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ABSTRACT

This work aims to find innovative solutions to the problem of manually detecting defects or

damages in building's walls that require significant resources and time. The proposed solutions

aim to create an automated inspection system that can effectively and efficiently detect areas that

require maintenance or repair.

In terms of implementation, a mobile robot used along with ROS packages and tools to

manage data from sensors and integrate different algorithms to perform analysis and

inspections. It will incorporate machine learning algorithms to analyze the input images from

the camera and identify any cracks or structural defects.

The automated inspection system's data and results can be accessed remotely, providing a

comprehensive report with detailed information about their building's condition. The solution

aims to enhance building safety, improve maintenance, and prevent long-term damage to the

structure.

Keywords: ROS, mobile robot, defects finding, reports, 2D map, Localization, Navigation,

SLAM.
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الملخص

التيالمبانيجدرانفيوالأضرارالعيوبعناليدويالكشفلمشكلةمبتكرةحلولإيجادإلىالمشروعهذايهدف

،ووقتاًكبيرةمواردتتطلب عنوكفاءةبفعاليةالكشفيمكنهآليتفتيشنظامإنشاءإلىالمقترحةالحلولتهدفكماطويلًا

منالبياناتلإدارةوأدواتهاROSحزممنمتنوعةمجموعةالنظامسيستخدمإصلاح.أوصيانةإلىتحتاجالتيالمناطق

النموذجلتحليلالآلةتعلمخوارزمياتالنظاميتضمنوالتفتيش.بالتحليلللقيامالمختلفةالخوارزمياتودمجالحساسات

الهيكل.فيأخرىعيوبأوفجواتأوتشققاتأيوتحديدالأبعادالثلاثي

لحالةشاملتقريرتحميليمكنكماإلكتروني،موقعخلالمنبعدعنونتائجهالنظامبياناتإلىالوصوليمكن

المبانيسلامةتحسينإلىيؤديالذيمبناهم،حالةعنوالمتخصصينالمبانيلأصحابدقيقةمعلوماتيوفرمماالمبنى،

الطويل.المدىعلىتهالكهاومنعوصيانتها

.المبانيأضراروالإصلاح،الصيانة،الأضراركشف،الإنشائيةالعيوب،الروبوتتشغيلنظاممفتاحية:كلمات
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Chapter 1: Introduction

1.1 Preface
There is a need to create an automated inspection system that can effectively detect areas

that require maintenance or repair. The lack of such a system has resulted in many buildings

suffering from neglected maintenance, leading to structural damage or deterioration.

1.2 Project Aims and Objectives
This project focuses on developing an automated inspection system for detecting and

analysing structural defects and damage in buildings. Using sensors such as cameras and

laser imaging and detection, the system will generate a 2D model of the building’s structure

and identify areas that require maintenance or repair. The system will be built using a Robot

Operating System (ROS) and aims to provide an accurate, efficient, and effective solution

for detecting and analysing structural defects in buildings.

1.3 Problem Statement

1.3.1 Problem Definition

Problem Significance: Structural defects and damage in buildings can be hazardous and

costly to homeowners. Traditional methods of identifying these defects rely on human

factors that are time-consuming, expensive, and prone to errors. And those in charge of

detection and monitoring may not be as accurate as required, in addition to people

underestimating and abstaining from periodic maintenance and follow-up of buildings and

facilities.

1.3.2 Problem Significance And Motivation

The proposed system will provide an accurate, efficient, and effective solution for detecting

and analyzing structural defects in buildings, improving the inspection process by reducing

inspection times, lowering costs, and providing more accurate and consistent results. The

motivation behind the project is to create a practical and innovative solution for detecting

and analyzing structural defects in buildings, making them safer and more habitable for all.
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1.4 Project Requirements

1.4.1 Functional Requirements:

The functional requirements of an automated inspection system play a crucial role in

ensuring that the system can detect and analyze structural defects and damage accurately,

efficiently, and effectively. These requirements outline the specific capabilities and features

that the system must have to meet its objectives and provide value to users. The following

is a list of functional requirements :

1. It should be able to generate a map of the building structure .

2. The system should be able to identify and locate structural defects and damage within

the 2D map.

3. It should be able to provide feedback to users when structural defects or damage are

detected.

4. It should be able to navigate the targeted area autonomously without constant user

interaction.

5. It should be able to avoid obstacles during its navigation.

1.4.2 Non-Functional Requirements:

1. The system should be reliable and stable, with minimal downtime or system failures, It

should also have a backup and recovery mechanism in case of unexpected system

failures.

2. It should be user-friendly and easy to use, with a simple interface. It should also provide

clear reports and results that are easy to read.

3. System’s web application should be secure and protect sensitive data from unauthorised

access or theft.

4. It should be compatible with different hardware and software environments, including

sensors, platforms, and communication protocols.

5. Acceptable response time.
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1.5 Project Limitations and Constraints

1. Environmental Conditions: The robot will be designed and tested to operate in indoor

environments and it is not suitable for outdoor use.

2. WiFi connectivity constraint in order to make the system functional.

3. The robot can only navigate through a single floor environment and can't go up or down

stairs.

4. The brightness of lighting can impact the accuracy of defect classification.

1.6 Project Expected Output

A mobile robot, operating on ROS, is designed to construct a map of a building's layout,

autonomously navigate through the environment, and identify and localize structural

damages, categorizing them by type. The robot then transmits all gathered data to the

cloud. This information is accessible through a web application, offering a comprehensive

display of the building's status. Additionally, the system possesses the capability to

generate reports outlining the detected damages.
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Chapter 2: Theoretical Background

2.1 Preface
This chapter provides a theoretical background and literature review for the project. It

briefly outlines the system components, including the sensors, and provides information on

the methodology and machine learning models that will be used to automate the building

inspection process. Overall, it aims to provide the necessary background information to

understand the system and its functioning.

2.2 Theories
This section explores the fundamental technologies and concepts of navigation, localization,

SLAM, and machine learning/image processing that will be used in the system to detect

structural defects such as cracks, humidity, or structural damage.

Simultaneous Localization and Mapping

Simultaneous Localization and Mapping (SLAM) is a fundamental concept in robotics that

involves constructing a map of the environment while simultaneously estimating the robot's

position within that map. SLAM combines localization and mapping to enable a robot to

autonomously explore and navigate in unknown environments. This algorithm utilizes

sensor data, such as Light Detection and Ranging (LiDAR) or camera motor encoders as

inputs, to incrementally build the map and refine the robot's position estimate [1].

Gmapping

This package contains the ROS wrapper for Gmapping for OpenSlam. The laser-based

gmapping package provides SLAM, as a ROS node called slam-gmapping. You can create a

2D occupancy network map (like a building floor plan) from laser data and an image

collected by an animated robot. The map is drawn by the movement of the robot in a

specific location, with LIDAR sensors the distances between the robot and nearby obstacles,

and during the drawing the robot everything around is being discovered[2].

12



Localization

Localization is the process of determining the precise position of a robot within its

environment. It involves estimating the robot's coordinates (e.g., x, y, and z) as shown in

Figure 2.1, localization is crucial for the robot to understand its position relative to the

surrounding objects and to accurately navigate and interact with the environment depth

sensor and cameras are used as main sensors to obtain information about the surrounding

environment and there are common localization methods, including simultaneous

localization and mapping [3].

Figure 2.1 : General schematic for mobile robot localization [4].

Obstacles Avoidance

Fundamental component of robot navigation plays a crucial role in ROS implementation

designed for autonomous robots.It enables the robot to safely navigate its environment by

detecting and reacting to obstacles and barriers. In this project, which includes sensors like

ultrasonic and Kinect’s IR, the robot identifies obstacles like staircases or objects in its path.

When an obstacle is detected, the robot initiates a series of actions based on predefined

algorithms [5], For example, if the robot encounters a staircase, it may utilize its sensors to

detect the change in elevation and depth. Using this information, it can determine the

presence of a staircase and its dimensions. Then, the robot's navigation algorithms come into

play. These algorithms are designed to plan an alternative route around the obstacle, whether

it's a staircase, object,or any other impediment. The robot will then proceed with navigation

while avoiding the obstacle, ensuring it reaches its intended destination safely and efficiently.
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Navigation
Navigation refers to the process of guiding a robot from one location to another in a given

environment. Figure 2.3 provides a representation of the process that involves determining

the robot's path, avoiding obstacles, and reaching the desired destination. Various algorithms

and techniques are used for navigation, including path planning, object detection, and

recognition [6].

Figure 2.2: Autonomous robot navigation pipeline [7].

Machine Learning

Machine learning algorithms, such as deep neural networks, can be employed for tasks like

image classification, semantic segmentation, and object localization. These techniques

enable the robot to interpret visual data and make informed decisions based on the analyzed

information [8].

Furthermore, the project will leverage the Teachable Machine platform for model training.

Image Processing

Image processing techniques play a crucial role in various aspects of the project. Image

processing algorithms are used to analyze and extract relevant information from camera

inputs, such as object detection, recognition, and tracking.Is well-established and supported

by packages like OpenCV and perception packages in ROS [9].
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2.3 Literature Review

In [10], the authors compared the performance of several machine learning algorithms for

automated defect detection in building structures using image data captured by cameras ,and

found that random forests had the highest accuracy and efficiency for detecting defects such

as cracks, humidity, or structural damage.

However, the authors noted that the algorithm's performance can be affected by the quality

of the image data and the size and complexity of the building structure.

Authors [11] found that ROS can be used to integrate different sensors and devices for

building automation and inspection, such as cameras, LiDAR sensors, and thermal sensors.

They also noted that ROS can be used to develop intelligent algorithms for analyzing sensor

data and detecting defects or anomalies.

However, the authors noted that the scalability and reliability of the system can be affected

by the complexity of the sensor network and the communication protocol used.

The limitations of this literature review are that it focused mainly on the integration of ROS

and IoT technologies for smart building systems and did not discuss other important aspects

of automated inspection systems, such as navigation and communication of the inspection

robots. Additionally, the review did not provide a detailed evaluation of the existing

literature on defect detection algorithms and their limitations.

Simulation of a mobile robot done by [12], that combines mapping, localization, and object

detection using the Robot Operating System (ROS). The robot uses a LIDAR sensor to scan

the environment, which is transformed into an occupancy grid map through ROS. The robot

then localizes itself using the Monte Carlo localization algorithm, navigates through the

Dijkstra algorithm, and detects objects using the You Only Look Once algorithm. The

simulation was conducted using the Gazebo software, and the robot's performance was

evaluated through 100 simulated localization experiments across 10 maze environments,

resulting in a success rate of 62% and an average time of 139 seconds for successful

attempts.

In [13] the Storing Robot is a mobile robot with an arm attached to its base that classifies

objects based on their RFID tags. It moves along a predefined path and uses IR range

finders to locate objects and move towards them dynamically. This robot is designed to put

objects on their designated shelves, and it achieves this task through a series of specific
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moves. This technology is useful in various settings, such as warehouses and storage

facilities.

The "Object Finder" [14] project integrates cutting-edge technologies to enable a robot's

autonomous search and detection capabilities. Employing a mapping algorithm, the robot

generates a comprehensive map of its environment, and directives from a mobile application

guide its search for specific objects. A specialised camera facilitates object detection using

the YOLO algorithm and the Robot Operating System (ROS). Navigating and avoiding

obstacles, the robot communicates successful identifications and precise coordinates to the

mobile app. This seamless integration showcases the project's efficiency and sophistication

in executing targeted search and detection tasks.

Table 2.1: Literature review.
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Literature Author & Year Key Points

Literature 1 [10] Authors:

Y. Sun

Year: 2019

● Comparison of machine learning algorithms
for defect detection in building structures
using image data.

● Random forests showed the highest accuracy
and efficiency for detecting defects.

● Algorithm performance can be affected by
image quality and building structure
complexity.

Literature 2 [11] Authors:

M.A.H.
Chowdhury

Year: 2020

● Integration of ROS and IoT for building
automation and inspection.

● ROS can integrate different sensors and
develop intelligent algorithms for detecting
defects.

● Scalability and reliability can be affected by
sensor network complexity and
communication protocol used.



2.4 System Components

1. Hardware: The system will use different components to capture data about the
building structure and to identify any defects in the walls, this includes:

● Mobile robot.
● Processing unit.
● Camera.
● Depth sensor.

2. Software: It includes packages to control the robot and other tools for image
processing and ML and create a user-friendly app, like:

● ROS .
● OpenCV.
● Teachable Machine.
● WebTools.
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Literature 3 [12] Authors:

Firas Mohtaseb,
Abdalmenem Amleh
Mohammad Mohtaseb

Year: 2020

● Development of a simulation of a mobile
robot that combines mapping, localization,
and object detection using ROS.

● LIDAR sensor used for environment
scanning and Monte Carlo Localization
algorithm used for self-localization.

● Dijkstra algorithm used for navigation and
YOLO algorithm used for object detection.

● Success rate of 62% and average time of 139
seconds for successful attempts.

Literature 4 [13] Authors:

Mariam E'mar

Alaa Shaheen

Year: 2013

● Storing Robot is a mobile robot with an arm
that classifies objects based on RFID tags.

● IR range finders used for locating objects
and dynamic movement towards them.

● Designed for putting objects on designated
shelves in settings such as warehouses and
storage facilities.

Literature 5 [14]
Authors:

Hamza Dwaik
Moayad Hrebat
Motaz Natsheh

Year: 2023

● Cutting-Edge Object Detection.
● Seamless User Interaction: The integration

of a mobile application facilitates user
directives, enabling a smooth interaction
between the user and the autonomous robot
during search missions.

● Effective System Communication.



Chapter 3: System Design

3.1 Overview
This chapter will cover the overall design of the system and the integration of its components,

showing the block diagram and schematic diagram, as well as details about the algorithms

used.

3.2 Design Options
By comparing the available components and evaluating different hardware and software

choices, the aim is to identify the most suitable components that align with the project

requirements and objectives.

3.2.1 Hardware Components Options

1. Mobile Robot

The mobile robot plays a crucial role in the system as it serves as the physical platform for

navigation and inspection tasks. Various options are available for selecting a suitable mobile

robot for the project, considering factors such as features, functionalities, and compatibility

with the project requirements.

1.A. Kobuki Robot - Turtlebot2

It provides a reliable and customizable hardware base with integrated sensors, including a

camera, laser scanner, and inertial measurement unit as shown in Figure 3.1.

The TurtleBot's compatibility with ROS allows for seamless integration with various

software libraries and algorithms, enabling advanced functionalities such as mapping,

localization, and path planning [15].

Figure 3.1: Kobuki robot - Turtlebot2 [16].
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1.B. Clearpath Jackal

The Clearpath Jackal is a compact and agile mobile robot designed for outdoor and indoor

environments. It comes with an array of sensors, including a 3D LiDAR, and offers robust

localization and mapping capabilities as shown in Figure 3.2 [17].

And the key differences between TurtleBot 2 and Clearpath Jack, presented in Table 3.1.

.

Figure 3.2: Clearpath Jackal [17].

Table 3.1: Differences between TurtleBot 2 and Clearpath Jack.

Mobile Robot

Characteristic Clearpath Jackal[18] Turtlebot 2[19]

Size Bigger Size Smaller Size

Max Speed 2.0m/s 0.65 m/s

Weight 17Kg 6.3 Kg

Cost Higher cost Low cost

Number Of Motors 4 2

Battery Capacity 270000 mAh 2200-3000 mAh

For our project, the TurtleBot has been chosen as the mobile robot platform due to its low

cost, lightweight design, it offers a customizable hardware base with integrated sensors

like a camera, laser scanner, and inertial measurement unit and it is available. The

turtlebot’s compatibility with ROS allows for seamless integration with various software

libraries and algorithms, enabling advanced functionalities such as mapping, localization,

and path planning.

19



2. Processing Unit

The processing unit is the component that drives the system's functionality. It receives and

processes sensor data, executes algorithms, and controls system components.

When comparing and evaluating two choices, a Raspberry Pi 3 and a laptop, the selection of

the processor depends on specific characteristics shown in Table 3.2.

Table 3.2: Differences between the Raspberry Pi 3 and Laptop.

Processing Unit

Characteristic Raspberry Pi 3[20] Laptop[21]

Image

Cost Low (Started from $40) Higher(Started from $300)

Size Small (85mm x 56mm x 17 mm)
[22]

Larg (330mm x 220mm)

Memory 1GB RAM 8GB - 16GB or more
RAM

Storage MicroSD card “up to 1TB” HDD /SSD “256GB-1TB”

Speed Quad-core ARM Cortex-A72 Multi-core x86

Ports HDMI, USB, Ethernet, GPIO HDMI, USB, Ethernet,
various peripherals

Power Consumption Low (2.8 to 3.1 watts) High (10–100 watts)

After careful consideration and reviewing previous work, including "Object Finder and

Storing Robot" [23], chose to use a laptop as a controller. This decision was influenced by

concerns related to lagging issues that were observed in the project utilizing the Raspberry

Pi.
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3. Camera

The camera is used to capture images of the building structure, enabling detailed inspection

and analysis for the detection of structural defects. There are two available options

mentioned in Table 3.3:

Table 3.3: Differences Between the Kinect camera and Logitech camera.

Camera

Characteristic Kinect Camera[24] Logitech Camera[25]

Image

[26]

Cost $160 $70

FoV 60 Degree 78 Degree

Depth Resolution 512*424 Not Available

Multiple Sensors per
PC

Yes Yes

External Power Supply 12V DC adapter powered through USB

Kinect camera chosen because it captures detailed images of the environment, not only

RGB images but also depth information, allowing the robot to build a comprehensive

understanding of its surroundings. Also its high-resolution imaging enhances the ability to

detect and analyze structural defects[27].
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4. Depth Sensor

A depth sensor is used to measure the distance between the sensor and objects in its

environment. It enables the creation of three-dimensional representations by capturing depth

information and provides simultaneous localization and mapping capabilities. This

technology automatically detects any object nearby and measures the distance to it on the

go. These features allow devices to move autonomously by making real-time decisions[28].

There are two available options for depth sensors to choose from shown in Table 3.4.

Table 3.4: Differences between the Kinect sensor and LIDAR URG 04lx sensor.

Depth Sensor

Characteristic Kinect Sensor [29] LIDAR URG 04lx
sensor[30]

Image

[31]

Cost $150 $100

Detection Range 0.5 m to 4.5 m 4 m

Interference from Light Infrared-based, less affected by
visible light

Sensitive to ambient light

Direction Depth information in a wide-angle
(horizontal 70 degrees, vertical 60

degrees)

Forward-facing (0 to 240
degrees adjustable)

Mapping Capability Yes Yes

Accuracy Sub-millimeter accuracy in depth
measurements

±1% of measured distance

Kinect was chosen because it can detect in a range from 0.5m to 4.5 m, covering what is

needed for mapping and navigation. It's not too expensive,and it has good accuracy.
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Moreover, the Kinect sensor as shown in Figure 3.3 ,captures RGB data while using IR

depth sensor to enable depth measurement. In this process, the emitter releases infrared light

beams, and the depth sensor reads the reflections of these beams then translates it into depth

information, measuring the distance between an object and the sensor.

Figure 3.3: Kinect camera [32].

This capability enables the sensor to capture features and generate accurate maps of the
building; these maps will be used for navigation and obstacle avoidance within the specified
space[33].
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3.2.2 Software Components Options

1. Application For Reporting.

Considered two options that act as platforms for displaying the inspection report and giving a

thorough explanation of the issues found in the building: a web application and a mobile

application

2. Development Tool.

The mobile app or a web app each option has different technologies and languages to ensure

a simple user experience, Table 3.5 shows the differences between them.

Table 3.5: Differences between the mobile application and web application.

Mobile app and Web app [34] [35]

Characteristic Web app Mobile app

Access Accessible across all devices via web
browsers.

Not immediately
accessible until installed.

Offline Access Require a proper internet connection Can be accessed even
offline.

Loading Speed Generally faster browsing experience. May take a while to
load, depending on
network conditions.

Language Frontend :Javascript ,HTML,CSS.
Backend :Php,Django.

Frontend: Flutter.
Backend: Python,Java.

Database MySQL,MongoDB. MySQL.

After careful comparison, a web application was chosen, it can be accessed from any device

with a web browser, including desktop computers, laptops, tablets, and smartphones. This

ensures a broader reach and accessibility for users, as they can access the application using

their preferred device without the need to download and install a dedicated mobile app.
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3. Robot Operating System.

ROS is a flexible framework for developing robot software. It provides a wide range of

libraries, tools, and drivers that can be used for building inspection tasks. ROS supports

various programming languages and offers a rich ecosystem of pre-built packages that can

be leveraged for perception, mapping, navigation, and other functionalities.

There are several other options for robot operating system frameworks that can be

considered for the project, including:

A. ROS Noetic

ROS Noetic is a framework and toolset designed for the development of robotic software. It
supports component-based architecture and programming in various languages [36].

B. MRPT

MRPT is a collection of C++ libraries and algorithms for mobile robotics applications. It
offers localization, mapping, path planning, and other essential functionalities[37].

The differences between MRPT and ROS Noeticshown in Table 3.6.

Table 3.6: Differences between MRPT and ROS Noetic.

Robot Operating System [38]

Characteristic ROS Noetic MRPT

Inter-platform
operability

Multi-language support Does not support multi
language platform

High-end capabilities Yes Yes

Support high-end sensors
and actuators

Yes Limited

Tools Tons of tools Inbuilt tools and external
packages available

Modularity & Active
community

Yes Yes
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There are two programming languages available for development within the ROS noetic

framework: C++ and Python.

C++ is a powerful and efficient programming language widely used in robotics,

Python was chosen because it offers a wide range of libraries and tools for development and

prototyping.

4. OpenCV.

OpenCV is very useful in visualization and analyzing purposes.Its primarily responsible for

image preprocessing and enhancing the quality of images recorded by the Kinect camera,

This could involve reducing noise, adjusting contrast, and optimizing the images for

analysis.The library provides algorithms for image segmentation, pattern recognition, and

feature extraction, all of which are vital for identifying structural defects in buildings [39].

5. Visual Studio Code.

An integrated development environment. widely used, free, and open-source code editor

with extensive features and support for various programming languages.

6. Teachable Machine.

Teachable Machine is a web-based tool designed to simplify the creation of machine

learning models, enabling individuals of varying expertise to efficiently train models,

utilizing Convolutional Neural Networks .

This contributes to the enhancement of the system's ability to detect and analyze structural

defects, showcasing the dedication to incorporating accessible and innovative technologies

into the project [40].
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3.3 General Block Diagram

The system design in Figure 3.4 shows a general overview of the system’s main components

and the connections between them. visual data of the building's structure, while the controller

acts as the central processing unit, handling data processing. The depth sensor detects nearby

objects and obstacles, providing valuable information for navigation. The controller creates a

detailed 2D map of the building's environment, enabling precise measurements and the

identification of structural defects.

Figure 3.4: System block diagram.
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3.4 Conceptual System Description

The conceptual design integrates a mobile robot, camera and depth sensor for capturing

images, obstacle avoidance, and 2D modeling as shown in Figure 3.5.

Figure 3.5: Conceptual system design.
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3.5 Pseudo-Code

This Pseudo-Code helps a robot navigate, avoiding obstacles and detecting defects. It

captures images, checks for obstacles, and uses OpenCV to find defects. Defect details are

sent to the cloud, The process continues until the user stops it or the robot reaches its goal.

Algorithm 1:Pseudo-Code for mobile robot navigation and defection localization.

Begin
Obstacle_range = 0.5
while True:

image = capture image from camera
distance_data = capture depth sensor data

if distance_data < Obstacle_range // There is an obstacle
Stop Robot
Turn

else
Continue

detected = defect_detection_algorithm_openCV(image)
If detected == True

Get x,y coordinates from ROS_Node
Get image from camera
Get defect_type from Machine_learning_model

End if
Publish_using_MQTT_to_broker({x,y}coordinates,defect_type)

If user_input == "stop" or robot_reached_goal():
break

OUTPUT website_subscribe_to_broker_and_display_the_data
End While
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Chapter 4: Implementation
4.1 Overview
This chapter describes the implementation part of the project in more detail. It dives deep into

the different hardware components of the system and its software with all of its modules.

4.2 Hardware Components
The main component is the laptop, it is linked to various other system components as follow:

● The Turtlebot is connected to the laptop via a USB cable as shown in Figure 4.1.

Figure 4.1: System components.

● The laptop is connected to the Kinect Sensor via a USB cable, and it receives power

through an adapter utilizing the Turtlebot's 12V/5A cable, as shown in Figure 4.2.

Figure 4.2: Connect Kinect sensor to Turtlebot.
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4.3 Software Components
This section covers the initial setup of the software environment, including the installation of

the Ubuntu operating system and the ROS. This is a critical starting point for the software

implementation, as it ensures that the system is ready to support the development and operation

of the robotic application.

4.3.1 Installing Ubuntu Mate 20.04 Operating System

Ubuntu 20.04 Mate, ensuring stability and compatibility with ROS noetic[41].

4.3.2 Installing ROS Noetic

The system runs on ROS Noetic. It contains all the necessary packages like ros_enviroment

and catkin to operate the Turtlebot robot and Kinect sensor. Additionally, it includes tools

for creating maps like GMapping [42].

Basic installation commands:

- The following line of command will install the latest ROS Noetic on Ubuntu mate

20.04

$ Wget

https://raw.githubusercontent.com/qboticslabs/ros_install_noetic/

master/ros_install_noetic.sh && chmod +x ./ros_install_noetic.sh

&& ./ros_install_noetic.sh

$ sudo apt install ros-noetic-desktop-full

- Environment setup

$ echo "source /opt/ros/noetic/setup.bash" >> ~/.bashrc

$ source ~/.bashrc

4.3.3 TurtleBot Installation

This involves installing essential TurtleBot packages that didn't come with the basic ROS

Noetic installation. These additional packages include things like turtlebot_apps, launch

files, turtlebot_viz, and turtlebot_bringup, They provide extra functionalities and tools that

enhance the capabilities of TurtleBot for various tasks and applications [43].

The following command used to get the all required packages:

$ git clone https://github.com/hanruihua/Turtlebot_on_noetic.git
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4.4 Mapping using SLAM

The algorithm chosen for this project is GMapping which is a laser-based SLAM that builds
a 2D map by following these steps [44]:

Gmapping commands:
1. On Turtlebot, Launch the basic TurtleBot drivers and hardware interface.

$ roslaunch turtlebot_bringup minimal.launch

2. Start the Gmapping algorithm for SLAM to create a map using TurtleBot's sensors.

$ roslaunch turtlebot_navigation gmapping_demo.launch

3. Launch RViz to visualize the navigation stack and display the generated map along
with the robot's pose.

$ roslaunch turtlebot_rviz_launchers view_navigation.launch

4. Activate the keyboard teleoperation to manually control the TurtleBot's movements
using the keyboard.

$ roslaunch turtlebot_teleop keyboard_teleop.launch

5. While driving the Turtlebot around, it will begin to generate a map as shown in
Figure 4.3.

Figure 4.3: Generated 2D map.

6. Save the Map: To save the pre-mapped environment, utilize the map_saver tool.
Execute the following command, replacing /path/to/save/the/map with the desired
file path:

$ rosrun map_server map_saver -f /path/to/save/the/map
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4.5 Navigation

The generated map serves as a reference for the robot's position. The robot then plans a path

from its current location to the goal using this map. During navigation, the Kinect's sensor

continuously scans the surroundings for obstacles. If obstacles are detected, the robot

dynamically adjusts its path in real time to avoid collisions[30].

4.5.1 Path Planning

The robot's destination is defined using a script, and it will then generate a path to reach that

specified goal. This path planning typically relies on pre-existing maps that were

generated[36].

Before beginning path planning, it is necessary to load the map by following these steps:

1.Load the Saved Map

$ export TURTLEBOT_MAP_FILE=~/gmapping_01.yaml

2.Localize The Turtlebot
start the necessary nodes for the amcl localization node including map server, odometry,
and sensor nodes.

$ roslaunch turtlebot_navigation amcl_demo.launch

Start RViz and display the map, the estimated position of the Turtlebot using green arrows.

$ roslaunch turtlebot_rviz_launchers view_navigation.launch
--screen

Using a python script sends a navigation goal to the robot, to lead the robot to move to a
specified location on the map as shown in the Figure 4.4.

Figure 4.4: Creating a map using Rviz.
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4.5.2 Obstacle Avoidance

Using a Python script with the navigation package move_base, the robot achieves

autonomous movement by planning and executing paths while actively avoiding obstacles.

The move_base package employs a global planner for high-level path planning and a local

planner for real-time adjustments based on sensor feedback. To enhance obstacle avoidance

capabilities, specific parameters are set, including max_obstacle_height at 0.6m and

obstacle_range at 0.5 m [45].

4.6 Image Classification

4.6.1 Teachable Machine For Image Classification
Using the Teachable Machine tool as shown in Figure 4.5, the model trained on a dataset of

structural defect images to recognize and categorize various structural defects, we chose a

batch size of 16, ran 50 epochs, and set the learning rate to 0.001 for optimal training. The

dataset consist about 800 images each sized at 170*250 pixels. This model will be utilized

in conjunction with OpenCV and the Kinect’s camera for real-time structural defect

recognition [46].

Figure 4.5: Example of model development with a teachable machine.
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4.6.2 Classification Of Defects

The dataset is organized into three main classes:
1. Normal Class: representing undamaged structures, serving as a reference point for

evaluating structural integrity.

2. Structural Defects Class: this class represents more extensive and critical harm to

structures. Examples include images of buildings with severe damage, such as

significant structural cracks, collapsing walls, or any issues posing a substantial

threat to the structural integrity of the building.

3. Cracks Class: This class contains examples like images of cracks in walls,

pavements, or other surfaces. These are relatively minor structural issues when

compared to more extensive damage.

This classification system enables the models to distinguish between varying levels of

structural integrity, with structural damage representing more extensive and critical harm

compared to cracks as shown in Table 4.1.

Table 4.1: Dataset classes and sample images.
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4.7 ROS Nodes Graph

We observed running ROS nodes and their interconnections and communication pathways
by executing the following command:

$ rosrun rqt_graph rqt_graph

The visual representation of nodes and their interaction are shown in RQT Graph in Figure
4.6

Figure 4.6: ROS Nodes Graph.
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4.8 Web Application Implementation

4.8.1 MQTT Protocol

MQTT is a lightweight open messaging protocol, which employs a publish/subscribe

communication pattern used for machine-to-machine communication, it supports messaging

between devices to the cloud and the cloud to the device[47].

It works as below:

● The MQTT client establishes a connection with the MQTT broker.
● Once connected, the client can either publish messages, subscribe to specific

messages, or do both.
● When the MQTT broker receives a message, it forwards it to subscribers who are

interested.

A Python script to send the data from the ROS node to the application using this protocol
was written. This code is available in Appendix B.

4.8.2 User Interface

The project integrates PHP and SQL for the server side, JavaScript, CSS, and HTML for the

client side to create a dynamic application. Additionally, MQTT protocol is employed to

facilitate communication with the robot, the system contains three main pages:

● Sign In page shown in Figure 4.7: The entry point for users to access the system.

Users can be authenticated using their credentials, and administrators without an

account can create a new one.

Figure 4.7: Sign in page.
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● Welcome page in Figure 4.8: The central hub following a successful sign-in,
providing users with access to key functionalities and navigation to the final page
containing the map and additional details

Figure 4.8: Welcome page.

● Map and defects page in Figure 4.9: It is the final page containing the building’s
map, highlighting various defects identified during the inspection. To enhance
clarity, a colour-coded key has been provided to specify the types of defects and
their corresponding representations on the map, yellow dot for Structural Defects
and blue dot for Cracks.

Figure 4.9: Map and defects page.
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The previously saved map, created using Gmapping algorithm, is uploaded to the

application as a PGM file. When the robot navigates within the mapped area, it starts

searching for defects on the room walls. If a defect is detected , the robot transmits the

(x, y) coordinates of the defect to the application. To ensure accurate defect positioning,

these coordinates are converted from metres to pixels using the scaling factor of 35.37

(Scale_meter_to_pixel). Additionally, determining the robot's origin point involves

placing it at 162 pixels from the left and 277 pixels from the top in the updated map.

The application, upon receiving the defect information, dynamically responds by

drawing on the canvas of the uploaded map. The position of the defect is marked based

on its scaled (x, y) coordinates, and the type of defect determines the specific

representation on the canvas. For example, structural defects represented by a yellow

mark, while cracks depicted with a blue mark.

It's also including six buttons:

1. Map Saving Button: Users can save the updated map, including the positioned

canvases marking detected defects as shown in Figure 4.10.

2. Change Map Button: Allows users to switch between different maps.

3. Reset Button: Provides an option to remove all defect markings from the map.

Figure 4.10: Map with defects.
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4. Generate PDF Button: Generating a downloadable PDF report with the inspection

details includes defect locations, a map representation, and the current date and

time using the html2pdf library, this report shown in Figure 4.11.

Figure 4.11: Generated pdf report.

5. Connect / Disconnect Buttons: The "Connect" button establishes communication

between the web app and the robot via the MQTT protocol, while the "Disconnect"

button terminates this communication.
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4.8.3 Deployment Process on AWS Lightsail

The project is deployed using AWS Lightsail service, selected for its strong security
protocols. Data is automatically encrypted at rest and in motion for increased security, it's
completely managed by AWS, the service provides integrated backup features, enhancing
reliability in the hosting environment.

1. Instance Creation: create a new lightsail instance by selecting the desired instance
specifications and configuration options, then create a new key pair that is used for
SSH access to the instance, then launch it as shown in Figure 4.12, after that create
a MySQL managed database on it as shown in Figure 4.13.

Figure 4.12: Launched Lightsail instance.

Figure 4.13: Created Database.

The instance can be accessed via HTTP and HTTPS using its IP address. However, data
transmission is limited to HTTP when using the MQTT protocol.

2. Files Upload: FileZilla is used to transfer the project files from the local machine to
the instance.

41



3. Install MySQL Server: after use SSH to connect to the instance, install the server
by applying this command:

$ sudo apt install mysql-server

Then the MySQL shell will be accessible to create a new database, after that in the

server-side code establish a connection to a MySQL database hosted on Amazon

RDS as shown in Figure 4.14.

Figure 4.14: Remote database connection.

In AWS Lightsail, user passwords are stored in hashed representations as shown in Figure
4.15. This cryptographic technique significantly enhances security to prevent unauthorized
access. Additionally, It employs key pairs for secure access to the instance, consisting of a
public key for accessing it and a private key securely held by the user. This asymmetric
encryption method strengthens overall security, thus ensuring the confidentiality and integrity
of user data within the database[48].

Figure 4.15: Remote database password hashing.
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4.9 Implementation Issus

1. Kinect Camera Identification:

We faced issues with Kinect connection, it's using a different ID than the default
one, causing another device to connect to the USB port instead. Resolved this by
adjusting the device's default ID to match the designated Kinect ID within the
OpenNI file .

<arg name="device_id" default="#2" /> sets the device ID for the
camera. The value is set to "#2", which suggests using the second device found. It
can be specified in various formats (serial number, bus, and address) to uniquely
identify the camera device.

2. Velocity Adjustment for Defect Detection:

During navigation robot motion was fast. So it's hard for the robot to detect the
defect. This issue was solved by reduction of robot speed by changing the
maximum x velocity (Max_vel_x =0.55) for the robot to 0.1m/s.

3. Camera-Robot Synchronization:

Faced delays between camera input and robot movement. Successfully fixed the
synchronization gap, improving real-time coordination by adding this line of code .

if rospy.Time.now() - self.last_image_time < self.min_interval:

return

self.last_image_time = rospy.Time.now()

4. Defect Position Correction:

We faced a problem where the '/odom' topic was displaying the robot's position
instead of the defect’s position. So we used the Kinect depth sensor to calculate the
closest point coordinates to the robot when it detected a defect, then added these
coordinates to the robot's actual position. This adjustment ensures accurate defect
positioning in the x and y coordinates.

5. OpenNI and AMCL Conflict:

Facing a conflict between OpenNI and AMCL packages while subscribing to image
topic '/camera/rgb/image_color' which is needed to run OpenNI node, So we used
the '/camera/rgb/image_raw' topic instead. This topic is already functional within
the amcl_nav package and does not necessitate the operation of OpenNI.
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Chapter 5: Testing
5.1 Overview
This chapter explains the project component testing methodology and displays the project
system implementation outcomes.

5.2 ROS Installation
You can check the installed version by opening a terminal and running:

roscore

ROS is installed correctly if you see: started core service [/rosout]

5.3 Testing The TurtleBot
Make sure the turtlebot is connected to the laptop using the cables and connectors. Check the
power connection and ensure that the robot is receiving power. After run the following
command, a sound will be emitted to indicating power connection :

roslaunch turtlebot_bringup minimal.launch

5.3.1 Testing Motor In Turtlesim

Run a python script for driving turtlebot in linear motion such as moving in a square or zigzag
path, angular like moving in a circle, the Figure 5.1 shown applying the same script in
Turtlesim.

Figure 5.1 :Turtlesim robot simulation.
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5.4 Testing The Kinect
5.4.1 Default 3D sensor

check the default 3D sensor of TurtleBot by printing an environment variable and confirm
the output:

$ echo $TURTLEBOT_3D_SENSOR

# Output: kinect

5.4.2 Test OpenNI Driver

Launch the OpenNI driver for ROS, initializing the OpenNI camera and making its data
available for further processing in the ROS ecosystem.

$ roslaunch openni_launch openni.launch

5.4.3 Test Kinect Stream

Open a new terminal, and check the list of topics being published:

$ rostopic list

This command will display the RGB camera data being published on that topic in the
terminal as shown in Figure 5.2:

$ rostopic echo /camera/rgb/image_raw

Figure 5.2: RGB camera data stream.
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5.4.4 Test Image Data

Using the following command will display a live video stream from the Kinect:

rosrun image_view image_view image:=/camera/rgb/image_color

5.4.5 Test Depth Data

This command test of depth data and showed visual representation of distance where objects
closer to the Kinect appear darke as shown in Figure 5.3:

rosrun image_view image_view image:=/camera/depth/image

Figure 5.3: Test Kinect depth data.

5.4.6 Autonomous Motion and Avoiding Obstacles

A self-motion test was executed to verify the robot's correct movement. A Python script for
obstacle avoidance during movement was written. This code is available in Appendix A.
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5.5 Testing Machine Learning Model
After training the mode using Teachable Machine, this model is utilized in a python script

available in Appendix C to perform real-time image classification for wall’s defects .

Running the script provides the predicted classes with a clear output as shown in Figure 5.4:

Figure 5.4: Test the ML model.

Orange tool that shown in Figure 5.5 used to evaluate the accuracy of the model by drag and

drop components (called widgets) to create a data analysis pipeline, This tool generates a

detailed confusion matrix for each class. The model gives 95% of accuracy in classifying

different structural defect categories.

Figure 5.5: Cross-validated calibration plot.
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The overall accuracy for the ML model is shown in Figure 5.7 and as it shown in Figure 5.6
the confusion matrix display the accuracy for each class as follows:

● Cracks - 93.5%

● Normal - 98.8%

● Structural - 89.5%

Figure 5.6: Confusion matrix.

Figure 5.7: Result of testing and scoring the model.
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5.6 Testing The Web App

After successfully establishing a connection with the Lightsail instance at IP address
35.165.120.60, the application connects with the robot. Using the MQTT protocol for data
transmission, the console logs and displays information about the connection status and the
defects.

The application successfully established a connection with the broker and subscribed to the
topic "project_topic/automated_building_inspection_system/location" as shown in figure
5.8:

Figure 5.8: Test broker connection and topic subscription.

It effectively received scaled points through these subscriptions, providing information about
defects type and its location as shown in figure 5.9:

Figure 5.9: Test data transmission.
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5.7 Unit Testing
Each part of the system was tested individually by connecting it to the laptop and running
a specific python script. The results of these tests were recorded in Table 5.1.

Table 5.1: Software Testing Table.

Case Result
Generate 2D map of the
building structure

2D map with nearly the same real building structure.

Navigate the mapped area

autonomously

Robot moved smoothly and avoided obstacles with the derived
path in the saved map.

Identify the defects and its type. Robot can detect the defect and identify its type with 93.5%
accuracy for cracks and 89.5% for structural defects.

Locate defect’s position in the
map.

Robot can exactly locate the defect position, convert to pixels,
and display it on the scaled map with its type.

Connect to MQTT Robot connecting to the web server by MQTT.

Send necessary data to the web
application.

Map, defects location and its type sent successfully to the
application.

Provide comprehensive report Users can easily get and read the building status using a pdf
report.
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5.8 System Validation
In this section, we check the complete system component to make sure it meets the
functional requirements under various test scenarios. These include:

Case 1: The robot navigates through an environment containing images of defects. It faces
difficulty detecting defects, when the light is inadequate at certain points, also when the
robot moves fast.

Case 2: The robot navigated one more time and it was able to detect the defects type, but
it printed its own position instead of transmitting the defects' positions. This resulted in
printing incorrect data on the map as shown in Figure 5.10:

Figure 5.10: Robot position transmission.

Case 3: The robot now navigates on the same environment and it was able to detect the
defects type and its location, but it's transmitted redundant data for each identified defect,
leading to generate multiple close points and it goes out of the scaled map, as shown in
Figure 5.11:

Figure 5.11: Redundant data transmission.
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Case 4: the robot navigates again, after many attempts, successfully drew a map of where
it is located and the detected defects are mapped correctly with its coordinates on the
scaled map in the web application as shown in Figure 5.12, However, the transmitted data
includes non-defective objects due to machine learning model accuracy.

Figure 5.12: Defects localization results.
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Chapter 6: Conclusion and Future work

6.1 Conclusion
In this project, we have presented an automated inspection system that combines robotics,

sensor technology, computer vision, and machine learning to create a mobile robot system

capable of autonomously inspecting building walls. The system's output includes a detailed

2D map, defect identification, and a clear report accessible by the user using a web

application.

6.2 Future work
In the future development of this project, several enhancements can be implemented to

improve the system's functionality, this considerations include:

● Integrating ultrasonic sensors to prevent fall down the stairs.

● Enabling outdoor functionality to inspect outer walls of buildings.

● Train the ML model with a larger dataset. to enhance the ability to detect more

structural defects types.
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Appendices

Appendix A
Robot path with Obstacle Avoidance Script:

import rospy

from move_base_msgs.msg import MoveBaseAction, MoveBaseGoal

class GoForwardAvoid():

def __init__(self):

rospy.init_node('nav_test', anonymous=False)

rospy.on_shutdown(self.shutdown)

self.move_base = actionlib.SimpleActionClient("move_base",

MoveBaseAction)

rospy.loginfo("wait for the action server to come up")

self.move_base.wait_for_server(rospy.Duration(5))

goal = MoveBaseGoal()

goal.target_pose.header.frame_id = 'base_link'

goal.target_pose.header.stamp = rospy.Time.now()

goal.target_pose.pose.position.x = 3.0

goal.target_pose.pose.orientation.w = 1.0

self.move_base.send_goal(goal)

success = self.move_base.wait_for_result(rospy.Duration(60))

if not success:

else:

state = self.move_base.get_state()

if state == GoalStatus.SUCCEEDED:

rospy.loginfo("Hooray, the base moved 3 metres forward")

if __name__ == '__main__':

try:

GoForwardAvoid()

except rospy.ROSInterruptException:

rospy.loginfo("Exception thrown")
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Appendix B
Connect MQTT protocol :

import time

import paho.mqtt.client as paho

from paho import mqtt

import threading

import random

def on_connect(client, userdata, flags, rc, properties=None):

print("CONNACK received with code %s." % rc)

if rc == 0:

print("Connected to MQTT Broker!")

else:

print("Failed to connect, return code %d\n", rc)

def on_publish(client, userdata, mid, properties=None):

print("publish OK => mid: " + str(mid))

def on_subscribe(client, userdata, mid, granted_qos,

properties=None):

print("Subscribed Ok => mid: " + str(mid) + " " +

str(granted_qos))

def on_message(client, userdata, msg):

subscribe_function(str(msg.topic),str(msg.payload))

client_name_id="set_here_cliente_id_"+str(random.randint(1,

100))+"_"+str(random.randint(1, 100))

client = paho.Client(client_id=client_name_id, userdata=None,

protocol=paho.MQTTv31)

client.on_connect = on_connect

client.connect("mqtt-dashboard.com", 1883)

client.on_subscribe = on_subscribe

client.on_message = on_message

client.on_publish = on_publish

client.subscribe("any_topic_here_to_subsecribe/in/our/project",

qos=1)

def subscribe_function(topic,msg):

print("topic:"+topic+" msg:"+msg)

def publish_mqtt(topic,msg):

client.publish(topic, payload=msg, qos=1)

def demo_test_publish():
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while 1:

msg="0,3,structural_defect"

msg2="4.7,3.58,cracks"

publish_mqtt("project_topic/automated_building_inspection_system

/location",msg)

time.sleep(2)

publish_mqtt("project_topic/automated_building_inspection_system

/location",msg2)

time.sleep(2)

t1 = threading.Thread(target=lambda :client.loop_forever(),

args=())

t1.start()

demo_test_publish()
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Appendix C
ML model working on Kinect RGB stream

import rospy

from sensor_msgs.msg import Image

from cv_bridge import CvBridge

import cv2

import numpy as np

from tensorflow import keras

from keras.preprocessing import image

# Load the model from the desktop

model =

keras.models.load_model('/home/raghad/turtlebot2_ws/src/my_kinec

t_stream/keras_model.h5')

# Compile the model (you can adjust the optimizer, loss, and

metrics based on your original compilation)

model.compile(optimizer='adam', loss='categorical_crossentropy',

metrics=['accuracy'])

# Load the class labels from the desktop

with

open('/home/raghad/turtlebot2_ws/src/my_kinect_stream/labels.txt

', 'r') as file:

class_labels = [line.strip() for line in file]

# Initialize the CvBridge

bridge = CvBridge()

# Define a fixed region of interest (ROI) within the image

roi_x = 100 # X-coordinate of the top-left corner of the ROI

roi_y = 100 # Y-coordinate of the top-left corner of the ROI

roi_width = 224 # Width of the ROI

roi_height = 224 # Height of the ROI

# ROS Subscriber for the Kinect RGB image

def image_callback(msg):

try:

# Convert the ROS Image message to an OpenCV image

frame = bridge.imgmsg_to_cv2(msg, desired_encoding="bgr8")

# Extract the fixed region of interest (ROI) from the image

roi = frame[roi_y:roi_y + roi_height, roi_x:roi_x +

roi_width]
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# Preprocess the ROI for prediction

roi = cv2.resize(roi, (224, 224))

img_array = image.img_to_array(roi)

img_array = np.expand_dims(img_array, axis=0)

img_array = img_array / 255.0 # Normalize the image data

# Make a prediction using the loaded model

predictions = model.predict(img_array)

# Get the class with the highest probability

predicted_class_index = np.argmax(predictions[0])

predicted_class = class_labels[predicted_class_index]

# Print the predicted class

print(f"Predicted class: {predicted_class}")

# Display the frame with the predicted class name

cv2.putText(frame, f" {predicted_class}", (10, 30),

cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)

# Show the processed image (optional)

cv2.imshow("Processed Image", frame)

cv2.waitKey(1)

except Exception as e:

print(f"Error processing image: {e}")

def main():

rospy.init_node('image_classifier_node', anonymous=True)

# ROS Subscriber for the Kinect RGB image

rospy.Subscriber('/camera/rgb/image_raw', Image,

image_callback)

rospy.spin()

if __name__ == "__main__":

main()
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