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Abstract 

The general objective of the project is improve safety for passenger during travel  by develop a 

system based on guiding the driver to determine the appropriate speed and steering angle based 

on the diminution of the road and the specification of the vehicle such as (weight, distance 

between the two wheels...etc.), and the actual vehicle information such as speed, wheel steering 

angle and vehicle coordinates collected. It enters into calculations in order to achieve the main 

goal of avoiding loss control of vehicle accident and deviating from the lane. 

In this project, we relied on several auxiliary technologies, such as Global Positioning System  

GPS, which helps to know the actual location and coordinates of the vehicle, and the Geographic 

Information System GIS, which helps to know general information about the road such as turns, 

road length and width, and finally Electronic Control Unit ECU, where extract the information 

from the electronic control unit such as speed and steering angle, and finally using the vehicle 

dynamics equations that work to calculate the appropriate speed of the vehicle and the 

appropriate angle of turning based on the previous inputs. The simulation process was carried out 

by MATLAB program. In this project, the actual reading was taken from the electronic control 

unit in the vehicle and the location of the vehicle. and linked in MATLAB  

After the experiment and make many sample of same rod (inside the university), take 190 value 

for vehicle speed, steering angle, longitude and latitudes data, then after Data processing by 

matlab the simulation result for vehicle speed and steering angle command  is very reliable .  
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 الملخص

وع هو تطوير نظام يقوم على إرشاد  السائق ومساعدته على تحديد الشعة  و توجيه الهدف العام للمشر

المسافة )الوزن ، مركبة مثل وخصائص ال  المعلوما  الهندسية للطييقالمناسبة وزاوية التوجيه بناءً على

ن ...  ن العجلي  واحداثيا   وزاوية توجيه العجلا المركبة إلخ( ، ومعلوما  المركبة الفعلية مثل سرعة بي 

ي عمليا  يجمو  المركبة
تجنب الحوادث  رأيسي الا وهو الهدف التحقيق  من أجلحسابية العها تدخل فن

 .والانحراف عن المسار

وع ي هذا المشر
ي معرفة الموقع  GPS ، اعتمدنا على العديد من التقنيا  المساعدة ، مثل فن

ي تساعد فن
، والت 

ي تساعد على معرفة المعلوما  العامة  GIS نظم المعلوما  الجغرافية ، وواحداثيا  المركبة الفعلىي 
الت 

ا و  وعرضهعن الطييق  مثل المنعطفا  وطول الطييق  ونية  أخي  حيث نقوم  ،ECUوحدة التحكم الإلكي 

ونية مثل الشعة و  باستخدام التوجيه زاوية  باستخراج المعلوما  من وحدة التحكم الإلكي 
ً
ا ، وأخي 

ي  امعادلا  ديناميك
تعمل على حساب الشعة المناسبة للسيارة وزاوية الانعطاف المناسبة المركبا  الت 

وع   MATLAB  برنامجمحاكاة بواسطة ية الإجراء عمليتم   بناءً على المدخلا  السابقة ي هذا المشر
تم فن

ي السيارة وموقع السيارة
ونية فن     MATLABفيوربطها  أخذ القراءة الفعلية من وحدة التحكم الإلكي 

 

 

 

 



V 
 

 

  

TABLE OF CONTENTS 
Dedication (Arabic) .................................................................................................................... II 

Abstract .................................................................................................................................... III 

 IV ..................................................................................................................................... الملخص

List Of Figures ......................................................................................................................VIIII 

List Of Table .............................................................................................................................. X 

Abbreviations ........................................................................................................................... XI 

List Of Symbols ...................................................................................................................... XII 

Chapter 1 ...................................................................................................................................1 

Introduction...............................................................................................................................1 

1.1 Overview ................................................................................................................................................... 2 

1.2 Motivation.................................................................................................................................................. 2 

1.3 Problem Statement ..................................................................................................................................... 3 

1.4 Aims And Objectives.................................................................................................................................. 3 

1.5 Importance ................................................................................................................................................. 4 

1.6 Methodology .............................................................................................................................................. 4 

1.7 Project Requirements .................................................................................................................................. 4 

1.8 Action Plan ................................................................................................................................................ 5 

Chapter 2 ...................................................................................................................................8 

Background ...............................................................................................................................8 

1.1 Global Positioning System (Gps) ................................................................................................................ 9 

2.2.1 Introduction ................................................................................................................................................ 9 

2.2.2 How Car Gps Works .............................................................................................................................. 9 

2.2.3 How Accurate Is Gps? .......................................................................................................................... 10 

2.2.4 Sources Of Gps Errors .......................................................................................................................... 11 

2.2.5     Geographical Information Systems Gis ................................................................................................. 12 

2.2.6     Navigation ........................................................................................................................................... 13 

2.2.7        Universal Transverse Mercator (Utm) ................................................................................................... 13 

2.2.8.       Latitude And Longitude ........................................................................................................................ 14 

2.3. Vehicle Coordinate System: ........................................................................................................................... 15 

2.3.1.        Longitudinal Vehicle Dynamics............................................................................................................ 16 

2.3.2.        Lateral Dynamics ................................................................................................................................. 17 

2.3.3.        Bicycle Model ...................................................................................................................................... 17 

2.3.4.        Dynamic Bicycle Model Of Lateral Vehicle .......................................................................................... 17 

2.4.  Engine Control Unit ...................................................................................................................................... 19 

2.4.2.       Controller Area Network ....................................................................................................................... 20 

2.4.3        How Do Can Bus Modules Communicate? ............................................................................................ 20 

2.4.4        Autonomous Vehicle ............................................................................................................................. 21 



VI 
 

Chapter 3 ................................................................................................................................. 25 

System Design .......................................................................................................................... 25 

3.1 Introduction .................................................................................................................................................... 26 

3.1. 2       System Block Diagram .......................................................................................................................... 26 

3.2 Input ............................................................................................................................................................... 27 

3.2.1       Gps Sensor ............................................................................................................................................. 27 

3.2.2       Gis Data ................................................................................................................................................. 32 

3.2.3       Ecu Information ..................................................................................................................................... 32 

3.3. Processes ....................................................................................................................................................... 37 

3.4. Outputs .......................................................................................................................................................... 38 

Chapter 4 ................................................................................................................................. 39 

Simulation................................................................................................................................ 39 

4.1. Simulink: ....................................................................................................................................................... 40 

4.1.1       Stanley Controller Block: ....................................................................................................................... 40 

4.1.2       Vehicle Body 3dof Dual Track ............................................................................................................... 41 

4.2. Driving Scenario ............................................................................................................................................ 46 

4.3. Connect Simulink Blok: ................................................................................................................................. 47 

Chapter 5 ................................................................................................................................. 49 

System Interface And Operations .......................................................................................... 49 

5.1.  Extract And Prepare Ecu Data ........................................................................................... 50 

5.1.1       Can Bus Shield V2 ................................................................................................................................. 54 

5.1.2       Sunflower Shield .................................................................................................................................... 56 

5.1.3       Elm And Python ..................................................................................................................................... 58 

5.2 Using A Multi-Turn Potentiometer To Extract Steering Angle............................................. 61 

5.3 Receiving And Preparing Gps Data ..................................................................................... 64 

5.3.1       GPS With Arduino Connection ............................................................................................................... 64 

5.3.2       Convert Longitude And Latitude To X,Y,Z Coordinate ........................................................................... 64 

5.4 Preparing GIS Data ............................................................................................................. 65 

Chapter 6 ................................................................................................................................. 68 

Experimentation And Results ................................................................................................. 68 

6.1 Experimentation .................................................................................................................. 69 

6.1.1       Result For Gps And Gis Test Data .......................................................................................................... 69 

6.1.2       Result For Extract Data From Ecu .......................................................................................................... 71 

6.1.3       Result For Steering Angle ...................................................................................................................... 72 

6.2 Results ................................................................................................................................ 73 

6.3 Result Analysis ................................................................................................................... 73 

6.4 Recommendations ............................................................................................................... 77 

6.5 The-State-Of-The-Art Of This Technology .......................................................................... 78 

References................................................................................................................................ 79 

Appendix A............................................................................................................................... 80 

Appendix B ............................................................................................................................. 101 

Appendix C ............................................................................................................................. 102 



VII 
 

Appendix D............................................................................................................................. 104 

Appendix E ............................................................................................................................. 107 

Appendix F ............................................................................................................................. 109 

Appendix G............................................................................................................................. 113 

Appendix H............................................................................................................................. 116 

Appendix I .............................................................................................................................. 117 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



VIII 
 

 

 

 

LIST OF FIGURES 

Figure 2.1 Components of the car GPS system  [2]............................................................................................. 10 

Figure 2.3. GPS errors and biases. ...................................................................................................................... 12 

Figure 2.4. GIS an integrating technology ........................................................................................................... 13 

Figure 2.5. Overlap in UTM projection. .............................................................................................................. 14 

Figure 2.6. Longitude , Figure 2.7. Latitude ........................................................................................................ 15 

Figure 2.8. Vehicle Coordinate System ............................................................................................................... 16 

Figure 2.9 Longitudinal forces acting on a vehicle moving on an inclined road ................................................. 16 

Figure 2.10. The lateral system in terms of rotating coordinates....................................................................... 18 

Figure 2.11. CAN Bus ........................................................................................................................................... 20 

Figure 2.12. Differential Between CAN High and CAN Low ................................................................................ 21 

Figure 2.2. a small full path example [3] ............................................................................................................. 22 

Figure 3.1 .the simple block diagram for our project procedure ........................................................................ 26 

Figure 3.2. first experiment ................................................................................................................................ 28 

Figure 3.3 shows second experiment ................................................................................................................. 29 

Figure 3.5 . GPS Navigation Systems Flowchart .................................................................................................. 31 

Figure 3.5.Drawing Track By using auto cad to take dimensions ....................................................................... 32 

Figure 3.7 . The diagram below shows the main function of an interface. ........................................................ 35 

Figure 3.8 . Type of ELM327 interfaces............................................................................................................... 36 

Figure 3.7. shows Block diagram......................................................................................................................... 37 

Figure 3.8. shows Flowchart for warning massage. ............................................................................................ 38 

Figure 4.1. Geometric path tracking ................................................................................................................... 41 

Figure 4.3. The Vehicle Body 3DOF block [13] .................................................................................................... 41 

Figure 4.2. Road data from OpenStreetMap ...................................................................................................... 47 

Figure 4.4. calculating steering angle. ................................................................................................................ 47 

Figure 4.5. manually entering the value of the steering angle using kinematic steering block. ........................ 48 

Figure 4.6. Vehicle Path Tracking Using Stanley Controller ................................................................................ 48 

Figure 5.1. Mazda 3 skyactiv 2016 ...................................................................................................................... 50 

Figure 5.2. mazda 3 dimension ........................................................................................................................... 51 

Figure 5.3 .OBD II connector location for Mazda 3 ............................................................................................. 52 

Figure 5.4 . CAN high CAN low pin ...................................................................................................................... 52 

Figure 5.5 .OBD II connector location for Mazda 3 ............................................................................................. 53 

Figure 5.6 . signal CAN high and CAN low       Figure 5.7 . Micsig Tablet Oscilloscope Serial.............................. 54 

Figure 5.8 CAN bus shield with Arduino Uno        Figure 5.9 Interfacing with OBD of the car............................ 54 

Figure 5.10 Serial monitor in Arduino ................................................................................................................. 55 



IX 
 

Figure 5.11. Serial monitors in Arduino CANBUS shield v1.2.............................................................................. 56 

Figure 5.12a sunflower shield with an Arduino Uno  , Figure 5.12b sunflower with OBD to DP9 cable ............ 57 

Figure 5.13. Serial monitor in Arduino ................................................................................................................ 57 

Figure 5.14 streering angle sensor signal............................................................................................................ 59 

figure 5.15.a the signal A from sensor steering angle by myDAQ ...................................................................... 59 

figure 5.15.b the signal B from sensor steering angle by myDAQ ...................................................................... 60 

figure 5.15.C myDAQ .......................................................................................................................................... 60 

Figure 5.16 new block diagram for our project procedure ................................................................................. 61 

Figure 5.17 design a cylinder that put on a shaft ............................................................................................... 62 

Figure 5.18 GPS sensor connection .................................................................................................................... 64 

Figure 5.19AutoCAD drawing for Campus .......................................................................................................... 65 

Figure 6.1 data from ECU RPM and Vehicle speed ............................................................................................. 71 

Figure 6.2 data from ECU RPM and Vehicle speed MATLAB .............................................................................. 72 

Figure 6.3 Steering angle result .......................................................................................................................... 69 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



X 
 

 

 

 

 

LIST OF TABLES 

Table1.1. Action plan for the first semester. ......................................................................................................... 5 

Table1.2. Action plan for the second semester ..................................................................................................... 6 

Table 3.1 Distance moved before next update .................................................................................................... 27 

Table 3.2 Connect GPS sensor to Arduino ......................................................................................................... 30 

Table 3.4 PID’S OF Vehicle speed and steering angle ....................................................................................... 33 

Table 3.5   Comparison between eml327 and seeed canbus shield v2 ................................................................ 36 

Table 4.1 The equations use these variables(Stanley Controller) ....................................................................... 44 

Table 5.1. Specifications for mazda3-G skyactiv ............................................................................................... 51 

Table 5.2 GPS sensor and Arduino Uno pins ....................................................................................................... 64 

Table 6.1. Result for GPS in longitude and latitude ........................................................................................... 69 

Table 6.2. Result for GPS in X and Y .................................................................................................................... 70 

Table 6.3 result for All data from experiment .................................................................................................... 73 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



XI 
 

 

 

 

Abbreviations 

GPS: global positioning system. 

ADAS: Advanced Driver Assistance Systems. 

ACC: Adaptive Cruise Control. 

FCW: Forward Collision Warning. 

ISA: Intelligent Speed Assistance. 

LWD: Lane Departure Warning. 

LKS: Lane Keeping System. 

LCA: Lane Change Assistance. 

SA: Selective Availability. 

GIS:Geographic information system. 

ECE:United Nations Economic Commission for Europe. 

WHO:World Health Organization. 

VSA: Vehicle Stability Assist. 

VDC: Vehicle Dynamic Control. 

VSC: Vehicle Stability Control. 

ESP: Electronic Stability Program. 

ESC: Electronic Stability Control. 

DYC: Direct Yaw Control. 

iBooster:Electromechanical Brake Booster. 

IDE: integrated development environment 

PLC: and programmable logic controls 

PIC: Programmable Intelligent Computer 

Kb: kilo bite 

PC: personal computer 

mm: millimeter 

ms. : millisecond 

ADC: analog to digital converter 

ECU: electronic control module 

LED:Light-emitting diode 

 

 

 

 

 



XII 
 

 

 

List of symbols 

 

  
 

NO Symbols Description 

1 c.g Center of Gravity 

2 L Wheel Base 

3 δ Steering Angle 

4 ψ Orientation of the Vehicle 

5 V The velocity at the c.g of the vehicle 

6 β Slip Angle 

7 m Mass of the Vehicle 

8 ay Lateral Acceleration 

9 Fyf  and Fyr Lateral Tire Forces of the Front and Rear Wheels 

10 Vx ̇ Centripetal Acceleration 

11 αf   and  αr Slip Angle of the Front and Rear Wheel 

12 θvfand  θvr 
Is the Angle that the Velocity Vector Makes with the 

Longitudinal Axis of the Vehicle 

13 Cαf and  Cαr Front and Rear Cornering Stiffness 

14  ̇ yaw rate of vehicle body 

15 Iz yaw moment of inertia 



 

 



1 
 

1 
 

CHAPTER 1  

Introduction 
 

    This chapter provides an introduction to the project. It starts with a motivational statement, 

followed by the aims and objectives, a brief description, a discussion of existing work and finally 

the scope and constraints of the project. 

 

 

 

 

 

 

 

 

 

 

 

 



2 
 

 

1.1 Overview  

    As the worldwide use of automobiles increases rapidly, it has become even more important to 

develop vehicles that optimize the use of road and fuel resources, provide safe and comfortable 

transportation and at the same time have minimal impact on the environment. To meet these 

diverse and often conflicting requirements, automobiles are increasingly relying on electronics 

systems that employ sensors, actuators and feedback control. 

     Due to a variety of factors, private transportation is becoming more prevalent in Palestine. As 

a result, Palestinians are increasingly spending in securing their own vehicles. As a result, 

modern vehicles may be seen circulating on Palestinian roadways, implying that cutting-edge 

automotive technology is becoming more readily available. Driver assistance systems, car 

orientation and navigation systems, and other technologies are now available and require the 

attention of highly skilled and experienced technicians and engineers, which is a new trend for 

the local target industry. 

    Any system that can provide intelligent vehicle location and navigation information, with 

connection to ECU, that help us to ensure our safe drive, saving people life and cars. The vehicle 

assistance systems have been developed to obtain an optimal and safe driving experience. These 

systems have been developed using software that rely primarily on different sensors that increase 

the accuracy of the results and so better response. 

 

1.2 Motivation 

   The concept of self-driving cars has become increasingly popular. The automotive industry is 

investing heavily in the development of self-driving systems. This interest is largely due to the 

promising features and characteristics of modern self-driving systems. To begin with, studies 

estimate that approximately 1.35 million people die in traffic accidents in 2020 [14], most of 

which are mainly caused by human factors. The argument is, even though many of today's cars 

are offered with top-of-the-line passive safety features like seatbelts and airbags, it is still not as 

good as the active safety features of self-driving cars. These active features can help predict and 

avoid accidents before they even happen. Additionally, the autonomous and precise nature of 

self-driving cars can also help reduce fuel consumption and drive down emissions caused by 

road vehicles.  

    The importance and promising future of this technology have led to a great deal of research. In 

order to establish a functioning self-driving system, two main tasks must be carried out. To start 

with, the self-driving car must be capable of understanding its surrounding environment as well 

as realizing its position and orientation relative to that environment. The second, and perhaps the 

most distinguishable task, is mainly concerned with how to react properly to the detected 
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surroundings while progressing on route. This is done through years of research, testing and 

development. 

    Machine learning techniques used in self-driving systems have to undergo a training process. 

In supervised learning, the system is supplied with labeled training data. The labels indicate how 

the system should react to certain situations. However, the use of modern technologies such as 

GPS and GIS, such as what we used in this project, contribute to obtaining optimal driving, 

improving road use, saving fuel and obtaining safe driving. 

    Using GPS in vehicle dynamic is based on a set of main inputs “in a simplified way” such as 

the location of the vehicle and the road information “a lane” such as the permissible speed, the 

ideal speed in this lane or curve and the distance of the road and linking all this information to 

warn by display to type alarm speed and steering angle recommended in a timely manner.  

 

1.3 Problem statement 

     Every day 3700 people die due to accidents that occur on the road, either due to the 

shortcomings of one or both parties due to non-compliance with traffic laws or because of 

distraction, either due to work fatigue or the use of a smartphone while driving and Consequence 

Every year, approximately 1.35 million people die as a result of vehicle accidents [14]. An 

additional 20 million to 50 million people suffer non-fatal injuries and many become disabled as 

a result. Injuries caused by traffic accidents cause great economic losses to individuals, their 

families and entire nations. These losses arise from the cost of treatment and lost productivity for 

people who die or become disabled due to their injuries, and family members who are forced to 

miss work or school to care for the injured. Traffic accidents in most countries cost 3% of GDP. 

According to what was announced by the World Health Organization in June 2021. [14] 

      In real time the main objective of most car assistance systems is to provide safety for the 

driver and passengers while driving. With integration between GPS, GIS and some data from 

ECU in the vehicle with software have mathematical vehicle model to make process of data to 

send alarm to driver while driving then we can achieve better and safe driving. 

 

1.4 Aims and Objectives 

     The goal of this project is to develop a module to improving safety for driver and passenger as 

a driving assistance system, that are based on GPS, GIS, and some information from the vehicle's 

ECU, to process it using a dynamic mathematical model. 
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Specific objectives: 

 

 Transfer data from the GPS receiver to the GIS, specifying the car's location and 

direction.  

 Transfer data from GIS to the model, specifying the road data 

 Transfer data from ECU of the vehicle to the model. 

 Making simulation of the project. 

 Warning the driver in a timely manner can reduce the occurrence of accidents due to 

improper speed of the road by determine the safe speed at real time. 

 Preforming road tests. 

 

1.5 Importance 

    Improving the quality of vehicle driving, which is reflected in the security and stability of the 

vehicle, and the full control of the vehicle, which also helps in road management, as well as 

increasing the accuracy of control in self-driving cars. 

 

1.6 Methodology  

    This project links a vehicle dynamics system and a road navigation system together, 

developing a system that includes a GPS sensor (spark fun) work by Arduino UNO receiver, GIS 

map, microcontroller (Arduino Uno), and a processor that will be a personal respect to laptop 

computer CPU  with MATLAB as a programming tool to achieve the prototype goals. When a 

target control system is adopted and implemented as a final product system in automobiles, it 

will, of course, help reduce accidents and save lives while also promoting autonomous vehicle 

research. 

    To complete this project, a multidisciplinary team comprised of mechanical and computer 

system engineers will collaborate and work together to achieve the goal of the project. 

 

1.7 Project requirements 

• Hardware requirements:  Microcontroller (Arduino Uno) kit, GPS receiver kit, OBD 

(II) adapter and personal laptop, MCP2515 CAN Bus, Real Vehicle for test. 

• Software requirements: Arduino software, (Arc Map) GIS Software, MATLAB 

program. 

Explain the components in the chapter three and specify the details of each component. 
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1.8 Action plan  

    Over the course of two semesters, we will focus on creating the simulation process, and 

conducting hands-on experiments. The first stage consists of starting to define the idea and 

collecting data as shown in Tables 1.1. 

 First semester 

● Stage one: Identifying the project idea. 

● Stage two: Project requirement and collecting data. 

● Stage three: Modeling and calculation. 

● Stage four: Writing and documentation. 

● Stage five: Simulation using the MATLAB program 

In the second semester, evaluated in extracting data and experimenting with electronic cutting 

and connecting shown in Tables 1.2. 

 Second semester  

 Stage one: Extract data from ECU 

 Stage two: Preparing GPS and GIS data 

 Stage three: Connection and interfacing of systems 

 Stage four: Testing the Module 

 

Table1.1. retffsls tslofAlttclofAitlicncitcA.  

 

Task\Week 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

 

10 

 

11 

 

12 

 

13 

 

14 

 

15 

 

16 

 

Identifying the 

project idea. 

                

project 

requirement and 

collecting data 

                

Modeling and 

calculation 

                

Writing and 

documentation. 
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Table1.2. Action plan for the second semester 

 

Task\Week 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

 

10 

 

11 

 

12 

 

13 

 

14 

 

15 

 

16 

 

Extract data from ECU 

                

Preparing GPS and GIS 

data 

                

Connection and 

interfacing of systems 

                

Testing the Module                 
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Chapter 2 

Background 
 

   This chapter explores the different theoretical aspects of the project. It provides a clear and  

brief description of the techniques employed in this project. 
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2.1. Global Positioning System (GPS) 

2.2.1 Introduction 

  
   GPS technology is a promising technology that has applications in many aspects of life, 

such as in agriculture, law, sports, the automobile industry, etc. In the automobile industry, 

GPS is used in many forms. Any system capable of providing intelligent navigation and 

location information of a car, that will help us to avoid obstacles, crashes and drive safely. 

A Global Positioning System provides the answer to facilitate all these issues. 

   The purpose of GPS in this project is to build and develop an algorithm that takes in 

inputs from a GPS receiver and using those inputs to successfully navigate a car through a 

set of known points (from GIS) and called it as waypoints. The entire process is divided 

into three parts. In the first part, the car is placed at the starting waypoint and the GPS 

receiver modifies the visible GPS satellites and tries to calculate the current latitude and 

longitude. In the second part, the microcontroller algorithm calculates the direction of the 

next waypoint from the current waypoint. In the third step, the algorithm calculates the 

distance to the next waypoint to determine what the driver should do. 

 

2.2.2 How Car GPS works 
 

    GPS-based autonomous navigation is a very rapidly evolving technology. Researchers 

have developed several techniques for navigating between different external environments. 

This system is widely used in land vehicle navigation applications. The main advantage of 

using GPS is the data collected does not depend on previous readings, so localization errors 

do not grow over time. The downside is its precision. This depends on the environment and 

the number of satellites read. Generally, the problem of positioning (localization) the car 

consists of answering the question where am I?  

   During continuous motion, each satellite in the GPS constellation moves continuously 

sends radio signals in all directions. This information contains data about its trajectory.  

Device status and exact time. Car GPS receiver consists of an antenna and a computer with a 

screen. The receiver computer has a digital road map in memory (in some cases, on a CD-

ROM) that contains most roads in the country. Thus, all you need to do is just put in the 

details of your destination on the computer screen and then wait for the details the computer 

is going to give you. Figure 2.1 
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Figure 2.1 Components of the car GPS system  [2] 

   The computer clock and the satellite clocks are synchronized. Since the center of gravity of the 

earth influences the rate at which the clocks change, the clocks are not synchronized with respect 

to each other but as a function of their velocity with respect to the center of the coordinate 

system, which is the center of the earth. Packets from a satellite A contain a time stamp t1 as part 

of the packets. Upon receiving these packets, the receiver clock reads its time t2.  

   The frequency of transmission is f and the wavelength of transmitted radio signals is λ. [2] As a 

result of synchronization of the clocks, the computer determines the distance between the 

satellite and the car as follows:  

The one-way delay of radio signals is:                                t = t2 – t1   

The speed of radio signals is:                                               v = fλ 

The distance between satellite and car is:                        speed * delay = fλ (t2 – t1). 

2.2.3 How accurate is GPS? 
 

   There are several different levels of accuracy that can be achieved. The difference is 

equipment and techniques. In the commercial world, there have been roughly 4 generations 

of equipment, with some from the last three still in service. 
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Levels of accuracy provided by GPS.  

1. Standard Positioning Service (SPS): is a positioning and timing service, and available to 

all GPS users. Provides the lowest accuracy GPS position measurements, normally in the 

region of 5-10 m.  

 

2. Precise Positioning Service (PPS):  is a highly accurate military positioning, velocity and 

timing service. Provides the accuracy GPS position measurements, normally in the region 

of 2-9 m. 

 

 

3. Code-Phase differential GPS or DGPS:   is an enhancement to the Global Positioning 

System (GPS) which provides improved location accuracy. Provides the accuracy GPS 

measurements, normally in the region of 1-5 m. 

 

4. Carrier-Phase differential GPS or CDGPS:  is a much more accurate Global Positioning 

System Provides the accuracy in sub-meter. [4]  

 

2.2.4 Sources of GPS Errors  

GPS pseudo range measurements are affected by several types of random errors and 

biases (systematic errors). These errors may be classified as those originating at the satellites, 

those originating at the receiver, and those that are due to signal propagation (atmospheric 

refraction). 5]  

 

1. Errors from satellites include: 

● Ephemeris      

● Orbital errors 

● Satellite clock errors, and 

● The effect of selective availability. 

 

 

2. Errors from Receiver include: 

● Receiver clock errors  

● Multipath error  

● Receiver noise, and  

● Antenna phase centre variations. 
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3. Errors from signal propagation include: 

● The delays of the GPS signal as it passes through the ionospheric and tropospheric layers 

of the atmosphere.  

● In fact, it is only in a vacuum (free space) that the GPS signal travels, or propagates, at 

the speed of light. 

 

   In addition to the effect of these errors, the accuracy of the computed GPS position is also 

affected by the geometric locations of the GPS satellites as seen by the receiver. The more spread 

out the satellites are in the sky, the better the obtained accuracy Figure 2.3. 

 

 
Figure 2.3. GPS errors and biases. 

 

 

2.2.5 Geographical Information Systems GIS 
 

    is expressed in individual letters G – I – S and not at pronunciation GIS. It stands for 

Geographic or Geographical Information Systems. Geographic Information Science is an 

interdisciplinary field. It is built upon knowledge from geography, cartography, computer 

science, mathematics etc. 

    GIS can be defined as ‘A system for Capturing, storing, checking, integrating, manipulating, 

analyzing and displaying data which are spatially referenced to the Earth. This is normally 

considered to involve a spatially referenced computer database and appropriate applications 

software’. GIS needs spatial data; this makes it unique. [6] 

    Each of these separate thematic maps is referred to as a layer, coverage, or level. And each 

layer has been carefully overlaid on the others so that every location is precisely matched to its 
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corresponding locations on all the other maps. The bottom layer of this diagram is the most 

important, for it represents the grid of a locational reference system (such as latitude and 

longitude) to which all the maps have been precisely registered. shown in Figure 2.4 

 

   

 

    

  

 

 

Figure 2.4. GIS an integrating technology 

2.2.6 Navigation  
 

   Navigation is coordinated and goal – directed route following through space. It consists of two 

components: locomotion and way-finding. Locomotion is guidance through space in response to 

local sensorimotor information in immediate surrounds. It finds support surfaces, avoid obstacles 

and barriers, move through openings. Way-finding is planning and decision – making in 

response to non – local information, undertaken to reach goal.[6] 

2.2.7 Universal Transverse Mercator (UTM) 

   UTM provides georeferencing at high levels of precision for the entire globe. Established in 

1936 by the International Union of Geodesy and Geophysics, it is adopted by many national and 

international mapping agencies. It is commonly used in topographic and thematic mapping, for 

referencing satellite imagery and as a basis for widely distributed spatial databases. Universal 

Transverse Mercator (UTM) coordinates define two dimensional, horizontal, positions. Each 

UTM zone is identified by a number. UTM zone numbers designate individual 6° wide 

longitudinal strips extending from 80° South latitude to 84° North latitude as distortions at the 

poles is too large. Each zone has a central meridian. For example, Zone 14 has a central meridian 

of 99° west longitude. The zone extends from 96° to 102° west longitude. Locations within a 

zone are measured in meters eastward from the central meridian and northward from the equator. 

 shown in Figure 2.5 
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Figure 2.5. Overlap in UTM projection. 

 

 

 

 

 

2.2.8. Latitude and Longitude  

• Latitude  

   Two angles are sufficient to specify any location on the reference ellipsoid representing the 

Earth. Latitude is an angle between a plane and a line through a point. Imagine a flat plane 

intersecting an ellipsoidal model of the Earth. If the plane is coincident or parallel with the 

equator the result is a parallel of latitude. The equator is a unique parallel of latitude that also 

contains the center of the ellipsoid as shown in Figure 1.8. The equator is 0° latitude, and the 

North and South Poles are situated at +90° north and −90° south latitude, respectively. In other 

words, values for latitude range from a minimum of 0° to a maximum of 90°. shown in Figure 

2.7 [7] 

 

 

● Longitude  

Longitude is an angle between two planes. It is a dihedral angle. In other words, it is an angle 

measured at the intersection of two planes that are perpendicular to the plane of the equator. In 

the case of longitude, the first plane passes through the point of interest, the place whose 

longitude you wish to know, and the second plane passes through an arbitrarily chosen point 

representing zero longitude. Today, that place is Greenwich, England. The measurement of 

angles of longitude is imagined to take place where the two planes meet, and that place is the line 
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known as the polar axis. As it happens, that line is also the axis of rotation of the aforementioned 

ellipsoidal model of the Earth. And where they intersect that ellipsoidal model they create an 

elliptical line on its surface. This elliptical line is then divided into two meridians at the polar 

axis. One half becomes a meridian of east longitude, which is labeled E or given a positive (+) 

values, and the other half a meridian of west longitude, which is labeled W or given a negative 

(−) value as shown in Figure 2.6 [7] 

  

                    

                           Figure 2.6. Longitude                                   Figure 2.7. Latitude 

 

2.3. Vehicle Coordinate System: 
 

   There are 6 degrees of freedom in the vehicle, as shown in the Figure 2.8 This is fixed to the 

vehicle. X is longitudinal direction, Y is lateral, Z is vertical. Origin is at CG of the vehicle. The 

rotational motion along vehicle X is called roll, The rotational motion along vehicle Z is called 

Yaw, the rotational motion along vehicle Y is called pitch. 

In this project we focus in three dimensions in motion first longitudinal, lateral motion and their 

equation and yaw stability motion.     
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Figure 2.8. Vehicle Coordinate System 6 DOF 

2.3.1. LONGITUDINAL VEHICLE DYNAMICS 

   

 Consider a vehicle moving on an inclined road as shown in Figure 2.9. The external 

longitudinal forces acting on the vehicle include aerodynamic drag forces, gravitational forces, 

longitudinal tire forces and rolling resistance forces.  

 

 

 

 

Figure 2.9 Longitudinal forces acting on a vehicle moving on an inclined road 

 

   Longitudinal forces acting on a vehicle moving on an inclined road A force balance along the 

vehicle longitudinal axis yields [8] 
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2.3.2. Lateral dynamics 

 

   For understand the lateral motion of the vehicle, it is critical to model the lateral dynamics. 

Lateral motion control is used in various ADAS features like lane centering, lane keeping etc. 

The lateral dynamics models are also imperative in modeling vehicle behavior's during the lateral 

maneuver’s and can be used to study and design the system and components like we want to do 

in this project drive assistance system using GPS, GIS information and some data from vehicle.  

 

2.3.3. Bicycle Model 

   A lot of handling vehicle dynamics models are available of various complexities and accuracy. 

One of the simplest and most commonly used models is the bicycle model. The term bicycle is 

because both the front wheels are taken as single entity and also both the rear wheels making it a 

two-wheel model. 

 

 

2.3.4. Dynamic Bicycle Model of Lateral Vehicle 
 

      A bicycle model of the vehicle with two degrees of freedom is considered, as shown in 

Figure 2.10. The two degrees of freedom are represented by the vehicle lateral position y and the 

vehicle yaw angle ψ. The vehicle lateral position is measured along the lateral axis of the vehicle 

to the point O that is the center of rotation of the vehicle. The vehicle yaw angle ψ is measured 

with respect to the global X-axis. V denotes the longitudinal velocity of the vehicle at the 

Ignoring Road bank angle for now and applying Newton’s second law for motion along the         

Y- axis. 
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Figure 2.10. The lateral system in terms of rotating coordinates 

 

 

 
After some mathematical diversion we have a mathematical modal ready to use it.[8] 
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2.4. Engine Control Unit   

2.4.1 Introduction 

   Modern automobiles consist of a number of different computer components, called Electronic 

Control Units (ECUs). Each automobile contains from 20-100 of these devices, with each ECU 

being responsible for one or more particular features of the vehicle [9] 

   In order to make the vehicles smart and more safety new ECUs or nodes were added to the 

vehicles. It is not a problem. The problem was how to connect between these different ECUs to 

deliver the data from ECUs to another. 
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2.4.2. Controller Area Network  

   The Controller Area Network, or the CAN bus, is a network used in many vehicles today as it 

was standardized. It has been around a long time, and handles the internal communications 

between electronic control units. 

   Each ECU can communicate with all other ECUs using the CAN bus system, which eliminates 

the need for complex dedicated wiring. Specifically, an ECU can use the CAN bus to prepare 

and broadcast information (such as sensor data) (consisting of two wires, CAN low and CAN 

high) Figure 2.11. All other ECUs on the CAN network accept the broadcasted data, and each 

ECU can then check the data and decide whether to receive or ignore it.[10] 

 

Figure 2.11. CAN Bus 

 

2.4.3 How do CAN bus modules communicate? 
  For communication, the CAN bus employs two separate cables. CAN high and CAN low are 

the names of the cables. 

   Both lines carry 2.5V when the CAN bus is in idle mode. When data bits are sent, the CAN 

high line rises to 3.75V and the CAN low line falls to 1.25V, resulting in a 2.5V difference 

between the lines Figure 2.12. The CAN bus is not vulnerable to inductive spikes, electrical 

fields, or other noise because communication is based on a voltage difference between the two 

bus lines. As a result, the CAN bus is a solid option for networked communications on mobile 

equipment.[11] 
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Figure 2.12. Differential Between CAN High and CAN Low 

 

2.4.4 Autonomous Vehicle  
 

    An Autonomous Vehicle (AV) is a vehicle that can guide itself, as opposed to being controlled 

by human. The AV is a kind of driverless vehicle that has become in reality and is the art of 

driving using computers for future. AVs have been targeted due to: 1. increasing vehicle safety, 

2. reduction of accidents, 3. reduction of fuel consumption, 4. releasing of driver time and 

business opportunities, 5. new potential market opportunities, and 6. reduced emissions and dust 

particles.   [12] 

 

   In general, Autonomous Vehicle (AV) needs autonomous mobile navigation to find its:  

1. localization  

2. map building,  

3. path planning, and  

4. path tracking. In addition, it is required the AV obstacle avoidance through detection and 

classification. 
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2.5. Literature Review  

1. GPS tracking system for autonomous vehicles 

    The propose of this research paper is to be able to memorize a route based on Global 

Positioning System (GPS) by using a mechatronics system, rather than using pre-saved maps 

that are infrequently updated and do not include all roads of all countries. Experimental tests 

are conducted using a small-scale car equipped with the proposed mechatronics system.  

    In order to navigate a certain path, the driver has to drive the vehicle on the desired path 

only, and by using GPS to determine the current location, we can determine the distance to 

the next waypoint Figure 2.13, and so we can calculate the suitable speed and steering angle 

before the next waypoint.[13] 

 

Figure 2.13. a small full path example  
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Figure 2.14. Flowchart of control sequence of the tracking mode 

 

2. Developing Training Module on GPS Applications in Automotive Safety 

and Stability 2016 

   In this project contents allow the trainee to reach the know-how of this technology in addition 

to the future trends related to automotive technologies. The content includes acquiring GPS 

signals, using MATLAB routine to transfer data to GIS for determining the track, identifying the 

driving track curvature segments and estimating the safe driving speed using simplified vehicle 

stability model, and finally alarming the driver. 

   This project will address this engineering issue by considering vehicle stability system and 

navigation system on roads, developing a system consist of GPS sensor, microcontroller 

(Arduino) and a processor which will be a personal laptop by using MATLAB as a programming 

tool for achieving the prototype aims. This, of course, will help in decreasing accidents and save 

people lives when the target control system is adopted and applied in vehicles as a final product 

system, and it will help in autonomous cars researches. [14]  
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Figure2.15. Basic concepts of safety road speed distance 
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3 

 

CHAPTER 3 

3. System Design 
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3.1 Introduction  
 

This chapter introduces the design part of project. It provides a description to the different 

hardware options, the different components of the system, the logic flow and the interconnection 

of the components. 

3.1. 2 System Block Diagram 

In general, any system contains three basic concepts (input, processing, and output).  

Input – anything you do to activate the system or give the system to use. And Process the actual 

steps and function the system will perform. Then comes the stage. Output the result after doing 

all the steps. Figure 3.1 shows these concepts of our project in a simple block diagram. 

  

Figure 3.1 .the simple block diagram for our project procedure 
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3.2 Input 

 
   In this project, the system will receive data from three subsystems that are all working at the 

same time: GPS sensor, GIS data, and ECU data.  

 

3.2.1 GPS sensor 
   We will use it to receive the vehicle velocity and position in NMEA format (National Marine 

Electronics Association.) with respect to WGS 84(World Geodetic System) and with respect to 

GIS data which we will talk about later. And we will convert the NMEA format into UTM 

format (x, y, z). 

   To get good accuracy of the location determination we need to take in mind the update rate of 

the GPS sensor and its number of channels. 

 Update rate  

   Update rate is the number of times per second that will receive current position. A higher 

update rate decreases lag time and improves distance measurements and tracking especially 

when moving on a curvy route. For low-speed applications, an update rate of 0.1Hz is sufficient 

whereas 5 or even 10 Hz update rate is required for other high-speed navigation. As the speed is 

increased, more update rate is required to reduce blind area between two updates. Table 3.1 

below shows blind distances for a speed of 100km/h. with different update rate. 

Table 3.1 Distance moved before next update (Speed = 100km/h = 27.778m/s) 

 

Update rate (Hz) Distance (cm) 

1 2777.778 

5 555.556 

10 277.778 

20 138.889 
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 Number of channels  

 

 A GPS receiver is usually described by its number of channels. A receiver may have 6 channels, 

12 channels, or hundreds of channels. Each channel trying to communicate with only one 

satellite, as the number of channels increases the error will decrease. In this project the GPS 

sensor that will be used is “SparkFun Venus GPS” with update rate 1 Hz, which will be 

controlled by Arduino Uno microcontroller, the sensor data sheet will be attached in Appendix A 

of this book. 

 GPS test 

Practical experiment to make sure that the sensors work and the speed of reading takes place in 

accordance with changing circumstances. In the first experiment, the path inside the university 

has been taken, walking along a random path along a random length. We noticed that seven 

readings are taken of the same coordinates per second. Figure 3.2 shows first experiment 

 

Figure 3.2. first experiment 

In the second experiment, from the Wad-alqaf Reserve, Safa Halhoul Street, and take the starting 

point and the end point in this path, taking into account that the area does not have confusion 

such as high buildings and some influencing factors. As we talked about earlier, I fixed the speed 

at 50 kilometres per hour we noticed that the number of readings per second differed in the speed 

difference, although the speed was fixed. The number of readings was taken differently. Seven 

readings were taken bearing the same coordinates. Another time was taken six times to four 

times. The probable cause was the presence of noise due to the speed of moving from one 

location to another. Figure 3.3 shows second experiment 
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Figure 3.3 shows second experiment 

 Hardware recommendation. 

Spark Fun Venus GPS module is shown in the figure 3.4.  

 This module has an external antenna and built-in EEPROM.  

 Interface: RS232 TTL 

 Power supply: 3.3v 

 Default baud rate: 9600 bps 

 Works with standard NMEA sentences                                                              

 

 

 

Figure 3.4. Spark Fun Venus GPS 
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Table 3.2 Connect GPS sensor to Arduino 

Spark fun GPS Module Wiring to Arduino UNO 

VCC 3.3V 

TX TX pin defined in the software serial “Digital pin(11)” 

RX RX pin defined in the software serial “Digital pin(10)” 

GND GND 

In this project the sentences that will be used are the sentences stars with these prefixes 

$GPGGA,$GPRMC, $PGRMZ  by using these sentences we can import longitude, latitude, 

altitude. 
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Figure 3.5. GPS Navigation Systems Flowchart 
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3.2.2 GIS Data 

In this project, GIS data is used to translate and process street maps and take the coordinates and 

information to be obtained, and the street point’s coordinates import in a Universal Transverse 

Mercator format (UTM) which is a coordinate system uses a 2-dimensional cartesian coordinate 

system to give locations in meters on the surface of the earth with relative to the equator and 

greenwich as an origin. 

In the beginning, determined the requirements that needed for the path to be taken, where it has 

been focused on that the required road contains bends and slopes, then decided to take the Safa - 

Halhul road, after that determined the starting and ending points of the road, in order to draw the 

path on the AutoCAD program and determine the value of the radius and the length of the path, 

as well as specifying the coordinates of each point separately in the path. 

In summary, the current position of the vehicle coming from the GPS. it pair with the maps to 

take important information such as cornering and the radius of the street corner. Then send it to 

the model to produce the required recommendations. Figure 3.6 shows the information needed 

from the path, such as the radius of the bend and the coordinates between each point.

 

Figure 3.6.Drawing Track By using auto cad to take dimensions 

 

3.2.3 ECU Information  
 

In this section we will discuss how to collect real-time information from a vehicle control 

unit, we can collect information via OBD-II, which has become standard in most of all cars. 

OBD-II protocols over a CAN bus that will allow the real-time variables visualization for the 

vehicle state. 
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Measuring Modes 

The external device requests are divided into 9 services as shown in table 3.4 In order to 

request data, it is necessary to use PID’s, each PID corresponding to different vehicle data 

information, The PID samples that will be used in our project are shown in table 3.5 

 

 

 

Table 3.3. The PID samples 

 

 

Table 3.4 PID’S OF Vehicle speed and steering angle 

 

parameter service and PID 

(hex) 

Vehicle speed 01 0D 

RPM 01 0C 
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 CAN Bus Shield for Arduino 

Due to its relatively broad reach, communication speed, and high dependability, CAN is 

one of the most widely used bus communication protocols. It's widely used in control machines 

and diagnostics buses for automobiles. The CAN bus shield board uses the CAN MCP2515 

controller with SPI interface to give CAN communication to the Arduino. This one is in charge 

of controlling the CAN message pre-processing, as well as having a CAN MCP2551 transceiver 

to handle the bus electric interface Figure 3.6. 

Features 

 • It implements CAN 2.0B at speeds up to 1 Mbps(megabits per second); 

 • It has a SPI interface capable to operate at 10 MHz; 

 • It supports standard (11   bits), extended (29   bits), and remote frames; 

 • It has two receiving buffers for   storing priority messages, a 9-pin sub-D industrial 

standard, and 2 LED indicators.              

 • Its   operating voltage is 5 V, its   dimensions are   68   x 53 mm, and its weight is only 

50g. 

 

 

 

 

 

 

 

 

Figure 3.6. CAN Bus Shield 

 

 

 ELM 327 

There are numerous types of interfaces available for the ELM327 OBD, however the 

microcontroller chip developed by ELM Electronics is the most widely used. The 

ELM327, which supports all OBD protocols including KWP, PWM, ISO, and CAN, 

is the most extensively used in actual use. Its design is minimal power. Depending on 

the manufacturer and the terminal type, it can be purchased for as little as $3 to $20. 
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         Figure 3.7 . The diagram below shows the main function of an interface.  

 Type of ELM327 interfaces 

 

1.   ELM327 RS232 (RS or Series): Modern PCs are rapidly phasing out this sort of 

output. The price is lowest. 

2.   ELM327 USB: Needs a USB driver to be installed; the tethered connection is 

hardwired as opposed to wireless; advantages: All PCs come with a USB port. 

Given that it might be faster and more secure. 

3.   ELM327 Bluetooth: It has the benefit of being wireless and may be used with 

technology such as a computer or a smartphone like Wi-Fi; however, battery 

consumption should be taken into consideration. 

4.   ELM327 Wi-Fi: Because it has a wireless connection, any technology, like a 

computer or a smartphone, can utilize it. Additionally, the Wi-Fi interface's rapid, 

simple, and other benefits when using an iPhone or iPad 

 

The decision to utilize a Bluetooth adaptor was made since it is less expensive and 

often uses less power than a Wi-Fi adaptor. 
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Figure 3.8 . Type of ELM327 interfaces 

 

 

 

 

Table 3.5   Comparison between ELM327 and Seeed CAN Bus shield 

features 

SEEED CANBUS 

SHEILD 

V2 

SEED CANBUS 

SHEILD V1.2 

SUNFLOWER 

CAN SHEILD 

 

ELM 327 

microprocess MCP 2515 MCP 2521 MCP 2521 ELM 327 

Compatibility with 

Arduino 

 boards 

Designed 
specifically for use 

with Arduino boards 

Designed 
specifically for use 

with Arduino boards 

Designed 
specifically for use 

with Arduino boards 

Can be used with 

Arduino boards via a 

USB to Serial 
adapter or with a 

Bluetooth or WIFI 

module 

Coding language. C C C python 

operating voltage 5V 5V 5V 4.5V to 5.5V 

communication 

interface 
USB USB USB 

USB, Bluetooth, 

WiFi 

Compatibility with 

other 

 platforms 

Not designed for use 

with other platforms 

Not designed for use 

with other platforms 

Not designed for use 

with other platforms 

Can be used with 

other platforms 

through 
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 a USB to Serial 

adapter or with a 

Bluetooth 

 or WiFi module 

supported protocol 

SAE J1850 PWM 

(41.6 kbit/s)/ 

SAE J1850 VPW 

(10.4 kbit/s)/ 
ISO 9141-2 (5 baud 

init, 10.4 kbit/s) / 

ISO 14230-4 KWP 

(5 baud init,10.4 

kbit/s)/ 

ISO 14230-4 KWP 

(fast init, 10.4 

kbit/s)/ 

ISO 15765-4 CAN 

(11 bit ID, 500 

kbit/s)/ 

 

SAE J1850 PWM 

(41.6 kbit/s)/ 

SAE J1850 VPW 

(10.4 kbit/s)/ 
ISO 9141-2 (5 baud 

init, 10.4 kbit/s) / 

ISO 14230-4 KWP 

(5 baud init,10.4 

kbit/s)/ 

ISO 14230-4 KWP 

(fast init, 10.4 

kbit/s)/ 

ISO 15765-4 CAN 

(11 bit ID, 500 

kbit/s)/ 

 

SAE J1850 PWM 

(41.6 kbit/s)/ 

SAE J1850 VPW 

(10.4 kbit/s)/ 
ISO 9141-2 (5 baud 

init, 10.4 kbit/s) / 

ISO 14230-4 KWP 

(5 baud init,10.4 

kbit/s)/ 

ISO 14230-4 KWP 

(fast init, 10.4 

kbit/s)/ 

ISO 15765-4 CAN 

(11 bit ID, 500 

kbit/s)/ 

 

SAE J1850 PWM 

(41.6 kbit/s)/ 

SAE J1850 VPW 

(10.4 kbit/s)/ 
ISO 9141-2 (5 baud 

init, 10.4 kbit/s) / 

ISO 14230-4 KWP 

(5 baud init,10.4 

kbit/s)/ 

ISO 14230-4 KWP 

(fast init, 10.4 

kbit/s)/ 

ISO 15765-4 CAN 

(11 bit ID, 500 

kbit/s)/ 

 

Cost 34$ 34$ 34$ 20$ 

 

 

3.3. Processes  
In this part it will be explained the processes of project as shown in block diagram 3.1 after 

getting the data from GPS receiver to Arduino Uno board, GIS data  about rod specifications and 

have the required data from ECU of vehicle, then making the  process for data and have the 

output to display to driver. Figure 3.7  Block diagram for process 

     

 
 

Figure 3.7. Block diagram for process 

 

For more accurate results and better processing, a PC will be used to overcome the electrical 

problems, for achieving our project aims easier and faster. 
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In addition, the laptop provides an excellent programing tool which is MATLAB program; this 

program provides us flexibility, accessibility, and the ability for doing any coding algorithms 

with very simple language.  

3.4. Outputs  
 

The output of this system will be warning massage asking the driver to decrease the vehicle 

speed under the safe speed before reaching the corner and adjustment to steering angle increased 

or decreased the steer value this massage will appear before the corner with an appropriate time, 

in addition there will be sound warning to keep the driver attention with the track. Figure 3.8 

shows Flowchart for warning massage. 

 

 

Figure 3.8. Flowchart for warning massage. 

 

 

3.5 Table of cost  
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4 
Chapter 4 

Simulation 
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Introduction: 

The first step to apply the project in real ward is apply it in digital ward, in this project the 

simulation it will be done by MATLAB program by using coding, Simulink and driving scenario 

application in MATLAB to achieve the goal.   

  By the Simulink have the main Blok that receive the input data to make the calculation and the 

driving scenario prepare the GIS file and the specific data for the road and save it to use it in 

MATLAB, by coding it can request the file of road data and other file like reference throttle 

position. 

4.1. Simulink: 

4.1.1 Stanley Controller Block: 

We're going to look at the Stanley Controller itself. We'll take a look at its implementation, starti

g with generation of waypoints, and then moving on to actually implementing this, and building  

  the models in Matlab, and of course doing all of these visualizations of the vehicle motion. For 

those of you that don't know, the Stanley Controller has been around for a little while, and it's 

actually a path tracking algorithm. It was actually first used in real life in the Stanford racing 

team in the DARPA GRAND Challenge, and it's using and computing the steering wheel angle 

to follow a reference trajectory. Figure 4.1 

The path tracking approach is used by Sanford University’s Darpan Grand Challenge team. 

Different from the pure pursuit method using the rear axle as its reference point, Stanley method 

use the front axle as its reference point. Meanwhile, it looks at both the heading error and cross-

track error. In this method, the cross-track error is defined as the distance between the closest 

point on the path with the front axle of the vehicle. [12] 
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Figure 4.1. Geometric path tracking 

In this method, the center of the rear axle is used as the reference point on the vehicle. 

 

 

4.1.2 Vehicle Body 3DOF Dual Track 

The Vehicle Body 3DOF block implements a rigid two-axle vehicle body model to calculate 

longitudinal, lateral, and yaw motion. The block accounts for body mass and aerodynamic drag 

between the axles due to acceleration and steering. As shown in Figure 4.3. To determine the 

vehicle motion, the block implements these equations for the dual track. 

 

Figure 4.3. The Vehicle Body 3DOF block [13] 
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The block uses these equations to calculate the rigid body planar dynamics: 

  

If we set Axle forces to External longitudinal velocity, the block assumes a quasi-steady state for 

the longitudinal acceleration. 

     

 

For External forces  

 

External forces include both drag and external force inputs. The forces act on the vehicle CG: 

 

     

If we set Axle forces to External longitudinal forces, the block uses these equations: 
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 For Tire forces  

The block uses the ratio of the local and longitudinal and lateral velocities to determine the slip 

angles:  

   

 

 

The block uses the steering angles to transform the tire forces to the vehicle-fixed frame: 
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Table 4.1 The equations use these variables (Stanley Controller and Vehicle Body 3DOF) 

x,˙x,¨x Vehicle CG displacement, velocity, and acceleration, along 

the vehicle-fixed x-axis 

y,˙y,¨y Vehicle CG displacement, velocity, and acceleration, along 

the vehicle-fixed y-axis 

Ψ Rotation of the vehicle-fixed frame about the earth-fixed Z-

axis (yaw) 

r,˙Ψ Vehicle angular velocity, about the vehicle-fixed z-axis (yaw 

rate) 

Fxf, Fxr Longitudinal forces applied to front and rear wheels, along the 

vehicle-fixed x-axis 

Fyf, Fyr Lateral forces applied to front and rear wheels, along vehicle-

fixed y-axis 

Fxext, Fyext, Fzext External forces applied to vehicle CG, along the vehicle-

fixed x-, y-, and z-axes 

Fdx, Fdy, Fdz Drag forces applied to vehicle CG, along the vehicle-fixed x-

, y-, and z-axes 

Fxinput, Fyinput, Fzinput Input forces applied to vehicle CG, along the vehicle-fixed x-

, y-, and z-axes 

Mxext, Myext, Mzext External moment about vehicle CG, about the vehicle-fixed x-

, y-, and z-axes 

Mdx, Mdy, Mdz Drag moment about vehicle CG, about the vehicle-fixed x-, y-, 

and z-axes 

Mxinput, Myinput, Mzinput Input moment about vehicle CG, about the vehicle-fixed x-, y-

, and z-axes 

Izz Vehicle body moment of inertia about the vehicle-fixed z-axis 

Fxft, Fxrt Longitudinal tire force applied to front and rear wheels, along 

the vehicle-fixed x-axis 

Fyft, Fyft Lateral tire force applied to front and rear wheels, along 

vehicle-fixed y-axis 

Fxfl, Fxfr Longitudinal force applied to front left and front right wheels, 

along the vehicle-fixed x-axis 
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Fyfl, Fyfr Lateral force applied to front left and front right wheels, along 

the vehicle-fixed y-axis 

Fxrl, Fxrr Longitudinal force applied to rear left and rear right wheels, 

along the vehicle-fixed x-axis 

Fyrl, Fyrr Lateral force applied to rear left and rear right wheels, along 

the vehicle-fixed y-axis 

Fxflt, Fxfrt Longitudinal tire force applied to front left and front right 

wheels, along the vehicle-fixed x-axis 

Fyflt, Fyfrt Lateral force tire applied to front left and front right wheels, 

along the vehicle-fixed y-axis 

Fxrlt, Fxrrt Longitudinal tire force applied to rear left and rear right 

wheels, along the vehicle-fixed x-axis 

Fyrlt, Fyrrt Lateral force applied to rear left and rear right wheels, along 

the vehicle-fixed y-axis 

Fzf,Fzr Normal force applied to front and rear wheels, along vehicle-

fixed z-axis 

Fznom Nominal normal force applied to axles, along the vehicle-

fixed z-axis 

Fzfl,Fzfr Normal force applied to front left and right wheels, along 

vehicle-fixed z-axis 

Fzrl,Fzrr Normal force applied to rear left and right wheels, along 

vehicle-fixed z-axis 

M Vehicle body mass 

a, b Distance of front and rear wheels, respectively, from the 

normal projection point of vehicle CG onto the common axle 

plane 

H Height of vehicle CG above the axle plane 

D Lateral distance from the geometric centerline to the center of 

mass along the vehicle-fixed y-axis 

Hh Height of the hitch above the axle plane along the vehicle-

fixed z-axis 

Dh Longitudinal distance of the hitch from the normal projection 

point of tractor CG onto the common axle plane 

Hl Lateral distance from center of mass to hitch along the 

vehicle-fixed y-axis. 

αf, αr Front and rear wheel slip angles 

αfl, αfr Front left and right wheel slip angles 

αrl, αrr Rear left and right wheel slip angles 



46 
 

δf, δr Front and rear wheel steering angles 

δrl, δrr Rear left and right wheel steering angles 

δfl, δfr Front left and right wheel steering angles 

wf, wr Front and rear track widths 

Cyf, Cyr Front and rear wheel cornering stiffness 

Cyfdata, Cyrdata Front and rear wheel cornering stiffness data 

σf, σr Front and rear wheel relaxation length 

αfσ, αrσ Front and rear wheel slip angles that include relaxation length 

vwf, vwr Magnitude of front and rear wheel hardpoint velocity 

μf, μr Front and rear wheel friction coefficient 

μfl, μfr Front left and right wheel friction coefficient 

μrl, μrr Rear left and right wheel friction coefficient 

Cd Air drag coefficient acting along vehicle-fixed x-axis 

Cs Air drag coefficient acting along vehicle-fixed y-axis 

Cl Air drag coefficient acting along vehicle-fixed z-axis 

Crm Air drag roll moment acting about the vehicle-fixed x-axis 

Cpm Air drag pitch moment acting about the vehicle-fixed y-axis 

Cym Air drag yaw moment acting about the vehicle-fixed z-axis 

Af Frontal area 

 

4.2. Driving Scenario  

The Driving Scenario Designer is used to design synthetic driving scenarios. These scenarios are 

used to test the automatic driving systems. Create road and actor models using a drag-and-drop 

interface. Configure vision, radar, lidar, and INS sensors mounted on the ego vehicle. And it will 

be used to Import Road data from OpenStreetMap as shown in Figure 4.2 and use this road as a 

reference path in Stanley controller.  



47 
 

 

Figure 4.2. Road data from OpenStreetMap 

4.3. connect Simulink Block:   

 

   We have reference data include path and the road data, that we export it from website         

open street map, and then import these data to driving scenario to get the Reference path. Then 

save the driving scenario file with form “driving scenario. Mat” then the file is been called in the 

model to calculate the desired steering angle for the path using lateral Stanley controller. And 

display it in the desired steering angle block as shown in the Figure 4.4 below. 

 

 

Figure 4.4.  Blocks to calculate steering angle. 
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Then manually entering the value of the steering angle using kinematic steering block, and make 

it input in the pin “whlAngF” for the vehicle body 3DOF dual track block. As shown in the 

Figure 4.5. 

 

 

Figure 4.5. Employing a kinematic steering block to manually enter the steering angle's value.. 

 

 

 

 

Figure 4.6. Vehicle Path Tracking Using Stanley Controller 

 

After running the program Simulink, the result is been displayed on the 2D visualization screen. 
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5 
Chapter 5 

 

System Interface and Operations 
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Introduction 

This chapter introduces module construction. It demonstrates how hardware parts are connected 

and interface systems. As well as how gather data and perform calculations and review the steps 

that were taken for the practical application of the project, starting from extracting information 

from the vehicle to presenting the results. Building on the previous steps that reviewed in the 

previous units. 

 

5.1.  Extract and Prepare ECU data 

    The experimental method depends on identifying, extracting, storing and visualizing the 

variables in order to determine the desired procedures to be followed. In this project, we used 

and experimented with four electronic pieces to extract and display data. 

 CAN Bus shield V2 

 CAN Bus shield V1.2 

 Sun-flower CAN Shield V2 

 ELM327 

All of these pieces share one goal, which is to read CAN-BUS messages and specify the required 

information for model using PID. 

In the beginning, specify the major steps before starting to use electronic parts : 

1. Determine the type of vehicle that will be used in this project and selected Mazda 3 2016 

SKYACTIV-G 2.0 Automatic transaxle                                                                       

 

Figure 5.1. Mazda 3 skyactiv 2016 
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 Specification 

                  Table 5.1. Specifications for mazda3-G skyactive 

Parameter Vehicle specification 

Overall length 4,580 mm (180.3 in) 

Overall width 1,795 mm (70.7 in) 

Overall height 1,455 mm (57.3 in) 

Front tread Lf 1,555 mm (61.2 in) 

Rear tread Lr 1,560 mm (61.4 in) 

Wheelbase L 2,700 mm (106.3 in) 

Weights 1,815 kg (4,001 lbs) Front 975 kg (2,149 lbs) 

Rear 848 kg (1,870 lbs) 

Tire size 215/45R18 89W Front 250 kPa (36 psi) 

Rear 250 kPa (36 psi) 

Front Cornering Stiffness 56 kN/rad 

Rear Cornering Stiffness 65 kN/rad 

Centre of Gravity Height 0.533 m 

Wind Force Centre Height 0.5 m 

Air Drag Coefficient 0.31 

 

 

Figure 5.2. The vehicle dimension 

2. OBD II   

On-board diagnostics (OBD, ISO 15765) is a self-diagnostic and reporting capability that e.g. 

mechanics use to identify car issues. OBD2 specifies diagnostic trouble codes (DTCs) and 

real-time data (e.g. speed, RPM), which can be recorded via OBD2 loggers. 
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Figure 5.3 .OBD II connector location for Mazda 3 

3. Defined CAN high CAN low pin  

 

Figure 5.4 . CAN high CAN low pin 

 

4. Checking CAN Voltage 

1. Disconnect all devices except for the device being tested, then power the device on. 

2. Measure voltage on any of disconnected plugs between CAN HI and GROUND. The 

resulting voltage should be between 2.5 and 3.0VDC. 

3. At the same location, measure voltage between CAN LOW and GROUND. The resulting 

voltage should be between 2.5 and 2.0 VDC. 

A low voltage of 1.4VDC or less on either of these indicates a potential failure on the CAN port 

of the device. 
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If voltages are exactly 2.50 VDC, and do not change after several seconds, this indicates the 

device connected is powered but not broadcasting data 

 

 

5. CAN bus testing with an oscilloscope 

1. Connect the oscilloscope to CAN bus with a probe. 

o Connect channel 1 with CAN high and CAN low with channel 2 from OBD II 

 

             Figure 5.5 .OBD II connector location for Mazda 3 

 

2. Determine the scale of the signal and adjust your trigger.  The simplest and fastest way to do 

this is to press "Auto Scale" 

3. Turn on "Serial" on the front panel of the oscilloscope  
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 Figure 5.6 . signal CAN high and CAN low       Figure 5.7 . Micsig Tablet Oscilloscope Serial  

5.1.1 CAN Bus Shield V2 

The CAN Bus shield was interfaced with an Arduino Uno in accordance with the data sheet. 

There are a number of variables that need to be calibrated with the CAN Bus shield, Arduino, 

and can bus in the vehicle, such as choosing the SPI pin, followed by the can bus speed and 

author parameter, as shown in Figure 5.8. Then, using an OBD to DB9 connection, they were 

linked to the car's OBD and prepared and uploaded with the Arduino code "receive check" the 

code will be attached in appendix F” to read the messages that would be received from the CAN 

bus, as shown in Figure 5.9. 

 

Figure 5.8 CAN bus shield with Arduino Uno        Figure 5.9 Interfacing with OBD of the car  

As seen in Figure 5.10, no massage was given following that tune on the car. As a result, when 

trying again with a different code that is "CAN read," the same "no data" results were produced. 
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Figure 5.10 Serial monitor in Arduino 

 

Using inspection tools like the launch device, it has been verified the car's CAN bus's 

functionality. To confirm the connections and components, and also checke the voltage and 

resistance between the CAN-H and CAN-L lines. 

5.1.1.1 CAN Bus Shield V1.2  

The CAN bus shield V1.2 is the same as the V2 but in a different version; it has been paired with 

Arduino and the car OBD. We read the messages in the serial monitor after uploading the code to 

the shield, as shown in Figure 5.11. 
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Figure 5.11. Serial monitors in Arduino CANBUS shield v1.2 

The communication with the vehicle's CAN bus is success at this point, but couldn't able to 

determine the appropriate mode to read the data from the vehicle because there is no enough 

information to determine the appropriate mode. 

 

5.1.2 Sunflower Shield  

Because there is no data sheet for the sunflower shield or any reference site to obtain information 

about it, we encountered a problem dealing with it and setting the appropriate mode of operation. 

So, a several steps have been token to verify the shield's pins and the type of processor used in 

order to understand its characteristics and how to deal with it. 

 The sunflower shield is interfaced with an Arduino Uno in a suitable way, as demonstrated in 

Figure 5.12.a Then, prepared and uploaded the Arduino code "CAN read" “the code will be 

attached in appendix G”  to read the messages that the car's CAN bus will send, and then 

linked it to the OBD of the vehicle using an OBD to DB9 connector, as shown in Figure 5.12.b 
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Figure 5.12a Sun-flower shield with an Arduino Uno          Figure 5.12b Sun-flower with OBD to DP9 

cable  

After that tune on the car and no massage was received as shown in Figure 5.13. 

 

 

Figure 5.13. Serial monitor in Arduino 
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5.1.3 ELM and Python 

Hardware implementation 

We plugged ELM327 with OBD port then connect built-in laptop Bluetooth with ELM327 

Bluetooth adapter to communicate. 

 

Software implementation 

Install the last version of python-OBD library from pypi using pip install then Import python 

OBD in python script, after that use the python-OBD library to connect to an ELM327  via a 

Bluetooth port in Python To get information from the car, we send commands that query  for the 

required data(such RPM and vehicle speed). 

But about steering angle sensor data is not available, because the PIDs of steering angle is not 

implemented in stander in ISO 15765 in another ward is not general. 

Then by refer to service manual the data available for the sensor is: 

 Purpose, Function [13] 

 The steering angle sensor outputs the steering angle and steering angle reference point 

during the period which the EPS control module performs initial learning. 

Construction 

 The steering angle sensor is installed to the clock spring. 

 Consists of the gear which rotates together with the steering (magnet) and the magnetic 

sensor 

 

Operation 

 By the rotation of the gear (magnet) corresponding to the steering operation, the 

magnetic sensor output value changes. 

 The steering angle sensor outputs the magnetic sensor output to the start stop unit. 
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Figure 5.14 streering angle sensor signal [13] 

     But when we display the two signals by myDAQ (data acquisition tool) the signal is different 

from the desired output like we see in figure 5.15  

 

 

Figure 5.15.a the signal A from sensor steering angle by myDAQ 
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Figure 5.15.b The signal B from sensor steering angle by myDAQ 

 

 

 

 

 

 

 

 

Figure 5.15.C myDAQ 

 

Implementation issues: 

The latest Python OBD release was released in 2019 and doesn’t work in Python 3.10 and 3.11, 

so, to solve this problem an older version of  Python is installing which is (3.8.4). 
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5.2 Using a multi-turn potentiometer to extract steering angle 

After we were unable to extract the steering angle reading from the electronic control unit ECU and read 

the sensor signal itself, we took a third procedure by connecting the steering wheel shaft with a 

potentiometer  multiturn , so design a cylinder that put on a shaft that moves the potentiometer according 

to the rotation of the steering wheel in the next figure explain the new Block Diagram Figure 5.16  

 

Figure 5.16 block diagram for our project procedure 
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Determine the transmission ratio between the steering shaft and the potentiometer which is 1 to 

2, and Make a design for printing a cylinder using CATIA software figure 5.17 

 

Figure 5.17 Design for steering wheel with potontiometer sensor 

After printing the two cylinders, installed a Toothed belt on the two cylinders and installed it on 
the steering shaft Figure 5.18 
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Figure 5.18 Tools steering angle measurement 

After installing the potentiometer, write the special Arduino code “the code will be attached in 

appendix I”   in the potentiometer and map the readings and calibrate it. After calibrating it, and 

verified the readings using the lunch device figure 5.19 

 

Figure 5.19 Verified the readings using the lunch device 
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5.3 Receiving and Preparing GPS data 

5.3.1 GPS with Arduino connection 

The second step in implementing our system was the creation of a GPS control module (GPS 

receiver) that permits to receive GPS data (Long and Lati) from satellite. Two crucial 

components, the microcontroller (Arduino Uno) and the GPS sensor, were utilized for this 

purpose. As soon as this connection is established and power is supplied to the Arduino, the GPS 

sensor will begin immediately receiving data. These component connections are explained in the 

figure 5.20 and table 5.2 below. 

 

 

Figure 5.20 GPS sensor connection 

 

Table 5.2 GPS sensor and Arduino Uno pins 

Arduino  GPS sensor 

Vcc Vcc 

Ground Ground 

Digital pin 10  Tx 

 

5.3.2 Convert Longitude and latitude to X,Y,Z coordinate 

In order to convert GPS data ((Long and Lat) to X,Y,Z coordinate, by using  equations in python: 

using python code so read data from GPS sensor from Arduino and send longitude  and latitude 

as permitters for a the function long in python start read data and save data in file text file.    
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After all of this need convert text file to MATLAB file (m.file) and from driving scenario to 

generate reference point. 

 

5.4 Preparing GIS data  

At the beginning of work on the project, we took and drew an external path in the Halhul area, 

but due to the difficulty of leaving  campus university boundary  because the vehicle  an illegal 

that was taken from the police, we drew a path inside the university from Building B to 

Building C. so determined the path to be taken using the university campus AutoCAD drawings 

Figure 5.21 and taking the coordinates of the track using the GPS sensor and taking a file 

containing the route information in the OSM file format and inserting it into the MATLAB 

Driving Scenario to analyze the file. 

 

Figure 5.21 AutoCAD drawing for Campus 

 

After that, created the path inside the university campus on the OpenStreetMap website and 

uploaded all the characteristics and information of the path (the length of the path, its Cartesian 

coordinates, the type of road, the width of the road, the specified speed, etc.) on the site, for 

approval by the site Figure 5.22 
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Figure 5.22 Open-street map drawing for Campus 

After that, extract the road data in an OSM file (GIS File) This is to import it to MATLAB and 

use it in the Driving Scenario application Figure 5.23. 

 

Figure 5.23 Uplode GIS file in Driving Scenario application 
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5.5 Data linking with MATLAB Software  

First, prepare ECU data in m.file format for transfer to MATLB, including vehicle speed. Then gather data from 

the steering angle sensor and send it via Arduino to the MATLAB software. After that, take the previously 

prepared GIS file and send it to MATLAB (driving scenario). Figure 5.24 

 

 

Figure 5.24 Interfacing data with MATLAB 
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6 
Chapter 6 

 

Experimentation and Results 
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Introduction 

   The experiment test of any system is seen to be one of the most important step in system 

development since it allows the researcher to assess whether or not their work was done 

correctly. On the other hand, the experiment test is thought to be the primary source of 

system feedback. 

In addition to the experimental approach, results, and suggestions in this chapter, which also 

discusses the state-of-the-art of this technology, there are several key considerations that 

should be kept in mind when carrying out the experimental test. 

6.1 Experimentation 

6.1.1 Result for GPS and GIS test data  

As we explained in the previous units, we need information about the location of the vehicle 

and the information about the road. With the help of Sensor GPS, took the vehicle in a path 

and read the longitudinal and latitude table 6.1. 

 

Table 6.1. Result for GPS in longitude and latitude >>> above the table ??!!!   
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 Accuracy: The NMEA protocol includes a sentence (GPRMC) that reports the current 

accuracy of the GPS receiver's position. You could report this accuracy in meters or other 

units of distance. For example, you could report that the average accuracy was 3..0 meters, 

or that the maximum accuracy was 1 meter. 

 Result for converting WGS 84 Format into X, Y, Z coordinate (python) 

X Y 

4456074.49 3126503.786 

4456074.546 3126502.939 

4456074.872 3126502.283 

4456075.018 3126501.499 

4456075.344 3126500.843 

4456075.462 3126500.482 

4456075.698 3126499.762 

4456076.024 3126499.106 

4456076.44 3126498.513 

4456076.378 3126498.026 

4456076.795 3126497.433 

4456077.328 3126496.48 

4456077.357 3126496.056 

4456077.592 3126495.336 

4456077.71 3126494.976 

4456077.829 3126494.616 

4456077.765 3126494.13 

4456078.002 3126493.41 

4456078.21 3126493.113 

4456078.147 3126492.626 

4456078.473 3126491.97 

4456078.411 3126491.484 

4456078.827 3126490.89 

4456078.737 3126490.827 

Table 6.2. Result for GPS in X and Y  >>> above the table ??!!!!  
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6.1.2 Result for extract data from ECU  

We chose a way to test ELM327 python code to collect real time data for the speed of the 

vehicle and RPM. And we noticed that in some readings it gives NONE VALUE. So, we 

solved this problem by substituting the previous value for the NONE VALUES. Figure 6.1 

 

Figure 6.1 Data from ECU RPM and Vehicle speed 

There are two possibilities for the reason  

1. First possibility is that there is a momentary interruption of the Bluetooth connection 

during the experiment 

2. The second possibility is due to the very large transfer speed and also the presence of 

priority messages. 

After that, draw the results using the MATLAB program as show in Figure 6.2 
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Figure 6.2 Data from ECU RPM and Vehicle speed MATLAB 

 

6.1.3 Result for steering angle  

In this section, we review the extracted results of the steering angle that were recorded while 

taking the readings of the track experiment within the university campus in as show in Figure 

6.3. 

 

Figure 6.3 Steering angle result 
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All the readings extracted from the experiment we took for the track Table 6.3 the vehicle speed , RPM , the 

time of take the information from vehicle , GPS data (longitudes ,latitude ) every Colum has a name and 

unit . 

 

Table 6.3 Result for All data from experiment (speed ,RPM ,time,…etc.) 

6.2 Results  

When it comes to vehicle navigation and control, understanding the appropriate speed and 

steering angle of a vehicle is essential. This is why we decided to use MATLAB to extract this 

information through a program consisting of vehicle dynamics equations, geographic 

information systems (GIS), and global positioning system (GPS). The vehicle dynamics 

equations allow to calculate the motion of a vehicle as it moves through space, taking into 

account its mass, acceleration, speed, and trajectory. By connecting these equations to 

geographic information systems (GIS),  then  map the vehicle’s path and create a visual 

representation. This can then be combined with GPS to accurately pinpoint the vehicle’s current 

position and its desired destination. The result of this program is the ability to accurately extract 

the appropriate speed and steering angle for a given vehicle. This is invaluable for any kind of 

navigation or vehicle control, as it allows to precisely control the vehicle’s path without having 

to manually adjust its speed or angle. Overall, the combination of MATLAB, vehicle dynamics 

equations, GIS, and GPS has proven to be a powerful solution for extracting the appropriate 

speed and steering angle of a vehicle. It is a reliable and efficient way of controlling the vehicle’s 

path and ensuring that it stays on course. 
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Through the experiment on the path used, the results is previously clarified, and insert this data 

(the speed of the vehicle and the steering angle and GPS and GIS information) to the model used 

in the program MATLAB Simulink, is explained in chapter 4. The results were extracted 

(vehicle speed and steering angle) for each point, In the attached pictures, the results show the 

path drawn based on the information entered. The red point shows the correct and appropriate 

path for this road and The black dots show the actual path of the vehicle. As show in Figure 6.4 

 

 
Figure 6.4 Result of simulation for the path 
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Sources of error and the percentage of error rises as a result of several main factors, and it turns 

out  cannot obtain the ideal turn at high speeds and sharp turns, the model we use is 3 degree of 

freedom not 6 DOF like the real word and the some main input and constant of model like corner 

stiffness, center of gravity distance form ground …etc, this value take a general  value from 

literature review ,  The Figure 6.5 shown shows the big difference between the ideal turn and the 

turn resulting from the actual driving of the vehicle. 

 

Figure 6.5 Error of simulation for the path 
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Through the scale and the use of the Vehicle Dynamics Toolbox 3DOF, results were obtained on 

verticals such as  perfect speed,  perfect steering angle, normal reaction front and rear (lift and 

right wheel), and Psi ,r (psi dot) which are shown in the figure  6.6 . 
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Figure  6.6 Result from 3DOFvehicle dynamic block 

 

6.4 Recommendations  

Due to several system and devices used in this project, there were a group of source of error 

coming out these system and devices, so, our recommendation come to solve these error and 

develop the system relative to these system and devices. 

 

1. Related to GPS system 

a. Using more accurate GPS sensor with a higher update rate too. 

b. Using GPS sensor with more flexible antenna (longer antenna wire). 

c. Linking the GPS system with weather condition station to receive the weather condition, 

which is a primary factor for computing the coefficient of friction.  

d. Using a GPS sensor have a lower operation temperature, or a sensor reaching his 

operating temperature faster. 

 

2. Related to GIS system 

a. Prepare a GIS data for the rest of town, country. 

b. Preparing more accurate GIS data by increasing the number of point coordinate per unit 

distance, and also using more accurate photogrammetry for both street side. 

 

3. Related to the hardware component 

a. Using faster micro controllers. 

b. Exchange the Arduino micro controller with a micro processer, raspberry pi for example, 

which helps to dispense a personal laptop, and make the project closer to the final product. 

c. Develop a new simple control module that can import the vehicle speed from the vehicle itself.  

d. Try to use Seeed CAN Bus Shield V1.2 and learn how to select mood. 

 

4. Related to Data extraction 

Before choosing a vehicle, find out all the necessary information (PID) and make sure it is 

available. 
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For example, in our case, it is unable to find out the special PID in the vehicle's steering angle for 

the available vehicle  

  

5. Related to calculations  

a. Converting Model to Python code to facilitate real-time calculations and faster calculation. 

b. Using more sophisticated mathematical model instead of our simple model, which will be 

more accurate.  

 

6.5 The-State-of-the-Art of this technology  

The rapid evolution in vehicle electronic systems including GPS, was consequent to the 

developing tools and information, according to this project came to develop a training module 

for safety and stability application, as it should  , this system will be part of one or more future 

technology system, that serves the same object of this project, and as imagine that this project 

will integrate with some new technologies such as Autonomous vehicles  By the combination of 

this system and another smart models include stability control systems, navigation system and 

vehicle control systems, it will achieve an Autonomous vehicle control, which means the vehicle 

drives without the need for a driver, this trend could be one of the most interested state of the art 

technology that is related to this project. 
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Data Sheet  
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Venus638FLPx-L / Venus638FLPx-D  
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FEATURES  

   20Hz update rate  

   -148dBm cold start sensitivity  

   -165dBm tracking sensitivity  

   29 second cold start TTFF  

   3.5 second TTFF with AGPS  

   1 second hot start  

   2.5m accuracy  

   Multipath detection and suppression  

   Jamming detection and mitigation  

   SBAS (WAAS / EGNOS) support  

   7-day extended ephemeris AGPS  

   67mW full power navigation  

   Works directly with active or passive antenna  

   Internal flash for optional 75K point data logging  

   Supports external SPI flash memory data logging  

   Complete receiver in 10mm x 10mm x 1.3mm size  

   Contains LNA, SAW Filter, TCXO, RTC Xtal, LDO  

   Pb-free RoHS compliant  

  

  

  

    

   

  
Venus638FLPx is a high performance, low cost, single chip 

GPS receiver targeting mobile consumer and cellular 

handset applications. It offers very low power consumption, 

high sensitivity, and best in class signal acquisition and 

time-to-first-fix performance.   
  
Venus638FLPx contains all the necessary components of a 

complete GPS receiver, includes 1.2dB cascaded system 

NF RF front-end, GPS baseband signal processor, 0.5ppm 

TCXO, 32.768kHz RTC crystal, RTC LDO regulator, and 

passive components. It requires very low external 

component count and takes up only 100mm2 PCB footprint.    
  
Dedicated massive-correlator signal parameter search 

engine within the baseband enables rapid search of all the 

available satellites and acquisition of very weak signal. An 

advanced track engine allows weak signal tracking and 

positioning in harsh environments such as urban canyons 

and under deep foliage.  
  
The self-contained architecture keeps GPS processing off 

the host and allows integration into applications with very 

little resource.   
  
Venus638FLPx is very easy to use, minimizes RF layout 

design issues and offers very fast time to market.  
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Receiver Type      L1 frequency  
GPS C/A code  
SBAS capable  
65-channel architecture  
8 million time-frequency searches per second  
  

Accuracy        Position  2.5m CEP  
     

   
  Velocity  0.1m/sec  

     

   
  

  Timing  60ns  

Open Sky TTFF   

  

  29 second cold start  
3.5 second with AGPS  
1 second hot start  

Reacquisition    
  

  < 1s   

Sensitivity       -165dBm tracking  
     

   
  

  -148dBm cold start  

Update Rate    
  

  1 / 2 / 4 / 5 / 8 / 10 / 20 Hz (default 1Hz)  

Dynamics     
  

  4G  

Operational Limits  
  

  Altitude < 18,000m*1 , Velocity < 515m/s*1  

Datum      
  

  Default WGS-84  

Interface      
  

  UART LVTTL level  

Baud Rate     
  

  4800 / 9600 / 38400 / 115200   

Protocol        NMEA-0183 V3.01, GGA, GLL, GSA, GSV, RMC, VTG (default GGA, GSA, GSV, RMC, VTG)  
     

   
  

  SkyTraq Binary  

Main Supply Voltage    2.8V ~ 3.6V       (Venus638FLPx-L)  
     

   
  

  2.8V ~ 3.6V, 1.08V ~ 1.32V  (Venus638FLPx-D)  

Backup Voltage   
  

  1.5V ~ 6V  

Current Consumption  
  

      

  Enhanced 
Acquisition  

Low Power Acquisition  Tracking  

Venus638FLPx-L  68mA @ 3.3V  50mA @ 3.3V  29mA @ 3.3V  
Venus638FLPx-D  18mA @ 3.3V  

50mA @ 1.2V  
18mA @ 3.3V  
32mA @ 1.2V  

18mA @ 3.3V 
11mA @ 1.2V  

  
          Assuming 75% efficiency switch-mode 3.3V-to-1.2V regulator is used, then  

  Enhanced Acquisition  Low Power Acquisition  Tracking  
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BLOCK DIAGRAM  

  

  

  
  

  
  

Figure-1 GPS Receiver based on Venus638FLPx  
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VENUS638FLPx PIN-OUT DIAGRAM   

  

  

  
  

Figure-2b Venus638FLPx Pin-Out Diagram  
  

  

VENUS638FLPx PIN DEFINITION  

  

  

Pin Number  Signal Name  Type  Description  
1  RSTN  Input  Active LOW reset input, 3.3V LVTTL  
2  VCC33I  Power Input  Main voltage supply input, 2.8V ~ 3.6V  
3  NC    Not connected, empty pin  

4  PIO12  Bidir  General purpose I/O pin, 3.3V LVTTL  
5  GPIO2  Bidir  General purpose I/O pin, 3.3V LVTTL  
6  GPIO1  Bidir  General purpose I/O pin, 3.3V LVTTL  

7  LED / GPIO0  Bidir  Navigation status indicator or General purpose I/O. 3.3V LVTTL  
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8  GPIO24  Bidir  General purpose I/O pin. 3.3V LVTTL  
Also serves as Search Engine Mode Selection upon power-up  
1: low power acquisition mode  
0: enhanced acquisition mode  

9  BOOT_SEL  Bidir  Boot mode selection. Pull-high or pull-low using 10K resistor. Must 
not connect to VCC or GND directly. 1: execute from internal ROM  
0: execute from internal Flash memory  

10  GND  Power  System ground  
11  GND  Power  System ground  
12  GPIO22  Bidir  General purpose I/O pin, 3.3V LVTTL  
13  GPIO23  Bidir  General purpose I/O pin, 3.3V LVTTL  
14  GPIO20  Bidir  General purpose I/O pin, 3.3V LVTTL  
15  GND  Power  System ground  
16  GPIO29  Bidir  General purpose I/O pin, 3.3V LVTTL  
17  V12O_RTC  Power Output  1.2V LDO output for RTC & backup memory. Normally unused.  
18  VBAT  Power Input  Supply voltage for internal RTC and backup SRAM, 1.5V ~ 6V. 

VBAT should be powered by non-volatile supply voltage to have 
optimal performance. If VBAT is connected to VCC33I, powered off 
as VCC33I power is removed, then it’ll cold start every time. For 
applications that do not care lesser performance cold starting every 
time, this pin can be connected to VCC33I.  

19  GND  Power  System ground  
20  NC    Not connected, empty pin  

21  GND_RF  Power  RF section system ground  
22  GND_RF  Power  RF section system ground  
23  NC    Not connected, empty pin  

24  GND_RF  Power  RF section system ground  
25  GND_RF  Power  RF section system ground  
26  NC    Not connected, empty pin  

27  GND_RF  Power  RF section system ground  
28  GND_RF  Power  RF section system ground  
29  GND_RF  Power  RF section system ground  
30  NC    Not connected, empty pin  

31  GND_RF  Power  RF section system ground  
32  RFIN  Input  GPS signal input, connect to GPS antenna.  
33  GND_RF  Power  RF section system ground  
34  NC    Not connected, empty pin  

35  NC    Not connected, empty pin  

36  REG_ENA  Input  Connect to pin-2 VCC33I  
37  PIO14  Bidir  General purpose I/O pin, 3.3V LVTTL  
38  MOSI / PIO9  Bidir  SPI data output or general purpose I/O pin, 3.3V LVTTL  
39  MISO / PIO8  Bidir  SPI data input or general purpose I/O pin, 3.3V LVTTL  
40  P1PPS  Output  1 pulse per second output. Active after position fix; goes HIGH for 

about 4msec, 3.3V LVTTL  
41  SPI_CLK / PIOO7  Output  SPI clock or general purpose output pin, 3.3V LVTTL  
42  RXD0  Input  Received input of the asynchronous UART port. Used to input 

binary command to the GPS receiver. 3.3V LVTTL  
43  SPI_CSN / PIO6  Bidir  SPI chip select output or general purpose I/O pin, 3.3V LVTTL  
44  TXD0  Output  Transmit output of the asynchronous UART port. Used to output 

standard NMEA-0183 sentence or response to input binary 
command. 3.3V LVTTL  
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45  SDA  Bidir  I2C data, 3.3V I/O  
46  SCL  Bidir  I2C clock, 3.3V I/O  
47  GPIO4  Bidir  General purpose I/O pin, 3.3V LVTTL  
48  GPIO3  Bidir  General purpose I/O pin, 3.3V LVTTL  
49  GND    System ground  

50  PIO5  Output  General purpose output pin, 3.3V LVTTL  
51  PIO11  Bidir  General purpose I/O pin, 3.3V LVTTL  
52  RXD1  Input  Received input of the asynchronous UART port.   

3.3V LVTTL  
53  GPIO25  Bidir  General purpose I/O pin, 3.3V LVTTL  
54  GPIO30  Bidir  General purpose I/O pin, 3.3V LVTTL  
55  PIO15  Bidir  General purpose I/O pin, 3.3V LVTTL  
56  NC / V12    NC pin for Venus638FLPx-L   

1.2V supply input pin for Venus638FLPx-D  
57  TXD1  Output  Transmit output of the asynchronous UART port.   

3.3V LVTTL  
58  VCC33I  Power Input  Main voltage supply input, 2.8V ~ 3.6V  
59  GPIO28  Bidir  General purpose I/O pin, 3.3V LVTTL  
60  GND  Power  System ground  
61  GND_RF  Power  RF section system ground  
62  GND_RF  Power  RF section system ground  
63  GPIO6  Bidir  General purpose I/O pin, 3.3V LVTTL  
64  GND  Power  System ground  
65  GND_RF  Power  RF section system ground  

66,67,68  NC      
69  GND_RF  Power  RF section system ground  

  
When using Venus638FLPx-L to replace Venus634FLPx, pin-45 ~ pin-69 can all be left unconnected. When 
using Venus638FLPx-D, 1.2V need to be supplied at pin-56 The NC pins are to be left unconnected.  
DC CHARACTERISTICS OF DIGITAL INTERFACE   

  
Below is when VCC3I is at nominally 3.3V  
Parameter  Min.  Typ.  Max.  Units  
Input Low Voltage      0.8  Volt  

Input High Voltage  2.0      Volt  

Output Low Voltage, Iol = 2 ~ 16mA      0.4  Volt  

Output High Voltage, Ioh = 2 ~ 16mA  2.9      Volt  
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MECHANICAL DIMENSION   

  
  

RECOMMENDED PCB FOOTPRINT   

  

    

  

  



89 
 

RECOMMENDED REFLOW PROFILE   

  

  

  

Temperature (℃)  25  82.5  140  150  160  170  180  190  200  225  250  250  215  185  155  125  95  65  35  

Time(minute)  
0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5  5.5  6  6.5  7  7.5  8  8.5  9  

  

 Profile Description    SnPb Eutectic Process    Lead Free Process     

Preheat    

Maximum Temperature   100+/-10 ℃   140+/-10 ℃  

Time(ΔT)   40~60s   50~70s  

 Ramp-
Up  

   

Ramp-Up Rate   1 ℃/s Max.   1 ℃/s Max.  

Time(ΔT)   120~150s   160~200s  

 Reflow     

Maximum Temperature   Peak Temp.   Peak Temp.  

Minimum Temperature   180+/-5℃   200+/-10℃  

Peak Temperature   220+/-2℃   250+/-2℃  
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Time(ΔT) during Peak  

Temp.+/-2℃  

 10~30s   20~40s  

Reflow Time(ΔT)   120~150s   120~150s  

 Cooling     

Cooling Rate   1.5 ℃/s Max   1.5 ℃/s Max  

Time(ΔT)   60~120s   150~180s  
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APPLICATION CIRCUIT INTERFACE SIGNALS  

  
GND_A:        RF ground  
  
LED:         Signal to indicate GPS position status, 3.3V LVTTL.  

Active low for no-fix, toggle every second after position fix.  
  
PSE_SEL:       Search engine mode selection, sampled only at end of power-on reset cycle  

1: Low power acquisition mode  
0: Enhanced acquisition mode  

  
GND:         Digital ground  
  
P1PPS:        1 pulse per second time-mark (3.3V LVTTL)  
  
RSTN:        Active low reset input  
  
VCC33:        3.3V power input  
  
FRXD0:         UART input (3.3V LVTTL)  
  
FTXD0:        UART output (3.3V LVTTL)  
  
VBAT:        Battery-backed RTC and SRAM supply input, 1.5V ~ 6V, must not be unconnected.  
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APPLICATION INFORMATION  

  
1. For fast-rising power supply, a simple series R/C reset delay to pin-1, RSTN, as indicated in the application circuit is suitable. 

For system having slow-rising power supply, a reset IC providing 2~5ms reset duration may be necessary.  
  

2. The RF input of Venus638FLPx is already matched to 50-ohm. Passive antenna matched to 50-ohm can be directly applied.  
  
3. For using Venus638FLPx with active antenna, one with gain in range of 10~30dB and noise figure < 2dB can be used. Power 

to the active antenna needs to be applied externally.  
  
4. Pin-18 VBAT supplies backup power to the real-time clock and backup SRAM for fast startup. For portable applications where 

there is battery with voltage in range of 1.5V ~ 6.0V as the main source, the VBAT pin can be directly connected to it. If VBAT 

is connected to main power as pin-2, no supply voltage as Venus638FLPx is powered off, then it’ll cold start every time and 

GPS performance will not be optimal.  
  
5. Like BGA device, the Venus638FLPx is moisture sensitive. It needs to be handled with care to void damage from moisture 

absorption and SMT re-flow. The device should be baked for 24 hours at 125-degC before mounting for SMT re-flow if it has 

been removed from the protective seal for more than 48*1hours.  

  

6. The supported SPI Flash memory verified for data logging application are:  
  

Manufacturer     Device ID   Size  

EON             EN25F040       4Mbit  
EON            EN25F080      8Mbit MXIC           

MX25L400      4Mbit  
 MXIC            MX25L800       8Mbit  
 MXIC            MX25L1605      16Mbit  
 MXIC            MX25L3205      32Mbit  
 MXIC            MX25L6405      64Mbit  
 WINBOND      W25X40          4Mbit  
 WINBOND      W25X80          8Mbit  
 WINBOND      W25X16          16Mbit  
 WINBOND      W25X32          32Mbit  
 WINBOND      W25X64          64Mbit  
 SST             SST25LF040     4Mbit  
 SST             SST25LF080     8Mbit  
 SST             SST25VF016     16Mbit  
 SST             SST 25VF032     32Mbit  
  
7.  The P1PPS pin must not be pulled-high during power on reset, or it’ll enter into debug mode and freeze.  
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*1: Actual will be longer, moisture sensitivity level still undergoing verification.  
  

SLEEP MODE   

  

For application requiring sleep mode, it can be implemented using regulator with enable control as below figure 

shows. To put Venus638FLPx to sleep, the power to Venus638FLPx is cut off by disabling the regulator via host 

processor GPIO pin. In sleep mode, VBAT consume less than 10uA. Fast start up operation is provided by keeping 

supply voltage to VBAT constant, retaining the internal data and keep RTC running while Venus638FLPx is put to 

sleep or when supply 3.3V power is removed.  

  

  

  
  

For applications needing sleep mode but cannot have extra cost of adding a rechargeable backup supply battery, it 

can be implemented as below figure shows. It will provide fast start up when Venus638FLPx is put to sleep and 

awakened, but will cold start every time when the 3.3V supply voltage is removed and re-applied again.  

  

  
  

  
When using sleep mode, add 10K series resistor on pin-42 RXD0 and pin-44 TXD0.   
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NMEA MESSAGES  
The full descriptions of supported NMEA messages are provided at the following paragraphs.  

  

GGA - Global Positioning System Fix Data  

Time, position and fix related data for a GPS receiver.   

  

Structure:  

$GPGGA,hhmmss.sss,ddmm.mmmm,a,dddmm.mmmm,a,x,xx,x.x,x.x,M,,,,xxxx*hh<CR><LF>  

1               2              3            4             5  6  7   8    

9           10    11     

Example:   

$GPGGA,111636.932,2447.0949,N,12100.5223,E,1,11,0.8,118.2,M,,,,0000*02<CR><LF>  

  

Field  Name  Example  Description  

1  UTC Time  111636.932  UTC of position in hhmmss.sss format, (000000.000 ~ 235959.999)  

2  Latitude  2447.0949  Latitude in ddmm.mmmm format  

Leading zeros transmitted  

3  N/S Indicator  N  Latitude hemisphere indicator, ‘N’ = North, ‘S’ = South  

4  Longitude  12100.5223  Longitude in dddmm.mmmm format  

Leading zeros transmitted  

5  E/W Indicator  E  Longitude hemisphere indicator, 'E' = East, 'W' = West  

6  GPS quality 

indicator  

  

1  GPS quality indicator  

0: position fix unavailable  

1: valid position fix, SPS mode   

2: valid position fix, differential GPS mode  

3: GPS PPS Mode, fix valid  

4: Real Time Kinematic. System used in RTK mode with fixed integers 

5: Float RTK. Satellite system used in RTK mode. Floating integers  

6: Estimated (dead reckoning) Mode  

7: Manual Input Mode  

8: Simulator Mode  

7  Satellites Used  11  Number of satellites in use, (00 ~ 12)  

8  HDOP  0.8  Horizontal dilution of precision, (00.0 ~ 99.9)  

9  Altitude  108.2  mean sea level (geoid), (-9999.9 ~ 17999.9)  

10  DGPS Station ID  0000  Differential reference station ID, 0000 ~ 1023  

NULL when DGPS not used  
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11  Checksum  02    

GLL – Latitude/Longitude  

Latitude and longitude of current position, time, and status.  

  

Structure:  

$GPGLL,ddmm.mmmm,a,dddmm.mmmm,a,hhmmss.sss,A,a*hh<CR><LF>  

             1              2            3             4               5       6  7   8  

  

Example:   

$GPGLL,2447.0944,N,12100.5213,E,112609.932,A,A*57<CR><LF>  
  

Field  Name  Example  Description  

1  Latitude  2447.0944  Latitude in ddmm.mmmm format  

Leading zeros transmitted  

2  N/S Indicator  N  Latitude hemisphere indicator  

‘N’ = North  

‘S’ = South  

3  Longitude  12100.5213  Longitude in dddmm.mmmm format  

Leading zeros transmitted  

4  E/W Indicator  E  Longitude hemisphere indicator  

'E' = East  

'W' = West  

5  UTC Time  112609.932  UTC time in hhmmss.sss format (000000.000 ~  

235959.999)  

6  Status  A  Status, ‘A’ = Data valid, ‘V’ = Data not valid  

7  Mode Indicator  A  Mode indicator  

‘N’ = Data not valid  

‘A’ = Autonomous mode  

‘D’ = Differential mode  

‘E’ = Estimated (dead reckoning) mode  

‘M’ = Manual input mode  

‘S’ = Simulator mode  

8  Checksum  57    
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GSV – GNSS Satellites in View  

Number of satellites (SV) in view, satellite ID numbers, elevation, azimuth, and SNR value. Four satellites 

maximum per transmission.   

  

Structure:  

$GPGSV,x,x,xx,xx,xx,xxx,xx,…,xx,xx,xxx,xx *hh<CR><LF>  

        1  2  3   4   5    6    7       4   5    6    

7    8   

Example:   

$GPGSV,3,1,12,05,54,069,45,12,44,061,44,21,07,184,46,22,78,289,47*72<CR><LF>  

$GPGSV,3,2,12,30,65,118,45,09,12,047,37,18,62,157,47,06,08,144,45*7C<CR><LF>  

$GPGSV,3,3,12,14,39,330,42,01,06,299,38,31,30,256,44,32,36,320,47*7B<CR><LF>  

  

Field  Name  Example  Description  

1  Number of message  3  Total number of GSV messages to be transmitted (1-3)  

2  Sequence number  1  Sequence number of current GSV message  

3  Satellites in view  12  Total number of satellites in view (00 ~ 12)  

4  Satellite ID  05  Satellite ID number, GPS: 01 ~ 32, SBAS: 33 ~ 64 (33 =  

PRN120)  

5  Elevation  54  Satellite elevation in degrees, (00 ~ 90)  

6  Azimuth  069  Satellite azimuth angle in degrees, (000 ~ 359 )  

7  SNR  45  C/No in dB (00 ~ 99)  

Null when not tracking  

8  Checksum  72    
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GSA – GNSS DOP and Active Satellites  

GPS receiver operating mode, satellites used in the navigation solution reported by the GGA or GNS sentence 

and DOP values.  

  

  

Structure:  

$GPGSA,A,x,xx,xx,xx,xx,xx,xx,xx,xx,xx,xx,xx,xx,x.x,x.x,x.x*hh<CR><LF>  

1  2  3   3   3   3   3   3   3   3   3   3   3   3   

4    5    6     7   

Example:   

$GPGSA,A,3,05,12,21,22,30,09,18,06,14,01,31,,1.2,0.8,0.9*36<CR><LF>                       

Field  Name  Example  Description  

1  Mode  A  Mode   

‘M’ = Manual, forced to operate in 2D or 3D mode  

‘A’ = Automatic, allowed to automatically switch 2D/3D  

2  Mode  3  Fix type  

1 = Fix not available  

2 = 2D   

3 = 3D  

3  Satellite used 1~12  05,12,21,22,3 

0,09,18,06,14, 

01,31,,  

Satellite ID number, 01 to 32, of satellite used in solution, 

up to 12 transmitted  

4  PDOP  1.2  Position dilution of precision (00.0 to 99.9)  

5  HDOP  0.8  Horizontal dilution of precision (00.0 to 99.9)  

6  VDOP  0.9  Vertical dilution of precision (00.0 to 99.9)  

7  Checksum  36    
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RMC – Recommended Minimum Specific GNSS Data  

Time, date, position, course and speed data provided by a GNSS navigation receiver.  

  

Structure:  

$GPRMC,hhmmss.sss,A,dddmm.mmmm,a,dddmm.mmmm,a,x.x,x.x,ddmmyy,,,a*hh<CR><LF>  

                1       2            3              4             5             6  7    8        9         10  11  

Example:   

$GPRMC,111636.932,A,2447.0949,N,12100.5223,E,000.0,000.0,030407,,,A*61<CR><LF>  

  

Field  Name  Example  Description  

1  UTC time  0111636.932  UTC time in hhmmss.sss format (000000.00 ~  

235959.999)  

2  Status  A  Status  

‘V’ = Navigation receiver warning  

‘A’ = Data Valid  

3  Latitude  2447.0949  Latitude in dddmm.mmmm format  

Leading zeros transmitted  

4  N/S indicator  N  Latitude hemisphere indicator  

‘N’ = North  

‘S’ = South  

5  Longitude  12100.5223  Longitude in dddmm.mmmm format  

Leading zeros transmitted  

6  E/W Indicator  E  Longitude hemisphere indicator  

'E' = East  

'W' = West  

7  Speed over ground  000.0  Speed over ground in knots (000.0 ~ 999.9)  

8  Course over ground  000.0  Course over ground in degrees (000.0 ~ 359.9)  

9  UTC Date  030407  UTC date of position fix, ddmmyy format  
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10  Mode indicator  A  Mode indicator  

‘N’ = Data not valid  

‘A’ = Autonomous mode  

‘D’ = Differential mode  

‘E’ = Estimated (dead reckoning) mode  

‘M’ = Manual input mode  

‘S’ = Simulator mode  

11  checksum  61    

VTG – Course Over Ground and Ground Speed  

The Actual course and speed relative to the ground.  

  

Structure:  

GPVTG,x.x,T,,M,x.x,N,x.x,K,a*hh<CR><LF>  

             1            2       3      4   5     

  

Example:   

$GPVTG, 000.0,T,,M,000.0,N,0000.0,K,A*3D<CR><LF>  

  

Field  Name  Example  Description  

1  Course  000.0  True course over ground in degrees (000.0 ~ 359.9)  

2  Speed  000.0  Speed over ground in knots (000.0 ~ 999.9)  

3  Speed  0000.0  Speed over ground in kilometers per hour (0000.0 ~  

1800.0)  

4  Mode  A  Mode indicator  

‘N’ = not valid  

‘A’ = Autonomous mode  

‘D’ = Differential mode  

‘E’ = Estimated (dead reckoning) mode  

‘M’ = Manual input mode  

‘S’ = Simulator mode  

5  Checksum  3D    
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ORDERING INFORMATION  

  

Part Number  Description  

Venus638FLPx-L  Flash version GPS receiver (internal 1.2V LDO version)  

Venus638FLPx-D  Flash version GPS receiver (external 1.2V version)  

  

  

  

  

  

  

  
SkyTraq Technology, Inc.  
4F, No.26, Minsiang Street, Hsinchu, Taiwan, 300  
Phone:   +886 3 5678650  
Fax:   +886 3 5678680  
Email:  info@skytraq.com.tw   
  

  

  
© 2008 SkyTraq Technology Inc. All rights reserved.   
Not to be reproduced in whole or part for any purpose without written permission of SkyTraq Technology Inc (“SkyTraq”). 

Information provided by SkyTraq is believed to be accurate and reliable. These materials are provided by SkyTraq as a service to 
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Appendix B 

multi-turn potentiometer Data sheet  
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Appendix C 

 Working code for converting WGS 84 Format into UTM (python) 

import serial 

import utm 

import math 

import keyboard 

 

def latlon_to_xyz(lat,lon): 

    """ 

    Convert angluar to cartesian coordiantes 

 

    latitude is the 90deg - zenith angle in range [-90;90] 

    lonitude is the azimuthal angle in range [-180;180] 

    """ 

    r = 6371 # https://en.wikipedia.org/wiki/Earth_radius 

    theta = math.pi/2 - math.radians(lat) 

    phi = math.radians(lon) 

    x = r * math.sin(theta) * math.cos(phi) # bronstein (3.381a) 

    y = r * math.sin(theta) * math.sin(phi) 

    z = r * math.cos(theta) 

    return [x,y,z] 

serialPort = serial.Serial(port = "COM8", baudrate=9600) 

serialString = "" 

lat="" 

long="" 
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with open('awfa.txt','w') as file: 

    with open('rami.txt','w') as rami: 

        while(1): 

            if keyboard.is_pressed("q"): 

                break 

            # Wait until there is data waiting in the serial buffer 

            if(serialPort.in_waiting > 0): 

 

                # Read data out of the buffer until a carraige return / new line is found 

                serialString = serialPort.readline() 

                lat=serialString[5:16] 

                long=serialString[24:35] 

                lat2=lat.decode('Ascii') 

                long2=long.decode('Ascii') 

                flat=float(lat2) 

                flong=float(long2) 

                u = latlon_to_xyz(flat,flong) 

                print(serialString.decode('Ascii')) 

                print(u) 

                file.write(str(u)+"\n") 

                rami.write(serialString.decode('Ascii')) 

        # Print the contents of the serial data  

  # print(serialString.decode('Ascii')) 

 

 

       # serialPort.write(b"Thank you for sending data  
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Appendix D 

 The code used to extract data from the electronic control unit  ECU (Speed 

and RPM) - Python 

import obd 

import time 

import serial 

import keyboard 

def replace_none_with_prev(values): 

  prev_value = None 

  for i, value in enumerate(values): 

    if value is None: 

      values[i] = prev_value 

    else: 

      prev_value = value 

  return values 

connection = obd.OBD('\\.\\COM5',fast=False)  

serialPort = serial.Serial(port = "COM7", baudrate=9600) 

sp=[] 

rp=[] 

serialString = "" 

i=0 

with open('awfa.txt','w') as file: 

     with open('salem.txt','w') as file2: 

        cmd  = obd.commands['SPEED'] 
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        cmd2  = obd.commands['RPM'] 

        while (1): 

                    if keyboard.is_pressed('q'): 

                        break 

                    startgps=time.time() 

                    if(serialPort.in_waiting > 0): 

                        serialString = serialPort.readline() 

                        # endgps=time.time() 

                        print(serialString.decode('Ascii'),"  time gps",(startgps))  

                        file2.write(serialString.decode('Ascii')+"\t "+str(startgps)+" ") 

                    start = time.time() 

                    response = connection.query(cmd)  

                    sp.insert(i,response) 

                    replace_none_with_prev(sp) 

                    response2 = connection.query(cmd2)  

                    rp.insert(i,response2) 

                    replace_none_with_prev(rp) 

                    print("\t",str(response.value),"\t",response2.value,) 

                    # +"\t",response2.value 

                    # send the command, and parse the response 

                    i=i+1 

                    file.write(str(response.value)+"\t"+str(response2.value)+"\t" "time :" 

+str(start)+"\n") 

        # file.write("time"+str(start)) 
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        # end = time.time( 

        # print(response.value," time obd",(end-start)) 

# print("the elapsed time of gps sensor and obd command response :", (end-start) ) 
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Appendix E 

 Setup model (MATLAB code) 

Add images to the path 

addpath(genpath('Images')); 

 

Load scene data files 

load data from Driving Scenario Designer 

load('gis trak.mat'); % GIS file m.file 

refPose = data.ActorSpecifications.Waypoints; 

 

Define reference points 
xRef = refPose(:,1); 
yRef = -refPose(:,2); 

 

Define vehicle parameters  

X_o = xRef(1); % initial vehicle position in x direction 

Y_o = yRef(1); % initial vehicle position in y direction 

 

Calculating reference pose vectors 

Based on how far the vehicle travels, the pose is generated using 1-D lookup tables. 

% calculate distance vector 
distancematrix = squareform(pdist(refPose)); 
distancesteps = zeros(length(refPose)-1,1); 
for i = 2:length(refPose) 
    distancesteps(i-1,1) = distancematrix(i,i-1); 
end 
totalDistance = sum(distancesteps); % Total distance travelled 
distbp = cumsum([0; distancesteps]); % Distance for each waypoint 
gradbp = linspace(0,totalDistance,50); % Linearize distance 
 

% linearize X and Y vectors based on distance 
xRef2 = interp1(distbp,xRef,gradbp); 
yRef2 = interp1(distbp,yRef,gradbp); 
yRef2s = smooth(gradbp,yRef2); % smooth waypoints 
xRef2s = smooth(gradbp,xRef2); % smooth waypoints 
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plot(gradbp,xRef2s) 
xlabel('distance') 
ylabel('x') 
plot(gradbp,yRef2s) 
xlabel('distance') 

ylabel('y') 

 

Calculate theta vector 

theta = orientation angle of the path at reference points  

thetaRef = zeros(length(gradbp),1); 
for i = 2:length(gradbp) 
    thetaRef(i,1) = atan2d((yRef2(i)-yRef2(i-1)),(xRef2(i)-xRef2(i-1))); 
end 
thetaRefs = smooth(gradbp,thetaRef); % smooth of theta 
psi_o = thetaRefs(1)*(pi/180); % initial yaw angle 
plot(gradbp,thetaRefs) 
xlabel('distance') 

ylabel('theta') 

 

Create direction vector 

direction = ones(length(gradbp),1); 
 

Calculate curvature vector 
curvature = getCurvature(xRef2,yRef2); 
plot(gradbp,curvature) 
xlabel('distance') 

ylabel('curvature') 

Curvature Function 
function curvature = getCurvature(xRef,yRef) 
% Calculate gradient by the gradient of the X and Y vectors 
DX = gradient(xRef); 
D2X = gradient(DX); 
DY = gradient(yRef); 
D2Y = gradient(DY); 
curvature = (DX.*D2Y - DY.*D2X) ./(DX.^2+DY.^2).^(3/2); 

end 
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Appendix F 

 Canbus shield code (Arduino C) 

 Code#1 

// demo: CAN-BUS Shield, receive data with check mode 

// send data coming to fast, such as less than 10ms, you can use this way 

#include <SPI.h> 

#include "mcp_can.h" 

#define CAN_2515 

// #define CAN_2518FD 

// Set SPI CS Pin according to your hardware 

#if defined(SEEED_WIO_TERMINAL) && defined(CAN_2518FD) 

// For Wio Terminal w/ MCP2518FD RPi Hat： 

// Channel 0 SPI_CS Pin: BCM 8 

// Channel 1 SPI_CS Pin: BCM 7 

// Interupt Pin: BCM25 

const int SPI_CS_PIN  = BCM8; 

const int CAN_INT_PIN = BCM25; 

#else 

 

// For Arduino MCP2515 Hat: 

// the cs pin of the version after v1.1 is default to D9 

// v0.9b and v1.0 is default D10 

const int SPI_CS_PIN = 10; 

const int CAN_INT_PIN = 2; 

#endif 

 

/*#ifdef CAN_2518FD 

#include "mcp2518fd_can.h" 

mcp2518fd CAN(SPI_CS_PIN); // Set CS pin 

#endif 

*/ 

#ifdef CAN_2515 

#include "mcp2515_can.h" 

mcp2515_can CAN(10); // Set CS pin 

 

#endif           
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void setup() { 

    SERIAL_PORT_MONITOR.begin(115200); 

    while (CAN_OK != CAN.begin(CAN_500KBPS)) {             // init can bus : baudrate = 500k 

        SERIAL_PORT_MONITOR.println("CAN init fail, retry..."); 

        delay(100); 

    } 

    SERIAL_PORT_MONITOR.println("CAN init ok!"); 

} 

void loop() { 

    unsigned char len = 0; 

    unsigned char buf[8]; 

    if (CAN_MSGAVAIL == CAN.checkReceive()) {         // check if data coming 

        CAN.readMsgBuf(&len, buf);    // read data,  len: data length, buf: data buf 

 

        unsigned long canId = CAN.getCanId(); 

 

        SERIAL_PORT_MONITOR.println("-----------------------------"); 

        SERIAL_PORT_MONITOR.print("Get data from ID: 0x"); 

        SERIAL_PORT_MONITOR.println(canId, HEX); 

 

  

        for (int i = 0; i < len; i++) { // print the data 

            SERIAL_PORT_MONITOR.print(buf[i], HEX); 

            SERIAL_PORT_MONITOR.print("\t"); 

        } 

        SERIAL_PORT_MONITOR.println(); 

    } 

} 

 

/**************************************************************************

******************************* 

    END FILE 

***************************************************************************

******************************/ 

***************************************************************************

Code#2 

#include <Arduino.h> 

#include <mcp_can.h> 
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#include <mcp_can_dfs.h> 

 

#define CANint 2 

#define LED2 8 

#define LED3 7 

#define MCP_STDEXT 0  

unsigned char len = 0; 

unsigned char buf[8]; 

unsigned long ID = 0; 

unsigned long line = 0; 

 

MCP_CAN CAN0(10); // Set CS to pin  

 

unsigned long time; 

void setup() { 

  Serial.begin(115200); 

   

  while (!Serial) { 

    Serial.print("I will wait here forever..."); 

      delay(1000); 

  }; 

   

  pinMode(23, OUTPUT); 

  digitalWrite(23, HIGH); 

 

  pinMode(LED2, OUTPUT); 

  pinMode(LED3, OUTPUT); 

  pinMode(CANint, INPUT); 

  digitalWrite(LED2, LOW); 

   

  Serial.println("CAN init:"); 

 

  if (CAN0.begin(CAN_500KBPS) == CAN_OK) { 

    Serial.println("Can Init Success"); 

  } else { 

    Serial.println("Can Init Failed"); 

    while (1) { 

      Serial.print("I will wait here forever..."); 
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      delay(1000); 

    } 

  } 

 

  Serial.println("Good to go!"); 

} 

 

void loop() { 

  time = millis(); 

   

  if(CAN_MSGAVAIL == CAN0.checkReceive() && line < 10000) {          // Check to see 

whether data is read 

    CAN0.readMsgBufID(&ID, &len, buf);    // Read data 

     

//Add this line back in if you want to filter traffic    if(ID == 1201) { //39 

      line = line + 1; 

       

      Serial.print(ID,HEX); // Output HEX Header 

      Serial.print("\t"); 

       

      for(int i = 0; i<len; i++) { // Output 8 Bytes of data in Dec 

        Serial.print(buf[i]); 

        Serial.print("\t"); 

      } 

       

      Serial.print(time); // Timestamp 

      Serial.print("\t"); 

      Serial.println(line); // Line Number 

//    } 

  } 

  delay(10); 

} 
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Appendix G 

 CAN Read Demo for the Spark Fun CAN Bus Shield.  

 

Written by Stephen McCoy.  

Original tutorial available here: http://www.instructables.com/id/CAN-Bus-Sniffing-and-

Broadcasting-with-Arduino 

Used with permission 2016. License CC By SA.  

 

Distributed as-is; no warranty is given. 

*************************************************************************/ 

 

#include <Canbus.h> 

#include <defaults.h> 

#include <global.h> 

#include <mcp2515.h> 

#include <mcp2515_defs.h> 

 

//********************************Setup Loop*********************************// 

 

void setup() { 

  Serial.begin(9600); // For debug use 

  Serial.println("CAN Read - Testing receival of CAN Bus message");   

  delay(1000); 
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  if(Canbus.init(CANSPEED_500))  //Initialise MCP2515 CAN controller at the specified speed 

    Serial.println("CAN Init ok"); 

  else 

    Serial.println("Can't init CAN"); 

     

  delay(1000); 

} 

 

//********************************Main Loop*********************************// 

 

void loop(){ 

 

  tCAN message; 

if (mcp2515_check_message())  

 { 

    if (mcp2515_get_message(&message))  

 { 

        //if(message.id == 0x620 and message.data[2] == 0xFF)  //uncomment when you want to 

filter 

             //{ 

                

               Serial.print("ID: "); 

               Serial.print(message.id,HEX); 
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               Serial.print(", "); 

               Serial.print("Data: "); 

               Serial.print(message.header.length,DEC); 

               for(int i=0;i<message.header.length;i++)  

                {  

                  Serial.print(message.data[i],HEX); 

                  Serial.print(" "); 

                } 

               Serial.println(""); 

             //} 

           }} 

 

} 
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Appendix H 

 GPS code longitude and latitude (Arduino C language  ) 

1. #include <TinyGPS++.h> 

2. #include <SoftwareSerial.h> 

3. static const int RXPin = 9, TXPin = 3; 

4. static const uint32_t GPSBaud = 9600; 

5. // The TinyGPS++ object 

6. TinyGPSPlus gps; 

7. // The serial connection to the GPS device 

8. SoftwareSerial ss(RXPin, TXPin); 

9. void setup(){ 

10. Serial.begin(9600); 

11. ss.begin(GPSBaud); 

12. } 

13. void loop(){ 

14. // This sketch displays information every time a new sentence is correctly encoded. 

15. while (ss.available() > 0){ 

16. gps.encode(ss.read()); 

17. if (gps.location.isUpdated()){ 

18. Serial.print("Latitude= ");  

19. Serial.print(gps.location.lat(), 6); 

20. Serial.print(" Longitude= ");  

21. Serial.println(gps.location.lng(), 6); 

22.  } 

23.  }  

24. } 
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Appendix I 

 Potentiometer multiturn code  (Arduino C language  ) 

 

 

float floatMap(float x, float in_min, float in_max, float out_min, float out_max) { 

  return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min; 

} 

 

// the setup routine runs once when you press reset: 

void setup() { 

  // initialize serial communication at 9600 bits per second: 

  Serial.begin(9600); 

} 

 

// the loop routine runs over and over again forever: 

void loop() { 

  // read the input on analog pin A0: 

  int analogValue = analogRead(A0); 

Serial.print(analogValue ); 

Serial.print("\n" ); 

  // Rescale to potentiometer's voltage (from 0V to 5V): 

  float steering_angle = floatMap(analogValue, 0, 1023, -780, 780);//mapping max steering 

and min steering  

Serial.print(steering_angle ); 

Serial.print("\n" ); 

 // delay(1000); 

} 


