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Abstract 

 

      Teleoperation of robots has become increasingly important in a wide range of industries and 

applications, from manufacturing and logistics to medicine and disaster response. The ability to remotely 

control robots to perform complex tasks can significantly improve efficiency and safety, particularly in 

hazardous or hard-to-reach environments. The goal of this project is to develop a teleoperation system that 

can accurately replicate human movements using a Kinect sensor and a Nao robot. The system utilizes 

inverse kinematics to enable the robot to mimic human movements. 

      Specifically, the system will leverage the Microsoft Kinect V2 sensor to capture 3D skeletal joint data 

in real time, which will be processed and used to control the movements of the Nao robot. Choosing Kinect 

v2 over image processing to extract human skeleton offers the benefits of dedicated depth sensing, accuracy, 

and ease of integration. 

      We investigated two approaches to translate the human poses into the corresponding command on the 

robot joint. The first one is based on Deep Learnings and the second one is based on inverse kinematics.  In 

the implementation, we decided to proceed with the second approach due to the time required to complete 

the graduation project. The Inverse Kinematics approach works on a chain level such that each Kinect 

skeleton chain is converted into Nao body chain. We work on 3 main chains in this project; head, arm and 

leg. 

      As the result, we were able to make the Nao robot imitate human in many poses and situations. Success 

was greater in individual chain movements than in complex movements and poses just as walking, mermaid 

and seated, with small errors in terms of centimeters, 
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Chapter 1: Introduction 

 

      The development of motion detection mechanisms enhances the development of new applications for 

human motion analysis and reproduction. Kinect sensor and humanoid robot are two different technologies 

with various trends and applications. We plan to create a new trend with this combination, developing an 

interface whose applications will have future implications. 

 

1.1 Project Description 

 

      The proposed system is designed to capture human motion data using a Kinect sensor and reproduce 

the movements in real-time using NAO robots. The system consists of three main components: the Kinect 

sensor, the microcontroller, and the NAO robot. 

 

      The Kinect sensor is a device that uses depth sensing technology to capture detailed motion data from 

a human performer. Infrared wave is emitted and its reflection is detected by the Kinect sensor from the 

environment [7], creating a 3D model of the performer's body. The sensor can track the position and 

orientation of the performer's joints, providing information about their movements. 

 

       The motion data captured by the Kinect sensor is transmitted to a microcontroller using a wired USB 

3.0 cable. The microcontroller processes the data and sends it to the NAO robot, which is equipped with 

software that can analyze and reproduce the movements in real-time. The NAO robot is a humanoid robot 

developed by Softbank Robotics, designed to mimic human movements and interact with humans in a 

natural way. The robot is equipped with sensors and cameras that allow it to perceive its environment and 

respond to external stimuli. 

 

      The system can be used to capture a wide range of human movements, from simple gestures to complex 

dance routines. The NAO robot can reproduce the movements in real-time, allowing for immediate feedback 

and analysis [8]. 
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     Overall, the proposed system offers a cost-effective and efficient solution for capturing and analyzing 

human motion data. The combination of the Kinect sensor and the NAO robot provides a flexible and 

versatile platform for real-time reproduction of motion data, with potential applications in a wide range of 

industries.  

 

1.2 Benefits 

1. To deliver an affordable and efficient method for capturing and analyzing human motion data 

utilizing the Kinect sensor and NAO robot. 

2. To foster the development of innovative applications in areas like physical therapy, sports training, 

and entertainment, focusing on human motion analysis and replication. 

3. To bolster research in human-computer interaction by offering a dynamic and adaptable platform to 

explore interactions between humans and robots. 

4. To enhance the application of robotics and AI in educational settings, providing practical learning 

opportunities for students and researchers in robotics and computer science. 
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1.3 Report outline 

 

Week 1 start from 1 Sep 

 

 

Table 1-1 Project Schedule 
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Chapter 2: Background 

 

2.1 Overview  

 

      This chapter serves as an introductory overview of the essential components and theoretical foundations 

that shape our project. We will start by delving into the theoretical background, emphasizing recent 

advancements in trigonometric equations and mathematical modeling. 

 Our project heavily relies on these mathematical principles, and a comprehensive grasp of their 

fundamentals is imperative for its successful execution. Specifically, we will delve into the latest algorithms 

and techniques in mathematical modeling, essential for empowering our teleoperation system to function 

with precision and intricacy. This chapter aims to furnish readers with a solid understanding of the 

fundamental concepts and methodologies employed in our project, laying the groundwork for a more 

detailed exploration of our system in subsequent chapters 

 

2.2 Hardware background  

 

2.2.1 Humanoid robot (Nao) 

 

NAO is a versatile humanoid robot created by SoftBank Robotics. NAO has become a benchmark in 

the world of research and education with its advanced sensors and interactive capabilities, NAO can 

adapt to any environment and interact with people in a natural way. It is fully programmable and 

customizable, making it possible to create application solutions that enable it to perform tasks in 

different areas based on all of his capabilities, including dialogue and motion [19]. 

 

Nao hardware specifications: 

 

1. Dimensions: 

 Height: 58 cm (22.8 inches) 

 Width: 27 cm (10.6 inches) 

 Depth: 22 cm (8.7 inches) 

 Weight: Approximately 4.3 kg (9.5 lbs.) 
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2. Processing Unit: 

 Intel Atom Z530 Processor (1.6 GHz) 

3. Memory: 

 1 GB DDR2 RAM 

4. Storage: 

 2 GB Flash Memory 

5. Sensors: 

 Two HD cameras (resolution: 1280x960 pixels) 

 Ultrasonic sensors for obstacle detection 

 Touch sensors on the head, hands, and feet 

 Inertial measurement unit (accelerometer and gyro-meter) 

 4 Microphones for sound localization and voice recognition 

6. Connectivity: 

 Wi-Fi (IEEE 802.11 b/g) 

 Ethernet port (100 Mbps) 

 USB 2.0 port 

7. Power: 

 Battery: Lithium-ion battery  

 Battery capacity: 4800 mAh with approximately 60-90 minutes of continuous operation 

 Charging Time: Approximately 90 minutes 

8. Operating System: 

 Aldebaran NAOqi OS (based on Linux) 

9. Actuators: 

 25 Degrees of Freedom (DOFs) for joint movement 

 Electric motors for actuation, including head, arms, hands, legs, and feet 

 

10. Additional Features: 

 Text-to-speech synthesis 

 Voice and sound recognition 

 LED lights for visual feedback 

 Speaker for audio output 
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Figure 2.1, shows Nao Components: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-1 Nao Components [19] 
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The following image (Figure 2.2) explain Nao joints names, Field of motion and Direction 

 

 

2.2.2 Microsoft Kinect v2 

 

      Kinect v2 is a depth-sensing camera developed by Microsoft, primarily used for capturing skeletal joint 

data and depth information by a set of sensors shown in Figure 2.3. It offers an enhanced user experience 

in motion tracking, gesture recognition, and 3D depth sensing. The operation principle of Kinect v2 is ToF 

(Time-of-Flight) with modulation up to 130MHz, acquisition rate = 30Hz. In this section, we will explore 

the main components that Kinect works with [22][23]. 

1. Depth Sensing: Kinect v2 utilizes an infrared depth sensor that captures the depth information of 

the surrounding environment. It can measure the distance between the sensor and objects in its field 

of view. It provides a depth resolution of up to 512x424 pixels, Field of view (H=70.6o x V=60o), 

depth range (0.5-4.5) m, with ability to capture depth information with sub-millimeter precision 

[23]. 

Figure 2.5 Nao Component [20]   

Figure 2-2 Nao Joints [28] 
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2. Color Camera: In addition to depth sensing, Kinect v2 is equipped with a high-definition RGB 

color camera. It captures color images with a resolution of 1920x1080 pixels, FOV (H=84.1o x 

V=53.8o), enhancing the visual fidelity of the captured data [23]. 

3. Infrared Camera: Kinect v2 includes an infrared (IR) camera that works in tandem with the depth 

sensor. It measures the distance between the camera and objects by projecting IR patterns and 

analyzing the distortion caused by their interaction with the environment [22]. 

4. Microphone Array: The device incorporates a built-in microphone array that enables voice 

recognition and audio processing. This feature facilitates natural language interaction and voice 

commands [23].  

 

 

 

2.2.3 Microcontroller (Latte panda Intel Cherry Trail Z8350) 

 

      The goal of using a microcontroller is processing data (send, process and delete). At the beginning we 

chose Raspberry Pi 4 model B, but we did not continue with it because the architecture of its processor 

which is ARM architecture. The problem is the Kinect for Windows SDK, which worked only on x86 

architecture, so we looked for a microcontroller whose processor is based on x86. We chose Latte Panda 

Intel Cherry Trail Z8350 because it achieved that requirement. A Latte Panda is a complete Windows 10 

single board computer. It has everything a regular PC has and can do anything that a regular PC does. It is 

Figure 2-3 Microsoft Kinect 
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compatible with almost every gadget like printers, joysticks, cameras and more. Any peripherals that work 

on PC will work on a Latte Panda. A Latte Panda comes pre-installed with a full edition of Windows 10 

Home edition, so users can run powerful tools such as Visual Studio, NodeJS, Java and more. 

 

Latte panda Specifications [24] 

 

According to [24], the following is the microcontroller specification  

1. Processor: 

  Intel® Cherry Trail Z8350 Quad Core @ 1.44 GHz 

2.  Co-processor Arduino integrated: 

  ATmega32u4 

3. Operation System: 

 Windows 10 

4. Memory: 

 (DFR0418, DFR0444 2GB DDR3L), (DFR0419 4GB DDR3L) 

5. Storage Capability: 

 (DFR0418, DFR0444 32GB), (DFR0419 64GB) 

6. GPU: 

 Intel HD Graphics, 12 EUs @ 200-500Mhz, single-channel memory 

7. Connectivity: 

 USB 3.0 port and two USB 2.0 ports 

 Wi-Fi 802.11n 2.4G 

 Bluetooth 4.0 

 Supports 100Mbps Ethernet 

8. Video output 

 HDMI and MIPI-DSI 

9. Onboard touch panel overlay connector 

10. GPIO: 20 digital IO pins 

11. Power: 

 5V/2A Power 

12. Dimension of board 

 88mm x 70mm/3.46 x 2.76" 
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13. Packing Size: 

 110mm x 94mm x 30mm/4.33 x 3.70 x 1.18" 

14. N.W.: 55g 

15. G.W.: 100g 

 

16. Included: 

 Latte Panda 4G/64GB 

 WiFi antenna 

 

      Figure 2.4 Shows the Latte panda microcontroller components. 

 

 

 

Figure 2-4 Latte Panda intel cherry trail z8350 Components [24] 
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2.3 Software Background 

 

      The software component of our project plays a crucial role in processing the data from the Kinect sensor 

and controlling the Nao robot's movements. This section provides an overview of the algorithms, 

programming languages and frameworks used in the development of our software. 

 

2.3.1 Programming Languages 

      For our project, we have decided to use Python as the primary programming language (for Inverse 

Kinematics and deep learning). Python is a popular language for scientific computing, data analysis, and 

artificial intelligence due to its simplicity, readability, and vast library support. Also, we have decided to 

use C# to read depth data from Kinect sensor. 

 

2.3.2 Simulator 

      Webots is a robotics simulation software widely used in both academia and industry for robotics and 

machine learning applications. It offers a virtual environment where developers can design, program, and 

test their robot models before implementing them in real life [10]. Key features of Webots include: 

 

1. Realistic Physics Simulation: Webots provides a realistic simulation of robot mechanics and 

environmental interactions, essential for accurate testing of control algorithms. 

2. Versatile Environment Customization: Users can design a variety of custom environments in 

Webots, allowing for extensive testing of robot performance under different conditions. 

3. Compatibility with Machine Learning Frameworks: Webots supports integration with popular 

machine learning platforms like TensorFlow, enabling the development and testing of advanced 

robot control algorithms. 

4. Open-Source Availability: As an open-source platform, Webots allows for code modifications 

and adaptations to fit specific project needs. 
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2.4 Algorithms and theoretical background 

 

      In this section we will explain the algorithms and theoretical background of Inverse Kinematics and 

Machine learning approaches. 

 

2.4.1 Inverse Kinematics 

      Inverse kinematics refers to the mathematical process of determining the joint parameters that will 

position a humanoid robot's limbs in a desired configuration. In the context of both humans and humanoid 

robots, inverse kinematics is crucial for planning and controlling movements. It involves calculating the 

joint angles or positions as shown in Figure 2.5 required to achieve a specific end-effector position or 

orientation. Θ is the angle calculated by Inverse Kinematics approach form joints positions in 3D space 

(X,Y,Z).  

 

 

 

      The given mathematical model comprises a series of computations aimed at explain the angles of 

different joints within a robotic framework. These mathematical calculations constitute fundamental 

Figure 2-5 Kinect Skeleton 
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elements in teleoperation systems, enabling management of robotic motion. Specifically, the model 

delineates the following functionalities: 

       

      The explanation provided in Figure 2.6 aims to enhance the clarity of our calculations. By focusing on 

the relationship between the three joints: shoulder, elbow, and wrist, we can observe two fixed distances: 

the Upper Arm and forearm lengths. Leveraging this fixed aspect, we can construct a triangle utilizing these 

lengths alongside other non-fixed distances. Employing inverse trigonometric functions, such as arctan, 

allows us to determine the angles at which different motors need to rotate. This approach facilitates a deeper 

understanding of the mechanics involved in coordinating the movements of these joints. 

 

 

Figure 2-6 Joints with Angles 

 

 

1. Shoulder Pitch Computation (Right and Left): These calculations illustrate the pitch 

angle of each shoulder, considering their spatial coordinates within a three-dimensional framework. 

We determine the pitch motors utilizing both the Elbow and Shoulder joints, as indicated in 

Equations (2.1) and (2.2). 
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 Case (Elbowy < Shouldery): 

𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑃𝑖𝑡𝑐ℎ(𝜃) = tan−1 (
|𝐸𝑙𝑏𝑜𝑤𝑦−𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑦|

|𝐸𝑙𝑏𝑜𝑤𝑧−𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑧|
)                                                           (2.1) 

 Case(Elbowy>=Shouldery): 

𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑃𝑖𝑡𝑐ℎ(𝜃) =
𝜋

2
− tan−1 (

|𝐸𝑙𝑏𝑜𝑤𝑧−𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑧|

|𝐸𝑙𝑏𝑜𝑤𝑦−𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑦|
)                                                    (2.2)   

 

2. Shoulder Roll Computation (Right and Left): These computations elucidate the roll angle of each 

shoulder. Furthermore, in determining the shoulder roll, we employ both the Pitch of the Elbow and 

the Shoulder. These calculations entail a singular case, as demonstrated in Equation (2.3).  

     𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑅𝑜𝑙𝑙(𝜃) = tan−1 (
|𝐸𝑙𝑏𝑜𝑤𝑥−𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑥|

|𝐸𝑙𝑏𝑜𝑤𝑧−𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑧|
)                                  (2.3)

   

 

3. Elbow Yaw Computation (Right and Left): This facet of the model computes the yaw angle for 

each elbow, integrating factors such as the shoulder pitch and the spatial alignment of the elbow 

concerning the shoulder, as depicted in Equation (2.4).         

           𝐸𝑙𝑏𝑜𝑤𝑌𝑎𝑤(𝜃) = − tan−1 (
|𝑊𝑟𝑖𝑠𝑡𝑧−𝐸𝑙𝑏𝑜𝑤𝑧|

|𝑊𝑟𝑖𝑠𝑡𝑦−𝐸𝑙𝑏𝑜𝑤𝑦|
) + 𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑃𝑖𝑡𝑐ℎ(𝜃)                                             (2.4)  

   

4. Elbow Roll Computation (Right and Left): These calculations ascertain the roll angle for each 

elbow, taking into account the positions of the elbow joints alongside other pertinent factors. 

Furthermore, the wrist joint is factored into the analysis. We opt to utilize the Shoulder Pitch angle 

since the Yaw motors are contingent on Pitch. Although roll could serve as an alternative, Pitch is 

favored due to its computational simplicity, particularly considering the complexity of the 

calculations. Hence, four Equations (2.5, 2.6, 2.7, and 2.8) are necessary to address these 

complexities. 

 

   𝑈𝑝𝑝𝑒𝑟 𝐴𝑟𝑚 = √(𝑆ℎ𝑜𝑙𝑑𝑒𝑟𝑦 − 𝐸𝑙𝑏𝑜𝑤𝑦)
2

+ (𝑆ℎ𝑜𝑙𝑑𝑒𝑟𝑥 − 𝐸𝑙𝑏𝑜𝑤𝑥)2 + (𝑆ℎ𝑜𝑙𝑑𝑒𝑟𝑧 − 𝐸𝑙𝑏𝑜𝑤𝑧)2                         (2.5) 

 

              𝐹𝑜𝑟𝑒 𝐴𝑟𝑚 = √(𝐸𝑙𝑏𝑜𝑤𝑦 − 𝑊𝑟𝑖𝑠𝑡𝑦)
2

+ (𝐸𝑙𝑏𝑜𝑤𝑥 − 𝑊𝑟𝑖𝑠𝑡𝑥)2 + (𝐸𝑙𝑏𝑜𝑤𝑧 − 𝑊𝑟𝑖𝑠𝑡𝑧)2                                        (2.6) 

 

                𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟−𝑊𝑖𝑟𝑠𝑡 = √(𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑦 − 𝑊𝑟𝑖𝑠𝑡𝑦)
2

+ (𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑥 − 𝑊𝑟𝑖𝑠𝑡𝑥)2 + (𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑧 − 𝑊𝑟𝑖𝑠𝑡𝑧)2             (2.7) 
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             𝐸𝑙𝑏𝑜𝑤𝑅𝑜𝑙𝑙(𝜃) = 𝜋 − cos−1 (
𝑈𝑝𝑝𝑒𝑟 𝐴𝑟𝑚2+𝐹𝑜𝑟𝑒 𝐴𝑟𝑚2−𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟−𝑊𝑖𝑟𝑠𝑡2

2⋅𝑈𝑝𝑝𝑒𝑟 𝐴𝑟𝑚⋅𝐹𝑜𝑟𝑒 𝐴𝑟𝑚
)                                                                     (2.8) 

 

5. Head Pitch Computation: The pitch angle of the head concerning the neck joint is calculated as 

follows: Initially, the vertical distance (y) between the neck and head joints is determined by 

subtracting the y-coordinate of the head joint from that of the neck joint, and likewise for the depth 

distance (z). Subsequently, the pitch angle (Pitch) is computed using the arctangent function to 

ascertain the angle whose tangent corresponds to the ratio of z to y, multiplied by.  

This derived angle signifies the pitch angle of the head concerning the neck joint, as demonstrated      

in Equation (2.9). 

                𝐻𝑒𝑎𝑑𝑃𝑖𝑡𝑐ℎ(𝜃) = tan−1 (
|𝐻𝑒𝑎𝑑𝑧−𝑁𝑒𝑐𝑘𝑧|

|𝐻𝑒𝑎𝑑𝑦−𝑁𝑒𝑐𝑘𝑦|
)                                                                                    (2.9) 

 

6. Hip Roll Computation:  The roll angle of the hip joint in relation to the knee joint is calculated as 

follows: Firstly, the horizontal distance (x) between the hip and knee joints is determined by 

subtracting the x-coordinate of the knee joint from that of the hip joint, and similarly for the vertical 

distance (y). Next, the angle (angle) is computed using the arctangent function to determine the 

angle corresponding to the ratio of x to y. This angle signifies the roll angle of the hip joint 

concerning the knee joint, as described in Equation (2.10). 

𝐻𝑖𝑝𝑅𝑜𝑙𝑙(𝜃) = tan−1 (
|𝐻𝑖𝑝𝑥−𝐾𝑛𝑒𝑒𝑥|

|𝐻𝑖𝑝𝑦−𝐾𝑛𝑒𝑒𝑦|
)                                                                                               (2.10) 

 

7. Hip Pitch Computation: We determine the Pitch angle for the Hip by measuring the distance 

between the Knee and Ankle along the X-axis and Y-axis, as illustrated in equation (2.11). 

                       𝐻𝑖𝑝𝑃𝑖𝑡𝑐ℎ(𝜃) = − tan−1 (
|𝐾𝑛𝑒𝑒𝑥−𝐴𝑛𝑘𝑙𝑒𝑥|

|𝐾𝑛𝑒𝑒𝑦−𝐴𝑛𝑘𝑙𝑒𝑦|
)                                                                            (2.11) 

 

2.4.2 Deep Reinforcement learning  

 

      Deep reinforcement learning (DRL) is a type of machine learning technique that enables agents to learn 

how to make decisions in complex environments by trial and error. It combines deep learning and 

reinforcement learning, two powerful techniques that have been successful in solving a variety of machine 

learning problems [12]. 
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      Reinforcement learning involves training an agent to make decisions based on feedback received from 

its environment as shown in Figure 2.7. The agent learns to take actions that maximize a reward signal, 

which is a scalar value that indicates how well the agent is performing its task. 

The goal of the agent is to learn a policy, which is mapping from states to actions that maximizes the 

expected cumulative reward. 

 

Figure 2-7 Deep Reinforcement Learning 

 

 

      DRL combines two techniques by using deep neural networks to approximate the value function or 

policy of the agent. 

       The deep neural networks in Figure 2.8 are used to represent the state-action value function, which is 

used to select the best action in each state, or the policy function, which is used to directly map states to 

actions. 

      This enables agents to learn from high-dimensional inputs, such as images and sensor readings, and 

make decisions in complex and dynamic environments [17]. 
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Figure 2-8 Deep Neural network 

 

2.4.3 DDPG  

 

      Deep Deterministic Policy Gradient (DDPG) is a reinforcement learning algorithm that combines the 

ideas of Deep Learning and Policy Gradients with Q-Learning. The goal of the algorithm is to learn a 

deterministic policy, which maps states to actions directly, as opposed to a stochastic policy, which maps 

states to probability distributions over actions [14]. 

DDPG is based on the Actor-Critic method, which uses two neural networks: an Actor network and a Critic 

network.  

       The Actor network is responsible for learning the policy, i.e., mapping the state to the action, while the 

Critic network is responsible for learning the Q-value of the state-action pairs. The Q-value represents the 

expected discounted future reward of taking a specific action from the current state. 

      DDPG has been shown to be effective in solving high-dimensional continuous control problems, such 

as robotic arm control, locomotion, and manipulation tasks.  
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2.5 Literature Review 

 

      Human body tracking has become a critical aspect of many applications, including gaming, sports 

analysis, and medical rehabilitation. 

      The use of robotics in such applications has also grown in recent years, with robots being used to assist 

in geriatric physiotherapy rehabilitation, imitating human actions for autism treatment, and lifting objects. 

The aim of this literature review is to explore studies that have utilized the Kinect sensor and the NAO robot 

to track human body movements. 

 

Kinect Controlled NAO Robot for Telerehabilitation: This study explores NAO and a sensor called 

Kinect V2 for remote arm exercises. Therapists can guide multiple patients simultaneously from different 

locations through these exercises. By analyzing data from the Kinect sensor, the researchers developed a 

new method to understand how the arm moves during rehabilitation. This remote exercise approach 

provides real-time guidance to patients in various places, offering a convenient solution for those 

uncomfortable with traditional therapy settings. The research highlights the potential of combining robots 

and technology to enhance therapy outcomes and make rehabilitation more accessible. Overall, the 

telerehabilitation scheme using NAO and Kinect V2 demonstrates promising results in improving patient 

care and expanding the reach of rehabilitation services. [1]. 

 

Lower-body Control of Humanoid Robot NAO via Kinect: Humanoid robots have been concerned as it 

can perform some movements as human, especially imitating human motion in real time with motion 

tracking equipment's. To imitate human motion, there are still some challenges for the lower-body control 

of robot due to the physical difference between human and robot. In this paper, we propose a joint angle-

based control (JAC) scheme for the lower-body control of humanoid robots to imitate human motion via 

Kinect sensor. Due to factors such as noise, tracking error and robot joint constraints, the motion information 

captured from the Kinect sensor applied to the robot directly will arise the problem of balance control. To 

overcome it, we optimize the joint angles in the lower body of NAO and define a gain factor to compensate 

the difference between the human motion and the robot so as to keep the balance of humanoid robot during 

imitation. Experimental results show that the proposed control scheme works efficiently even when the 

humanoid robot performs some complex movements such as standing on a single foot. [3]. 
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Dynamic-goal Deep Reinforcement Learning for Industrial Robot Telemanipulation: We propose 

Dynamic-goal Deep Reinforcement Learning (DGDRL) method to address the problem of robot arm motion 

planning in telemanipulation applications. This method intuitively maps human hand motions to a robot 

arm in real-time, while avoiding collisions, joint limits and singularities. We further propose a novel 

hardware setup, based on the HTC VIVE VR system, that enables users to smoothly control the robot tool 

position and orientation with hand motions, while monitoring its movements in a 3D virtual reality 

environment. A VIVE controller captures 6D hand movements and gives them as reference trajectories to a 

deep neural policy network for controlling the robot’s joint movements. Our DGDRL method leverages the 

state-of-art Proximal Policy Optimization (PPO) algorithm for deep reinforcement learning to train the 

policy network with the robot joint values and reference trajectory observed at each iteration. Since training 

the network on a real robot is time-consuming and unsafe, we developed a simulation environment called 

Robot Path which provides kinematic modeling, collision analysis and a 3D VR graphical simulation of 

industrial robots. The deep neural network trained using Robot Path is then deployed on a physical robot 

(ABB IRB 120) to evaluate its performance. We show that the policies trained in the simulation environment 

can be successfully used for trajectory planning on a real robot. The the codes, data and video presenting 

our experiments are available at https://github.com/kavehkamali/ppoRobotPath. [2]. 

 

      These works form a crucial basis for a project leveraging deep reinforcement learning with Nao robots 

and Kinect sensors for applications in education, entertainment, and healthcare we will show how Thes 

research help us with implement and design our project in Table 2-1. 
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Study Title Telerehabilitation 

using NAO and 

Kinect V2 

Lower-body 

Control of 

Humanoid Robot 

NAO via Kinect 

Dynamic-goal 

Deep 

Reinforcement 

Learning for 

Industrial Robot 

Telemanipulation 

Main Objective Enable remote arm 

exercises for 

rehabilitation using 

NAO and Kinect 

Achieve lower-body 

control for NAO 

humanoid robot via 

Kinect 

Implement dynamic-

goal deep reinforcement 

learning for robot 

telemanipulation 

Technology/Equipment 

Used 

NAO humanoid robot, 

Kinect V2 sensor 

NAO humanoid robot, 

Kinect sensor 

HTC VIVE VR system, 

VIVE controller, ABB 

IRB 120 robot 

Application Domain Telerehabilitation Humanoid robot control Industrial robot 

telemanipulation 

Implementation Real-time guidance for 

remote arm exercises 

using NAO and Kinect 

Lower-body control 

optimization for 

humanoid robot using 

Kinect 

Real-time robot arm 

control through hand 

motions in a 3D VR 

environment 

Table 2-1 Literature reviews comparison 

                                            

2.6 Summery 

 

      The "Kinect based teleoperation of a humanoid robot" project is designed to offer an affordable and 

effective method for capturing and analyzing human motion data. This project is set to enable the real-time 

replication of human movements with notable accuracy and fidelity. This project is also aimed at enhancing 

research in human-computer interaction by providing a versatile platform to explore interactions between 

humans and robots. It promises to encourage the integration of robotics and artificial intelligence in 

educational settings. Furthermore, this initiative is expected to serve as a cost-effective alternative to more 
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traditional and expensive motion capture technologies. It will also pave the way for the development of new 

applications in various domains, including physical therapy, sports training, and entertainment. 

 

 

 

Chapter 3: System Design  

 

      In this chapter, we introduce a system designed to utilize a Nao 6 robot and Kinect v2 sensor for 

capturing and emulating human movements. The objective is to equip the robot with the ability to learn and 

replicate intricate human motions, thereby enabling it to execute tasks reliant on precise motor skills and 

agility. The chapter will go throw into the system's fundamental aspects and constituents, encompassing 

both hardware and software elements, explain the communication protocols between the robot and sensor, 

and detailing the mathematical models employed for movement analysis and mapping. In addition to 

machine learning, we will explore the utilization of mathematical models to interpret and replicate human 

gestures. Furthermore, we will address the inherent challenges and constraints of the system, along with 

prospects for enhancing its efficacy and broadening its scope in future endeavors. 

 

3.1 Requirements  

 

1. The system should enable human teleoperation of the Nao robot's motion using the Kinect sensor as 

an input device. 

2. The system should track the user's movements and translate them into corresponding movements 

for the Nao robot within his possibilities and 25 degrees of freedom. 

3. The system should perform complex movements and actions with accuracy in terms of centimeters. 

4. The system shall be designed with modular architecture, ensuring that its components can be easily 

upgraded or replaced. It shall support integration with additional technologies and platforms through 

standardized interfaces and protocols.  

5. The system's performance shall maintain or improve with the addition of new modules or integration 

with different technologies. 
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3.2 Hardware design  

 

      The Hardware design section provides an overview of the architecture and components of a robotic 

system designed to enable movement mimicking functionality as shown in Figure 3.1. 

 

 

Figure 3-1 System Diagram 

       

 

 

3.2.1 System overview 
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      The robotic system is designed to mimic human movements using mathematical models [25]. The 

system consists of various hardware and software components that enable the capturing and mapping of 

human movements to robot movements. The system architecture includes sensors to capture human 

movements, a controller to process the captured data, and actuators to control the robot's movements. The 

end goal of the system is to enable the robot to replicate human movements accurately in real-time. 

3.2.2 Block diagram 

 

Figure 3.2 shows the main parts of the system and how they interact. 

 

 

Figure 3-2 System Block Diagram 

 

 

 

3.2.3 System Pseudo Codes 

 

      Procedure 1 shown below runs on Microsoft Kinect V2. First, initialize Kinect, provide it a power 

supply, connect special adapter to it (USB B-type 3.0). Second, from settings select a resolution: 512x424 
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px, frame rate: 30 Frame Per Second and enable body tracking. Finally, inside loop, capture frames, read 

body tracking data, then send it to Latte Panda.  

 

PROCEDURE 1: KINECT SENSOR PSEUDO CODE 

1. INITIALIZE Kinect 

2. CONNECT Kinect to Kinect adapter 

3. SELECT resolution, framerate 

4. ENABLE Body Tracking 

5. WHILE capturing frames: 

6.        CAPTURE frames (512x424@30fps) 

7.        READ Body tracking data 

8.        SEND Body tracking data to Latte Panda 

9. ENDWHILE 

 

       

           Procedure 2 runs on Nao humanoid robot. Initialize Nao and authenticate it to Latte Panda. In loop 

part, while Latte Panda sends Instructions; receive Instructions from Latte Panda, compile and regenerate 

executable Instructions for Nao. Finally Execute Instructions for Nao to change his state as like as possible 

to human state. 

 

 

 

           Procedure 3 runs on Latte Panda intel cherry trail z8350. At the beginning initialize Latte Panda intel 

cherry trail z8350, install Windows 10, setup python and C#. Next step, implement mathematical models 

and connect the Kinect adapter to USB 3.0 port on Latte Panda. Inside loop, receive body tracking data 

PROCEDURE 2: NAO ROBOT PSEUDO CODE 

1.  INITIALIZE Nao robot 

2. AUTHENTICATE Latte Panda 

3. WHILE Latte Panda sends Instructions: 

4.         RECV Instructions from Latte Panda using Wi-Fi 

5.         SET position 

6. ENDWHILE 
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from Kinect via Kinect adapter, execute the mapping algorithm, then convert the next state data set into 

python Instructions for Nao to change his state and send instructions to Nao using 

 Wi-Fi. 

 

PROCEDURE 3:  LATTE PANDA INTEL CHERRY TRAIL Z8350 PSEUDO CODE 

  

1. INITIALIZE Latte Panda 

2. SETUP windows 10 

3. SETUP Kinect for Windows SDK 

4. SETUP Python, C# 

5. IMPORT numpy, pika, TensorFlow, Naoqi, Microsoft Kinect(C#) 

6. CONNECT Kinect adapter to USB 3.0 port in Latte Panda   

7. WHILE data! = NULL: 

8.        RECEIVE Body Tracking DATA from Kinect via Kinect adapter 

9.        CONVERT 3D depth data into motor angles 

10.        SEND Instructions to Nao using Wi-Fi 

11. ENDWHILE 

 

 

 

3.3 System software design  

       

      The software system design segment offers insights into the architecture and design principles driving 

the progression of our project. Here, we emphasize the overarching structure of the software framework 

and the intricate interplay among its diverse components. By introducing the software system design at the 

outset, our goal is to provide readers with a clear understanding of the system's holistic organization and 

the logic guiding our design decisions. This preamble lays the groundwork for ensuing discussions on 

training, implementation, and supplementary project facets, empowering readers to traverse the technical 

intricacies armed with a firm understanding of the system's architecture and design fundamentals.  

         

3.3.1 Inverse Kinematics 
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Definition 

      Finds the joint angles or positions needed to achieve a specific end-effector pose. 

 

Complexity 

      Inverse kinematics problems can be complex, especially for robots with multiple joints and degrees of 

freedom. In this project inverse kinematics for the Nao robot involves handling the complexity of multiple 

joints and degrees of freedom (25 degree of freedom). 

 

Challenges 

 Singularities: Consider how to handle singularities and multiple solutions, especially when 

mapping human movements to the robot's joint space. 

 Real-world constrains: Account for physical limitations of the Nao robot, such as joint limits and 

mechanical restrictions. 

 

3.3.2 Dataset 

 

3.3.2.1 Dataset Collection and Specifications 

 

      The primary dataset for training the AI model, which we got it from kaggle.com comprising data from 

127 volunteers with varying heights and body sizes, was captured using the Kinect sensor [26]. To enrich 

the dataset, particularly for leg movement analysis, an additional dataset which focuses on lower-body 

motion, has been integrated. This dataset provides extensive and specialized leg movement data, enhancing 

the model's ability to accurately recognize and replicate lower-body actions. 

 

3.3.2.2 Pose Variations and Movements 

 

Each volunteer performed a series of eight predefined positions or poses, including: 

1. Y Stretch 

2. SOMU Stretch 

3. MERMAID Stretch 

4. SEATED Stretch 

5. TOWEL Stretch 
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6. WALL Stretch 

 

      In addition to these predefined poses, the volunteers also performed a range of movements that fall 

under the same position category. This inclusion of movements allows for capturing more dynamic and 

natural pose variations. 

 

3.4.2.3 Data Collection Process 

 

      For each volunteer, a total of 240 frames were recorded. Each frame consists of 25 joint camera 

coordinates in X, Y, and Z dimensions. 

 

      This joint coordinate provides a comprehensive representation of the human body's pose and  

Movement. Look at figure 3.3.  

3.4.2.4 Training and Testing Data Split 

 

      The recorded dataset consists of a total of 30,480 frames. To ensure an effective training process, the 

dataset was split into two subsets: a training dataset and a testing dataset. 

Figure 3.3 Strertches included in Dataset [28] 

 

Figure 3-3 Stretches included in Dataset [26] 
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      Approximately 72% of the frames, amounting to 21,926 frames, were used as the training data. This 

larger portion of the dataset is dedicated to training the AI model to learn and imitate the desired poses 

accurately [26]. 

      The remaining 28% of the frames, approximately 8,554 frames, were reserved for testing the trained 

model's performance. This testing dataset serves as an independent evaluation set to assess the AI model's 

ability to generalize and reproduce the poses accurately [26]. 
 

3.3.3 Neural Network 
 

   We have two networks in this model: 

 

      Actor Network: The actor network is responsible for learning and generating the optimal probability 

for the desired movements [25]. It takes the joint positions and movements as input and outputs the policy 

that determines the next action to be taken by the Nao robot. 

 

      Critic Network: The critic network evaluates the actions taken by the actor network and estimates the 

corresponding Q-value. The Q-value represents the expected cumulative reward associated with a particular 

action given the current state of the environment. The critic network helps guide the actor network by 

providing feedback on the quality of the chosen actions [25]. 

The neural networks, along with the DDPG algorithm, form an iterative process. During training, the 

networks interact with the environment (represented by the Nao robot) by receiving sensory input from the 

Kinect sensor and taking actions based on the learned policy. The resulting feedback and rewards from the 

environment are used to update the networks' weights and improve their performance over time [25]. 

By employing this flow of steps and the interaction between the actor and critic networks with the 

environment, we can train the neural network to learn and generate human-like movements based on the 

provided dataset and the reinforcement learning framework. 

 



37 

 

 

Figure 3-4 Actor and Critic Networks (RNN) [27] 

 

3.3.3.2 Reward function 

 

      The reward function in our project plays a crucial role in shaping the learning process of the agent and 

guiding it towards the desired behavior. It quantifies the performance of the agent based on its actions and 

the current state of the environment. The goal is to design a reward function that encourages the agent to 

learn the desired movements and behaviors for the Nao robot. 

 

      In our project, we define the reward function to incorporate the concept of distance between the goal 

angle and the current angle of the Nao robot's joints in the virtual environment. We calculate the difference 

between the goal angle and the current angle and use it as a basis for assigning rewards. 

 

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =   |𝑔𝑜𝑎𝑙𝑎𝑛𝑔𝑙𝑒 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑎𝑛𝑔𝑙𝑒|                             (3.1) 

 

 

The reward function can be defined as in equation (3.2) [15]: 

 

       𝑟𝑒𝑤𝑎𝑟𝑑 =  𝑒−𝛼⋅𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒                                                            (3.2) 

 

      In Equation 3.2, α is a scaling factor that determines the influence of the distance on the reward. A 

higher α value results in a steeper reward decay as the distance increases, while a lower α value makes the 

reward decay more gradually. By using the exponential function, we ensure that the reward decreases 

exponentially as the distance between the goal and the current position increases. 
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      The purpose of this reward function is to encourage the Nao robot to move closer to the goal position, 

as it will receive higher rewards for smaller distances. This incentivizes the agent to learn movements that 

bring it closer to the desired goal and helps in training it to mimic human-like movements. 

 

 

 

 

3.4 Summary 

      Chapter 3 presents a comprehensive design for a system that integrates a Nao 6 robot with a Kinect v2 

sensor, aiming to replicate human movements with high precision. This intricate design encapsulates the 

interplay between sophisticated hardware components and advanced software algorithms, including 

mathematical models and deep learning. 

      The system's core is its ability to accurately track and translate human movements into robotic actions, 

ensuring high fidelity in tasks requiring dexterity and fine motor skills. By detailing the requirements, 

hardware architecture, and software strategies, including dataset utilization, neural network configurations, 

and the rationale behind choosing Mathematical Models over traditional kinematics and machine learning, 

the chapter lays a solid foundation for a future where robots can seamlessly mimic and assist in human-

centric tasks, demonstrating a significant leap in the field of robotics and human-robot interaction. 
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Chapter 4: Implementation 

 

4.1 Introduction 

 

       In this chapter, we provide an in-depth exploration of the practical implementation of the system 

outlined in Chapter 3. The implementation process encompasses the configuration of hardware components, 

the setup of software systems, and the execution of algorithms essential for enabling the Nao 6 robot to 

replicate human movements using the Kinect v2 sensor. We will delineate the steps taken, challenges faced, 

and solutions applied during this crucial implementation phase. 

 

4.2 Hardware Setup 

 

         The hardware setup for the system was a meticulous process, involving the assembly and 

configuration of the Latte Panda, Kinect v2 sensor, and Nao robot. This setup was integral to the successful 

implementation of the system, ensuring each component functioned correctly and communicated 

effectively. 

 

Step 1: Connecting Kinect to Latte Panda for Simulation 

 

Interconnection: Connect Kinect v2 special port in Kinect sensor and USB 3.0 cable to power supply 

adapter as show in figure 4-1                           
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Kinect for Windows SDK Installation: The Kinect for Windows SDK and necessary drivers were installed 

on the PC to facilitate the connection with the Kinect sensor. This setup enabled the capture and processing 

of motion data for model training.  

 

Step 2: Transitioning from PC to Latte Panda intel cherry trail z8350: the PC was used for training 

because it had more resources power. 

 

Preparing Latte Panda intel cherry trail z8350 with Windows 10 Home: The Latte Panda intel cherry 

trail z8350 was set up with Windows 10, optimized for the system's requirements. The operating system 

was chosen for its compatibility with the Kinect sensor and its ability to handle the computational needs of 

the system.  

 

Optimizing TensorFlow Model for Latte Panda: The trained TensorFlow model was transferred from the 

PC to the Latte Panda. This process involved not only moving the model files but also ensuring they were 

optimized for performance on the Latte Panda's hardware.  

 

Step 3: Setting Up Nao Robot and Establishing Connectivity  

 

Installing Choregraphe on PC/Latte Panda: Choregraphe software was installed for programming and 

controlling the Nao robot. This software provided a user-friendly interface for creating robot behaviors and 

ensuring seamless interaction with the system.  

 Figure 4-1 Kinect Interconnection 
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Establishing Wi-Fi Connectivity with Nao Robot: The Latte Panda was configured to connect with the 

Nao robot via Wi-Fi. This wireless setup facilitated real-time control and data exchange, crucial for the 

system's responsiveness and functionality. To get IP from Nao, hold the button as on the Figure 4.2 below: 

         In conclusion, the hardware setup process involved a strategic combination of simulation and model 

training using Webots and TensorFlow on a PC, configuring the Latte Panda with Windows 10 Home, and 

establishing a Wi-Fi connection with the Nao robot. This careful assembly and setup of the components laid 

the groundwork for the successful functioning of the system, paving the way for the effective 

implementation of the project objectives. 

 

 

 

 

4.3 Software Configuration 

 

       The software configuration phase was pivotal in the system's implementation, ensuring seamless 

integration and functionality of all software components. This phase encompassed the installation and setup 

of various tools, libraries, and frameworks on the Latte Panda and the PC.  

 

Figure 4-2 How to get Nao’s IP 
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4.3.1 Installing the required software 

Operating System Setup: The Latte Panda was configured with Windows 10 Home, chosen for its 

compatibility with the hardware components and suitability for the system's requirements. The PC was 

configured with Windows 10 Pro, providing a robust and reliable platform to support the development and 

simulation environment. Figure 4.3 shows the selection of Windows 10 Home 

 

 

 

TensorFlow Installation: Essential for machine learning tasks, TensorFlow was installed on both the Latte 

Panda and the PC to handle deep learning models and process data from the Kinect sensor.  

 

Webots Installation: Webots robotics simulation software was installed on the PC to facilitate a virtual 

testing environment, crucial for developing and refining the model without constant physical testing. Figure 

4.4 shows the Webots simulator window configured with Nao robot 

 Figure 4-3 Windows 10 Home 
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Kinect Software Setup: The Kinect for Windows SDK and necessary drivers were installed on the PC, 

enabling proper communication and data capture from the Kinect v2 sensor. Figure 4.5 explains that 

everything works well in Kinect for Windows SDK. 

 

 

 

 

 

 Figure 4-4 Webots Testing 

Figure 4-5 Kinect Setup [23] 
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Rabbit MQ Installation: Rabbit MQ was installed to facilitate data transfer from the Kinect to the Latte 

Panda. This message broker was essential for reliable and efficient communication within the system. 

Figure 4.6 shows the installing process of RabbitMQ Server. 

 

 

Choregraphe Installation: Choregraphe was installed to test all Nao motors if they work well. First 

connect to Nao by setting its IP, second, use predefined movements in Choregraphe, Finaly drag the move 

block to the workplace and play. Look at figure 4.7. 

 Figure 4-6 RabbitMQ Installation 
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Figure 4-7 Choregraphe 

 

4.3.2 Setting up the development environment 

  

 

Configuring Nao with Webots: Nao was set up in the Webots platform to simulate its movements and 

interactions. This step was crucial for testing and validating the inverse kinematics models and the overall 

system behavior.  

 

Installing Python 2.7 and C# with Required Libraries:  

 

 Python 2.7 Installation and Library Setup: Python was installed as a primary programming 

language for the system due to its versatility and support for a wide range of libraries. The 

installation included several specific libraries to enhance its functionality: 

 

o naoqi: it is considered as driver to fully control Nao joints and sensors 

o Pika 1.1.0: Pika, a RabbitMQ client library, was installed to provide an interface for Python 

applications to connect and interact with RabbitMQ, enabling efficient message queuing and 

dispatch.  
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o Pandas (as pd): Pandas, a powerful data analysis and manipulation library, was incorporated 

for handling and processing structured data. It was imported as 'pd' for ease of use and 

readability in the code.  

o NumPy: This library was used for its extensive support for large, multi-dimensional arrays 

and matrices, along with a collection of mathematical functions to operate on these arrays.  

o Math: is a standard library module that provides mathematical functions and operations. It 

includes a variety of functions for basic arithmetic operations, as well as more advanced 

mathematical functions. We need from library trigonometric functions to implement inverse 

kinematics. 

o TensorFlow Agents (Tf agent): A specialized TensorFlow library for reinforcement 

learning, TensorFlow Agents was included to implement and run the Deep Deterministic 

Policy Gradient (DDPG) algorithm, crucial for training the system in replicating human 

movements.  

 

 C# Installation for Kinect Data Capture: C# was installed to handle the Kinect data capture. C# 

is well-suited for interacting with the Kinect SDK and efficiently processing the sensor data. The 

choice of C# for this task was based on its robustness and seamless integration with the Kinect for 

Windows SDK, ensuring reliable and real-time capture of movement data from the Kinect sensor. 

 

4.3.3 System Software Interconnection Implementation 

 

4.3.3.1 Read Body Tracking Data (C#) 

 Kinect for windows SDK provides C# code to read Body Tracking data. We can install it as .sln 

project and debugging it in Visual Studio. Figure 4.8 explain how to install .sln Body Basics-WPF 

 

 To deal with Kinect v2, we should import Microsoft.Kinect. 

 The code performs 3 main missions: 

 

 Figure 4-8 Body Basics-WPF [23] 
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1. Initialize Kinect 

                   

Code Snippet  1 

 

2. Declare bones list 

                   

Code Snippet  2 

 

 

3. Read skeleton data (frame by frame) 

                   

Code Snippet  3 



48 

 

 

4.3.3.2 Move Body Tracking Data (Rabbit MQ) 

Send:  

 Body tracking data sent from C# Body Basics project to python. 

 Required library: RabbitMQ.Client  

                                

Code Snippet  4 

 

 

Receive:  

 Body tracking data received form C# to python environment 

 Required library: pika 

                          

Code Snippet  5 
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4.3.3.3 Set Nao Angles  

      As we will explain later, Nao angles will be set based on Inverse Kinematics from Kinect body tracking 

data or a mathematical model. The set position python code is the same for both algorithms. 

                     

Code Snippet  6 

 

4.3.4 Inverse kinematics Implementation 

     Equations for Nao joints (θ) and Kinect Skeleton (sides of a triangle) were developed and integrated into 

the system. This involved creating mathematical models and algorithms to accurately translate human 

movements captured by Kinect into robotic movements. 
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 Head Pitch 

 

                                     Code Snippet  7 

 

 Sholder Pitch 

 

                                              Code Snippet  8 

 

 Sholder Roll 

 

                                           Code Snippet  9 
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 Elbow Yaw 

 

                                                     Code Snippet  10 

 

 Elbow Roll 

 

                                                  Code Snippet  11 
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 Hip Roll and Hip Pitch 

 

                                  Code Snippet  12 

 

 

4.3.5 DDPG Implementation and training 

4.3.5.1 Description 

 

      In our training approach, we have selected inverse kinematics to serve as the reward function within the 

DDPG algorithm (see Figure 4.9). The dataset itself forms the environment for the learning process. 

Initially, the agent critic commences with a zero reward and undergoes updates grounded in the imitation 

of inverse kinematics. As training progresses, the agent learns to optimize its actions based on the provided 

inverse kinematics rewards, effectively refining its performance in the given environment.  



53 

 

 

 

 

4.3.5.2 Kinect v2 Dataset Selection for Training  

 

       For training our system, we selected the "3D Kinect Total Body Database for Back Stretches,"[26] a 

specialized dataset captured using the Kinect V2 sensor. This dataset's specifications are particularly suited 

for our project requirements [26]:  

 

 Data Collection: Captured as a set of X, Y, Z coordinates at 60 fps during six different yoga-inspired 

back stretches, providing a detailed representation of human back movements.  

 Dataset Composition: Contains 541 files, each detailing position and velocity for 25 body joints, 

including the head, neck, spine, shoulders, hips, wrists, knees, and feet.  

 Standardization and Consistency: The Kinect was positioned at a height of 2 ft and 3 in, with 

subjects 6.5 ft away from the camera, ensuring consistent data capture. Each participant completed 

10 repetitions of each stretch, providing a rich set of repeated movement data.  

 Participant Demographics: Data was collected from 9 adults aged 18-21, including 4 females and 

5 males, offering a diverse range of motion data.  

 Pre-processing: Velocity data was calculated using a discrete derivative equation, which was 

applied to all body parts and axes individually, enhancing the data's utility for motion analysis.  

 

 

Figure 4-9 Training Approach 
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4.3.5.3 DDPG Implementation 

 Required libraries: TensorFlow, tf_agents, math, pandas, numpy 

 Procedures 

1. Initial procedure 

2. Reset Procedure 

 

                                                Code Snippet  14 

3. Update target position Procedure 

 

                                               Code Snippet  15 

 

 

 

 

 

Code Snippet  13 
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4. Step Procedure 

 

                                                 Code Snippet  16 

 

5. Calculate Reward Procedure 

 

                                                Code Snippet  17 

 

4.4 Challenges 

 

         The implementation of the system presented several significant challenges that needed to be addressed 

to ensure its successful operation. These challenges were critical in understanding the limitations and 

capabilities of the system and in guiding future improvements.  

 

1. Balancing 

 

Challenge: One of the primary challenges faced was maintaining the balance of the Nao robot while 

replicating human movements. Unlike humans, who have a highly developed sense of balance, robots like 

Nao require complex algorithms to remain stable, especially when performing dynamic movements or 

standing on one leg.  
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Approach: We overcome this challenge partially, which means in simple movements like arm and head 

movements, we overcome by maintaining the center of mass so that it can be balanced. Any hand or head 

movement would not have affected the balance significantly. All of these achieved by inverse kinematics 

approach.   

 

2. Degree of Freedom between Nao and Human  

 

Challenge: The discrepancy in the degree of freedom between humans and the Nao robot presented a 

significant challenge. Humans have a vast range of motion compared to the Nao robot, which has limited 

degree of freedom in its joints.  

Approach: To overcome this, we developed inverse kinematics mathematical model that could translate 

the complex human movements into simpler motions that the Nao robot could perform. This translation 

process involved determining the most critical aspects of the human movement and simplifying them to fit 

the robot's capabilities without losing the essence of the action. We implemented suitable mapping between 

the Kinect skeleton and Nao joints through chain level (arm, head and leg), so that Nao can imitate human. 
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Chapter 5: Testing and Results 

 

 5.1 Introduction  

 

         Chapter 5 is dedicated to the testing phase of the system, focusing on evaluating each hardware 

component and the overall interconnection within the system. This stage is crucial to ensure that all 

parts function correctly and cohesively.  

 

 5.2 Hardware Testing  

 

a. Kinect v2  

 

       Testing the Kinect v2 involved verifying its ability to accurately capture motion data. This 

included assessing the sensor's responsiveness, precision in tracking movements, and consistency 

in different lighting conditions. Sometimes glitches appear in reading body data because of the 

difficulty in analysis of the image depth as shown in Figure 5.1.  

                  

Figure 5-1 Kinect v2 glitch (example) 

 

b. Nao Robot  

 

      Tests for the Nao robot focused on its movement replication accuracy, joint articulation, balance, 

and response time to commands received from the Latte Panda.  
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c. Latte Panda  

 

      The Latte Panda was tested for its computing performance, especially its ability to process and 

relay motion data to the Nao robot efficiently. Stability and reliability of the operating system and 

installed software were also evaluated.  

 

d. System Interconnection  

 

     The final part of the testing phase involved evaluating the system's overall interconnection. This 

included testing the communication flow between the Kinect v2, PC/Latte Panda, and Nao robot, 

ensuring seamless data transfer and synchronization across the system.  

 

5.3 Software Testing  

 

1. Testing of inverse kinematics involved validating the equations and algorithms used for translating 

human movement into robotic actions. This included simulations to ensure the movements were 

accurately mirrored by the robot.  

 

2. Webots was tested for its simulation capabilities, ensuring accurate rendering and physics simulation of 

the robot's movements and environment interactions.  

 

 

3. Choregraphe software was tested for its functionality in programming and controlling the Nao robot. 

We used Choregraphe to test the final software (inverse kinematics and trained model), because it 

simulates the real environment of Nao. This included validating the user interface, motion creation tools, 

and the ability to upload scripts to the robot. Figure 5.2 shows that Choregraphe works well. 
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4. Libraries in C# and Python were tested for their roles in data capture and processing. For C#, the focus 

was on Kinect data acquisition, while for Python, the emphasis was on data analysis, machine learning 

tasks, and communication with other system components. 

 

 

 

 

 

 

 

Figure 5-2 Choregraphe Testing 
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5.4 Results  

5.4.1 Model training results 

      Initially, our project aimed to leverage machine learning techniques, including the Deep Deterministic 

Policy Gradient (DDPG) algorithm, in conjunction with our implementation of the Inverse Kinematics 

approach. This dual approach was designed to achieve two primary objectives: ensuring effective balancing 

and addressing challenges associated with the Nao robot's degrees of freedom. 

  

      However, despite our efforts to fully implement and train the DDPG algorithm, we encountered 

significant difficulties. The utilization of DDPG resulted in suboptimal performance, characterized by 

erratic and random movements. Despite extensive training with large datasets, the algorithm struggled to 

produce coherent and accurate motion plans. 

 

      We believe that the problem is implementing of the reward function, represented by inverse kinematics 

imitation and the pressure of the Nao feet to ensure balancing. This task is very complicated for training, 

which needs more resources and a huge dataset. 

  

      As a result of these challenges and the unsatisfactory results obtained with the DDPG algorithm, we 

decided to pivot our approach. We opted to prioritize the development of invers kinematics mathematical 

model to address the complexities inherent in our teleoperation system. While acknowledging the 

limitations of a mathematical model, including its inability to capture all nuances of human movement, we 

concluded that it offered a more viable solution than persisting with the problematic outcomes of the DDPG 

approach. 

  

      By focusing on the development of a robust inverse kinematics mathematical model, we aim to 

overcome the shortcomings encountered with the DDPG algorithm. Despite its inherent limitations, we 

believe that the mathematical model provides a more stable and predictable framework for controlling the 

Nao robot's movements, ultimately offering superior performance compared to the unpredictable behavior 

observed with DDPG. 
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5.4.2 Inverse Kinematics results 

      We have achieved favorable outcomes in Inverse Kinematics, enabling real-time and precise imitation 

of human head, arms, and legs movements: 

 Response time: 200 – 500 milliseconds 

 Accuracy: in terms of centimeters, we measured the results visually. 

 

Evaluation Characteristics: 

o Angle: Nao motors range 

o Mapping: How much Kinect skeleton can match Nao chains 

o Balancing: Distribution of the center of gravity in the feet of Nao 

o Complex: some movements depend on each other, the movement composed of more than one chain. 

o Accuracy: final form and the path of imitation 

 

Table 5.1 is the rubric of the evaluation characteristics in inverse kinematics imitation results: 

 

Evaluation 

Characteristics 

A B C 

Angle Accurate within Nao motors 

range 

Reasonable but not perfect Inaccurate and outside range 

Mapping Good match Nao chains Closely matches Nao chains 

with some variations 

Significant mismatches 

Balancing Well-distributed and stable Fair distribution, occasional 

instability 

Poor distribution, instability 

Complex Smooth coordination of 

complex movements 

Some movements well-

coordinated 

Complex movements are often 

disjointed 

Accuracy Precise imitation of final form 

and imitation path 

Resembles final form with 

some variations 

Significant deviations from 

final form 

Table 5-1 rubric of evaluation characteristics 

 

      We have applied many tests for Inverse Kinematics. Each test performed 5 times, we chose two main 

types of tests, first Test performed on Nao chain, the results of chain level shown in table 5.2, the second 

test is on poses of the Kinect dataset that we used and its results are in table 5.3. 
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Chain Move Evaluation Characteristics Extra 

Mapping Balancing Angle Complex Accuracy 

Arm Up B A A B B The elbow is bent more than expected. This 

movement is complex (shoulder and elbow). 

Down A A A A A This is default position of arm for both human and 

Nao. 
Left Arm Left A A A A A Simple movement, no limitations. 

Right A A B A B Nao LsholderPith angle cannot bend to the right at 
the as the same as a human, the difference at least 
20°. 

Right Arm Left A A B A B Nao RsholderPith angle cannot bend to the left at 
the as the same as a human, the difference at least 
20°. 

Right A A A A A  Simple movement, no limitations. 
 Head Up A A B A A Human head can bend backward more than Nao 

Down A A B A A Human head can bend forward more than Nao 
Left C -- -- -- -- Kinect v2 skeleton does not contain anything to 

indicate that Nao looking to the left. 
Right C -- -- -- -- Kinect v2 skeleton does not contain anything to 

indicate that Nao looking to the right. 
Leg Forward A C A B B Nao falls down. 

Backward A B A B B Leg does not move because of pressure. 

Hip Forward A C A B B Hole body lying forward. 
Backward A C A B B Body falls down backwards. 

Left Hip Left A B A A A Both feet stuck on the ground because of the center 

of mass in Nao is various form human. 

Right A B A A A Motion not smooth because of the gravity. 
Right Hip Left A B A A A Motion not smooth because of the gravity. 

Right A B A A A Both feet stuck on the ground because of the center 

of mass in Nao is various form human. 

Table 5-2 Chain level imitation testing results 
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Pose Evaluation Characteristics Extra 

Mapping Balancing Angle Complex Accuracy 

Y A A B B B The elbow is bent more than expected. 

SUMO A B B B B The hand was not placed on the knee, also 

sometimes the robot falls on the ground. 

MERMAID B B B C C Nao robot rise his hand efficiently. The problem 

is in the leg and hip chains, this dual movement 

causes overlap in overall imitation.  

SEATED A C A C C This is the most complex pose. The problem is 

that the Nao dimensions various from Kinect 

skeleton dimensions. For example, if a human 

chair height is 50cm, the corresponding chair for 

Nao is 15cm. 

TOWEL A A B B B Nao HipPitch angle cannot bend forward as the 

same as a human, the difference at least 15°. 

WALL A A A A A This pose imitated perfectly 

Table 5-3 Kinect dataset poses testing results 
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There are some tests form results as shown in figure 5.3:  

 

 

 

 

 

 

 

 

 

 Figure 5-3 Project Testing 
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Chapter 6: Conclusion and future work 

 

6.1 Conclusion  

 

       This project successfully developed and implemented a system integrating a Nao 6 robot, Kinect v2 

sensor, and PC/Latte Panda to mimic human movements. The hardware components, including the Kinect 

v2 sensor, Nao robot, and Latte Panda, were meticulously assembled and rigorously tested to ensure optimal 

performance and synchronization. In the software domain, key components such as inverse kinematics, 

Webots simulation, Choregraphe programming, and various C# and Python libraries were methodically 

tested and refined.  

      The system's ability to accurately replicate human movements showcases the potential of robotics in 

various applications. The successful integration of the hardware and software components demonstrates the 

feasibility and effectiveness of such complex robotic systems.  

 

6.2 Future Work  

 

       Looking forward, there are several avenues for future development and enhancement: 

 

 Advanced Learning Algorithms: Exploring machine learning algorithms and Deep learning could further 

improve the system's accuracy and efficiency in mimicking human movements.  

 

Developing Deep learning approach: Updating the reward function in DDPG algorithm and find sponsor 

for the project to provide the required resources for training, in a way that ensures achieving balancing and 

accurate imitation between human and humanoid. 

 

Broader Movement Repertoire: Expanding the system to replicate a wider range of human movements, 

including more nuanced and subtle gestures, would increase its applicability.  

 

Real-World Applications: Applying the system in real-world scenarios, such as in rehabilitation therapy 

or educational settings, would provide valuable insights into its practical utility and areas for improvement.  
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User Interaction and Feedback: Integrating user feedback mechanisms could make the system more 

interactive and user-friendly, adapting to individual user’s needs and preferences.  

 

      In conclusion, this project represents a significant step of robotics and human-robot interaction. The 

lessons learned and the foundation established here pave the way for further innovations and applications 

in this exciting and rapidly evolving field. 
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