
 Palestine Polytechnic University

 College of Information Technology

 & Computer Engineering

Software Project

 "قاٌض"

Project Team

Ahmed Abujheisha

Moath Rabai

 Mohammed Hurob

 Project Supervisor
 Dr. Diya AbuZeina

This project has been submitted to the College of Information

Technology and Computer Engineering as a partial fulfillment of the

requirements for the Bachelor's degree in Computer Science.

Hebron, May 2023

I

 هداءإ

 الحمد لله الذي هدانا لهذا وما كنا لنهتدي لولا ان هدانا الله

إلى من لا توفٌهم الكلمات والحروف حقهم فً البر والإحسان، إلى من رضا الله فً رضاهم وما توفٌقنا وسر نجاحنا إلا

تحمل اسماءهم بكل افتخار، نرجو من بهم, إلى من كللهم الله بالهٌبة والوقار، إلى من علمنً العطاء بدون انتظار، إلى من

الله ان ٌمد بأعماركم لتروا ثمارا بعد طول انتظار، وستبقى كلماتكم نجوما نهتدي بها الٌوم وفً الغد والى الابد والدٌنا

 العزٌزٌن

وسر الوجود إلى من رافقونا طوال السنٌن وشاركونا الفرح والألم، إلى معنى الحب و الحنان والتفانً، إلى بسمة الحٌاة

إلى من كان دعائهم سر نجاحنا وحنانهم سر تقدمنا، إلى أمهاتنا, إلى من هم أقرب إلٌنا من روحنا، إلى من شاركونا

حضن الألم وبهم نستمد عزتنا و إصرارنا إخوتنا الأعزاء، إلى من أنسنا فً دراستنا وشاركنا همومنا تذكاراً و تقدٌراً

نا طوال مسٌرتنا الدراسٌة جمٌعا، أهدي ثمرة هذا الجهد المتواضع وفاء، إلى حاملً لواء أصدقاؤنا، إلى من ساندنا وشجع

 النور والسائرٌن فً دربهم بإخلاص كل أساتذتً وجمٌع طالب العلم إلٌهم

II

 شكر وتقدٌر

 صلى الله عليه وسلم : " من لا ٌشكر الناس لا ٌشكر الله"-قال رسول الله

حانه وتعالى على إحسانه وتوفٌقه على ما أسداه علٌنا من نعم لا تعد ولا تحصى ونصلً ونسلم على نبً هذه نحمد الله سب

الأمة الذي جاء رحمة للعالمٌن. وبعد، فإننا نتقدم ببالغ شكرنا وتقدٌرنا للدكتور المشرف ضٌاء ابو زٌنة على ما قدمه من

المحترمٌن الذٌن رافقونا فً رحلة العلم ولم ٌدخروا جهدا، كما نصح وإرشاد لإنجاز المشروع، ونشكر جمٌع الأساتذة

 نشكر جمٌع أصدقائنا وزملائنا الذٌن كانوا لنا خٌر مساعد ومعٌن

وأخٌراً، نسأل الله دوام فضله، ونرجو أن ٌكون من نتاج هذا الجهد المتواضع بعض العلم الذي ٌنتفع به، وأن ٌكون هذا

 كثر إثراء لمزٌد من الأعمالالعمل خطوة متواضعة لطرٌق أ

III

Abstract

Most of our transactions are now made through the Internet and well-known

websites, which has improved our quality of life and saved people time and effort.

The ability to access any desired item online and have it delivered from any location

makes the world feel like a little village. The idea is to post your pre-owned items on

our website so that someone else who needs them can trade them for something of

comparable value rather than discarding them. The project aims to develop an online

platform that facilitates the exchange of used items between users, promoting

sustainable and eco-friendly practices. The system includes a user registration

process and an interface that displays items available for exchange, suitable for a

diverse range of individuals. Users can select items they wish to trade and initiate

the exchange process through the website's interface. The website owner manages

a database containing information about users and the items available for exchange.

Successful implementation of the project can encourage responsible and sustainable

consumption habits, minimizing waste and benefiting both society and the

environment.

.

IV

 الملخص

ن نوعٌة حٌاتنا وٌوفر الوقت والجهد تتم معظم معاملاتنا الآن عبر الإنترنت والمواقع الإلكترونٌة المعروفة، مما ٌحس ِّ

للناس. إمكانٌة الوصول إلى أي عنصر مرغوب فٌه عبر الإنترنت واستلامه من أي مكان ٌجعل العالم ٌبدو وكأنه قرٌة

جات المستعملة على موقعنا الإلكترونً حتى ٌتمكن شخص آخر ٌحتاجها من استبدالها تقتضً الفكرة نشر المنت صغٌرة.

بشًء آخر ٌناسبه بدلاً من التخلص منها. ٌرتكز المشروع على نظام التبادل الإلكترونً. ٌهدف المشروع إلى تطوٌر

 رسات المستدامة والصدٌقة للبٌئة.منصة إلكترونٌة تٌُسر تبادل المنتجات المستعملة بٌن المستخدمٌن، وتشجع على المما

ٌتضمن النظام عملٌة تسجٌل المستخدمٌن وواجهة تعرض المنتجات المتاحة للتبادل، والتً تناسب مجموعة متنوعة من

الأفراد.من خلال واجهة المستخدم التً تعرض المنتجات، ٌستطٌع المستخدمون التفاعل مع بعضهم البعض فً المشروع

على تبادل ما ٌملكونه مقابل ما ٌملكه مستخدم آخر. ٌستطٌع المستخدمون اختٌار المنتجات التً عن طرٌق التفاوض

ٌرغبون فً تبادلها والبدء فً عملٌة التبادل عبر واجهة الموقع الإلكترونً. ٌدٌر صاحب الموقع قاعدة بٌانات تحتوي

ٌحفز النجاح فً تنفٌذ هذا المشروع على تعزٌز ٌمكن أن على معلومات عن المستخدمٌن والمنتجات المتاحة للتبادل.

العادات الاستهلاكٌة المسؤولة والمستدامة، وتقلٌل النفاٌات وتحقٌق فوائد للمجتمع والبٌئة. ٌسعى هذا المشروع إلى تعزٌز

ٌتماشى المشروع ثقافة التبادل والمشاركة بٌن الأفراد، مما ٌعزز التعاون والتكافل وٌدعم المبادئ الأخلاقٌة والاجتماعٌة.

 مع رؤٌة التنمٌة المستدامة وٌساهم فً الحد من الإهدار والتلوث.

V

Table of Contents

Contents

 I ... إهداء

 II .. شكر وتقدٌر

Abstract.. III

 IV ... الملخص

Table of Contents .. V

List of table ... VII

List of figures ... IX

Chapter 1: Introduction .. 1

1.1 Overview ... 1

1.2 Project Idea ... 1

1.3 Motivation and Importance .. 2

1.4 Scope of the Project .. 2

1.5 Goals to be attained by Quaid: .. 2

1.6 Alternatives .. 3

1.7 Timeline/ Project Scheduling ... 4

1.8 Project Description .. 6

1.9 Context Diagram .. 6

1.10 Overview of the Document... 7

Chapter 2: Requirements Specification ... 8

2.1 Introduction .. 8

2.2 Actors of the system .. 8

2.3 System Requirements ... 8

2.4 Use-Case Diagram .. 11

2.5 Description of the system requirements for the project .. 13

2.6 Sequence diagram .. 22

 ... Error! Bookmark not defined.

2.7 Overview of the chapter ... 25

Chapter 3: System Design .. 26

3.1 Introduction .. 26

3.2 Alternative ... 26

3.3 General structure of the System .. 28

3.4 Models ... 29

VI

3.5 Controllers ... 31

3.6 Database Tables ... 34

3.7 Views ... 38

Chapter 4: Implementation ... 42

4.1 Introduction .. 42

4.2 Programming Languages and Technologies .. 42

4.3 Implementation Approach .. 43

4.4 Backend Development ... 47

4.5 Frontend Development .. 49

4.6 Overview of the Chapter .. 51

Chapter 5: Testing and Validation ... 53

5.1 Introduction .. 53

5.2 Testing Methodologies ... 53

5.3 Validation Techniques ... 62

5.4 Overview of the Chapter .. 63

Chapter 6: Future Plans .. 65

6.1 Introduction .. 65

6.2 System Enhancements and Feature Expansion .. 65

6.3 Scalability and Performance Considerations .. 66

6.4 Collaboration and Feedback Channels .. 67

6.5 Overview of the Chapter .. 67

References: ... 69

VII

List of table

Type: Name: Number of page:

Table 1.7.1 Gantt Chart 4

Table 1.7.2 Gantt Chart 5

Table 1.7.3 TABLE KEY 5

Table 2.5.1 Log in 13

Table 2.5.2 Search for products 14

Table 2.5.3 View product 15

Table 2.5.4 Exchange products 16

Table 2.5.5 Delete products 17

Table 2.5.6 Upload product 18

Table 2.5.7 Edit profile 19

Table 2.5.8 Send report 20

Table 2.5.9 Log out 21

Table 3.6.1 Database Table 34

Table 3.6.2 User Table 35

Table 3.6.3 Product Table 35

Table 3.6.4 Category Table 35

Table 3.6.5 Report Table 36

Table 3.6.7 products_image Table 36

Table 3.6.8 Requests_offer Table 36

VIII

Type: Name: Number of page:

Table 3.6.9 user_cart Table 36

Table 3.6.10 request Table 37

Table 3.6.11 requests_communication Table 37

Table 3.6.12 Reports_message Table 37

Table 5.2.1 Test: Add New User And Login 56

Table 5.2.2 Test: Add New Product 57

Table 5.2.3 Test: Get All User Product 58

Table 5.2.4 Test: Create New Request 59

Table 5.2.5 Test: Get All Users 60

Table 5.2.6 Test: Approve Product 61

IX

List of figures
Type: Name: Number of page:

Figure 1.9.1 Context Diagram 6

Figure 2.4.1 Use-Case Diagram 12

Figure 2.6.1 Sequence diagram for deleting an account 23

Figure 2.6.2 Sequence diagram for exchanging a product 24

Figure 3.2.1 Layered Architecture 27

Figure 3.3.1 MVC 28

Figure 3.4.1 Class diagram 30

 Figure 3.5.1 Admin Controller 32

Figure 3.5.2 User Controller 32

Figure 3.5.3 Database mapping 33

Figure 3.7.1 Login 38

Figure 3.7.2 Signup 38

Figure 3.7.3 Upload product 39

Figure 3.7.4 Product Detail 39

Figure 3.7.5 Product list 40

Figure 3.7.6 Home Page 41

Figure 4.4.1 An Overview of the System‘s Directory Hierarchy 49

Figure 4.5.1 Implementing Responsive Design with Media

Queries

50

Figure 4.5.2 API Requests for Data Retrieval from Backend 50

1

Chapter 1: Introduction

1.1 Overview

According to estimates, there are more than 1.7 billion websites. However, the

figure changes daily. The internet is quite large, and 4.5 billion people use it to

engage online. All praise goes to the digital revolution and our quick progress in

moving our operations online. The change did not happen overnight; instead, it

happened gradually.

The advent of visually oriented web browsers in the 1990s marked the

beginning of the World Wide Web era for users. Since then, web technology has

grown exponentially, and the trend toward web development is currently at its height.

Through our endeavor, we hope to assist people in gaining from one another.

After setting up a personal account, a user logs in to the Qaied website to view the

items on the public page and to exchange items with other users.

1.2 Project Idea

Qaied is a website that enables individuals to exchange new or used items

without using money. When two clients agree to exchange their items through our

system, they will exchange their contact information to discuss the details of the item

exchange, including how and where to deliver the items to each other. Qaied does

not provide delivery services, and users are responsible for arranging item delivery

themselves.

2

1.3 Motivation and Importance

 Nowadays, it is common for people to wish to replace electronic items or

devices but need clarification about how to do so, whether to buy a new one or

dispose of the old one. Electronics, for instance, contain chemicals that could leak

harmful substances, making it difficult to dispose of them without harming humans

and the environment. Alternatively, keeping them within the house without utilizing

them takes up space. In light of this, we decided to build Qaied to allow users to

exchange what they do not want for what they do want.

1.4 Scope of the Project

It should be understood that the project is not meant for only certain people in

the community of Palestine; it is a website open to anyone within its borders,

regardless of nationality. Registrants will be able to view the items that are currently

available on the site in order to decide whether to exchange them with the owner of

the item.

1.5 Goals to be attained by Quaid:

 Qaied aims to facilitate the exchange of items over the internet, offering

several advantages for users and the environment. It is accessible to all individuals

residing in Palestine, regardless of their location. By using the Qaied system, users

can exchange any items they own with others, thereby reducing waste, promoting

resource efficiency, and contributing to a cleaner environment.

 What we expect to be achieved by Quaid:

1. Provide an easy and convenient way for users to obtain secondhand items

without the need to purchase new ones, thereby saving money and reducing

the consumption of new resources.

2. Encourage sustainable practices by promoting the exchange and reuse of

items, which can lead to a significant reduction in waste and environmental

dumping.

3. Assist low-income households in obtaining items they need without having to

pay money, which can help to reduce financial burdens.

3

1.6 Alternatives

 We decided on a website for several reasons:

1 - Accessibility: A website can be accessed from any device with an

internet connection, making it easy for users to access our platform

from anywhere at any time.

2 - Ease of use: Websites are user-friendly and easy to navigate, which

is essential for our target audience.

3 - Cost-effectiveness: The cost of developing a website is lower than

other options such as developing a mobile application.

4 - Simplicity of updating and modifying: Websites are easier to update

and modify than mobile applications. This is important since we plan to

make continuous improvements and updates to the platform based on

user feedback and changing needs.

Furthermore, a website offers several advantages over a mobile

application:

● The web application is less complicated than a mobile application,

making it easier for users to understand and use.

● Updating and modifying a web application is more straightforward than

a mobile application, which requires users to download updates.

● Websites can be accessed on any device with an internet connection,

while mobile applications require users to download and install the

application.

4

1.7 Timeline/ Project Scheduling

We shall adhere to the software development life cycle to accomplish the

goals. Furthermore, these are the duties that we must complete, as stated in table

1.1. Table 1.2 also includes the number of weeks needed to complete each

assignment.

Gantt Chart

Task number Task name The time required in weeks

1 System definition and

planning

5

2 Determine the Project

requirements

4

3 Description of the project

Requirements

4

4 System design 5

5 System development and

programming

7

6 Integration and system

testing

3

7 Documenting the website Along the working period

Table 1.7.1 Gantt Chart

5

Gantt Chart

 FIRST SEMESTER SECOND SEMESTER

WEEKS 2-6 7-10 11-14 2-6 7-13 13-15

System definition
and planning

Determine the
Project

Requirements

Description of
the project

Requirements

System design

System
development

and programing

Integration and
system testing

System
documentation

Table 1.7.2 Gantt Chart

TABLE KEY

Estimate time to finish the task

Real time to finish the task

Holiday between semesters

Table 1.7.3

6

1.8 Project Description

Our concept is to develop Qaied, a website that facilitates the exchange of

machinery, electronics, and other items among users. Users can create an account

to browse items available on the website. The website will be built using front-end

software technologies like React JS and back-end software technologies like Node

JS.

1.9 Context Diagram

 A context diagram, also known as a Level O Data Flow Diagram, is a high-

level view of a Data Flow Diagram. It illustrates the flow of information between the

system and external entities. Business analysts commonly use this tool to gain an

understanding of the system's scope and constraints required for a project. The

context diagram only provides a high-level overview of the system, and the

underlying structure's intricate details are hidden.

Figure 1.9.1 Context Diagram

7

1.10 Overview of the Document

 Chapter 1 provides an overview of the project, including the idea, motivation,

scope, goals, and alternatives. The chapter starts by discussing the large scale of

the internet and the evolution of web technology. It then introduces the idea of

Qaied, a website that enables individuals to exchange items without using money.

The chapter explains the motivation behind the project, which is to promote

sustainable consumption and reduce waste. It also discusses the scope of the

project and its goals, such as assisting low-income households. The chapter then

presents the decision to use a website instead of a mobile application and provides a

timeline for the project's completion. Finally, the chapter concludes with a discussion

of the project's context diagram and its usefulness for understanding the system's

information flow.

8

Chapter 2: Requirements Specification

2.1 Introduction

This chapter focuses on the requirements specification for Qaied. It begins

with an overview of the current system in which Qaied will operate, including its

benefits and drawbacks. The chapter then outlines the project's goals, which have

been established in the previous chapter.

The requirements analysis and description of Qaied will include the use model

and context model of the system, as well as a detailed analysis of its requirements.

This analysis will provide a brief overview of the requirements necessary for the

successful implementation of the project.

2.2 Actors of the system

1. Admin: An administrator who manages the Qaied system.

2. User: A registered user of the Qaied system who can exchange products

with other users.

2.3 System Requirements

One of the most crucial steps in the process of building a project is gathering

and assessing the requirements for it.

The work to be done by the system's representatives will be broken down into

manageable tasks in an integrated manner that satisfies its primary functions.

The system requirements are split into two categories:

1. Functional requirements

2. Nonfunctional requirements

Functional requirements for the project:

They are specifications that specify the features of each system function.

9

Functional requirements:

1. Functional requirements for the system Admin

 1. A registered admin can log in to Qaied and gain admin privileges.

 2. An admin can change their password.

 3. An admin can announce important news and updates to all users.

 4. An admin can delete users' accounts.

 5. An admin can log out of Qaied.

 6. An admin can view data related to the products being exchanged.

 7. An admin can approve products to be listed for exchange.

 8. An admin can delete listed products.

 9. An admin can receive messages and reports from users.

2. Functional requirements for the system User

 1.A registered user can log in to Qaied..

 2.A user can change their password.

 3.A user can report inappropriate content or behavior from other users

or products.

 4.A user can delete their own account.

 5.A user can log out of Qaied.

 6.A user can request to exchange their own product with another

 user's product.

 7.A user can upload a product to be exchanged with another user's

product.

 8.A user can delete their own listed products.

 9.A user can receive notifications about their exchanges.

 10.A user can search for products to exchange with.

10

Non-Functional requirements for the project:

These requirements specify the characteristics of the system that are not

directly related to its functions but are necessary for the system's overall

effectiveness.

Non-Functional Requirements include:

1. User-friendliness: The system should have a user-friendly interface that is

easy to navigate, with clear instructions and error messages to minimize

mistakes and confusion.

2. Reliability: The system should be highly reliable, with minimal downtime or

technical issues that could negatively impact users.

3. Scalability: The system should be designed to handle a large number of users

and data, and should be easily scalable to accommodate future growth.

4. Security: The system should have robust security measures in place to

protect user data and prevent unauthorized access or data breaches.

Domain requirements for the project:

1. The system should be designed to be simple and user-friendly, with an

intuitive interface that allows users to easily navigate and utilize its features.

2. The system should be accessible at all times, with high availability and

minimal downtime to ensure that users can access it whenever they need to.

3. The system should be designed to be easily updatable and adaptable to

evolving needs, with a modular architecture that allows for seamless updates

and upgrades as necessary.

4. The system should be designed with the understanding that its users may

have varying levels of computer literacy, and should be simple enough to be

used by anyone with the bare minimum of computer-related knowledge.

5. The system should be designed to serve all users in Palestine

11

2.4 Use-Case Diagram

 The use-case diagram provides a high-level view of the system's functionality

from the perspective of its users, focusing on what the system should do rather than

how it should do it. The use-case diagram will include actors and use cases and will

be designed to be simple and easy to understand.

Actors:

● Admin: Has access to all system functionalities and can perform

administrative tasks.

● User: Can access the system to exchange products with other users.

1. Login: Both Admin and User can log in to the system.

2. Change password: Both Admin and User can change their passwords.

3. Announce: Admin can post announcements for users.

4. Delete account: Both Admin and User can delete their accounts.

5. Logout: Both Admin and User can log out of the system.

6. View exchanged data: Admin can view data of all exchanges that have taken

place.

7. Approve products: Admin can approve products uploaded by users to be

listed.

8. Delete products: Admin and User can delete their own products.

9. Receive messages/reports: Admin can receive reports, and User can receive

notifications.

10. Report user/product: User can report other users or products.

11. Request exchange: User can request to exchange products with another user.

12. Upload product: User can upload a product to be exchanged with another

product owned by another user.

13. Delete own product: User can delete their own product.

14. Search for products: User can search for products in the system.

12

 Figure 2.4.1 Use-Case Diagram

13

2.5 Description of the system requirements for the project

Use Case

Log in

Primary Actor

Admin, User

Goal In Context

To authenticate the user or administrator and grant access to the

system

Precondition

The user or administrator has a registered account in the system

Trigger

The user or administrator navigates to the login page and enters their

credentials

Scenario

1. The user or administrator navigates to the login page of the

system

2. The user or administrator enters their credentials (username

and password) into the login form

3. The system verifies the user's or administrator's credentials by

checking them against the database

4. The system grants access to the user or administrator if the

credentials are correct

Exceptions

1. If the user or administrator enters an invalid username or

password, the system denies access and displays an error

message.

2. If the user or administrator's account is inactive or blocked, the

system denies access and displays an error message.

Table 2.5.1 Log in

14

Use Case

Search for products

Primary Actor

Admin, User

Goal In Context

To search for products in the system and find relevant products that

match the user's needs.

Precondition

The user is logged into the system and has access to the search

feature.

Trigger

The user initiates a search by entering search criteria into the

search form.

Scenario

1. The user navigates to the search page of the system.

2. The user enters relevant search criteria, such as keywords or

product categories, into the search form.

3. The system searches its database for products that match

the search criteria.

4. The system displays a list of products that match the search

criteria.

5. The user can view the details of a product by clicking on it in

the list.

6. The user can further refine the search results by applying

filters or sorting options.

Exceptions

1. If the user enters invalid or incomplete search criteria, the

system may not be able to find any matching products.

2. If the system encounters technical issues, such as database

errors or network failures, the search feature may not

function correctly.

Table 2.5.2 Search for products

15

Use Case

View product

Primary Actor

Admin, User

Goal In Context

To view the details of a product in the system

Precondition

The user or administrator is logged in to the system or service and

has access to view the product

Trigger

The user or administrator clicks on a product in a list or searches for

a specific product

Scenario

1. The user or administrator navigates to a page that displays a

list of products or performs a search for a specific product.

2. The user or administrator clicks on a product in the list or

selects a search result.

3. The system retrieves the details of the selected product from

its database.

4. The system displays the details of the product, including its

name, description, and any available options or variations.

5. The user or administrator can add the product to their

shopping cart or wish list or initiate a purchase or exchange

for the product.

Exceptions

1. If the user or administrator does not have permission to view

the product, the system will display an error message.

2. If the selected product is no longer available, the system will

display a message indicating that the product is out of stock

or no longer listed.

3. If there is an error retrieving the product details from the

database, the system will display an error message.

Table 2.5.3 View product

16

Use Case

Exchange products

Primary Actor

User

Goal In Context

Exchange a product with another user

Precondition

The user is logged in to the system or service and has a product

that is eligible for exchange

Trigger

The user initiates the exchange process by navigating to the

exchange page and selecting a product for exchange

Scenario

1. The user goes to the exchange page in the system

2. The user selects a specific product for exchange

3. The system displays the details of the specified product and

asks the user to send a notice to the product owner to

replace it

4. The system checks if the other user has a product that they

are willing to exchange and sends a notification to them

5. If the other user agrees to the exchange, the system updates

the database to reflect the exchange and notifies both users

Exceptions

If the product is not available for replacement, the system will

display an error message. If the other user declines the exchange,

the system will notify the first user and cancel the exchange.

Table 2.5.4 Exchange products

17

Use Case

Delete products

Primary Actor

Admin, User

Goal In Context

To delete one or more products from the system

Precondition

The user or administrator is logged in to the system or service and

has permission to delete products

Trigger

The user or administrator initiates the delete process by selecting

one or more products for deletion

Scenario

1. The user or administrator selects one or more products for

deletion.

2. The system prompts the user or administrator to confirm the

deletion.

3. The system prompts the user or administrator to confirm the

deletion

4. If the user or administrator confirms the deletion, the system

removes the selected products from its database and

updates any related records or accounts

Exceptions

1. If the user or administrator does not have permission to

delete products, the system will display an error message.

2. If the selected products have dependencies or relationships

with other records, the system will prompt the user or

administrator to resolve these dependencies before deleting

the products.

Table 2.5.5 Delete products

18

Use Case

Upload product

Primary Actor

Admin, User

Goal In Context

To user or allow admin to add a new product to the system

Precondition

The user or admin has the necessary permissions to add a product

Trigger

The user or admin initiates adding a new product by navigating to the

appropriate page or form on the system

Scenario

1. The user or admin accesses the product upload page or form

2. The user or admin enters the required information about the

product, including the name, description, and any relevant

images or documents

3. The user or admin submits the form

4. The system checks the information for accuracy and

completeness

5. The product is added to the system and made available for the

exchange if the information is correct

Exceptions

If the user or admin does not have the necessary permissions to add

a product, the system will display an error message and will not allow

the product to be added.

Table 2.5.6 Upload product

19

Use Case

Edit profile

Primary Actor

Admin, User

Goal In Context

To allow the user or administrator to update their profile information

in the system

Precondition

The user or administrator is logged in to the system or service and

has permission to edit their profile information

Trigger

The user or administrator initiates the edit process by navigating to

the account settings page and selecting the option to edit their

profile

Scenario

1. The user or administrator navigates to the account settings

page of the system

2. The user or administrator selects the option to edit their

profile

3. The system displays the current profile information for the

user or administrator

4. The user or administrator edits the profile information as

desired and submits the changes

5. The system verifies that the new profile information is valid

and meets the system requirements

6. The system updates the profile information in its database

and any related records or accounts

Exceptions

If the user or administrator does not have permission to edit their

own profile, the system will display an error message. If the new

profile information does not meet the system requirements, the

system will display an error message and prompt the user or

administrator to make the necessary corrections.

Table 2.5.7 Edit profile

20

Use Case

Send report

Primary Actor

admin

Goal In Context

To generate and send a report from the system

Precondition

The admin is logged in to the system or service and has permission

to generate and send reports

Trigger

The admin initiates the report generation and send process by

navigating to the report page and selecting the options for the

report

Scenario

6. The administrator navigates to the report page of the system

7. The administrator selects the options for the report

8. The system generates the report based on the selected

options

9. The system prepares the report for sending

10. The administrator reviews the generated report

11. The administrator enters the recipient's email address

12. The administrator clicks on the "Send" button

13. The system sends the report to the specified recipient's

email address

Exceptions

If the administrator does not have permission to generate and send

reports, the system will display an error message. If there is an

issue with sending the report, such as an invalid email address or

network connectivity problem, the system will display an error

message and prompt the user or administrator to resolve the issue.

Table 2.5.8 Send report

21

Use Case

Log out

Primary Actor

Admin, User

Goal In Context

To log out of the system

Precondition

The user or administrator is logged in to the system

Trigger

The user or administrator initiates the log out process by clicking

the log out button or link

Scenario

1. The user or administrator clicks the log out button or link

2. The system terminates the user's or administrator's session

and logs them out of the system or service

3. The system redirects the user or administrator to the login

page

4. The user or administrator is presented with a confirmation

message indicating that they have been successfully logged

out

Exceptions

If the system is experiencing technical issues, it may be unable to

log the user or administrator out. In such cases, the system may

display an error message informing the user or administrator about

the issue and advise them to try again later

Table 2.5.9 Log out

22

2.6 Sequence diagram

The sequence diagram, as an interaction diagram, depicts the interactions

and order of actions among a set of components. It is a valuable tool for software

engineers and business experts to understand the specifications of a new system or

describe an existing procedure within the context of this project.

In the context of Qaied, the sequence diagram provides a visual

representation of the flow of interactions between the actors, such as Admin and

User, and the system components. It illustrates how the different functionalities and

use cases are invoked and executed in a coordinated manner.

By utilizing the sequence diagram, stakeholders can gain insights into the

precise order of actions and the overall behavior of the system. This helps in

analyzing the system's functionality, identifying potential issues or improvements,

and ensuring that the desired interactions are properly implemented.

23

1.1 Sequence diagram for deleting an account (User - Admin)

Figure 2.6.1 Sequence diagram for deleting an account

24

1.2 Sequence diagram for exchanging a product (User-User)

Figure 2.6.2 Sequence diagram for exchanging a product

25

2.7 Overview of the chapter

 Requirements Specification provides a comprehensive analysis of the

requirements for the Qaied system. It covers both functional and non-functional

requirements, focusing on the roles of the Admin and User actors. The chapter

includes a use case diagram illustrating the system's functionality and two sequence

diagrams: one for deleting an account (User-Admin) and another for exchanging a

product (User-User).

The sequence diagram for exchanging a product depicts the interaction between two

users in the system. It showcases the sequence of actions involved in initiating and

completing a product exchange process. This diagram helps in understanding the

flow of events and the communication between users during the exchange.

Additionally, the chapter highlights the importance of user-friendliness, scalability,

reliability, and security as non-functional requirements. These requirements ensure

that the system is easy to use, always accessible, and capable of serving all users in

Palestine. The chapter emphasizes the need for regular updates to meet evolving

needs and acknowledges that users only require basic computer knowledge to utilize

the system effectively.

26

Chapter 3: System Design

3.1 Introduction

 Chapter 3 focuses on the system design for the Qaied project. It delves into

the detailed parts and components of the system, providing clear explanations and

drawings to aid the programmer in understanding and building the system effectively.

The design phase also takes into account user preferences, ensuring that the

system's design aligns with user expectations through user interfaces and database

considerations. This chapter serves as a bridge between the requirements analysis

and the implementation phase, providing a blueprint for development that meets

requirements and enhances user experience.

3.2 Alternative

In our exploration of system architectures, we evaluated two options: Layered

Architecture and Model-View-Controller (MVC).

● Layered Architecture :

 Layered Architecture divides the system into separate layers, each

representing a component or subset of the system. However, our research

revealed that this architecture is not suitable for websites and is better suited

for desktop and mobile

27

 Figure 3.2.1 Layered Architecture diagram.

Through research into layered architecture, we discovered that websites

should not use it and are better suited for desktop and mobile apps (web).

● Model–view–controller

 After considering both Layered Architecture and MVC, we concluded

that MVC is a more suitable choice for the Qaied system. MVC offers several

advantages, including:

1. Independence of Components: Each component in MVC is

independent, enabling individual testing and simplifying code

maintenance and development.

2. Clear Function Specification: MVC allows for the specification of

specific functions for each component, enhancing clarity and

organization.

28

3. Seamless Data Updates: With MVC, data can be updated without

impacting the user view of the system, ensuring a smooth and

uninterrupted user experience.

3.3 General structure of the System

In the MVC structure, the system is divided into three main components:

● Model: The Model represents the data and business logic of the system. It

encapsulates the data and provides methods for accessing and manipulating

it.

● View: The View is responsible for the presentation and user interface of the

system. It displays the data from the Model and interacts with the user to

capture input or display information.

● Controller: The Controller acts as an intermediary between the Model and the

View. It handles user input, updates the Model accordingly, and updates the

View to reflect any changes in the data.

Figure 3.3.1 MVC diagram

29

Following is a description of the system's components by its structure.

The Model component of the system is responsible for managing data and

interacting with the database. It encompasses various categories and handles

operations such as retrieving and saving data to and from the database. The Model

component plays a crucial role in the overall system structure as it serves as the

core of the program.

3.4 Models

The model layer of our system consists of several primary elements, as

depicted in the following class diagram.

Class diagram model:

The class diagram represents the fundamental models that are part of the

model layer in our project, adhering to the MVC architectural pattern.

30

Figure 3.4.1 Class diagram

31

3.5 Controllers

This component plays a crucial role in the system as it acts as a mediator

between the user and the system. It receives user inputs from the interfaces (Views),

processes and validates those inputs, and communicates with the model to perform

the necessary actions. The controller ensures that the user's inputs are correctly

handled and interpreted by the system.

By following the rules provided and the given information, the controllers in the

system can be designed to:

● Receive user inputs and validate them according to the defined rules

and requirements.

● Interact with the model to perform operations such as creating,

updating, and deleting data.

● Retrieve data from the model based on user requests.

● Apply business logic and rules to process user inputs and system

responses.

● Handle errors and exceptions, providing appropriate feedback to the

user.

● Communicate with the interfaces (Views) to display relevant

information and receive user feedback.

Overall, the controllers component serves as the central coordinator, ensuring the

smooth flow of information and actions between the user and the system.

32

● Admin Controller

Figure 3.5.1 Admin Controller

● User Controller

Figure 3.5.2 User Controller

33

Database System Description:

The database tables that will be generated are shown in the following diagram.

Figure 3.5.3 Database mapping

34

3.6 Database Tables

The system is connected to a database consisting of several tables connected

by relationships. In this section, the database's information about the system's inputs

and the links between its tables will be used to explain the system's many

components.

Table 3.6.1 Database Table

Name Description

User Store information about each user of the system

Product Store general information about the products available for
exchange in the system.

Report Store general information about the reports generated in the
system.

Request Store information about the requests made in the system.

Reports message Store information about each message associated with a report in
the system..

Requests
communication

Store information about the communication associated with user
requests in the system.

Requests offer Store information about any notifications that are sent to users.

Category Store information about the categories of products

Products image Store information about the images associated with products.

User cart Store information about the user's cart.

35

Table3.6.2 User Table

Description Length NULL Data Type field

Unique identifier for each user. 24 INTEGER userID

user's name 20 NO varchar username

User's email 50 NO varchar email
user's password 30 NO int password

user's mobile number 18 NO varchar phone

User's address 20 NO varchar address
User type 9 NO varchar userType

Table 3.6.3 Product Table

Description Length NULL Data
Type

field

unique identifier for each userproduct 24 int ProductID

Product name 20 NO varchar ProductName

 information about the user’s product 300 NO varchar description

Name of the user 20 NO varchar username

 Identifier for category 24 NO int CategoryID

Type of transaction 6 NO varchar transactionType

Date when the record was created 24 NO date date

Table 3.6.4 Category Table

Description Length NUL
L

Data
Type

field

 Identifier for category 24 int CategoryID

Name of Category 20 NO varchar categoryName

Date when the record was created 24 NO date date

Image of Category 64 NO varchar image

36

Table 3.6.5 Report Table

Description Lengt
h

NULL Data
Type

field

unique identifier for each report 24 int reportID

Name of sender 20 NO varchar SenderName

unique identifier for message 24 NO int messageID

unique identifier for product 24 NO int productID

Status of report 6 NO varchar status

Date when the record was created 24 NO date date

Table 3.6.7 products_image Table

Description Lengt
h

NUL
L

Data Type field

unique identifier for each image 24 int imageID

Product id 24 NO int productID

Number of image 24 NO varchar index

Name of image 64 NO varchar imageString

Table 3.6.8 Requests_offer Table

Description Lengt
h

NUL
L

Data Type field

unique identifier for each offer 24 int offerID

Secondary data of request offer 24 NO int cash

unique identifier for product 24 NO int productID

Table3.6.9 user_cart Table

Description Length NULL Data Type field

unique identifier for each cart 24 int cartID

unique identifier for user 24 NO int userID

Number of products in cart 24 NO varchar index

37

Table 3.6.10 request Table

Description Length NULL Data
Type

field

unique identifier for each request 24 int requestID

Name of sender 20 NO varchar senderName

Name of receiver 20 NO varchar receiverName

unique identifier for offer 24 NO int offerID

unique identifier for product 24 NO int productID

Status of request 6 NO int status

unique identifier for communication 24 NO int communicationID

Table 3.6.11 requests_communication Table

Description Length NULL Data
Type

field

unique identifier for each communication 24 int communicationID

Secondary data of request 300 NO varchar cash

Table 3.6.12 Reports_message Table

Description Length NULL Data
Type

field

unique identifier for each communication 24 int messageID

Secondary data of report 300 NO varchar cash

unique identifier for product 24 NO int productID

38

3.7 Views

● Login

Figure 3.7.1 View Login

● Signup

Figure 3.7.2 Signup

39

● Upload product

Figure 3.7.3 Upload product

● Product Detail

Figure 3.7.4 Product Detail

● Product list

40

Figure 3.7.5 Product list

41

● Home Page

Figure 3.7.6 Home Page

42

Chapter 4: Implementation

4.1 Introduction

 In this chapter, we will delve into the implementation phase of the system

development process. Here, we will focus on the practical aspects of turning the

design and requirements into a functional system. This chapter will cover various

topics related to the implementation, including programming languages, frameworks,

tools, and methodologies used during the development process.

4.2 Programming Languages and Technologies

 During the implementation phase, we utilized the following programming

languages and technologies:

● Node.js: We chose Node.js as our backend runtime environment due to its

scalability and efficiency in handling concurrent requests. It allowed us to build

a robust and perform ant backend for our system. Additionally, we designed

our project to be compatible with relational databases and have already

created an Oracle database.

● React.js: For the frontend development, we opted for React.js, a popular

JavaScript library for building user interfaces. React.js provided us with a

component-based approach, making it easier to develop and maintain the

frontend of our system.

● Postman: We utilized Postman, an API development and testing tool, to test

and validate our APIs during the implementation process. Postman allowed us

to send requests, inspect responses, and ensure the proper functioning of our

APIs.

● JSON: JSON (JavaScript Object Notation) was used as a data interchange

format for exchanging data between the frontend and backend components of

43

our system. It provided a lightweight and easy-to-read format for data

representation.

● Visual Studio Code: As our primary text editor, we relied on Visual Studio

Code for writing and editing our code. Its extensive set of features, including

syntax highlighting, debugging capabilities, and version control integration,

greatly facilitated the development process.

● Bootstrap: To enhance the design and user interface of our system, we

utilized Bootstrap, a popular CSS framework. Bootstrap provided pre-

designed components and responsive layouts, allowing us to create visually

appealing and user-friendly interfaces.

4.3 Implementation Approach

 During the implementation phase of the project, we followed a systematic

approach to bring the system design to life. Our implementation approach aimed to

ensure the successful development of a functional and reliable system that meets

the project requirements. Here is an overview of the implementation approach we

adopted:

1. Technology Selection:

● Backend Runtime Environment: We selected Node.js as our backend

runtime environment. Node.js is known for its scalability and efficiency

in handling concurrent requests, making it a suitable choice for our

system. Additionally, Node.js supports both relational and non-

relational databases, allowing us to work with different database

systems seamlessly.

● Frontend Framework: For the frontend development, we chose

React.js, a popular JavaScript library for building user interfaces.

React.js provided us with a component-based approach, making it

easier to develop and maintain the frontend of our system.

44

● Database Hosting: We have made the decision to host our database

on Mongo DB, a popular MySQL database known for its flexibility and

scalability. However, we have also ensured that our system is

compatible with relational databases, and as part of our preparations,

we have already set up an Oracle database. To host the Oracle

database, we have utilized Studio T3.

2. Project Setup:

● Environment Configuration: We set up the necessary development

environment for both the backend and frontend. This included installing

Node.js, React.js, MongoDB, and other relevant tools and

dependencies.

● Folder Structure: We established a well-organized folder structure for

the project, separating the backend and frontend components to

ensure modularity and maintainability.

● Version Control: We utilized a version control system, such as Git, to

track and manage the project's source code changes.

3. Backend Development:

● Architecture: We adopted a layered architecture for the backend,

dividing it into different components such as controllers, models, and

routes. This architecture promotes separation of concerns and

facilitates code maintainability.

● Backend APIs: We designed and implemented Restful APIs using

Node.js to enable communication between the frontend and backend

components. These APIs defined the endpoints and data formats for

various system functionalities.

45

● Database Integration: We have successfully integrated both MongoDB

and Oracle databases into our system to ensure efficient storage and

retrieval of data. MongoDB serves as our primary MySQL database,

offering flexibility and scalability. We designed the database schema

and implemented the necessary data access logic in the backend for

seamless interaction with MongoDB. Additionally, we have made

provisions for future developments by ensuring compatibility with

relational databases, such as Oracle. We have set up an Oracle

database using Studio T3, allowing us to leverage the benefits of both

MySQL and relational database technologies. This integration enables

us to accommodate potential expansion and cater to various data

management requirements in our system.

4. Frontend Development:

● Component-Based Approach: With React.js, we developed the

frontend using reusable and modular components. This approach

facilitated code reusability, component composition, and efficient UI

rendering.

● User Interface Design: We utilized Bootstrap, a popular CSS

framework, to enhance the design and user experience of our system.

Bootstrap provided pre-designed components and responsive layouts,

ensuring consistency and ease of use.

5. Integration and Testing:

● Frontend-Backend Integration: We integrated the frontend and

backend components, ensuring smooth communication through API

calls. This integration involved testing the endpoints and handling data

exchange between the two layers.

46

● Testing and Quality Assurance: We conducted various testing

activities, including unit testing and integration testing, to verify the

functionality and reliability of the system. We used tools like Postman

to test and validate the APIs, ensuring their correctness and proper

functioning.

6. Conclusion:

● At the end of the implementation phase, we successfully transformed the

system design into a functional software solution. We achieved the desired

integration between the frontend and backend, ensuring the smooth operation

of the system.

47

4.4 Backend Development

 During the backend development phase, we focused on implementing the

server-side components of our system using Node.js. This section provides an

overview of the architecture, folder structure, and key functionalities that were

implemented.

Architecture

 To ensure modularity and maintainability, we adopted a layered architecture

for our backend. This architecture separates different concerns and promotes code

organization. The key components of our backend architecture include:

1. Controllers: The controllers act as intermediaries between the frontend and

the backend, handling user requests and managing the flow of data. They

receive requests from the frontend, process them, and invoke the appropriate

services or models to retrieve or manipulate data.

2. Models: The models represent the data structures and business logic of our

system. They encapsulate the database operations, such as retrieving,

creating, updating, and deleting data. We designed the models based on the

requirements and data schema defined in the previous chapters.

3. Routes: The routes define the API endpoints and map them to the

corresponding controller functions. They specify the URL paths, HTTP

methods, and the controller methods to be invoked when a particular endpoint

is requested.

4. Middleware: We implemented middleware functions to handle common tasks,

such as authentication, request validation, and error handling. Middleware

functions are executed before reaching the route handlers and allow us to add

additional functionality to the request/response lifecycle.

48

 Folder Structure

 To maintain a clean and organized codebase, we structured our backend

code into various folders. The folder structure ensures separation of concerns and

facilitates code navigation. Our typical backend folder structure includes:

● controllers/: Contains the controller files that handle the business logic and

interaction with the models.

● models/: Houses the model files responsible for database operations and data

manipulation.

● routes/: Defines the route files that specify the API endpoints and map them to

the appropriate controller functions.

● middleware/: Includes middleware functions used for request preprocessing

and handling specific aspects of the system, such as authentication and error

handling.

● config/: Contains configuration files, such as database configuration,

environment variables, and other system settings.

● utils/: Includes utility functions and helper modules used across different

components.

49

Figure 4.4.1 An Overview of the System's Directory Hierarchy

4.5 Frontend Development

 During the frontend development phase, we focused on creating an intuitive

and visually appealing user interface using React.js as our frontend framework.

Leveraging the power of React.js allowed us to build a dynamic and interactive

frontend that seamlessly interacts with the backend APIs.

some key aspects of our frontend development approach:

● Component-Based Architecture: We adopted a component-based architecture

in React.js, breaking down the user interface into reusable and modular

components. This approach facilitated code reusability, maintainability, and

allowed for easier collaboration among team members.

● Responsive Design: With the increasing use of mobile devices, we prioritized

responsive design to ensure that our system is accessible and provides an

optimal user experience across different screen sizes and devices. We

utilized CSS frameworks like Bootstrap to implement responsive layouts and

pre-designed components.

50

Figure 4.5.1 Implementing Responsive Design with Media Queries

● API Integration: Our frontend interacts with the backend APIs to fetch data

and update the user interface dynamically. We used modern JavaScript

techniques, such as asynchronous programming and promises, to handle API

requests and responses effectively. Axios, a popular HTTP client, was

employed to make API calls and handle data retrieval and submission.

Figure 4.5.2 API Requests for Data Retrieval from Backend

51

● Form Validation: To enhance user experience and data integrity, we

incorporated form validation techniques on the frontend to validate user

inputs, and provide meaningful error messages.

● Cross-Browser Compatibility: We ensured that our frontend is compatible with

major web browsers, including Chrome, Firefox, Safari, and Edge. We

conducted extensive testing and utilized tools like Browser Stack to ensure

consistent behavior and appearance across different browsers.

Throughout the frontend development phase, we followed modern best practices,

adhered to coding standards, and conducted rigorous testing to deliver a robust and

user-friendly frontend for our system. We strived to create a seamless and intuitive

user experience while maintaining scalability and performance.

4.6 Overview of the Chapter

 In this chapter, we delved into the implementation phase of the system

development process. We covered various aspects related to the practical

implementation of the system, including programming languages, technologies, and

methodologies used during the development process.

We started by discussing the programming languages and technologies we

employed in our project. Node.js was chosen as the backend runtime environment

due to its scalability and efficiency in handling concurrent requests. React.js was

utilized for frontend development, providing us with a component-based approach for

building user interfaces. We also mentioned the use of Postman for API testing,

JSON as the data interchange format, Visual Studio Code as the text editor, and

Bootstrap for enhancing the design.

Next, we explored the implementation approach we followed, which involved

technology selection, project setup, backend development, frontend development,

integration and testing. We highlighted the importance of selecting the right

technologies, configuring the development environment, and setting up the project

52

structure. We also discussed the architecture, folder structure, and key functionalities

implemented in the backend and frontend development phases.

Additionally, we emphasized the significance of integration and API development,

including the identification of integration points, design of integration interfaces,

implementation of integration logic, and error handling mechanisms. We explained

the concept of RESTful APIs and provided an example of error handling in the

integration process.

Furthermore, we covered the API specification and how it documents the available

endpoints, request/response formats, authentication mechanisms, and error

handling. We also discussed the significance of responsive design in ensuring the

system's accessibility and optimal user experience across different devices.

Finally, we provided an overview of the chapter, summarizing the key points

discussed in each section. We highlighted the importance of transforming the system

design into a functional software solution and the successful integration between the

frontend and backend components. The implementation phase laid the foundation

for subsequent testing, deployment, and future developments.

Overall, this chapter focused on the practical implementation aspects of the system,

providing insights into the programming languages, technologies, implementation

approach, integration, API development, and frontend development.

53

Chapter 5: Testing and Validation

 5.1 Introduction

 In this chapter, we will explore the crucial phase of testing and validation in the

system development process. Testing and validation are essential to ensure the

quality, functionality, and reliability of the developed system. This chapter will cover

various topics related to testing methodologies, test planning, test execution, and

validation techniques.

5.2 Testing Methodologies

 In the testing phase, we employed a combination of manual and automated

testing methodologies to thoroughly assess the system's performance and

functionality. We followed industry-standard testing methodologies, including:

1. Unit Testing: We conducted unit tests to verify the functionality of individual

components, such as functions, methods, and modules. Unit testing helped us

identify and fix bugs at an early stage, ensuring the reliability of our system.

● Example for Unit Testing:

For the unit testing phase, we focused on testing individual

components of our system. As an example, we conducted unit tests for

a specific module responsible for user authentication. We created test

cases to verify the functionality of functions and methods within this

module, such as user registration, login, and password reset. By

simulating different scenarios and inputs, we were able to identify and

fix any bugs or issues at an early stage, ensuring the reliability and

correctness of the authentication module.

2. Integration Testing: Integration testing was performed to validate the

interaction and compatibility of different system components. We tested the

integration of frontend and backend components, APIs, and database

connectivity to ensure smooth communication and data exchange.

54

● Example for Integration Testing:

During the integration testing phase, we aimed to ensure the seamless

interaction and compatibility of different system components. As an

example, we tested the integration between the frontend and backend

components of our system. We simulated various user interactions on

the frontend, such as submitting a form or making a request, and

validated that the data was correctly transmitted to the backend via

APIs. We also checked the database connectivity and verified that data

was properly stored and retrieved. This integration testing helped us

identify any issues or inconsistencies in the communication between

the frontend and backend, ensuring smooth data exchange and system

functionality.

3. System Testing: System testing focused on evaluating the overall behavior

and functionality of the complete system. We tested various use cases and

scenarios to ensure that the system met the defined requirements and

provided the expected outcomes.

● Example for System Testing:

System testing was crucial to evaluate the overall behavior and

functionality of our complete system. As an example, we created a

comprehensive set of test cases that covered different use cases and

scenarios. For instance, we tested the system's ability to handle

concurrent user requests, ensuring that it maintained stability and

provided the expected outcomes. We also validated the system against

the defined requirements, verifying that all functionalities, such as user

management, product listings, and transaction processing, were

working correctly. System testing provided us with confidence in the

system's functionality, reliability, and its ability to meet the user's needs

4. Performance Testing: Performance testing was conducted to assess the

system's responsiveness, scalability, and resource utilization under different

load conditions. We measured response times, analyzed system bottlenecks,

and optimized performance to enhance user experience.

55

● Example for Performance Testing:

To assess the system's performance, we conducted performance

testing under various load conditions. For example, we simulated a

high number of concurrent user requests to measure the system's

responsiveness and scalability. We monitored response times, CPU

and memory utilization, and database query execution times. By

analyzing the performance metrics, we were able to identify potential

bottlenecks, optimize the system's resource usage, and enhance its

overall performance. This performance testing ensured that our system

could handle the expected user load and provide a satisfactory user

experience.

5. User Acceptance Testing (UAT): UAT involved involving end-users to validate

the system against their requirements and expectations. Feedback from end-

users helped us identify any usability issues and make necessary

improvements.

● Example for User Acceptance Testing (UAT):

User Acceptance Testing (UAT) involved involving end-users to

validate the system against their requirements and expectations. As an

example, we invited a group of representative users to test the

system's functionality and provide feedback. We provided them with

specific test scenarios and observed their interactions with the system.

Their feedback helped us identify any usability issues, user interface

glitches, or missing features that needed improvement. Incorporating

user feedback through UAT ensured that the system met the users'

expectations and provided a user-friendly experience.

The following tables provide examples of some of the tests we performed on the

application side, as it is the part that interacts with the user:

56

Process Type Input Expected
Output

Actual Output Succes
s/

Failure

1 post_Signup

/api/users/sign
up

POST username:
user_1
email:
email_1@gmail.com

password:
Aa123456
phone:
0595303030
address:
dir samet
userType:
Action

The user
has been
added
successfully

status: ―0‖
code: "0"
message:
"no error."
data:
username:
user_1
email:
email_1@gmail.co
m

userType:
normal

Succes
s

2 post_Signup

/api/users/sign
up

POST username:
user_1
email:
email_1@gmail.com

password:
Aa1234
phone:
0595303030
address:
dir samet
userType:Action

There was
an error
when
registering,
the user
was not
added

status: ―1‖
code: "3"
message:
"Email or
password not
correct."

Failure

3 post_Login

/api/users/login

POST username:
user_1
password:
Aa123456

Logged in
successfully

status: ―0‖
code: "0"
message:
"no error."
userId:
"643d715b2ae3
93c8d85941be"
username:
user_1
userType:
normal
token:‖...‖

Succes
s

4 post_Login

/api/users/login

POST username:
user_1
password:
Aa12345

User does
not exist or
there is an
error

status:
―1‖
code:
"6"
message:
"Incorrect
password."

Failure

5.2.1 Test: Add New User And Login

57

Process Type Input Expected
Output

Actual Output Success/
Failure

1 post_create
new

/api/products/cr
eate_new

POST username:
user_1
productName:
product_1

description:
any description_1
transactionType:
exchange
image:
file.jpg
categoryId:
―6456c463b27d96
d06f232f04‖

The product
has been
added
successfully

status: ―0‖
code: "0"
message:
"no error."
data
productNam
e:
product_1
description:
any
description_1
username:
user_1
categoryId:
"6456c463b2
7d96d06f232
f04"
transactionT
ype:
exchange
image:[
"http://127.0.
0.1:8000/pro
ducts/produc
t-2e82c894-
a3d1-4c23-
b13f-
80deca63cb
25-
1684781983
410.jpeg"
],
date:
2023-05-
22T18:59:43.
462Z
status:
pending
requests:[],
productId:
646bbb9f6a0
87a80b3598
08a
"__v": 0

Success

5.2.2 Test: Add New Product

58

Process Type Input Expected Output Actual Output Success/
Failure

1 get_fetch all
product

/api/products/fe
tch_all_product

GET — Bring all the
special products
of the current
session owner

status: ―0‖
code: "0"
message:
"no error."
data:
products[
productId":
"64693d6fae849a8d2e6
4e92a"
productName:
product_1
description:
any description_1
categoryId:
"6469284c0f6816c7edf
1844d",
transactionType:
exchange
date:
2023-05-
20T21:36:47.144Z
status:
active
]

Success

5.2.3 Test: Get All User Product

59

Process Type Input Expected
Output

Actual Output Success/
Failure

1 post_create
request

/api/requests/cr
eate_new

POST productId:
"6446538dfe2ea8
96ef9dc643"
senderName:
mohammad
recieverName:
ahmood
offer:{
cash:
Any text,
productId:
"6446538dfe2ea8
96ef9dc643"
 }
communication:{
"cash":
"0595142222"
}

The
exchange
request has
been sent
successfully

status: ―0‖
code: "0"
message:
"no error."
data:
request_gen
eration_confi
rmation:
true

Success

2 post_create
request

/api/requests/cr
eate_new

POST productId:
"645a5ae938b9b6
af67cdde68"
senderName:
mohammad
recieverName:
ahmood
offer:{
cash:
Any text,
productId:
"645a5ae938b9b6
af67cdde68"
 }
communication:{
"cash":
"0595142222"
}

The request
was not
sent for
exchange
because the
product was
exchanged

status: ―0‖
code: "0"
message:
"no error."
data:
request_gen
eration_confi
rmation:
false

Failure

5.2.4 Test: Create New Request

60

Process Type Input Expected
Output

Actual Output Success/
Failure

1 get_get all user
(admin)

/api/users/getAllU
ser

GET – Bring all
users on
the

Qaied

system

status: ―0‖
code: "0"
message:
"no error."
data:
users:[
{
userId:
"643d715b2ae393c8d859
41be"
username:
mohammad
email:
mohammad2021@gmail.
com
phone:
0599996655
address:
0052
},
{
userId:
"643da6fd41abba84fe393
56a",
username:
mohammadhroubv6
email:
mohammad22030@gmail
.com
phone:
972595303030
address:
3021
}
]

Success

5.2.5 Test: Get All Users

61

Process Type Input Expected
Output

Actual Output Success/
Failure

1 post_approve
(admin)

/api/products/appr
ove

POST action:
approved
productId:
"60a12d7f
39ae2c214
08341d8"

Approval of
a product

status: ―0‖
code: "0"
message:
"no error."
data:
acknowledged:
true
modifiedCount:
1
upsertedId:
null
upsertedCount:
0
matchedCount:
1

Success

5.2.6 Test: Approve Product

62

5.3 Validation Techniques

 In addition to testing, we employed validation techniques to ensure that the

system met the intended purpose and satisfied the requirements of stakeholders.

These techniques included:

1. Requirement Validation:

Objective:

The goal of requirement validation is to review and validate the system

requirements to ensure they are complete, accurate, and aligned with the

project's objectives.

process:

● Requirement review: Thoroughly examine the documented

requirements, ensuring they are clear, feasible, and relevant to the

project goals.

● Stakeholder feedback: Seek input from relevant stakeholders, including

yourself, to validate the requirements and ensure they effectively

address the business needs.

Example: During a requirement review, we carefully assessed the

requirement stating "The system should allow users to register using their

email and password." This validation confirms its alignment with the project's

vision of enabling user registration through email authentication.

2. User Validation:

Objective:

User validation involves engaging end-users to gather their feedback and

ensure the system meets their needs and expectations.

process:

● User acceptance testing (UAT): Involve a representative group of end-

users to test the system in a controlled environment, following

predefined scenarios, and evaluate its performance, usability, and

functionality.

● User feedback sessions: Conduct structured feedback sessions with

end-users to gather their insights, suggestions, and concerns regarding

the system's usability and user experience.

63

Example: During UAT, selected end-users perform tasks within the system,

such as exchanging products. Their feedback helps evaluate the ease of use,

clarity of instructions, and overall satisfaction with the process.

3. Data Validation:

Objective:

Data validation ensures the accuracy, integrity, and consistency of data stored

and processed by the system.

Process:

● Data reconciliation: Compare data in the system with trusted data

sources or existing records to identify discrepancies or inconsistencies.

● Validate data formats and constraints: Verify that data inputs adhere to

specified formats, meet required constraints, and follow predefined

rules or business logic.

Example: Data validation includes verifying the uniqueness of usernames

during the user registration process. When a new user attempts to register,

the system checks if the chosen username is already taken by comparing it

with existing usernames in the database. If the username is already in use,

the system prompts the user to select a different username to maintain

uniqueness and avoid conflicts.

5.4 Overview of the Chapter

 Chapter 5 focused on the crucial phase of testing and validation in the system

development process. We employed a combination of testing methodologies and

validation techniques to ensure the quality, functionality, and reliability of our system.

The chapter covered various topics related to testing, including testing

methodologies, validation techniques, and examples of their application in our

project.

We began by discussing the different testing methodologies we utilized, including

unit testing, integration testing, system testing, performance testing, and user

acceptance testing (UAT). Each methodology served a specific purpose and helped

us assess different aspects of the system. We provided clear objectives, processes,

64

and examples for each testing methodology, demonstrating how we applied them in

our project.

Next, we explored validation techniques that ensured the system met the intended

purpose and satisfied stakeholders' requirements. We discussed requirement

validation, user validation, and data validation techniques. For each technique, we

outlined the objectives, processes, and provided examples of how we applied them

in our project. These validation techniques helped us validate the system's

requirements, gather user feedback, and ensure data accuracy and integrity.

65

Chapter 6: Future Plans

6.1 Introduction

 In this chapter, we will explore the future plans for the system and outline our

vision for its further development and enhancement. As technology and business

needs evolve, it is crucial to have a roadmap for future improvements, scalability,

and innovation. This chapter will cover our proposed future plans, including potential

features, upgrades, and considerations for expanding the system's capabilities.

6.2 System Enhancements and Feature Expansion

 To ensure the long-term success and relevance of the system, we have

identified several areas for future enhancements and feature expansion. These

enhancements aim to address user feedback, industry trends, and emerging

technologies. Some of the key areas we plan to focus on include:

● Enhanced User Experience: We aim to further improve the user experience

by refining the system's interface, streamlining workflows, and incorporating

user feedback. This may involve implementing a more intuitive navigation

system, optimizing loading times, and personalizing user interactions.

● Advanced Search and Filtering: To enhance product discovery and facilitate

efficient searching, we plan to introduce advanced search and filtering

capabilities. This may include options such as search by category, price

range, location, and product attributes. These enhancements will enable

users to find relevant products more quickly and easily.

● Social Media Integration: Recognizing the influence of social media in today's

digital landscape, we plan to integrate social media functionalities into the

system. This may involve allowing users to share products on their social

media profiles, implementing social login options.

66

● Mobile Application Development: With the increasing popularity of mobile

devices, we plan to develop a dedicated mobile application to provide a

seamless and optimized user experience on smartphones and tablets. The

mobile application will offer all the core functionalities of the web-based

system, ensuring accessibility and convenience for users on-the-go.

6.3 Scalability and Performance Considerations

As the system gains traction and user base grows, scalability and performance

become critical considerations. To ensure the system can handle increased demand

and maintain optimal performance, we plan to implement the following strategies:

● Server Load Balancing: To distribute incoming requests evenly and prevent

overload on a single server, we will introduce server load balancing

techniques. This will help improve system availability, scalability, and

responsiveness.

● Caching Mechanisms: Implementing caching mechanisms, such as content

caching and database query caching, will help reduce database load and

improve response times. This will enhance system performance, especially

during peak usage periods.

● Database Optimization: As the system accumulates large amounts of data,

we will continually optimize the database performance by fine-tuning queries,

indexing data, and implementing database partitioning strategies. These

optimizations will ensure efficient data retrieval and storage.

67

6.4 Collaboration and Feedback Channels

 To ensure continuous improvement and address evolving user needs, we plan

to establish collaboration and feedback channels with users, stakeholders, and the

development team. This will involve:

● User Feedback Portal: Implementing a user feedback portal or system within

the application, allowing users to provide suggestions, report issues, and

share their experiences. This feedback will be carefully reviewed and

considered in future updates and enhancements.

● Stakeholder Meetings: Regular meetings and communication with

stakeholders, including us as the project owners, to discuss system

performance, future requirements, and strategic alignment. These meetings

will facilitate a shared understanding of goals and enable effective decision-

making.

● Agile Development Practices: Embracing agile development practices, such

as iterative development and continuous delivery, will allow us to respond

quickly to changing requirements and incorporate user feedback into regular

development cycles.

6.5 Overview of the Chapter

In this chapter, we have explored the future plans for the system, outlining our vision

for its further development and enhancement. We recognize the importance of

staying ahead of technological advancements and evolving business needs to

ensure the long-term success and relevance of the system. The chapter focuses on

system enhancements and feature expansion, scalability and performance

considerations, collaboration and feedback channels, and the utilization of agile

development practices.

To enhance the user experience, we plan to improve the system's interface,

streamline workflows, and incorporate user feedback. Advanced search and filtering

capabilities will be introduced to facilitate efficient product discovery. Social media

68

integration will leverage the influence of social platforms to enhance user

engagement and expand the system's reach. Additionally, a dedicated mobile

application will be developed to provide an optimized experience on smartphones

and tablets, ensuring accessibility and convenience.

Scalability and performance considerations will be addressed through server load

balancing techniques, caching mechanisms, and ongoing database optimization.

These strategies aim to handle increased demand, improve response times, and

optimize data storage and retrieval.

To ensure continuous improvement, collaboration, and user satisfaction, we will

establish collaboration and feedback channels. A user feedback portal will be

implemented to gather suggestions, report issues, and collect user experiences.

Regular stakeholder meetings will facilitate communication and alignment with

project owners, enabling effective decision-making. Embracing agile development

practices will allow us to adapt quickly to changing requirements and incorporate

user feedback into regular development cycles.

By implementing these future plans, we aim to ensure the system's long-term

success, maintain user satisfaction, and adapt to emerging technologies and

industry trends. These plans reflect our commitment to continuous improvement,

innovation, and delivering a system that evolves with the changing needs of users

and stakeholders.

69

References:

(1) MVC Architecture in 5 minutes: a tutorial for beginners. (n.d.). Educative.

https://www.educative.io/blog/mvc-tutorial

(2) Pedriquez, D. (n.d.). What is a Context Diagram (and How Can You Create

One)? - Venngage. Venngage. https://venngage.com/blog/context-diagram/

(3) What is Sequence Diagram? (n.d.).

https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-

is-sequence-diagram/

(4) Introduction | React Bootstrap. (n.d.).

https://react-bootstrap.github.io/docs/getting-started/introduction

(5) Documentation | Node.js. (n.d.). Node.js.https://nodejs.org/en/docs

(6) UML Use Case Diagram Tutorial. (n.d.). Lucidchart.

https://www.lucidchart.com/pages/uml-use-case-diagram

(7) Layered architecture | learning-notes. (n.d.).

 https://learning-notes.mistermicheels.com/architecture-design/reference-

architectures/layered-architecture/

(8) UML Class Diagram Tutorial. (n.d.). Lucidchart

. https://www.lucidchart.com/pages/uml-class-diagram

(9) Express Tutorial Part 4: Routes and controllers - Learn web development |

MDN. (n.d.).https://developer.mozilla.org/en-US/docs/Learn/Server-

side/Express_Nodejs/routes

(10) Best Practice for Node.js Folder Structure. (n.d.). Habilelabs Private

Limited. https://habilelabs.io/blog/best-practice-for-node-js-folder-structure

(11) Front-End Development: The Complete Guide. (n.d.). Cloudinary.

https://cloudinary.com/guides/front-end-development/front-end-development-

the-complete-guide

(12) What is Software Testing and How Does it Work? | IBM. (n.d.).

https://www.ibm.com/topics/software-testing

(13) Harrison, P. (2020, December 3). Caching strategies to speed up your API -

LogRocket Blog. LogRocket Blog. https://blog.logrocket.com/caching-

strategies-to-speed-up-your-api/

https://www.educative.io/blog/mvc-tutorial
https://venngage.com/blog/context-diagram/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-sequence-diagram/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-sequence-diagram/
https://react-bootstrap.github.io/docs/getting-started/introduction
https://nodejs.org/en/docs
https://www.lucidchart.com/pages/uml-use-case-diagram
https://learning-notes.mistermicheels.com/architecture-design/reference-architectures/layered-architecture/
https://learning-notes.mistermicheels.com/architecture-design/reference-architectures/layered-architecture/
https://www.lucidchart.com/pages/uml-class-diagram
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Express_Nodejs/routes
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Express_Nodejs/routes
https://habilelabs.io/blog/best-practice-for-node-js-folder-structure
https://cloudinary.com/guides/front-end-development/front-end-development-the-complete-guide
https://cloudinary.com/guides/front-end-development/front-end-development-the-complete-guide
https://www.ibm.com/topics/software-testing
https://blog.logrocket.com/caching-strategies-to-speed-up-your-api/
https://blog.logrocket.com/caching-strategies-to-speed-up-your-api/

