episode_steps = @
self.numOfstat elf.nao.num_joints+self.len_target_position
self._action_spec = array_spec.BoundedArraySpec(
self.nao.num_joints,

name='action’
J
self._observation_spec = array_spec.BoundedArraySpec(
self.numOfstate,),

i] * self.num
* self.numQ
name= tion'

)

self._ state=np.array(self.target positions+self._get_current positions(),dt float32)
self._e| _ended

self._ ard (]

Code Snippet 13

2. Reset Procedure

_reset(self):

self. 5 rvisor.simulationReset()

self._sta p.array(self.target_positions+self._get_current_positions(),dty .float32)
self._episode_steps = @

self._step_counter=0e

self e

return ts.restart(self._state)

Code Snippet 14

3. Update target position Procedure

_update_target_positions(self):
elf.i+l

self.i+=1

self.target_positions=[]

em in Dataset[self.i].items():
elment in item[1]:
self.target_positions.append(elment)
self._state=np.array(self.target_positions+self._get_current_positions(),dty .float32)

Code Snippet 15

4. Step Procedure

_step(self, action):
self._step_counter = self._step_counter + 1
Move(Dataset[self.i],sel ao.joint_devices)
self.nao.supervisor.simulationReset()
self.nao.supervisor.step(self.nao.timeStep)
right=self._get_current_positions()
apply_action(action)
f._get_current_positions()
e=np.array(self.target_positions+self._get_current_positions(),dtyf). Float32)
if self._step_counter >= self._episode_steps:
self._episode_ended = True
self._update_target_positions()
= f._calculate_reward(result,right)
pisode_ended:
rn ts.termination(self._state, reward)

rn ts.transition(self._state, reward, discount=1.0)

Code Snippet 16

5. Calculate Reward Procedure

_calculate_reward(self,result,right):
print(self.i)
a=self.nao.senesors['LFsr'].getValues()
b=self.nao.senesors['R '].getValues()
a=a[2]
b=b[2]
if a<2 b<2:
elf.nao.supervisor.simulationReset()
._episode_ended=True
0. sum(np.abs(np.array(right)-np.array(result))

rn —np.sum(np.abs(np.array(right)-np.array(result)))

Code Snippet 17

4.4 Challenges

The implementation of the system presented several significant challenges that needed to be addressed
to ensure its successful operation. These challenges were critical in understanding the limitations and

capabilities of the system and in guiding future improvements.

1. Balancing

Challenge: One of the primary challenges faced was maintaining the balance of the Nao robot while
replicating human movements. Unlike humans, who have a highly developed sense of balance, robots like
Nao require complex algorithms to remain stable, especially when performing dynamic movements or

standing on one leg.

55

Approach: We overcome this challenge partially, which means in simple movements like arm and head
movements, we overcome by maintaining the center of mass so that it can be balanced. Any hand or head
movement would not have affected the balance significantly. All of these achieved by inverse kinematics

approach.

2. Degree of Freedom between Nao and Human

Challenge: The discrepancy in the degree of freedom between humans and the Nao robot presented a
significant challenge. Humans have a vast range of motion compared to the Nao robot, which has limited
degree of freedom in its joints.

Approach: To overcome this, we developed inverse kinematics mathematical model that could translate
the complex human movements into simpler motions that the Nao robot could perform. This translation
process involved determining the most critical aspects of the human movement and simplifying them to fit
the robot's capabilities without losing the essence of the action. We implemented suitable mapping between

the Kinect skeleton and Nao joints through chain level (arm, head and leg), so that Nao can imitate human.

56

Chapter 5: Testing and Results
5.1 Introduction

Chapter 5 is dedicated to the testing phase of the system, focusing on evaluating each hardware
component and the overall interconnection within the system. This stage is crucial to ensure that all

parts function correctly and cohesively.

5.2 Hardware Testing

a. Kinect v2

Testing the Kinect v2 involved verifying its ability to accurately capture motion data. This
included assessing the sensor's responsiveness, precision in tracking movements, and consistency
in different lighting conditions. Sometimes glitches appear in reading body data because of the

difficulty in analysis of the image depth as shown in Figure 5.1.

Figure 5-1 Kinect v2 glitch (example)

b. Nao Robot

Tests for the Nao robot focused on its movement replication accuracy, joint articulation, balance,

and response time to commands received from the Latte Panda.

57

c. Latte Panda

The Latte Panda was tested for its computing performance, especially its ability to process and
relay motion data to the Nao robot efficiently. Stability and reliability of the operating system and

installed software were also evaluated.

d. System Interconnection

The final part of the testing phase involved evaluating the system's overall interconnection. This
included testing the communication flow between the Kinect v2, PC/Latte Panda, and Nao robot,

ensuring seamless data transfer and synchronization across the system.

5.3 Software Testing

1.

Testing of inverse kinematics involved validating the equations and algorithms used for translating
human movement into robotic actions. This included simulations to ensure the movements were

accurately mirrored by the robot.

Webots was tested for its simulation capabilities, ensuring accurate rendering and physics simulation of

the robot's movements and environment interactions.

Choregraphe software was tested for its functionality in programming and controlling the Nao robot.
We used Choregraphe to test the final software (inverse kinematics and trained model), because it
simulates the real environment of Nao. This included validating the user interface, motion creation tools,

and the ability to upload scripts to the robot. Figure 5.2 shows that Choregraphe works well.

58

File Edit Connection View Help
/ y p p &> Not running -~ -
@ o CEe @ & (¢ O W
Project objects 8 x4 Robot & x
roject objes am obot view
o~ U G0 GG
-
~ T behavior_t
[
(@]knect nao
4
Script editor
kanect_nao [
12 self.bIsRunning = False
14
152 def ‘onInput_onStart (self):
16 B AR RARARARRRRAAAARERRERAER
17
18
19 4 Specify the package name you want to install
20 package_name = 'pika’
21
2 # Use subproc un the pip install command
3H try
Box libraries x| 24 subproces: call{['pip', 'install', package name])
25 2 Successfully installed')
@ @ o~ % import pi Video moniter & £3
- - - 270 ‘except subpros ledProcessError as e:
> Arimation 28 DELR LGRS S Error installing: {e}') (m (=N (™
Y z @ § C =
> [Speech 10 §oEAE AR A AR AT ARARRA AR AR AR
> LEDs 31
(& 2 velocity = 1
> (@l Multimedia =
> [Movement 315 joines = (
35 "HeadPitch" : 0.0,
> (B Sensing 36 "Head¥aw" : 0.0,
> &ngmmmmg 37 "LShoulderPitch" : -0.9,
38 rLShoulderRoll™ : 0.0,
v (B Kinect
Raknect ro 1 Find OO
Saripteditor Log viewer

Figure 5-2 Choregraphe Testing

4. Libraries in C# and Python were tested for their roles in data capture and processing. For C#, the focus

was on Kinect data acquisition, while for Python, the emphasis was on data analysis, machine learning

tasks, and communication with other system components.

59

5.4 Results

5.4.1 Model training results

Initially, our project aimed to leverage machine learning techniques, including the Deep Deterministic
Policy Gradient (DDPG) algorithm, in conjunction with our implementation of the Inverse Kinematics
approach. This dual approach was designed to achieve two primary objectives: ensuring effective balancing

and addressing challenges associated with the Nao robot's degrees of freedom.

However, despite our efforts to fully implement and train the DDPG algorithm, we encountered
significant difficulties. The utilization of DDPG resulted in suboptimal performance, characterized by
erratic and random movements. Despite extensive training with large datasets, the algorithm struggled to

produce coherent and accurate motion plans.

We believe that the problem is implementing of the reward function, represented by inverse kinematics
imitation and the pressure of the Nao feet to ensure balancing. This task is very complicated for training,

which needs more resources and a huge dataset.

As a result of these challenges and the unsatisfactory results obtained with the DDPG algorithm, we
decided to pivot our approach. We opted to prioritize the development of invers kinematics mathematical
model to address the complexities inherent in our teleoperation system. While acknowledging the
limitations of a mathematical model, including its inability to capture all nuances of human movement, we
concluded that it offered a more viable solution than persisting with the problematic outcomes of the DDPG

approach.

By focusing on the development of a robust inverse kinematics mathematical model, we aim to
overcome the shortcomings encountered with the DDPG algorithm. Despite its inherent limitations, we
believe that the mathematical model provides a more stable and predictable framework for controlling the
Nao robot's movements, ultimately offering superior performance compared to the unpredictable behavior

observed with DDPG.

60

5.4.2 Inverse Kinematics results

We have achieved favorable outcomes in Inverse Kinematics, enabling real-time and precise imitation

of human head, arms, and legs movements:

e Response time: 200 — 500 milliseconds

e Accuracy: in terms of centimeters, we measured the results visually.

Evaluation Characteristics:

o Angle: Nao motors range

o Mapping: How much Kinect skeleton can match Nao chains

o Balancing: Distribution of the center of gravity in the feet of Nao

o Complex: some movements depend on each other, the movement composed of more than one chain.

o Accuracy: final form and the path of imitation

Table 5.1 is the rubric of the evaluation characteristics in inverse kinematics imitation results:

Evaluation A B C
Characteristics
Angle Accurate within Nao motors | Reasonable but not perfect Inaccurate and outside range
range
Mapping Good match Nao chains Closely matches Nao chains | Significant mismatches
with some variations
Balancing Well-distributed and stable Fair distribution, occasional | Poor distribution, instability
instability
Complex Smooth coordination of | Some movements well- | Complex movements are often
complex movements coordinated disjointed
Accuracy Precise imitation of final form | Resembles final form with | Significant deviations from
and imitation path some variations final form

Table 5-1 rubric of evaluation characteristics

We have applied many tests for Inverse Kinematics. Each test performed 5 times, we chose two main

types of tests, first Test performed on Nao chain, the results of chain level shown in table 5.2, the second

test is on poses of the Kinect dataset that we used and its results are in table 5.3.

61

Evaluation Characteristics

Mapping Balancing Angle Complex = Accuracy

Arm Up B A A B B The elbow is bent more than expected. This
movement is complex (shoulder and elbow).

Down A A A A A This is default position of arm for both human and
Nao.

Left Arm Left A A A A A Simple movement, no limitations.

Right A A B A B Nao LsholderPith angle cannot bend to the right at
the as the same as a human, the difference at least
20°.

Right Arm | Left A A B A B Nao RsholderPith angle cannot bend to the left at
the as the same as a human, the difference at least
20°.

Right A A A A Simple movement, no limitations.

Head Up A Human head can bend backward more than Nao

Down A A B A A Human head can bend forward more than Nao

Left C == == == == Kinect v2 skeleton does not contain anything to
indicate that Nao looking to the left.

Right C == == == == Kinect v2 skeleton does not contain anything to
indicate that Nao looking to the right.

Leg Forward A C A B B Nao falls down.

Backward A B A B B Leg does not move because of pressure.

Hip Forward A C A B B Hole body lying forward.

Backward A C A B B Body falls down backwards.

Left Hip Left A B A A A Both feet stuck on the ground because of the center
of mass in Nao is various form human.

Right A A A A Motion not smooth because of the gravity.

Right Hip | Left A B A A A Motion not smooth because of the gravity.

Right A B A A A Both feet stuck on the ground because of the center
of mass in Nao is various form human.

Table 5-2 Chain level imitation testing results

62

Evaluation Characteristics

Mapping Balancing Angle Complex Accuracy

Y A A B B B The elbow is bent more than expected.

SUMO A B B B B The hand was not placed on the knee, also

sometimes the robot falls on the ground.

MERMAID B B B C C Nao robot rise his hand efficiently. The problem
is in the leg and hip chains, this dual movement

causes overlap in overall imitation.

SEATED A C A C C This is the most complex pose. The problem is
that the Nao dimensions various from Kinect
skeleton dimensions. For example, if a human
chair height is 50cm, the corresponding chair for

Nao is 15cm.

TOWEL A A B B B Nao HipPitch angle cannot bend forward as the

same as a human, the difference at least 15°.

WALL A A A A A This pose imitated perfectly

Table 5-3 Kinect dataset poses testing results

63

There are some tests form results as shown in figure 5.3:

liai

Figure 5-3 Project Testing

64

Chapter 6: Conclusion and future work

6.1 Conclusion

This project successfully developed and implemented a system integrating a Nao 6 robot, Kinect v2
sensor, and PC/Latte Panda to mimic human movements. The hardware components, including the Kinect
v2 sensor, Nao robot, and Latte Panda, were meticulously assembled and rigorously tested to ensure optimal
performance and synchronization. In the software domain, key components such as inverse kinematics,
Webots simulation, Choregraphe programming, and various C# and Python libraries were methodically
tested and refined.

The system's ability to accurately replicate human movements showcases the potential of robotics in
various applications. The successful integration of the hardware and software components demonstrates the

feasibility and effectiveness of such complex robotic systems.

6.2 Future Work

Looking forward, there are several avenues for future development and enhancement:

Advanced Learning Algorithms: Exploring machine learning algorithms and Deep learning could further

improve the system's accuracy and efficiency in mimicking human movements.
Developing Deep learning approach: Updating the reward function in DDPG algorithm and find sponsor
for the project to provide the required resources for training, in a way that ensures achieving balancing and

accurate imitation between human and humanoid.

Broader Movement Repertoire: Expanding the system to replicate a wider range of human movements,

including more nuanced and subtle gestures, would increase its applicability.

Real-World Applications: Applying the system in real-world scenarios, such as in rehabilitation therapy

or educational settings, would provide valuable insights into its practical utility and areas for improvement.

65

User Interaction and Feedback: Integrating user feedback mechanisms could make the system more

interactive and user-friendly, adapting to individual user’s needs and preferences.
In conclusion, this project represents a significant step of robotics and human-robot interaction. The

lessons learned and the foundation established here pave the way for further innovations and applications

in this exciting and rapidly evolving field.

66

References

1. Assad-Uz-Zaman, M., Islam, M., Rahman, M., Wang, Y. & McGonigle, E. (2021). Kinect Controlled
NAO Robot for Telerehabilitation. Journal of Intelligent Systems, 30(1), 224-239.
https://doi.org/10.1515/jisys-2019-0126

2. Zhang, Y., Liu, Y., & Wang, J. (2019). Dynamic-goal Deep Reinforcement Learning for Industrial

Robot Telemanipulation.

3. Chen, J., Wang, G., Hu, X. et al. Lower-body control of humanoid robot NAO via Kinect. Multimed
Tools Appl 77, 10883—10898 (2018). https://doi.org/10.1007/s11042-017-5332-3

4. Assad Uz Zaman, M., Islam, M.R., Rahman, M.H. et al. Robot sensor system for supervised
rehabilitation with real-time feedback. Multimed Tools Appl 79, 26643-26660 (2020).
https://doi.org/10.1007/s11042-020-09266-x

5. Balmik, A., Paikaray, A., Jha, M., & Nandy, A. (2022). Motion recognition using deep convolutional
neural network for Kinect-based NAO teleoperation. Robotica, 40(9), 3233-3253.

https://www.cambridge.org/core/journals/robotica/article/abs/motion-recognition-using-deep-

convolutional-neural-network-for-kinectbased-nao-

teleoperation/AA337EC3B6AE611A13765DF1D4D1ECAS.

6. Balmik, A., Jha, M. & Nandy, A. NAO Robot Teleoperation with Human Motion Recognition. Arab
J Sci Eng 47, 1137-1146 (2022). https://doi.org/10.1007/s13369-021-06051-2

7. Hansard, M., Lee, S., Choi, O., & Houraud, R. (2012). Time-of-flight cameras: Principles, methods
and applications. Springer. Retrieved from

https://books.google.ps/books?id=PiF4narL1Z0C.

67

https://doi.org/10.1515/jisys-2019-0126
https://doi.org/10.1007/s11042-017-5332-3
https://doi.org/10.1007/s11042-020-09266-x
https://www.cambridge.org/core/journals/robotica/article/abs/motion-recognition-using-deep-convolutional-neural-network-for-kinectbased-nao-teleoperation/AA337EC3B6AE611A13765DF1D4D1ECA5
https://www.cambridge.org/core/journals/robotica/article/abs/motion-recognition-using-deep-convolutional-neural-network-for-kinectbased-nao-teleoperation/AA337EC3B6AE611A13765DF1D4D1ECA5
https://www.cambridge.org/core/journals/robotica/article/abs/motion-recognition-using-deep-convolutional-neural-network-for-kinectbased-nao-teleoperation/AA337EC3B6AE611A13765DF1D4D1ECA5
https://doi.org/10.1007/s13369-021-06051-2
https://books.google.ps/books?id=PiF4narL1Z0C

8.

10.

11.

Cruz-Ramirez, S.R., Garcia-Martinez, M. & Olais-Govea, JJM. NAO robots as context to teach
numerical methods. Int J Interact Des Manuf 16, 1337-1356 (2022). https://doi.org/10.1007/s12008-

022-01065-y

Wikipedia, "TensorFlow," [Online]. Available: https://en.wikipedia.org/wiki/TensorFlow. [Accessed
2022].

Cyberbotics.(2023).Webots:RobotSimulator.Retrieved from https://www.cyberbotics.com.

MIT Sloan. (2021). Machine learning, explained. Retrieved from

https://mitsloan.mit.edu/ideas-made-to-matter/machine-learning-explained

12.

13.

14.

15.

16.

17.

Sewak, M. (2019). Introduction to Reinforcement Learning. In: Deep Reinforcement Learning.

Springer, Singapore. https://doi.org/10.1007/978-981-13-8285-7 1

Towards Data Science. (2018). Training Deep Neural Networks. Retrieved from
https://towardsdatascience.com/training-deep-neural-networks-9fdb1964b964.

Sumiea, E. H., AbdulKadir, S. J., Al-Selwi, S. M., Alqushaibi, A., Ragab, M. G., Fati, S. M., &
Alhussian, H. S. (2023). Deep Deterministic Policy Gradient Algorithm: A Systematic Review.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., & Wierstra, D. (2016).
Continuous control with deep reinforcement learning. In Proceedings of the International Conference

on Learning Representations (ICLR). Google DeepMind, London, UK.

Sutton, R. S., & Barto, A. G. (2005). [The actor-critic architecture.]. Reinforcement Learning: An
Introduction Retrieved from

http://incompleteideas.net/book/first/ebook/node66.html#fig:actor-critic.

Vaughan, H. (2023). Develop your first Al agent - Deep Q Learning. Towards Data Science.
Retrieved from https://towardsdatascience.com/develop-vyour-first-ai-agent-deep-g-learning-

375876ee2472.

68

https://doi.org/10.1007/s12008-022-01065-y
https://doi.org/10.1007/s12008-022-01065-y
https://en.wikipedia.org/wiki/TensorFlow
https://www.cyberbotics.com/
https://mitsloan.mit.edu/ideas-made-to-matter/machine-learning-explained
https://doi.org/10.1007/978-981-13-8285-7_1
https://towardsdatascience.com/training-deep-neural-networks-9fdb1964b964
http://incompleteideas.net/book/first/ebook/node66.html#fig:actor-critic.
https://towardsdatascience.com/develop-your-first-ai-agent-deep-q-learning-375876ee2472.
https://towardsdatascience.com/develop-your-first-ai-agent-deep-q-learning-375876ee2472.

18.

MathWorks. (2023) .DDPG Agents. Retrieved from

https://in.mathworks.com/help/reinforcement-learning/ug/ddpg-agents.html.

19.

20.

21.

22.

23.

24.

25.

26.

Aldebaran. (2022). NAO. Retrieved from https://www.aldebaran.com/en/nao.

Wevolver. (2023) . NAO Robot Specifications. Retrieved from

https://www.wevolver.com/specs/nao.robot

Packt Publishing. (n.d.). Components of Kinect for Windows. In Kinect for Windows SDK
Programming Guide. Retrieved from

https://subscription.packtpub.com/book/programming/9781849692380/1/ch011vl1 sec08/component

s-of-kinect-for-windows.

Soltaninejad, Sara & Cheng, Irene & Basu, A.. (2019). Kin-FOG: Automatic Simulated Freezing of
Gait (FOG) Assessment System for Parkinson’s Disease. Sensors. 19. 2416.

Microsoft. (2022). Kinect for Windows. Retrieved from https://learn.microsoft.com/en-

us/windows/apps/design/devices/kinect-for-windows.

Latte Panda (2018). Latte Panda V1 Specifications. Retrieved from https://www.Latte
Panda.com/Latte Panda-v1

Hua, J., Zeng, L., Li, G., & Ju, Z. (2021). Learning for a Robot: Deep Reinforcement Learning,

Imitation Learning, Transfer Learning. Sensors, 21(4), 1278.

https://doi.ore/10.3390/s21041278

Kaggle. (2020). 3D Kinect Total Body Database for Back Stretches. Retrieved from
https://www.kaggle.com/datasets/dasmehdixtr/3d-kinect-total-body-database-for-back-
stretches?resource=download & fbclid=IwAR0Je W4wkyeM{BQbXyV Oe8Cl4e WXns4dNMwmmjtH
xuASBFOjKQ9p8DdxUFwQ.

69

file:///C:/Users/mosaa/Downloads/%20%20%20%20%20https:/in.mathworks.com/help/reinforcement-learning/ug/ddpg-agents.html
https://www.aldebaran.com/en/nao
https://www.wevolver.com/specs/nao.robot
https://subscription.packtpub.com/book/programming/9781849692380/1/ch01lvl1sec08/components-of-kinect-for-windows
https://subscription.packtpub.com/book/programming/9781849692380/1/ch01lvl1sec08/components-of-kinect-for-windows
https://learn.microsoft.com/en-us/windows/apps/design/devices/kinect-for-windows
https://learn.microsoft.com/en-us/windows/apps/design/devices/kinect-for-windows
https://www.lattepanda.com/lattepanda-v1
https://www.lattepanda.com/lattepanda-v1
https://doi.org/10.3390/s21041278
https://www.kaggle.com/datasets/dasmehdixtr/3d-kinect-total-body-database-for-back-stretches?resource=download&fbclid=IwAR0JeW4wkyeMfBQbXyVOe8Cl4eWXns4NMwmmjtHxuASBFOjKQ9p8DdxUFwQ
https://www.kaggle.com/datasets/dasmehdixtr/3d-kinect-total-body-database-for-back-stretches?resource=download&fbclid=IwAR0JeW4wkyeMfBQbXyVOe8Cl4eWXns4NMwmmjtHxuASBFOjKQ9p8DdxUFwQ
https://www.kaggle.com/datasets/dasmehdixtr/3d-kinect-total-body-database-for-back-stretches?resource=download&fbclid=IwAR0JeW4wkyeMfBQbXyVOe8Cl4eWXns4NMwmmjtHxuASBFOjKQ9p8DdxUFwQ

27. Giang, Hoang & Hoan, Tran & Thanh, Pham & Koo, Insoo. (2020). Hybrid NOMA/OMA-Based
Dynamic Power Allocation Scheme Using Deep Reinforcement Learning in 5G Networks. Applied
Sciences.

28. Said, Alejandro & Rodriguez Leal, Ernesto & Soto, Rogelio & Gordillo, J.L. & Garrido, Leonardo.
(2015). Decoupled Closed-Form Solution for Humanoid Lower Limb Kinematics. Mathematical

Problems in Engineering. 2015. 10.1155/2015/437979.

70

	Chapter 1: Introduction
	1.1 Project Description
	1.2 Benefits
	1.3 Report outline

	Chapter 2: Background
	2.1 Overview
	2.2 Hardware background
	2.2.1 Humanoid robot (Nao)
	2.2.2 Microsoft Kinect v2
	2.2.3 Microcontroller (Latte panda Intel Cherry Trail Z8350)

	2.3 Software Background
	2.3.1 Programming Languages
	2.3.2 Simulator

	2.4 Algorithms and theoretical background
	2.4.1 Inverse Kinematics
	2.4.2 Deep Reinforcement learning
	2.4.3 DDPG

	2.5 Literature Review
	2.6 Summery

	Chapter 3: System Design
	3.1 Requirements
	3.2 Hardware design
	3.2.1 System overview
	3.2.2 Block diagram
	3.2.3 System Pseudo Codes

	3.3 System software design
	3.3.1 Inverse Kinematics
	3.3.2 Dataset
	3.3.2.1 Dataset Collection and Specifications
	3.3.2.2 Pose Variations and Movements
	3.4.2.3 Data Collection Process
	3.4.2.4 Training and Testing Data Split

	3.3.3 Neural Network
	3.3.3.2 Reward function

	3.4 Summary

	Chapter 4: Implementation
	4.1 Introduction
	4.2 Hardware Setup
	4.3 Software Configuration
	4.3.1 Installing the required software
	4.3.2 Setting up the development environment
	4.3.3 System Software Interconnection Implementation
	4.3.3.1 Read Body Tracking Data (C#)
	4.3.3.2 Move Body Tracking Data (Rabbit MQ)
	4.3.3.3 Set Nao Angles

	4.3.4 Inverse kinematics Implementation
	4.3.5 DDPG Implementation and training
	4.3.5.1 Description
	4.3.5.2 Kinect v2 Dataset Selection for Training
	4.3.5.3 DDPG Implementation

	4.4 Challenges

	Chapter 5: Testing and Results
	5.1 Introduction
	5.2 Hardware Testing
	5.3 Software Testing
	5.4 Results
	5.4.1 Model training results
	5.4.2 Inverse Kinematics results

	Chapter 6: Conclusion and future work
	6.1 Conclusion
	6.2 Future Work

