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Abstract

Developing bounds for the eigenvalues of matrix polynomials is an interesting problem

which has a lot of applications. In this thesis, several known bounds for the eigenvalues of

matrix polynomials are presented. In addition, we derive new bounds for the eigenvalues

of matrix polynomials with commuting coefficients. These bounds are based on norms,

numerical radius, and spectral radius of the coefficient matrices. Various tools are used in

the derivations, such as Frobenius companion matrix, the numerical radius inequalities,

and matrix norms. In general, it is not possible to compare the sharpness of these

bounds analytically. Therefore, we compare our new bounds with each other and with

other known bounds numerically through a set of examples.
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Chapter 1

Introduction

Polynomial root finding is one of the most important subjects in scientific computation.

In particular, polynomial eigenvalue problems (PEP) consist of finding a nonzero complex

eigenvector x and a complex eigenvalue λ such that P (λ)x = 0, where P is a matrix

polynomial. Polynomial eigenvalue problems have important applications in applied

mathematics and can be found in many field of engineering such as vibration analysis,

structural and fluid mechanics, and acoustics, see, e.g, [12, 31]. In addition, information

about the location of the eigenvalues by using iterative methods [40, 41] is useful in the

computation of pseudospectra [42, 43].

In general, it is not easy, and in many cases it is hard, to compute the eigenvalues of a

matrix polynomial. But it is relatively easy to obtain bounds for them. The polynomial

eigenvalue problem has recently received much attention due to its importance and

applications. Several bounds of eigenvalues of matrix polynomials have been derived

based on various inequalities obtained in many researches.

Fujii and Kubo [9] used the norm of the coefficients of a matrix polynomial to provide

bounds for the eigenvalues. Upper and lower bounds for the absolute value of the

eigenvalues of a matrix polynomial were derived by Higham and Tisseur [10], based

on norm and numerical radius inequalities. In [6, 14] new bounds were established

by applying several numerical radius inequalities to the Frobenius companion matrices.

Burqan et al. [15] employed several numerical radius inequalities to the square Frobenius

companion matrices to provide new bounds. Bounds for the eigenvalues of matrix

polynomials with commuting coefficients can be found in [4, 11, 16]. Melman [13] showed

how ℓ-ifications, namely, lower order matrix polynomials with the same eigenvalues as

a given matrix polynomial, can be used to produce eigenvalue bounds. Le et al. [44]
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established upper and lower bounds for the eigenvalues of matrix polynomials using

the norm of their coefficients. Cameron [8] proved that the eigenvalues of any matrix

polynomial, with unitary coefficients, lie inside the open annulus 1
2
< |λ| < 2. Hadimani

and Jayaraman [18] showed that under certain assumptions, matrix polynomials with

either doubly stochastic matrix coefficients or Schur stable matrix coefficients also have

eigenvalues within similar annular regions.

In this thesis we focus on studying bounds of the eigenvalues of matrix polynomials.

Also, we propose new upper bounds for the eigenvalues of these polynomials. Frobenius

companion matrices are employed to present several bounds on eigenvalues.

In Chapter two, basic definitions and results in matrix theory are introduced. This

includes some definitions, properties, and examples of matrix norms. The chapter also

presents important numerical radius inequalities and relationships between the spectral

radius, the numerical radius, and the spectral norm.

In Chapter three, the discussion focuses on Frobenius companion matrix of matrix

polynomials and relationships between its spectrum and those of the corresponding

matrix polynomials. The chapter also illustrates how ℓ-ifications of matrix polynomial

can be employed to establish bounds for the eigenvalues. Bounds for the eigenvalues

are obtained in different ways; some bounds derived using matrix norm and by applying

numerical radius inequalities to Frobenius companion matrices. Other bounds are proved

using square Frobenius companion matrices. Moreover, bounds for eigenvalues of matrix

polynomials with commuting coefficients are also introduced. Also, the generalized

Cauchy and generalized Pellet theorems are discussed.

In Chapter four, special cases of matrix polynomials are addressed, including lower

and upper bounds for eigenvalues of matrix polynomials whose coefficients are unitary,

doubly stochastic, and Schur stable.

In Chapter five, new bounds for the eigenvalues of monic matrix polynomials with

commuting coefficients are introduced. By the fact that similar matrices have the same

spectral radius, numerical radius inequalities are applied to various decompositions and

partitions to derive these new bounds.
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Chapter 2

Preliminaries

In this chapter, we introduce some results in matrix theory that will be helpful in the

following chapters. We present the definitions of matrix norm and numerical radius with

basic properties and inequalities.

2.1 Matrix norm

In this section, we present definitions of matrix norms and some examples of matrix

norms. Most of the material in this section can be found in Horn and Johnson [1].

Definition 2.1. A function ∥.∥ : Mn(C) → R is called a matrix norm if, for all A,B ∈
Mn(C) it satisfies the following axioms:

1. ∥A∥ ≥ 0 and ∥A∥ = 0 iff A = 0.

2. ∥αA∥ = |α|∥A∥ for all α ∈ C.

3. ∥A+B∥ ≤ ∥A∥+ ∥B∥.

4. ∥AB∥ ≤ ∥A∥∥B∥.

A matrix norm is also known as a ring norm. The first three axioms of a matrix norm

are identical to the axioms for a vector norm. A norm on matrices that does not satisfy

condition 4 for every A and B is a vector norm on matrices. There are many interesting

examples of matrix norms. Here, important matrix norms are mentioned which will be

used later.
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Definition 2.2. (Induced norm)

Let A = [aij] ∈ Mn(C), x ∈ Cn. The matrix norm induced by the vector norm ∥.∥ on

Cn is defined by

∥A∥ = max
∥x∥=1

∥Ax∥.

For x ∈ Cn and p = 1, 2, . . . ,∞, the p-vector norm on Cn is

∥x∥p :=

 n∑
j=1

|xj|p

1

p
.

Using this vector norms we get the following induced matrix norms.

Example 2.1. (p-matrix norm)

Let A = [aij] ∈ Mn(C), x ∈ Cn, and ∥.∥p is the p-vector norm on Cn. Then the p-matrix

norm of A is defined by

∥A∥p = max
∥x∥p=1

∥Ax∥p.

Example 2.2. (The maximum column sum norm)

The maximum column sum norm for A = [aij] ∈ Mn(C) is defined by

∥A∥1 = max
1≤j≤n

n∑
i=1

|aij|.

Example 2.3. (The maximum row sum norm)

The maximum row sum norm for A = [aij] ∈ Mn(C) is defined by

∥A∥∞ = max
1≤i≤n

n∑
j=1

|aij|.

The set of all eigenvalues of A ∈ Mn(C) is called the spectrum of A and is denoted

by σ(A). Also, the spectral radius of A is ρ(A) = max{|λ| : λ ∈ σ(A)}. The Hermitian

adjoint of a matrix B = [bij] ∈ Mn,m(C) is denoted by B∗ and defined by B∗ = B̄
T
, in

which B̄ is the entrywise conjugate.

One of the most important and widely used norms is the spectral norm (2–norm)

which is defined as follows.

Example 2.4. (Spectral norm)

Let A = [aij] ∈ Mn(C) and ρ(A) be the spectral radius of A. Then the spectral norm

∥.∥2 for A is defined by

∥A∥2 =
√
ρ(A∗A).
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Note that the maximum column sum norm, maximum row sum norm, and spectral

norm are special cases of p-matrix norm with p = 1, 2,∞, respectively [1].

Example 2.5. (Frobenius norm, Schur norm, or Hilbert–Schmidt norm)

Let A = [aij] ∈ Mn(C). Then the Frobenius or Hilbert–Schmidt norm is defined as

∥A∥F =

 n∑
i,j=1

|aij|2

1

2
=
(
tr(AA∗)

)1
2 ,

where tr(A) is the trace of a square matrix A.

The singular values of a matrix A ∈ Mn(C) are the square roots of the eigenvalues

of the matrix AA∗ or A∗A, and they are denoted and ordered as s1 ≥ s2 ≥ . . . ≥ sn ≥ 0.

So, we can define the spectral norm and Frobenius norm by using the singular values as

follows.

∥A∥2 = s1, the largest singular values of A

and ∥A∥F =

 n∑
i=1

s2i

 1
2

.

Definition 2.3. Let A ∈ Mn(C). Then

(1) A is called normal if AA∗ = A∗A.

(2) A is called Hermitian if A = A∗.

(3) A is called unitary if AA∗ = A∗A = I.

A matrix norm ∥.∥ on Mn(C) is called unitary invariant if ∥UAV ∥ = ∥A∥ for all

A,U, V ∈ Mn(C) and U, V are unitary matrices. The matrix norms ∥.∥2 and ∥.∥F are

unitary invariant [1].

Theorem 2.1. Let ∥.∥ be any matrix norm on Mn(C), A ∈ Mn(C), ρ(A) be the spectral

radius of A and let λ be an eigenvalue of A. Then

|λ| ≤ ρ(A) ≤ ∥A∥.

Note that if A ∈ Mn(C) is normal. Then ρ(A) = ∥A∥2.
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Theorem 2.2. (The Spectral Mapping Theorem)

Let A ∈ Mn(C). Then for every complex polynomial p, σ(p(A)) = p(σ(A)).

In the following, we will denote the spectral norm by ∥.∥ instead of ∥.∥2.

2.2 Numerical radius

In this section, we start by presenting the definition of numerical radius and then

introducing the inequalities related to numerical radius and spectral norm. Numerical

radius inequalities are useful in geting bounds to the eigenvalues of matrix polynomials

by applying them to the Frobenius companion matrices.

Definition 2.4. [1] Let x = (x1, x2, . . . , xn)
T , y = (y1, y2, . . . , yn)

T ∈ Cn. The Euclidean

inner product of x and y is defined by

(x,y) =
n∑

i=1

xiȳi.

Now, we present the definition of numerical radius. Numerical radius is one of the

most important concepts in matrix theory. It is also useful in studying and deriving

bounds for the eigenvalues of matrix polynomials.

Definition 2.5. (Numerical radius) [2]

Let A ∈ Mn(C). Then the numerical radius of A is given by

w(A) = sup
∥x∥=1

|(Ax,x)|.

Numerical radius is a vector norm on matrices but it is not a matrix norm. It is

satisfy the first three axioms of a matrix norm but it is not sub-multiplicative. Since

the numerical radius is a vector norm we get the next Theorem.

Theorem 2.3. [2] Let A,B ∈ Mn(C). Then w(A+B) ≤ w(A) + w(B).

In the next theorem, important inequality is introduced. This inequality connects

the spectral radius, the numerical radius, and the spectral norm.

Theorem 2.4 (e.g., [19]). Let A ∈ Mn(C). Then

ρ(A) ≤ w(A) ≤ ∥A∥,

with equality if A is normal.
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Theorem 2.5 (e.g., [2]). Let A ∈ Mn(C). Then

∥A∥
2

≤ w(A) ≤ ∥A∥.

The first inequality becomes an equality if A2 = 0.

This inequality provides both a lower and an upper bound for the numerical radius

in terms of the spectral norm. Also, it helps in computing the numerical radius when

A2 = 0. In the following Theorem, we present the power inequality for the numerical

radius.

Theorem 2.6 (e.g., [2]). Let A ∈ Mn(C). Then w(Ak) ≤ wk(A), where k ∈ N.

The coming theorem provides results that concerning on the numerical radius and

spectral properties for 2× 2 block matrices.

Theorem 2.7. (e.g., [3, Lemma 2]) Let A ∈ Mk(C), B ∈ Ml,k(C), C ∈ Mk,l(C), and
D ∈ Ml(C). Then the following statements hold:

(a) w

[A 0

0 D

] = max{w(A), w(D)}.

(b) w

[0 B

C 0

] = w

[ 0 C

B 0

].

(c) If l = k, then we have

w

[ 0 B

B 0

] = w(B).

Computing the spectral radius is easier than computing the numerical radius, so the

coming theorem helps in computing the numerical radius of a matrix with nonnegative

entries through the spectral radius.

Theorem 2.8 (e.g., [20]). Let A = [aij] ∈ Mn(C) be such that ai,j ≥ 0 for all i, j =

1, 2, . . . , n. Then

w(A) =
1

2
ρ
(
[aij + aji]

)
.

In the following chapters we will deal with block matrices, therefore the next theorem

contributes in estimating the spectral radius, the numerical radius, and the spectral norm

of a block matrix depending on its matrix entries.
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Theorem 2.9. [5, Theorem 1.1] Let A = [Aij] be an m×m block matrix, where Aij ∈
Mni,nj

(C) with
∑m

i=1 ni = m and let B := [∥Aij∥]. Then

(1) w(A) ≤ w(B).

(2) ∥A∥ ≤ ∥B∥.

(3) ρ(A) ≤ ρ(B).

Theorem 2.10. [3, Theorem 1] Let A = [Aij] be an m ×m block matrix, where Aij ∈
Mni,nj

(C) with
∑m

i=1 ni = m. Then

w(A) ≤ w([cij]),

where

cij =

w(Aij) if i = j,

∥Aij∥ if i ̸= j.

Theorem 2.10 gives an upper bound for the numerical radius of a block matrix A by

considering the numerical radius and norms of its individual blocks Aij. The importance

of this Theorem lies in simplifying the estimation of bounds for the numerical radius of

large block matrices by breaking them down into smaller blocks.

The following corollary follows by employing the above theorem and Theorem 2.8.

Corollary 2.1. [3, Corollary 1] Let A ∈ Mk(C), B ∈ Mk,l(C), C ∈ Ml,k(C), D ∈

Ml(C), and let T =

[A B

C D

]. Then

w(T ) ≤ w

[w(A) ∥B∥
∥D∥ w(D)

]
=

1

2

(
w(A) + w(D) +

√
(w(A)− w(D))2 + (∥B∥+ ∥D∥)2

)
.

The next theorem provide other upper bound for the numerical radius of a block

matrix A. It is similar to Theorem 2.10 with difference in the construction of the entries

that are not on the diagonal.
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Theorem 2.11. [3, Theorem 2] Let A = [Aij] be an m ×m block matrix, where Aij ∈
Mni,nj

(C) matrix
∑m

i=1 ni = m. Then

w(A) ≤ w([a
′

ij]),

where

a
′

ij =


w(Aij) if i = j,

w


 0 Aij

Aji 0


 if i ̸= j.

The coming corollary follows by using the above theorem and Theorem 2.8.

Corollary 2.2. [3, Corollary 2] Let A ∈ Mk(C), B ∈ Mk,l(C), C ∈ Ml,k(C), D ∈

Ml(C), and let T =

[A B

C D

] and T0 =

[0 B

C 0

]. then

w(T ) ≤ w

[w(A) w(T0)

w(T0) w(D)

]
=

1

2

(
w(A) + w(D) +

√
(w(A)− w(D))2 + 4w2(T0)

)
.

The next theorem provides the eigenvalues for a special case of tridiagonal matrix.

Theorem 2.12 (e.g. [21]). Let Tn ∈ Mn(C) be tridiagonal matrix given by

Tn =



0
1

2
0 · · · 0

1

2
0

1

2
· · · 0

0
1

2

...

...
. . .

. . .
. . . 0

0
1

2

0 0 · · · 0
1

2
0


.

Then the eigenvalues of Tn are given by

λj = cos

(
πj

n+ 1

)
for j = 1, 2, . . . , n.
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Not that the matrix Tn is symmetric and so it is normal. Therefor, by Theorem 2.4,

w(Tn) = ∥Tn∥ = ρ(Tn) = cos

(
π

n+ 1

)
.

In the following, we introduce the definition of Kronecker product of two matrices.

Definition 2.6. (Kronecker product)[25]

The Kronecker product of the matrix A ∈ Mp,q(C) with the matrix B ∈ Mr,s(C) is

defined as

A⊗B =


a11B · · · a1qB
...

...

ap1B · · · apqB

 .

Theorem 2.13. [7] If A,B ∈ Mn(C), and if σ(A), σ(B) denote their respective spectra.

Then the spectrum of A⊗B is the set of products σ(A) • σ(B) = {λ · µ : λ ∈ σ(A), µ ∈
σ(B)}.

The subsequent theorem is a generalization of Theorem 2.12 to the tridiagonal block

matrix.

Theorem 2.14. (e.g. [6, Lemma 6]) Let T be the m×m block matrix given by

T =



0
1

2
I 0 · · · 0

1

2
I 0

1

2
I · · · 0

...
...
. . .

. . .
. . .

...
1

2
I

0 0 · · · 1

2
I 0


,

where I is the identity matrix in Mn(C). Then the eigenvalues of T are

λj = cos

(
πj

m+ 1

)
for j = 1, 2, . . . ,m,

with each eigenvalue has multiplicity n.

10



Proof. Note that T = Tm⊗ I, where Tm is given in Theorem 2.12 and I ∈ Mn(C). Then
by Theorem 2.13 and Theorem 2.12 we have

σ(T ) = σ(Tm) • σ(I)

=

{
cos

π

m+ 1
, cos

2π

m+ 1
, . . . , cos

mπ

m+ 1

}
• {1, 1, . . . 1}

=

{
cos

π

m+ 1
, . . . , cos

π

m+ 1
, . . . , cos

mπ

m+ 1
, . . . , cos

mπ

m+ 1

}
.

Therefor, the eigenvalues of T are λj = cos

(
πj

m+ 1

)
for j = 1, 2, . . . ,m, with each

eigenvalue has multiplicity n.

In the following, the numerical radius of a new block matrix is given. This matrix

often appears when deriving bounds for the eigenvalues of matrix polynomials by using

the Frobenius companion matrices. Therefore, we need to calculate the numerical radius

for it as shown.

Theorem 2.15. (e.g. [6, Lemma 7]) Let L be the m×m block matrix given by

L =



0 0 0 · · · 0

I 0 0 · · · 0

0 I 0 · · · 0
...

...
. . .

. . .
...

0 0 · · · I 0


.

Then

w(L) = cos

(
π

m+ 1

)
.

Proof. It follow from Theorem 2.8 and Theorem 2.14.

The next theorem gives an upper bound for the numerical radius of block matrix

whose entries are zeros expect for the first row. This bound depends on the numerical

radius and norms of its matrix entries.
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Theorem 2.16. [22, Theorem 2.5] Let Qi ∈ Mn(C) for i = 1, 2, . . . ,m. Then

w





Q1 Q2 · · · Qm

0 0 · · · 0

...
...

...

0 0 · · · 0




≤ 1

2

w(Q1) +

√√√√w2(Q1) +
m∑
i=2

∥Qi∥2

 .

Based on Theorem 2.16 and Theorem 2.3, the coming corollary provides an upper

bound for the numerical radius of any block matrix.

Corollary 2.3. [22, Corollary 2.6] Let A = [Aij] be an n × n block matrix with Aij ∈
Mni,nj

(C). Then

w(A) ≤ 1

2

n∑
i=1

w(Aii) +

√√√√√w2(Aii) +
n∑

j=1
i̸=j

∥Aij∥2

 .

The following theorem enables us to calculate the numerical radius of a matrix whose

entries are zeros expect for the first row. It is similar to Theorem 2.16 but it is not a

special case for it.

Theorem 2.17. [9] Let N =



b1 b2 b3 · · · bn

0 0 0 · · · 0

0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0


, where bi ∈ C for i = 1, 2, . . . , n.

Then

w(N) =
1

2

|b1|+

√√√√ n∑
j=1

|bj|2

 .

The next two theorems provide other upper bounds for the numerical radius.
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Theorem 2.18. [14, Lemma 4.1] Let Q1i, Q1i ∈ Mn(C) for i = 1, 2, . . . ,m. Then

w





Q11 Q12 · · · Q1m

Q21 0 · · · 0

...
...

...

Qm1 0 · · · 0




≤ 1

2

w(Q11) +

√√√√√w2(Q11) + 4
m∑
i=2

w2

[ 0 Q1i

Qi1 0

]
 .

For a given matrix A ∈ Mn(C), A∗A is positive semidefinite and |A| = (A∗A)
1
2 is

defined.

Theorem 2.19. [23] Let A ∈ Mn(C). Then

w(A) ≤ 1

2
∥|A|+|A∗| ∥.

Later we will see that one of ways to obtain new bounds of eigenvalues of matrix

polynomials is to write the Frobenius companion matrix as sum of other matrices. The

following two theorems provide upper bounds for the numerical radius for the sum of

two matrices and they are useful for proving some theorems in the following chapter.

Theorem 2.20. [24, Lemma 2.9] Let A,B ∈ Mn(C). Then

w(A+B) ≤
√
w2(A) + w2(B) + ∥A∥∥B∥+ w(B∗A).

Theorem 2.21. [4, Lemma 2.6] Let A,B ∈ Mn(C). Then

w(A+B) ≤
√
max{∥A∥2, ∥B∥2}+ ∥A∥∥B∥+ 2w(A∗B).

Remark 2.1. Let A =

[
a b

c d

]
. Then the spectral radius of A is

ρ(A) =
1

2
(a+ d+

√
(a− d)2 + 4bc).

13



The subsequent theorem presents an upper bound for the numerical radius of 3× 3

block matrix.

Theorem 2.22. [22, Theorem 2.11] Let T = [Tij] be an 3 × 3 block matrix with Tij ∈
Mni,nj

(C). Then

w(T ) ≤ max{t11, t23}+max{t22, t13}+max{t33, t12},

where tij = w

[ 0 Tij

Tji 0.

] for i, j = 1, 2, 3 and tii = w(Tii), for i = 1, 2, 3.

In the next theorem, a generalization of the third part of Theorem 2.9 is introduced

in the case of commuting entries. This inequality help in establishing bounds for the

eigenvalues of matrix polynomials with commuting coefficients.

Theorem 2.23. [11, Theorem 2.2] Let A = [Aij] be an m×m block matrix be such that

the entries Aij ∈ Mn(C) are commuting for i, j = 1, 2, . . . ,m. Then

ρ(A) ≤ ρ([ρ(Aij)]).
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Chapter 3

Bounds for the eigenvalues of

matrix polynomials

In this chapter, we start by introducing the Frobenius companion matrices and the strong

ℓ-ifications of matrix polynomials and some of their properties. Also, we present several

bounds for the eigenvalues of matrix polynomials. In addition, the proof of generalized

Cauchy and generalized Pellet theorems are provided at the end of this chapter.

3.1 Frobenius companion matrix and ℓ-ifications

Frobenius companion matrix is one of the most popular matrices used for computing

the eigenvalues of matrix polynomials. In this section, we introduce the Frobenius

companion matrix of the matrix polynomials (see, e.g., [9, 26]). In addition we address

the strong ℓ-ifications of square complex matrix polynomials. In [27] and [28] ℓ-ifications

of a matrix polynomials are derived and in [13] ℓ-ifications for a square matrix polynomials

are re-derived in simpler way.

In the follwoing definition, we define the square complex matrix polynomial and its

eigenvalues as will as its eigenvectors.

Definition 3.1. [8] An n × n matrix polynomial of degree m is a mapping P : C →
Mn(C) defined by

P (z) = Am+1z
m + Amz

m−1 + · · ·+ A2z + A1,

where Ai ∈ Mn(C) and Am+1 ̸= 0. We say that λ ∈ C is an eigenvalue of P (z) if

detP (λ) = 0. A nonzero vector x ∈ Cn is called eigenvector of P (z) corresponding to λ

15



if P (λ)x = 0. We denote the set of all eigenvalues of P (z) by σ(P ), and call this set the

spectrum of P (z).

We say ∞ is an eigenvalue of P (z), if the reverse matrix polynomial

revP (z) = zmP (1/z) = A1z
m + A2z

m−1 + · · ·+ Amz + Am+1

has zero as an eigenvalue. We say that P (z) is regular matrix polynomial if detP (λ) ̸≡ 0.

P (z) has mn eigenvalues (counting multiplicities) and possible infinite ones. It is well

known (see, e.g., [13]) that if Am+1 is singular then some eigenvalues of P (z) are infinite,

and if A1 is singular then the zero is an eigenvalue of P (z).

In the ensuing example, we consider the case in which Am+1 is singular.

Example 3.1. Consider the quadratic matrix polynomial

P (z) =

[
1 0

0 0

]
z2 +

[
1 0

0 1

]
z +

[
1 0

0 1

]
.

It clear that

[
1 0

0 0

]
is singular and detP (z) = (z2 + z + 1)(z + 1). Thus, λ1 = −1,

λ2 =
−1

2
+ i

√
3

2
, and λ3 =

−1

2
− i

√
3

2
are eigenvalues of P (z).

Now,

revP (z) = z2P (1/z) =

[
1 0

0 0

]
+

[
1 0

0 1

]
z +

[
1 0

0 1

]
z2,

and det(revP (z)) = (z2 + z + 1)(z2 + z). Since zero is an eigenvalue of revP (z), then

∞ is an eigenvalue of P (z).

In the following example, we consider the case in which A1 is singular.

Example 3.2. Let

P (z) =

[
1 0

0 1

]
z2 +

[
1 0

0 1

]
z +

[
1 1

1 1

]
.

Then detP (z) = z4 + 2z3 + 3z2 + 2z and so zero is an eigenvalue of P (z).
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In the next theorem, Frobenius companion matrix is presented, and it is showed that

it has the same eigenvalues as P (z).

Theorem 3.1. (e.g. [9, Lemma 7]) Consider the monic matrix polynomial P (z) =

Izm + Amz
m−1 + · · · + A2z + A1, of degree m ≥ 2, with I be the identity matrix in

Mn(C). Then the Frobenius companion matrix of P (z) is the mn×mn matrix given by

C(P ) =



−Am −Am−1 −Am−2 · · · −A2 −A1

I 0 0 · · · 0 0

0 I 0 · · · 0 0

0 0 I · · · 0 0
...

...
...

. . .
... 0

0 0 0 · · · I 0


,

and λ is eigenvalue of P (z) if and only if λ ∈ σ(C(P )).

Proof. Let λ ∈ σ(C(P )). Then there exist a nonzero vector x = (x1,x2, . . . ,xm)
T ∈

Cmn, where xi ∈ Cn for i = 1, 2, . . .,m, such that C(P )x = λx. Hence we have

m∑
i=1

−Am−i+1xi = λx1

x1 = λx2

x2 = λx3 (3.1)

...

xm−1 = λxm.

By (3.1), we have xi = λm−ixm, hence xm ̸= 0. And we have

m∑
i=1

−Am−i+1xi =
m∑
i=1

−Am−i+1λ
m−ixm = λmxm,

so P (λ)xm = 0. Therefor λ ∈ σ(P ).

Conversely, if λ ∈ σ(P ), then detP (λ) = 0, so there exists a nonzero vector x0 ∈ Cn

such that P (λ)x0 = 0. Now, take x = (x1,x2, . . . ,xm)
T ∈ Cmn, where xi = λm−ix0.

Since P (λ)x0 = 0, we get

λmx0 +
m∑
i=1

Am−i+1λ
m−ix0 = 0,

m∑
i=1

−Am−i+1λ
m−ix0 = λmx0.
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Hence

C(P )x =


∑m

i=1 −Am−i+1λ
m−ix0

λm−1x0

...

λx0

 =


λmx0

λm−1x0

...

λx0

 =


λx1

λx2

...

λxm

 = λx.

Therefore, λ ∈ σ(C(P )).

Now, consider the matrix polynomial P (z) =
∑m

j=0Aj+1z
j. We aim to define a

so-called strong ℓ-ification for P . An ℓ-ification of P is a matrix polynomial with lower

order of P that has the same eigenvalues and also it preserves the eigenstructure of P .

Most of the following material can be found in [13].

Definition 3.2. Let m be divisible by a positive integer k and ℓ =
m

k
. Then the strong

ℓ-ification of P is given by
∑ℓ

j=0 WCjWzj, where W is kn× kn block exchange matrix

Jk ⊗ In, and the k × k block matrices Cj ∈ Ckn×kn are defined by

C0 =



A(k−1)ℓ+1 A(k−2)ℓ+1 · · · Aℓ+1 A1

−I 0

−I
. . .

. . . 0

−I 0


,

Cj =


Aj+1+(k−1)ℓ Aj+1+(k−2)ℓ · · · Aj+1+ℓ Aj+1

0 0 · · · 0 0
...

...
...

...
...

0 0 · · · 0 0

 , j = 1, . . . , ℓ− 1,

and Cℓ =



Am+1

I

I
. . .

I


.
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The matrix Jk is the k × k exchange matrix that defined as

Jk =


1

. .
.

1

 .

Not that W 2 = Ikn, also
∑ℓ

j=0WCjWzj and
∑ℓ

j=0Cjz
j have identical eigenvalues

and eigenstructure because they are similar. So it is convenient to work with
∑ℓ

j=0 Cjz
j

because it is easier.

The coming lemma will help us to prove the next theorem.

Lemma 3.1. For a positive integer m ≥ 3, let Mj ∈ Cn×n for j = 1, . . . .m and Nj ∈
Cn×n for j = 1, . . . .m− 1. Then,

det





M1 M2 M3 · · · Mm

−I N1

−I N2

. . .
. . .

−I Nm−1




= det

M1

m−1∏
j=1

Nj +M2

m−1∏
j=2

Nj + · · ·+Mm−1Nm−1 +Mm

 ,

where the matrix multiplications are from the right with increasing index j.

In the subsequent theorem, we show that the matrix polynomial and its ℓ-ification

have identical eigenvalues.

Theorem 3.2. Let P (z) =
∑m

j=0Aj+1z
j and ℓ =

m

k
if m is divisible by a positive integer

k, and let Q(z) =
∑ℓ

j=0Cjz
j, with the matrices Cj defined in Definition 3.2. Then the

eigenvalues of P and Q coincide.

Proof. For ℓ =
m

k
, we rewrite P as follows:
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P (z) = Am+1z
m + Amz

m−1 + · · ·+ A2z + A1

= z(k−1)m
k

(
Am+1z

m
k + Amz

m
k
−1 + · · ·+ A(k−1)m

k
+1

)
+z(k−2)m

k

(
A(k−1)m

k
z

m
k
−1 + A(k−1)m

k
−1z

m
k
−2 + · · ·+ A(k−2)m

k
+1

)
+ · · ·

+z(k−j)m
k

(
A(k−(j−1))m

k
z

m
k
−1 + A(k−(j−1))m

k
−1z

m
k
−2 + · · ·+ A(k−j)m

k
+1

)
+ · · ·

+z
m
k

(
A2m

k
z

m
k
−1 + A2m

k
−1z

m
k
−2 + · · ·+ Am

k
+1

)
+ · · ·

+Am
k
z

m
k
−1 + Am

k
−1z

m
k
−2 + · · ·+ A1

=
ℓ∑

j=0

(
Aj+1+(k−1)ℓz

j
)
z(k−1)ℓ +

k∑
i=2

 ℓ−1∑
j=0

Aj+1+(k−i)ℓz
j

 z(k−i)ℓ.

By defining Mi(z) as follows:

M1(z) :=
ℓ∑

j=0

Aj+1+(k−1)ℓz
j and Mi(z) :=

ℓ−1∑
j=0

Aj+1+(k−i)ℓz
j for i = 2, . . . , k,

we get

P (z) =
k∑

i=1

Mi(z)z
(k−i)ℓ.

Now, applying Lemma 3.1 with Mi = Mi(z) for i = 1, . . . , k and Ni = Izℓ yields

det(P (z)) = det

 k∑
i=1

Mi(z)z
(k−i)ℓ

 = det





M1(z) M2(z) M3(z) · · · Mk(z)

−I Izℓ

−I Izℓ

. . .
. . .

−I Izℓ





= det





∑ℓ
j=0 Aj+1+(k−1)ℓz

j
∑ℓ−1

j=0 Aj+1+(k−2)ℓz
j
∑ℓ−1

j=0Aj+1+(k−3)ℓz
j · · ·

∑ℓ−1
j=0Aj+1z

j

−I Izℓ

−I Izℓ

. . .
. . .

−I Izℓ




.

20



Thus,

det(P (z)) = det

 ℓ∑
j=0

Cjz
j

 = det(Q(z)). (3.2)

So, the finite eigenvalues of P and Q coincide. It remains to prove this theorem in the

case that the infinite eigenvalues exists. By (3.2) we have

det
(
revP (z)

)
= det

(
zmP (1/z)

)
= zmn det

(
P (1/z)

)
= zℓ(kn) det

(
Q(1/z)

)
= det

(
zℓQ(1/z)

)
= det

(
revQ(z)

)
,

this implies that the infinite eigenvalue of P and Q also coincide.

Not that, when k = m and P (z) is monic, i.e., Am+1 = I, then Q becomes Iz−C(P ),

where C(P ) is the Frobenius companion matrix of P .

In the coming example, we construct Q(z) for a matrix polynomial of degree 6.

Example 3.3. Consider the matrix polynomial

p(z) = A7z
6 + A6z

5 + A5z
4 + A4z

3 + A3z
2 + A2z + A1.

Taking k = 3, then ℓ = 2, thus P (z) has the same eigenvalues as of

Q(z) =

A7 0 0

0 I 0

0 0 I

 z2 +

A6 A4 A2

0 0 0

0 0 0

 z +

A5 A3 A1

−I 0 0

0 −I 0

 .

3.2 Bounds for the eigenvalues of matrix polynomials

In this section, bounds for the absolute value of eigenvalues of a matrix polynomials are

presented. We use matrix analysis methods and several numerical radius inequalities to

the Frobenius companion matrices of monic matrix polynomials to get these bounds.
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As we proved in Theorem 3.1, λ is an eigenvalue of P (z) if and only if λ ∈ σ(C(P )).

So if λ is an eigenvalue of P (z), then by Theorem 3.1 and Theorem 2.4, we have

|λ| ≤ ρ(C(P )) ≤ w(C(P )) ≤ ∥(C(P ))∥.

In 1973, Fujii and Kubo [9] used the norms of the coefficient matrices of a matrix

polynomial to establish some classical bounds for the eigenvalues of matrix polynomials

as stated in the next two theorems.

Theorem 3.3. [9, Theorem 8] If λ is any eigenvalue of the monic matrix polynomial

P (z), then

|λ| ≤ max{1, ∥A1∥+ · · ·+ ∥Am∥}.

Proof. For a block matrix A = [Aij], where Aij ∈ Mn(C) for i, j = 1, 2, . . . ,m define

∥A∥b := max
1≤i≤m

m∑
j=1

∥Aij∥.

Note that ∥.∥b is a matrix norm since axioms 1, 2, and 3 are trivially satisfied, and for

the fourth axiom, let B = [Bij], where Bij ∈ Mn(C), then it follows that

∥AB∥b = max
1≤i≤m

m∑
j=1

∥(AB)ij∥

= max
1≤i≤m

m∑
j=1

∥∥∥∥∥∥
m∑
k=1

AikBkj

∥∥∥∥∥∥
≤ max

1≤i≤m

m∑
j=1

m∑
k=1

∥Aik∥∥Bkj∥

= max
1≤i≤m

m∑
k=1

∥Aik∥
m∑
j=1

∥Bkj∥

≤

 max
1≤k≤m

m∑
j=1

∥Bkj∥

 max
1≤i≤m

m∑
k=1

∥Aik∥


= ∥A∥b∥∥B∥b.

Hence, ∥.∥b is a matrix norm. By Theorem 2.1 we have |λ| ≤ ∥C(P )∥b, and since

∥C(P )∥b = max{1, ∥A1∥+ · · ·+ ∥Am∥} we get the result.

This result is simple and easy to use. But often it does not give good results especially

when the spectral norms of the matrices Ai are large. By the above theorem, we can get

the following result.
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Theorem 3.4. [9, Theorem 9] If λ is any eigenvalue of the monic matrix polynomial

P (z), then

|λ| ≤ ∥A1∥+ ∥A1 − A2∥+ · · ·+ ∥Am−1 − Am∥+ ∥Am − I∥.

Proof. Consider the matrix polynomial Q(z) := (I − Iz)P (z). By expanding the Q(z)

we get

Q(z) = −Izm+1 + (I − Am)z
m + (Am − Am−1)z

m−1 + · · ·+ (A2 − A1)z + A1.

Now, detQ(z) = det(I − Iz) detP (z). Hence if λ ∈ σ(P ), then λ ∈ σ(Q). Also we have

1 = ∥ − A1 + A1 − A2 + A2 − · · · − Am + Am − I∥
≤ ∥A1∥+ ∥A1 − A2∥+ · · ·+ ∥Am−1 − Am∥+ ∥Am − I∥.

Applying Theorem 3.3 to Q(z), we get the result.

For matrix polynomial P (z) = Am+1z
m + Amz

m−1 + · · · + A2z + A1, if Am+1 is

nonsingular, we can introduce new matrix polynomial associated with P (z):

PU = Izm + A−1
m+1Amz

m−1 + · · ·+ A−1
m+1A2z + A−1

m+1A1

= Izm + Umz
m−1 + · · ·+ U2z + U1,

where Ui := A−1
m+1Ai, for i = 1, 2, . . . ,m. Therefore, P (z) and PU(z) have the same

eigenvalues. The Frobenius companion matrix of PU(z) is

C(PU) =



−Um −Um−1 −Um−2 · · · −U2 −U1

I 0 0 · · · 0 0

0 I 0 · · · 0 0

0 0 I · · · 0 0
...

...
...

. . .
... 0

0 0 0 · · · I 0


.

Using the companion matrix C(PU), Higham and Tisseur [10] presented new bounds

for eigenvalues of P based on norm and numerical radius inequalities. Here, we mention

some of these bounds.

Theorem 3.5. [10, Lemma 2.2] Every eigenvalue λ of P satisfies

|λ| ≤ 1 +
m∑
i=1

∥Ui∥p, 1 ≤ p ≤ ∞.
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Proof. We can write C(PU) as:

C(PU) = K1 +K2 + · · ·+Km + L,

where

Km =



−Um 0 0 · · · 0 0

0 0 0 · · · 0 0

0 0 0 · · · 0 0

0 0 0 · · · 0 0
...

...
...

. . .
... 0

0 0 0 · · · 0 0


, Km−1 =



0 −Um−1 0 · · · 0 0

0 0 0 · · · 0 0

0 0 0 · · · 0 0

0 0 0 · · · 0 0
...

...
...

. . .
... 0

0 0 0 · · · 0 0


, . . . ,

K1 =



0 0 0 · · · 0 −U1

0 0 0 · · · 0 0

0 0 0 · · · 0 0

0 0 0 · · · 0 0
...

...
...

. . .
... 0

0 0 0 · · · 0 0


, L =



0 0 0 · · · 0 0

I 0 0 · · · 0 0

0 I 0 · · · 0 0

0 0 I · · · 0 0
...

...
...

. . .
... 0

0 0 0 · · · I 0


.

Now, for i = 1, 2, . . . ,m, ∥Ki∥p ≤ ∥Ui∥p and ∥L∥p ≤ 1. Thus,

|λ| ≤ ∥C(PU)∥p
= ∥K1 +K2 + · · ·+Km + L∥p
≤ ∥K1∥p + ∥K2∥p + · · ·+ ∥Km∥p + ∥L∥p

≤ 1 +
m∑
i=1

∥Ui∥p.

The last bound depends on the p-matrix norm ∥.∥p, where 1 ≤ p ≤ ∞, but the

p-matrix norm is more important and easier to calculate when p = 1, 2,∞. So, in the

coming theorem, we obtain bounds based on ∥.∥p, where p = 1,∞, and also based on

the sperctral norm.

Theorem 3.6. [10, Lemma 2.3] Every eigenvalue λ of P satisfies

|λ| ≤ max

(
∥U1∥1, 1 + max

2≤i≤m
∥Ui∥1

)
,

|λ| ≤ max
(
1, ∥U∥∞

)
,

|λ| ≤ ∥I + UU∗∥
1
2 ,
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where U := [U1, U2, . . . , Um].

Proof. The first two bounds are follows from the facts |λ| ≤ ∥C(PU)∥1 and |λ| ≤
∥C(PU)∥∞. These facts follows by Theorem 2.1. For the last bound, let

R :=


−Um −Um−1 · · · U1

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

 , L :=



0 0 · · · 0 0

I 0 · · · 0 0

0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0


.

Then C(PU) = R + L and R∗L = L∗R = 0.

Now

|λ|2 ≤ ∥C(PU)∥2

= ∥C∗(PU)C(PU)∥
= ∥R∗R + L∗L∥
≤ ∥I +R∗R∥
= ∥I +RR∗∥
= ∥I + UU∗∥

Corollary 3.1. [10, Corollary 2.4] Every eigenvalue λ of P satisfies

|λ| ≤ 1 + max
1≤i≤m

∥Ui∥1,

|λ| ≤ max

1,
m∑
i=1

∥Ui∥∞

 ,

|λ| ≤

1 +
m∑
i=1

∥Ui∥2

1

2
.

In the last bounds we use the norms of C(P ) to get them. Based on numerical radius

estimations of the companion matrix, we can get many bounds for the eigenvalues of

matrix polynomials, as presented in the subsequent theorems.
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Theorem 3.7. [6, Theorem 1] If λ is any eigenvalue of the monic matrix polynomial

P (z), then

|λ| ≤ w(C(P )) ≤ 1

2

w(Am) + cos
π

m
+

√√√√(w(Am)− cos
π

m

)2

+ 4
m−1∑
i=1

a2i

 ,

where ai :=
∥Ai∥
2

, i = 1, 2, . . . ,m− 2 and am−1 := w

[0 −Am−1

I 0

] .

Proof. By applying Theorem 2.4 and Theorem 2.11 to C(P ), we have

|λ| ≤ w(C(P )) ≤ w





w(Am) w
(
T−Am−1,I

)
w
(
T−Am−2,0

)
· · · w

(
T−A2,0

)
w
(
T−A1,0

)
w
(
TI,−Am−1

)
w
(
T0,0

)
w
(
T0,I

)
· · · w

(
T0,0

)
w
(
T0,−Am−2

)
w
(
TI,0

)
w
(
T0,0

)
· · ·

. . . w
(
T0,0

)
...

...
...

. . .
...

w
(
T0,−A2

) . . . w
(
T0,0

)
w
(
T0,I

)
w
(
T0,−A1

)
w
(
T0,0

)
· · · w

(
TI,0

)
w
(
T0,0

)




,

where TX,Y =

[
0 X

Y 0

]
for any two matrices X, Y ∈ Mn(C). Now, by Theorem 2.5 and

Theorem 2.7, we have for any matrix A ∈ Mn(C)

w

[0 A

0 0

] = w

[0 0

A 0

] =
∥A∥
2

,

since

[
0 A

0 0

]2
= 0.

Let ai =
∥Ai∥
2

, i = 1, 2, . . . ,m−2, am−1 = w

[0 −Am−1

I 0

] and v = [am−1, am−2, . . . , a1].

Then we have

w(C(P )) ≤





w(Am) am−1 am−2 am−3 · · · a1

am−1 0 1/2 0 · · · 0

am−2 1/2 0 1/2 · · · 0
...
. . .

. . .
. . .

...
. . .

. . . 1/2

a1 0 0 · · · 1/2 0




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= w

[w(Am) v

vT Tm−1

] (where Tm−1 is the matrix defined in Theorem 2.12),

≤ w

[w(Am) ∥v∥
∥v∥ w(Tm−1)

] (by Corollary 2.1),

= w


 w(Am)

(∑m−1
i=1 a2i

) 1
2(∑m−1

i=1 a2i

) 1
2

cos
π

m




=
1

2

w(Am) + cos
π

m
+

√√√√(w(Am)− cos
π

m

)2

+ 4
m−1∑
i=1

a2i

 .

This upper bound is more complicated than the previous bounds and more difficult

to compute, but in most numerical examples it gives more accurate results. Now, by

using other properties of numerical radius we present the following result.

Theorem 3.8. [6, Theorem 2] If λ is any eigenvalue of the monic matrix polynomial

P (z), then

|λ| ≤ w(C(P )) ≤ 1

2

w(Am) +

√√√√w2(Am) +
m−1∑
i=1

∥Ai∥2

+ cos
π

m+ 1
.

Proof. Let A :=



−Am −Am−1 · · · −A1

0 0 · · · 0

...
...

...

0 0 · · · 0


and L is the matrix defined in Theorem

2.15. It is clear that C(P ) = A+ L, using Theorem 2.16 and Theorem 2.15, we get

|λ| ≤ w(C(P )) = w(A+ L)

≤ w(A) + w(L) (triangle inequality)

≤ 1

2

w(Am) +

√√√√w2(Am) +
m−1∑
i=1

∥Ai∥2

+ cos
π

m+ 1
.
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By using the same proof method in Theorem 3.8 with slight difference in choosing

A and L, we obtain the following result for estimation of the numerical radius of C(P ).

Theorem 3.9. [6, Theorem 3] If λ is any eigenvalue of the monic matrix polynomial

P (z), then

|λ| ≤ w(C(P )) ≤ 1

2

w(Am) +

√√√√w2(Am) +
m−1∑
i=2

∥Ai∥2 + ∥A1 − I∥2

+ 1.

Theorem 3.10. [6, Theorem 4] If λ is any eigenvalue of the monic matrix polynomial

P (z), then

|λ| ≤ w(C(P )) ≤ 1

2

w(Am) +

√√√√w2(Am) +
m−1∑
i=2

∥Ai∥2

+max(1,
∥A1∥+ 1

2
).

In the following result we notice a great similarity with Theorem 3.10 and both

provide bounds for the eigenvalues of the monic matrix polynomials. Also, it can be

considered as an improvement to Theorem 3.10 under specific conditions.

Theorem 3.11. [6, Theorem 5] If λ is any eigenvalue of the monic matrix polynomial

P (z), then

|λ| ≤ w(C(P )) ≤

√√√√√√1

4

w(Am) +

√√√√w2(Am) +
m−1∑
i=1

∥Ai∥2


2

+ cos2
π

m+ 1
+ (

m∑
i=1

∥Ai∥2)
1
2 .

Proof. Let A and L be the two matrices defined in Theorem 3.8. Then C(P ) = A+ L.

It clear that ∥L∥ = 1 and L∗A = 0. Now, by Theorem 2.9 we have

∥A∥ ≤

∥∥∥∥∥∥∥∥∥∥∥∥∥



∥Am∥ ∥Am−1∥ · · · ∥A1∥
0 0 · · · 0

...
...

...

0 0 · · · 0



∥∥∥∥∥∥∥∥∥∥∥∥∥
= (

m∑
i=1

∥Ai∥2)
1
2 .

28



By using triangle inequality and Theorems 2.20, 2.16, and 2.15, we get

|λ| ≤ w(C(P )) ≤ w(A+ L)

≤

√√√√√√1

4

w(Am) +

√√√√w2(Am) +
m−1∑
i=1

∥Ai∥2


2

+ cos2
π

m+ 1
+ (

m∑
i=1

∥Ai∥2)
1
2 .

In the next example we take a matrix polynomial of degree 3 and we give a comparison

between the bounds of eigenvalues that are obtained in Theorem 3.8, Theorem 3.9,

Theorem 3.10, and Theorem 3.11.

Example 3.4. Consider the monic matrix polynomial P (z) = Iz3 + A3z
2 + A2z + A1,

where

A1 =

6 2 2

2 6 2

2 2 6

 , A2 =

4 0 0

0 4 0

0 0 4

 , A3 =

0 0 0

0 0 0

0 0 0

 .

Then in the following table, we compute the bounds obtained in Theorems 3.8, 3.9, 3.10,

and 3.11.

Table 3.1: Comparison of several upper bounds

Theorem Upper bound

Theorem 3.8 6.092271588321052

Theorem 3.9 5.924428900898052

Theorem 3.10 7.500000000000000

Theorem 3.11 6.345890766020875

This example documents that the bound in Theorem 3.9 is better than the other

bounds in Theorems 3.8, 3.10, and 3.11. Also, the eigenvalues of P (z) are

σ(P ) = {0.7784± 2.412i, 0.4239± 2.1305i, 0.4239± 2.1305i, −1.5568, −0.8477, −0.8477} .

We note that Theorems 3.7, 3.8, 3.9, 3.10, and 3.11 based on the norms of the

coefficients Ai and the numerical radius of Am. Thus, one of the negatives of these results

is that it is not easy to compute the numerical radius of Am. Therefor in Example 3.4

we took Hermitian coefficients. Other similar bound introduce in the next theorem.

29



Theorem 3.12. [14, Theorem 5.2] If λ is any eigenvalue of the monic matrix polynomial

P (z), then

|λ| ≤ w(C(P )) ≤ 1

2

w(Am) +

√√√√√w2(Am) + 4w2

[0 Am−1

I 0

]+
m−2∑
i=1

∥Ai∥2

+cos
π

m
.

Proof. Let A :=



−Am −Am−1 · · · −A1

I 0 · · · 0

0 0 · · · 0

...
...

...

0 0 · · · 0


and R :=



0 0 0 · · · 0

0 0 0 · · · 0

0 I 0 · · · 0
...

...
. . .

. . .
...

0 0 · · · I 0


.

It is clear that C(P ) = A+R, by Theorem 2.5 w

[0 A

0 0

] =
∥A∥
2

for every matrix

A ∈ Mn(C) because

[
0 A

0 0

]2
= 0, together with Theorem 2.18, we obtain

|λ| ≤ w(C(P )) = w(A+R)

≤ w(A) + w(R)

≤ 1

2

w(Am) +

√√√√√w2(Am) + 4w2

[0 Am−1

I 0

]+
m−2∑
i=1

∥Ai∥2

+ cos
π

m
.

To obtain new bounds for the eigenvalue of the monic matrix polynomial P (z), we

apply numerical radius inequalities to the square of Frobenius companion matrices of

P (z).

By direct multiplication of matrices we can compute C2(P ) as follows

C2(P ) =



Bm Bm−1 · · · B3 B2 B1

−Am −Am−1 · · · −A3 −A2 −A1

I 0 · · · 0 0 0

0 I · · · 0 0 0
...

...
. . .

...
... 0

0 0 · · · I 0 0


,
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where Bj := AmAj − Aj−1, j = 1, . . . ,m, with A0 := 0.

By estimating the numerical radius of C2(P ), we obtain the following theorem, which

is then used to give bounds for the eigenvalues of P (z).

Theorem 3.13. [15, Theorem 1] Let P (z) be a monic matrix polynomial. An upper

bound of the numerical radius of C2(P ) can be stated as follows:

w(C2(P )) ≤ 1

4
(w(Bm) + w(Am−1) + γ) + cos2

(
π

mn− 1

)
+

1

2

+
1

2

√
1

4
(w(Bm) + w(Am−1) + γ)2 +

1

2

(
α + η +

√
(α− η)2 + 4β2

)
+
1

2

√√√√(2 cos2( π

mn− 1

)
+ 1

)2

+
1

2

(
α + η +

√
(α− η)2 + 4β2

)
,

where

α = w2(TI,Bm−2) +
1

4

m−3∑
i=1

∥Bi∥2,

η = w2(TI,Am−3) +
1

4
∥Am−2∥2 +

1

4

m−4∑
i=1

∥Ai∥2,

β = w(TBm−2,I)
∥Am−2∥

2
+ w(TAm−3,I)

∥Bm−3∥
2

+
1

4

m−4∑
i=1

(∥Ai∥∥Bi∥),

γ =
√
(w(Bm)− w(Am−1))2 + 4w2(TBm−1,−Am).

Proof. For any two matrices X, Y ∈ Mn(C), let TX,Y =

[
0 X

Y 0

]
. Application of

Theorem 2.11 on C2(P ), resulted in w(C2(P )) ≤ w(S), where S is the following matrix



w(Bm) w(TBm−1,−Am ) w(TBm−2,I
) w(TBm−3,0

) w(TBm−4,0
) ··· w(TB3,0

) w(TB2,0
) w(TB1,0

)

w(T−Am,Bm−1
) w(Am−1) w(T−Am−2,0

) w(T−Am−3,I
) w(T−Am−4,0

) ··· w(T−A3,0
) w(T−A2,0

) w(T−A1,0
)

w(TI,Bm−2
) w(T0,−Am−2

) w(0) w(T0,0) w(T0,I) ··· w(T0,0) w(T0,0) w(T0,0)

w(T0,Bm−3
) w(TI,−Am−3

) w(T0,0) w(0) w(T0,0) ··· w(T0,0) w(T0,0) w(T0,0)

w(T0,Bm−4
) w(T0,−Am−4

) w(TI,0) w(T0,0) w(0) ··· w(T0,0) w(T0,0) w(T0,0)

...
...

...
...

...
. . .

...
...

...
w(T0,B3

) w(T0,−A3
) w(T0,0) w(T0,0) w(T0,0) ··· w(0) w(T0,0) w(T0,I)

w(T0,B2
) w(T0,−A2

) w(T0,0) w(T0,0) w(T0,0) ··· w(T0,0) w(0) w(T0,0)

w(T0,B1
) w(T0,−A1

) w(T0,0) w(T0,0) w(T0,0) ··· w(TI,0) w(T0,0) w(0)


.

By Theorem 2.5 and Theorem 2.7, we have

w

[0 A

0 0

] = w

[0 0

A 0

] =
∥A∥
2

,
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for every matrix A ∈ Mn(C). Hence we can write S as

S =



w(Bm) w(TBm−1,−Am) w(TBm−2,I) bm−3 bm−4 · · · b3 b2 b1

w(T−Am,Bm−1) w(Am−1)
∥Am−2∥

2
w(T−Am−3,I) am−4 · · · a3 a2 a1

w(TBm−2,I)
∥Am−2∥

2
0 0 1

2
· · · 0 0 0

bm−3 w(T−Am−3,I) 0 0 0 · · · 0 0 0

bm−4 am−4
1
2

0 0 · · · 0 0 0
...

...
...

...
...

. . .
...

...
...

b3 a3 0 1
2

0 · · · 0 0 1
2

b2 a2 0 0 1
2

· · · 0 0 0

b1 a1 0 0 0 · · · 1
2

0 0



,

where bi :=
∥Bi∥
2

, i = 1, 2, . . . ,m− 3, and ai :=
∥Ai∥
2

, i = 1, 2, . . . ,m− 4.

Let us take the Partition of S as

S =

[
S11 S12

S21 S22

]
,

where

S11 =

[
w(Bm) w(TBm−1,−Am)

w(T−Am,Bm−1) w(Am−1)

]
,

S12 =

[
w(TBm−2,I) bm−3 bm−4 · · · b3 b2 b1

∥Am−2∥
2

w(T−Am−3,I) am−4 · · · a3 a2 a1

]
,

S21 =

[
w(TBm−2,I) bm−3 bm−4 · · · b3 b2 b1

∥Am−2∥
2

w(T−Am−3,I) am−4 · · · a3 a2 a1

]T
,

S22 =



0 0 1
2

0 0 · · · 0

0 0 0 1
2

0 · · · 0
1
2

0 0 · · · 1
2

· · · 0

0 1
2

. . .
. . . · · ·

...
...
. . .

...

0 0 1
2

. . . · · · 0 0 1
2

...
...

...
. . . · · · 0 0 0

0 0 0 · · · 1
2

0 0


(mn−2)×(mn−2)

.

32



Now, applying Corollary 2.3 gives

w(C2(P )) ≤ w(S) ≤ 1

2

(
w(S11) +

√
w2(S11) + ∥S12∥2

)
+
1

2

(
w(S22) +

√
w2(S22) + ∥S21∥2

)
. (3.3)

Hence it remains to estimate ∥S12∥, ∥S21∥, w(S11) and w(S22). We start by estimating

∥S12∥ and ∥S21∥.

∥S12∥ =
√

ρ (S12S∗
12)

=

√√√√√ρ

[α β

β η

]
=

√
1

2

(
α + η +

√
(α− η)2 + 4β2

)
, (by Remark 2.1), (3.4)

where

α = w2(TI,Bm−2) +
1

4

m−3∑
i=1

∥Bi∥2,

η = w2(TI,−Am−3) +
1

4
∥Am−2∥2 +

1

4

m−4∑
i=1

∥Ai∥2,

β = w(TBm−2,I)
∥Am−2∥

2
+ w(T−Am−3,I)

∥Bm−3∥
2

+
1

4

m−4∑
i=1

(∥Ai∥∥Bi∥).

Since S21 = ST
12, then ∥S12∥ = ∥S21∥. Now, for w(S11), the matrix S11 is Hermitian

which implies that S11 is normal. So by Theorem 2.4 we have

w(S11) = ρ(S11)

=
1

2
(w(Bm) + w(Am−1) + γ), (3.5)

where

γ =
√
(w(Bm)− w(Am−1))2 + 4w2(TBm−1,−Am).

Finally, to estimate w(S22) we write S22 as

S22 = 2

(
T 2
mn−2 − diag

(
1

4
,
1

2
. . . . ,

1

2
,
1

4

))
,
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where Tmn−2 is the matrix defined in Theorem 2.12. Using the triangle inequality and

the fact w(T 2
mn−2) = w2(Tmn−2) (since Tmn−1 is normal), we get

w(S22) ≤ 2

w(T 2
mn−2) + w

(
diag

(
1

4
,
1

2
. . . . ,

1

2
,
1

4

))
≤ 2w2(Tmn−2) + 1

= 2 cos2
(

π

mn− 1

)
+ 1. (3.6)

Now, by substituting (3.4),(3.5), and (3.6) in (3.3) we get the result.

Now, if λ ∈ σ(P ), then λ ∈ σ(C(P )) and by Spectral Mapping Theorem we have

λ2 ∈ σ(C2(P )) which implies

|λ|2 ≤ ρ(C2(P )) ≤ w(C2(P )). (3.7)

Thus, by Theorem 3.13 and (3.7) we obtain a bound on the eigenvalues of P (z).

In the next, we are going to employ the fact that similar matrices have the same

eigenvalues. So, we can obtain a new bound for the eigenvalues of a monic matrix

polynomials using a similar matrix to C2(P ).

Now, consider the mn×mn invertible matrix

B =



I I I · · · I

0 I I · · · I

0 0 I
. . . I

...
... 0

. . . I

0 0 0 · · · I


,

and the inverse of B is

B−1 =



I −I 0 · · · 0

0 I −I · · · 0

0 0 I
. . . 0

...
...

...
. . . −I

0 0 0 · · · I


.
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By direct multiplication of matrices we can compute the mn×mn matrix BC2(P )B−1

as follows


Bm−Am+I Bm−1−Bm+Am−Am−1 Bm−2−Bm−1+Am−1−Am−2 ··· B2−B3+A3−A2 B1−B2+A2−A1

I−Am Am−Am−1 Am−1−Am−2 ··· A3−A2−I A2−A1

I 0 0 ··· −I 0
0 I 0 ··· −I 0

0 0
. . . ··· −I 0

...
...

... ···
...

...
0 0 0 ··· −I 0

.

From similarity of C2(P ) and BC2(P )B−1, we have

|λ|2 ≤ ρ(BC2(P )B−1) ≤ w(BC2(P )B−1)

where λ is an eigenvalue of P (z). In the following theorem, we introduce a new bound

for the eigenvalue of P(z) by estimate the numerical radius of BC2(P )B−1.

Theorem 3.14. [15, Theorem 2] Let P (z) be a monic matrix polynomial. An upper

bound of the numerical radius of BC2(P )B−1 can be stated as follows:

|λ|2 ≤ w(BC2(P )B−1)

≤ 1

2

(
ξ + 2 cos2

(
π

mn− 3

)
+ 1 +

2 +
√
5

4
+

√
ξ2 +

(
1

2

(
α + η +

√
(α− η)2 + 4β2

))2

+ τ 2

+

√√√√(2 cos2( π

mn− 3

)
+ 1

)2

+

(
1

2

(
α + η +

√
(α− η)2 + 4β2

))2

+ µ

+

√√√√(2 +
√
5

4

)2

+ τ 2 + µ

)
,

where

ξ =
1

2

(
w(Bm − Am + I) + w(Am − Am−1)

+

√(
w(Bm − Am + I)− w(Am − Am−1)

)2
+ 4w2

(
TBm−1−Bm+Am−Am−1,I−Am

))
,

α = w2
(
TBm−2−Bm−1+Am−1−Am−2,I

)
+

1

4

m∑
j=6

∥Bj−3 −Bj−2 + Aj−2 − Aj−3∥2,

η =
1

4
∥Am−1 − Am−2∥2 + w2

(
TAm−2−Am−3,I

)
+

1

4

m∑
j=7

∥Aj−3 − Aj−4∥2,
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β =
1

2
w
(
TBm−2−Bm−1+Am−1−Am−2,I

)
∥Am−1 − Am−2∥

+
1

2
∥Bm−3 −Bm−2 + Am−2 − Am−3∥w

(
TAm−2−Am−3,I

)
+

1

4

m∑
j=7

∥Bj−4 −Bj−3 + Aj−3 − Aj−4∥∥Aj−3 − Aj−4∥,

τ =
1

2

(∥B2 −B3 + A3 − A2∥2

4
+

∥A3 − A2 − I∥2

4
− ∥B1 −B2 + A2 − A1∥2

4
− ∥A2 − A1∥2

4

)
((∥B2 −B3 + A3 − A2∥2

4
+

∥A3 − A2 − I∥2

4
− ∥B1 −B2 + A2 − A1∥2

4
− ∥A2 − A1∥2

4

)2
+
1

4

(
∥B2 −B3 + A3 − A2∥∥B1 −B2 + A2 − A1∥+ ∥A3 − A2 − I∥∥A2 − A1∥

)2) 1
2

.

3.3 Location for the eigenvalues of matrix polynomials

with commuting coefficients

In this section, we aim to introduce bounds for the eigenvalues of monic matrix polynomials

with commuting coefficients. Kittaneh [11] proved the inequality

ρ(A) ≤ ρ([ρ(Aij)]),

for commuting entries which stated in Theorem 2.23. Also he employed Theorem 2.23

to obtain better bounds, as illustrated in the following.

Consider the monic matrix polynomial P (z) = Izm + Amz
m−1 + · · · + A2z + A1 of

degree m ≥ 2, with Ai are commuting matrices for i = 1, 2, . . . ,m. Then by applying

Theorem 2.23 on C(P ) we get ρ(C(P )) ≤ ρ(C̃(P )), where

C̃(P ) =



ρ(Am) ρ(Am−1) . . . ρ(A2) ρ(A1)

1 0 . . . 0 0

0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0


. (3.8)

Hence if λ is an eigenvalue of P (z), then

|λ| ≤ ρ
(
C̃(P )

)
≤ w

(
C̃(P )

)
≤
∥∥∥C̃(P )

∥∥∥ . (3.9)
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Therefore, we can use the inequalities (3.9) to find bounds for the eigenvalues of

P (z). We note that the matrix C̃(P ) is analogous to the companion matrix of complex

polynomials. Thus, the ideas that were used to estimate bounds to the zeros of complex

polynomials can be used to estimate the eigenvalues of monic matrix polynomials with

commuting coefficients. Several bounds for the zeros of complex polynomials have been

given in [9, 32, 33, 34, 35]. Based on Theorem 2 in [33], we have

|λ| ≤ w
(
C̃(P )

)
≤ 1

2

ρ(Am) + cos
π

m
+

√√√√(ρ(Am)− cos
π

m

)2

+
(
ρ(Am−1) + 1

)2
+

m−2∑
i=1

ρ2(Ai)

 .

Now, consider the m×m invertible matrix

Q =



1 1 0 0 · · · 0

0 1 1 0 · · · 0

0 0 1 1
. . . 0

0 0 0 1
. . . 0

...
...

...
...

. . . 1

0 0 0 0 · · · 1


,

and the inverse of Q is

Q−1 =



1 −1 1 −1 · · · (−1)m−1

0 1 −1 1 · · · (−1)m−2

0 0 1 −1 · · · (−1)m−3

0 0 0 1
. . . (−1)m−4

...
...

...
...

. . .
...

0 0 0 0 · · · 1


.
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Let H := QC̃(P )Q−1. Then H =



β1 β2 β3 β4 · · · βm

1 0 0 0 · · · 0

0 1 0 0 · · · 0

0 0 1 0 · · · 0
...

...
...

. . .
...

...

0 0 0 · · · 1 −1


.

where βi = (−1)i+1 +
∑i−1

k=0(−1)k+i+1ρ(Am−k), i = 1, 2, . . . ,m.

C̃(P ) and H have the same eigenvalues since they are similar. Thus, by applying

numerical radius inequalities to the various decompositions and partitions of H new

bounds for the eigenvalues of the monic matrix polynomial P (z) with commuting coefficients

are produced.

Theorem 3.15. [4, Theorem 2.1] If λ is any eigenvalue of P (z), then

|λ| ≤ 1

2

cos
π

m
+

√√√√cos2
π

m
+

m∑
i=3

β2
i + (1 + |β2|)2

+max{1, |β1|}.

Proof. At first, we decompose H as H = S +R, where

S =



0 β2 β3 β4 · · · βm

1 0 0 0 · · · 0

0 1 0 0 · · · 0

0 0 1 0 · · · 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0


, R =



β1 0 0 0 · · · 0

0 0 0 0 · · · 0

0 0 0 0 · · · 0

0 0 0 0 · · · 0
...

...
...

. . .
...

...

0 0 0 · · · 0 −1


.

Then, we have

|λ| ≤ ρ(C(P ))

≤ ρ(C̃(P))

= ρ(H)

≤ w(H)

= w(S +R)

≤ w(S) + w(R). (3.10)
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Now,

w(R) = max{1, |β1|}. (3.11)

To estimate w(S), we apply Theorem 2.11 on S which gives

w(S) ≤



0 w

[0 |β2|
1 0

] 1
2
|β3| 1

2
|β4| · · · 1

2
|βm|

w

[0 |β2|
1 0

] 0 1
2

0 · · · 0

1
2
|β3| 1

2
0 1

2

. . . 0

1
2
|β4| 0 1

2
0

. . . 0
...

...
...

. . .
. . . 1

2
1
2
|βm| 0 · · · 0 1

2
0


= w

[ 0 u

u∗ Tm−1

] (where Tm−1 is the matrix defined in Theorem 2.12),

≤ w

[ 0 ∥u∥
∥u∥ ∥Tm−1∥

] (by Theorem 2.9),

where u =

w
[0 |β2|

1 0

] , 1
2
|β3|, 12 |β4|, · · · , 12 |βm|

 .

Now, ∥u∥ =

√√√√√1

4

∑m
i=3 β

2
i + w2

[0 |β2|
1 0

], and using Theorem 2.8 we have

w

[0 |β2|
1 0

] =
1

2
ρ

[ 0 1 + |β2|
1 + |β2| 0

] =
1

2
(1 + |β2|).

Also, ∥Tm−1∥ = cos
π

m
.
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Thus,

w(S) ≤ w

[ 0 1
2

√∑m
i=3 β

2
i + (1 + |β2|)2

1
2

√∑m
i=3 β

2
i + (1 + |β2|)2 cos π

m

]
= ρ

[ 0 1
2

√∑m
i=3 β

2
i + (1 + |β2|)2

1
2

√∑m
i=3 β

2
i + (1 + |β2|)2 cos π

m

] (since it is normal),

=
1

2

cos
π

m
+

√√√√cos2
π

m
+

m∑
i=3

β2
i + (1 + |β2|)2

 (by Remark 2.1). (3.12)

By substituting (3.11) and (3.12) in (3.10), we get

|λ| ≤ 1

2

cos
π

m
+

√√√√cos2
π

m
+

m∑
i=3

β2
i + (1 + |β2|)2

+max{1, |β1|}.

In the next result, Theorems 2.15, 2.17, and 2.20 are applied to other decomposition

ofH to get a new bound for the eigenvalues of monic matrix polynomials with commuting

coefficients.

Theorem 3.16. [4, Theorem 2.2] If λ is any eigenvalue of P (z), then

|λ| ≤

√√√√√1

4

m∑
i=2

β2
i + cos2

π

m+ 1
+

√√√√ m∑
i=2

β2
i +max{1, |β1|}.

Proof. Write H as H = K + L+M , where

K =



0 β2 β3 · · · βm−1 βm

0 0 0 · · · 0 0

0 0 0 · · · 0 0

0 0 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 0


, L =



0 0 0 · · · 0 0

1 0 0 · · · 0 0

0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0


,

40



and

M =



β1 0 0 · · · 0 0

0 0 0 · · · 0 0

0 0 0 · · · 0 0

0 0 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 −1


.

Now, by Theorem 2.20

|λ| ≤ w(H)

= w(K + L+M)

≤ w(K + L) + w(M)

≤
√

w2(K) + w2(L) + ∥K∥∥L∥+ w(L∗K).+max{1, |β1|}.

w(L) = cos
π

m+ 1
, ∥L∥ = 1, L∗K = 0, using Theorem 2.17 we have

w(K) =
1

2


√√√√ m∑

i=2

β2
i


.

For ∥K∥, since K2 = 0 we have ∥K∥ = 2w(K) =
√∑m

i=2 β
2
i .

Thus,

|λ| ≤

√√√√√1

4

m∑
i=2

β2
i + cos2

π

m+ 1
+

√√√√ m∑
i=2

β2
i +max{1, |β1|}.

In the coming bound, we use the same decomposition of H and the same method of

proof as in Theorem 3.16, but we use Theorem 2.21 instead of applying Theorem 2.20.

Theorem 3.17. [4] If λ is any eigenvalue of P (z), then

|λ| ≤

√√√√√max


m∑
i=2

β2
i , 1

+

√√√√ m∑
i=2

β2
i +max{1, |β1|}.
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This result provides bound for the absolute value of the eigenvalues, which is expressed

in terms of the βi. In the following result, a similar bound established, but with a slightly

different structure in the inequality.

Theorem 3.18. [4, Theorem 2.4] If λ is any eigenvalue of P (z), then

|λ| ≤ 1

2

√√√√ m∑
i=3

β2
i + (1 + |β2|)2 + cos

π

m
+max{1, |β1|}.

Proof. By using triangle inequality to the decomposition of H, where H = K1+L1+M

with

K1 =



0 β2 β3 · · · βm−1 βm

1 0 0 · · · 0 0

0 0 0 · · · 0 0

0 0 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 0


, L1 =



0 0 0 · · · 0 0

0 0 0 · · · 0 0

0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0


,

and

M =



β1 0 0 · · · 0 0

0 0 0 · · · 0 0

0 0 0 · · · 0 0

0 0 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 −1


,

we get

|λ| ≤ w(H)

= w(K1 + L1 +M)

≤ w(K1) + w(L1) + w(M).

To complete the proof, we need to estimate w(K1), w(L1) and w(M). It clear that

w(M) = max{1, |β1|}, and w(L1) = cos
π

m
.

Now, for w(K1)

42



w(K1) ≤



0 w

[0 |β2|
1 0

] 1
2
|β3| 1

2
|β4| · · · 1

2
|βm|

w

[0 |β2|
1 0

] 0 0 0 · · · 0

1
2
|β3| 0 0 0

. . . 0

1
2
|β4| 0 0 0

. . . 0
...

...
...

. . .
. . . 0

1
2
|βm| 0 · · · 0 0 0


= w

[ 0 u

u∗ 0

]
≤ w

[ 0 ∥u∥
∥u∥ 0

]
= ∥u∥

=
1

2

√√√√ m∑
i=3

β2
i + (1 + |β2|)2,

where u =

w
[0 |β2|

1 0

] , 1
2
|β3|, 12 |β4|, · · · , 12 |βm|

 .

Therefor,

|λ| ≤ 1

2

√√√√ m∑
i=3

β2
i + (1 + |β2|)2 + cos

π

m
+max{1, |β1|}.

In the next theorem, other bound derived once more using the same decomposition

of H as presented in Theorem 3.16. This bound obtained by using triangle inequality

and other numerical radius properties.

Theorem 3.19. [4, Theorem 2.5] If λ is any eigenvalue of P (z), then

|λ| ≤ 1

2

√√√√ m∑
i=2

β2
i + cos

π

m+ 1
+max{1, |β1|}.
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Proof. Let K,L,M be the matrices defined in Theorem 3.16. Then H = K + L+M .

Thus,

|λ| ≤ w(H)

= w(K + L+M)

≤ w(K) + w(L) + w(M)

=
1

2

√√√√ m∑
i=2

β2
i + cos

π

m+ 1
+max{1, |β1|}.

In the subsequent theorem, we write H as H = K2 +M + U , where

K2 =



0 β2 β3 · · · βm−1 βm − 1

0 0 0 · · · 0 0

0 0 0 · · · 0 0

0 0 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 0


,M =



β1 0 0 · · · 0 0

0 0 0 · · · 0 0

0 0 0 · · · 0 0

0 0 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 −1


,

and

U =



0 0 0 · · · 0 1

1 0 0 · · · 0 0

0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0


.

It is easy to show that U∗U = UU∗ = I. Hence U is unitary.

Theorem 3.20. [4, Theorem 2.6] If λ is any eigenvalue of P (z), then

|λ| ≤ 1

2

√√√√m−1∑
i=2

β2
i + |1− βm|2 +max{1, |β1|}+ 1.
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Proof. By applying the triangle inequality to the new decomposition of H, we get

|λ| ≤ w(H)

= w(K2 +M + U)

≤ w(K2) + w(M) + w(U).

Now, using Theorem 2.17 we have w(K2) =
1

2

√∑m−1
i=2 β2

i + |1− βm|2, and also we know

that w(M) = max{1, |β1|}. And since U is unitary, then w(U) = 1.

Thus,

|λ| ≤ 1

2

√√√√m−1∑
i=2

β2
i + |1− βm|2 +max{1, |β1|}+ 1.

This result is a combination of a quadratic and linear forms. This showing that the

eigenvalues are influenced not just by individual coefficients but also by their combined

influence. The following bound follows by employing Theorems 2.3 and 2.17 to other

different decomposition of H.

Theorem 3.21. [4, Theorem 2.7] If λ is any eigenvalue of P (z), then

|λ| ≤ 1

2

|β1|+

√√√√m−1∑
i=1

β2
i + 1

+
1

2

(
1 +

√
1 + β2

m

)
+ 1.

In the next result, Theorems 2.9, 2.17, and 2.19 are used to obtain a new bound for

the eigenvalues.

Theorem 3.22. [4, Theorem 2.8] If λ is any eigenvalue of P (z), then

|λ| ≤ max

1,
1

2

|β1|+

√√√√m−1∑
i=1

β2
i


+max

{
1,

1 + |βm|
2

}
.
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Now, consider the partition of H as H =

[
A B

C D

]
, where

A =
[
β1

]
, B =

[
β2 β3 · · · βm

]
, C =


1

0
...

0

 , and D =



0 0 0 · · · 0 0

1 0 0 · · · 0 0

0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 −1


.

Using this partition of H, a new bound of eigenvalues of P (z) is derived, as stated

in the following theorem.

Theorem 3.23. [4, Theorem 2.9] If λ is any eigenvalue of P (z), then

|λ| ≤ 1

2

|β1|+
√
2 +

√√√√√(|β1| −
√
2)2 + 4

√√√√ m∑
i=2

β2
i

 .

Proof. By the partition of H =

[
A B

C D

]
and Theorem 2.9, we have

|λ| ≤ ρ(H)

= ρ

[A B

C D

]
≤ ρ

[∥A∥ ∥B∥
∥C∥ ∥D∥

]
=

1

2

(
∥A∥+ ∥D∥+

√
(∥A∥ − ∥D∥)2 + 4∥B∥∥C∥

)
.

Now, since ∥A∥ = |β1|, ∥B∥ =
√∑m

i=2 β
2
i , ∥C∥ = 1, and

DD∗ =



0 0 0 · · · 0 0

0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0

0 0 0 · · · 0 2


.
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So, ∥D∥ =
√

ρ(DD∗) =
√
2.

Thus,

|λ| ≤ 1

2

|β1|+
√
2 +

√√√√√(|β1| −
√
2)2 + 4

√√√√ m∑
i=2

β2
i

 .

We note that all Theorems 3.15–3.23 based on the βi which depends on the spectral

radius of Ai. Therefore, it easy to compute these results for many matrix polynomials.

Through many numerical examples, we observed that Theorem 3.23 often gives better

result than the rest.

In the coming example, we take the same matrix polynomial in Example 3.4 to

compare all bounds in Theorems 3.15–3.23.

Example 3.5. Consider the monic matrix polynomial P (z) = Iz3 + A3z
2 + A2z + A1,

where

A1 =

6 2 2

2 6 2

2 2 6

 , A2 =

4 0 0

0 4 0

0 0 4

 , A3 =

0 0 0

0 0 0

0 0 0

 .

Then the following table provides bounds for eigenvalues of P (z).

Table 3.2: Comparison of several upper bounds

Theorem Upper bound

Theorem 3.15 5.288873605350877

Theorem 3.16 5.755604389124888

Theorem 3.17 9.100356356720601

Theorem 3.18 5.531128874149273

Theorem 3.19 5.514993334118501

Theorem 3.20 5.354101966249683

Theorem 3.21 7.193846301110436

Theorem 3.22 6.081138830084188

Theorem 3.23 3.974536333077138

Therefor, the bound in Theorem 3.23 gives |λ| ≤ 3.974536333077138, for any λ ∈
σ(P ). For this matrix polynomial we note that the upper bound provided by Theorem
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3.23 is better than all upper bounds mentioned in Table 3.1 and Table 3.2.

In the previous theorems in this section, we use the matrix H = QC̃(P )Q−1 to derive

new upper bounds to the eigenvalues of P (z). Here, other invertible matrix, say Q1 is

presented and then we will define the matrix H1 = Q1C̃(P )Q−1
1 which is similar to the

matrix C̃(P ) to provide other bounds.

Now, Consider the invertible m×m matrix

Q1 =



1 −1 −1 −1 · · · −1

0 1 −1 −1 · · · −1

0 0 1 −1
. . . −1

0 0 0 1
. . . −1

...
...

...
...

. . . −1

0 0 0 0 · · · 1


,

and the inverse of Q1 is

Q−1
1 =



1 1 2 4 · · · (2)m−2

0 1 1 2 · · · (2)m−3

0 0 1 1 · · · (2)m−4

0 0 0 1
. . . (2)m−5

...
...

...
...

. . .
...

0 0 0 0 · · · 1


.

Define H1 as H1 := Q1C̃(P )Q−1
1 . Then H1 =



δ1 δ2 δ3 δ4 · · · δm

1 0 0 0 · · · 1

0 1 0 0 · · · 1

0 0 1 0 · · · 1
...

...
...

. . .
...

...

0 0 0 · · · 1 1


.
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where

δ1 = −1 + ρ(Am),

δ2 = δ1 + (−1 + ρ(Am−1)),

δ3 = δ1 + δ2 + (−1 + ρ(Am−2)),

δ4 = δ1 + δ2 + δ3 + (−1 + ρ(Am−3)),

...

δm = δ1 + δ2 + . . .+ δm−1 + ρ(A1).

Now, we write H1 as H1 = K + U +M , where

K =



δ1 δ2 δ3 δ4 · · · δm − 1

0 0 0 0 · · · 0

0 0 0 0 · · · 0

0 0 0 0 · · · 0
...

...
...

. . .
...

...

0 0 0 · · · 0 0


, U =



0 0 0 · · · 0 1

1 0 0 · · · 0 0

0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0


,

and

M =



0 0 0 · · · 0 0

0 0 0 · · · 0 1

0 0 0 · · · 0 1

0 0 0 · · · 0 1
...

...
...

. . .
...

...

0 0 0 · · · 0 1


.

So, using this decomposition of H1, the next result is obtained.

Theorem 3.24. [16, Theorem 2.1] If λ is any eigenvalue of P (z), then

|λ| ≤ 1

2

|δ1|+

√√√√m−1∑
i=1

δ2i + (δm − 1)2

+ 1 +
1

2

(
1 +

√
m− 1

)
.
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Proof. We have

|λ| ≤ ρ(C(P ))

≤ ρ(C̃(P ))

= ρ(H1)

≤ w(H1)

= w(K + U +M)

≤ w(K) + w(U) + w(M).

Now, we use the fact that w(U) = ρ(U) = 1, since U is a unitary matrix. By Theorem

2.17 we have

w(K) =
1

2

|δ1|+

√√√√m−1∑
i=1

δ2i + (δm − 1)2

 .

Also,

w(M) = w

[0 u

0 1

] (where u = [0 1 1 · · · 1]T ),

≤ w

[0 ∥u∥
0 1

]
= w

[0 √
m− 2

0 1

]
=

1

2
ρ

[ 0
√
m− 2√

m− 2 2

] (by Theorem 2.8),

=
1

2

(
1 +

√
m− 1

)
.

Thus,

|λ| ≤ 1

2

|δ1|+

√√√√m−1∑
i=1

δ2i + (δm − 1)2

+ 1 +
1

2

(
1 +

√
m− 1

)
.
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The above theorem gives an upper bound for the eigenvalues in terms of δi and the

degree of the matrix polynomial P (z). To introduce other bounds for the eigenvalues of

P (z) that also depends on δi and m, we present a new partition of H1 as follows:

H1 =

A11 A12 A13

A21 A22 A23

A31 A32 A33

 ,

where

A11 =
[
δ1

]
, A12 =

[
δ2 δ3 · · · δm−1

]
, A13 =

[
δm

]
,

A21 =


1

0
...

0

 , A22 =


0 0 · · · 0

1 0 · · · 0
...

. . .
...

...

0 · · · 1 0

 , A23 =


1

1
...

1

 ,

A31 =
[
0
]
, A32 =

[
0 0 · · · 1

]
, and A33 =

[
1
]
.

Using this partition of H1, the following result is obtained.

Theorem 3.25. [16, Theorem 2.2] If λ is any eigenvalue of P (z), then

|λ| ≤ max

{
|δ1|,

1

2

(
1 +

√
m− 2

)}
+max

{
cos

π

m− 1
,
|δm|
2

}
+max

1,
1

2

1 +

√√√√m−1∑
i=2

|δi|2


 .

Proof. By the previous partition of H1, we have

|λ| ≤ w(H1)

= w


A11 A12 A13

A21 A22 A23

A31 A32 A33




≤ w


w(A11) ∥A12∥ ∥A13∥
∥A21∥ w(A22) ∥A23∥
∥A31∥ ∥A32∥ w(A33)


 (by Theorem 2.10).
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Now,

w(A11) = |δ1|, w(A22) = cos
π

m− 1
, w(A33) = 1, ∥A12∥ =

√∑m−1
i=2 |δi|2,

∥A13∥ = |δm|, ∥A21∥ = 1, ∥A23∥ =
√
m− 2, ∥A31∥ = 0, and ∥A32∥ = 1.

So, by applying Theorem 2.22, we get

|λ| ≤ max

|δ1|, w

[0 √
m− 2

1 0

]+max

cos
π

m− 1
, w

[0 |δm|
0 0

]
+max{1, w


0 √∑m−1

i=2 |δi|2

1 0


}.

Thus,

|λ| ≤ max

{
|δ1|,

1

2

(
1 +

√
m− 2

)}
+max

{
cos

π

m− 1
,
|δm|
2

}
+max

1,
1

2

1 +

√√√√m−1∑
i=2

|δi|2


 .

In the subsequent two theorems, the previous partition of H1 is used to give other

bounds.

Theorem 3.26. [16, Theorem 2.3] If λ is any eigenvalue of P (z), then

|λ| ≤ max

{
|δ1|, cos

π

m− 1
, 1

}

+
1

2


√√√√ m∑

i=2

δ2i +

√
m− 1 +

√
m2 − 6m+ 13

2
+ 1

 .

Theorem 3.27. [16, Theorem 2.4] If λ is any eigenvalue of P (z), then

|λ| ≤ max

{
|δ1|, cos

π

m− 1
, 1

}

+
1

2
max


1 + |δm|+

√√√√m−1∑
i=2

δ2i

 ,

1 +

√√√√m−1∑
i=2

δ2i +
√
m− 2

 ,
(
1 + |δm|+

√
m− 2

) .
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Now, Theorem 2.11, Theorem 2.10, and Corollary 2.3 are used with a new partition

of H1 to prove the following theorem.

Theorem 3.28. [16, Theorem 2.5] If λ is any eigenvalue of P (z), then

|λ| ≤ 1

2

(
|δ1|+ cos

π

m− 1
+ 1

)

+
1

4


√√√√4δ21 + (1 + |δ2|)2 +

m∑
i=3

δ2i +
√

δ2m +m+ 5


+
1

4


√√√√4 cos2

π

m− 1
+ (1 + |δ2|)2 +

m−1∑
i=3

δ2i +m+ 1

 .

Proof. Using Theorem 2.4 and Theorem 2.11, we have

|λ| ≤ w(H1)

≤ w





|δ1| 1+|δ2|
2

|δ3|
2

|δ4|
2

· · · |δm−1|
2

|δm|
2

1+|δ2|
2

0 1
2

0 · · · 0 1
2

|δ3|
2

1
2

0 1
2

· · · 0 1
2

|δ4|
2

0 1
2

0 · · ·
...

...
...

...
...

. . .
. . . 1

2
1
2

|δm−1|
2

0 0 · · · 1
2

0 1
|δm|
2

1
2

1
2

· · · 1
2

1 1




.

Now , consider the partition H2 =

M11 M12 M13

M21 M22 M23

M31 M32 M33

, where
M11 =

[
|δ1|
]
, M12 =

[
1+|δ2|

2
|δ3|
2

|δ4|
2

· · · |δm−1|
2

]
, M13 = M31 =

[
|δm|
2

]
,

M21 =



1+|δ2|
2

|δ3|
2

|δ4|
2

· · ·
|δm−1|

2


, M22 =



0 1
2

0 · · · 0
1
2

0 1
2

· · · 0

0 1
2

0
. . . 0

...
...

. . .
. . . 1

2

0 0 · · · 1
2

0


, M23 =



1
2
1
2
...
1
2

1


,

M32 =
[
1
2

1
2

· · · 1
2

1
]
, and M33 =

[
1
]
.
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Thus, by Theorem 2.10 we obtain

|λ| ≤ w


M11 M12 M13

M21 M22 M23

M31 M32 M33




≤ w


w(M11) ∥M12∥ ∥M13∥
∥M21∥ w(M22) ∥M23∥
∥M31∥ ∥M32∥ w(M33)




= w




|δ1| 1
2

√
(1 + |δ2|)2 +

∑m−1
i=3 δ2i

|δm|
2

1
2

√
(1 + |δ2|)2 +

∑m−1
i=3 δ2i cos π

m−1

√
m+1
2

|δm|
2

√
m+1
2

1




≤ 1

2

(
|δ1|+ cos

π

m− 1
+ 1

)

+
1

4


√√√√4δ21 + (1 + |δ2|)2 +

m∑
i=3

δ2i +
√

δ2m +m+ 5


+
1

4


√√√√4 cos2

π

m− 1
+ (1 + |δ2|)2 +

m−1∑
i=3

δ2i +m+ 1

 (by Corollary 2.3).

Now, once again we take the matrix polynomial given in Example 3.4 and compare

the upper bounds of eigenvalues obtained in Theorem 3.24, Theorem 3.25, Theorem

3.26, Theorem 3.27, and Theorem 3.28.

Example 3.6. Let P (z) = Iz3 + A3z
2 + A2z + A1, where

A1 =

6 2 2

2 6 2

2 2 6

 , A2 =

4 0 0

0 4 0

0 0 4

 , A3 =

0 0 0

0 0 0

0 0 0

 .

Then we have the following table.
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Table 3.3: Comparison of several upper bounds

Theorem Upper bound

Theorem 3.24 7.830582164166344

Theorem 3.25 7.999999999999998

Theorem 3.26 7.797276724936021

Theorem 3.27 7.999999999999998

Theorem 3.28 7.634801217463689

If λ is any eigenvalue of P (z), then the bound in Theorem 3.28 give |λ| ≤ 7.634801217463689,

but that in Theorem 3.23 gives better estimates than all estimates mentioned in Table

3.1, Table 3.2, and Table 3.3.

In [16], the bounds in Theorems 3.15–3.28 are compared by the the following matrix

polynomial.

Q(z) = Iz3 +


1
2

1
4

1
4

1
4

1
2

1
4

1
4

1
4

1
2

 z2 +

 1 −1 −1

−1 1 −1

−1 −1 1

 z +

−1 0 0

0 −1 0

0 0 −1

 .

The bound in Theorem 3.22 gives the best estimation for the eigenvalues of Q(z)

comparing to Theorems 3.15–3.28 which is |λ| ≤ 2.707. We note that in our example the

bound in Theorem 3.23 provides the best estimation and in the other example Theorem

3.22 provides the best estimation comparing to Theorems 3.15–3.28. In addition, the

order of theorems according to preference change. Therefore, we conclude that in general

it is not possible to compare the sharpness of these bounds of eigenvalues of matrix

polynomials. But we can only compare them through some special cases by numerical

examples as we did in Example 3.4, Example 3.5, and Example 3.6.

3.4 Cauchy and Pellet theorems for matrix polynomials

In 1829, Cauchy presented a simple but classical result [36, Theorem 27.1], which states

that all zeros of the polynomial

p(z) = am+1z
m + amz

m−1 + · · ·+ a2z + a1

with complex coefficients and am+1 ̸= 0, lie in the disk |z| ≤ c, where c is the unique

positive root of

|am+1|zm − |am|zm−1 − · · · − |a2|z − |a1| = 0.
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In [10, 17, 37], a generalization of Cauchy’s classical result was derived. Before stating

it, we introduce the generalized Rouché theorem for matrices which help to prove the

generalized Cauchy theorem.

Theorem 3.29. [17] (Generalized Rouché Theorem for matrices) Let A,B :

Ω → Mn(C) be analytic matrix-valued functions, where Ω is an open connected subset

of C and assume that A(z) is nonsingular for all z on the simple closed curve Γ ⊆ Ω.

If ∥A(z)−1B(z)∥ < 1 for all z ∈ Γ, then det(A + B) and det(A) have the same number

of zeros inside Γ, counting multiplicities.

Theorem 3.30. [10, 17, 37](Generalized Cauchy Theorem) All eigenvalues of the

matrix polynomial

P (z) = Am+1z
m + Amz

m−1 + · · ·+ A2z + A1,

where Ai ∈ Mn(C), for i = 1, 2, . . . ,m + 1, lie in |z| ≤ R when Am+1 is nonsingular,

and lie in |z| ≥ r when A1 is nonsingular, where R and r are the unique positive roots

of

u(x) = ∥A−1
m+1∥−1xm − ∥Am∥xm−1 − · · · − ∥A2∥x− ∥A1∥ = 0

and

l(x) = ∥Am+1∥xm + ∥Am∥xm−1 + · · ·+ ∥A2∥x− ∥A−1
1 ∥−1 = 0,

respectively.

Proof. At first, we note that the polynomial l(x) has one sign change, then by the

Descartes’ rule of signs, l(x) has unique real positive root, say r. Also, l(0) = −∥A−1
1 ∥−1 <

0 and l(r) = 0, which implies that l(x) < 0 for all 0 ≤ x < r. Since l(x) < 0 for

0 ≤ x < r, we have,

∥Am+1∥xm + ∥Am∥xm−1 + · · ·+ ∥A2∥x < ∥A−1
1 ∥−1,

so that(
∥A−1

1 ∥
) (

∥Am+1∥xm + ∥Am∥xm−1 + · · ·+ ∥A2∥x
)
< 1, for all 0 ≤ x < r.

Thus, for all |z| < r we have

∥(A−1
1 )(Am+1z

m + Amz
m−1 + · · ·+ A2z)∥

≤ ∥(A−1
1 )∥ ∥(Am+1z

m + Amz
m−1 + · · ·+ A2z)∥

≤
(
∥A−1

1 ∥
) (

∥Am+1∥|z|m + ∥Am∥|z|m−1 + · · ·+ ∥A2∥|z|
)
< 1.
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Now, define the simple closed curve Γ as Γ = (r − ϵ)eiθ, where 0 ≤ θ ≤ 2π. Then for all

ϵ > 0 and all z ∈ Γ

∥(A−1
1 )(Am+1z

m + Amz
m−1 + · · ·+ A2z)∥ < 1.

So, by Theorem 3.29, P (z) and A1 have the same number of eigenvalues of moduli less

than r, but since A1 is nonsingular then A1 has no eigenvalues of moduli less than r.

Therefore, all eigenvalues of P (z) lie in |z| ≥ r. The proof of upper bound is similar.

Pellet’s Theorem for scalar polynomial was obtained in ([38], [39, Theorem 28,1])

which says that for the polynomial

p(z) = am+1z
m + amz

m−1 + · · ·+ a2z + a1

with complex coefficients, m ≥ 2, and a1ak+1 ̸= 0 for some k with 1 ≤ k ≤ m− 1. If the

polynomial

|am+1|xm + |am|xm−1 + · · ·+ |ak+2|xk+1 − |ak+1|xk + |ak|xk−1 + · · ·+ |a2|x+ |a1|

have two distinct positive roots t1 and t2 with t1 < t2. Then p has exactly k zeros in the

disk |z| ≤ t1 and no zeros in the annulus t1 < |z| < t2. Note that Cauchy’s result can

be considered as a special limit case of Pellet’s Theorem [17].

Similar to Cauchy’s result, a generalization of Pellet’s Theorem was obtained in [37,

17]. Also generalized Cauchy Theorem can be considered as a limit case of generalized

Pellet’s Theorem for k = 0,m. In the following theorem we give the generalized Pellet

Theorem.

Theorem 3.31. [17](Generalized Pellet Theorem) Let

P (z) = Am+1z
m + Amz

m−1 + · · ·+ A2z + A1

be a regular matrix polynomial with m ≥ 2, Ai ∈ Mn(C), for i = 1, 2, . . . ,m + 1, and

A1 ̸= 0. Let Ak+1 be invertible for some k with 1 ≤ k ≤ m− 1 and let the polynomial

fk(x) = ∥Am+1∥xm + ∥Am∥xm−1 + · · ·+ ∥Ak+2∥xk+1 − ∥A−1
k+1∥

−1xk

+∥Ak∥xk−1 + · · ·+ ∥A2∥x+ ∥A1∥

have two distinct positive roots x1 and x2 with x1 < x2. Then det(P (z)) has exactly kn

zeros in the disk |z| ≤ x1 and no zeros in the annulus x1 < |z| < x2.
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Proof. fk(x) has two sign changes, so by the Descartes’ rule of signs, fk(x) has either

two or no positive roots. Assume that fk(x) has two positive roots x1 and x2 with

x1 < x2. Since fk(0) = ∥A1∥ > 0 and fk(x1) = fk(x2) = 0 we have that fk(x) < 0 for all

x1 < x < x2, which implies that

(
∥A−1

k+1∥x
−k
) m∑

i=0
i ̸=k

∥Ai+1∥xi

 < 1, for all x1 < x < x2.

Now, for all x1 < |z| < x2 we have∥∥∥∥∥∥∥
(
Ak+1z

k
)−1

 m∑
i=0
i ̸=k

Ai+1z
i


∥∥∥∥∥∥∥ ≤

(
∥A−1

k+1∥ |z|−k
) m∑

i=0
i ̸=k

∥Ai+1∥ |z|i


< 1.

Define the simple closed curves Γ1 = (x1 + ϵ)eiθ and Γ2 = (x2 − ϵ)eiθ, where 0 ≤ θ ≤ 2π.

Then for all ϵ > 0 and all z ∈ Γ1 and all z ∈ Γ2 we have∥∥∥∥∥∥∥
(
Ak+1z

k
)−1

 m∑
i=0
i ̸=k

Ai+1z
i


∥∥∥∥∥∥∥ < 1.

It clear that the zero is eigenvalue of Ak+1z
k with multiplicity kn, then by Theorem 3.29

P (z) has kn eigenvalues lie in |z| ≤ x1. Also by Theorem 3.29 P (z) has kn eigenvalues

lie in |z| < x2. Therefore, P (z) has exactly kn eigenvalues in the disk |z| ≤ x1 and no

eigenvalues in the annulus x1 < |z| < x2.
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Chapter 4

Location of the eigenvalues of

special matrix polynomials

In this chapter, we will deal with matrix polynomials with certain conditions in its

coefficients. We present the definitions of doubly stochastic matrices and Schur stable

matrices. In addition, we study the upper and lower bounds for the matrix polynomials

with unitary, doubly stochastic, and Schur stable coefficients.

In [8] it was shown that the eigenvalues of matrix polynomials with unitary coefficients

lie inside the annulus 1
2
< |λ| < 2, and in [18, 29] the same result was displayed for matrix

polynomials with doubly stochastic coefficients. Also in [18] some results for the matrix

polynomials with Schur stable coefficients were proved.

Now, consider the family of all matrix polynomials with unitary coefficients

U =


m∑
i=0

Ai+1z
i : Ai are n× n unitary matrices, n,m ∈ N

 ,

and let

σU = {λ : λ ∈ σ(P ) where P ∈ U} and |σU | = {|λ| : λ ∈ σU}.

Based on Rouché Theorem, Generalized Cauchy Theorem and Intermediate Value

Theorem upper and lower bounds on |σU | are provide in the coming theorem.
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Theorem 4.1. [8, Theorem 3.2] Let P (z) ∈ U . Then for any λ ∈ C, such that λ is an

eigenvalue of P (z), it follows that

1

2
< |λ| < 2.

Proof. We want to show that 2 is an upper bound for |σU |. Its is known that for any

unitary matrix U , ∥U∥ = 1. Since unitary matrices are nonsingular, by this fact and

application of the Generalized Cauchy Theorem on P (z) we get that for any eigenvalue

of P (z), |λ| ≤ R, where R is the unique positive root of the function u : R → R defined

by

u(x) = xm − xm−1 − · · · − 1.

Since 2m > 2m−1 + · · · + 20, it follows that u(2) > 0, also we have u(1) < 0. Then

by the Intermediate Value Theorem u(x) has a root in the interval (1, 2), but u(x) has

unique positive root R. Therefore, R ∈ (1, 2). This implies that the modulus of any

eigenvalue of P (z) is bounded above by 2.

We now show that 1
2
is a lower bound for |σU |. Similarly, by Generalized Cauchy

Theorem, the modulus of any eigenvalue of P (z) is bounded below by r, where r is the

unique positive root of the function l : R → R defined by

l(x) = xm + · · ·+ x− 1.

Now,

1 =
∞∑
i=1

(
1

2

)i

>
m∑
i=1

(
1

2

)i

.

Therefor, l(1
2
) < 0 and l(1) > 0. Then by intermediate value theorem r ∈ (1

2
, 1). This

implies that |λ| > 1
2
, where λ is any eigenvalue of P (z).

Note that, Theorem 4.1 provides upper and lower bounds on the set |σU |. But we

cannot be sure that these bounds are the optimal. In fact, in the next theorem it is

shown that they are the least upper bound and greatest lower bound of the set |σU |.

Theorem 4.2. [8, Theorem 3.3] sup |σU | = 2 and inf |σU | =
1

2
.
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Proof. By Theorem 4.1, 1
2
is a lower bound for |σU |. We want to show that there is

no number in the interval (1
2
, 2) can be a lower bound to the set |σU |. Let r ∈ (1

2
, 1).

Then
∑∞

i=1 r
i > 1, which implies that there exist t ∈ N such that

∑t
i=1 r

i > 1. Consider

P (z) ∈ U defined as

P (z) = ztI + zt−1I + · · ·+ zI − I.

Therefore detP (z) = (zt + · · · + z − 1)n. Then by Descartes’ rule of signs P (z) has a

real positive eigenvalue and its the root of the polynomial

l(x) = xt + · · ·+ x− 1.

Now, l(r) > 0 and l(1
2
) < 0. So, by intermediate value theorem there exist λ ∈ (1

2
, r)

such that l(λ) = 0. Therefore, we find a positive eigenvalue of P (z) less than r. Thus,

r is not a lower bound of |σU |.

Again, by Theorem 4.1, 2 is a upper bound for |σU |. We now show that there is no

number in the interval (1
2
, 2) can be an upper bound to the set |σU |. Let R ∈ (1, 2).

Now, define the matrix polynomial P (z) ∈ U as

P (z) = zmI − (zm−1I + · · ·+ zI + I).

Therefore, detP (z) = (zm−(zm−1+ · · ·+z+1))n. So, P (z) has a real positive eigenvalue

which is the root of the polynomial

u(x) = xm − (xm−1 + · · ·+ 1).

Assume that R is an upper bound for |σU |, then Rm ≥ Rm−1 + · · · + 1. Otherwise, if

Rm < Rm−1+ · · ·+1, then u(R) = Rm− (Rm−1+ · · ·+1) < 0 and also we have u(2) > 0.

Once again, by Intermediate Value Theorem there exist λ ∈ (R, 2) such that u(λ) = 0,

which is contradicts our assumption that R is an upper bound for |σU |.
Thus,

Rm ≥ Rm−1 + · · ·+ 1 =
1−Rm

1−R
,

since (1−R) < 0, then (1−R) ≤ 1−Rm

Rm
, so we have

(2−R) ≤ 1

Rm
. (4.1)

The inequality (4.1) must be true for all m ∈ N, as m → ∞, we have (2−R) ≤ 0, which

implies that R ≥ 2. This is a contradiction. Therefor, R is not an upper bound for |σU |.
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Example 4.1. Consider the matrix polynomial

P (z) =

[
−1 0

0 −1

]
z2 +

[
−1 0

0 1

]
z +

[
1 0

0 1

]
,

then

σ(P ) =

{
−1

2
±

√
5

2
,
1

2
±

√
5

2

}
.

We note that the coefficients of P (z) are unitary, so the modulus of eigenvalues of P (z)

lie in
1

2
< |λ| < 2.

In the following, we present the definition of doubly stochastic matrix.

Definition 4.1. [18] A square matrix of nonnegative real numbers is called doubly

stochastic matrix if each row and column sums are 1.

Now, consider the setD =
{∑m

i=0 Ai+1z
i : Ai are n×n doubly stochastic matrices and

Am+1, A1 are n× n permutation matrices n,m ∈ N
}
, and let

σD = {λ : λ ∈ σ(P ) where P ∈ D} and |σD| = {|λ| : λ ∈ σD}.

If B is doubly stochastic matrix, then ∥B∥ = 1 [1]. The question is whether the

eigenvalues of matrix polynomial with doubly stochastic coefficients lie in the region
1
2
< |λ| < 2. The answer to this question is yes, they lie in the same region as in the

unitary case. And the result summarized in the subsequent two theorems, also, the proof

of the this two theorems is the same as in the unitary case.

Theorem 4.3. ([29], [18, Theorem 2.1]) Let P (z) ∈ D. Then for any λ ∈ C, such that

λ is an eigenvalue of P (z), it follows that

1

2
< |λ| < 2.

Theorem 4.4. ([29], [18, Theorem 2.2]) sup |σD| = 2 and inf |σD| =
1

2
.
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Remark 4.1. If Am+1 or A1 or both are doubly stochastic matrices, but not a permutation

matrix, then the eigenvalues may not necessarily lie in the region
1

2
< |λ| < 2 as

illustrated in the next example.

Example 4.2. Consider the matrix polynomial

P (z) =

[
1 0

0 1

]
z2 +

[
1 0

0 1

]
z +

[
1
7

6
7

6
7

1
7

]
,

then

σ(P ) =

{
−1

2
± 3

√
21

14
,
1

2
± i

√
3

2

}
.

The eigenvalue
−1

2
+

3
√
21

14
= 0.48198 is less than

1

2
.

Now, we address the matrix polynomials with Schur stable coefficients. Schur stable

matrices are defined in the ensuing definition.

Definition 4.2. [18] A square matrix A is said to be Schur stable if all its eigenvalues

are located in the open unit disk. That is, the eigenvalues of A has modulus less than 1.

More generally, for some r > 0. Let

Mr =
{
A : A is a square matrix with |λ| < r, ∀λ ∈ σ(A)

}
.

Now, consider the family of all monic matrix polynomials with commuting matrix

coefficients whose eigenvalues are of modulus less than r

Sr =

Izm +
m−1∑
i=0

Ai+1z
i : Ai ∈ Mr are n× n commuting matrices, n,m ∈ N

 ,

and let

σSr = {λ : λ ∈ σ(P ) where P ∈ Sr} and |σSr | = {|λ| : λ ∈ σSr}.

The coming two lemmas will be used to prove the first theorem for matrix polynomials

with Schur stable coefficients.
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Lemma 4.1. (e.g., [1, Theorem 2.3.3]) Let F ⊆ Mn(C) be a nonempty commuting

family. Then there is a unitary U ∈ Mn(C) such that U∗AU is upper triangular for

every A ∈ F .

Lemma 4.2. [30] Let p(z) = am+1z
m+ · · ·+ a2z+ a1 be a complex polynomial of degree

m. If λ ∈ C is a root of p(z), then

|λ| ≤ 1 + max

{
|a1|

|am+1|
,

|a2|
|am+1|

, . . . ,
|am|
|am+1|

}
.

Theorem 4.5. [18, Theorem 2.6] Let P (z) = Izm + Amz
m−1 + · · ·+ A2z + A1 ∈ Sr. If

λ ∈ C is an eigenvalue of P (z), then |λ| < r + 1.

Proof. For i = 1, 2, . . . ,m, the coefficients Ai’s are commute with each other, therefore by

Lemma 4.1 there exists a unitary matrix U such that U∗AiU = Ti, where Ti ∈ Mn(C) are
upper triangular matrices, for all i = 1, 2, . . . ,m. Let t

(i)
11 , t

(i)
22 , . . . , t

(i)
nn are the eigenvalues

of Ai. Since Ai ∈ Mr and similar to Ti, then for k = 1, 2, . . . , n and i = 1, 2, . . . ,m we

have
∣∣∣t(i)kk

∣∣∣ < r. Also, we write Ti as

Ti =


t
(i)
11 t

(i)
12 · · · t

(i)
1n

0 t
(i)
22 · · · t

(i)
2n

...
. . .

...

0 0 · · · t
(i)
nn

 .

Now, define Q(z) as

Q(z) = U∗P (z)U

= Izm + Tmz
m−1 + · · ·+ T2z + T1.

We note that all coefficients of Q(z) are upper triangular matrices. Hence,

det(P (z)) = det(Q(z))

=
n∏

k=1

(zm + t
(m)
kk zm−1 + · · ·+ t

(2)
kk z + t

(1)
kk ).

Therefore, the eigenvalues of P (z) are the zeros of the polynomials

zm + t
(m)
kk zm−1 + · · ·+ t

(2)
kk z + t

(1)
kk ,
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for k = 1, 2, . . . , n. Thus, by using Lemma 4.2 we get that for any λ ∈ σ(P )

|λ| ≤ 1 + max
{
|t(m)
kk |, . . . , |t(2)kk |, |t

(1)
kk |
}

< r + 1.

The next example is taken from [31]. This is one of the examples that appears in

applications.

Example 4.3. [18, 31] Let Q(z) = Mz2 + Cz +K, where

M = I, C = 10T, K = 5T, T =


3 −1 0

−1
. . .

. . .

. . .
. . . −1

0 −1 3

 .

The quadratic eigenvalue problem Q(z)x = 0 arising from a linearly damped mass-spring

system. It clear that ∥T∥∞ = 5. So ∥C∥∞ = 10∥T∥∞ = 50 and ∥K∥∞ = 25. By the fact

that ρ(A) ≤ ∥A∥∞ for any square matrix A we get that the eigenvalues of M,C and K

have modules less than or equal 50. Therefore, the eigenvalues of M,C, and K lie inside

the disc of radius 50 + ϵ for any ϵ > 0. This mean Q(z) ∈ S50+ϵ. Thus by Theorem 4.5

|λ| < 50 + ϵ+ 1, for any λ ∈ σ(Q). Since ϵ > 0 arbitrary, then |λ| ≤ 51.

Since the eigenvalues of Schur stable matrices has modulus less than 1, then following

corollary follows directly from Theorem 4.5.

Corollary 4.1. [18, Corollary 2.7] Let P (z) = Izm +Amz
m−1 + · · ·+A2z +A1, where

Ai’s are commuting Schur stable matrices. If λ ∈ C is an eigenvalue of P (z), then

|λ| < 2.

Theorem 4.5 provides bounds for |σSr |. The subsequent theorem confirms that this

bounds are optimal.

Theorem 4.6. [18, Theorem 2.8] sup |σSr | = r + 1 and inf |σSr | = 0.
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Chapter 5

New bounds

In this chapter, we derive new upper bounds for the eigenvalues of monic matrix polynomials

with commuting coefficients by employing several numerical radius inequalities to the

Frobenius companion matrices of these polynomials. Related results can be found in

[15, 45]

Consider the monic matrix polynomial P (z) = Izm + Amz
m−1 + · · · + A2z + A1 of

degree m ≥ 2, with Ai are commuting matrices for i = 1, 2, . . . ,m. As mentioned in

Section 3.3, if λ is an eigenvalue of P (z), then

|λ| ≤ ρ
(
C̃(P )

)
≤ w

(
C̃(P )

)
≤
∥∥∥C̃(P )

∥∥∥ ,
where

C̃(P ) =



ρ(Am) ρ(Am−1) . . . ρ(A2) ρ(A1)

1 0 . . . 0 0

0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0


.

Now, consider the m×m invertible matrix

D =:



1 1 1 · · · 1

0 1 1 · · · 1

0 0 1
. . . 1

...
... 0

. . . 1

0 0 0 · · · 1


,
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so the inverse of D is

D−1 =



1 −1 0 · · · 0

0 1 −1 · · · 0

0 0 1
. . . 0

...
...

...
. . . −1

0 0 0 · · · 1


.

Let V := DC̃(P )D−1, then

V =



ρ(Am) + 1 ρ(Am−1)− ρ(Am) ρ(Am−2)− ρ(Am−1) · · · ρ(A2)− ρ(A3) ρ(A1)− ρ(A2)− 1

1 0 0 · · · 0 −1

0 1 0 · · · 0 −1

0 0 1 · · · 0 −1

0 0 0
. . .

...
...

...
...

...
. . . 0

...

0 0 0 · · · 1 −1


.

The matrices V and C̃(P ) are similar, so they have the same eigenvalues. Therefore,

by using numerical radius inequalities on V we get our new bounds. In the following

theorem, we state our first estimate for the eigenvalues of P (z).

Theorem 5.1. If λ is any eigenvalue of P (z), then

|λ| ≤ 1

2


√√√√m−1∑

i=2

(
ρ(Ai)− ρ(Ai+1)

)2
+
(
ρ(A1)− ρ(A2)− 1

)2
+
1

2

√
m− 2 + cos

π

m+ 1
+ ρ(Am) + 1.

Proof. To prove this theorem we write V as V = M1 +M2 +M3 + L where

M1 =



0 ρ(Am−1)− ρ(Am) · · · ρ(A2)− ρ(A3) ρ(A1)− ρ(A2)− 1

0 0 · · · 0 0

0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0


,
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M2 =



0 0 0 · · · 0 0

0 0 0 · · · 0 −1

0 0 0 · · · 0 −1
...

...
...

. . .
...

...

0 0 0 · · · 0 −1

0 0 0 · · · 0 0


, M3 =



ρ(Am) + 1 0 0 · · · 0 0

0 0 0 · · · 0 0

0 0 0 · · · 0 0

0 0 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 −1


, L =



0 0 0 · · · 0 0

1 0 0 · · · 0 0

0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0


.

Now,

|λ| ≤ w(V )

= w(M1 +M2 +M3 + L)

≤ w(M1) + w(M2) + w(M3) + w(L).

It remains to estimate w(M1), w(M2), w(M3), w(L). Using Theorem 2.17 we have

w(M1) =
1

2


√√√√m−1∑

i=2

(
ρ(Ai)− ρ(Ai+1)

)2
+
(
ρ(A1)− ρ(A2)− 1

)2 .

For w(M2) we have

w(M2) = w

[0 u

0 0

] (where u = [0 − 1 − 1 · · · − 1]T ),

≤ w

[0 ∥u∥
0 0

] (by Theorem 2.9 (1)),

= w

[0 √
m− 2

0 0

]
=

1

2
ρ

[ 0
√
m− 2√

m− 2 0

] (by Theorem 2.8),

=
1

2

(√
m− 2

)
(by Remark 2.1).

Now, since M3 is normal, we conclude that

w(M3) = ρ(M3) = max{ρ(Am) + 1, 1}.
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Also, since ρ(Am) ≥ 0, then w(M3) = ρ(Am) + 1. Finally, by Theorem 2.15 we have

w(L) = cos π
m+1

.

Thus,

|λ| ≤ 1

2


√√√√m−1∑

i=2

(
ρ(Ai)− ρ(Ai+1)

)2
+
(
ρ(A1)− ρ(A2)− 1

)2
+
1

2

√
m− 2 + cos

π

m+ 1
+ ρ(Am) + 1.

Theorem 5.2. If λ is any eigenvalue of P (z), then

|λ| ≤ 1

4

(
ρ(Am) + 1 +

√(
ρ(Am) + 1

)2
+
(
|ρ(Am−1)− ρ(Am)|+ 1

)2)

+
1

4

cos
π

m− 2
+ 1 +

√(
cos

π

m− 2
− 1

)2

+ (1 +
√
m− 3)2


+
1

2

(
1

4

(
ρ(Am) + 1 +

√(
ρ(Am) + 1

)2
+
(
|ρ(Am−1)− ρ(Am)|+ 1

)2)2

+
1

2

(
a+ b2 + 1

)
+
√

(a+ b2 − 1)2 + 4b2

)1

2

+
1

2

√√√√√1

4

cos
π

m− 2
+ 1 +

√(
cos

π

m− 2
− 1

)2

+ (1 +
√
m− 3)2

2

+ 1,

where a :=
∑m−2

i=2

(
ρ(Ai)− ρ(Ai+1)

)2
and b := ρ(A1)− ρ(A2)− 1.

Proof. Consider the partition of V as follows:

V =

[
K11 K12

K21 K22

]
,

where

K11 =

[
ρ(Am) + 1 ρ(Am−1)− ρ(Am)

1 0

]
,

K12 =

[
ρ(Am−2)− ρ(Am−1) · · · ρ(A2)− ρ(A3) ρ(A1)− ρ(A2)− 1

0 · · · 0 −1

]
,
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K21 =


0 1

0 0
...

...

0 0

 , K22 =



0 0 0 · · · 0 −1

1 0 0 · · · 0 −1

0 1 0 · · · 0 −1

0 0 1 −1
...

...
...

. . .
. . .

...

0 0 0 · · · 1 −1


.

By applying Corollary 2.3 we get

w(V ) ≤ 1

2

(
w(K11) +

√
w2(K11) + ∥K12∥2

)
+
1

2

(
w(K22) +

√
w2(K22) + ∥K21∥2

)
. (5.1)

To complete the proof, we need to estimate w(K11), w(K22), ∥K12∥, ∥K21∥.
Now,

w(K11) ≤ w

[ρ(Am) + 1 |ρ(Am−1)− ρ(Am)|
1 0

] (by Theorem 2.9 (1)),

=
1

2
ρ

[ 2ρ(Am) + 2 |ρ(Am−1)− ρ(Am)|+ 1

|ρ(Am−1)− ρ(Am)|+ 1 0

]
=

1

2

(
ρ(Am) + 1 +

√(
ρ(Am) + 1

)2
+
(
|ρ(Am−1)− ρ(Am)|+ 1

)2)
. (5.2)

Now, we want to estimate ∥K12∥.

K12K
∗
12 =

[∑m−2
i=2

(
ρ(Ai)− ρ(Ai+1)

)2
+
(
ρ(A1)− ρ(A2)− 1

)2
ρ(A2)− ρ(A1) + 1

ρ(A2)− ρ(A1) + 1 1

]
,

so,

∥K12∥ =
√
ρ(K12K∗

12)

=

√
1

2

(
(a+ b2 + 1) +

√
(a+ b2 − 1)2 + 4b2

)
(by Remark 2.1), (5.3)

where a =
∑m−2

i=2

(
ρ(Ai)− ρ(Ai+1)

)2
and b = ρ(A1)− ρ(A2)− 1.

70



Now, for w(K22), Let u =


−1

−1
...

−1

 and v =
[
0 0 · · · 1

]
.

Thus,

w(K22) = w

[Lm−3 u

v −1

]
≤ w

[w(Lm−3) ∥u∥
∥v∥ 1

] (Corollary 2.1),

=
1

2

(
w(Lm−3) + 1 +

√
(w(Lm−3)− 1)2 + (∥u∥+ ∥v∥)2

)
=

1

2

cos
π

m− 2
+ 1 +

√(
cos

π

m− 2
− 1

)2

+ (1 +
√
m− 3)2

 . (5.4)

Note that from Theorem 2.15, w(Lm−3) = cos
π

m− 2
.

Finaly,

∥K21∥ = 1. (5.5)

Hencs, by substitute (5.2), (5.3), (5.4), and (5.5) in (5.1) we have

|λ| ≤ 1

4

(
ρ(Am) + 1 +

√(
ρ(Am) + 1

)2
+
(
|ρ(Am−1)− ρ(Am)|+ 1

)2)

+
1

4

cos
π

m− 2
+ 1 +

√(
cos

π

m− 2
− 1

)2

+ (1 +
√
m− 3)2


+
1

2

(
1

4

(
ρ(Am) + 1 +

√(
ρ(Am) + 1

)2
+
(
|ρ(Am−1)− ρ(Am)|+ 1

)2)2

+
1

2

(
a+ b2 + 1

)
+
√

(a+ b2 − 1)2 + 4b2

)1

2

+
1

2

√√√√√1

4

cos
π

m− 2
+ 1 +

√(
cos

π

m− 2
− 1

)2

+ (1 +
√
m− 3)2

2

+ 1,

where a =
∑m−2

i=2

(
ρ(Ai)− ρ(Ai+1)

)2
and b = ρ(A1)− ρ(A2)− 1.
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In the next Theorem, we use the same partition of V which is used in Theorem 5.2.

But we use Corollary 2.1 instead of Corollary 2.3.

Theorem 5.3. If λ is any eigenvalue of P (z), then

|λ| ≤ 1

2

(
α + β +

√
(α− β)2 + (γ + 1)2

)
,

where

α =
1

2

(
ρ(Am) + 1 +

√(
ρ(Am) + 1

)2
+
(
|ρ(Am−1)− ρ(Am)|+ 1

)2)
,

β =
1

2

cos
π

m− 2
+ 1 +

√(
cos

π

m− 2
− 1

)2

+ (1 +
√
m− 3)2

 ,

γ =

√
1

2

(
(a+ b2 + 1) +

√
(a+ b2 − 1)2 + 4b2

)
,

and a =
∑m−2

i=2

(
ρ(Ai)− ρ(Ai+1)

)2
, b = ρ(A1)− ρ(A2)− 1.

Proof. Consider the partition V =

[
K11 K12

K21 K22

]
, where K11, K12, K21, K22 are defined

in Theorem 5.2. Then application of Corollary 2.1 to gives

w(V ) ≤ w

[w(K11) ∥K12∥
∥K21∥ w(K22)

]
=

1

2

(
w(K11) + w(K22) +

√
(w(K11)− w(K22))2 + (∥K12∥+ ∥K21∥)2

)
,

where w(K11), w(K22), ∥K12∥, ∥K21∥ estimates are computed in Theorem 5.2.

By take α = w(K11), β = w(K22), and γ = ∥K12∥ we get the result.

In the coming theorem, we use the same method in proof of Theorem 3.24 to provide

new bounds for eigenvalues of P (z).

Theorem 5.4. If λ is any eigenvalue of P (z), then

|λ| ≤ 1 +
1

2
(1 +

√
m− 1)

+
1

2

ρ(Am) + 1 +

√√√√m−1∑
i=2

(
ρ(Ai)− ρ(Ai+1)

)2
+
(
ρ(Am) + 1

)2
+
(
ρ(A1)− ρ(A2)− 2

)2 .
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Proof. At first, we write V as V = C1 + C2 + U , where

C1 =



ρ(Am) + 1 ρ(Am−1)− ρ(Am) · · · ρ(A2)− ρ(A3) ρ(A1)− ρ(A2)− 2

0 0 · · · 0 0

0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0


,

C2 =



0 0 0 · · · 0 0

0 0 0 · · · 0 −1

0 0 0 · · · 0 −1

0 0 0 · · · 0 −1
...

...
...

. . .
...

...

0 0 0 · · · 0 −1


, and U =



0 0 0 · · · 0 1

1 0 0 · · · 0 0

0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0


.

Then

|λ| ≤ w(V )

= w(C1 + U + C2)

≤ w(C1) + w(U) + w(C2).

Since U is unitary, then w(U) = 1. To estimate w(C1) we use Theorem 2.17 and we

get

W (C1) ≤
1

2

ρ(Am) + 1 +

√√√√m−1∑
i=2

(
ρ(Ai)− ρ(Ai+1)

)2
+
(
ρ(Am) + 1

)2
+
(
ρ(A1)− ρ(A2)− 2

)2 .

Now, we want to estimate w(C2),

w(C2) = w

[0 u

0 −1

] (where u = [0 − 1 − 1 · · · − 1]T ),

≤ w

[0 ∥u∥
0 1

] (by Theorem 2.9 (1)),

= w

[0 √
m− 2

0 1

]
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=
1

2
ρ

[ 0
√
m− 2√

m− 2 2

] (by Theorem 2.8),

=
1

2

(
1 +

√
m− 1

)
(by Remark 2.1).

Thus,

|λ| ≤ 1 +
1

2
(1 +

√
m− 1)

+
1

2

ρ(Am) + 1 +

√√√√m−1∑
i=2

(
ρ(Ai)− ρ(Ai+1)

)2
+
(
ρ(Am) + 1

)2
+
(
ρ(A1)− ρ(A2)− 2

)2 .

By using the same steps in the proof of Theorem 3.28, we establish other new bound

the eigenvalues of P (z) as it is documented the following theorem.

Theorem 5.5. If λ is any eigenvalue of P (z), then

|λ| ≤ 1

2

(
ρ(Am) + 1 + cos

π

m− 1
+ 1

)

+
1

4


√√√√4(ρ(Am) + 1)2 + (1 + |ρ(Am−1)− ρ(Am)|)2 +

m−2∑
i=2

(ρ(Ai)− ρ(Ai+1))2 + α2


+

1

4

(√
α2 +m+ 5

)
+

1

4


√√√√4 cos2

π

m− 1
+ (1 + |ρ(Am−1)− ρ(Am)|)2 +

m−2∑
i=2

(ρ(Ai)− ρ(Ai+1))2 +m+ 1

 ,

where α = ρ(A1)− ρ(A2)− 1.

Here, we take the same matrix polynomial that mentioned in Example 3.6 to apply

our new bounds for the eigenvalues of matrix polynomials to it and compare them with

some other result.

Example 5.1. Consider the monic matrix polynomial P (z) = Iz3 + A3z
2 + A2z + A1,

where
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A1 =

6 2 2

2 6 2

2 2 6

 , A2 =

4 0 0

0 4 0

0 0 4

 , A3 =

0 0 0

0 0 0

0 0 0

 .

Then we have the following table.

Table 5.1: Comparison of several upper bounds

Theorem 5.1 5.408668899902970

Theorem 5.2 5.804441399866167

Theorem 5.3 5.282546547149893

Theorem 5.4 5.579388104455560

Theorem 5.5 5.619549170505516

Through this example we not that Theorem 5.3 gives better upper bound for the

eigenvalues of this matrix polynomial than other our results. But it did not give a

better estimation for the eigenvalues than Theorem 3.23.

Now, we compare our new results with some of results mentioned previously by

taking other numerical example of matrix polynomial of degree 3.

Example 5.2. Consider the monic matrix polynomial P (z) = Iz3 + A3z
2 + A2z + A1,

where

A1 =

5
1
2

1
2

1
2

5 1
2

1
2

1
2

5

 , A2 =

3 1 1

1 3 1

1 1 3

 , A3 =


1
2

1 1

1 1
2

1

1 1 1
2

 .

Then the Table 5.2 provides upper bounds for eigenvalues of P (z).

We note from Table 5.2 that our third bound (Theorem 5.3) gives better estimation

for the eigenvalues of this matrix polynomial than other bounds and we have that for

any λ ∈ σ(P )

|λ| ≤ 4.518915173875558.
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Table 5.2: Comparison of several upper bounds

Theorem Upper bound

Theorem 3.8 6.057411647900729

Theorem 3.9 5.999999999999999

Theorem 3.10 7.545084971874736

Theorem 3.11 6.109531234081206

Theorem 3.15 6.336020108197149

Theorem 3.16 6.796728149279611

Theorem 3.17 8.719522630495298

Theorem 3.18 6.573907535246749

Theorem 3.19 6.578815026312832

Theorem 3.20 6.403943276465976

Theorem 3.21 7.523388082826173

Theorem 3.22 6.403943276465976

Theorem 3.23 4.871861997787114

Theorem 3.24 9.599771908979756

Theorem 3.25 11.249999999999996

Theorem 3.26 9.764903887933098

Theorem 3.27 11.249999999999996

Theorem 3.28 9.986423007418404

Theorem 5.1 5.957106781186547

Theorem 5.2 5.592257748812904

Theorem 5.3 4.518915173875558

Theorem 5.4 6.165046997768509

Theorem 5.5 5.921448480036181
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Conclusion

The primary goal of this thesis is to explore and derive bounds for the eigenvalues of

matrix polynomials. We started with reviewing fundamental concepts in matrix theory,

including matrix norms, numerical radius, and spectral radius. These concepts provided

the basic tool for establishing bounds of eigenvalues of matrix polynomials. Many

known bounds for the eigenvalues were discussed in this thesis as well. Through the

fact that similar matrices have the same spectral radius and using detailed analysis of

Frobenius companion matrices we established our new bounds for the eigenvalues of

matrix polynomials, particularly for matrix polynomials with commuting coefficients.

Further related bounds can be obtained if various similarity matrices are used. It is

worth mentioning that our results can be used in many applications in science and

engineering.
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