
I

College of Engineering

Mechanical Engineering Department

Information Technology and Computer Engineering Department

Develop a drive assistant system to improve dynamic

stability and safety of vehicle

Project Team

 Rami Awiwi Salem Najajrah

Khaleel Abu Turki Awfa Sarahneh

Supervisor

Dr. Momen Sughayyer Dr. Hashem Tamimi

Submitted to the College of Engineering and Computer Engineering

in partial fulfillment of the requirements for the

Bachelor degree in Automotive Engineering

Palestine Polytechnic University

2022

Hebron-Palestine

II

Dedication (Arabic)

بالنصح ، و فكري يضيء نبراسا الصغر ، وكانا لي في بالتربية إلى من تعهداني

وأبي أمي ، في الكبر التوجيه

 حفظهما الله

، إخوتي ، وأخواتي ، وحفزوني للتقدم إلى من شملوني بالعطف ، وأمدوني بالعون

 رعاهم الله

العلم ، والمعرفة في سبيل تحصيل بيدي إلى كل من علمني حرفا ، وأخذ

المتواضع بحثي جهدي ، ونتاج ثمرة أهدي إليهم جميعا

 فريق المشروع

III

Abstract

The general objective of the project is improve safety for passenger during travel by develop a

system based on guiding the driver to determine the appropriate speed and steering angle based

on the diminution of the road and the specification of the vehicle such as (weight, distance

between the two wheels...etc.), and the actual vehicle information such as speed, wheel steering

angle and vehicle coordinates collected. It enters into calculations in order to achieve the main

goal of avoiding loss control of vehicle accident and deviating from the lane.

In this project, we relied on several auxiliary technologies, such as Global Positioning System

GPS, which helps to know the actual location and coordinates of the vehicle, and the Geographic

Information System GIS, which helps to know general information about the road such as turns,

road length and width, and finally Electronic Control Unit ECU, where extract the information

from the electronic control unit such as speed and steering angle, and finally using the vehicle

dynamics equations that work to calculate the appropriate speed of the vehicle and the

appropriate angle of turning based on the previous inputs. The simulation process was carried out

by MATLAB program. In this project, the actual reading was taken from the electronic control

unit in the vehicle and the location of the vehicle. and linked in MATLAB

After the experiment and make many sample of same rod (inside the university), take 190 value

for vehicle speed, steering angle, longitude and latitudes data, then after Data processing by

matlab the simulation result for vehicle speed and steering angle command is very reliable .

IV

 الملخص

وع هو تطوير نظام يقوم على إرشاد السائق ومساعدته على تحديد الشعة و توجيه الهدف العام للمشر

المسافة)الوزن ، مركبة مثل وخصائص ال المعلوما الهندسية للطييقالمناسبة وزاوية التوجيه بناءً على

ن ... ن العجلي واحداثيا وزاوية توجيه العجلا المركبة إلخ(، ومعلوما المركبة الفعلية مثل سرعة بي

ي عمليا يجمو المركبة
تجنب الحوادث رأيسي الا وهو الهدف التحقيق من أجلحسابية العها تدخل فن

 .والانحراف عن المسار

وع ي هذا المشر
ي معرفة الموقع GPS ، اعتمدنا على العديد من التقنيا المساعدة ، مثل فن

ي تساعد فن
، والت

ي تساعد على معرفة المعلوما العامة GIS نظم المعلوما الجغرافية ، وواحداثيا المركبة الفعلىي
الت

ا و وعرضهعن الطييق مثل المنعطفا وطول الطييق ونية أخي حيث نقوم ،ECUوحدة التحكم الإلكي

ونية مثل الشعة و باستخدام التوجيه زاوية باستخراج المعلوما من وحدة التحكم الإلكي
ً
ا ، وأخي

ي امعادلا ديناميك
تعمل على حساب الشعة المناسبة للسيارة وزاوية الانعطاف المناسبة المركبا الت

وع MATLAB برنامجمحاكاة بواسطة ية الإجراء عمليتم بناءً على المدخلا السابقة ي هذا المشر
تم فن

ي السيارة وموقع السيارة
ونية فن MATLABفيوربطها أخذ القراءة الفعلية من وحدة التحكم الإلكي

V

TABLE OF CONTENTS
Dedication (Arabic) .. II

Abstract .. III

 IV ... الملخص

List Of Figures ..VIIII

List Of Table .. X

Abbreviations ... XI

List Of Symbols .. XII

Chapter 1 ...1

Introduction...1

1.1 Overview ... 2

1.2 Motivation.. 2

1.3 Problem Statement ... 3

1.4 Aims And Objectives.. 3

1.5 Importance ... 4

1.6 Methodology .. 4

1.7 Project Requirements .. 4

1.8 Action Plan .. 5

Chapter 2 ...8

Background ...8

1.1 Global Positioning System (Gps) .. 9

2.2.1 Introduction .. 9

2.2.2 How Car Gps Works .. 9

2.2.3 How Accurate Is Gps? .. 10

2.2.4 Sources Of Gps Errors .. 11

2.2.5 Geographical Information Systems Gis ... 12

2.2.6 Navigation ... 13

2.2.7 Universal Transverse Mercator (Utm) ... 13

2.2.8. Latitude And Longitude .. 14

2.3. Vehicle Coordinate System: ... 15

2.3.1. Longitudinal Vehicle Dynamics.. 16

2.3.2. Lateral Dynamics ... 17

2.3.3. Bicycle Model .. 17

2.3.4. Dynamic Bicycle Model Of Lateral Vehicle .. 17

2.4. Engine Control Unit .. 19

2.4.2. Controller Area Network ... 20

2.4.3 How Do Can Bus Modules Communicate? .. 20

2.4.4 Autonomous Vehicle ... 21

VI

Chapter 3 ... 25

System Design .. 25

3.1 Introduction .. 26

3.1. 2 System Block Diagram .. 26

3.2 Input ... 27

3.2.1 Gps Sensor ... 27

3.2.2 Gis Data ... 32

3.2.3 Ecu Information ... 32

3.3. Processes ... 37

3.4. Outputs .. 38

Chapter 4 ... 39

Simulation.. 39

4.1. Simulink: ... 40

4.1.1 Stanley Controller Block: ... 40

4.1.2 Vehicle Body 3dof Dual Track ... 41

4.2. Driving Scenario .. 46

4.3. Connect Simulink Blok: ... 47

Chapter 5 ... 49

System Interface And Operations .. 49

5.1. Extract And Prepare Ecu Data ... 50

5.1.1 Can Bus Shield V2 ... 54

5.1.2 Sunflower Shield .. 56

5.1.3 Elm And Python ... 58

5.2 Using A Multi-Turn Potentiometer To Extract Steering Angle... 61

5.3 Receiving And Preparing Gps Data ... 64

5.3.1 GPS With Arduino Connection ... 64

5.3.2 Convert Longitude And Latitude To X,Y,Z Coordinate ... 64

5.4 Preparing GIS Data ... 65

Chapter 6 ... 68

Experimentation And Results ... 68

6.1 Experimentation .. 69

6.1.1 Result For Gps And Gis Test Data .. 69

6.1.2 Result For Extract Data From Ecu .. 71

6.1.3 Result For Steering Angle .. 72

6.2 Results .. 73

6.3 Result Analysis ... 73

6.4 Recommendations ... 77

6.5 The-State-Of-The-Art Of This Technology .. 78

References.. 79

Appendix A... 80

Appendix B ... 101

Appendix C ... 102

VII

Appendix D... 104

Appendix E ... 107

Appendix F ... 109

Appendix G... 113

Appendix H... 116

Appendix I .. 117

VIII

LIST OF FIGURES

Figure 2.1 Components of the car GPS system [2]... 10

Figure 2.3. GPS errors and biases. .. 12

Figure 2.4. GIS an integrating technology ... 13

Figure 2.5. Overlap in UTM projection. .. 14

Figure 2.6. Longitude , Figure 2.7. Latitude .. 15

Figure 2.8. Vehicle Coordinate System ... 16

Figure 2.9 Longitudinal forces acting on a vehicle moving on an inclined road ... 16

Figure 2.10. The lateral system in terms of rotating coordinates... 18

Figure 2.11. CAN Bus ... 20

Figure 2.12. Differential Between CAN High and CAN Low .. 21

Figure 2.2. a small full path example [3] ... 22

Figure 3.1 .the simple block diagram for our project procedure .. 26

Figure 3.2. first experiment .. 28

Figure 3.3 shows second experiment ... 29

Figure 3.5 . GPS Navigation Systems Flowchart .. 31

Figure 3.5.Drawing Track By using auto cad to take dimensions ... 32

Figure 3.7 . The diagram below shows the main function of an interface. .. 35

Figure 3.8 . Type of ELM327 interfaces... 36

Figure 3.7. shows Block diagram... 37

Figure 3.8. shows Flowchart for warning massage. .. 38

Figure 4.1. Geometric path tracking ... 41

Figure 4.3. The Vehicle Body 3DOF block [13] .. 41

Figure 4.2. Road data from OpenStreetMap .. 47

Figure 4.4. calculating steering angle. .. 47

Figure 4.5. manually entering the value of the steering angle using kinematic steering block. 48

Figure 4.6. Vehicle Path Tracking Using Stanley Controller .. 48

Figure 5.1. Mazda 3 skyactiv 2016 .. 50

Figure 5.2. mazda 3 dimension ... 51

Figure 5.3 .OBD II connector location for Mazda 3 ... 52

Figure 5.4 . CAN high CAN low pin .. 52

Figure 5.5 .OBD II connector location for Mazda 3 ... 53

Figure 5.6 . signal CAN high and CAN low Figure 5.7 . Micsig Tablet Oscilloscope Serial.............................. 54

Figure 5.8 CAN bus shield with Arduino Uno Figure 5.9 Interfacing with OBD of the car............................ 54

Figure 5.10 Serial monitor in Arduino ... 55

IX

Figure 5.11. Serial monitors in Arduino CANBUS shield v1.2.. 56

Figure 5.12a sunflower shield with an Arduino Uno , Figure 5.12b sunflower with OBD to DP9 cable 57

Figure 5.13. Serial monitor in Arduino .. 57

Figure 5.14 streering angle sensor signal.. 59

figure 5.15.a the signal A from sensor steering angle by myDAQ .. 59

figure 5.15.b the signal B from sensor steering angle by myDAQ .. 60

figure 5.15.C myDAQ .. 60

Figure 5.16 new block diagram for our project procedure ... 61

Figure 5.17 design a cylinder that put on a shaft ... 62

Figure 5.18 GPS sensor connection .. 64

Figure 5.19AutoCAD drawing for Campus .. 65

Figure 6.1 data from ECU RPM and Vehicle speed ... 71

Figure 6.2 data from ECU RPM and Vehicle speed MATLAB .. 72

Figure 6.3 Steering angle result .. 69

X

LIST OF TABLES

Table1.1. Action plan for the first semester. ... 5

Table1.2. Action plan for the second semester ... 6

Table 3.1 Distance moved before next update .. 27

Table 3.2 Connect GPS sensor to Arduino ... 30

Table 3.4 PID’S OF Vehicle speed and steering angle ... 33

Table 3.5 Comparison between eml327 and seeed canbus shield v2 .. 36

Table 4.1 The equations use these variables(Stanley Controller) ... 44

Table 5.1. Specifications for mazda3-G skyactiv ... 51

Table 5.2 GPS sensor and Arduino Uno pins ... 64

Table 6.1. Result for GPS in longitude and latitude ... 69

Table 6.2. Result for GPS in X and Y .. 70

Table 6.3 result for All data from experiment .. 73

XI

Abbreviations

GPS: global positioning system.

ADAS: Advanced Driver Assistance Systems.

ACC: Adaptive Cruise Control.

FCW: Forward Collision Warning.

ISA: Intelligent Speed Assistance.

LWD: Lane Departure Warning.

LKS: Lane Keeping System.

LCA: Lane Change Assistance.

SA: Selective Availability.

GIS:Geographic information system.

ECE:United Nations Economic Commission for Europe.

WHO:World Health Organization.

VSA: Vehicle Stability Assist.

VDC: Vehicle Dynamic Control.

VSC: Vehicle Stability Control.

ESP: Electronic Stability Program.

ESC: Electronic Stability Control.

DYC: Direct Yaw Control.

iBooster:Electromechanical Brake Booster.

IDE: integrated development environment

PLC: and programmable logic controls

PIC: Programmable Intelligent Computer

Kb: kilo bite

PC: personal computer

mm: millimeter

ms. : millisecond

ADC: analog to digital converter

ECU: electronic control module

LED:Light-emitting diode

XII

List of symbols

NO Symbols Description

1 c.g Center of Gravity

2 L Wheel Base

3 δ Steering Angle

4 ψ Orientation of the Vehicle

5 V The velocity at the c.g of the vehicle

6 β Slip Angle

7 m Mass of the Vehicle

8 ay Lateral Acceleration

9 Fyf and Fyr Lateral Tire Forces of the Front and Rear Wheels

10 Vx ̇ Centripetal Acceleration

11 αf and αr Slip Angle of the Front and Rear Wheel

12 θvfand θvr
Is the Angle that the Velocity Vector Makes with the

Longitudinal Axis of the Vehicle

13 Cαf and Cαr Front and Rear Cornering Stiffness

14 ̇ yaw rate of vehicle body

15 Iz yaw moment of inertia

1

1

CHAPTER 1

Introduction

 This chapter provides an introduction to the project. It starts with a motivational statement,

followed by the aims and objectives, a brief description, a discussion of existing work and finally

the scope and constraints of the project.

2

1.1 Overview

 As the worldwide use of automobiles increases rapidly, it has become even more important to

develop vehicles that optimize the use of road and fuel resources, provide safe and comfortable

transportation and at the same time have minimal impact on the environment. To meet these

diverse and often conflicting requirements, automobiles are increasingly relying on electronics

systems that employ sensors, actuators and feedback control.

 Due to a variety of factors, private transportation is becoming more prevalent in Palestine. As

a result, Palestinians are increasingly spending in securing their own vehicles. As a result,

modern vehicles may be seen circulating on Palestinian roadways, implying that cutting-edge

automotive technology is becoming more readily available. Driver assistance systems, car

orientation and navigation systems, and other technologies are now available and require the

attention of highly skilled and experienced technicians and engineers, which is a new trend for

the local target industry.

 Any system that can provide intelligent vehicle location and navigation information, with

connection to ECU, that help us to ensure our safe drive, saving people life and cars. The vehicle

assistance systems have been developed to obtain an optimal and safe driving experience. These

systems have been developed using software that rely primarily on different sensors that increase

the accuracy of the results and so better response.

1.2 Motivation

 The concept of self-driving cars has become increasingly popular. The automotive industry is

investing heavily in the development of self-driving systems. This interest is largely due to the

promising features and characteristics of modern self-driving systems. To begin with, studies

estimate that approximately 1.35 million people die in traffic accidents in 2020 [14], most of

which are mainly caused by human factors. The argument is, even though many of today's cars

are offered with top-of-the-line passive safety features like seatbelts and airbags, it is still not as

good as the active safety features of self-driving cars. These active features can help predict and

avoid accidents before they even happen. Additionally, the autonomous and precise nature of

self-driving cars can also help reduce fuel consumption and drive down emissions caused by

road vehicles.

 The importance and promising future of this technology have led to a great deal of research. In

order to establish a functioning self-driving system, two main tasks must be carried out. To start

with, the self-driving car must be capable of understanding its surrounding environment as well

as realizing its position and orientation relative to that environment. The second, and perhaps the

most distinguishable task, is mainly concerned with how to react properly to the detected

3

surroundings while progressing on route. This is done through years of research, testing and

development.

 Machine learning techniques used in self-driving systems have to undergo a training process.

In supervised learning, the system is supplied with labeled training data. The labels indicate how

the system should react to certain situations. However, the use of modern technologies such as

GPS and GIS, such as what we used in this project, contribute to obtaining optimal driving,

improving road use, saving fuel and obtaining safe driving.

 Using GPS in vehicle dynamic is based on a set of main inputs “in a simplified way” such as

the location of the vehicle and the road information “a lane” such as the permissible speed, the

ideal speed in this lane or curve and the distance of the road and linking all this information to

warn by display to type alarm speed and steering angle recommended in a timely manner.

1.3 Problem statement

 Every day 3700 people die due to accidents that occur on the road, either due to the

shortcomings of one or both parties due to non-compliance with traffic laws or because of

distraction, either due to work fatigue or the use of a smartphone while driving and Consequence

Every year, approximately 1.35 million people die as a result of vehicle accidents [14]. An

additional 20 million to 50 million people suffer non-fatal injuries and many become disabled as

a result. Injuries caused by traffic accidents cause great economic losses to individuals, their

families and entire nations. These losses arise from the cost of treatment and lost productivity for

people who die or become disabled due to their injuries, and family members who are forced to

miss work or school to care for the injured. Traffic accidents in most countries cost 3% of GDP.

According to what was announced by the World Health Organization in June 2021. [14]

 In real time the main objective of most car assistance systems is to provide safety for the

driver and passengers while driving. With integration between GPS, GIS and some data from

ECU in the vehicle with software have mathematical vehicle model to make process of data to

send alarm to driver while driving then we can achieve better and safe driving.

1.4 Aims and Objectives

 The goal of this project is to develop a module to improving safety for driver and passenger as

a driving assistance system, that are based on GPS, GIS, and some information from the vehicle's

ECU, to process it using a dynamic mathematical model.

4

Specific objectives:

 Transfer data from the GPS receiver to the GIS, specifying the car's location and

direction.

 Transfer data from GIS to the model, specifying the road data

 Transfer data from ECU of the vehicle to the model.

 Making simulation of the project.

 Warning the driver in a timely manner can reduce the occurrence of accidents due to

improper speed of the road by determine the safe speed at real time.

 Preforming road tests.

1.5 Importance

 Improving the quality of vehicle driving, which is reflected in the security and stability of the

vehicle, and the full control of the vehicle, which also helps in road management, as well as

increasing the accuracy of control in self-driving cars.

1.6 Methodology

 This project links a vehicle dynamics system and a road navigation system together,

developing a system that includes a GPS sensor (spark fun) work by Arduino UNO receiver, GIS

map, microcontroller (Arduino Uno), and a processor that will be a personal respect to laptop

computer CPU with MATLAB as a programming tool to achieve the prototype goals. When a

target control system is adopted and implemented as a final product system in automobiles, it

will, of course, help reduce accidents and save lives while also promoting autonomous vehicle

research.

 To complete this project, a multidisciplinary team comprised of mechanical and computer

system engineers will collaborate and work together to achieve the goal of the project.

1.7 Project requirements

• Hardware requirements: Microcontroller (Arduino Uno) kit, GPS receiver kit, OBD

(II) adapter and personal laptop, MCP2515 CAN Bus, Real Vehicle for test.

• Software requirements: Arduino software, (Arc Map) GIS Software, MATLAB

program.

Explain the components in the chapter three and specify the details of each component.

5

1.8 Action plan

 Over the course of two semesters, we will focus on creating the simulation process, and

conducting hands-on experiments. The first stage consists of starting to define the idea and

collecting data as shown in Tables 1.1.

 First semester

● Stage one: Identifying the project idea.

● Stage two: Project requirement and collecting data.

● Stage three: Modeling and calculation.

● Stage four: Writing and documentation.

● Stage five: Simulation using the MATLAB program

In the second semester, evaluated in extracting data and experimenting with electronic cutting

and connecting shown in Tables 1.2.

 Second semester

 Stage one: Extract data from ECU

 Stage two: Preparing GPS and GIS data

 Stage three: Connection and interfacing of systems

 Stage four: Testing the Module

Table1.1. retffsls tslofAlttclofAitlicncitcA.

Task\Week

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Identifying the

project idea.

project

requirement and

collecting data

Modeling and

calculation

Writing and

documentation.

6

Table1.2. Action plan for the second semester

Task\Week

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Extract data from ECU

Preparing GPS and GIS

data

Connection and

interfacing of systems

Testing the Module

7

8

2

Chapter 2

Background

 This chapter explores the different theoretical aspects of the project. It provides a clear and

brief description of the techniques employed in this project.

9

2.1. Global Positioning System (GPS)

2.2.1 Introduction

 GPS technology is a promising technology that has applications in many aspects of life,

such as in agriculture, law, sports, the automobile industry, etc. In the automobile industry,

GPS is used in many forms. Any system capable of providing intelligent navigation and

location information of a car, that will help us to avoid obstacles, crashes and drive safely.

A Global Positioning System provides the answer to facilitate all these issues.

 The purpose of GPS in this project is to build and develop an algorithm that takes in

inputs from a GPS receiver and using those inputs to successfully navigate a car through a

set of known points (from GIS) and called it as waypoints. The entire process is divided

into three parts. In the first part, the car is placed at the starting waypoint and the GPS

receiver modifies the visible GPS satellites and tries to calculate the current latitude and

longitude. In the second part, the microcontroller algorithm calculates the direction of the

next waypoint from the current waypoint. In the third step, the algorithm calculates the

distance to the next waypoint to determine what the driver should do.

2.2.2 How Car GPS works

 GPS-based autonomous navigation is a very rapidly evolving technology. Researchers

have developed several techniques for navigating between different external environments.

This system is widely used in land vehicle navigation applications. The main advantage of

using GPS is the data collected does not depend on previous readings, so localization errors

do not grow over time. The downside is its precision. This depends on the environment and

the number of satellites read. Generally, the problem of positioning (localization) the car

consists of answering the question where am I?

 During continuous motion, each satellite in the GPS constellation moves continuously

sends radio signals in all directions. This information contains data about its trajectory.

Device status and exact time. Car GPS receiver consists of an antenna and a computer with a

screen. The receiver computer has a digital road map in memory (in some cases, on a CD-

ROM) that contains most roads in the country. Thus, all you need to do is just put in the

details of your destination on the computer screen and then wait for the details the computer

is going to give you. Figure 2.1

10

Figure 2.1 Components of the car GPS system [2]

 The computer clock and the satellite clocks are synchronized. Since the center of gravity of the

earth influences the rate at which the clocks change, the clocks are not synchronized with respect

to each other but as a function of their velocity with respect to the center of the coordinate

system, which is the center of the earth. Packets from a satellite A contain a time stamp t1 as part

of the packets. Upon receiving these packets, the receiver clock reads its time t2.

 The frequency of transmission is f and the wavelength of transmitted radio signals is λ. [2] As a

result of synchronization of the clocks, the computer determines the distance between the

satellite and the car as follows:

The one-way delay of radio signals is: t = t2 – t1

The speed of radio signals is: v = fλ

The distance between satellite and car is: speed * delay = fλ (t2 – t1).

2.2.3 How accurate is GPS?

 There are several different levels of accuracy that can be achieved. The difference is

equipment and techniques. In the commercial world, there have been roughly 4 generations

of equipment, with some from the last three still in service.

11

Levels of accuracy provided by GPS.

1. Standard Positioning Service (SPS): is a positioning and timing service, and available to

all GPS users. Provides the lowest accuracy GPS position measurements, normally in the

region of 5-10 m.

2. Precise Positioning Service (PPS): is a highly accurate military positioning, velocity and

timing service. Provides the accuracy GPS position measurements, normally in the region

of 2-9 m.

3. Code-Phase differential GPS or DGPS: is an enhancement to the Global Positioning

System (GPS) which provides improved location accuracy. Provides the accuracy GPS

measurements, normally in the region of 1-5 m.

4. Carrier-Phase differential GPS or CDGPS: is a much more accurate Global Positioning

System Provides the accuracy in sub-meter. [4]

2.2.4 Sources of GPS Errors

GPS pseudo range measurements are affected by several types of random errors and

biases (systematic errors). These errors may be classified as those originating at the satellites,

those originating at the receiver, and those that are due to signal propagation (atmospheric

refraction). 5]

1. Errors from satellites include:

● Ephemeris

● Orbital errors

● Satellite clock errors, and

● The effect of selective availability.

2. Errors from Receiver include:

● Receiver clock errors

● Multipath error

● Receiver noise, and

● Antenna phase centre variations.

12

3. Errors from signal propagation include:

● The delays of the GPS signal as it passes through the ionospheric and tropospheric layers

of the atmosphere.

● In fact, it is only in a vacuum (free space) that the GPS signal travels, or propagates, at

the speed of light.

 In addition to the effect of these errors, the accuracy of the computed GPS position is also

affected by the geometric locations of the GPS satellites as seen by the receiver. The more spread

out the satellites are in the sky, the better the obtained accuracy Figure 2.3.

Figure 2.3. GPS errors and biases.

2.2.5 Geographical Information Systems GIS

 is expressed in individual letters G – I – S and not at pronunciation GIS. It stands for

Geographic or Geographical Information Systems. Geographic Information Science is an

interdisciplinary field. It is built upon knowledge from geography, cartography, computer

science, mathematics etc.

 GIS can be defined as ‘A system for Capturing, storing, checking, integrating, manipulating,

analyzing and displaying data which are spatially referenced to the Earth. This is normally

considered to involve a spatially referenced computer database and appropriate applications

software’. GIS needs spatial data; this makes it unique. [6]

 Each of these separate thematic maps is referred to as a layer, coverage, or level. And each

layer has been carefully overlaid on the others so that every location is precisely matched to its

13

corresponding locations on all the other maps. The bottom layer of this diagram is the most

important, for it represents the grid of a locational reference system (such as latitude and

longitude) to which all the maps have been precisely registered. shown in Figure 2.4

Figure 2.4. GIS an integrating technology

2.2.6 Navigation

 Navigation is coordinated and goal – directed route following through space. It consists of two

components: locomotion and way-finding. Locomotion is guidance through space in response to

local sensorimotor information in immediate surrounds. It finds support surfaces, avoid obstacles

and barriers, move through openings. Way-finding is planning and decision – making in

response to non – local information, undertaken to reach goal.[6]

2.2.7 Universal Transverse Mercator (UTM)

 UTM provides georeferencing at high levels of precision for the entire globe. Established in

1936 by the International Union of Geodesy and Geophysics, it is adopted by many national and

international mapping agencies. It is commonly used in topographic and thematic mapping, for

referencing satellite imagery and as a basis for widely distributed spatial databases. Universal

Transverse Mercator (UTM) coordinates define two dimensional, horizontal, positions. Each

UTM zone is identified by a number. UTM zone numbers designate individual 6° wide

longitudinal strips extending from 80° South latitude to 84° North latitude as distortions at the

poles is too large. Each zone has a central meridian. For example, Zone 14 has a central meridian

of 99° west longitude. The zone extends from 96° to 102° west longitude. Locations within a

zone are measured in meters eastward from the central meridian and northward from the equator.

 shown in Figure 2.5

14

Figure 2.5. Overlap in UTM projection.

2.2.8. Latitude and Longitude

• Latitude

 Two angles are sufficient to specify any location on the reference ellipsoid representing the

Earth. Latitude is an angle between a plane and a line through a point. Imagine a flat plane

intersecting an ellipsoidal model of the Earth. If the plane is coincident or parallel with the

equator the result is a parallel of latitude. The equator is a unique parallel of latitude that also

contains the center of the ellipsoid as shown in Figure 1.8. The equator is 0° latitude, and the

North and South Poles are situated at +90° north and −90° south latitude, respectively. In other

words, values for latitude range from a minimum of 0° to a maximum of 90°. shown in Figure

2.7 [7]

● Longitude

Longitude is an angle between two planes. It is a dihedral angle. In other words, it is an angle

measured at the intersection of two planes that are perpendicular to the plane of the equator. In

the case of longitude, the first plane passes through the point of interest, the place whose

longitude you wish to know, and the second plane passes through an arbitrarily chosen point

representing zero longitude. Today, that place is Greenwich, England. The measurement of

angles of longitude is imagined to take place where the two planes meet, and that place is the line

15

known as the polar axis. As it happens, that line is also the axis of rotation of the aforementioned

ellipsoidal model of the Earth. And where they intersect that ellipsoidal model they create an

elliptical line on its surface. This elliptical line is then divided into two meridians at the polar

axis. One half becomes a meridian of east longitude, which is labeled E or given a positive (+)

values, and the other half a meridian of west longitude, which is labeled W or given a negative

(−) value as shown in Figure 2.6 [7]

 Figure 2.6. Longitude Figure 2.7. Latitude

2.3. Vehicle Coordinate System:

 There are 6 degrees of freedom in the vehicle, as shown in the Figure 2.8 This is fixed to the

vehicle. X is longitudinal direction, Y is lateral, Z is vertical. Origin is at CG of the vehicle. The

rotational motion along vehicle X is called roll, The rotational motion along vehicle Z is called

Yaw, the rotational motion along vehicle Y is called pitch.

In this project we focus in three dimensions in motion first longitudinal, lateral motion and their

equation and yaw stability motion.

16

Figure 2.8. Vehicle Coordinate System 6 DOF

2.3.1. LONGITUDINAL VEHICLE DYNAMICS

 Consider a vehicle moving on an inclined road as shown in Figure 2.9. The external

longitudinal forces acting on the vehicle include aerodynamic drag forces, gravitational forces,

longitudinal tire forces and rolling resistance forces.

Figure 2.9 Longitudinal forces acting on a vehicle moving on an inclined road

 Longitudinal forces acting on a vehicle moving on an inclined road A force balance along the

vehicle longitudinal axis yields [8]

17

2.3.2. Lateral dynamics

 For understand the lateral motion of the vehicle, it is critical to model the lateral dynamics.

Lateral motion control is used in various ADAS features like lane centering, lane keeping etc.

The lateral dynamics models are also imperative in modeling vehicle behavior's during the lateral

maneuver’s and can be used to study and design the system and components like we want to do

in this project drive assistance system using GPS, GIS information and some data from vehicle.

2.3.3. Bicycle Model

 A lot of handling vehicle dynamics models are available of various complexities and accuracy.

One of the simplest and most commonly used models is the bicycle model. The term bicycle is

because both the front wheels are taken as single entity and also both the rear wheels making it a

two-wheel model.

2.3.4. Dynamic Bicycle Model of Lateral Vehicle

 A bicycle model of the vehicle with two degrees of freedom is considered, as shown in

Figure 2.10. The two degrees of freedom are represented by the vehicle lateral position y and the

vehicle yaw angle ψ. The vehicle lateral position is measured along the lateral axis of the vehicle

to the point O that is the center of rotation of the vehicle. The vehicle yaw angle ψ is measured

with respect to the global X-axis. V denotes the longitudinal velocity of the vehicle at the

Ignoring Road bank angle for now and applying Newton’s second law for motion along the

Y- axis.

18

Figure 2.10. The lateral system in terms of rotating coordinates

After some mathematical diversion we have a mathematical modal ready to use it.[8]

19

2.4. Engine Control Unit

2.4.1 Introduction

 Modern automobiles consist of a number of different computer components, called Electronic

Control Units (ECUs). Each automobile contains from 20-100 of these devices, with each ECU

being responsible for one or more particular features of the vehicle [9]

 In order to make the vehicles smart and more safety new ECUs or nodes were added to the

vehicles. It is not a problem. The problem was how to connect between these different ECUs to

deliver the data from ECUs to another.

20

2.4.2. Controller Area Network

 The Controller Area Network, or the CAN bus, is a network used in many vehicles today as it

was standardized. It has been around a long time, and handles the internal communications

between electronic control units.

 Each ECU can communicate with all other ECUs using the CAN bus system, which eliminates

the need for complex dedicated wiring. Specifically, an ECU can use the CAN bus to prepare

and broadcast information (such as sensor data) (consisting of two wires, CAN low and CAN

high) Figure 2.11. All other ECUs on the CAN network accept the broadcasted data, and each

ECU can then check the data and decide whether to receive or ignore it.[10]

Figure 2.11. CAN Bus

2.4.3 How do CAN bus modules communicate?
 For communication, the CAN bus employs two separate cables. CAN high and CAN low are

the names of the cables.

 Both lines carry 2.5V when the CAN bus is in idle mode. When data bits are sent, the CAN

high line rises to 3.75V and the CAN low line falls to 1.25V, resulting in a 2.5V difference

between the lines Figure 2.12. The CAN bus is not vulnerable to inductive spikes, electrical

fields, or other noise because communication is based on a voltage difference between the two

bus lines. As a result, the CAN bus is a solid option for networked communications on mobile

equipment.[11]

21

Figure 2.12. Differential Between CAN High and CAN Low

2.4.4 Autonomous Vehicle

 An Autonomous Vehicle (AV) is a vehicle that can guide itself, as opposed to being controlled

by human. The AV is a kind of driverless vehicle that has become in reality and is the art of

driving using computers for future. AVs have been targeted due to: 1. increasing vehicle safety,

2. reduction of accidents, 3. reduction of fuel consumption, 4. releasing of driver time and

business opportunities, 5. new potential market opportunities, and 6. reduced emissions and dust

particles. [12]

 In general, Autonomous Vehicle (AV) needs autonomous mobile navigation to find its:

1. localization

2. map building,

3. path planning, and

4. path tracking. In addition, it is required the AV obstacle avoidance through detection and

classification.

22

2.5. Literature Review

1. GPS tracking system for autonomous vehicles

 The propose of this research paper is to be able to memorize a route based on Global

Positioning System (GPS) by using a mechatronics system, rather than using pre-saved maps

that are infrequently updated and do not include all roads of all countries. Experimental tests

are conducted using a small-scale car equipped with the proposed mechatronics system.

 In order to navigate a certain path, the driver has to drive the vehicle on the desired path

only, and by using GPS to determine the current location, we can determine the distance to

the next waypoint Figure 2.13, and so we can calculate the suitable speed and steering angle

before the next waypoint.[13]

Figure 2.13. a small full path example

23

Figure 2.14. Flowchart of control sequence of the tracking mode

2. Developing Training Module on GPS Applications in Automotive Safety

and Stability 2016

 In this project contents allow the trainee to reach the know-how of this technology in addition

to the future trends related to automotive technologies. The content includes acquiring GPS

signals, using MATLAB routine to transfer data to GIS for determining the track, identifying the

driving track curvature segments and estimating the safe driving speed using simplified vehicle

stability model, and finally alarming the driver.

 This project will address this engineering issue by considering vehicle stability system and

navigation system on roads, developing a system consist of GPS sensor, microcontroller

(Arduino) and a processor which will be a personal laptop by using MATLAB as a programming

tool for achieving the prototype aims. This, of course, will help in decreasing accidents and save

people lives when the target control system is adopted and applied in vehicles as a final product

system, and it will help in autonomous cars researches. [14]

24

Figure2.15. Basic concepts of safety road speed distance

25

3

CHAPTER 3

3. System Design

26

3.1 Introduction

This chapter introduces the design part of project. It provides a description to the different

hardware options, the different components of the system, the logic flow and the interconnection

of the components.

3.1. 2 System Block Diagram

In general, any system contains three basic concepts (input, processing, and output).

Input – anything you do to activate the system or give the system to use. And Process the actual

steps and function the system will perform. Then comes the stage. Output the result after doing

all the steps. Figure 3.1 shows these concepts of our project in a simple block diagram.

Figure 3.1 .the simple block diagram for our project procedure

27

3.2 Input

 In this project, the system will receive data from three subsystems that are all working at the

same time: GPS sensor, GIS data, and ECU data.

3.2.1 GPS sensor
 We will use it to receive the vehicle velocity and position in NMEA format (National Marine

Electronics Association.) with respect to WGS 84(World Geodetic System) and with respect to

GIS data which we will talk about later. And we will convert the NMEA format into UTM

format (x, y, z).

 To get good accuracy of the location determination we need to take in mind the update rate of

the GPS sensor and its number of channels.

 Update rate

 Update rate is the number of times per second that will receive current position. A higher

update rate decreases lag time and improves distance measurements and tracking especially

when moving on a curvy route. For low-speed applications, an update rate of 0.1Hz is sufficient

whereas 5 or even 10 Hz update rate is required for other high-speed navigation. As the speed is

increased, more update rate is required to reduce blind area between two updates. Table 3.1

below shows blind distances for a speed of 100km/h. with different update rate.

Table 3.1 Distance moved before next update (Speed = 100km/h = 27.778m/s)

Update rate (Hz) Distance (cm)

1 2777.778

5 555.556

10 277.778

20 138.889

28

 Number of channels

 A GPS receiver is usually described by its number of channels. A receiver may have 6 channels,

12 channels, or hundreds of channels. Each channel trying to communicate with only one

satellite, as the number of channels increases the error will decrease. In this project the GPS

sensor that will be used is “SparkFun Venus GPS” with update rate 1 Hz, which will be

controlled by Arduino Uno microcontroller, the sensor data sheet will be attached in Appendix A

of this book.

 GPS test

Practical experiment to make sure that the sensors work and the speed of reading takes place in

accordance with changing circumstances. In the first experiment, the path inside the university

has been taken, walking along a random path along a random length. We noticed that seven

readings are taken of the same coordinates per second. Figure 3.2 shows first experiment

Figure 3.2. first experiment

In the second experiment, from the Wad-alqaf Reserve, Safa Halhoul Street, and take the starting

point and the end point in this path, taking into account that the area does not have confusion

such as high buildings and some influencing factors. As we talked about earlier, I fixed the speed

at 50 kilometres per hour we noticed that the number of readings per second differed in the speed

difference, although the speed was fixed. The number of readings was taken differently. Seven

readings were taken bearing the same coordinates. Another time was taken six times to four

times. The probable cause was the presence of noise due to the speed of moving from one

location to another. Figure 3.3 shows second experiment

29

Figure 3.3 shows second experiment

 Hardware recommendation.

Spark Fun Venus GPS module is shown in the figure 3.4.

 This module has an external antenna and built-in EEPROM.

 Interface: RS232 TTL

 Power supply: 3.3v

 Default baud rate: 9600 bps

 Works with standard NMEA sentences

Figure 3.4. Spark Fun Venus GPS

30

Table 3.2 Connect GPS sensor to Arduino

Spark fun GPS Module Wiring to Arduino UNO

VCC 3.3V

TX TX pin defined in the software serial “Digital pin(11)”

RX RX pin defined in the software serial “Digital pin(10)”

GND GND

In this project the sentences that will be used are the sentences stars with these prefixes

$GPGGA,$GPRMC, $PGRMZ by using these sentences we can import longitude, latitude,

altitude.

31

Figure 3.5. GPS Navigation Systems Flowchart

32

3.2.2 GIS Data

In this project, GIS data is used to translate and process street maps and take the coordinates and

information to be obtained, and the street point’s coordinates import in a Universal Transverse

Mercator format (UTM) which is a coordinate system uses a 2-dimensional cartesian coordinate

system to give locations in meters on the surface of the earth with relative to the equator and

greenwich as an origin.

In the beginning, determined the requirements that needed for the path to be taken, where it has

been focused on that the required road contains bends and slopes, then decided to take the Safa -

Halhul road, after that determined the starting and ending points of the road, in order to draw the

path on the AutoCAD program and determine the value of the radius and the length of the path,

as well as specifying the coordinates of each point separately in the path.

In summary, the current position of the vehicle coming from the GPS. it pair with the maps to

take important information such as cornering and the radius of the street corner. Then send it to

the model to produce the required recommendations. Figure 3.6 shows the information needed

from the path, such as the radius of the bend and the coordinates between each point.

Figure 3.6.Drawing Track By using auto cad to take dimensions

3.2.3 ECU Information

In this section we will discuss how to collect real-time information from a vehicle control

unit, we can collect information via OBD-II, which has become standard in most of all cars.

OBD-II protocols over a CAN bus that will allow the real-time variables visualization for the

vehicle state.

33

Measuring Modes

The external device requests are divided into 9 services as shown in table 3.4 In order to

request data, it is necessary to use PID’s, each PID corresponding to different vehicle data

information, The PID samples that will be used in our project are shown in table 3.5

Table 3.3. The PID samples

Table 3.4 PID’S OF Vehicle speed and steering angle

parameter service and PID

(hex)

Vehicle speed 01 0D

RPM 01 0C

34

 CAN Bus Shield for Arduino

Due to its relatively broad reach, communication speed, and high dependability, CAN is

one of the most widely used bus communication protocols. It's widely used in control machines

and diagnostics buses for automobiles. The CAN bus shield board uses the CAN MCP2515

controller with SPI interface to give CAN communication to the Arduino. This one is in charge

of controlling the CAN message pre-processing, as well as having a CAN MCP2551 transceiver

to handle the bus electric interface Figure 3.6.

Features

 • It implements CAN 2.0B at speeds up to 1 Mbps(megabits per second);

 • It has a SPI interface capable to operate at 10 MHz;

 • It supports standard (11 bits), extended (29 bits), and remote frames;

 • It has two receiving buffers for storing priority messages, a 9-pin sub-D industrial

standard, and 2 LED indicators.

 • Its operating voltage is 5 V, its dimensions are 68 x 53 mm, and its weight is only

50g.

Figure 3.6. CAN Bus Shield

 ELM 327

There are numerous types of interfaces available for the ELM327 OBD, however the

microcontroller chip developed by ELM Electronics is the most widely used. The

ELM327, which supports all OBD protocols including KWP, PWM, ISO, and CAN,

is the most extensively used in actual use. Its design is minimal power. Depending on

the manufacturer and the terminal type, it can be purchased for as little as $3 to $20.

35

 Figure 3.7 . The diagram below shows the main function of an interface.

 Type of ELM327 interfaces

1. ELM327 RS232 (RS or Series): Modern PCs are rapidly phasing out this sort of

output. The price is lowest.

2. ELM327 USB: Needs a USB driver to be installed; the tethered connection is

hardwired as opposed to wireless; advantages: All PCs come with a USB port.

Given that it might be faster and more secure.

3. ELM327 Bluetooth: It has the benefit of being wireless and may be used with

technology such as a computer or a smartphone like Wi-Fi; however, battery

consumption should be taken into consideration.

4. ELM327 Wi-Fi: Because it has a wireless connection, any technology, like a

computer or a smartphone, can utilize it. Additionally, the Wi-Fi interface's rapid,

simple, and other benefits when using an iPhone or iPad

The decision to utilize a Bluetooth adaptor was made since it is less expensive and

often uses less power than a Wi-Fi adaptor.

36

Figure 3.8 . Type of ELM327 interfaces

Table 3.5 Comparison between ELM327 and Seeed CAN Bus shield

features

SEEED CANBUS

SHEILD

V2

SEED CANBUS

SHEILD V1.2

SUNFLOWER

CAN SHEILD

ELM 327

microprocess MCP 2515 MCP 2521 MCP 2521 ELM 327

Compatibility with

Arduino

 boards

Designed
specifically for use

with Arduino boards

Designed
specifically for use

with Arduino boards

Designed
specifically for use

with Arduino boards

Can be used with

Arduino boards via a

USB to Serial
adapter or with a

Bluetooth or WIFI

module

Coding language. C C C python

operating voltage 5V 5V 5V 4.5V to 5.5V

communication

interface
USB USB USB

USB, Bluetooth,

WiFi

Compatibility with

other

 platforms

Not designed for use

with other platforms

Not designed for use

with other platforms

Not designed for use

with other platforms

Can be used with

other platforms

through

37

 a USB to Serial

adapter or with a

Bluetooth

 or WiFi module

supported protocol

SAE J1850 PWM

(41.6 kbit/s)/

SAE J1850 VPW

(10.4 kbit/s)/
ISO 9141-2 (5 baud

init, 10.4 kbit/s) /

ISO 14230-4 KWP

(5 baud init,10.4

kbit/s)/

ISO 14230-4 KWP

(fast init, 10.4

kbit/s)/

ISO 15765-4 CAN

(11 bit ID, 500

kbit/s)/

SAE J1850 PWM

(41.6 kbit/s)/

SAE J1850 VPW

(10.4 kbit/s)/
ISO 9141-2 (5 baud

init, 10.4 kbit/s) /

ISO 14230-4 KWP

(5 baud init,10.4

kbit/s)/

ISO 14230-4 KWP

(fast init, 10.4

kbit/s)/

ISO 15765-4 CAN

(11 bit ID, 500

kbit/s)/

SAE J1850 PWM

(41.6 kbit/s)/

SAE J1850 VPW

(10.4 kbit/s)/
ISO 9141-2 (5 baud

init, 10.4 kbit/s) /

ISO 14230-4 KWP

(5 baud init,10.4

kbit/s)/

ISO 14230-4 KWP

(fast init, 10.4

kbit/s)/

ISO 15765-4 CAN

(11 bit ID, 500

kbit/s)/

SAE J1850 PWM

(41.6 kbit/s)/

SAE J1850 VPW

(10.4 kbit/s)/
ISO 9141-2 (5 baud

init, 10.4 kbit/s) /

ISO 14230-4 KWP

(5 baud init,10.4

kbit/s)/

ISO 14230-4 KWP

(fast init, 10.4

kbit/s)/

ISO 15765-4 CAN

(11 bit ID, 500

kbit/s)/

Cost 34$ 34$ 34$ 20$

3.3. Processes
In this part it will be explained the processes of project as shown in block diagram 3.1 after

getting the data from GPS receiver to Arduino Uno board, GIS data about rod specifications and

have the required data from ECU of vehicle, then making the process for data and have the

output to display to driver. Figure 3.7 Block diagram for process

Figure 3.7. Block diagram for process

For more accurate results and better processing, a PC will be used to overcome the electrical

problems, for achieving our project aims easier and faster.

38

In addition, the laptop provides an excellent programing tool which is MATLAB program; this

program provides us flexibility, accessibility, and the ability for doing any coding algorithms

with very simple language.

3.4. Outputs

The output of this system will be warning massage asking the driver to decrease the vehicle

speed under the safe speed before reaching the corner and adjustment to steering angle increased

or decreased the steer value this massage will appear before the corner with an appropriate time,

in addition there will be sound warning to keep the driver attention with the track. Figure 3.8

shows Flowchart for warning massage.

Figure 3.8. Flowchart for warning massage.

3.5 Table of cost

39

4
Chapter 4

Simulation

40

Introduction:

The first step to apply the project in real ward is apply it in digital ward, in this project the

simulation it will be done by MATLAB program by using coding, Simulink and driving scenario

application in MATLAB to achieve the goal.

 By the Simulink have the main Blok that receive the input data to make the calculation and the

driving scenario prepare the GIS file and the specific data for the road and save it to use it in

MATLAB, by coding it can request the file of road data and other file like reference throttle

position.

4.1. Simulink:

4.1.1 Stanley Controller Block:

We're going to look at the Stanley Controller itself. We'll take a look at its implementation, starti

g with generation of waypoints, and then moving on to actually implementing this, and building

 the models in Matlab, and of course doing all of these visualizations of the vehicle motion. For

those of you that don't know, the Stanley Controller has been around for a little while, and it's

actually a path tracking algorithm. It was actually first used in real life in the Stanford racing

team in the DARPA GRAND Challenge, and it's using and computing the steering wheel angle

to follow a reference trajectory. Figure 4.1

The path tracking approach is used by Sanford University’s Darpan Grand Challenge team.

Different from the pure pursuit method using the rear axle as its reference point, Stanley method

use the front axle as its reference point. Meanwhile, it looks at both the heading error and cross-

track error. In this method, the cross-track error is defined as the distance between the closest

point on the path with the front axle of the vehicle. [12]

41

Figure 4.1. Geometric path tracking

In this method, the center of the rear axle is used as the reference point on the vehicle.

4.1.2 Vehicle Body 3DOF Dual Track

The Vehicle Body 3DOF block implements a rigid two-axle vehicle body model to calculate

longitudinal, lateral, and yaw motion. The block accounts for body mass and aerodynamic drag

between the axles due to acceleration and steering. As shown in Figure 4.3. To determine the

vehicle motion, the block implements these equations for the dual track.

Figure 4.3. The Vehicle Body 3DOF block [13]

42

The block uses these equations to calculate the rigid body planar dynamics:

If we set Axle forces to External longitudinal velocity, the block assumes a quasi-steady state for

the longitudinal acceleration.

For External forces

External forces include both drag and external force inputs. The forces act on the vehicle CG:

If we set Axle forces to External longitudinal forces, the block uses these equations:

43

 For Tire forces

The block uses the ratio of the local and longitudinal and lateral velocities to determine the slip

angles:

The block uses the steering angles to transform the tire forces to the vehicle-fixed frame:

44

Table 4.1 The equations use these variables (Stanley Controller and Vehicle Body 3DOF)

x,˙x,¨x Vehicle CG displacement, velocity, and acceleration, along

the vehicle-fixed x-axis

y,˙y,¨y Vehicle CG displacement, velocity, and acceleration, along

the vehicle-fixed y-axis

Ψ Rotation of the vehicle-fixed frame about the earth-fixed Z-

axis (yaw)

r,˙Ψ Vehicle angular velocity, about the vehicle-fixed z-axis (yaw

rate)

Fxf, Fxr Longitudinal forces applied to front and rear wheels, along the

vehicle-fixed x-axis

Fyf, Fyr Lateral forces applied to front and rear wheels, along vehicle-

fixed y-axis

Fxext, Fyext, Fzext External forces applied to vehicle CG, along the vehicle-

fixed x-, y-, and z-axes

Fdx, Fdy, Fdz Drag forces applied to vehicle CG, along the vehicle-fixed x-

, y-, and z-axes

Fxinput, Fyinput, Fzinput Input forces applied to vehicle CG, along the vehicle-fixed x-

, y-, and z-axes

Mxext, Myext, Mzext External moment about vehicle CG, about the vehicle-fixed x-

, y-, and z-axes

Mdx, Mdy, Mdz Drag moment about vehicle CG, about the vehicle-fixed x-, y-,

and z-axes

Mxinput, Myinput, Mzinput Input moment about vehicle CG, about the vehicle-fixed x-, y-

, and z-axes

Izz Vehicle body moment of inertia about the vehicle-fixed z-axis

Fxft, Fxrt Longitudinal tire force applied to front and rear wheels, along

the vehicle-fixed x-axis

Fyft, Fyft Lateral tire force applied to front and rear wheels, along

vehicle-fixed y-axis

Fxfl, Fxfr Longitudinal force applied to front left and front right wheels,

along the vehicle-fixed x-axis

45

Fyfl, Fyfr Lateral force applied to front left and front right wheels, along

the vehicle-fixed y-axis

Fxrl, Fxrr Longitudinal force applied to rear left and rear right wheels,

along the vehicle-fixed x-axis

Fyrl, Fyrr Lateral force applied to rear left and rear right wheels, along

the vehicle-fixed y-axis

Fxflt, Fxfrt Longitudinal tire force applied to front left and front right

wheels, along the vehicle-fixed x-axis

Fyflt, Fyfrt Lateral force tire applied to front left and front right wheels,

along the vehicle-fixed y-axis

Fxrlt, Fxrrt Longitudinal tire force applied to rear left and rear right

wheels, along the vehicle-fixed x-axis

Fyrlt, Fyrrt Lateral force applied to rear left and rear right wheels, along

the vehicle-fixed y-axis

Fzf,Fzr Normal force applied to front and rear wheels, along vehicle-

fixed z-axis

Fznom Nominal normal force applied to axles, along the vehicle-

fixed z-axis

Fzfl,Fzfr Normal force applied to front left and right wheels, along

vehicle-fixed z-axis

Fzrl,Fzrr Normal force applied to rear left and right wheels, along

vehicle-fixed z-axis

M Vehicle body mass

a, b Distance of front and rear wheels, respectively, from the

normal projection point of vehicle CG onto the common axle

plane

H Height of vehicle CG above the axle plane

D Lateral distance from the geometric centerline to the center of

mass along the vehicle-fixed y-axis

Hh Height of the hitch above the axle plane along the vehicle-

fixed z-axis

Dh Longitudinal distance of the hitch from the normal projection

point of tractor CG onto the common axle plane

Hl Lateral distance from center of mass to hitch along the

vehicle-fixed y-axis.

αf, αr Front and rear wheel slip angles

αfl, αfr Front left and right wheel slip angles

αrl, αrr Rear left and right wheel slip angles

46

δf, δr Front and rear wheel steering angles

δrl, δrr Rear left and right wheel steering angles

δfl, δfr Front left and right wheel steering angles

wf, wr Front and rear track widths

Cyf, Cyr Front and rear wheel cornering stiffness

Cyfdata, Cyrdata Front and rear wheel cornering stiffness data

σf, σr Front and rear wheel relaxation length

αfσ, αrσ Front and rear wheel slip angles that include relaxation length

vwf, vwr Magnitude of front and rear wheel hardpoint velocity

μf, μr Front and rear wheel friction coefficient

μfl, μfr Front left and right wheel friction coefficient

μrl, μrr Rear left and right wheel friction coefficient

Cd Air drag coefficient acting along vehicle-fixed x-axis

Cs Air drag coefficient acting along vehicle-fixed y-axis

Cl Air drag coefficient acting along vehicle-fixed z-axis

Crm Air drag roll moment acting about the vehicle-fixed x-axis

Cpm Air drag pitch moment acting about the vehicle-fixed y-axis

Cym Air drag yaw moment acting about the vehicle-fixed z-axis

Af Frontal area

4.2. Driving Scenario

The Driving Scenario Designer is used to design synthetic driving scenarios. These scenarios are

used to test the automatic driving systems. Create road and actor models using a drag-and-drop

interface. Configure vision, radar, lidar, and INS sensors mounted on the ego vehicle. And it will

be used to Import Road data from OpenStreetMap as shown in Figure 4.2 and use this road as a

reference path in Stanley controller.

47

Figure 4.2. Road data from OpenStreetMap

4.3. connect Simulink Block:

 We have reference data include path and the road data, that we export it from website

open street map, and then import these data to driving scenario to get the Reference path. Then

save the driving scenario file with form “driving scenario. Mat” then the file is been called in the

model to calculate the desired steering angle for the path using lateral Stanley controller. And

display it in the desired steering angle block as shown in the Figure 4.4 below.

Figure 4.4. Blocks to calculate steering angle.

48

Then manually entering the value of the steering angle using kinematic steering block, and make

it input in the pin “whlAngF” for the vehicle body 3DOF dual track block. As shown in the

Figure 4.5.

Figure 4.5. Employing a kinematic steering block to manually enter the steering angle's value..

Figure 4.6. Vehicle Path Tracking Using Stanley Controller

After running the program Simulink, the result is been displayed on the 2D visualization screen.

49

5
Chapter 5

System Interface and Operations

50

Introduction

This chapter introduces module construction. It demonstrates how hardware parts are connected

and interface systems. As well as how gather data and perform calculations and review the steps

that were taken for the practical application of the project, starting from extracting information

from the vehicle to presenting the results. Building on the previous steps that reviewed in the

previous units.

5.1. Extract and Prepare ECU data

 The experimental method depends on identifying, extracting, storing and visualizing the

variables in order to determine the desired procedures to be followed. In this project, we used

and experimented with four electronic pieces to extract and display data.

 CAN Bus shield V2

 CAN Bus shield V1.2

 Sun-flower CAN Shield V2

 ELM327

All of these pieces share one goal, which is to read CAN-BUS messages and specify the required

information for model using PID.

In the beginning, specify the major steps before starting to use electronic parts :

1. Determine the type of vehicle that will be used in this project and selected Mazda 3 2016

SKYACTIV-G 2.0 Automatic transaxle

Figure 5.1. Mazda 3 skyactiv 2016

51

 Specification

 Table 5.1. Specifications for mazda3-G skyactive

Parameter Vehicle specification

Overall length 4,580 mm (180.3 in)

Overall width 1,795 mm (70.7 in)

Overall height 1,455 mm (57.3 in)

Front tread Lf 1,555 mm (61.2 in)

Rear tread Lr 1,560 mm (61.4 in)

Wheelbase L 2,700 mm (106.3 in)

Weights 1,815 kg (4,001 lbs) Front 975 kg (2,149 lbs)

Rear 848 kg (1,870 lbs)

Tire size 215/45R18 89W Front 250 kPa (36 psi)

Rear 250 kPa (36 psi)

Front Cornering Stiffness 56 kN/rad

Rear Cornering Stiffness 65 kN/rad

Centre of Gravity Height 0.533 m

Wind Force Centre Height 0.5 m

Air Drag Coefficient 0.31

Figure 5.2. The vehicle dimension

2. OBD II

On-board diagnostics (OBD, ISO 15765) is a self-diagnostic and reporting capability that e.g.

mechanics use to identify car issues. OBD2 specifies diagnostic trouble codes (DTCs) and

real-time data (e.g. speed, RPM), which can be recorded via OBD2 loggers.

52

Figure 5.3 .OBD II connector location for Mazda 3

3. Defined CAN high CAN low pin

Figure 5.4 . CAN high CAN low pin

4. Checking CAN Voltage

1. Disconnect all devices except for the device being tested, then power the device on.

2. Measure voltage on any of disconnected plugs between CAN HI and GROUND. The

resulting voltage should be between 2.5 and 3.0VDC.

3. At the same location, measure voltage between CAN LOW and GROUND. The resulting

voltage should be between 2.5 and 2.0 VDC.

A low voltage of 1.4VDC or less on either of these indicates a potential failure on the CAN port

of the device.

53

If voltages are exactly 2.50 VDC, and do not change after several seconds, this indicates the

device connected is powered but not broadcasting data

5. CAN bus testing with an oscilloscope

1. Connect the oscilloscope to CAN bus with a probe.

o Connect channel 1 with CAN high and CAN low with channel 2 from OBD II

 Figure 5.5 .OBD II connector location for Mazda 3

2. Determine the scale of the signal and adjust your trigger. The simplest and fastest way to do

this is to press "Auto Scale"

3. Turn on "Serial" on the front panel of the oscilloscope

54

 Figure 5.6 . signal CAN high and CAN low Figure 5.7 . Micsig Tablet Oscilloscope Serial

5.1.1 CAN Bus Shield V2

The CAN Bus shield was interfaced with an Arduino Uno in accordance with the data sheet.

There are a number of variables that need to be calibrated with the CAN Bus shield, Arduino,

and can bus in the vehicle, such as choosing the SPI pin, followed by the can bus speed and

author parameter, as shown in Figure 5.8. Then, using an OBD to DB9 connection, they were

linked to the car's OBD and prepared and uploaded with the Arduino code "receive check" the

code will be attached in appendix F” to read the messages that would be received from the CAN

bus, as shown in Figure 5.9.

Figure 5.8 CAN bus shield with Arduino Uno Figure 5.9 Interfacing with OBD of the car

As seen in Figure 5.10, no massage was given following that tune on the car. As a result, when

trying again with a different code that is "CAN read," the same "no data" results were produced.

55

Figure 5.10 Serial monitor in Arduino

Using inspection tools like the launch device, it has been verified the car's CAN bus's

functionality. To confirm the connections and components, and also checke the voltage and

resistance between the CAN-H and CAN-L lines.

5.1.1.1 CAN Bus Shield V1.2

The CAN bus shield V1.2 is the same as the V2 but in a different version; it has been paired with

Arduino and the car OBD. We read the messages in the serial monitor after uploading the code to

the shield, as shown in Figure 5.11.

56

Figure 5.11. Serial monitors in Arduino CANBUS shield v1.2

The communication with the vehicle's CAN bus is success at this point, but couldn't able to

determine the appropriate mode to read the data from the vehicle because there is no enough

information to determine the appropriate mode.

5.1.2 Sunflower Shield

Because there is no data sheet for the sunflower shield or any reference site to obtain information

about it, we encountered a problem dealing with it and setting the appropriate mode of operation.

So, a several steps have been token to verify the shield's pins and the type of processor used in

order to understand its characteristics and how to deal with it.

 The sunflower shield is interfaced with an Arduino Uno in a suitable way, as demonstrated in

Figure 5.12.a Then, prepared and uploaded the Arduino code "CAN read" “the code will be

attached in appendix G” to read the messages that the car's CAN bus will send, and then

linked it to the OBD of the vehicle using an OBD to DB9 connector, as shown in Figure 5.12.b

57

Figure 5.12a Sun-flower shield with an Arduino Uno Figure 5.12b Sun-flower with OBD to DP9

cable

After that tune on the car and no massage was received as shown in Figure 5.13.

Figure 5.13. Serial monitor in Arduino

58

5.1.3 ELM and Python

Hardware implementation

We plugged ELM327 with OBD port then connect built-in laptop Bluetooth with ELM327

Bluetooth adapter to communicate.

Software implementation

Install the last version of python-OBD library from pypi using pip install then Import python

OBD in python script, after that use the python-OBD library to connect to an ELM327 via a

Bluetooth port in Python To get information from the car, we send commands that query for the

required data(such RPM and vehicle speed).

But about steering angle sensor data is not available, because the PIDs of steering angle is not

implemented in stander in ISO 15765 in another ward is not general.

Then by refer to service manual the data available for the sensor is:

 Purpose, Function [13]

 The steering angle sensor outputs the steering angle and steering angle reference point

during the period which the EPS control module performs initial learning.

Construction

 The steering angle sensor is installed to the clock spring.

 Consists of the gear which rotates together with the steering (magnet) and the magnetic

sensor

Operation

 By the rotation of the gear (magnet) corresponding to the steering operation, the

magnetic sensor output value changes.

 The steering angle sensor outputs the magnetic sensor output to the start stop unit.

59

Figure 5.14 streering angle sensor signal [13]

 But when we display the two signals by myDAQ (data acquisition tool) the signal is different

from the desired output like we see in figure 5.15

Figure 5.15.a the signal A from sensor steering angle by myDAQ

60

Figure 5.15.b The signal B from sensor steering angle by myDAQ

Figure 5.15.C myDAQ

Implementation issues:

The latest Python OBD release was released in 2019 and doesn’t work in Python 3.10 and 3.11,

so, to solve this problem an older version of Python is installing which is (3.8.4).

61

5.2 Using a multi-turn potentiometer to extract steering angle

After we were unable to extract the steering angle reading from the electronic control unit ECU and read

the sensor signal itself, we took a third procedure by connecting the steering wheel shaft with a

potentiometer multiturn , so design a cylinder that put on a shaft that moves the potentiometer according

to the rotation of the steering wheel in the next figure explain the new Block Diagram Figure 5.16

Figure 5.16 block diagram for our project procedure

62

Determine the transmission ratio between the steering shaft and the potentiometer which is 1 to

2, and Make a design for printing a cylinder using CATIA software figure 5.17

Figure 5.17 Design for steering wheel with potontiometer sensor

After printing the two cylinders, installed a Toothed belt on the two cylinders and installed it on
the steering shaft Figure 5.18

63

Figure 5.18 Tools steering angle measurement

After installing the potentiometer, write the special Arduino code “the code will be attached in

appendix I” in the potentiometer and map the readings and calibrate it. After calibrating it, and

verified the readings using the lunch device figure 5.19

Figure 5.19 Verified the readings using the lunch device

64

5.3 Receiving and Preparing GPS data

5.3.1 GPS with Arduino connection

The second step in implementing our system was the creation of a GPS control module (GPS

receiver) that permits to receive GPS data (Long and Lati) from satellite. Two crucial

components, the microcontroller (Arduino Uno) and the GPS sensor, were utilized for this

purpose. As soon as this connection is established and power is supplied to the Arduino, the GPS

sensor will begin immediately receiving data. These component connections are explained in the

figure 5.20 and table 5.2 below.

Figure 5.20 GPS sensor connection

Table 5.2 GPS sensor and Arduino Uno pins

Arduino GPS sensor

Vcc Vcc

Ground Ground

Digital pin 10 Tx

5.3.2 Convert Longitude and latitude to X,Y,Z coordinate

In order to convert GPS data ((Long and Lat) to X,Y,Z coordinate, by using equations in python:

using python code so read data from GPS sensor from Arduino and send longitude and latitude

as permitters for a the function long in python start read data and save data in file text file.

65

After all of this need convert text file to MATLAB file (m.file) and from driving scenario to

generate reference point.

5.4 Preparing GIS data

At the beginning of work on the project, we took and drew an external path in the Halhul area,

but due to the difficulty of leaving campus university boundary because the vehicle an illegal

that was taken from the police, we drew a path inside the university from Building B to

Building C. so determined the path to be taken using the university campus AutoCAD drawings

Figure 5.21 and taking the coordinates of the track using the GPS sensor and taking a file

containing the route information in the OSM file format and inserting it into the MATLAB

Driving Scenario to analyze the file.

Figure 5.21 AutoCAD drawing for Campus

After that, created the path inside the university campus on the OpenStreetMap website and

uploaded all the characteristics and information of the path (the length of the path, its Cartesian

coordinates, the type of road, the width of the road, the specified speed, etc.) on the site, for

approval by the site Figure 5.22

66

Figure 5.22 Open-street map drawing for Campus

After that, extract the road data in an OSM file (GIS File) This is to import it to MATLAB and

use it in the Driving Scenario application Figure 5.23.

Figure 5.23 Uplode GIS file in Driving Scenario application

67

5.5 Data linking with MATLAB Software

First, prepare ECU data in m.file format for transfer to MATLB, including vehicle speed. Then gather data from

the steering angle sensor and send it via Arduino to the MATLAB software. After that, take the previously

prepared GIS file and send it to MATLAB (driving scenario). Figure 5.24

Figure 5.24 Interfacing data with MATLAB

68

6
Chapter 6

Experimentation and Results

69

Introduction

 The experiment test of any system is seen to be one of the most important step in system

development since it allows the researcher to assess whether or not their work was done

correctly. On the other hand, the experiment test is thought to be the primary source of

system feedback.

In addition to the experimental approach, results, and suggestions in this chapter, which also

discusses the state-of-the-art of this technology, there are several key considerations that

should be kept in mind when carrying out the experimental test.

6.1 Experimentation

6.1.1 Result for GPS and GIS test data

As we explained in the previous units, we need information about the location of the vehicle

and the information about the road. With the help of Sensor GPS, took the vehicle in a path

and read the longitudinal and latitude table 6.1.

Table 6.1. Result for GPS in longitude and latitude >>> above the table ??!!!

70

 Accuracy: The NMEA protocol includes a sentence (GPRMC) that reports the current

accuracy of the GPS receiver's position. You could report this accuracy in meters or other

units of distance. For example, you could report that the average accuracy was 3..0 meters,

or that the maximum accuracy was 1 meter.

 Result for converting WGS 84 Format into X, Y, Z coordinate (python)

X Y

4456074.49 3126503.786

4456074.546 3126502.939

4456074.872 3126502.283

4456075.018 3126501.499

4456075.344 3126500.843

4456075.462 3126500.482

4456075.698 3126499.762

4456076.024 3126499.106

4456076.44 3126498.513

4456076.378 3126498.026

4456076.795 3126497.433

4456077.328 3126496.48

4456077.357 3126496.056

4456077.592 3126495.336

4456077.71 3126494.976

4456077.829 3126494.616

4456077.765 3126494.13

4456078.002 3126493.41

4456078.21 3126493.113

4456078.147 3126492.626

4456078.473 3126491.97

4456078.411 3126491.484

4456078.827 3126490.89

4456078.737 3126490.827

Table 6.2. Result for GPS in X and Y >>> above the table ??!!!!

71

6.1.2 Result for extract data from ECU

We chose a way to test ELM327 python code to collect real time data for the speed of the

vehicle and RPM. And we noticed that in some readings it gives NONE VALUE. So, we

solved this problem by substituting the previous value for the NONE VALUES. Figure 6.1

Figure 6.1 Data from ECU RPM and Vehicle speed

There are two possibilities for the reason

1. First possibility is that there is a momentary interruption of the Bluetooth connection

during the experiment

2. The second possibility is due to the very large transfer speed and also the presence of

priority messages.

After that, draw the results using the MATLAB program as show in Figure 6.2

72

Figure 6.2 Data from ECU RPM and Vehicle speed MATLAB

6.1.3 Result for steering angle

In this section, we review the extracted results of the steering angle that were recorded while

taking the readings of the track experiment within the university campus in as show in Figure

6.3.

Figure 6.3 Steering angle result

73

All the readings extracted from the experiment we took for the track Table 6.3 the vehicle speed , RPM , the

time of take the information from vehicle , GPS data (longitudes ,latitude) every Colum has a name and

unit .

Table 6.3 Result for All data from experiment (speed ,RPM ,time,…etc.)

6.2 Results

When it comes to vehicle navigation and control, understanding the appropriate speed and

steering angle of a vehicle is essential. This is why we decided to use MATLAB to extract this

information through a program consisting of vehicle dynamics equations, geographic

information systems (GIS), and global positioning system (GPS). The vehicle dynamics

equations allow to calculate the motion of a vehicle as it moves through space, taking into

account its mass, acceleration, speed, and trajectory. By connecting these equations to

geographic information systems (GIS), then map the vehicle’s path and create a visual

representation. This can then be combined with GPS to accurately pinpoint the vehicle’s current

position and its desired destination. The result of this program is the ability to accurately extract

the appropriate speed and steering angle for a given vehicle. This is invaluable for any kind of

navigation or vehicle control, as it allows to precisely control the vehicle’s path without having

to manually adjust its speed or angle. Overall, the combination of MATLAB, vehicle dynamics

equations, GIS, and GPS has proven to be a powerful solution for extracting the appropriate

speed and steering angle of a vehicle. It is a reliable and efficient way of controlling the vehicle’s

path and ensuring that it stays on course.

74

Through the experiment on the path used, the results is previously clarified, and insert this data

(the speed of the vehicle and the steering angle and GPS and GIS information) to the model used

in the program MATLAB Simulink, is explained in chapter 4. The results were extracted

(vehicle speed and steering angle) for each point, In the attached pictures, the results show the

path drawn based on the information entered. The red point shows the correct and appropriate

path for this road and The black dots show the actual path of the vehicle. As show in Figure 6.4

Figure 6.4 Result of simulation for the path

75

Sources of error and the percentage of error rises as a result of several main factors, and it turns

out cannot obtain the ideal turn at high speeds and sharp turns, the model we use is 3 degree of

freedom not 6 DOF like the real word and the some main input and constant of model like corner

stiffness, center of gravity distance form ground …etc, this value take a general value from

literature review , The Figure 6.5 shown shows the big difference between the ideal turn and the

turn resulting from the actual driving of the vehicle.

Figure 6.5 Error of simulation for the path

76

Through the scale and the use of the Vehicle Dynamics Toolbox 3DOF, results were obtained on

verticals such as perfect speed, perfect steering angle, normal reaction front and rear (lift and

right wheel), and Psi ,r (psi dot) which are shown in the figure 6.6 .

77

Figure 6.6 Result from 3DOFvehicle dynamic block

6.4 Recommendations

Due to several system and devices used in this project, there were a group of source of error

coming out these system and devices, so, our recommendation come to solve these error and

develop the system relative to these system and devices.

1. Related to GPS system

a. Using more accurate GPS sensor with a higher update rate too.

b. Using GPS sensor with more flexible antenna (longer antenna wire).

c. Linking the GPS system with weather condition station to receive the weather condition,

which is a primary factor for computing the coefficient of friction.

d. Using a GPS sensor have a lower operation temperature, or a sensor reaching his

operating temperature faster.

2. Related to GIS system

a. Prepare a GIS data for the rest of town, country.

b. Preparing more accurate GIS data by increasing the number of point coordinate per unit

distance, and also using more accurate photogrammetry for both street side.

3. Related to the hardware component

a. Using faster micro controllers.

b. Exchange the Arduino micro controller with a micro processer, raspberry pi for example,

which helps to dispense a personal laptop, and make the project closer to the final product.

c. Develop a new simple control module that can import the vehicle speed from the vehicle itself.

d. Try to use Seeed CAN Bus Shield V1.2 and learn how to select mood.

4. Related to Data extraction

Before choosing a vehicle, find out all the necessary information (PID) and make sure it is

available.

78

For example, in our case, it is unable to find out the special PID in the vehicle's steering angle for

the available vehicle

5. Related to calculations

a. Converting Model to Python code to facilitate real-time calculations and faster calculation.

b. Using more sophisticated mathematical model instead of our simple model, which will be

more accurate.

6.5 The-State-of-the-Art of this technology

The rapid evolution in vehicle electronic systems including GPS, was consequent to the

developing tools and information, according to this project came to develop a training module

for safety and stability application, as it should , this system will be part of one or more future

technology system, that serves the same object of this project, and as imagine that this project

will integrate with some new technologies such as Autonomous vehicles By the combination of

this system and another smart models include stability control systems, navigation system and

vehicle control systems, it will achieve an Autonomous vehicle control, which means the vehicle

drives without the need for a driver, this trend could be one of the most interested state of the art

technology that is related to this project.

79

References

[1] Acea.auto. [Online]. Available: https://www.acea.auto/figure/world-motor-vehicle-

production/.3-5-2022. [Accessed: 02-Aug-2022].

[2] GPS TECHNOLOGY OPTIMIZING CAR NAVIGATION Elvis N. Ngah Business

Mathematics and Informatics Vrije. 2006.

[3] Y. Zein, M. Darwiche, and O. Mokhiamar, “GPS tracking system for autonomous

vehicles,” Alexandria engineering journal, 2018

[4] “The Global Positioning System: Signals, Measurements, and Performance Per K,” Enge

International Journal of Wireless Information Networks, vol. I, no. 2, 1994.

[5] A. El-Rabbany, Introduction to GPS: The global positioning system, 2nd ed. Norwood, MA:

Artech House, 2006.

[6] S. Wise, GIS Basics. London, England: CRC Press, 2018.

[7] Van Sickle, Jan. Basic GIS coordinates. CRC press, 2017.

[8] R. Rajamani, Vehicle dynamics and control. Springer Science & Business Media, 2011.

[9] C. Miller and C. Valasek, A survey of remote automotive attack surfaces. Black Hat USA,

2014.

[10] M. di Natale, H. Zeng, P. di Giusto, and A. Ghosal, Understanding and using the controller

area network communication protocol: Theory and practice, 2012th ed. New York, NY:

Springer, 2012.

[11] CANedge: CAN Bus Data Logger - Simple-To-Use. Pro Specs. Interoperable. 2020.

[12] Y. Ding, “Three methods of vehicle lateral control: Pure pursuit, Stanley and MPC,”

Medium, 06-Mar-2020. [Online]. Available: https://dingyan89.medium.com/three-methods-of-

vehicle-lateral-control-pure-pursuit-stanley-and-mpc-db8cc1d32081. [Accessed: 02-Aug-2022].

[13] Zein, Yassine; Darwiche, Mohamad; Mokhiamar, Ossama (2018). GPS tracking system for

autonomous vehicles. Alexandria Engineering Journal, (), S1110016818301091–. doi:

10.1016/j.aej.2017.12.002

80

[14] Qais NaserEddin , Mohammad Badran , Tareq Dweik , Sondos Harfoush. (2016).

Developing Training Module on GPS Applications in Automotive Safety and Stability. Palestine

Polytechnic University (PPU), Birzeit University (BZU).

[15] “3DOF rigid vehicle body to calculate longitudinal, lateral, and yaw motion - Simulink,”

Mathworks.com. [Online]. Available:

https://www.mathworks.com/help/vdynblks/ref/vehiclebody3dof.html. [Accessed: 09-Aug-

2022].

[16] “Road traffic injuries,” Who.int. [Online]. Available: https://www.who.int/news-room/fact-

sheets/detail/road-traffic-injuries. [Accessed: 05-Sep-2022]

Appendix A

Venus638FLPx GPS

Receiver

Data Sheet

10mmx 10mm

81

Venus638FLPx-L / Venus638FLPx-D

82

FEATURES

 20Hz update rate

 -148dBm cold start sensitivity

 -165dBm tracking sensitivity

 29 second cold start TTFF

 3.5 second TTFF with AGPS

 1 second hot start

 2.5m accuracy

 Multipath detection and suppression

 Jamming detection and mitigation

 SBAS (WAAS / EGNOS) support

 7-day extended ephemeris AGPS

 67mW full power navigation

 Works directly with active or passive antenna

 Internal flash for optional 75K point data logging

 Supports external SPI flash memory data logging

 Complete receiver in 10mm x 10mm x 1.3mm size

 Contains LNA, SAW Filter, TCXO, RTC Xtal, LDO

 Pb-free RoHS compliant

Venus638FLPx is a high performance, low cost, single chip

GPS receiver targeting mobile consumer and cellular

handset applications. It offers very low power consumption,

high sensitivity, and best in class signal acquisition and

time-to-first-fix performance.

Venus638FLPx contains all the necessary components of a

complete GPS receiver, includes 1.2dB cascaded system

NF RF front-end, GPS baseband signal processor, 0.5ppm

TCXO, 32.768kHz RTC crystal, RTC LDO regulator, and

passive components. It requires very low external

component count and takes up only 100mm2 PCB footprint.

Dedicated massive-correlator signal parameter search

engine within the baseband enables rapid search of all the

available satellites and acquisition of very weak signal. An

advanced track engine allows weak signal tracking and

positioning in harsh environments such as urban canyons

and under deep foliage.

The self-contained architecture keeps GPS processing off

the host and allows integration into applications with very

little resource.

Venus638FLPx is very easy to use, minimizes RF layout

design issues and offers very fast time to market.

83

Receiver Type L1 frequency
GPS C/A code
SBAS capable
65-channel architecture
8 million time-frequency searches per second

Accuracy Position 2.5m CEP

 Velocity 0.1m/sec

 Timing 60ns

Open Sky TTFF

 29 second cold start
3.5 second with AGPS
1 second hot start

Reacquisition

 < 1s

Sensitivity -165dBm tracking

 -148dBm cold start

Update Rate

 1 / 2 / 4 / 5 / 8 / 10 / 20 Hz (default 1Hz)

Dynamics

 4G

Operational Limits

 Altitude < 18,000m*1 , Velocity < 515m/s*1

Datum

 Default WGS-84

Interface

 UART LVTTL level

Baud Rate

 4800 / 9600 / 38400 / 115200

Protocol NMEA-0183 V3.01, GGA, GLL, GSA, GSV, RMC, VTG (default GGA, GSA, GSV, RMC, VTG)

 SkyTraq Binary

Main Supply Voltage 2.8V ~ 3.6V (Venus638FLPx-L)

 2.8V ~ 3.6V, 1.08V ~ 1.32V (Venus638FLPx-D)

Backup Voltage

 1.5V ~ 6V

Current Consumption

 Enhanced
Acquisition

Low Power Acquisition Tracking

Venus638FLPx-L 68mA @ 3.3V 50mA @ 3.3V 29mA @ 3.3V
Venus638FLPx-D 18mA @ 3.3V

50mA @ 1.2V
18mA @ 3.3V
32mA @ 1.2V

18mA @ 3.3V
11mA @ 1.2V

 Assuming 75% efficiency switch-mode 3.3V-to-1.2V regulator is used, then

 Enhanced Acquisition Low Power Acquisition Tracking

84

BLOCK DIAGRAM

Figure-1 GPS Receiver based on Venus638FLPx

85

VENUS638FLPx PIN-OUT DIAGRAM

Figure-2b Venus638FLPx Pin-Out Diagram

VENUS638FLPx PIN DEFINITION

Pin Number Signal Name Type Description
1 RSTN Input Active LOW reset input, 3.3V LVTTL
2 VCC33I Power Input Main voltage supply input, 2.8V ~ 3.6V
3 NC Not connected, empty pin

4 PIO12 Bidir General purpose I/O pin, 3.3V LVTTL
5 GPIO2 Bidir General purpose I/O pin, 3.3V LVTTL
6 GPIO1 Bidir General purpose I/O pin, 3.3V LVTTL

7 LED / GPIO0 Bidir Navigation status indicator or General purpose I/O. 3.3V LVTTL

86

8 GPIO24 Bidir General purpose I/O pin. 3.3V LVTTL
Also serves as Search Engine Mode Selection upon power-up
1: low power acquisition mode
0: enhanced acquisition mode

9 BOOT_SEL Bidir Boot mode selection. Pull-high or pull-low using 10K resistor. Must
not connect to VCC or GND directly. 1: execute from internal ROM
0: execute from internal Flash memory

10 GND Power System ground
11 GND Power System ground
12 GPIO22 Bidir General purpose I/O pin, 3.3V LVTTL
13 GPIO23 Bidir General purpose I/O pin, 3.3V LVTTL
14 GPIO20 Bidir General purpose I/O pin, 3.3V LVTTL
15 GND Power System ground
16 GPIO29 Bidir General purpose I/O pin, 3.3V LVTTL
17 V12O_RTC Power Output 1.2V LDO output for RTC & backup memory. Normally unused.
18 VBAT Power Input Supply voltage for internal RTC and backup SRAM, 1.5V ~ 6V.

VBAT should be powered by non-volatile supply voltage to have
optimal performance. If VBAT is connected to VCC33I, powered off
as VCC33I power is removed, then it’ll cold start every time. For
applications that do not care lesser performance cold starting every
time, this pin can be connected to VCC33I.

19 GND Power System ground
20 NC Not connected, empty pin

21 GND_RF Power RF section system ground
22 GND_RF Power RF section system ground
23 NC Not connected, empty pin

24 GND_RF Power RF section system ground
25 GND_RF Power RF section system ground
26 NC Not connected, empty pin

27 GND_RF Power RF section system ground
28 GND_RF Power RF section system ground
29 GND_RF Power RF section system ground
30 NC Not connected, empty pin

31 GND_RF Power RF section system ground
32 RFIN Input GPS signal input, connect to GPS antenna.
33 GND_RF Power RF section system ground
34 NC Not connected, empty pin

35 NC Not connected, empty pin

36 REG_ENA Input Connect to pin-2 VCC33I
37 PIO14 Bidir General purpose I/O pin, 3.3V LVTTL
38 MOSI / PIO9 Bidir SPI data output or general purpose I/O pin, 3.3V LVTTL
39 MISO / PIO8 Bidir SPI data input or general purpose I/O pin, 3.3V LVTTL
40 P1PPS Output 1 pulse per second output. Active after position fix; goes HIGH for

about 4msec, 3.3V LVTTL
41 SPI_CLK / PIOO7 Output SPI clock or general purpose output pin, 3.3V LVTTL
42 RXD0 Input Received input of the asynchronous UART port. Used to input

binary command to the GPS receiver. 3.3V LVTTL
43 SPI_CSN / PIO6 Bidir SPI chip select output or general purpose I/O pin, 3.3V LVTTL
44 TXD0 Output Transmit output of the asynchronous UART port. Used to output

standard NMEA-0183 sentence or response to input binary
command. 3.3V LVTTL

87

45 SDA Bidir I2C data, 3.3V I/O
46 SCL Bidir I2C clock, 3.3V I/O
47 GPIO4 Bidir General purpose I/O pin, 3.3V LVTTL
48 GPIO3 Bidir General purpose I/O pin, 3.3V LVTTL
49 GND System ground

50 PIO5 Output General purpose output pin, 3.3V LVTTL
51 PIO11 Bidir General purpose I/O pin, 3.3V LVTTL
52 RXD1 Input Received input of the asynchronous UART port.

3.3V LVTTL
53 GPIO25 Bidir General purpose I/O pin, 3.3V LVTTL
54 GPIO30 Bidir General purpose I/O pin, 3.3V LVTTL
55 PIO15 Bidir General purpose I/O pin, 3.3V LVTTL
56 NC / V12 NC pin for Venus638FLPx-L

1.2V supply input pin for Venus638FLPx-D
57 TXD1 Output Transmit output of the asynchronous UART port.

3.3V LVTTL
58 VCC33I Power Input Main voltage supply input, 2.8V ~ 3.6V
59 GPIO28 Bidir General purpose I/O pin, 3.3V LVTTL
60 GND Power System ground
61 GND_RF Power RF section system ground
62 GND_RF Power RF section system ground
63 GPIO6 Bidir General purpose I/O pin, 3.3V LVTTL
64 GND Power System ground
65 GND_RF Power RF section system ground

66,67,68 NC
69 GND_RF Power RF section system ground

When using Venus638FLPx-L to replace Venus634FLPx, pin-45 ~ pin-69 can all be left unconnected. When
using Venus638FLPx-D, 1.2V need to be supplied at pin-56 The NC pins are to be left unconnected.
DC CHARACTERISTICS OF DIGITAL INTERFACE

Below is when VCC3I is at nominally 3.3V
Parameter Min. Typ. Max. Units
Input Low Voltage 0.8 Volt

Input High Voltage 2.0 Volt

Output Low Voltage, Iol = 2 ~ 16mA 0.4 Volt

Output High Voltage, Ioh = 2 ~ 16mA 2.9 Volt

88

MECHANICAL DIMENSION

RECOMMENDED PCB FOOTPRINT

89

RECOMMENDED REFLOW PROFILE

Temperature (℃) 25 82.5 140 150 160 170 180 190 200 225 250 250 215 185 155 125 95 65 35

Time(minute)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9

 Profile Description SnPb Eutectic Process Lead Free Process

Preheat

Maximum Temperature 100+/-10 ℃ 140+/-10 ℃

Time(ΔT) 40~60s 50~70s

 Ramp-
Up

Ramp-Up Rate 1 ℃/s Max. 1 ℃/s Max.

Time(ΔT) 120~150s 160~200s

 Reflow

Maximum Temperature Peak Temp. Peak Temp.

Minimum Temperature 180+/-5℃ 200+/-10℃

Peak Temperature 220+/-2℃ 250+/-2℃

90

Time(ΔT) during Peak

Temp.+/-2℃

 10~30s 20~40s

Reflow Time(ΔT) 120~150s 120~150s

 Cooling

Cooling Rate 1.5 ℃/s Max 1.5 ℃/s Max

Time(ΔT) 60~120s 150~180s

91

APPLICATION CIRCUIT INTERFACE SIGNALS

GND_A: RF ground

LED: Signal to indicate GPS position status, 3.3V LVTTL.

Active low for no-fix, toggle every second after position fix.

PSE_SEL: Search engine mode selection, sampled only at end of power-on reset cycle

1: Low power acquisition mode
0: Enhanced acquisition mode

GND: Digital ground

P1PPS: 1 pulse per second time-mark (3.3V LVTTL)

RSTN: Active low reset input

VCC33: 3.3V power input

FRXD0: UART input (3.3V LVTTL)

FTXD0: UART output (3.3V LVTTL)

VBAT: Battery-backed RTC and SRAM supply input, 1.5V ~ 6V, must not be unconnected.

92

APPLICATION INFORMATION

1. For fast-rising power supply, a simple series R/C reset delay to pin-1, RSTN, as indicated in the application circuit is suitable.

For system having slow-rising power supply, a reset IC providing 2~5ms reset duration may be necessary.

2. The RF input of Venus638FLPx is already matched to 50-ohm. Passive antenna matched to 50-ohm can be directly applied.

3. For using Venus638FLPx with active antenna, one with gain in range of 10~30dB and noise figure < 2dB can be used. Power

to the active antenna needs to be applied externally.

4. Pin-18 VBAT supplies backup power to the real-time clock and backup SRAM for fast startup. For portable applications where

there is battery with voltage in range of 1.5V ~ 6.0V as the main source, the VBAT pin can be directly connected to it. If VBAT

is connected to main power as pin-2, no supply voltage as Venus638FLPx is powered off, then it’ll cold start every time and

GPS performance will not be optimal.

5. Like BGA device, the Venus638FLPx is moisture sensitive. It needs to be handled with care to void damage from moisture

absorption and SMT re-flow. The device should be baked for 24 hours at 125-degC before mounting for SMT re-flow if it has

been removed from the protective seal for more than 48*1hours.

6. The supported SPI Flash memory verified for data logging application are:

Manufacturer Device ID Size

EON EN25F040 4Mbit
EON EN25F080 8Mbit MXIC

MX25L400 4Mbit
 MXIC MX25L800 8Mbit
 MXIC MX25L1605 16Mbit
 MXIC MX25L3205 32Mbit
 MXIC MX25L6405 64Mbit
 WINBOND W25X40 4Mbit
 WINBOND W25X80 8Mbit
 WINBOND W25X16 16Mbit
 WINBOND W25X32 32Mbit
 WINBOND W25X64 64Mbit
 SST SST25LF040 4Mbit
 SST SST25LF080 8Mbit
 SST SST25VF016 16Mbit
 SST SST 25VF032 32Mbit

7. The P1PPS pin must not be pulled-high during power on reset, or it’ll enter into debug mode and freeze.

93

*1: Actual will be longer, moisture sensitivity level still undergoing verification.

SLEEP MODE

For application requiring sleep mode, it can be implemented using regulator with enable control as below figure

shows. To put Venus638FLPx to sleep, the power to Venus638FLPx is cut off by disabling the regulator via host

processor GPIO pin. In sleep mode, VBAT consume less than 10uA. Fast start up operation is provided by keeping

supply voltage to VBAT constant, retaining the internal data and keep RTC running while Venus638FLPx is put to

sleep or when supply 3.3V power is removed.

For applications needing sleep mode but cannot have extra cost of adding a rechargeable backup supply battery, it

can be implemented as below figure shows. It will provide fast start up when Venus638FLPx is put to sleep and

awakened, but will cold start every time when the 3.3V supply voltage is removed and re-applied again.

When using sleep mode, add 10K series resistor on pin-42 RXD0 and pin-44 TXD0.

94

NMEA MESSAGES
The full descriptions of supported NMEA messages are provided at the following paragraphs.

GGA - Global Positioning System Fix Data

Time, position and fix related data for a GPS receiver.

Structure:

$GPGGA,hhmmss.sss,ddmm.mmmm,a,dddmm.mmmm,a,x,xx,x.x,x.x,M,,,,xxxx*hh<CR><LF>

1 2 3 4 5 6 7 8

9 10 11

Example:

$GPGGA,111636.932,2447.0949,N,12100.5223,E,1,11,0.8,118.2,M,,,,0000*02<CR><LF>

Field Name Example Description

1 UTC Time 111636.932 UTC of position in hhmmss.sss format, (000000.000 ~ 235959.999)

2 Latitude 2447.0949 Latitude in ddmm.mmmm format

Leading zeros transmitted

3 N/S Indicator N Latitude hemisphere indicator, ‘N’ = North, ‘S’ = South

4 Longitude 12100.5223 Longitude in dddmm.mmmm format

Leading zeros transmitted

5 E/W Indicator E Longitude hemisphere indicator, 'E' = East, 'W' = West

6 GPS quality

indicator

1 GPS quality indicator

0: position fix unavailable

1: valid position fix, SPS mode

2: valid position fix, differential GPS mode

3: GPS PPS Mode, fix valid

4: Real Time Kinematic. System used in RTK mode with fixed integers

5: Float RTK. Satellite system used in RTK mode. Floating integers

6: Estimated (dead reckoning) Mode

7: Manual Input Mode

8: Simulator Mode

7 Satellites Used 11 Number of satellites in use, (00 ~ 12)

8 HDOP 0.8 Horizontal dilution of precision, (00.0 ~ 99.9)

9 Altitude 108.2 mean sea level (geoid), (-9999.9 ~ 17999.9)

10 DGPS Station ID 0000 Differential reference station ID, 0000 ~ 1023

NULL when DGPS not used

95

11 Checksum 02

GLL – Latitude/Longitude

Latitude and longitude of current position, time, and status.

Structure:

$GPGLL,ddmm.mmmm,a,dddmm.mmmm,a,hhmmss.sss,A,a*hh<CR><LF>

 1 2 3 4 5 6 7 8

Example:

$GPGLL,2447.0944,N,12100.5213,E,112609.932,A,A*57<CR><LF>

Field Name Example Description

1 Latitude 2447.0944 Latitude in ddmm.mmmm format

Leading zeros transmitted

2 N/S Indicator N Latitude hemisphere indicator

‘N’ = North

‘S’ = South

3 Longitude 12100.5213 Longitude in dddmm.mmmm format

Leading zeros transmitted

4 E/W Indicator E Longitude hemisphere indicator

'E' = East

'W' = West

5 UTC Time 112609.932 UTC time in hhmmss.sss format (000000.000 ~

235959.999)

6 Status A Status, ‘A’ = Data valid, ‘V’ = Data not valid

7 Mode Indicator A Mode indicator

‘N’ = Data not valid

‘A’ = Autonomous mode

‘D’ = Differential mode

‘E’ = Estimated (dead reckoning) mode

‘M’ = Manual input mode

‘S’ = Simulator mode

8 Checksum 57

96

GSV – GNSS Satellites in View

Number of satellites (SV) in view, satellite ID numbers, elevation, azimuth, and SNR value. Four satellites

maximum per transmission.

Structure:

$GPGSV,x,x,xx,xx,xx,xxx,xx,…,xx,xx,xxx,xx *hh<CR><LF>

 1 2 3 4 5 6 7 4 5 6

7 8

Example:

$GPGSV,3,1,12,05,54,069,45,12,44,061,44,21,07,184,46,22,78,289,47*72<CR><LF>

$GPGSV,3,2,12,30,65,118,45,09,12,047,37,18,62,157,47,06,08,144,45*7C<CR><LF>

$GPGSV,3,3,12,14,39,330,42,01,06,299,38,31,30,256,44,32,36,320,47*7B<CR><LF>

Field Name Example Description

1 Number of message 3 Total number of GSV messages to be transmitted (1-3)

2 Sequence number 1 Sequence number of current GSV message

3 Satellites in view 12 Total number of satellites in view (00 ~ 12)

4 Satellite ID 05 Satellite ID number, GPS: 01 ~ 32, SBAS: 33 ~ 64 (33 =

PRN120)

5 Elevation 54 Satellite elevation in degrees, (00 ~ 90)

6 Azimuth 069 Satellite azimuth angle in degrees, (000 ~ 359)

7 SNR 45 C/No in dB (00 ~ 99)

Null when not tracking

8 Checksum 72

97

GSA – GNSS DOP and Active Satellites

GPS receiver operating mode, satellites used in the navigation solution reported by the GGA or GNS sentence

and DOP values.

Structure:

$GPGSA,A,x,xx,xx,xx,xx,xx,xx,xx,xx,xx,xx,xx,xx,x.x,x.x,x.x*hh<CR><LF>

1 2 3 3 3 3 3 3 3 3 3 3 3 3

4 5 6 7

Example:

$GPGSA,A,3,05,12,21,22,30,09,18,06,14,01,31,,1.2,0.8,0.9*36<CR><LF>

Field Name Example Description

1 Mode A Mode

‘M’ = Manual, forced to operate in 2D or 3D mode

‘A’ = Automatic, allowed to automatically switch 2D/3D

2 Mode 3 Fix type

1 = Fix not available

2 = 2D

3 = 3D

3 Satellite used 1~12 05,12,21,22,3

0,09,18,06,14,

01,31,,

Satellite ID number, 01 to 32, of satellite used in solution,

up to 12 transmitted

4 PDOP 1.2 Position dilution of precision (00.0 to 99.9)

5 HDOP 0.8 Horizontal dilution of precision (00.0 to 99.9)

6 VDOP 0.9 Vertical dilution of precision (00.0 to 99.9)

7 Checksum 36

98

RMC – Recommended Minimum Specific GNSS Data

Time, date, position, course and speed data provided by a GNSS navigation receiver.

Structure:

$GPRMC,hhmmss.sss,A,dddmm.mmmm,a,dddmm.mmmm,a,x.x,x.x,ddmmyy,,,a*hh<CR><LF>

 1 2 3 4 5 6 7 8 9 10 11

Example:

$GPRMC,111636.932,A,2447.0949,N,12100.5223,E,000.0,000.0,030407,,,A*61<CR><LF>

Field Name Example Description

1 UTC time 0111636.932 UTC time in hhmmss.sss format (000000.00 ~

235959.999)

2 Status A Status

‘V’ = Navigation receiver warning

‘A’ = Data Valid

3 Latitude 2447.0949 Latitude in dddmm.mmmm format

Leading zeros transmitted

4 N/S indicator N Latitude hemisphere indicator

‘N’ = North

‘S’ = South

5 Longitude 12100.5223 Longitude in dddmm.mmmm format

Leading zeros transmitted

6 E/W Indicator E Longitude hemisphere indicator

'E' = East

'W' = West

7 Speed over ground 000.0 Speed over ground in knots (000.0 ~ 999.9)

8 Course over ground 000.0 Course over ground in degrees (000.0 ~ 359.9)

9 UTC Date 030407 UTC date of position fix, ddmmyy format

99

10 Mode indicator A Mode indicator

‘N’ = Data not valid

‘A’ = Autonomous mode

‘D’ = Differential mode

‘E’ = Estimated (dead reckoning) mode

‘M’ = Manual input mode

‘S’ = Simulator mode

11 checksum 61

VTG – Course Over Ground and Ground Speed

The Actual course and speed relative to the ground.

Structure:

GPVTG,x.x,T,,M,x.x,N,x.x,K,a*hh<CR><LF>

 1 2 3 4 5

Example:

$GPVTG, 000.0,T,,M,000.0,N,0000.0,K,A*3D<CR><LF>

Field Name Example Description

1 Course 000.0 True course over ground in degrees (000.0 ~ 359.9)

2 Speed 000.0 Speed over ground in knots (000.0 ~ 999.9)

3 Speed 0000.0 Speed over ground in kilometers per hour (0000.0 ~

1800.0)

4 Mode A Mode indicator

‘N’ = not valid

‘A’ = Autonomous mode

‘D’ = Differential mode

‘E’ = Estimated (dead reckoning) mode

‘M’ = Manual input mode

‘S’ = Simulator mode

5 Checksum 3D

100

ORDERING INFORMATION

Part Number Description

Venus638FLPx-L Flash version GPS receiver (internal 1.2V LDO version)

Venus638FLPx-D Flash version GPS receiver (external 1.2V version)

SkyTraq Technology, Inc.
4F, No.26, Minsiang Street, Hsinchu, Taiwan, 300
Phone: +886 3 5678650
Fax: +886 3 5678680
Email: info@skytraq.com.tw

© 2008 SkyTraq Technology Inc. All rights reserved.
Not to be reproduced in whole or part for any purpose without written permission of SkyTraq Technology Inc (“SkyTraq”).

Information provided by SkyTraq is believed to be accurate and reliable. These materials are provided by SkyTraq as a service to

its customers and may be used for informational purposes only. SkyTraq assumes no responsibility for errors or omissions in

these materials, nor for its use. SkyTraq reserves the right to change specification at any time without notice.

These materials are provides “as is” without warranty of any kind, either expressed or implied, relating to sale and/or use o f

SkyTraq products including liability or warranties relating to fitness for a particular purpose, consequential or incidental damages,

merchantability, or infringement of any patent, copyright or other intellectual property right. SkyTraq further does not warrant the

accuracy or completeness of the information, text, graphics or other items contained within these materials. SkyTraq shall not be

liable for any special, indirect, incidental, or consequential damages, including without limitation, lost revenues or lost profits, which

may result from the use of these materials.

SkyTraq products are not intended for use in medical, life-support devices, or applications involving potential risk of death, personal

injury, or severe property damage in case of failure of the product.

101

Appendix B

multi-turn potentiometer Data sheet

102

Appendix C

 Working code for converting WGS 84 Format into UTM (python)

import serial

import utm

import math

import keyboard

def latlon_to_xyz(lat,lon):

 """

 Convert angluar to cartesian coordiantes

 latitude is the 90deg - zenith angle in range [-90;90]

 lonitude is the azimuthal angle in range [-180;180]

 """

 r = 6371 # https://en.wikipedia.org/wiki/Earth_radius

 theta = math.pi/2 - math.radians(lat)

 phi = math.radians(lon)

 x = r * math.sin(theta) * math.cos(phi) # bronstein (3.381a)

 y = r * math.sin(theta) * math.sin(phi)

 z = r * math.cos(theta)

 return [x,y,z]

serialPort = serial.Serial(port = "COM8", baudrate=9600)

serialString = ""

lat=""

long=""

103

with open('awfa.txt','w') as file:

 with open('rami.txt','w') as rami:

 while(1):

 if keyboard.is_pressed("q"):

 break

 # Wait until there is data waiting in the serial buffer

 if(serialPort.in_waiting > 0):

 # Read data out of the buffer until a carraige return / new line is found

 serialString = serialPort.readline()

 lat=serialString[5:16]

 long=serialString[24:35]

 lat2=lat.decode('Ascii')

 long2=long.decode('Ascii')

 flat=float(lat2)

 flong=float(long2)

 u = latlon_to_xyz(flat,flong)

 print(serialString.decode('Ascii'))

 print(u)

 file.write(str(u)+"\n")

 rami.write(serialString.decode('Ascii'))

 # Print the contents of the serial data

 # print(serialString.decode('Ascii'))

 # serialPort.write(b"Thank you for sending data

104

Appendix D

 The code used to extract data from the electronic control unit ECU (Speed

and RPM) - Python

import obd

import time

import serial

import keyboard

def replace_none_with_prev(values):

 prev_value = None

 for i, value in enumerate(values):

 if value is None:

 values[i] = prev_value

 else:

 prev_value = value

 return values

connection = obd.OBD('\\.\\COM5',fast=False)

serialPort = serial.Serial(port = "COM7", baudrate=9600)

sp=[]

rp=[]

serialString = ""

i=0

with open('awfa.txt','w') as file:

 with open('salem.txt','w') as file2:

 cmd = obd.commands['SPEED']

105

 cmd2 = obd.commands['RPM']

 while (1):

 if keyboard.is_pressed('q'):

 break

 startgps=time.time()

 if(serialPort.in_waiting > 0):

 serialString = serialPort.readline()

 # endgps=time.time()

 print(serialString.decode('Ascii')," time gps",(startgps))

 file2.write(serialString.decode('Ascii')+"\t "+str(startgps)+" ")

 start = time.time()

 response = connection.query(cmd)

 sp.insert(i,response)

 replace_none_with_prev(sp)

 response2 = connection.query(cmd2)

 rp.insert(i,response2)

 replace_none_with_prev(rp)

 print("\t",str(response.value),"\t",response2.value,)

 # +"\t",response2.value

 # send the command, and parse the response

 i=i+1

 file.write(str(response.value)+"\t"+str(response2.value)+"\t" "time :"

+str(start)+"\n")

 # file.write("time"+str(start))

106

 # end = time.time(

 # print(response.value," time obd",(end-start))

print("the elapsed time of gps sensor and obd command response :", (end-start))

107

Appendix E

 Setup model (MATLAB code)

Add images to the path

addpath(genpath('Images'));

Load scene data files

load data from Driving Scenario Designer

load('gis trak.mat'); % GIS file m.file

refPose = data.ActorSpecifications.Waypoints;

Define reference points
xRef = refPose(:,1);
yRef = -refPose(:,2);

Define vehicle parameters

X_o = xRef(1); % initial vehicle position in x direction

Y_o = yRef(1); % initial vehicle position in y direction

Calculating reference pose vectors

Based on how far the vehicle travels, the pose is generated using 1-D lookup tables.

% calculate distance vector
distancematrix = squareform(pdist(refPose));
distancesteps = zeros(length(refPose)-1,1);
for i = 2:length(refPose)
 distancesteps(i-1,1) = distancematrix(i,i-1);
end
totalDistance = sum(distancesteps); % Total distance travelled
distbp = cumsum([0; distancesteps]); % Distance for each waypoint
gradbp = linspace(0,totalDistance,50); % Linearize distance

% linearize X and Y vectors based on distance
xRef2 = interp1(distbp,xRef,gradbp);
yRef2 = interp1(distbp,yRef,gradbp);
yRef2s = smooth(gradbp,yRef2); % smooth waypoints
xRef2s = smooth(gradbp,xRef2); % smooth waypoints

108

plot(gradbp,xRef2s)
xlabel('distance')
ylabel('x')
plot(gradbp,yRef2s)
xlabel('distance')

ylabel('y')

Calculate theta vector

theta = orientation angle of the path at reference points

thetaRef = zeros(length(gradbp),1);
for i = 2:length(gradbp)
 thetaRef(i,1) = atan2d((yRef2(i)-yRef2(i-1)),(xRef2(i)-xRef2(i-1)));
end
thetaRefs = smooth(gradbp,thetaRef); % smooth of theta
psi_o = thetaRefs(1)*(pi/180); % initial yaw angle
plot(gradbp,thetaRefs)
xlabel('distance')

ylabel('theta')

Create direction vector

direction = ones(length(gradbp),1);

Calculate curvature vector
curvature = getCurvature(xRef2,yRef2);
plot(gradbp,curvature)
xlabel('distance')

ylabel('curvature')

Curvature Function
function curvature = getCurvature(xRef,yRef)
% Calculate gradient by the gradient of the X and Y vectors
DX = gradient(xRef);
D2X = gradient(DX);
DY = gradient(yRef);
D2Y = gradient(DY);
curvature = (DX.*D2Y - DY.*D2X) ./(DX.^2+DY.^2).^(3/2);

end

109

Appendix F

 Canbus shield code (Arduino C)

 Code#1

// demo: CAN-BUS Shield, receive data with check mode

// send data coming to fast, such as less than 10ms, you can use this way

#include <SPI.h>

#include "mcp_can.h"

#define CAN_2515

// #define CAN_2518FD

// Set SPI CS Pin according to your hardware

#if defined(SEEED_WIO_TERMINAL) && defined(CAN_2518FD)

// For Wio Terminal w/ MCP2518FD RPi Hat：

// Channel 0 SPI_CS Pin: BCM 8

// Channel 1 SPI_CS Pin: BCM 7

// Interupt Pin: BCM25

const int SPI_CS_PIN = BCM8;

const int CAN_INT_PIN = BCM25;

#else

// For Arduino MCP2515 Hat:

// the cs pin of the version after v1.1 is default to D9

// v0.9b and v1.0 is default D10

const int SPI_CS_PIN = 10;

const int CAN_INT_PIN = 2;

#endif

/*#ifdef CAN_2518FD

#include "mcp2518fd_can.h"

mcp2518fd CAN(SPI_CS_PIN); // Set CS pin

#endif

*/

#ifdef CAN_2515

#include "mcp2515_can.h"

mcp2515_can CAN(10); // Set CS pin

#endif

110

void setup() {

 SERIAL_PORT_MONITOR.begin(115200);

 while (CAN_OK != CAN.begin(CAN_500KBPS)) { // init can bus : baudrate = 500k

 SERIAL_PORT_MONITOR.println("CAN init fail, retry...");

 delay(100);

 }

 SERIAL_PORT_MONITOR.println("CAN init ok!");

}

void loop() {

 unsigned char len = 0;

 unsigned char buf[8];

 if (CAN_MSGAVAIL == CAN.checkReceive()) { // check if data coming

 CAN.readMsgBuf(&len, buf); // read data, len: data length, buf: data buf

 unsigned long canId = CAN.getCanId();

 SERIAL_PORT_MONITOR.println("-----------------------------");

 SERIAL_PORT_MONITOR.print("Get data from ID: 0x");

 SERIAL_PORT_MONITOR.println(canId, HEX);

 for (int i = 0; i < len; i++) { // print the data

 SERIAL_PORT_MONITOR.print(buf[i], HEX);

 SERIAL_PORT_MONITOR.print("\t");

 }

 SERIAL_PORT_MONITOR.println();

 }

}

/**

 END FILE

******************************/

Code#2

#include <Arduino.h>

#include <mcp_can.h>

111

#include <mcp_can_dfs.h>

#define CANint 2

#define LED2 8

#define LED3 7

#define MCP_STDEXT 0

unsigned char len = 0;

unsigned char buf[8];

unsigned long ID = 0;

unsigned long line = 0;

MCP_CAN CAN0(10); // Set CS to pin

unsigned long time;

void setup() {

 Serial.begin(115200);

 while (!Serial) {

 Serial.print("I will wait here forever...");

 delay(1000);

 };

 pinMode(23, OUTPUT);

 digitalWrite(23, HIGH);

 pinMode(LED2, OUTPUT);

 pinMode(LED3, OUTPUT);

 pinMode(CANint, INPUT);

 digitalWrite(LED2, LOW);

 Serial.println("CAN init:");

 if (CAN0.begin(CAN_500KBPS) == CAN_OK) {

 Serial.println("Can Init Success");

 } else {

 Serial.println("Can Init Failed");

 while (1) {

 Serial.print("I will wait here forever...");

112

 delay(1000);

 }

 }

 Serial.println("Good to go!");

}

void loop() {

 time = millis();

 if(CAN_MSGAVAIL == CAN0.checkReceive() && line < 10000) { // Check to see

whether data is read

 CAN0.readMsgBufID(&ID, &len, buf); // Read data

//Add this line back in if you want to filter traffic if(ID == 1201) { //39

 line = line + 1;

 Serial.print(ID,HEX); // Output HEX Header

 Serial.print("\t");

 for(int i = 0; i<len; i++) { // Output 8 Bytes of data in Dec

 Serial.print(buf[i]);

 Serial.print("\t");

 }

 Serial.print(time); // Timestamp

 Serial.print("\t");

 Serial.println(line); // Line Number

// }

 }

 delay(10);

}

113

Appendix G

 CAN Read Demo for the Spark Fun CAN Bus Shield.

Written by Stephen McCoy.

Original tutorial available here: http://www.instructables.com/id/CAN-Bus-Sniffing-and-

Broadcasting-with-Arduino

Used with permission 2016. License CC By SA.

Distributed as-is; no warranty is given.

***/

#include <Canbus.h>

#include <defaults.h>

#include <global.h>

#include <mcp2515.h>

#include <mcp2515_defs.h>

//********************************Setup Loop*********************************//

void setup() {

 Serial.begin(9600); // For debug use

 Serial.println("CAN Read - Testing receival of CAN Bus message");

 delay(1000);

114

 if(Canbus.init(CANSPEED_500)) //Initialise MCP2515 CAN controller at the specified speed

 Serial.println("CAN Init ok");

 else

 Serial.println("Can't init CAN");

 delay(1000);

}

//********************************Main Loop*********************************//

void loop(){

 tCAN message;

if (mcp2515_check_message())

 {

 if (mcp2515_get_message(&message))

 {

 //if(message.id == 0x620 and message.data[2] == 0xFF) //uncomment when you want to

filter

 //{

 Serial.print("ID: ");

 Serial.print(message.id,HEX);

115

 Serial.print(", ");

 Serial.print("Data: ");

 Serial.print(message.header.length,DEC);

 for(int i=0;i<message.header.length;i++)

 {

 Serial.print(message.data[i],HEX);

 Serial.print(" ");

 }

 Serial.println("");

 //}

 }}

}

116

Appendix H

 GPS code longitude and latitude (Arduino C language)

1. #include <TinyGPS++.h>

2. #include <SoftwareSerial.h>

3. static const int RXPin = 9, TXPin = 3;

4. static const uint32_t GPSBaud = 9600;

5. // The TinyGPS++ object

6. TinyGPSPlus gps;

7. // The serial connection to the GPS device

8. SoftwareSerial ss(RXPin, TXPin);

9. void setup(){

10. Serial.begin(9600);

11. ss.begin(GPSBaud);

12. }

13. void loop(){

14. // This sketch displays information every time a new sentence is correctly encoded.

15. while (ss.available() > 0){

16. gps.encode(ss.read());

17. if (gps.location.isUpdated()){

18. Serial.print("Latitude= ");

19. Serial.print(gps.location.lat(), 6);

20. Serial.print(" Longitude= ");

21. Serial.println(gps.location.lng(), 6);

22. }

23. }

24. }

117

Appendix I

 Potentiometer multiturn code (Arduino C language)

float floatMap(float x, float in_min, float in_max, float out_min, float out_max) {

 return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;

}

// the setup routine runs once when you press reset:

void setup() {

 // initialize serial communication at 9600 bits per second:

 Serial.begin(9600);

}

// the loop routine runs over and over again forever:

void loop() {

 // read the input on analog pin A0:

 int analogValue = analogRead(A0);

Serial.print(analogValue);

Serial.print("\n");

 // Rescale to potentiometer's voltage (from 0V to 5V):

 float steering_angle = floatMap(analogValue, 0, 1023, -780, 780);//mapping max steering

and min steering

Serial.print(steering_angle);

Serial.print("\n");

 // delay(1000);

}

