
1

Palestine Polytechnic University

College of IT and Computer Engineering

Department of Computer Engineering

Kinect based Teleoperation of a Humanoid Robot

Supervisor

 Dr. Hashem Tamimi

 Team Members

Mohannad Albustanji

Eid Sonkrot

Huthaifa Rabae

2023-2024

2

Abstract

 Teleoperation of robots has become increasingly important in a wide range of industries and

applications, from manufacturing and logistics to medicine and disaster response. The ability to remotely

control robots to perform complex tasks can significantly improve efficiency and safety, particularly in

hazardous or hard-to-reach environments. The goal of this project is to develop a teleoperation system that

can accurately replicate human movements using a Kinect sensor and a Nao robot. The system utilizes

inverse kinematics to enable the robot to mimic human movements.

 Specifically, the system will leverage the Microsoft Kinect V2 sensor to capture 3D skeletal joint data

in real time, which will be processed and used to control the movements of the Nao robot. Choosing Kinect

v2 over image processing to extract human skeleton offers the benefits of dedicated depth sensing, accuracy,

and ease of integration.

 We investigated two approaches to translate the human poses into the corresponding command on the

robot joint. The first one is based on Deep Learnings and the second one is based on inverse kinematics. In

the implementation, we decided to proceed with the second approach due to the time required to complete

the graduation project. The Inverse Kinematics approach works on a chain level such that each Kinect

skeleton chain is converted into Nao body chain. We work on 3 main chains in this project; head, arm and

leg.

 As the result, we were able to make the Nao robot imitate human in many poses and situations. Success

was greater in individual chain movements than in complex movements and poses just as walking, mermaid

and seated, with small errors in terms of centimeters,

3

Acknowledgment

 In the name of “Allah”, the Most Gracious, the Most Merciful, we praise and thank Allah for all the

blessings. Praise be to “Allah”, who gave us the knowledge, effort, and patience to complete this project.

 First, we would like to thank our families, our mothers, fathers and brothers, who are our first supporters.

We thank our distinguished teachers who did not spare us any information or advice and did not hesitate to

answer our questions. We especially mention the supervisor of our project, Dr. Hashem Al-Tamimi, who

was with us in all stages of the project and made an effort to take great in choosing the best options to

achieve the project goals. We thank our colleagues who strengthened the spirit of competition within us.

 Finally, thanks to Palestine Polytechnic University and all its employees, administrators and academics

for what they have provided and continue to provide in developing this lofty scientific edifice.

4

Contents

Chapter 1: Introduction .. 8

1.1 Project Description ... 8

1.2 Benefits .. 9

1.3 Report outline ..10

Chapter 2: Background ...11

2.1 Overview ...11

2.2 Hardware background ..11

2.2.1 Humanoid robot (Nao) ..11

2.2.2 Microsoft Kinect v2 ..14

2.2.3 Microcontroller (Latte panda Intel Cherry Trail Z8350) ...15

2.3 Software Background ..18

2.3.1 Programming Languages ...18

2.3.2 Simulator ..18

2.4 Algorithms and theoretical background ..19

2.4.1 Inverse Kinematics ..19

2.4.2 Deep Reinforcement learning ..22

2.4.3 DDPG ...24

2.5 Literature Review ..26

2.6 Summery ...28

Chapter 3: System Design ...29

3.1 Requirements ...29

3.2 Hardware design ..30

3.2.1 System overview ...30

3.2.2 Block diagram ...31

5

3.2.3 System Pseudo Codes ..31

3.3 System software design..33

3.3.1 Inverse Kinematics ..33

3.3.2 Dataset ..34

3.3.3 Neural Network ...36

3.4 Summary ...38

Chapter 4: Implementation ..39

4.1 Introduction ...39

4.2 Hardware Setup ...39

4.3 Software Configuration ..41

4.3.1 Installing the required software ...42

4.3.2 Setting up the development environment ...45

4.3.3 System Software Interconnection Implementation ...46

4.3.4 Inverse kinematics Implementation ...49

4.3.5 DDPG Implementation and training ..52

4.4 Challenges ...55

Chapter 5: Testing and Results ..57

5.1 Introduction ...57

5.2 Hardware Testing ..57

5.3 Software Testing ..58

5.4 Results ...60

5.4.1 Model training results ..60

5.4.2 Inverse Kinematics results ...61

Chapter 6: Conclusion and future work ...65

6.1 Conclusion...65

6.2 Future Work ..65

6

List of Figures

Figure 2-1 Nao Components ...13

Figure 2-2 Nao Joints ..14

Figure 2-3 Microsoft Kinect ..15

Figure 2-4 Latte Panda intel cherry trail z8350 Components ...17

Figure 2-5 Kinect Skeleton ..19

Figure 2-6 Joints with Angles ..20

Figure 2-7 Deep Reinforcement Learning..23

Figure 2-8 Deep Neural network ...24

Figure 3-1 System Diagram...30

Figure 3-2 System Block Diagram ..31

Figure 3-3 Stretches included in Dataset ...35

Figure 3-4 Actor and Critic Networks (RNN) ...37

Figure 4-1 Kinect Interconnection ...40

Figure 4-2 How to get Nao’s IP ...41

Figure 4-3 Windows 10 Home ...42

Figure 4-4 Webots Testing ...43

Figure 4-5 Kinect Setup ...43

Figure 4-6 RabbitMQ Installation ..44

Figure 4-7 Choregraphe ..45

Figure 4-8 Body Basics-WPF ...46

Figure 4-9 Training Approach ...53

Figure 5-1 Kinect v2 glitch (example) ...57

Figure 5-2 Choregraphe Testing ..59

Figure 5-3 Project Testing ...64

7

List of Tables

Table 1-1 Project Schedule ..10

Table 2-1 Literature reviews comparison ...28

Table 5-1 rubric of evaluation characteristics...61

Table 5-2 Chain level imitation testing results ...62

Table 5-3 Kinect dataset poses testing results ..63

8

Chapter 1: Introduction

 The development of motion detection mechanisms enhances the development of new applications for

human motion analysis and reproduction. Kinect sensor and humanoid robot are two different technologies

with various trends and applications. We plan to create a new trend with this combination, developing an

interface whose applications will have future implications.

1.1 Project Description

 The proposed system is designed to capture human motion data using a Kinect sensor and reproduce

the movements in real-time using NAO robots. The system consists of three main components: the Kinect

sensor, the microcontroller, and the NAO robot.

 The Kinect sensor is a device that uses depth sensing technology to capture detailed motion data from

a human performer. Infrared wave is emitted and its reflection is detected by the Kinect sensor from the

environment [7], creating a 3D model of the performer's body. The sensor can track the position and

orientation of the performer's joints, providing information about their movements.

 The motion data captured by the Kinect sensor is transmitted to a microcontroller using a wired USB

3.0 cable. The microcontroller processes the data and sends it to the NAO robot, which is equipped with

software that can analyze and reproduce the movements in real-time. The NAO robot is a humanoid robot

developed by Softbank Robotics, designed to mimic human movements and interact with humans in a

natural way. The robot is equipped with sensors and cameras that allow it to perceive its environment and

respond to external stimuli.

 The system can be used to capture a wide range of human movements, from simple gestures to complex

dance routines. The NAO robot can reproduce the movements in real-time, allowing for immediate feedback

and analysis [8].

file:///C:/Users/mosaa/Downloads/Graduation%20Project.docx%23seven

9

 Overall, the proposed system offers a cost-effective and efficient solution for capturing and analyzing

human motion data. The combination of the Kinect sensor and the NAO robot provides a flexible and

versatile platform for real-time reproduction of motion data, with potential applications in a wide range of

industries.

1.2 Benefits

1. To deliver an affordable and efficient method for capturing and analyzing human motion data

utilizing the Kinect sensor and NAO robot.

2. To foster the development of innovative applications in areas like physical therapy, sports training,

and entertainment, focusing on human motion analysis and replication.

3. To bolster research in human-computer interaction by offering a dynamic and adaptable platform to

explore interactions between humans and robots.

4. To enhance the application of robotics and AI in educational settings, providing practical learning

opportunities for students and researchers in robotics and computer science.

10

1.3 Report outline

Week 1 start from 1 Sep

Table 1-1 Project Schedule

11

Chapter 2: Background

2.1 Overview

 This chapter serves as an introductory overview of the essential components and theoretical foundations

that shape our project. We will start by delving into the theoretical background, emphasizing recent

advancements in trigonometric equations and mathematical modeling.

 Our project heavily relies on these mathematical principles, and a comprehensive grasp of their

fundamentals is imperative for its successful execution. Specifically, we will delve into the latest algorithms

and techniques in mathematical modeling, essential for empowering our teleoperation system to function

with precision and intricacy. This chapter aims to furnish readers with a solid understanding of the

fundamental concepts and methodologies employed in our project, laying the groundwork for a more

detailed exploration of our system in subsequent chapters

2.2 Hardware background

2.2.1 Humanoid robot (Nao)

NAO is a versatile humanoid robot created by SoftBank Robotics. NAO has become a benchmark in

the world of research and education with its advanced sensors and interactive capabilities, NAO can

adapt to any environment and interact with people in a natural way. It is fully programmable and

customizable, making it possible to create application solutions that enable it to perform tasks in

different areas based on all of his capabilities, including dialogue and motion [19].

Nao hardware specifications:

1. Dimensions:

 Height: 58 cm (22.8 inches)

 Width: 27 cm (10.6 inches)

 Depth: 22 cm (8.7 inches)

 Weight: Approximately 4.3 kg (9.5 lbs.)

12

2. Processing Unit:

 Intel Atom Z530 Processor (1.6 GHz)

3. Memory:

 1 GB DDR2 RAM

4. Storage:

 2 GB Flash Memory

5. Sensors:

 Two HD cameras (resolution: 1280x960 pixels)

 Ultrasonic sensors for obstacle detection

 Touch sensors on the head, hands, and feet

 Inertial measurement unit (accelerometer and gyro-meter)

 4 Microphones for sound localization and voice recognition

6. Connectivity:

 Wi-Fi (IEEE 802.11 b/g)

 Ethernet port (100 Mbps)

 USB 2.0 port

7. Power:

 Battery: Lithium-ion battery

 Battery capacity: 4800 mAh with approximately 60-90 minutes of continuous operation

 Charging Time: Approximately 90 minutes

8. Operating System:

 Aldebaran NAOqi OS (based on Linux)

9. Actuators:

 25 Degrees of Freedom (DOFs) for joint movement

 Electric motors for actuation, including head, arms, hands, legs, and feet

10. Additional Features:

 Text-to-speech synthesis

 Voice and sound recognition

 LED lights for visual feedback

 Speaker for audio output

13

Figure 2.1, shows Nao Components:

Figure 2-1 Nao Components [19]

14

The following image (Figure 2.2) explain Nao joints names, Field of motion and Direction

2.2.2 Microsoft Kinect v2

 Kinect v2 is a depth-sensing camera developed by Microsoft, primarily used for capturing skeletal joint

data and depth information by a set of sensors shown in Figure 2.3. It offers an enhanced user experience

in motion tracking, gesture recognition, and 3D depth sensing. The operation principle of Kinect v2 is ToF

(Time-of-Flight) with modulation up to 130MHz, acquisition rate = 30Hz. In this section, we will explore

the main components that Kinect works with [22][23].

1. Depth Sensing: Kinect v2 utilizes an infrared depth sensor that captures the depth information of

the surrounding environment. It can measure the distance between the sensor and objects in its field

of view. It provides a depth resolution of up to 512x424 pixels, Field of view (H=70.6o x V=60o),

depth range (0.5-4.5) m, with ability to capture depth information with sub-millimeter precision

[23].

Figure 2.5 Nao Component [20]

Figure 2-2 Nao Joints [28]

file:///C:/Users/mosaa/Downloads/Graduation%20Project.docx%23twenty

15

2. Color Camera: In addition to depth sensing, Kinect v2 is equipped with a high-definition RGB

color camera. It captures color images with a resolution of 1920x1080 pixels, FOV (H=84.1o x

V=53.8o), enhancing the visual fidelity of the captured data [23].

3. Infrared Camera: Kinect v2 includes an infrared (IR) camera that works in tandem with the depth

sensor. It measures the distance between the camera and objects by projecting IR patterns and

analyzing the distortion caused by their interaction with the environment [22].

4. Microphone Array: The device incorporates a built-in microphone array that enables voice

recognition and audio processing. This feature facilitates natural language interaction and voice

commands [23].

2.2.3 Microcontroller (Latte panda Intel Cherry Trail Z8350)

 The goal of using a microcontroller is processing data (send, process and delete). At the beginning we

chose Raspberry Pi 4 model B, but we did not continue with it because the architecture of its processor

which is ARM architecture. The problem is the Kinect for Windows SDK, which worked only on x86

architecture, so we looked for a microcontroller whose processor is based on x86. We chose Latte Panda

Intel Cherry Trail Z8350 because it achieved that requirement. A Latte Panda is a complete Windows 10

single board computer. It has everything a regular PC has and can do anything that a regular PC does. It is

Figure 2-3 Microsoft Kinect

16

compatible with almost every gadget like printers, joysticks, cameras and more. Any peripherals that work

on PC will work on a Latte Panda. A Latte Panda comes pre-installed with a full edition of Windows 10

Home edition, so users can run powerful tools such as Visual Studio, NodeJS, Java and more.

Latte panda Specifications [24]

According to [24], the following is the microcontroller specification

1. Processor:

 Intel® Cherry Trail Z8350 Quad Core @ 1.44 GHz

2. Co-processor Arduino integrated:

 ATmega32u4

3. Operation System:

 Windows 10

4. Memory:

 (DFR0418, DFR0444 2GB DDR3L), (DFR0419 4GB DDR3L)

5. Storage Capability:

 (DFR0418, DFR0444 32GB), (DFR0419 64GB)

6. GPU:

 Intel HD Graphics, 12 EUs @ 200-500Mhz, single-channel memory

7. Connectivity:

 USB 3.0 port and two USB 2.0 ports

 Wi-Fi 802.11n 2.4G

 Bluetooth 4.0

 Supports 100Mbps Ethernet

8. Video output

 HDMI and MIPI-DSI

9. Onboard touch panel overlay connector

10. GPIO: 20 digital IO pins

11. Power:

 5V/2A Power

12. Dimension of board

 88mm x 70mm/3.46 x 2.76"

17

13. Packing Size:

 110mm x 94mm x 30mm/4.33 x 3.70 x 1.18"

14. N.W.: 55g

15. G.W.: 100g

16. Included:

 Latte Panda 4G/64GB

 WiFi antenna

 Figure 2.4 Shows the Latte panda microcontroller components.

Figure 2-4 Latte Panda intel cherry trail z8350 Components [24]

18

2.3 Software Background

 The software component of our project plays a crucial role in processing the data from the Kinect sensor

and controlling the Nao robot's movements. This section provides an overview of the algorithms,

programming languages and frameworks used in the development of our software.

2.3.1 Programming Languages

 For our project, we have decided to use Python as the primary programming language (for Inverse

Kinematics and deep learning). Python is a popular language for scientific computing, data analysis, and

artificial intelligence due to its simplicity, readability, and vast library support. Also, we have decided to

use C# to read depth data from Kinect sensor.

2.3.2 Simulator

 Webots is a robotics simulation software widely used in both academia and industry for robotics and

machine learning applications. It offers a virtual environment where developers can design, program, and

test their robot models before implementing them in real life [10]. Key features of Webots include:

1. Realistic Physics Simulation: Webots provides a realistic simulation of robot mechanics and

environmental interactions, essential for accurate testing of control algorithms.

2. Versatile Environment Customization: Users can design a variety of custom environments in

Webots, allowing for extensive testing of robot performance under different conditions.

3. Compatibility with Machine Learning Frameworks: Webots supports integration with popular

machine learning platforms like TensorFlow, enabling the development and testing of advanced

robot control algorithms.

4. Open-Source Availability: As an open-source platform, Webots allows for code modifications

and adaptations to fit specific project needs.

file:///C:/Users/mosaa/Downloads/Graduation%20Project.docx%23ten

19

2.4 Algorithms and theoretical background

 In this section we will explain the algorithms and theoretical background of Inverse Kinematics and

Machine learning approaches.

2.4.1 Inverse Kinematics

 Inverse kinematics refers to the mathematical process of determining the joint parameters that will

position a humanoid robot's limbs in a desired configuration. In the context of both humans and humanoid

robots, inverse kinematics is crucial for planning and controlling movements. It involves calculating the

joint angles or positions as shown in Figure 2.5 required to achieve a specific end-effector position or

orientation. Θ is the angle calculated by Inverse Kinematics approach form joints positions in 3D space

(X,Y,Z).

 The given mathematical model comprises a series of computations aimed at explain the angles of

different joints within a robotic framework. These mathematical calculations constitute fundamental

Figure 2-5 Kinect Skeleton

20

elements in teleoperation systems, enabling management of robotic motion. Specifically, the model

delineates the following functionalities:

 The explanation provided in Figure 2.6 aims to enhance the clarity of our calculations. By focusing on

the relationship between the three joints: shoulder, elbow, and wrist, we can observe two fixed distances:

the Upper Arm and forearm lengths. Leveraging this fixed aspect, we can construct a triangle utilizing these

lengths alongside other non-fixed distances. Employing inverse trigonometric functions, such as arctan,

allows us to determine the angles at which different motors need to rotate. This approach facilitates a deeper

understanding of the mechanics involved in coordinating the movements of these joints.

Figure 2-6 Joints with Angles

1. Shoulder Pitch Computation (Right and Left): These calculations illustrate the pitch

angle of each shoulder, considering their spatial coordinates within a three-dimensional framework.

We determine the pitch motors utilizing both the Elbow and Shoulder joints, as indicated in

Equations (2.1) and (2.2).

21

 Case (Elbowy < Shouldery):

𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑃𝑖𝑡𝑐ℎ(𝜃) = tan−1 (
|𝐸𝑙𝑏𝑜𝑤𝑦−𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑦|

|𝐸𝑙𝑏𝑜𝑤𝑧−𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑧|
) (2.1)

 Case(Elbowy>=Shouldery):

𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑃𝑖𝑡𝑐ℎ(𝜃) =
𝜋

2
− tan−1 (

|𝐸𝑙𝑏𝑜𝑤𝑧−𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑧|

|𝐸𝑙𝑏𝑜𝑤𝑦−𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑦|
) (2.2)

2. Shoulder Roll Computation (Right and Left): These computations elucidate the roll angle of each

shoulder. Furthermore, in determining the shoulder roll, we employ both the Pitch of the Elbow and

the Shoulder. These calculations entail a singular case, as demonstrated in Equation (2.3).

 𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑅𝑜𝑙𝑙(𝜃) = tan−1 (
|𝐸𝑙𝑏𝑜𝑤𝑥−𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑥|

|𝐸𝑙𝑏𝑜𝑤𝑧−𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑧|
) (2.3)

3. Elbow Yaw Computation (Right and Left): This facet of the model computes the yaw angle for

each elbow, integrating factors such as the shoulder pitch and the spatial alignment of the elbow

concerning the shoulder, as depicted in Equation (2.4).

 𝐸𝑙𝑏𝑜𝑤𝑌𝑎𝑤(𝜃) = − tan−1 (
|𝑊𝑟𝑖𝑠𝑡𝑧−𝐸𝑙𝑏𝑜𝑤𝑧|

|𝑊𝑟𝑖𝑠𝑡𝑦−𝐸𝑙𝑏𝑜𝑤𝑦|
) + 𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑃𝑖𝑡𝑐ℎ(𝜃) (2.4)

4. Elbow Roll Computation (Right and Left): These calculations ascertain the roll angle for each

elbow, taking into account the positions of the elbow joints alongside other pertinent factors.

Furthermore, the wrist joint is factored into the analysis. We opt to utilize the Shoulder Pitch angle

since the Yaw motors are contingent on Pitch. Although roll could serve as an alternative, Pitch is

favored due to its computational simplicity, particularly considering the complexity of the

calculations. Hence, four Equations (2.5, 2.6, 2.7, and 2.8) are necessary to address these

complexities.

 𝑈𝑝𝑝𝑒𝑟 𝐴𝑟𝑚 = √(𝑆ℎ𝑜𝑙𝑑𝑒𝑟𝑦 − 𝐸𝑙𝑏𝑜𝑤𝑦)
2

+ (𝑆ℎ𝑜𝑙𝑑𝑒𝑟𝑥 − 𝐸𝑙𝑏𝑜𝑤𝑥)2 + (𝑆ℎ𝑜𝑙𝑑𝑒𝑟𝑧 − 𝐸𝑙𝑏𝑜𝑤𝑧)2 (2.5)

 𝐹𝑜𝑟𝑒 𝐴𝑟𝑚 = √(𝐸𝑙𝑏𝑜𝑤𝑦 − 𝑊𝑟𝑖𝑠𝑡𝑦)
2

+ (𝐸𝑙𝑏𝑜𝑤𝑥 − 𝑊𝑟𝑖𝑠𝑡𝑥)2 + (𝐸𝑙𝑏𝑜𝑤𝑧 − 𝑊𝑟𝑖𝑠𝑡𝑧)2 (2.6)

 𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟−𝑊𝑖𝑟𝑠𝑡 = √(𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑦 − 𝑊𝑟𝑖𝑠𝑡𝑦)
2

+ (𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑥 − 𝑊𝑟𝑖𝑠𝑡𝑥)2 + (𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑧 − 𝑊𝑟𝑖𝑠𝑡𝑧)2 (2.7)

22

 𝐸𝑙𝑏𝑜𝑤𝑅𝑜𝑙𝑙(𝜃) = 𝜋 − cos−1 (
𝑈𝑝𝑝𝑒𝑟 𝐴𝑟𝑚2+𝐹𝑜𝑟𝑒 𝐴𝑟𝑚2−𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟−𝑊𝑖𝑟𝑠𝑡2

2⋅𝑈𝑝𝑝𝑒𝑟 𝐴𝑟𝑚⋅𝐹𝑜𝑟𝑒 𝐴𝑟𝑚
) (2.8)

5. Head Pitch Computation: The pitch angle of the head concerning the neck joint is calculated as

follows: Initially, the vertical distance (y) between the neck and head joints is determined by

subtracting the y-coordinate of the head joint from that of the neck joint, and likewise for the depth

distance (z). Subsequently, the pitch angle (Pitch) is computed using the arctangent function to

ascertain the angle whose tangent corresponds to the ratio of z to y, multiplied by.

This derived angle signifies the pitch angle of the head concerning the neck joint, as demonstrated

in Equation (2.9).

 𝐻𝑒𝑎𝑑𝑃𝑖𝑡𝑐ℎ(𝜃) = tan−1 (
|𝐻𝑒𝑎𝑑𝑧−𝑁𝑒𝑐𝑘𝑧|

|𝐻𝑒𝑎𝑑𝑦−𝑁𝑒𝑐𝑘𝑦|
) (2.9)

6. Hip Roll Computation: The roll angle of the hip joint in relation to the knee joint is calculated as

follows: Firstly, the horizontal distance (x) between the hip and knee joints is determined by

subtracting the x-coordinate of the knee joint from that of the hip joint, and similarly for the vertical

distance (y). Next, the angle (angle) is computed using the arctangent function to determine the

angle corresponding to the ratio of x to y. This angle signifies the roll angle of the hip joint

concerning the knee joint, as described in Equation (2.10).

𝐻𝑖𝑝𝑅𝑜𝑙𝑙(𝜃) = tan−1 (
|𝐻𝑖𝑝𝑥−𝐾𝑛𝑒𝑒𝑥|

|𝐻𝑖𝑝𝑦−𝐾𝑛𝑒𝑒𝑦|
) (2.10)

7. Hip Pitch Computation: We determine the Pitch angle for the Hip by measuring the distance

between the Knee and Ankle along the X-axis and Y-axis, as illustrated in equation (2.11).

 𝐻𝑖𝑝𝑃𝑖𝑡𝑐ℎ(𝜃) = − tan−1 (
|𝐾𝑛𝑒𝑒𝑥−𝐴𝑛𝑘𝑙𝑒𝑥|

|𝐾𝑛𝑒𝑒𝑦−𝐴𝑛𝑘𝑙𝑒𝑦|
) (2.11)

2.4.2 Deep Reinforcement learning

 Deep reinforcement learning (DRL) is a type of machine learning technique that enables agents to learn

how to make decisions in complex environments by trial and error. It combines deep learning and

reinforcement learning, two powerful techniques that have been successful in solving a variety of machine

learning problems [12].

23

 Reinforcement learning involves training an agent to make decisions based on feedback received from

its environment as shown in Figure 2.7. The agent learns to take actions that maximize a reward signal,

which is a scalar value that indicates how well the agent is performing its task.

The goal of the agent is to learn a policy, which is mapping from states to actions that maximizes the

expected cumulative reward.

Figure 2-7 Deep Reinforcement Learning

 DRL combines two techniques by using deep neural networks to approximate the value function or

policy of the agent.

 The deep neural networks in Figure 2.8 are used to represent the state-action value function, which is

used to select the best action in each state, or the policy function, which is used to directly map states to

actions.

 This enables agents to learn from high-dimensional inputs, such as images and sensor readings, and

make decisions in complex and dynamic environments [17].

file:///C:/Users/mosaa/Downloads/Graduation%20Project.docx%23seventeen

24

Figure 2-8 Deep Neural network

2.4.3 DDPG

 Deep Deterministic Policy Gradient (DDPG) is a reinforcement learning algorithm that combines the

ideas of Deep Learning and Policy Gradients with Q-Learning. The goal of the algorithm is to learn a

deterministic policy, which maps states to actions directly, as opposed to a stochastic policy, which maps

states to probability distributions over actions [14].

DDPG is based on the Actor-Critic method, which uses two neural networks: an Actor network and a Critic

network.

 The Actor network is responsible for learning the policy, i.e., mapping the state to the action, while the

Critic network is responsible for learning the Q-value of the state-action pairs. The Q-value represents the

expected discounted future reward of taking a specific action from the current state.

 DDPG has been shown to be effective in solving high-dimensional continuous control problems, such

as robotic arm control, locomotion, and manipulation tasks.

file:///C:/Users/mosaa/Downloads/Graduation%20Project.docx%23fourteen

25

26

2.5 Literature Review

 Human body tracking has become a critical aspect of many applications, including gaming, sports

analysis, and medical rehabilitation.

 The use of robotics in such applications has also grown in recent years, with robots being used to assist

in geriatric physiotherapy rehabilitation, imitating human actions for autism treatment, and lifting objects.

The aim of this literature review is to explore studies that have utilized the Kinect sensor and the NAO robot

to track human body movements.

Kinect Controlled NAO Robot for Telerehabilitation: This study explores NAO and a sensor called

Kinect V2 for remote arm exercises. Therapists can guide multiple patients simultaneously from different

locations through these exercises. By analyzing data from the Kinect sensor, the researchers developed a

new method to understand how the arm moves during rehabilitation. This remote exercise approach

provides real-time guidance to patients in various places, offering a convenient solution for those

uncomfortable with traditional therapy settings. The research highlights the potential of combining robots

and technology to enhance therapy outcomes and make rehabilitation more accessible. Overall, the

telerehabilitation scheme using NAO and Kinect V2 demonstrates promising results in improving patient

care and expanding the reach of rehabilitation services. [1].

Lower-body Control of Humanoid Robot NAO via Kinect: Humanoid robots have been concerned as it

can perform some movements as human, especially imitating human motion in real time with motion

tracking equipment's. To imitate human motion, there are still some challenges for the lower-body control

of robot due to the physical difference between human and robot. In this paper, we propose a joint angle-

based control (JAC) scheme for the lower-body control of humanoid robots to imitate human motion via

Kinect sensor. Due to factors such as noise, tracking error and robot joint constraints, the motion information

captured from the Kinect sensor applied to the robot directly will arise the problem of balance control. To

overcome it, we optimize the joint angles in the lower body of NAO and define a gain factor to compensate

the difference between the human motion and the robot so as to keep the balance of humanoid robot during

imitation. Experimental results show that the proposed control scheme works efficiently even when the

humanoid robot performs some complex movements such as standing on a single foot. [3].

file:///C:/Users/mosaa/Downloads/Graduation%20Project.docx%23one
file:///C:/Users/mosaa/Downloads/Graduation%20Project.docx%23three

27

Dynamic-goal Deep Reinforcement Learning for Industrial Robot Telemanipulation: We propose

Dynamic-goal Deep Reinforcement Learning (DGDRL) method to address the problem of robot arm motion

planning in telemanipulation applications. This method intuitively maps human hand motions to a robot

arm in real-time, while avoiding collisions, joint limits and singularities. We further propose a novel

hardware setup, based on the HTC VIVE VR system, that enables users to smoothly control the robot tool

position and orientation with hand motions, while monitoring its movements in a 3D virtual reality

environment. A VIVE controller captures 6D hand movements and gives them as reference trajectories to a

deep neural policy network for controlling the robot’s joint movements. Our DGDRL method leverages the

state-of-art Proximal Policy Optimization (PPO) algorithm for deep reinforcement learning to train the

policy network with the robot joint values and reference trajectory observed at each iteration. Since training

the network on a real robot is time-consuming and unsafe, we developed a simulation environment called

Robot Path which provides kinematic modeling, collision analysis and a 3D VR graphical simulation of

industrial robots. The deep neural network trained using Robot Path is then deployed on a physical robot

(ABB IRB 120) to evaluate its performance. We show that the policies trained in the simulation environment

can be successfully used for trajectory planning on a real robot. The the codes, data and video presenting

our experiments are available at https://github.com/kavehkamali/ppoRobotPath. [2].

 These works form a crucial basis for a project leveraging deep reinforcement learning with Nao robots

and Kinect sensors for applications in education, entertainment, and healthcare we will show how Thes

research help us with implement and design our project in Table 2-1.

file:///C:/Users/mosaa/Downloads/Graduation%20Project.docx%23two

28

Study Title Telerehabilitation

using NAO and

Kinect V2

Lower-body

Control of

Humanoid Robot

NAO via Kinect

Dynamic-goal

Deep

Reinforcement

Learning for

Industrial Robot

Telemanipulation

Main Objective Enable remote arm

exercises for

rehabilitation using

NAO and Kinect

Achieve lower-body

control for NAO

humanoid robot via

Kinect

Implement dynamic-

goal deep reinforcement

learning for robot

telemanipulation

Technology/Equipment

Used

NAO humanoid robot,

Kinect V2 sensor

NAO humanoid robot,

Kinect sensor

HTC VIVE VR system,

VIVE controller, ABB

IRB 120 robot

Application Domain Telerehabilitation Humanoid robot control Industrial robot

telemanipulation

Implementation Real-time guidance for

remote arm exercises

using NAO and Kinect

Lower-body control

optimization for

humanoid robot using

Kinect

Real-time robot arm

control through hand

motions in a 3D VR

environment

Table 2-1 Literature reviews comparison

2.6 Summery

 The "Kinect based teleoperation of a humanoid robot" project is designed to offer an affordable and

effective method for capturing and analyzing human motion data. This project is set to enable the real-time

replication of human movements with notable accuracy and fidelity. This project is also aimed at enhancing

research in human-computer interaction by providing a versatile platform to explore interactions between

humans and robots. It promises to encourage the integration of robotics and artificial intelligence in

educational settings. Furthermore, this initiative is expected to serve as a cost-effective alternative to more

29

traditional and expensive motion capture technologies. It will also pave the way for the development of new

applications in various domains, including physical therapy, sports training, and entertainment.

Chapter 3: System Design

 In this chapter, we introduce a system designed to utilize a Nao 6 robot and Kinect v2 sensor for

capturing and emulating human movements. The objective is to equip the robot with the ability to learn and

replicate intricate human motions, thereby enabling it to execute tasks reliant on precise motor skills and

agility. The chapter will go throw into the system's fundamental aspects and constituents, encompassing

both hardware and software elements, explain the communication protocols between the robot and sensor,

and detailing the mathematical models employed for movement analysis and mapping. In addition to

machine learning, we will explore the utilization of mathematical models to interpret and replicate human

gestures. Furthermore, we will address the inherent challenges and constraints of the system, along with

prospects for enhancing its efficacy and broadening its scope in future endeavors.

3.1 Requirements

1. The system should enable human teleoperation of the Nao robot's motion using the Kinect sensor as

an input device.

2. The system should track the user's movements and translate them into corresponding movements

for the Nao robot within his possibilities and 25 degrees of freedom.

3. The system should perform complex movements and actions with accuracy in terms of centimeters.

4. The system shall be designed with modular architecture, ensuring that its components can be easily

upgraded or replaced. It shall support integration with additional technologies and platforms through

standardized interfaces and protocols.

5. The system's performance shall maintain or improve with the addition of new modules or integration

with different technologies.

30

3.2 Hardware design

 The Hardware design section provides an overview of the architecture and components of a robotic

system designed to enable movement mimicking functionality as shown in Figure 3.1.

Figure 3-1 System Diagram

3.2.1 System overview

31

 The robotic system is designed to mimic human movements using mathematical models [25]. The

system consists of various hardware and software components that enable the capturing and mapping of

human movements to robot movements. The system architecture includes sensors to capture human

movements, a controller to process the captured data, and actuators to control the robot's movements. The

end goal of the system is to enable the robot to replicate human movements accurately in real-time.

3.2.2 Block diagram

Figure 3.2 shows the main parts of the system and how they interact.

Figure 3-2 System Block Diagram

3.2.3 System Pseudo Codes

 Procedure 1 shown below runs on Microsoft Kinect V2. First, initialize Kinect, provide it a power

supply, connect special adapter to it (USB B-type 3.0). Second, from settings select a resolution: 512x424

32

px, frame rate: 30 Frame Per Second and enable body tracking. Finally, inside loop, capture frames, read

body tracking data, then send it to Latte Panda.

PROCEDURE 1: KINECT SENSOR PSEUDO CODE

1. INITIALIZE Kinect

2. CONNECT Kinect to Kinect adapter

3. SELECT resolution, framerate

4. ENABLE Body Tracking

5. WHILE capturing frames:

6. CAPTURE frames (512x424@30fps)

7. READ Body tracking data

8. SEND Body tracking data to Latte Panda

9. ENDWHILE

 Procedure 2 runs on Nao humanoid robot. Initialize Nao and authenticate it to Latte Panda. In loop

part, while Latte Panda sends Instructions; receive Instructions from Latte Panda, compile and regenerate

executable Instructions for Nao. Finally Execute Instructions for Nao to change his state as like as possible

to human state.

 Procedure 3 runs on Latte Panda intel cherry trail z8350. At the beginning initialize Latte Panda intel

cherry trail z8350, install Windows 10, setup python and C#. Next step, implement mathematical models

and connect the Kinect adapter to USB 3.0 port on Latte Panda. Inside loop, receive body tracking data

PROCEDURE 2: NAO ROBOT PSEUDO CODE

1. INITIALIZE Nao robot

2. AUTHENTICATE Latte Panda

3. WHILE Latte Panda sends Instructions:

4. RECV Instructions from Latte Panda using Wi-Fi

5. SET position

6. ENDWHILE

33

from Kinect via Kinect adapter, execute the mapping algorithm, then convert the next state data set into

python Instructions for Nao to change his state and send instructions to Nao using

 Wi-Fi.

PROCEDURE 3: LATTE PANDA INTEL CHERRY TRAIL Z8350 PSEUDO CODE

1. INITIALIZE Latte Panda

2. SETUP windows 10

3. SETUP Kinect for Windows SDK

4. SETUP Python, C#

5. IMPORT numpy, pika, TensorFlow, Naoqi, Microsoft Kinect(C#)

6. CONNECT Kinect adapter to USB 3.0 port in Latte Panda

7. WHILE data! = NULL:

8. RECEIVE Body Tracking DATA from Kinect via Kinect adapter

9. CONVERT 3D depth data into motor angles

10. SEND Instructions to Nao using Wi-Fi

11. ENDWHILE

3.3 System software design

 The software system design segment offers insights into the architecture and design principles driving

the progression of our project. Here, we emphasize the overarching structure of the software framework

and the intricate interplay among its diverse components. By introducing the software system design at the

outset, our goal is to provide readers with a clear understanding of the system's holistic organization and

the logic guiding our design decisions. This preamble lays the groundwork for ensuing discussions on

training, implementation, and supplementary project facets, empowering readers to traverse the technical

intricacies armed with a firm understanding of the system's architecture and design fundamentals.

3.3.1 Inverse Kinematics

34

Definition

 Finds the joint angles or positions needed to achieve a specific end-effector pose.

Complexity

 Inverse kinematics problems can be complex, especially for robots with multiple joints and degrees of

freedom. In this project inverse kinematics for the Nao robot involves handling the complexity of multiple

joints and degrees of freedom (25 degree of freedom).

Challenges

 Singularities: Consider how to handle singularities and multiple solutions, especially when

mapping human movements to the robot's joint space.

 Real-world constrains: Account for physical limitations of the Nao robot, such as joint limits and

mechanical restrictions.

3.3.2 Dataset

3.3.2.1 Dataset Collection and Specifications

 The primary dataset for training the AI model, which we got it from kaggle.com comprising data from

127 volunteers with varying heights and body sizes, was captured using the Kinect sensor [26]. To enrich

the dataset, particularly for leg movement analysis, an additional dataset which focuses on lower-body

motion, has been integrated. This dataset provides extensive and specialized leg movement data, enhancing

the model's ability to accurately recognize and replicate lower-body actions.

3.3.2.2 Pose Variations and Movements

Each volunteer performed a series of eight predefined positions or poses, including:

1. Y Stretch

2. SOMU Stretch

3. MERMAID Stretch

4. SEATED Stretch

5. TOWEL Stretch

35

6. WALL Stretch

 In addition to these predefined poses, the volunteers also performed a range of movements that fall

under the same position category. This inclusion of movements allows for capturing more dynamic and

natural pose variations.

3.4.2.3 Data Collection Process

 For each volunteer, a total of 240 frames were recorded. Each frame consists of 25 joint camera

coordinates in X, Y, and Z dimensions.

 This joint coordinate provides a comprehensive representation of the human body's pose and

Movement. Look at figure 3.3.

3.4.2.4 Training and Testing Data Split

 The recorded dataset consists of a total of 30,480 frames. To ensure an effective training process, the

dataset was split into two subsets: a training dataset and a testing dataset.

Figure 3.3 Strertches included in Dataset [28]

Figure 3-3 Stretches included in Dataset [26]

file:///C:/Users/mosaa/Downloads/Graduation%20Project.docx%23twentyeight

36

 Approximately 72% of the frames, amounting to 21,926 frames, were used as the training data. This

larger portion of the dataset is dedicated to training the AI model to learn and imitate the desired poses

accurately [26].

 The remaining 28% of the frames, approximately 8,554 frames, were reserved for testing the trained

model's performance. This testing dataset serves as an independent evaluation set to assess the AI model's

ability to generalize and reproduce the poses accurately [26].

3.3.3 Neural Network

 We have two networks in this model:

 Actor Network: The actor network is responsible for learning and generating the optimal probability

for the desired movements [25]. It takes the joint positions and movements as input and outputs the policy

that determines the next action to be taken by the Nao robot.

 Critic Network: The critic network evaluates the actions taken by the actor network and estimates the

corresponding Q-value. The Q-value represents the expected cumulative reward associated with a particular

action given the current state of the environment. The critic network helps guide the actor network by

providing feedback on the quality of the chosen actions [25].

The neural networks, along with the DDPG algorithm, form an iterative process. During training, the

networks interact with the environment (represented by the Nao robot) by receiving sensory input from the

Kinect sensor and taking actions based on the learned policy. The resulting feedback and rewards from the

environment are used to update the networks' weights and improve their performance over time [25].

By employing this flow of steps and the interaction between the actor and critic networks with the

environment, we can train the neural network to learn and generate human-like movements based on the

provided dataset and the reinforcement learning framework.

37

Figure 3-4 Actor and Critic Networks (RNN) [27]

3.3.3.2 Reward function

 The reward function in our project plays a crucial role in shaping the learning process of the agent and

guiding it towards the desired behavior. It quantifies the performance of the agent based on its actions and

the current state of the environment. The goal is to design a reward function that encourages the agent to

learn the desired movements and behaviors for the Nao robot.

 In our project, we define the reward function to incorporate the concept of distance between the goal

angle and the current angle of the Nao robot's joints in the virtual environment. We calculate the difference

between the goal angle and the current angle and use it as a basis for assigning rewards.

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = |𝑔𝑜𝑎𝑙𝑎𝑛𝑔𝑙𝑒 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑎𝑛𝑔𝑙𝑒| (3.1)

The reward function can be defined as in equation (3.2) [15]:

 𝑟𝑒𝑤𝑎𝑟𝑑 = 𝑒−𝛼⋅𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (3.2)

 In Equation 3.2, α is a scaling factor that determines the influence of the distance on the reward. A

higher α value results in a steeper reward decay as the distance increases, while a lower α value makes the

reward decay more gradually. By using the exponential function, we ensure that the reward decreases

exponentially as the distance between the goal and the current position increases.

file:///C:/Users/mosaa/Downloads/Graduation%20Project.docx%23fifteen

38

 The purpose of this reward function is to encourage the Nao robot to move closer to the goal position,

as it will receive higher rewards for smaller distances. This incentivizes the agent to learn movements that

bring it closer to the desired goal and helps in training it to mimic human-like movements.

3.4 Summary

 Chapter 3 presents a comprehensive design for a system that integrates a Nao 6 robot with a Kinect v2

sensor, aiming to replicate human movements with high precision. This intricate design encapsulates the

interplay between sophisticated hardware components and advanced software algorithms, including

mathematical models and deep learning.

 The system's core is its ability to accurately track and translate human movements into robotic actions,

ensuring high fidelity in tasks requiring dexterity and fine motor skills. By detailing the requirements,

hardware architecture, and software strategies, including dataset utilization, neural network configurations,

and the rationale behind choosing Mathematical Models over traditional kinematics and machine learning,

the chapter lays a solid foundation for a future where robots can seamlessly mimic and assist in human-

centric tasks, demonstrating a significant leap in the field of robotics and human-robot interaction.

39

Chapter 4: Implementation

4.1 Introduction

 In this chapter, we provide an in-depth exploration of the practical implementation of the system

outlined in Chapter 3. The implementation process encompasses the configuration of hardware components,

the setup of software systems, and the execution of algorithms essential for enabling the Nao 6 robot to

replicate human movements using the Kinect v2 sensor. We will delineate the steps taken, challenges faced,

and solutions applied during this crucial implementation phase.

4.2 Hardware Setup

 The hardware setup for the system was a meticulous process, involving the assembly and

configuration of the Latte Panda, Kinect v2 sensor, and Nao robot. This setup was integral to the successful

implementation of the system, ensuring each component functioned correctly and communicated

effectively.

Step 1: Connecting Kinect to Latte Panda for Simulation

Interconnection: Connect Kinect v2 special port in Kinect sensor and USB 3.0 cable to power supply

adapter as show in figure 4-1

40

Kinect for Windows SDK Installation: The Kinect for Windows SDK and necessary drivers were installed

on the PC to facilitate the connection with the Kinect sensor. This setup enabled the capture and processing

of motion data for model training.

Step 2: Transitioning from PC to Latte Panda intel cherry trail z8350: the PC was used for training

because it had more resources power.

Preparing Latte Panda intel cherry trail z8350 with Windows 10 Home: The Latte Panda intel cherry

trail z8350 was set up with Windows 10, optimized for the system's requirements. The operating system

was chosen for its compatibility with the Kinect sensor and its ability to handle the computational needs of

the system.

Optimizing TensorFlow Model for Latte Panda: The trained TensorFlow model was transferred from the

PC to the Latte Panda. This process involved not only moving the model files but also ensuring they were

optimized for performance on the Latte Panda's hardware.

Step 3: Setting Up Nao Robot and Establishing Connectivity

Installing Choregraphe on PC/Latte Panda: Choregraphe software was installed for programming and

controlling the Nao robot. This software provided a user-friendly interface for creating robot behaviors and

ensuring seamless interaction with the system.

 Figure 4-1 Kinect Interconnection

41

Establishing Wi-Fi Connectivity with Nao Robot: The Latte Panda was configured to connect with the

Nao robot via Wi-Fi. This wireless setup facilitated real-time control and data exchange, crucial for the

system's responsiveness and functionality. To get IP from Nao, hold the button as on the Figure 4.2 below:

 In conclusion, the hardware setup process involved a strategic combination of simulation and model

training using Webots and TensorFlow on a PC, configuring the Latte Panda with Windows 10 Home, and

establishing a Wi-Fi connection with the Nao robot. This careful assembly and setup of the components laid

the groundwork for the successful functioning of the system, paving the way for the effective

implementation of the project objectives.

4.3 Software Configuration

 The software configuration phase was pivotal in the system's implementation, ensuring seamless

integration and functionality of all software components. This phase encompassed the installation and setup

of various tools, libraries, and frameworks on the Latte Panda and the PC.

Figure 4-2 How to get Nao’s IP

42

4.3.1 Installing the required software

Operating System Setup: The Latte Panda was configured with Windows 10 Home, chosen for its

compatibility with the hardware components and suitability for the system's requirements. The PC was

configured with Windows 10 Pro, providing a robust and reliable platform to support the development and

simulation environment. Figure 4.3 shows the selection of Windows 10 Home

TensorFlow Installation: Essential for machine learning tasks, TensorFlow was installed on both the Latte

Panda and the PC to handle deep learning models and process data from the Kinect sensor.

Webots Installation: Webots robotics simulation software was installed on the PC to facilitate a virtual

testing environment, crucial for developing and refining the model without constant physical testing. Figure

4.4 shows the Webots simulator window configured with Nao robot

 Figure 4-3 Windows 10 Home

43

Kinect Software Setup: The Kinect for Windows SDK and necessary drivers were installed on the PC,

enabling proper communication and data capture from the Kinect v2 sensor. Figure 4.5 explains that

everything works well in Kinect for Windows SDK.

 Figure 4-4 Webots Testing

Figure 4-5 Kinect Setup [23]

44

Rabbit MQ Installation: Rabbit MQ was installed to facilitate data transfer from the Kinect to the Latte

Panda. This message broker was essential for reliable and efficient communication within the system.

Figure 4.6 shows the installing process of RabbitMQ Server.

Choregraphe Installation: Choregraphe was installed to test all Nao motors if they work well. First

connect to Nao by setting its IP, second, use predefined movements in Choregraphe, Finaly drag the move

block to the workplace and play. Look at figure 4.7.

 Figure 4-6 RabbitMQ Installation

45

Figure 4-7 Choregraphe

4.3.2 Setting up the development environment

Configuring Nao with Webots: Nao was set up in the Webots platform to simulate its movements and

interactions. This step was crucial for testing and validating the inverse kinematics models and the overall

system behavior.

Installing Python 2.7 and C# with Required Libraries:

 Python 2.7 Installation and Library Setup: Python was installed as a primary programming

language for the system due to its versatility and support for a wide range of libraries. The

installation included several specific libraries to enhance its functionality:

o naoqi: it is considered as driver to fully control Nao joints and sensors

o Pika 1.1.0: Pika, a RabbitMQ client library, was installed to provide an interface for Python

applications to connect and interact with RabbitMQ, enabling efficient message queuing and

dispatch.

46

o Pandas (as pd): Pandas, a powerful data analysis and manipulation library, was incorporated

for handling and processing structured data. It was imported as 'pd' for ease of use and

readability in the code.

o NumPy: This library was used for its extensive support for large, multi-dimensional arrays

and matrices, along with a collection of mathematical functions to operate on these arrays.

o Math: is a standard library module that provides mathematical functions and operations. It

includes a variety of functions for basic arithmetic operations, as well as more advanced

mathematical functions. We need from library trigonometric functions to implement inverse

kinematics.

o TensorFlow Agents (Tf agent): A specialized TensorFlow library for reinforcement

learning, TensorFlow Agents was included to implement and run the Deep Deterministic

Policy Gradient (DDPG) algorithm, crucial for training the system in replicating human

movements.

 C# Installation for Kinect Data Capture: C# was installed to handle the Kinect data capture. C#

is well-suited for interacting with the Kinect SDK and efficiently processing the sensor data. The

choice of C# for this task was based on its robustness and seamless integration with the Kinect for

Windows SDK, ensuring reliable and real-time capture of movement data from the Kinect sensor.

4.3.3 System Software Interconnection Implementation

4.3.3.1 Read Body Tracking Data (C#)

 Kinect for windows SDK provides C# code to read Body Tracking data. We can install it as .sln

project and debugging it in Visual Studio. Figure 4.8 explain how to install .sln Body Basics-WPF

 To deal with Kinect v2, we should import Microsoft.Kinect.

 The code performs 3 main missions:

 Figure 4-8 Body Basics-WPF [23]

47

1. Initialize Kinect

Code Snippet 1

2. Declare bones list

Code Snippet 2

3. Read skeleton data (frame by frame)

Code Snippet 3

48

4.3.3.2 Move Body Tracking Data (Rabbit MQ)

Send:

 Body tracking data sent from C# Body Basics project to python.

 Required library: RabbitMQ.Client

Code Snippet 4

Receive:

 Body tracking data received form C# to python environment

 Required library: pika

Code Snippet 5

49

4.3.3.3 Set Nao Angles

 As we will explain later, Nao angles will be set based on Inverse Kinematics from Kinect body tracking

data or a mathematical model. The set position python code is the same for both algorithms.

Code Snippet 6

4.3.4 Inverse kinematics Implementation

 Equations for Nao joints (θ) and Kinect Skeleton (sides of a triangle) were developed and integrated into

the system. This involved creating mathematical models and algorithms to accurately translate human

movements captured by Kinect into robotic movements.

50

 Head Pitch

 Code Snippet 7

 Sholder Pitch

 Code Snippet 8

 Sholder Roll

 Code Snippet 9

51

 Elbow Yaw

 Code Snippet 10

 Elbow Roll

 Code Snippet 11

52

 Hip Roll and Hip Pitch

 Code Snippet 12

4.3.5 DDPG Implementation and training

4.3.5.1 Description

 In our training approach, we have selected inverse kinematics to serve as the reward function within the

DDPG algorithm (see Figure 4.9). The dataset itself forms the environment for the learning process.

Initially, the agent critic commences with a zero reward and undergoes updates grounded in the imitation

of inverse kinematics. As training progresses, the agent learns to optimize its actions based on the provided

inverse kinematics rewards, effectively refining its performance in the given environment.

53

4.3.5.2 Kinect v2 Dataset Selection for Training

 For training our system, we selected the "3D Kinect Total Body Database for Back Stretches,"[26] a

specialized dataset captured using the Kinect V2 sensor. This dataset's specifications are particularly suited

for our project requirements [26]:

 Data Collection: Captured as a set of X, Y, Z coordinates at 60 fps during six different yoga-inspired

back stretches, providing a detailed representation of human back movements.

 Dataset Composition: Contains 541 files, each detailing position and velocity for 25 body joints,

including the head, neck, spine, shoulders, hips, wrists, knees, and feet.

 Standardization and Consistency: The Kinect was positioned at a height of 2 ft and 3 in, with

subjects 6.5 ft away from the camera, ensuring consistent data capture. Each participant completed

10 repetitions of each stretch, providing a rich set of repeated movement data.

 Participant Demographics: Data was collected from 9 adults aged 18-21, including 4 females and

5 males, offering a diverse range of motion data.

 Pre-processing: Velocity data was calculated using a discrete derivative equation, which was

applied to all body parts and axes individually, enhancing the data's utility for motion analysis.

Figure 4-9 Training Approach

54

4.3.5.3 DDPG Implementation

 Required libraries: TensorFlow, tf_agents, math, pandas, numpy

 Procedures

1. Initial procedure

2. Reset Procedure

 Code Snippet 14

3. Update target position Procedure

 Code Snippet 15

Code Snippet 13

55

4. Step Procedure

 Code Snippet 16

5. Calculate Reward Procedure

 Code Snippet 17

4.4 Challenges

 The implementation of the system presented several significant challenges that needed to be addressed

to ensure its successful operation. These challenges were critical in understanding the limitations and

capabilities of the system and in guiding future improvements.

1. Balancing

Challenge: One of the primary challenges faced was maintaining the balance of the Nao robot while

replicating human movements. Unlike humans, who have a highly developed sense of balance, robots like

Nao require complex algorithms to remain stable, especially when performing dynamic movements or

standing on one leg.

56

Approach: We overcome this challenge partially, which means in simple movements like arm and head

movements, we overcome by maintaining the center of mass so that it can be balanced. Any hand or head

movement would not have affected the balance significantly. All of these achieved by inverse kinematics

approach.

2. Degree of Freedom between Nao and Human

Challenge: The discrepancy in the degree of freedom between humans and the Nao robot presented a

significant challenge. Humans have a vast range of motion compared to the Nao robot, which has limited

degree of freedom in its joints.

Approach: To overcome this, we developed inverse kinematics mathematical model that could translate

the complex human movements into simpler motions that the Nao robot could perform. This translation

process involved determining the most critical aspects of the human movement and simplifying them to fit

the robot's capabilities without losing the essence of the action. We implemented suitable mapping between

the Kinect skeleton and Nao joints through chain level (arm, head and leg), so that Nao can imitate human.

57

Chapter 5: Testing and Results

 5.1 Introduction

 Chapter 5 is dedicated to the testing phase of the system, focusing on evaluating each hardware

component and the overall interconnection within the system. This stage is crucial to ensure that all

parts function correctly and cohesively.

 5.2 Hardware Testing

a. Kinect v2

 Testing the Kinect v2 involved verifying its ability to accurately capture motion data. This

included assessing the sensor's responsiveness, precision in tracking movements, and consistency

in different lighting conditions. Sometimes glitches appear in reading body data because of the

difficulty in analysis of the image depth as shown in Figure 5.1.

Figure 5-1 Kinect v2 glitch (example)

b. Nao Robot

 Tests for the Nao robot focused on its movement replication accuracy, joint articulation, balance,

and response time to commands received from the Latte Panda.

58

c. Latte Panda

 The Latte Panda was tested for its computing performance, especially its ability to process and

relay motion data to the Nao robot efficiently. Stability and reliability of the operating system and

installed software were also evaluated.

d. System Interconnection

 The final part of the testing phase involved evaluating the system's overall interconnection. This

included testing the communication flow between the Kinect v2, PC/Latte Panda, and Nao robot,

ensuring seamless data transfer and synchronization across the system.

5.3 Software Testing

1. Testing of inverse kinematics involved validating the equations and algorithms used for translating

human movement into robotic actions. This included simulations to ensure the movements were

accurately mirrored by the robot.

2. Webots was tested for its simulation capabilities, ensuring accurate rendering and physics simulation of

the robot's movements and environment interactions.

3. Choregraphe software was tested for its functionality in programming and controlling the Nao robot.

We used Choregraphe to test the final software (inverse kinematics and trained model), because it

simulates the real environment of Nao. This included validating the user interface, motion creation tools,

and the ability to upload scripts to the robot. Figure 5.2 shows that Choregraphe works well.

59

4. Libraries in C# and Python were tested for their roles in data capture and processing. For C#, the focus

was on Kinect data acquisition, while for Python, the emphasis was on data analysis, machine learning

tasks, and communication with other system components.

Figure 5-2 Choregraphe Testing

60

5.4 Results

5.4.1 Model training results

 Initially, our project aimed to leverage machine learning techniques, including the Deep Deterministic

Policy Gradient (DDPG) algorithm, in conjunction with our implementation of the Inverse Kinematics

approach. This dual approach was designed to achieve two primary objectives: ensuring effective balancing

and addressing challenges associated with the Nao robot's degrees of freedom.

 However, despite our efforts to fully implement and train the DDPG algorithm, we encountered

significant difficulties. The utilization of DDPG resulted in suboptimal performance, characterized by

erratic and random movements. Despite extensive training with large datasets, the algorithm struggled to

produce coherent and accurate motion plans.

 We believe that the problem is implementing of the reward function, represented by inverse kinematics

imitation and the pressure of the Nao feet to ensure balancing. This task is very complicated for training,

which needs more resources and a huge dataset.

 As a result of these challenges and the unsatisfactory results obtained with the DDPG algorithm, we

decided to pivot our approach. We opted to prioritize the development of invers kinematics mathematical

model to address the complexities inherent in our teleoperation system. While acknowledging the

limitations of a mathematical model, including its inability to capture all nuances of human movement, we

concluded that it offered a more viable solution than persisting with the problematic outcomes of the DDPG

approach.

 By focusing on the development of a robust inverse kinematics mathematical model, we aim to

overcome the shortcomings encountered with the DDPG algorithm. Despite its inherent limitations, we

believe that the mathematical model provides a more stable and predictable framework for controlling the

Nao robot's movements, ultimately offering superior performance compared to the unpredictable behavior

observed with DDPG.

61

5.4.2 Inverse Kinematics results

 We have achieved favorable outcomes in Inverse Kinematics, enabling real-time and precise imitation

of human head, arms, and legs movements:

 Response time: 200 – 500 milliseconds

 Accuracy: in terms of centimeters, we measured the results visually.

Evaluation Characteristics:

o Angle: Nao motors range

o Mapping: How much Kinect skeleton can match Nao chains

o Balancing: Distribution of the center of gravity in the feet of Nao

o Complex: some movements depend on each other, the movement composed of more than one chain.

o Accuracy: final form and the path of imitation

Table 5.1 is the rubric of the evaluation characteristics in inverse kinematics imitation results:

Evaluation

Characteristics

A B C

Angle Accurate within Nao motors

range

Reasonable but not perfect Inaccurate and outside range

Mapping Good match Nao chains Closely matches Nao chains

with some variations

Significant mismatches

Balancing Well-distributed and stable Fair distribution, occasional

instability

Poor distribution, instability

Complex Smooth coordination of

complex movements

Some movements well-

coordinated

Complex movements are often

disjointed

Accuracy Precise imitation of final form

and imitation path

Resembles final form with

some variations

Significant deviations from

final form

Table 5-1 rubric of evaluation characteristics

 We have applied many tests for Inverse Kinematics. Each test performed 5 times, we chose two main

types of tests, first Test performed on Nao chain, the results of chain level shown in table 5.2, the second

test is on poses of the Kinect dataset that we used and its results are in table 5.3.

62

Chain Move Evaluation Characteristics Extra

Mapping Balancing Angle Complex Accuracy

Arm Up B A A B B The elbow is bent more than expected. This

movement is complex (shoulder and elbow).

Down A A A A A This is default position of arm for both human and

Nao.
Left Arm Left A A A A A Simple movement, no limitations.

Right A A B A B Nao LsholderPith angle cannot bend to the right at
the as the same as a human, the difference at least
20°.

Right Arm Left A A B A B Nao RsholderPith angle cannot bend to the left at
the as the same as a human, the difference at least
20°.

Right A A A A A Simple movement, no limitations.
 Head Up A A B A A Human head can bend backward more than Nao

Down A A B A A Human head can bend forward more than Nao
Left C -- -- -- -- Kinect v2 skeleton does not contain anything to

indicate that Nao looking to the left.
Right C -- -- -- -- Kinect v2 skeleton does not contain anything to

indicate that Nao looking to the right.
Leg Forward A C A B B Nao falls down.

Backward A B A B B Leg does not move because of pressure.

Hip Forward A C A B B Hole body lying forward.
Backward A C A B B Body falls down backwards.

Left Hip Left A B A A A Both feet stuck on the ground because of the center

of mass in Nao is various form human.

Right A B A A A Motion not smooth because of the gravity.
Right Hip Left A B A A A Motion not smooth because of the gravity.

Right A B A A A Both feet stuck on the ground because of the center

of mass in Nao is various form human.

Table 5-2 Chain level imitation testing results

63

Pose Evaluation Characteristics Extra

Mapping Balancing Angle Complex Accuracy

Y A A B B B The elbow is bent more than expected.

SUMO A B B B B The hand was not placed on the knee, also

sometimes the robot falls on the ground.

MERMAID B B B C C Nao robot rise his hand efficiently. The problem

is in the leg and hip chains, this dual movement

causes overlap in overall imitation.

SEATED A C A C C This is the most complex pose. The problem is

that the Nao dimensions various from Kinect

skeleton dimensions. For example, if a human

chair height is 50cm, the corresponding chair for

Nao is 15cm.

TOWEL A A B B B Nao HipPitch angle cannot bend forward as the

same as a human, the difference at least 15°.

WALL A A A A A This pose imitated perfectly

Table 5-3 Kinect dataset poses testing results

64

There are some tests form results as shown in figure 5.3:

 Figure 5-3 Project Testing

65

Chapter 6: Conclusion and future work

6.1 Conclusion

 This project successfully developed and implemented a system integrating a Nao 6 robot, Kinect v2

sensor, and PC/Latte Panda to mimic human movements. The hardware components, including the Kinect

v2 sensor, Nao robot, and Latte Panda, were meticulously assembled and rigorously tested to ensure optimal

performance and synchronization. In the software domain, key components such as inverse kinematics,

Webots simulation, Choregraphe programming, and various C# and Python libraries were methodically

tested and refined.

 The system's ability to accurately replicate human movements showcases the potential of robotics in

various applications. The successful integration of the hardware and software components demonstrates the

feasibility and effectiveness of such complex robotic systems.

6.2 Future Work

 Looking forward, there are several avenues for future development and enhancement:

 Advanced Learning Algorithms: Exploring machine learning algorithms and Deep learning could further

improve the system's accuracy and efficiency in mimicking human movements.

Developing Deep learning approach: Updating the reward function in DDPG algorithm and find sponsor

for the project to provide the required resources for training, in a way that ensures achieving balancing and

accurate imitation between human and humanoid.

Broader Movement Repertoire: Expanding the system to replicate a wider range of human movements,

including more nuanced and subtle gestures, would increase its applicability.

Real-World Applications: Applying the system in real-world scenarios, such as in rehabilitation therapy

or educational settings, would provide valuable insights into its practical utility and areas for improvement.

66

User Interaction and Feedback: Integrating user feedback mechanisms could make the system more

interactive and user-friendly, adapting to individual user’s needs and preferences.

 In conclusion, this project represents a significant step of robotics and human-robot interaction. The

lessons learned and the foundation established here pave the way for further innovations and applications

in this exciting and rapidly evolving field.

67

References

1. Assad-Uz-Zaman, M., Islam, M., Rahman, M., Wang, Y. & McGonigle, E. (2021). Kinect Controlled

NAO Robot for Telerehabilitation. Journal of Intelligent Systems, 30(1), 224-239.

https://doi.org/10.1515/jisys-2019-0126

2. Zhang, Y., Liu, Y., & Wang, J. (2019). Dynamic-goal Deep Reinforcement Learning for Industrial

Robot Telemanipulation.

3. Chen, J., Wang, G., Hu, X. et al. Lower-body control of humanoid robot NAO via Kinect. Multimed

Tools Appl 77, 10883–10898 (2018). https://doi.org/10.1007/s11042-017-5332-3

4. Assad Uz Zaman, M., Islam, M.R., Rahman, M.H. et al. Robot sensor system for supervised

rehabilitation with real-time feedback. Multimed Tools Appl 79, 26643–26660 (2020).

https://doi.org/10.1007/s11042-020-09266-x

5. Balmik, A., Paikaray, A., Jha, M., & Nandy, A. (2022). Motion recognition using deep convolutional

neural network for Kinect-based NAO teleoperation. Robotica, 40(9), 3233-3253.

https://www.cambridge.org/core/journals/robotica/article/abs/motion-recognition-using-deep-

convolutional-neural-network-for-kinectbased-nao-

teleoperation/AA337EC3B6AE611A13765DF1D4D1ECA5.

6. Balmik, A., Jha, M. & Nandy, A. NAO Robot Teleoperation with Human Motion Recognition. Arab

J Sci Eng 47, 1137–1146 (2022). https://doi.org/10.1007/s13369-021-06051-2

7. Hansard, M., Lee, S., Choi, O., & Houraud, R. (2012). Time-of-flight cameras: Principles, methods

and applications. Springer. Retrieved from

https://books.google.ps/books?id=PiF4narL1Z0C.

https://doi.org/10.1515/jisys-2019-0126
https://doi.org/10.1007/s11042-017-5332-3
https://doi.org/10.1007/s11042-020-09266-x
https://www.cambridge.org/core/journals/robotica/article/abs/motion-recognition-using-deep-convolutional-neural-network-for-kinectbased-nao-teleoperation/AA337EC3B6AE611A13765DF1D4D1ECA5
https://www.cambridge.org/core/journals/robotica/article/abs/motion-recognition-using-deep-convolutional-neural-network-for-kinectbased-nao-teleoperation/AA337EC3B6AE611A13765DF1D4D1ECA5
https://www.cambridge.org/core/journals/robotica/article/abs/motion-recognition-using-deep-convolutional-neural-network-for-kinectbased-nao-teleoperation/AA337EC3B6AE611A13765DF1D4D1ECA5
https://doi.org/10.1007/s13369-021-06051-2
https://books.google.ps/books?id=PiF4narL1Z0C

68

8. Cruz-Ramírez, S.R., García-Martínez, M. & Olais-Govea, J.M. NAO robots as context to teach

numerical methods. Int J Interact Des Manuf 16, 1337–1356 (2022). https://doi.org/10.1007/s12008-

022-01065-y

9. Wikipedia, "TensorFlow," [Online]. Available: https://en.wikipedia.org/wiki/TensorFlow. [Accessed

2022].

10. Cyberbotics.(2023).Webots:RobotSimulator.Retrieved from https://www.cyberbotics.com.

11. MIT Sloan. (2021). Machine learning, explained. Retrieved from

 https://mitsloan.mit.edu/ideas-made-to-matter/machine-learning-explained

12. Sewak, M. (2019). Introduction to Reinforcement Learning. In: Deep Reinforcement Learning.

Springer, Singapore. https://doi.org/10.1007/978-981-13-8285-7_1

13. Towards Data Science. (2018). Training Deep Neural Networks. Retrieved from

https://towardsdatascience.com/training-deep-neural-networks-9fdb1964b964.

14. Sumiea, E. H., AbdulKadir, S. J., Al-Selwi, S. M., Alqushaibi, A., Ragab, M. G., Fati, S. M., &

Alhussian, H. S. (2023). Deep Deterministic Policy Gradient Algorithm: A Systematic Review.

15. Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., & Wierstra, D. (2016).

Continuous control with deep reinforcement learning. In Proceedings of the International Conference

on Learning Representations (ICLR). Google DeepMind, London, UK.

16. Sutton, R. S., & Barto, A. G. (2005). [The actor-critic architecture.]. Reinforcement Learning: An

Introduction Retrieved from

http://incompleteideas.net/book/first/ebook/node66.html#fig:actor-critic.

17. Vaughan, H. (2023). Develop your first AI agent - Deep Q Learning. Towards Data Science.

Retrieved from https://towardsdatascience.com/develop-your-first-ai-agent-deep-q-learning-

375876ee2472.

https://doi.org/10.1007/s12008-022-01065-y
https://doi.org/10.1007/s12008-022-01065-y
https://en.wikipedia.org/wiki/TensorFlow
https://www.cyberbotics.com/
https://mitsloan.mit.edu/ideas-made-to-matter/machine-learning-explained
https://doi.org/10.1007/978-981-13-8285-7_1
https://towardsdatascience.com/training-deep-neural-networks-9fdb1964b964
http://incompleteideas.net/book/first/ebook/node66.html#fig:actor-critic.
https://towardsdatascience.com/develop-your-first-ai-agent-deep-q-learning-375876ee2472.
https://towardsdatascience.com/develop-your-first-ai-agent-deep-q-learning-375876ee2472.

69

18. MathWorks. (2023) .DDPG Agents. Retrieved from

 https://in.mathworks.com/help/reinforcement-learning/ug/ddpg-agents.html.

19. Aldebaran. (2022). NAO. Retrieved from https://www.aldebaran.com/en/nao.

20. Wevolver. (2023) . NAO Robot Specifications. Retrieved from

https://www.wevolver.com/specs/nao.robot

21. Packt Publishing. (n.d.). Components of Kinect for Windows. In Kinect for Windows SDK

Programming Guide. Retrieved from

https://subscription.packtpub.com/book/programming/9781849692380/1/ch01lvl1sec08/component

s-of-kinect-for-windows.

22. Soltaninejad, Sara & Cheng, Irene & Basu, A.. (2019). Kin-FOG: Automatic Simulated Freezing of

Gait (FOG) Assessment System for Parkinson’s Disease. Sensors. 19. 2416.

23. Microsoft. (2022). Kinect for Windows. Retrieved from https://learn.microsoft.com/en-

us/windows/apps/design/devices/kinect-for-windows.

24. Latte Panda (2018). Latte Panda V1 Specifications. Retrieved from https://www.Latte

Panda.com/Latte Panda-v1

25. Hua, J., Zeng, L., Li, G., & Ju, Z. (2021). Learning for a Robot: Deep Reinforcement Learning,

Imitation Learning, Transfer Learning. Sensors, 21(4), 1278.

 https://doi.org/10.3390/s21041278

26. Kaggle. (2020). 3D Kinect Total Body Database for Back Stretches. Retrieved from

https://www.kaggle.com/datasets/dasmehdixtr/3d-kinect-total-body-database-for-back-

stretches?resource=download&fbclid=IwAR0JeW4wkyeMfBQbXyVOe8Cl4eWXns4NMwmmjtH

xuASBFOjKQ9p8DdxUFwQ.

file:///C:/Users/mosaa/Downloads/%20%20%20%20%20https:/in.mathworks.com/help/reinforcement-learning/ug/ddpg-agents.html
https://www.aldebaran.com/en/nao
https://www.wevolver.com/specs/nao.robot
https://subscription.packtpub.com/book/programming/9781849692380/1/ch01lvl1sec08/components-of-kinect-for-windows
https://subscription.packtpub.com/book/programming/9781849692380/1/ch01lvl1sec08/components-of-kinect-for-windows
https://learn.microsoft.com/en-us/windows/apps/design/devices/kinect-for-windows
https://learn.microsoft.com/en-us/windows/apps/design/devices/kinect-for-windows
https://www.lattepanda.com/lattepanda-v1
https://www.lattepanda.com/lattepanda-v1
https://doi.org/10.3390/s21041278
https://www.kaggle.com/datasets/dasmehdixtr/3d-kinect-total-body-database-for-back-stretches?resource=download&fbclid=IwAR0JeW4wkyeMfBQbXyVOe8Cl4eWXns4NMwmmjtHxuASBFOjKQ9p8DdxUFwQ
https://www.kaggle.com/datasets/dasmehdixtr/3d-kinect-total-body-database-for-back-stretches?resource=download&fbclid=IwAR0JeW4wkyeMfBQbXyVOe8Cl4eWXns4NMwmmjtHxuASBFOjKQ9p8DdxUFwQ
https://www.kaggle.com/datasets/dasmehdixtr/3d-kinect-total-body-database-for-back-stretches?resource=download&fbclid=IwAR0JeW4wkyeMfBQbXyVOe8Cl4eWXns4NMwmmjtHxuASBFOjKQ9p8DdxUFwQ

70

27. Giang, Hoang & Hoan, Tran & Thanh, Pham & Koo, Insoo. (2020). Hybrid NOMA/OMA-Based

Dynamic Power Allocation Scheme Using Deep Reinforcement Learning in 5G Networks. Applied

Sciences.

28. Said, Alejandro & Rodriguez Leal, Ernesto & Soto, Rogelio & Gordillo, J.L. & Garrido, Leonardo.

(2015). Decoupled Closed-Form Solution for Humanoid Lower Limb Kinematics. Mathematical

Problems in Engineering. 2015. 10.1155/2015/437979.

	Chapter 1: Introduction
	1.1 Project Description
	1.2 Benefits
	1.3 Report outline

	Chapter 2: Background
	2.1 Overview
	2.2 Hardware background
	2.2.1 Humanoid robot (Nao)
	2.2.2 Microsoft Kinect v2
	2.2.3 Microcontroller (Latte panda Intel Cherry Trail Z8350)

	2.3 Software Background
	2.3.1 Programming Languages
	2.3.2 Simulator

	2.4 Algorithms and theoretical background
	2.4.1 Inverse Kinematics
	2.4.2 Deep Reinforcement learning
	2.4.3 DDPG

	2.5 Literature Review
	2.6 Summery

	Chapter 3: System Design
	3.1 Requirements
	3.2 Hardware design
	3.2.1 System overview
	3.2.2 Block diagram
	3.2.3 System Pseudo Codes

	3.3 System software design
	3.3.1 Inverse Kinematics
	3.3.2 Dataset
	3.3.2.1 Dataset Collection and Specifications
	3.3.2.2 Pose Variations and Movements
	3.4.2.3 Data Collection Process
	3.4.2.4 Training and Testing Data Split

	3.3.3 Neural Network
	3.3.3.2 Reward function

	3.4 Summary

	Chapter 4: Implementation
	4.1 Introduction
	4.2 Hardware Setup
	4.3 Software Configuration
	4.3.1 Installing the required software
	4.3.2 Setting up the development environment
	4.3.3 System Software Interconnection Implementation
	4.3.3.1 Read Body Tracking Data (C#)
	4.3.3.2 Move Body Tracking Data (Rabbit MQ)
	4.3.3.3 Set Nao Angles

	4.3.4 Inverse kinematics Implementation
	4.3.5 DDPG Implementation and training
	4.3.5.1 Description
	4.3.5.2 Kinect v2 Dataset Selection for Training
	4.3.5.3 DDPG Implementation

	4.4 Challenges

	Chapter 5: Testing and Results
	5.1 Introduction
	5.2 Hardware Testing
	5.3 Software Testing
	5.4 Results
	5.4.1 Model training results
	5.4.2 Inverse Kinematics results

	Chapter 6: Conclusion and future work
	6.1 Conclusion
	6.2 Future Work

