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Abstract

This thesis delves closely into the interesting field of polygons in 3R3-
dimensional space. We set out on an expedition to determine the basic
components of three-dimensional geometry, such as lines, planes, and
their distances. Equipped with these tools, we examine the subtleties
of polygons, delving into their particular types, computing their areas
by the application of the Shoelace Formula, and examining the gener-
ation issue of orthonormal bases for planes.
A key component of this research is the mapping of planar polygons
from R3 to R2 and vice versa, which acts as a bridge between the 2D and
3D realms. Next, we explore the interesting idea of polygon-polygon
overlapping, providing a foundation for classifying various scenarios of
overlap.
The thesis tackles point inclusion methods in closed planar polygons,
extending beyond simple visualization. We carefully assess three dif-
ferent approaches: directed ray, global, and ray tracing, which provide
powerful tools for locating a point in a polygon.
Finally, we round up our investigation with the intriguing topic of
2D and 3D planar polygon smoothing. We present area-conserving
smoothing approaches utilizing edge and single node relaxation tech-
niques to achieve results that are both mathematically sound and vi-
sually stunning.
This thesis provides a comprehensive investigation of polygons in R3,
providing experts and individuals to obtain an improved understanding
of their characteristics, relationships, and interaction in three dimen-
sions.
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Chapter 1

Introduction

A building’s sharp angles and a leaf’s smooth curves combine to create
a symphony of shapes in our surrounding environment. Ever think to
consider the formation of these apparently complex structures?
Polygons are the fundamental building blocks of many shapes we see
every day, and this thesis explores their fascinating realm in 3D.
Imagine a universe made up of complex 3D structures rather than just
basic squares and circles. This thesis unveils the behaviors’ hidden
mysteries relative to these polygons. The foundation will be laid by
studying lines, planes, and their interactions as well as the language of
3D geometry. Computational geometry plays a vast role in industry
as it has many applications in our lives. It is an important branch of
mathematics that relates mathematics with other fields like computer
science that are shown in some applications like geographic informa-
tion systems (deal with searching for a geometric location of an object
like roads, country boundaries, and any spatial data), computer-aided
design ( the use of computers to create, modify, analyze, and optimize
any design such that the designer has enhanced productivity, quality
of the design, ...etc).
All of the above applications are needed in our daily life as it more
reliable to robots and robotics science which need the simulation and
visualization aspects that laid their foundations on meshing and grids
and polygons but this process has roughness resulting from jaggedness
and number of points needed ( and if the point in, on, or out the poly-
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gons as used in GIS ) which can be solved by point inclusion problem
algorithms and area conservative smoothing as any simulated object
should preserve its physical characteristics.(Wikipedia)
We summarize the chapters one by one in the rest of the introduction.
In Chapter two, the reader is introduced to some geometric and topo-
logical concepts necessary for computational geometry. We touches on
vectors, polygon geometry as well as its attributes such as distance,
intersection, and area calculations. The chapter also has an examina-
tion of the idea of a basis and an orthonormal basis and how any plane
could generate one. To finish it off, the center of mass (centroid prob-
lem) both in 2D and 3D cases is also explored in this chapter. All in
all, this helps to establish a strong framework through which one can
comprehend computations of geometric nature and mapping between
2D and 3D planes.
We investigate in Chapter three the topic of polygon-polygon over-
lap. we analyze the cases of planar polygons overlapping including
overlapping of line-circle, circle-circle, line-triangle, triangle-triangle,
line-polygon, and polygon-polygon. The chapter includes the results
of this classification with every type has been thoroughly examined. In
particular, attention is paid to polygon-polygon overlap results, where
the chapter is provided by detailed insights into the interactions be-
tween polygons in both 2D and 3D spaces. Also, it includes an algo-
rithm used for detecting the resulting shape of overlapping.
In Zi-qiang Li, Yan He ( 2012 ) , the authors proposed an algorithm to
find the area of the resulting shape of overlapping irregular polygons
that follows the decomposition step, which is the first step includes
decomposing each irregular polygon into the minimum number of con-
vex polygons. Then, pairwise clipping step that is conducted by the
process of identification of every pair of overlapping convex polygons
and make them into two sets. Finally, we use the overlap area calcu-
lation step that includes that for each identified overlapping convex
polygon pair, the area of their overlap region using the formulas of area
of polygon in R2 is calculated.
InChapter four we addresses the point in polygon problem.This prob-
lem was first investigated in early computational geometry research.
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One notable study by Sutherland et al. (1974) provides a comprehen-
sive characterization of the ray casting algorithm while Galetzka and
Glauner (2017) presented a simple and correct even-odd (ray casting )
algorithm for complex polygons. In addition, Khamayseh and Kuprat
(2008) proposed deterministic point inclusion methods like global point
inclusion method algorithm which is based on find the most visible nor-
mal vector to the shot ray using either synthetic normal visible normal
methods and determining the closest boundary point to the given query
point.
In this chapter, some algorithms is presented that are used for solving
this problem efficiently and robustly like the ray tracing point inclusion
method, global point inclusion method, and the new one expressed by
direct ray point inclusion method. In the end, the importance of de-
veloping computational methods for geometric queries is emphasized
comprehensively.
The studies was continued to have the most robust and efficient al-
gorithms as Schwinger et al. (2023) used vector geometric methods
for efficient point-in-polygon calculations applicable to geospatial data.
But we need algorithms for point in complex polygon problem with the
needed characteristics and in 3D case and overlapped shapes.
Chapter five is built by taking up the topic of smooth closed curved
planes in 2D and 3D space, and unveiling the idea of area-preserving
smoothing, a technique adopted in computer graphics that smooths
linear curves and surfaces piecewise yet maintains their full area in-
tact. The rest of the chapter is based on pointing out the need to
smooth surface meshes as a means to counteract unpleasant jagged or
noisy artifacts which can affect physics-based simulations, leading to
misinterpretation. In the conclusion, we present a 3D description of the
region-preserving smoothing with illustrations on how curve smoothing
happens in different planes. The paper encompass a comprehensive an-
alyzing for how to smooth curves and surfaces in 3D without destroying
the total area or any other quality of their shape.



Chapter 2

The Mathematical Properties of
Polygons in R3

This chapter primarily paves the way for the following chapters. In
the first section, we introduce the needed geometric and topological
background for the next chapters. (Anton, Bivens, & Davis, (2012)),
(Corral & Petrunin (2010)), (Faux & Pratt, (1985)), and ( O’Rourke,
(1994)).
The second section introducing the fundamental geometric objects in-
cluding the vector and parametric equations of a line, and a plane and
the ways that compute the unit normal vector for a plane in the three
common cases. (Rudin, W.(1976)), (Corral & Petrunin (2010)), and (
Weir, M. D., Hass, J., Thomas, G. B. (2016)).
In the third one, we discuss the concept of the distance between ge-
ometric objects, including the distance between a point and line, a
point and a plane, and two lines. The fourth section delve into the
intersection of the geometric objects encompassing the intersection be-
tween two lines, a line and a ray, and a line and a plane.(Abu-Munshar,
(2013)).
We basically produce in the fifth section the background we seek to
know of the geometry structure of the polygon defining its special types
and the convexity property of the disk and triangle in R3. Then, we
dig deeper to establish the foundations for finding the formula of the
polygon’s area in R3 and R2, which is the shoelace formula, that in-
cluding Green’s and Stocks theorems to use them. (O’Rourke,(1994)),
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(Weir, M. D., Hass, J., Thomas, G. B. (2016)), (K. Hormann and N.
Sukumar (2015)), and (Strang, G. (2010), ( S. L. Loney, 1900)).
The sixth section includes the algebra part of this thesis stated by pre-
senting the suitable enough background of the orthonormal basis and
expressing any vector using it. Also, we use this paved way to solve
the issue of generating the orthonormal basis of any plane in all of it
three cases of defining equation.
This laid the foundation to generate the map ψ that maps any polygon
from R3 and R2 and vice versa. (S. Axler, (2015)), and (Strang, G.
(2010)). The final section presenting the centroid ( center of mass) of
polygon concept and deriving its formula in R2 that concluded after
producing the physical and mathematical background of the center of
mass concept and how can we compute the centroid coordinates us-
ing the law of decomposition. In the conclusion of this section, we
present the use of the mapping to find the centroid of any polygon in
R3. (Marghitu, D. B., Dupac, M. (2012)).

2.1 Basic Topological and Geometrical Definitions

As we need a groundwork for the next chapters, so in this section
we present some geometrical and topological definitions including the
most main points which are the dot and cross product joined with their
properties. Also we express the triple cross product property and the
Lagrange’s identity. The following definitions are grouped into two
group , the first one is the topological definitions and the second one
is the geometrical definitions.

• Topological Definitions

Definition 2.1.1. We define the open ball of radius r with center
a as Br(a) = {x ∈ X | d(x, a) < r}, where (X, d) a metric space
with the Euclidean metric d(x,y) for x,y ∈ X, where X ⊆ R3.
And a = (a1, a2, a3) ∈ X and 0 ≤ r ∈ R, where R is the set of real
numbers
If r = ε > 0 then the open ball Br(a) is called the ϵ−neighborhood
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of the point a and denoted by Nϵ(a) that is expressed by Nϵ(a) =
{x ∈ X, d(x, a) < ϵ}.

Based on the open ball, we can define the terms open set and
closed set.

Definition 2.1.2. We define a subset U of X as an open set if
and only if for every point u in a set U , and for some ε > 0, there
exists an ε-neighborhood Nε(u) of u such that Nε(u) is a subset
of U . In other words, every point in U has a small enough ball
around it that is still entirely contained in U . And its complement
is called a closed set.

As we know, for any given set U , it has its interior points set,
exterior points set, and boundary points set that we define in the
next definitions.

Definition 2.1.3. The set of all points having an ϵ−neighborhood
contained in U for some ϵ > 0 is called the interior points set
of a set U . And denoted by U ◦. And if the ϵ−neighbourhood
is contained in the complement of U then the set is called the
exterior points set, denoted by Ext(U).

Definition 2.1.4. The boundary of a subset U of a metric space
X, denoted by ∂U , is the set of all points x ∈ X such that every
neighborhood of x contains both points in U and points in X \U .

For any two sets A and B, then these sets either separated or
connected which are defined in the following two definitions.

Definition 2.1.5. Two subsets A and B of a metric space X are
said to be separated if both A ∩B and A \B are empty.

Definition 2.1.6. A set E ⊆ X is said to be connected if E is
not a union of two nonempty separated sets.
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In the rest of the topological definitions, we define the flowing
terms:

1. Region

Definition 2.1.7. A region R in a topological space X is a
nonempty connected open set.

2. Connected Region

Definition 2.1.8. We call a region R a connected region if
and only if any two points in R can be joined by a finite
number of line segments that lie entirely in R.

3. Surface

Definition 2.1.9. A surface is the boundary of a three-dimensional
figure.

4. Plane

Definition 2.1.10. A flat surface that extends in all direc-
tions without bounds (infinitely) in two dimensions is called
a plane. In higher dimensions, it is called a hyperplane.

5. Point

Definition 2.1.11. A point in R3 is defined as the precise
location in space.
Any point x = (x1, x2, x3) is represented by a position vector
x where the origin point is its initial point.

6. Line

Definition 2.1.12. A line is a one-dimensional figure that is
infinitely long and without thickness. A line is called a line
segment if and only if it has two distinct endpoints a and b.

7. Collinear Points

Definition 2.1.13. Three points are said to be collinear if
they are contained in the same straight line.
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8. Curve

Definition 2.1.14. A curve is an object similar to a line but
not required to be straight.

9. Simple Curve

Definition 2.1.15. A simple curve is a curve that does not
self-intersect.

10. Simple Closed Curve

Definition 2.1.16. A simple closed curve is a simple curve
where the initial point and the terminal point of the curve
coincide.

• Geometrical Definitions

Definition 2.1.17. Let u and v be vectors in R3. The dot product
of u and v denoted by u · v is defined by the formula u · v =∑3

i=1 uivi.

Remark. 1. Any two vectors, v and u, are said to be perpendic-
ular if and only if u · v = 0.

2. We say that v and u are parallel if there exists a number c
such that v = cu.

3. The geometric definition’s formula of the dot product of the
vectors u and v is defined by the formula

u · v =∥ u ∥∥ v ∥ cos θ, 0◦ ≤ θ ≤ 180◦.

4. The squared length of the vector u using the dot product is
defined by the formula u.u =∥ u ∥2.

5. If θ is the angle between two nonzero vectors v and u, then

u · v =


> 0 for 0◦ ≤ θ < 90◦

0 for θ = 90◦

< 0 for 90◦ < θ ≤ 180◦
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Definition 2.1.18. Let u = (u1, u2, u3) and v = (v1, v2, v3) be
vectors in R3. The cross product of u and v, denoted by u× v, is
a vector defined by the formula

u× v =

∣∣∣∣∣∣∣
i j k
u1 u2 u3
v1 v2 v3

∣∣∣∣∣∣∣ = (u2v3 − u3v2)̂i− (u1v3 − u3v1)ĵ + (u1v2 − u2v1)k̂

The magnitude of the cross-product can be computed as follows:

∥ u× v ∥=∥ u ∥∥ v ∥ sin θ, 0 ≤ θ ≤ 180

Remarks:

1. ∥ u× v ∥= the area of the parallelogram with sides u and v.

2. The direction of u × v is the normal vector to both vectors,
which is determined by the right-hand rule.

3. The cross product is perpendicular to both u and v.

4. sin θ can be interpreted as the following formula:

sin θ =
√
1− cos2 θ =

√
1− (u.v)2

∥ u ∥2∥ v ∥2

5. The Lagrange’s identity.

∥ u× v ∥2= (u · u)(v · v)− (u · v)2 (2.1)

6. The cross product between three vectors u, v, and w is called
Triple cross product property, which is expressed as the
following formulas:

(a)

u×(v×w) = (w·u)v−(u·v)w = v(w·u)−w(u·v) (2.2)

(b)
(u× v)×w = v(w · u)− u(v ·w) (2.3)
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p0(x0, y0, z0)
p1(x1, y1, z1)

v

Figure 2.1: Clarification of vector equation for a line.

Definition 2.1.19. The vector projection of u onto v is defined
by

projvu = (
u · v
∥ v ∥2

)v (2.4)

which is a vector in the direction of v and length of u.

2.2 Fundamental Geometric Objects in Space

In this section, we started our journey to demonstrate the 3D realm
by exploring point, line with its parametric and vector equations, and
plane joined by its vector, parametric, and Cartesian equations.

2.2.1 The Straight Line Equation in R3

Line Vector Equation

In the Euclidean space R3, there are two formulas for the vector equa-
tion of the line L depending on what is given as follows:

1. Point and direction formula (if a point and a direction vector are
given) as shown in figure 2.1.
The vector equation of a line L passes through point p0 = (x0, y0, z0)and
parallel to vector v is

L(t) = p0 + tv
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p0(x0, y0, z0) p(x, y, z)

vn
Plane P

Figure 2.2: Clarification of vector equation of a plane in the Euclidean
space.

The parameter t takes different values for each point: −∞ < t <
∞. And we call the vector v as a direction vector of L.

2. Two points formula (If two points are given) The vector equation
of a line that passes through two points p0 = (x0, y0, z0) and p1 =
(x1, y1, z1) is defined by

L(t) = p0 + t(p1 − p0)

where −∞ < t <∞.

Remarks:

1. A line segment is a line where 0 ≤ t ≤ 1 and has two endpoints.

2. A line is called a ray if 0 ≤ t < ∞, i.e., it has one endpoint and
extends infinitely from the other direction.

2.2.2 Plane Equation in R3

In the Euclidean space R3, the equation of a plane P can be defined
by one of the following:

1. Plane vector equation
A point p0(x0, y0, z0) in the plane P and a non-zero normal vector
n to the plane, and this is called the normal form of its vector
equation, which is expressed by:

(p− p0) · n = 0, (2.5)

where p = (x, y, z) is any point in P as shown in figure2.2. In
addition, the normal vector can be calculated in different ways
depending on what is given, as follows:
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(a) n = (q − p) × (r − q), where q,p, r are any three points in
the plane. Also, we can use any one of these points in the
equation (2.5).

(b) n = v1×v0, where v1,v0 are any two intersected vectors in the
plane. And the point can be found by the vectors’ intersection
point.

(c) n = L × v, where L is a line in the plane with endpoints p
contained in the line and q in plane but not on line, and v is
any vector in the plane.

2. Plane parametric equation
Another way to present a plane P using any three points in the
plane p0,p1,p2 is by its parametric equation:

X(s, t) = p0 + su+ tv = p0 + s (p1 − p0) + t (p2 − p0) (2.6)

where s, t ∈ R,−∞ < s, t <∞

3. The Cartesian equation of plane
This equation is derived from the equation (2.5). From case 1, we
have the point p0 = (x0, y0, z0), p = (x, y, z) and the unit normal
n̂ = (a, b, c) of the plane P , thus we have

(p− p0) · n̂ = 0

(x− x0, y − y0, z − z0) · (a, b, c) = 0

ax− ax0 + by − by0 + cz − cz0 = 0

ax+ by + cz = ax0 + by0 + cz0 = d

(2.7)

Hence, the Cartesian equation of the plane P is:

ax+ by + cz = d (2.8)

where d = ax0 + by0 + cz0 is a constant.
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2.3 Distance Between Geometric Objects

We investigate the issue of finding the minimum distance between a
point and a line, two lines, and a point and plane using its parametric
and vector equations. In addition, we depend on the following theorem
to achieve our goal for finding the minimum distance.

Theorem 2.3.1. If a function f(x) > 0, then the critical points of f(x)
are the same as the critical points of f 2(x).

Proof. Let f(x) be a positive function. The critical points of f 2(x) are
where (f 2(x))′ = 0 or (f 2(x))′ does not exist.
By using the chain rule to differentiate f 2(x) with respect to x, thus
(f 2(x))′ = 2f(x)f ′(x).
As (f 2(x))′ = 0, then either (f(x))′ = 0, or f(x) = 0. But f(x) is
positive, thus (f(x))′ = 0. Also, (f 2(x))′ does not exist if and only if
(f(x))′ does not exist. Hence, the critical points of f(x) are the same
as those of f 2(x). ■

2.3.1 Point-Line Distance

Let L be a line segment defined by its vector equation L(t) = u + tv,
and q be the projection of p on the line L. As q is on L, then q = u+tv
for some t.

Theorem 2.3.2. The minimum distance between p and L is ∥p− q∥.

Proof. By using Theorem 2.3.1, we can minimize ∥ (p− q) ∥ by mini-
mizing
∥ (p− q) ∥2.
Let g(t) =∥ (p− q) ∥2.
Thus

g(t) =∥ (p− q) ∥2

=∥ p− (u+ tv) ∥2

=
(
p− (u+ tv)

)
·
(
p− (u+ tv)

)
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.
thus, differentiate g(t) with respect to t and equate the derivative by
zero to find the critical point. Thus, we obtain the following:

dg

dt
= 2

((
p− (u+ tv)

)
·
(
p− (u+ tv)

))

= 2

((
p− (u+ tv)

)
· (-v)

)
= 0

.

By solving the equation, we obtain t = (p−u)·v
∥v∥2 which is the critical

point of g(t). It follows that, d2g
dt2 = (-v) · (-v) =∥ v ∥2> 0. Thus, by

the second derivative test, g(t) has a minimum value at t = (p−u)·v
∥v∥2 .

Therefore, recognizing that the perpendicular distance is the shortest
distance, which is only formed between the point and its projection on
the line, if (p − q) · v = 0 with this value of t, then ∥p − q∥ is the
shortest distance.
Substitute t in (p− q) · v as follows:

(p− q) · v =

(
p− u−

(((p− u) · v)
∥v∥2

)
v

)
· v (2.9)

=

(
(p− u) · v −

(((p− u) · v)
∥v∥2

)
∥v∥2

)
(2.10)

= (p− u) · v − (p− u) · v (2.11)

= 0 (2.12)

Hence, with this value of t we guarantee that ∥p − q∥ is the shortest
distance. ■

Remark. There is another form of the shortest distance, as follows:

d =
|(p− u) · v|
∥v∥

(2.13)
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2.3.2 Line-Line Distance

Let L1, L2 are a line segments defined by their vector equations L1(t) =
u1 + tv1, L2(s) = u2 + sv2 respectively. And q be the projection of
p ∈ L1 on the line L2. As q is on L2, then q = u2 + sv2 for some t.

Theorem 2.3.3. The minimum distance between p and L is ∥p− q∥.

Proof. By using Theorem 2.3.1, we can minimize ∥ (p− q) ∥ by mini-
mizing
∥ (p− q) ∥2.
Let g(t, s) =∥ (p− q) ∥2. Thus,

g(t, s) =∥ (p− q) ∥2

=∥ (u1 + tv1)− (u2 + sv2) ∥2

=
(
(u1 + tv1)− (u2 + sv2)

)
·
(
(u1 + tv1)− (u2 + sv2)

)
. thus, by differentiating partially g(s, t) with respect to s and t and
equalling both ∂g

∂t and ∂g
∂s by zero to find the critical points, we con-

clude:

∂g

∂t
= 2

((
u1 + tv1)− (u2 + sv2)

)
· (v1)

)
= 0

.

∂g

∂s
= 2

((
u1 + tv1)− (u2 + sv2)

)
· (-v2)

)
= 0

.
Therefore, we deduce a system of two equations with two unknowns, s
and t. By arranging this system in matrices, we obtain:

[
(v1 · v1) −(v2 · v1)
−(v1 · v2) (v2 · v2)

][
t

s

]
=

[
(u2 − u1) · v1

(u1 − u2) · v2

]
(2.14)
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By solving this system, we obtain:

t =
(v2 · v2)

(
(u2 − u1) · v1

)
− (v2 · v1)

(
(u2 − u1) · v2

)
(v1 · v1)(v2 · v2)− (v1 · v2)2

s =
(v1 · v1)

(
(u1 − u2) · v2

)
− (v1 · v2)

(
(u1 − u2) · v1

)
(v1 · v1)(v2 · v2)− (v1 · v2)2

which are the critical points of g(s, t).

Thus,since ∂2g
∂t2 = (v1) · (v1) =∥ v1 ∥2> 0, and ∂2g

∂s2 = (v2) · (v2) =∥
v2 ∥2> 0. Thus by second derivative test g(s, t) has a minimum value
at

t =
(v2 · v2)

(
(u2 − u1) · v1

)
− (v2 · v1)

(
(u2 − u1) · v2

)
(v1 · v1)(v2 · v2)− (v1 · v2)2

s =
(v1 · v1)

(
(u1 − u2) · v2

)
− (v1 · v2)

(
(u1 − u2) · v1

)
(v1 · v1)(v2 · v2)− (v1 · v2)2

It is clear that this is guaranteed with the values of the parameters;
hence, ∥p− q∥ is the minimum distance. ■

2.3.3 Point-Plane Distance

Let P be a plane that contains a point p0 and is parallel to two in-
dependent vectors u and v. Also, it is defined by its vector equation
X(t, s) = p0+tu+sv. Then, the minimal distance between any point p
and P is the length of the line segment L that joins p and its projection
q on P .
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Theorem 2.3.4. The minimum distance between a point p and a plane
P is ∥p− q∥.

Proof. By using Theorem 2.3.1, we can minimize ∥ p − q ∥ by mini-
mizing ∥ p− q ∥2.

Let g(s, t) =∥ p− q ∥2 =∥ p− (p0 + tu+ sv) ∥2

=
(
p− (p0 + tu+ sv

)
·
(
p− (p0 + tu+ sv)

)

Differentiating partially g(s, t) with respect to s and t and equalling
both ∂g

∂t and ∂g
∂s by zero to find the critical points, implies that

∂g

∂t
= 2

((
p− (p0 + tu+ sv)

)
· (-u)

)
= 0

.

∂g

∂s
= 2

((
p− (p0 + tu+ sv)

)
· (-v)

)
= 0

.
Therefore , we have a system of two equations with two unknowns, s
and t. By representing this system in matrices, we infer the following:

[
u · u v · u
u · v v · v

][
t
s

]
=

[
(p− p0) · u
(p− p0) · v

]
(2.15)

By solving this system, we obtain:

t =
(v · v)

(
(p− p0) · u

)
− (u · v)

(
(p− p0) · v

)
(u · u)(v · v)− (u · v)2

(2.16)
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s =
−(v · u)

(
(p− p0) · u

)
+ (u · u)

(
(p− p0) · v

)
(u · u)(v · v)− (u · v)2

(2.17)

which are the critical points of g(s, t).

Thus, since ∂2g
∂t2 = (-u) · (-u) =∥ u ∥2> 0,

and ∂2g
∂s2 = (-v) · (-v) =∥ v ∥2> 0. Thus by second derivative test g(s, t)

has a minimum value at

t =
(v · v)

(
(p− p0) · u

)
− (u · v)

(
(p− p0) · v

)
(u · u)(v · v)− (u · v)2

(2.18)

s =
−(v · u)

(
(p− p0) · u

)
+ (u · u)

(
(p− p0) · v

)
(u · u)(v · v)− (u · v)2

(2.19)

Therefore, recognizing that the perpendicular distance is the minimum
distance, which is only formed between the point and its projection on
the plane.
If (p−q) ·v = 0 and (p−q) ·u = 0 with these values of t and s, then
∥p−q∥ is the shortest distance. It is clear that this is guaranteed with
the values of the parameters; hence, ∥p−q∥ is the shortest distance. ■

The following theorem provides the minimum distance between a
point and a plane without finding the values of parameters t and s.

Theorem 2.3.5. Let P be a plane with a point p0 contained in it, and a
normal vector n of P . Let p be any point in space, then the distance d
between p and the plane is the minimum distance, and it is expressed
as follows:

d =
|(p− p0) · n|
∥n∥

(2.20)
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Proof. As shown in figure2.3

n

n

d−−→p0p

p0

p

Plane P

Figure 2.3: Distance between a plane and a point in space.

Let θ be the angle between pp0 and n, then

cos θ =
(pp0) · n
∥pp0∥ ∥n∥

d

∥pp0∥
=

(pp0) · n
∥pp0∥ ∥n∥

d =
|(pp0) · n|
∥n∥

(taking the absolute value because of the distance)

Since d is the magnitude of the projection of pp0 on n, which expressed
by the equation

d = cos θ∥pp0∥ (2.21)

Hence, the shortest distance is

d =
|(pp0) · n|
∥n∥

(2.22)

■

which is the magnitude of the perpendicular distance, and we can
be sure that this is the minimum distance by Theorem 2.3.4, i.e., The-
orem2.3.4 proves that the perpendicular distance is the minimum one.



2.4. FUNDAMENTAL GEOMETRIC OBJECTS INTERSECTIONS 26

2.4 Fundamental Geometric Objects Intersections

After finding the minimum distance in the previous section, in this one,
we find the intersection between two lines, a line and a ray, and a line
and a plane using its vector, parametric, and Cartesian equations, and
find the intersection in every case of equations.

2.4.1 Line-Line Intersection

Let L1 and L2 be two lines (line segments) in the 3-dimensional Eu-
clidean space R3 defined by their vector equations L1(t) = p+ tu, and
L2(s) = q+ sv respectively.
To find the intersection, we need to find the values of the parameters
t and s such that guarantee the intersection of the lines. We mini-
mize the distance ∥L1−L2∥ by minimizing ∥L1−L2∥2 based on using
Theorem2.3.1 by partial derivative.

h(s, t) =
∥∥∥L1 − L2

∥∥∥2
=
(
L1 − L2

)
·
(
L1 − L2

)
, then by using the chain rule, and as the intersection happens when∥∥∥L1 − L2

∥∥∥2= 0, thus

0 =
∂h

∂t
= 2
(
p+ tu− (q+ sv)

)
·u

0 =
∂h

∂s
= 2
(
p+ tu− (q+ sv)

)
·v

(2.23)

We got a system of two linear equations, as follows:

(q− p) · u = t(u · u)− s(v · u)
(q− p) · v = t(u · v)− s(v · v)

(2.24)

Solving the system by matrices[
u · u −v · u
u · v −v · v

][
t
s

]
=

[
(q− p) · u
(q− p) · v

]
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Hence,

t =
(u · v) · ((q− p) · v)− (v · v) · ((q− p) · u)

∥(u · v)∥2 − ∥u∥2∥v∥2 (2.25)

s =
(u · u) · ((q− p) · v)− (u · v) · ((q− p) · u)

∥(u · v)∥2 − ∥u∥2∥v∥2 (2.26)

2.4.2 Line-Ray Intersection

Let a ray r, and a line segment e be defined by their vector equations
as follows:

r(s) = q+ sv, 0 ≤ s <∞
e(t) = p0 + tu, 0 ≤ s ≤ 1

respectively, where u = p1−p0. To find the intersection, we minimize
the distance ∥r(s)− e(t)∥ by minimizing ∥r(s)− e(t)∥2 based on using
Theorem2.3.1 by partial derivative.

f(s, t) =
∥∥∥r(s)− e(t)

∥∥∥2
=
(
r(s)− e(t)

)
·
(
r(s)− e(t)

)
Then, using the chain rule, and as the intersection happens when∥∥∥r(t)− L(s)

∥∥∥2= 0, this implies

0 =
∂f

∂t
= 2
(
q+ sv − (p0 + tu)

)
·v

0 =
∂f

∂s
= 2
(
q+ sv − (p0 + tu)

)
·u

(2.27)

We got a system of two linear equations, as follows:

(p0 − q) · v = s(v · v)− t(u · v)
(p0 − q) · u = s(v · u)− t(u · u)

(2.28)
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Solving the system by matrices[
v · v −u · v
u · v −u · u

][
s
t

]
=

[
(p0 − q) · v
(p0 − q) · u

]
we conclude

s =
(u · v) · ((p0 − q) · u)− (u · u) · ((p0 − q) · v)

∥(u · v)∥2 − ∥u∥2∥v∥2 (2.29)

t =
(v · v) · ((p0 − q) · u)− (u · v) · ((p0 − q) · v)

∥(u · v)∥2 − ∥u∥2∥v∥2 (2.30)

2.4.3 Line-Plane Intersection

Let L and P be any line and plane in R3, respectively. The intersection
between them will result in three possible outcomes, as follows:

1. The whole line is contained in the plane.

2. They intersect at a single point.

3. They have no intersection; they are parallel.

We can prove this in two ways.

• Algebraic Form.
Let L and P be a line and a plane in R3 defined by their vector
equations v = v0+ tu, (p−p0) ·n = 0 respectively, where − inf <
t < inf and n is the normal vector of the plane. Then, if they are
intersected, at least they intersect at a single point, say it is p.
Therefore, p = v0 + tu.
Substituting the equation of p in the plane vector equation, hence

(v0 + tu− p0) · n = 0

=⇒ t(u · n) + (v0 − p0) · n = 0
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Solving for t we obtain

t =
(v0 − p0) · n

u · n
(2.31)

Based on the different possible values of t, we have the following
results:

1. If u · n = 0, then they are parallel (no intersection.).

2. If (v0 − p0) · n = 0, then the whole line is contained in the
plane.

3. The intersection will result in a single point if (v0−p0)·n ̸= 0.

• Parametric Form
Let a line L pass through a points q0 = (x0, y0, z0),q1 = (x1, y1, z1)
and P is a plane that contains three points p0 = (x′0, y

′
0, z
′
0),p1 =

(x′1, y
′
1, z
′
1),

p2 = (x′2, y
′
2, z
′
2), which are defined by their parametric equations

as follows:

L(t) = q0 + k(q1 − q0) (The line)

X(s, t) = p0 + s(p1 − p0) + t(p2 − p0) (The plane)

where k, t, s ∈ R. Thus,

q0 + k(q1 − q0) = p0 + s(p1 − p0) + t(p2 − p0)

q0 − p0 = −k(q1 − q0) + s(p1 − p0) + t(p2 − p0)

q0 − p0 = k(q0 − q1) + s(p1 − p0) + t(p2 − p0)
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By representing this system in matrix language, we deduce

[
q0 − q1 p1 − p0 p2 − p0

]ks
t

 =
[
q0 − p0

]
ks
t

 =
[
q0 − q1 p1 − p0 p2 − p0

]−1 [
q0 − p0

]

=
1

(q0 − q1) ·
(
(p1 − p0)× (p2 − p0)

)
((p1 − p0)× (p2 − p0)) · (q0 − p0)
((p2 − p0)× (q0 − q1)) · (q0 − p0)
((q0 − q1)× (p1 − p0)) · (q0 − p0)


Hence, the values of k, s, t are given as follows:

k =
((p1 − p0)× (p2 − p0)) · (q0 − p0)

(q0 − q1) ·
(
(p1 − p0)× (p2 − p0)

)
s =

((p2 − p0)× (q0 − q1)) · (q0 − p0)

(q0 − q1) ·
(
(p1 − p0)× (p2 − p0)

)
t =

((q0 − q1)× (p1 − p0)) · (q0 − p0)

(q0 − q1) ·
(
(p1 − p0)× (p2 − p0)

)
(2.32)

Remarks:

1. If (q0−q1)·
(
(p1 − p0)× (p2 − p0)

)
= 0, then they are parallel

( no intersection).

2. If ((p1 − p0)× (p2 − p0)) · (q0 − p0) = 0 then the whole line
is contained in the plane.

3. The intersection will result in a single one point if ((p1−p0)×
(p2 − p0)) · (q0 − p0) ̸= 0.
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• Cartesian Form
Let a line L and a plane P in R3 are defend by the equations
respectively as follows:

The line: x = x1 + t(x2 − x1)
y = y1 + t(y2 − y1)
z = z1 + t(z2 − z1)

(2.33)

Where (x1, y1, z1), (x2, y2, z2) are two points on the line and t is a
parameter.

The plane: ax+ by + cz = d (2.34)

Where a, b, c are the coordinates of the of the unit normal vector
of the plane, and d is constants. Substitute x, y, z in the plane’s
equation, it follows that

a(x1 + t(x2 − x1)) + b(y1 + t(y2 − y1)) + c(z1 + t(z2 − z1)) = d

ax1 + by1 + cz1 + t(a(x2 − x1) + b(y2 − y1) + c(z2 − z1)) = d

Hence

t =
d− (ax1 + by1 + cz1)

(a(x2 − x1) + b(y2 − y1) + c(z2 − z1))
(2.35)

Remarks:

1. If the denominator (a(x2−x1)+b(y2−y1)+c(z2−z1)) is zero,
then the line is parallel to the plane.

2. If the denominator is nonzero and t is also nonzero, then the
line intersects the plane at a single point. This point can be
found by substituting the value of t into the equation of the
line.

3. If the denominator is nonzero and t is zero, then the line is
already lying on the plane. Otherwise, there is no intersection.
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2.5 Geometry Structure of Polygons

We begin, in this section, to delve into the geometry structure of the
polygons in space, clarifying the polygon’s special types, convexity
property especially for circle and triangle. Also, focusing on the head-
point, which represented by having a formula of the polygons’ area in
2D and 3D based on using Green’s Theorem to get the Shoelace for-
mula in 2D, and using Stoke’s Theorem to calculate the formula in 3D.

Definition 2.5.1. A finite collection of connected line segments form-
ing a simple closed curve that forms the boundary of a region in a plane
P is called a polygon. Any polygon consists of two fundamental geo-
metric blocks, which are the following:

1. The edges, which are the line segments, say are {e0, e1, e2, · · · , en}.

2. The vertices say are {v0, v1, v2, · · · , vn} which are the intersection
points of the adjacent edges.

2.5.1 Special Types of Polygons

Definition 2.5.2. A simple (non-self-intersecting) polygon is a
polygon in which none of its edges intersect except at their endpoints.
Otherwise, we call it complex polygon.

Definition 2.5.3. A polygon P is said to be regular if all its edges
have equal length; otherwise, it is irregular.

Definition 2.5.4. A polygon P is said to be planar if it lies entirely in
a single plane. i.e., all of its vertices lie in the same plane. Otherwise,
it is a non-planar polygon.

Definition 2.5.5. A convex polygon P is a polygon such that any
line segment connecting any two interior points of P lies entirely inside
P; otherwise, it is called concave(non-convex) polygon.
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p

r

p0
p1 p2L

Figure 2.4: Clarifying the convexity property of the Disk in R3

Theorem 2.5.1. Every diskD in R3 with a radius r is a convex geometric
object.

Proof. Let C be the circumference of a disk D radius r defined as
D = {p : |p− p0| ≤ r} where p = (x, y, z) and (p− p0) · n̂ = 0 where
n̂ is the unit normal vector of the plane P that disk contained in.
Let p1,p2, 0 ≤ t ≤ 1 any two points belong to the disk connected by
the line segment L defined as L(t) = (1−t)p1+tp2. Thus |p1−p0| ≤ r

and |p2 − p0| ≤ r.
Hence,

|L(t)− p0| = |(1− t)p1 + tp2 − p0|
= |(1− t)p1 + tp2 − (1− t)p0 − tp0|
≤ |(1− t)p1 − (1− t)p0|+ |tp2 − tp0|
≤ |(1− t)||p1 − p0|+ |t||p2 − p0|
≤ (1− t)r + tr

= r

Therefore, every point of the line is an interior point of the disk ( the
line lies entirely in the disk). Whence, the disk is a convex object which
is clarified in figure2.4. ■
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Theorem 2.5.2. Every triangle T in R3 is a convex geometric object.

Proof. Let T be a triangle defined by T (s, t) = (p1−p0)s+(p2−p0)t+
p0 , and (x− x0) · n̂ = 0 where 0 ≤ s, t ≤ 1 and 0 ≤ s + t ≤ 1, x,x0

are any two point of the triangle, and n̂ is the unit normal vector of
the plane P the the triangle contained in.
Let the line L = (1 − r)q0 + rq1, where 0 ≤ r ≤ 1, be a line that
connects the points q0 and q1 that are interior points of the triangle
T . We can show its convexity by showing that any point α contained
in the line lies entirely in the polygon.
Since q0 and q1 are inside T , then q0 = (p1−p0)s0+(p2−p0)t0+p0,
and
q1 = (p1 − p0)s1 + (p2 − p0)t1 + p0, where 0 ≤ s0, t0, s1, t1 ≤ 1,
0 ≤ s0 + t0 ≤ 1, and 0 ≤ s1 + t1 ≤ 1.
As α lies in L, then α = (1−r)q0+rq1, for some 0 ≤ r ≤ 1. Therefore

α = (1− r)q0 + rq1

= (1− r)
(
(p1 − p0)s0 + (p2 − p0)t0 + p0

)
+ r
(
(p1 − p0)s1 + (p2 − p0)t1 + p0

)
= (p1 − p0)

(
(1− r)s0 + rs1

)
+ (p2 − p0)

(
(1− r)t0 + rt1

)
+ p0

= (p1 − p0)s
* + (p2 − p0)r

* + p0

(2.36)

where s* = (1− r)s0 + rs1 and t
* = (1− r)st0 + rt1.

Thus, we need to show that 0 ≤ s* ≤ 1, 0 ≤ t* ≤ 1, and 0 ≤ s*+ t* ≤ 1
to show that α lies inside T .
Since 0 ≤ r ≤ 1, then 0 ≤ 1− r ≤ 1 , and since 0 ≤ s, t ≤ 1, therefore
0 ≤ s* ≤ 1, and 0 ≤ t* ≤ 1.

To show that 0 ≤ s* + t* ≤ 1.

s* + t* = (1− r)s0 + rs1 + (1− r)t0 + rt1

= (1− r)(s0 + t0) + r(s1 + t1)

< 1− r + r

= 1

(2.37)
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p0

p1

p2

q0 q1L

Figure 2.5: Triangle convexity property in R3

Since

0 ≤ r ≤ 1

−1 ≤ r ≤ 0

0 ≤ 1− r ≤ 1

Hence 0 ≤ s*+ t* ≤ 1 . Whence T (s, t) is convex that is demonstrated
in figure2.5. ■

2.5.2 Area of Polygons in R3

Definition 2.5.6 (Visibility). Let p, and q be any two points on a
polygon P, then q is said to be visible to p (p can see q)if and only if
the line segment pq lies entirely in P.

Definition 2.5.7. A diagonal of a polygon is a line segment connecting
two nonadjacent vertices nowhere exterior to the polygon.

Definition 2.5.8. Three consecutive vertices a,b,c of a polygon form
an ear of the polygon if ac is a diagonal.

Definition 2.5.9. The curl vector, denoted by ∇,is a vector defined
by

∇ = î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z
(2.38)
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The curl of any vector field F =Mî+Nĵ + P k̂ is defined by

curlF =

(
∂P

∂y
− ∂N

∂z

)
î+

(
∂M

∂z
− ∂P

∂x

)
ĵ+

(
∂N

∂x
− ∂M

∂y

)
k̂ =

∣∣∣∣∣∣∣
î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

M N P

∣∣∣∣∣∣∣ = ∇×F
(2.39)

Theorem 2.5.3 (Green’s Theorem). Let C be a positively oriented
piecewise smooth simple closed curve, and let R be the region boundary
by C. If P and Q are functions of (x, y) having continuous first partial
derivatives on D, where D is the domain, then,∫∫

R

(∂Q
∂x
− ∂P

∂y

)
dA =

∫
C

F.dr (2.40)

where F=P (x, y)̂i+Q(x, y)ĵ and dr = dxî+ dyĵ

Theorem 2.5.4 (Stoke’s Theorem). Let S be an oriented piecewise-
smooth surface that is bounded by a simple, closed, piecewise-smooth
curve C. Let F = Mî + Nĵ + P k̂ be a vector field whose compo-
nents have continuous partial derivatives on an open region in R3 that
contains S. Then the circulation of F around C in the direction coun-
terclockwise with respect to the surface’s unit normal vector n̂ equals
the integral of ∇× F.n̂ over S.∫∫

S

∇× F.n̂dA =

∮
C

F.dr (2.41)

Stoke’s Theorem as shown in 1figure2.6 is a higher-dimensional ver-
sion of Green’s Theorem. As Green’s Theorem relates the integral over
a region R to the line integral around the region’s boundary curve,
while Stoke’s Theorem relates the integral over a surface S to the line
integral around its boundary curve. And we can see the difference in

1This figure is taken from [8]
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Figure 2.6: Clarification of Stoke’s Theo-
rem

Figure 2.7: Green’s comparing to Stoke’s

2figure2.7. Under the condition that if the curve C in xy−plane. Then

∇× F.n̂ = ∇× F.k̂ =

(
∂N

∂x
− ∂M

∂y

)
(2.42)

Thus, Stoke’s Theorem will be as follows:∮
C

F.dr =

∫∫
R

(∂N
∂x
− ∂M

∂y

)
dxdy =

∫∫
R

(∂N
∂x
− ∂M

∂y

)
dA (2.43)

which is the formula of Green’s Theorem.
The area of polygon is computed by using the total sum of area of
triangles that polygon partitioned into and this can be shown either
by using cross product, or using Green’s Theorem, and they will lead
to same result.

2This figure is taken from [8]
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Theorem 2.5.5. Let P be a polygon(concave or convex) with the vertices
{pk}nk=1, pn+1 = p1 in R3, and contained in a plane P with a unit
normal vector n̂, then the area of P denoted by A(P ) is given by the
absolute value of one half times the dot product of the normal vector n̂
and the sum over all edges of the polygon of the cross product between
consecutive vertices:

A(P ) =
1

2
|n̂ · (

n∑
k=1

pk × pk+1)| (2.44)

.

Proof. Let P be a polygon with n−vertices, p1 = (x1, y1, z1)),p2 =
(x2, y2, z2),p3 = (x3, y3, z3), · · · ,pn = (xn, yn, zn), pn+1 = p0 in R3, S
the surface bounded the boundaries of P which is the curve C, edges of
P , and Ck be the kthedge in P with endpoints pk,pk+1 that is defined
as follows:

L(t) = (1− t)pk + tpk+1

=
(
(1− t)xk + txx+1, (1− t)yk + tyx+1, (1− t)zk + tzx+1

)
, 0 ≤ t ≤ 1

Let the vector field F = 1
2n̂ × r, where n̂ = (n1, n2, n3) is the unit

normal to P , and

r = (x, y, z)

= ((1− t)xk + txk+1, (1− t)yk + tyk+1, (1− t)zk + tzk+1), 0 ≤ t ≤ 1
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is any point on Ck. Thus

n̂× r =

∣∣∣∣∣∣∣
î ĵ k̂
n1 n2 n3
x y z

∣∣∣∣∣∣∣ = (n2z − n3y) î+ (n3x− n1z) ĵ + (n1y − n2x) k̂

∇× F =
1

2

∣∣∣∣∣∣∣
î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

(n2z − n3y) (n3x− n1z) (n1y − n2x)

∣∣∣∣∣∣∣
= n1î+ n1ĵ + n1k̂

= n̂

(∇× F) · n̂ = n̂.n̂

= 1

dr =
dr

dt
dt

=
d

dt
(x, y, z)dt

= (
dx

dt
,
dy

dt
,
dz

dt
)

= pk+1 − pk

= Ck

(2.45)
As
∫∫
S

1dA = A, thus by using Stoke’s Theorem we possess the formula

of the area by the line integral over the boundary curve.
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Hence∫∫
S

∇× F · n̂dA =

∫∫
S

1dA =

∮
C

F · dr

=
n∑

k=1

∫
Ck

1

2
(n̂× r) · dr

=
n∑

k=1

∫
Ck

1

2
(n̂× r) · (dx, dy, dz)

=
1

2

n∑
k=1

[
(xk+1 − xk)n2

1∫
0

(1− t)zk + tzk+1)dt

− (xk+1 − xk)n3

1∫
0

(1− t)yk + tyk+1

+ (yk+1 − yk)n3

1∫
0

(1− t)xk + txk+1)dt

− (yk+1 − yk)n1

1∫
0

(1− t)zk + tzk+1

+ (zk+1 − zk)n1

1∫
0

(1− t)yk + tyk+1)dt

− (zk+1 − zk)n2

1∫
0

(1− t)xk + txk+1

]

=
1

2

[
n1(ykzk+1 − zkyk+1)

+ n2(zkxk+1 − xkzk+1) + n3(yk+1xk − ykxk+1)

]

=
1

2

n∑
k=1

(n1, n2, n3).(pk × pk+1)

=
1

2

n∑
k=1

n ·
(
pk × pk+1

)
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Whence, by applying the integration over every edge we obtain the
following:

A(P ) =
1

2

∣∣∣∣∣
n∑

k=1

∫
Ck

F.dr

∣∣∣∣∣
=

1

2

∣∣∣∣∣n̂.
 n∑

k=1

pk × pk+1

∣∣∣∣∣
(2.46)

■

2.5.3 The Shoelace Formula

The shoelace formula, also known as the Gauss area formula, was de-
scribed by Albrecht Ludwig Friedrich Meister in 1976. It is a mathe-
matical algorithm for computing a simple polygon’s area in xy−plane
in 2D(R2) using cross-multiplying of the polygon’s vertices coordinates.

It is called by this name since the coordinates constant cross-multiplying
is like a threading shoelace. Also, this formula can be used for complex
polygons (self-overlapping polygons).
Given a planar polygon with a sequence of oriented vertices
pk = (xk, yk), k = 1, 2, · · · , n, pn+1 = p1 in the Cartesian plane,
then the shoelace formula of the oriented (signed)area of the polygon
denoted by As(P ) is computed as follows:
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As(P ) =
1

2

[
x1y2 − x2y1 + x2y3 − x3y2 + x3y4 − x4y3 + · · ·+ xn−1yn − xnyn−1

+ xny1 − x1yn

]

=
1

2

[ ∣∣∣∣∣x1 x2
y1 y2

∣∣∣∣∣+
∣∣∣∣∣x2 x3
y2 y3

∣∣∣∣∣+
∣∣∣∣∣x3 x4
y3 y4

∣∣∣∣∣+ · · ·
∣∣∣∣∣xn−1 xn
yn−1 yn

∣∣∣∣∣+
∣∣∣∣∣xn x1
yn y1

∣∣∣∣∣
]

=
1

2

[ ∣∣∣∣∣x1 x2 x3 x4 · · ·xn−1 xn
y1 y2 y3 y4 · · · yn−1 yn

∣∣∣∣∣
]

Horizontal Form

=
1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 y1
x2 y2
x3 y3
x4 y4
...

...
xn−1 yn−1
xn yn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Vertical Form

(2.47)

Hence, the area of the polygon is expressed as follows:

A(P ) = |As(P )| =
1

2

∣∣∣∣∣n̂.
 n∑

k=1

pk × pk+1

∣∣∣∣∣ (2.48)

where n̂ = k̂.
Where in figure2.8, we clarify the mechanism of the shoelace formula.
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Figure 2.8: Shoelace formula mechanism.

2.6 Orthonormal Basis of Planes in R3

Every plane in any space need and orthonormal basis to define spanning
set of this plane as we can find a formula to find any point on this
plane. Thus, this section is provided by the exposing the concept of
orthonormal basis, and then the process of generating an orthonormal
basis in three cases as the following:

1. The plane is defined by a normal vector and a point.

2. The plane is defined by three points.

3. The plane is defined by its Cartesian equation.

Then, using these orthonormal basis, we define an isomorphic and
isotropic map ψ that map a polygon from R2 and R3 and vice versa.
We start with the definitions of the basis, orthonormal basis, and the
standard basis the is the common usual basis in mathematics.

Definition 2.6.1. A basis B of a vector space V over a field F (such
as the real numbers R or the complex numbers C) is a subset B of V
that satisfies the two following conditions:

1. Linear independence: For every finite subset {v1,v2, . . . ,vm}
of B, if
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c1v1 + · · ·+ cmvm = 0 for some c1, . . . , cm ∈ F ,
then c1 = · · · = cm = 0.

2. Spanning property: For every vector v in V , one can choose
a1, . . . , an in F and v1, . . . ,vn in B such that v = a1v1+· · ·+anvn.

Definition 2.6.2. An orthonormal basis of a vector space V over a
field F is a special type of basis that satisfies the following conditions:

1. Orthogonality: Every pair of distinct vectors vi,vj in B are
orthogonal, meaning that their inner product is zero: ⟨vi,vj⟩ = 0
for i ̸= j.

2. Normalization: Every vector vi in B has unit length, meaning
that its inner product with itself is one: ⟨vi,vi⟩ = 1 for all i.

Definition 2.6.3. A standard basis is a special type of orthonormal
vector basis where each basis vector has only one non-zero entry with
a value of 1.
In an n-dimensional Euclidean space Rn, the standard basis vectors are
denoted as ei(or e

(i)) for i = 1, . . . , n, where n is the dimension of the
vector space spanned by this basis.
Any vector x in this space can be expressed as a linear combination of
the standard basis vectors as:

x = x1e1 + x2e2 + · · ·+ xnen.

For instance, in the Euclidean plane R2, the standard basis vectors are:

ê1 =

(
1
0

)
= î, ê2 =

(
0
1

)
= ĵ

Likewise, in the Euclidean 3-space R3, the standard basis vectors are:

ê1 =

1
0
0

 = î, ê2 =

0
1
0

 = ĵ, ê3 =

0
0
1

 = k̂
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The following theorem includes the process of using the orthonormal
basis to write any vector v in Rn.

Theorem 2.6.1. Let the set B = {u1,u2,u3, · · · ,un} be an orthonormal
basis of a vector space Rn over a field R, then any vector v ∈ V can
be written as

v =
n∑

k=1

(v · ui)ui (2.49)

Proof. Suppose B = u1, . . . ,un is an orthonormal basis for Rn. Since
B is a basis, then any vector v can be written uniquely as a linear
combination of the vectors in B as

v = c1u1 + c2u2 + c3u3 + · · ·+ cnun (2.50)

Thus

v · u1 = c1u1 · u1 + c2u2 · u1 + c3u3 · u1 + · · ·+ cnun · u1

= c1 × 1 + c2 × 0 + c3 × 0 + · · ·+ cn × 0

= c1

v · u2 = c1u2 · u2 + c2u2 · u2 + c3u3 · u2 + · · ·+ cnun · u2

= c1 × 0 + c2 × 1 + c3 × 0 + · · ·+ cn × 0

= c2

v · u3 = c1u1 · u3 + c2u2 · u3 + c3u3 · u3 + · · ·+ cnun · u3

= c1 × 0 + c2 × 0 + c3 × 1 + · · ·+ cn × 0

= c3
...

v · un = c1u1 · un + c2u2 · un + c3u3 · un + · · ·+ cnun · un

= c1 × 0 + c2 × 0 + c3 × 0 + · · ·+ cn × 1

= cn

(2.51)

Since the set {u1,u2,u3, · · · ,un} is an orthonormal basis thus

ui · uj =

{
0 if i ̸= j

1 if i = j
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Hence, substituting the values of ci, i = 1, 2, · · · , n in equation (57)
implies that

v = (v · u1)u1 + (v · u2)u2 + (v · u3)u3 + · · ·+ (v · un)un

=
n∑

k=1

(v · ui)ui
(2.52)

■

Consider a plane P in 3-dimensional space defined either by (p0,n)
or by three points p0,p1,p2. Then, we can find the orthonormal basis
(n̂, ê1, ê2) by the following steps according to the following cases:.

1. Case (1): The plane P is defined by a point p0 and a
normal vector n

(a) Take any point in space say p = (x, y, z) = (a+h, b+h, c+h),
h ̸= 0 ∈ R

(b) Project p on the plane P by pproj = p+ tn̂, thus we formed a
right-angled triangle.
We want to find t ̸= 0 ∈ R. Using the dot product, it follows
that

0 = (pproj − p) · (pproj − p0)

= tn̂ · (p− p0 − tn̂) (Divide both sides by t)

= n̂ · (−p+ p0 + tn̂)

= n̂ · (p− p0) + t (add the additive inverse n̂ · (p− p0))

t = n̂ · (p0 − p)

= −h(n1 + n2 + n3)

Substitute t in pproj to find it.
In general, consider the point (x, y, z) and a plane P with nor-
mal vector n = (u, v, w), and a point (a, b, c) in it. We need
to find t such that (a, b, c), (x+ tu, y+ tv, z+ tw), and (x, y, z)
form a right triangle as shown in figure2.9.
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(a, b, c) (x+ tu, y + tv, z + tw)

n

n

(x, y, z)

Plane P

Figure 2.9: Clarification of vector equation of a plane in the Euclidean
space.

Using the dot product implies the following:

0 = (u, v, w).(a− (x+ tu), b− (y + tv), c− (z + tw))

= au− xu− tu2 + bv − yv − tv2 + cw − zw − tw2

t(u2 + v2 + w2) = (au+ bv + cw)− (xu+ yv + zw)

t =
(au+ bv + cw)− (xu+ yv + zw)

u2 + v2 + w2

(c) The basis will be as:

n̂ =
(η1, η2, η3)

∥(η1, η2, η3)∥

ê1 =
pproj − p0

∥ pproj − p0 ∥

ê2 =
n̂× ê1
∥n̂× ê1∥

Then, the span of the plan

X(s, t) = p0 + sê1 + tê2, s, t ∈ R (2.53)

2. Case (2): The plane P is defined by a three points p0,p1,p2

(a) Find the unit normal vector.

n̂ =
(p1 − p0)× (p2 − p0)

∥ (p1 − p0)× (p2 − p0) ∥
(2.54)
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(b) The orthonormal basis

n̂ =
(p1 − p0)× (p2 − p0)

∥ (p1 − p0)× (p2 − p0) ∥

ê1 =
p1 − p0

∥ p1 − p0 ∥

ê2 =
n̂× ê1
∥n̂× ê1∥

(2.55)

Then, the span of the plane

X(s, t) = p0 + sê1 + tê2, s, t ∈ R (2.56)

3. Case (3): The plane P is defined by the Cartesian equa-
tion
Consider a plane defined by p · n = d.
First we need to find the reference point p0 by which here will be
the closest point to the origin.

Lemma 2.6.2. The closest point p0 on a plane P to the origin is

p0 =
dn

∥n∥2
(2.57)

where d = p0 · n = ax0 + by0 + cz0 is constant by the Cartesian
equation of the plane , and n = (a, b, c) is the normal vector of
the plane.

Proof. Suppose a given plane P defined by the Cartesian equation
d = p0 · n, and a normal vector n = (a, b, c).
The closest point on a plane to the origin is the point where a
line perpendicular to the plane, i.e., the line as a vector is parallel
to the normal vector, and intersects the plane. As the minimum
distance between a point and a plane is along a line perpendicular
to the plane. Thus, this line L is defined by the equation

p = tn
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Substituting the value of p in equation
(p− p0) · n = 0,thus

(tn− p0) · n = 0

t∥n∥2 = p0 · n

t =
d

∥n∥2

Notice that the point dn
∥n∥2 is a point on the plane since

(
dn

∥n∥2
− p0) · n = d− p0 · n = d− d = 0

,thus, the closest point p0 on a plane P to the origin is

p0 = tn =
dn

∥n∥2
=

dn

a2 + b2 + c2
(2.58)

■

The orthonormal basis have two cases

1. Case (a): if d ̸= 0.
Use the same procedures in case that the plane P defined by a
point p0 and a unit normal vector n̂ = (n1, n2, n3), thus the or-
thonormal basis will be as

n̂ = (η1, η2, η3)

ê1 =
pproj − p0

∥ pproj − p0 ∥

ê2 =
n̂× ê1
∥n̂× ê1∥

(2.59)

where pproj = p+ tn and

p0 =
dn

∥n∥2
=

dn

a2 + b2 + c2
(2.60)

2. Case (b): if d = 0 Then just take p0 = (0, 0, 0) and do the same
procedures in case (a).



2.6. ORTHONORMAL BASIS OF PLANES IN R3 50

Theorem 2.6.3. The set of vectors n̂, ê1, ê2 form an orthonormal basis
of the plane P in R3.

Proof. Let x be any point in the plane P with a set of vectorsB =n̂, ê1, ê2
in R3, then

1. The set B is a spanning set of the plane P .
Let x be any arbitrary point in P defined by the following equa-
tion:

(p− p0) · n̂ = 0 (2.61)

Using the plane equation, and since x ∈ P , we obtain

(x− p0) · n̂ = 0

x · n̂ = p0 · n̂
(x · n̂)n̂ = (p0 · n̂)n̂
(x · n̂)n̂ = (p0 · n̂)n̂+ c2ê1 + c3ê2 − (c2ê1 + c3ê2)

(x · n̂)n̂+ c2ê1 + c3ê2 = (p0 · n̂)n̂+ c2ê1 + c3ê2
(2.62)

Let

x = (x · n̂)n̂+ c2ê1 + c3ê (2.63)

= (p0 · n̂)n̂+ c2ê1 + c3ê (2.64)

= c1n̂+ c2ê1 + c3ê2 (2.65)

To find the coefficients c1, c2, and c3, we take the dot product of
both sides of the equation with n̂, ê1, and ê2, respectively. This
gives us a system of equations:

x · n̂ = c1(n̂ · n̂) + c2(ê1 · n̂) + c3(ê2 · n̂)
= c1 (Also c1 = p0 · n̂)

x · ê1 = c1(n̂ · ê1) + c2(ê1 · ê1) + c3(ê2 · ê1)
= c2

x · ê2 = c1(n̂ · ê2) + c2(ê1 · ê2) + c3(ê2 · ê2)
= c3

(2.66)
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Thus −∞ < c1, c2, c3 <∞.
Hence, we have expressed x as a linear combination of vectors in
B, i.e., x = c1n̂+ c2ê1 + c3ê2. Since this holds for any point x in
the plane P , we have shown that the set B is a spanning set of
the plane P .

2. The set B is linearly independent.
To prove that the set B = n̂, ê1, ê2 is linearly independent, we need
to show that the only solution to the equation c1n̂+c2ê1+c3ê2 = 0
is c1 = c2 = c3 = 0.

Taking the dot product of both sides of the equation with n̂, ê1,
and ê2, respectively, thus

0 · n̂ = (c1n̂+ c2ê1 + c3ê2) · n̂ = c1(n̂ · n̂) + c2(ê1 · n̂) + c3(ê2 · n̂) = c1

0 · ê1 = (c1n̂+ c2ê1 + c3ê2) · ê1 = c1(n̂ · ê1) + c2(ê1 · ê1) + c3(ê2 · ê1) = c2

0 · ê2 = (c1n̂+ c2ê1 + c3ê2) · ê2 = c1(n̂ · ê2) + c2(ê1 · ê2) + c3(ê2 · ê2) = c3
(2.67)

Since n̂, ê1, and ê2 are orthonormal, their dot products with them-
selves are 1, and their dot products with each other are 0. There-
fore, we have:

c1 = 0

c2 = 0

c3 = 0

Hence, the only solution to the equation c1n̂ + c2ê1 + c3ê2 = 0
is c1 = c2 = c3 = 0, which implies that the set B is linearly
independent.

Therefore, we conclude that the set B is a set of an orthonormal
basis of the plane P in R3.

■
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2.6.1 Mapping of Planar Polygons From R3 To R2

In 3D we have an extra degree of freedom, and by mapping to 2D we
reduce the degrees of freedom by putting the third dimension equal to
zero as a constraint.
Consider a polygon P = {xk}, k = 1, 2, · · · , n open or closed in plane
(p0,n) with orthonormal basis (n̂, ê1, ê2), then

xk = (xk.n̂)n̂+ (xk.ê1)ê1 + (xk.ê2)ê2

= (p0.n̂)n̂+ (xk.ê1)ê1 + (xk.ê2)ê2
(2.68)

Since (xk − p0).n̂ = 0. We can map any point from R3 to R2 by the
map ψ : R3 → R2,

ψ(xk) = (xk.ê1,xk.ê2) = (ξk, ηk) (2.69)

Theorem 2.6.4. The map ψ is an isomorphism.

Proof. First, ψ is one to one map.
Let x1, x2 be any two points in a plane P in R3 with an orthonormal
basis (n̂, ê1, ê2), thus the points can be expressed as

x1 = (x1.n̂)n̂+ (x1.ê1)ê1 + (x1.ê2)ê2

x2 = (x2.n̂)n̂+ (x2.ê1)ê1 + (x2.ê2)ê2

, then

ψ(x1) = (x1.ê1,x1.ê2) = (x1.ê1)ê1 + (x1.ê2)ê2

ψ(x2) = (x2.ê1,x2.ê2) = (x2.ê1)ê1 + (x2.ê2)ê2

Assume ψ(x1) = ψ(x2), thus

(x1.ê1,x1.ê2) = (x2.ê1,x2.ê2)

(x1.ê1)ê1 + (x1.ê2)ê2 = (x2.ê1)ê1 + (x2.ê2)ê2 + 0

(x1.ê1)ê1 + (x1.ê2)ê2 = (x2.ê1)ê1 + (x2.ê2)ê2 + (p0.n̂)n̂− (p0.n̂)n̂

(x1.ê1)ê1 + (x1.ê2)ê2 = (x2.ê1)ê1 + (x2.ê2)ê2 + (x2.n̂)n̂− (x1.n̂)n̂

(x1.ê1)ê1 + (x1.ê2)ê2 + (x1.n̂)n̂ = (x2.ê1)ê1 + (x2.ê2)ê2 + (x2.n̂)n̂

x1 = x2

(2.70)
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Since the equation of the plane (p−p0).n̂ = 0, and as the points x1,x2

are on the plane P , thus ((x1 − p0).n̂) = 0, and ((x2 − p0).n̂) = 0.
Therefore, the map ψ is one-to-one.
Second, ψ is onto map. Let x1 = (x1 · n̂)n̂ + (x1 · ê1)ê1 + (x1 · ê2)ê2
be any point in R3 and let y = (ξ, η) ∈ R2 then

ψ(x) = (x · ê1,x · ê2) = (ξ, η) = y (2.71)

Take ξ = x.ê1, η = x.ê2. Hence the map ψ is onto.
Finally, we need to prove that the map is linear. i.e.

ψ(αx1 + βx2) = αψ(x1) + βψ(x2) (2.72)

for each x1,x2 ∈ P .
As we mentioned before that (n̂, ê1, ê2) is the orthonormal basis of P ,
thus the two points can be written as follows:

x1 = (x1.n̂)n̂+ (x1.ê1)ê1 + (x1.ê2)ê2

x2 = (x2.n̂)n̂+ (x2.ê1)ê1 + (x2.ê2)ê2

Applying the map ψ on αx1 + βx2 implies that

ψ(αx1 + βx2) = ((αx1 + βx2) · ê1, (αx1 + βx2) · ê2)
= α(x1 · ê1,x1 · ê2) + β(x2 · ê1,x2 · ê2)
= αψ(x1) + βψ(x2)

Hence, the map ψ is a linear map. Therefore, The map ψ is an isomor-
phism. ■

The fact that this mapping is an isomorphism guarantees the ex-
istence of the inverse mapping ψ−1 = Φ : R2 → R3, and it is given
by

ψ−1(ξk, ηk) = (p0.n̂)n̂+ ξkê1 + ηkê2 (2.73)

Theorem 2.6.5. The map ψ is isotropic.

Proof. Let x = v − q be any vector in a plane P in R3 with an or-
thonormal basis(n̂, ê1, ê2) and defined by the equation (p−p0) ·n = 0,
where the points v,q are arbitrary points in P ,
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thus (v− p0) · n̂ = 0, (q− p0) · n̂ = 0. Therefore, v,q can be written
as follows:

v = (v · n̂)n̂+ (v · ê1)ê1 + (v · ê2)ê2
= (p0 · n̂)n̂+ (v · ê1)ê1 + (v · ê2)ê2

q = (q · n̂)n̂+ (q · ê1)ê1 + (q · ê2)ê2
= (p0 · n̂)n̂+ (q · ê1)ê1 + (q · ê2)ê2

and x can be written as follows:

x = (x · n̂)n̂+ (x · ê1)ê1 + (x · ê2)ê2

By applying the map on x we deduce

ψ(x) = (x · ê1)ê1 + (x · ê2)ê2

Taking the squared norm of ψ(x), it follows that

∥ψ(x)∥2 = (x · ê1)2 + (x · ê2)2

=
[
(x · ê1)ê1 + (x · ê2)ê2

]
·
[
(x · ê1)ê1 + (x · ê2)ê2

]
=
[
(x·ê1)ê1+(x·ê2)ê2+p0·n̂n̂−p0·n̂n̂

]
·
[
(x·ê1)ê1+(x·ê2)ê2+p0·n̂n̂−p0·n̂n̂

]
=
[
(x·ê1)ê1+(x·ê2)ê2+(v−q)·n̂n̂

]
·
[
(x·ê1)ê1+(x·ê2)ê2+(v−q)·n̂n̂

]
=
[
(x·ê1)ê1+(x·ê2)ê2+(x·n̂)n̂

]
·
[
(x·ê1)ê1+(x·ê2)ê2+(x·n̂)n̂

]
= ∥x∥2

Hence, ∥ψ(x)∥ = ∥x∥. Whence the map ψ is an isotropic map. ■

Theorem 2.6.6. Let P be a planar polygon with n−vertices, p1 =
(x1, y1, z1)),p2 = (x2, y2, z2),p3 = (x3, y3, z3), · · · ,pn = (xn, yn, zn),
pn+1 = p1 in R3, then the mapping ψ is angle and area conservative.

Proof. We first find the orthonormal basis. Let

n̂ = ê1 × ê2

ê1 = ê2 × n̂

ê2 = n̂× ê1

(2.74)



2.6. ORTHONORMAL BASIS OF PLANES IN R3 55

Where n̂ is the unit normal of plane P ,with equation (p−p0)·n = 0,of
the polygon in 3D. For the area-conserving proof, we will start by
computing the area of the polygon in 2D. Since the set ê1, ê2, n̂ is the
orthonormal basis for the plane containing the polygon in 3D, then
every point pk in polygon can be written as

pk = (pk · ê1)ê1 + (pk · ê2)ê2 + (pk · n̂)n̂
= (pk · ê1)ê1 + (pk · ê2)ê2 + (p0 · n̂)n̂

(2.75)

Thus,
ψ(pk) = (pk · ê1,pk · ê2) = (ξk, ηk) (2.76)

By Green’s Theorem, we possess the area as the shoelace formula.

A(P2D) =
1

2

∣∣∣∣∣k̂ ·
n∑

k=1

(ξk, ηk)× (ξk+1, ηk+1)

∣∣∣∣∣
=

1

2

∣∣∣∣∣
n∑

k=1

(ξk, ηk)× (ξk+1, ηk+1)

∣∣∣∣∣
=

1

2

∣∣∣∣∣
n∑

k=1

(pk × pk+1).n̂

∣∣∣∣∣
=

1

2

∣∣∣∣∣n̂ ·
n∑

k=1

(pk × pk+1)

∣∣∣∣∣
= A(P3D)

(2.77)

Note that

(ξk, ηk)× (ξk+1, ηk+1) = ξkηk+1 − ξk+1ηk

= pk · ê1pk+1 · ê2 − pk+1 · ê1pk · ê2
= (pk × pk+1) · (ê1 × ê2)

= (pk × pk+1).n̂

This result is computed using the vector identity

(A×B) · (C×D) = (A ·C)(B ·D)− (A ·D)(B ·C) (2.78)

As known, the angle is constructed by the union of two lines, or types
of lines. Since we are dealing with a polygon we have line segments
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which are the edges of the polygon. For the second part of the proof
(The proof that the map is angle conservative).
Let the angle θ is an arbitrary angle between an arbitrary two edges
ek = pk − pk−1, ek+1 = pk+1 − pk defined by their vector equations as
follows:

v1 = pk+1 − pk

v2 = pk−1 − pk

Using the equation 2.68 to write the points pk,pk+1 as follows:

pk−1 = (pk−1 · ê1)ê1 + (pk−1 · ê2)ê2 + (p0 · n̂)n̂
pk = (pk · ê1)ê1 + (pk · ê2)ê2 + (p0 · n̂)n̂

pk+1 = (pk+1 · ê1)ê1 + (pk+1 · ê2)ê2 + (p0 · n̂)n̂

Thus the equation of v1,v2 will be as follows:

v1 = pk+1 − pk

= (pk+1 · ê1)ê1 − (pk · ê1)ê1 + (pk+1 · ê2)ê2 − (pk · ê2)ê2
= (pk+1 · ê1 − pk · ê1)ê1 + (pk+1 · ê2 − pk · ê2)ê2
= (pk+1 − pk) · ê1ê1 + (pk+1 − pk) · ê2ê2

v2 = pk−1 − pk

= (pk−1 · ê1)ê1 − (pk · ê1)ê1 + (pk−1 · ê2)ê2 − (pk · ê2)ê2
= (pk−1 · ê1 − pk · ê1)ê1 + (pk−1 · ê2 − pk · ê2)ê2
= (pk−1 − pk) · ê1ê1 + (pk−1 − pk) · ê2ê2

Thus

(v1.v2) =
(
(pk+1 − pk) · ê1, (pk+1 − pk) · ê2

)
·
(
(pk−1 − pk) · ê1, (pk−1 − pk) · ê2

)
= (v1 · ê1)(v2 · ê1) + (v1 · ê2)(v2 · ê2)

(2.79)
Therefore, Let θ be the angle between the vectors v1, and v2 in 3D ,
and θ′ be the angle between the vectors (v1.ê1,v1.ê2), and (v2.ê1,v2.ê2)
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in 2D using the mapping ψ. Then,

cos θ′ =
(v1.ê1,v1.ê2) · (v2.ê1,v2.ê2)

∥(v1.ê1,v1.ê2)∥ ∥(v2.ê1,v2.ê2)∥

=
(v1.ê1)(v2.ê1) + (v1.ê2)(v2.ê2) + 0

∥v1 ∥v2∥

=
(v1.ê1)(v2.ê1) + (v1.ê2)(v2.ê2) + (v1.n̂)(v2.n̂)

∥v1 ∥v2∥

=
(v1.v2).ê1 + (v1.v2).ê2 + (v1.v2).n̂

∥v1 ∥v2∥

=
(v1.v2)

∥v1∥ ∥v2∥
= cos θ

(2.80)

Since

∥(v1.ê1,v1.ê2)∥2 =
(
(pk+1 − pk) · ê1

)2
+
(
(pk+1 − pk) · ê2

)2
=
(
(pk+1 − pk) · ê1ê1 + (pk+1 − pk) · ê2ê2

+ p0 · n̂n̂− p0 · n̂n̂
)
·
(
(pk+1 − pk) · ê1ê1 + (pk+1 − pk) · ê2ê2

+ p0 · n̂n̂− p0 · n̂n̂
)

=
(
(pk+1 − pk) · ê1ê1 + (pk+1 − pk) · ê2ê2

+ pk+1 · n̂n̂− pk · n̂n̂
)
·
(
(pk+1 − pk) · ê1ê1 + (pk+1 − pk) · ê2ê2

+ pk+1 · n̂n̂− pk · n̂n̂
)

= ∥v1∥2

∥(v2.ê1,v2.ê2)∥2 = ∥v2∥2 (Also, in the same way)

Hence

∥(v1.ê1,v1.ê2)∥ = ∥v1∥
∥(v2.ê1,v2.ê2)∥ = ∥v2∥

Therefore, the map ψ is angle conservative. ■
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It is clarified in the figures2.10 and 2.11 that the mapping ψ maps
a multiple polygons , convex and non convex, from 2D to 3D and vices
versa as it isomorphic and isotropic map.

Figure 2.10: Mapping polygons from 2D to 3D and vice versa.
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Figure 2.11: Mapping polygons from 2D to 3D and vice versa using another
planes.
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2.7 Centroid of Polygon

This section is built by exploring the centroid of the polygon including an introduction
of it, its definition, and its formula in R2 and then using the map ψ to find the centroid
in R3 based on the law of decomposition and the formula of the centroid of a triangle.

Definition 2.7.1. The first moment of a point p with respect to a point O is the
vector M = srp, where rp is the position vector of p relative to O, and s is a scalar
associated with p which called the strength of p.

Definition 2.7.2. The centroid is defined as the point defining the geometric center
of a system or an object. The centroid is unique.
Suppose we have a set of points S = {p1,p2,p3, · · · ,pn}, then the point c concerning
which the sum of the first moments of the points of S is equal to zero is the centroid
of S.

Let O be a reference point and rc and ri be the position vectors of the centroid
c and the points pi, i = 1, 2, 3 · · · , n relative to O, respectively. Then, the position
vector of pi, ; i = 1, 2, 3 · · · , n relative to c is given by ri − rc, and the first moment
of each point pi with respect to c is si(ri − rc).
If c is the centroid, then the sum of the first moments is equal to zero, thus

n∑
i=1

si(ri − rc) = 0

n∑
i=1

siri =
n∑

i=1

sirc

rc =

∑n
i=1 siri∑n
i=1 si

(2.81)

Remarks:

1. If
∑n

i=1 si = 0, then the centroid is not defined.

2. The location of the centroid is independent of the choice of the reference point
O.
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3. If si = mi, i = 1, 2, 3, · · · , n, where mi is a mass then we call the centroid by
the mass center of the body.

Using the standard basis of R3 and the Cartesian coordinates of the centroid
c = (xc, yc, zc), thus we can express rc as follows:

rc = xcî+ ycĵ + zck̂ (2.82)

, therefore, we can compute the xc, yc, and zc coordinates of the centroid C using
the following equations:

xc =

∑n
i=1 sixi∑n
i=1 si

yc =

∑n
i=1 siyi∑n
i=1 si

zc =

∑n
i=1 sizi∑n
i=1 si

(2.83)

In terms of integral, then the position vector rc is

rc =

∫
ζ

r dζ∫
ζ

dζ
=

∫
ζ

r dζ

ζ
(2.84)

, and the Cartesian coordinates can be expressed as follows:

xc =

∫
ζ

x dζ∫
ζ

dζ

yc =

∫
ζ

y dζ∫
ζ

dζ

zc =

∫
ζ

z dζ∫
ζ

dζ

(2.85)

As a result, the position vector of the centroid of a curve, surface, or solid relative to
the reference point O is

rc =

∫
ζ

r dζ∫
ζ

dζ
=

∫
ζ

r dζ

ζ
(2.86)
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where

1. ζ is a curve, surface, or solid.

2. r is the position vector of ζ.

3. dζ is the length of the curve, area of the surface, and volume of the solid. Thus,

dζ =


dL if ζ is curve

dA if ζ is surface

dV if ζ is solid

4. ∫
ζ

dζ =


L= (the total length of the curve) if ζ is curve

A= (the total area of the surface) if ζ is surface

V= (the total volume of the solid) if ζ is solid

The process of finding the centroid of an object can be accomplished through a
technique called ”The method of decomposition”. This method involves the
following steps:

1. Divide the body into a number of simpler body shapes, which may be parti-
cles(points), curves, surfaces, or solids. The holes can be treated as pieces with
a negative size, mass, or weight.

2. Locate the coordinates xci ,yci
, zci , i = 1, 2, 3, · · · , n of the centroid of each

simpler shape.

3. Find the centroid c coordinates xc,yc, zc of the whole object as follows:

xc =

∑n
i=1

∫
ζ

x dζ∑n
i=1

∫
ζ

dζ

yc =

∑n
i=1

∫
ζ

y dζ∑n
i=1

∫
ζ

dζ

zc =

∑n
i=1

∫
ζ

z dζ∑n
i=1

∫
ζ

dζ

(2.87)
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And using the equation(85), thus equation(90) will be as follows:

xc =

∑n
i=1 xciζi∑n
i=1 ζi

yc =

∑n
i=1 yci

ζi∑n
i=1 ζi

zc =

∑n
i=1 zciζi∑n
i=1 ζi

(2.88)

For centroid of surface with area A, then ζ = A, dζ = dA, ζi = Ai and

xc =

∑n
i=1 xciAi∑n
i=1Ai

yc =

∑n
i=1 yci

Ai∑n
i=1Ai

zc =

∑n
i=1 zciAi∑n
i=1Ai

(2.89)

where
∑n

i=1 = A

Theorem 2.7.1. Let P be a planar polygon with n−vertices: p1 = (x1, y1)),p2 =
(x2, y2),p3 = (x3, y3), · · · ,pn = (xn, yn), pn+1 = p1 in R2, then the centroid of P is
given as follows:

1

6A

 n∑
i=1

(xi + xi+1)(xiyi+1 − xi+1yi),
n∑

i=1

(yi + yi+1)(xi + xi+1)(xiyi+1 − xi+1yi)


(2.90)

Proof. Using the method of decomposition, divide the polygon into n−triangles then
using the fact that the centroid coordinates of the triangle are given by the following
equations:

xc =
1

3

3∑
i=1

(xi + xi+1)

yc =
1

3

3∑
i=1

(yi + yi+1)

(2.91)

and as the vector area of the triangle is given by

A(P ) =
1

2

 n∑
i=1

(xiyi+1 − xi+1yi)

 (2.92)
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x

y

(x1, y1)
(x, y)

(x2, y2)

m1 m m2
O

q1
q2

Figure 2.12: Section formula clarification.

thus, the centroid coordinates of the polygon P are given by

xc =

∑n
i=1 xciAi∑n
i=1Ai

yc =

∑n
i=1 yci

Ai∑n
i=1Ai

(2.93)

it follows that,

xc =

∑n
i=1

1
3
(xi + xi+1)

1
2
(xiyi+1 − xi+1yi)∑n

i=1Ai

=

∑n
i=1(xi + xi+1) (xiyi+1 − xi+1yi)

6A

yc =

∑n
i=1

1
3
(yi + yi+1)

1
2
(xiyi+1 − xi+1yi)∑n

i=1Ai

=

∑n
i=1(yi + yi+1) (xiyi+1 − xi+1yi)

6A
(2.94)

The rest of the proof is just to prove that the centroid coordinates of a triangle T
with vertices p1 = (x1, y1),p2 = (x2, y2),p3 = (x3, y3), p4 = p1 in R3, are given by

xc =
1

3

3∑
i=1

(xi + xi+1)

yc =
1

3

3∑
i=1

(yi + yi+1)

(2.95)

Lemma 2.7.2 (). If L is a line segment joining two point p1 = (x1, y1) and p2 =
(x2, y2), and q is a point on L dividing it in a ratio m : n, then the coordinates of
the point q are given by

(
mx1 + nx2
m+ n

,
my1 + ny2
m+ n

) (2.96)
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Proof. Let L be a line joining two points p1 and p2, and q be a point on L dividing
it in a ration m : n. it is clear that Om1 = x1, m1p1 = y1, Om2 = x2, m2p2 = y2,
Om = x, and mq = y.
In addition, we can see that the line segments mp1m1, qm are parallel, and the same
property for qm, and p2m2. Also, m1m, p1q1 are parallel, and the same property
for mm2, and qq2.
Thus,

p1q1 = m1m = Om−Om1 = x− x1
qq2 = mm2 = Om2 −Om = x2 − x
q1q = qm− p1m1 = y − y1
q2p2 = q2m2 − qm = y2 − y

Since the two triangles p1q1q, and qq2p2 are similar, thus

m

n
=

p1q

qp2

=
p1q1

qq2

=
x− x1
x2 − x

m(x2 − x) = n(x− x1)

x =
mx1 + nx2
m+ n

Also

m

n
=

p1q

q1p2

=
q1q

q2p2

=
y − y1
y2 − y

m(x2 − x) = n(x− x1)

y =
my1 + ny2
m+ n

Therefor the coordinates of the point q are give by

(
mx1 + nx2
m+ n

,
my1 + ny2
m+ n

) (2.97)

Using equation2.87 we determine that the centroid c of the triangle is located at
the point where the three medians of the triangle intersect. This point corresponds
to h/3 where h is the height of the triangle that is the median connecting the vertex
(x3, y3) with the midpoint of the base p2p1 call it D. Thus, as c partitions the median
into ration of 2:1, thus by using lemma2.7.2 we infer the following:

c = (xc, yc) (2.98)

=
(2 (x1+x2)

2
+ 1 · x3

2 + 1
,
2 (y1+y2)

2
+ 1 · y3

2 + 1

)
(2.99)

= (
x1 + x2 + x3

3
,
y1 + y2 + y3

3
) (2.100)
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We prove that

1

6A

 n∑
i=1

(xi + xi+1)(xiyi+1 − xi+1yi)

 =
1

3

3∑
i=1

(xi + xi+1)

1

6A

 n∑
i=1

(yi + yi+1)(xiyi+1 − xi+1yi

 =
1

3

3∑
i=1

(yi + yi+1)

(2.101)

We will prove the x-component of the centroid, and the other one can be proved
using the same procedures.

1

6A

 n∑
i=1

(xi + xi+1)(xiyi+1 − xi+1yi)



Add and subtract x1(x2y3 − y2x3), x2(x3y1 − y3x1), and x3(x1y2 − y1x2) :

=
1

6A

 n∑
i=1

(xi + xi+1)(xiyi+1 − xi+1yi) +
[
x1(x2y3 − y2x3) + x2(x3y1 − y3x1) + x3(x1y2 − y1x2)

−
(
x1(x2y3 − y2x3) + x2(x3y1 − y3x1) + x3(x1y2 − y1x2)

) ]
Using the shoelace formula for the area A :

A =
1

2

∣∣∣∣∣∣
n∑

i=1

(xiyi+1 − xi+1yi)

∣∣∣∣∣∣
=

1

6A

(
(x1 + x2)(x1y2 − y1x2) + (x2 + x3)(x2y3 − y2x3) + (x3 + x1)(x3y1 − y3x1)

)

Recognizing that each term (xiyi+1 − xi+1yi) contributes twice the area:

=
1

6A

(
(x1 + x2 + x3)(2A)

)
=

1

6A
· (x1 + x2 + x3) · 2A

=
1

3
(x1 + x2 + x3)
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Thus

xci =
1

3

n∑
i=1

(xi + xi+1)

yci =
1

3

n∑
i=1

(yi + yi+1)

(2.102)

Hence, the centroid of P is

c =
1

6A

 n∑
i=1

(xi + xi+1)(xiyi+1 − xi+1yi),
n∑

i=1

(yi + yi+1)(xiyi+1 − xi+1yi)


(2.103)

The centroid vector equation of the polygon in R2 is given as follows:

c = xc + yc = (c · ê1)ê1 + (c · ê2)ê2 (2.104)

Using the inverse map ψ−1, we possess the vector equation of the centroid of the
polygon P in R3 as follows:

c = ψ−1(xc, yc)

= p0 · n̂+ xc + yc
(2.105)

where the triple (n̂, ê1, ê2) is the orthonormal basis of the plane containing the poly-
gon P , and p0 is a fixed point in the plane.



Chapter 3

Polygon-Polygon Overlapping

In this chapter, We investigate the possible results of the overlapping of line and
a circle , two circles that we discuss in the first and second sections. In the third
section, we express the triangle-triangle overlapping, including the possible outcomes
and the cases of the overlapping. (Sabharwal, C. L., Leopold, J. L., McGeehan, D.
(2013)).
The fourth section also has the same pattern of the previous sections in delving into
the overlapping process but of two polygons, which is the general case of the previous
ones. The final section presents the headline of this chapter. An algorithm is provided
that includes a test of overlapping and a method to find the shape resulting from the
overlapping process.

3.1 Line-Circle Overlapping

In this section, we demonstrate the cases of the overlapping process between a line
and a circle and the possible overlapping results.
Let L1 be a line segment in Euclidean space defined by a vector equation ℓ1 =
p0+ tu, 0 ≤ t ≤ 1 where u is vector parallel to L1. And let A1,A2 are circles defined
by vector equations (x− a)2 + (y − b)2 = s21, (x− c)2 + (y − d)2 = s22 respectively.
The results of a line-circle intersection are as follows:

1. One point(the line is a tangent of the circle).

2. A segment of the line(Two point intersection).

Remark. The aforementioned results occur frequently in any intersection between a
line and any closed geometric shape.
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A1(a, b)A2(c, d)

s1 s2
k

Figure 3.1: Clarification of one-point intersection.

A1(a, b)A2(c, d)

s1 s2

k2

k1

Figure 3.2: Clarification for two-point intersection

3.2 Circle-circle Overlapping

Extending to a more general case than the previous section, here, we introduce the
circle-circle overlapping cases and possible results.
In general, the circle-circle intersection has two outcomes as follows:

• One Point overlapping. The two circles are tangential to each other and
intersect in a point k as shown in Figure 3.1.

• Two Point Overlapping. This intersection results in a geometric shape,
possibly like a lens or one of them inside the other which has a shorter radius
as shown in Figure3.2.

3.3 Triangle-Triangle Overlapping

The overlapping of any two triangles has three categories as we investigate in this
section that include the followings:

1. Single point overlapping.

2. Line overlapping.

3. Area overlapping.
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In addition, we focus just on the area overlapping since it come up with shapes that
can be used as polygons that have areas and other geometric properties.
Let ABC, and PQR are two co-planar(i.e, in the same plane)triangles defined by
a vector equations T1 = p1 + sM + tN ,T2 = p′1 + sM ′ + tN ′ respectively, where
0 ≤ s, t ≤ 1, 0 ≤ s+ t ≤ 1,M = p2 − p1, N = p3 − p2,M ′ = p′2 − p′1
N ′ = p′3 − p′2 and p1, p2, p3 are the vertices of T1, and p

′
1, p

′
2, p

′
3 are the vertices of T2.

Three categories included all of the triangles’ intersection possible results.

Category 1:Single point overlapping
This category includes the following intersections as shown in figure 3.3-3.4:

• Vertex-vertex intersection ( figure3.3)

• Vertex-edge interior intersection (figure 3.4)

Figure 3.3: Vertex-vertex inter-
section

Figure 3.4: Vertex-edge interior
intersection

Category 2: Line overlapping
It encompasses the next results, as clarified in figure 3.5-3.7:

• Edge-edge collinear intersection (figure 3.7).

• Edge-triangle interior intersection (figure 3.5).

• Triangle interior-triangle interior intersection (figure 3.6).
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Figure 3.5: Edge-triangle
interior intersection Figure 3.6: Triangle

interior-triangle interior
intersection

Figure 3.7: Edge interior-edge interior
cross intersection

Category 3:Area Overlapping
This one includes the following outcomes, as explained in figures 3.8-3.10:

• Vertex-triangle interior intersection (figure 3.8).

• Edge interior-edge interior cross intersection (figure 3.9).

• Triangle interior-triangle interior intersection (figure 3.10).

Figure 3.8: Vertex-
triangle interior intersec-
tion

Figure 3.9: Edge interior-
edge interior cross inter-
section

Figure 3.10: Triangle
interior-triangle interior
intersection

In general, in our study, we will take into account only the intersections that construct
an area greater than zero.
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3.4 Polygon-Polygon Overlapping

This section is provided by the general case of shapes that are overlapped which are
the polygons and their overlapping represented by polygon-polygon overlapping with
the possible overlapping cases and the possible outcomes of this process.
As before, in the case of an intersection between a line L and a polygon P , the result
is either one point or a segment of the line.
The second case is the intersection between polygons, which resulted in three results
as follows (shown in the figures 3.11-3.15:

• A point that may be a shared vertex or an interior point of an edge.

• A line segment that may be a shared edge.

• A new polygon may also contain one of the previous results or one of the
polygons.
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Figure 3.11: Point interior of an
edge case.
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Figure 3.12: Shared vertex case.
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Figure 3.13: Shared edge case.
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Figure 3.14: New formed polygon
case.
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Figure 3.15: One polygon
inside the other one case.
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3.5 Polygon-Polygon Overlapping Shape

Every shape in 2D can be considered a polygon even a circle, thus in this section, we
delve into two following topics:

1. The overlapping Test.

2. The overlapping Resulting shape.

which can be done in polygon-polygon overlapping resulting shape algorithm.

Algorithm 1 Polygon-Polygon overlapping Resulting Shape Algorithm

Require: Two polygon P1,P2, vertices {p1,p2,p3, . . . ,pn}, {q1,q2,q3, . . . ,qn} of
P1,P2 respectively.

1: Find intersection points using Line-Line intersection by testing the intersection
of every edge of P1 with every edge of P2.

2: return New formed polygons P′
1 and P′

2.
3: Find the midpoint of every edge of the new polygons.
4: if the midpoint of an edge e′i of P

′
1 is an interior point of P′

2 then save the edge
5: else eliminate edge e′i
6: end if
7: if the midpoint of an edge e′i of P

′
2 is an interior point of P′

1 then save the edge
8: else eliminate edge e′i
9: end if
10: Combine the edges resulting from steps 4-9.
11: return the overlapping polygon.

Remarks:

• The overlapping test can be accomplished by steps 1-2 of the algorithm.

• The overlapping resulting shape can be conducted by steps 3-10 of the algo-
rithm.

• The figure3.16 clarifies the shaded overlapping polygon in 2D and 3D.
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Figure 3.16: Polygon-polygon overlapping (intersection) in 2D and 3D using
the mapping ψ and ψ−1.



Chapter 4

Point Inclusion Methods for
Closed Planar Polygons

The problem of determining if a query point q is contained in a given polygon is con-
sidered a vast issue in computational geometry applications, especially in computer-
aided design (CAD), and geographic information systems(GIS). The basic form of
this problem is to deal with the shape as divided into two regions and start to find
in which region the given query point lies in.
In the first section we present the ray tracing inclusion method that used to
check out if a query point lies in,on, or out of a closed planar polygon that started by
shooting a ray from the query point, and count every intersection between an edge
of the polygon and the shooted ray. If the accumulated count number is even, then
the point lies out of the polygon, and if it is odd, then the query point lies inside the
polygon. The second section discusses another method called by global point in-
clusion method which seeks to find the closest point of polygon to the query point
and using the dot product between the ray and normal vector of the edge containing
the closest one to determine the location of the query point.(Abu-Munshar, (2013)),
( Kuprat, A., Khamayseh, A., George, D., Larkey, L. (1998))
We use the same reference for the third section that present a new algorithm for that
vast issue titles by direct ray point inclusion method that gain the robustness ( the
algorithm produces a correct results) and efficiency ( the algorithm is fast) properties
which started by finding the closest point of the polygon to the ray by using line-ray
intersection and then use the dot product to determine the closest normal vector to
the ray and determine if the query point lies in, or out the polygon. The ”Point
in polygon problem” in 3D is a generalization of the ”Point in polygon problem” in
a 2D geometric polygon that involves determining whether a given query point q is
inside or outside a polygon P. This problem has been widely studied. In this section,
we will present some of the algorithms and the results of (Abu-Munshar2013) that
are used in 2D. Then we will present a new algorithm that satisfies the robustness
and efficiency properties in 3D.
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4.1 Ray Tracing Point Inclusion Method

One of the first algorithms using for solve point n polygon problem is ray tracing
method, which we investigate in this section with mechanism that it is based on, and
its algorithm.
Given a closed simple polygonP with vertices v0,v1,v2, · · · ,vn−1, edges e0, e1, e2, · · · , en−1.
The ray tracing method algorithm is a useful technique but with limitations as it is
based on shooting a ray in any direction from a query a point q and counts the inter-
section that occurred with the boundary of the polygon. If we have an odd number
of intersections then the point in it, and if the number is even then it will be outside
the polygon.
The mechanism of the Ray Tracing Point Inclusion test is that the shooted ray
changes its position from inside to outside or vice versa continuously until finishing
the intersections and being outside the polygon.
If the point is inside the shape then the ray starts from inside and after the first
intersection, it will become outside the polygon as the role of the boundary is to
separate the ” in ” and ” out ” parts of the polygon. Then, the next intersection
returns it inside again, which will end up outside the polygon after some repeating
intersections to get an odd number of intersections indicating that the point is inside
the shape.
But, if the point is outside the polygon, the method differs in the cross results as the
ray will be inside the polygon, next cross will return outside again. It will continu-
ously do the crosses until it finishes also outside the shape to get an even number of
intersections indicating that the point is outside the polygon.

Algorithm 2 Ray Tracing Point Inclusion Test Algorithm

1: input: query point q, vertices {v0,v1,v2, · · · ,vn} of P .
2: Let ei be the edge joining the vertices vi,vi+1

3: Set count=0
4: Shoot a random ray r from q .
5: For i = 0 to n− 1
6: if ei ∩ r ̸= ϕ &(ei ∩ r ̸= vi and ei ∩ r ̸= vi+1)
7: Count++
8: If ei ∩ r ̸= ϕ & ei ∩ r = vi

9: Then set r = q + t (p−q)
∥p−q∥ +

1
2
e1 and repeat the previous steps

10: If ei ∩ r ̸= ϕ & ei ∩ r = vi+1

11: Then set r = q + t (p−q)
∥p−q∥ +

1
2
e1 and repeat the previous steps

12: If the count is odd, return inside
13: Else return outside.
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The two other algorithms differ just in the search goal, as the global point inclusion
method (clarified in the thesis) is based on finding the closest point p on the boundary
of the polygon to the query point q, while the direct point inclusion method (for more
information see [28]) seeks to find the closest point p on the boundary to the given
shot ray.

4.2 Global Point Inclusion Method

The global inclusion method is a method developed by two scientists (Khamayseh
and Kuprat) in 2008, which is a robust method for giving correct results for the point
in the polygon problem.
This method is based on the following three steps:

1. Finding the closest point p on the boundary of the polygon to the query point
q.

2. Finding the normal np.
If the point p is the interior point of the polygon, then np is the unit outward
normal vector of the polygon. If the point is a boundary point (either it is a
vertex shared by two edges or contained on an edge) then np can be computed
by one of the following :

• Synthetic normal method.

• Visible normal method.

3. This step include finding a numerical value d = (p− q).np. Then,

• if d > 0 then the point is inside the polygon

• if d < 0 then the point is outside the polygon

• if d = 0 then q = p

Methods for finding the np:

1. Synthetic Normal Method:
This approach was initiated in 3D by Khamayseh and Kuprat (2008), as it
calculates the weighted normal of normals in the solid ball (intersection of the
neighborhood with the boundary of the object) of p. In 2D, the same procedure
will be conducted, but the neighborhood (the intersection of the neighborhood
with the boundary of the object) is a circle, and we compute the average of
the normals in the neighborhood of the point. As we assumed that it was a C1

continuous shape1, the normal vector will be the limit of the normals as the

1A C1 continuous shape implies that it is continuously differentiable up to the first derivative.
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normals change direction gradually.

According to those cases, the normal at p is defined as follows:

(a) If p ∈ ei then np = ni

(b) If p ∈ ei ∩ ej then

np =
ni + nj

∥ ni + nj ∥
(4.1)

where ni = N × ei is the normal at edge ei. Where N is the outward
normal vector of the polygon.

LetNε(p) = Bε(p)
⋂
∂P , then the synthetic normal is equal to the line integral:

np = lim
ε→0

∫
Nε(p)

ndl∥∥∥∥∥ ∫
Nε(p)

ndl

∥∥∥∥∥
(4.2)

where Bϵ(p) is a closed ball with radius ϵ centered at p and n is the outward
normal on the surface.
we can see that there is an equivalence between equations 124,125 as∫

Nε(p)

ndl∥∥∥∥∥ ∫
Nε(p)

ndl

∥∥∥∥∥
=

∫ ε

0
nidτ+

∫ ε

0
njdτ∥∥∫ ε

0
nidτ+

∫ ε

0
njdτ

∥∥
=

(
ni + nj

)
ε∥∥∥(ni + nj

)
ε
∥∥∥ =

(
ni + nj

)∥∥∥(ni + nj

)∥∥∥
(4.3)

2. Visible Normal Method
Khamayseh, Ortega, and Kuprat developed this method in 1995, and this
method is based on the cases where the point p lies as explained by the follow-
ing:

(a) if p is interior point of an edge ei, then the normal outward vector np = ni,
as defined in the synthetic normal method.

(b) if p ∈ ei
⋂

ej (p is a vertex) where ei and ej are two edges in the polygon,
then np is chosen based on the following condition:

if
∣∣(q− p) .ni

∣∣ ≥ ∣∣(q− p) .nj

∣∣ then np = ni

if
∣∣(q− p) .nj

∣∣ ≥ ∣∣(q− p) .ni

∣∣ then np = nj,
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where ni, nj are the outward normal vectors of the edges ei, ej respectively,
and q is a given query point.

Based on this condition, the resulted outward normal vector np is called the visible
normal as it the normal vector of the visible edge

Algorithm 3 Global Point Inclusion Method Algorithm

Require: query point q, vertices {v0,v1,v2, . . . ,vn} of P
1: Find a point p on P closest to q
2: r← q− p
3: if ∥r∥ = 0 then
4: return outside
5: end if
6: Calculate the normal vector np at p
7: if r · np > 0 then
8: return outside
9: else
10: return inside
11: end if

Finding The Closest Boundary Point

As aforementioned, the second main step of the global point inclusion method is that
we seek to find the closest boundary point to the query point q. The global point
inclusion method checks the distance between the query point and every edge of
the polygon to find the minimum distance that produces the closest boundary point
which is an interior point to this edge.
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4.3 Directed Ray Point Inclusion Method

As a result of the limitations of the aforementioned algorithms of solving the point
in polygon problem, we express, in this section, a new algorithm entitled by direct
ray point inclusion method that has the robustness and efficiency properties. Also,
we provide algorithm of this method with all possible cases of the normal vector of
closest boundary point of the shot ray that is initiated from a given query point.
This method is less expensive than the global point inclusion method as finding the
closest boundary point here is faster as we seek to find the closest boundary point
along a ray shooted from the query point q, while in the previous method, we need
to find the closest one the query point. In addition, this way of finding the closest
boundary point has two advantages as follows:

1. Trivial test rejection.
If the shooted ray has no intersection with the polygon boundary then the point
is obviously outside the polygon.

2. Closest point to the ray.
Finding the closest boundary point along the shooted ray is less expensive than
finding the closest one to the query point itself.
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Algorithm 4 Directed Ray Point Inclusion Method Algorithm

1: Given a plane P defined by equation: (x− x0) · n̂ = 0.
2: Given a closed simple polygon P contained in P with vertices v0,v1,v2, · · · ,vn−1,

edges e0, e1, e2, · · · , en−1. Also, ∂P is the boundary of the polygon, and
n̂i = n̂× ei is the normal vector of the edge ei, where n̂ = (ei×ei+1)

∥ei×ei+1∥ for a fixed i.

3: Let q be the given query point and p be the closest boundary point along the
shot ray r from q.

4: if (q− x0) · n̂ ̸= 0 then
5: return q is outside.
6: else
7: Set tmin =∞, and the closest point p to the ray r by q.
8: for i = 0 to n− 1 do
9: Compute ti using Equation (1).
10: if 0 ≤ ti and ti < tmin then
11: Set tmin = ti and p = q+ tminv.
12: else
13: tmin =∞.
14: end if
15: end for
16: Let the direction of the shot ray (the ray itself) be rdir = −R = (q−p)

∥q−p∥ .
17: Let A be a set of the patches that p is contained in.
18: if |A| = 1 then
19: if rdir · n̂i > 0 then
20: return q is outside.
21: else
22: return q is inside.
23: end if
24: else if |A| = 2 then
25: if rdir · êi > rdir · êi+1 & rdir · êi > êmax then
26: êmax = rdir · êi, n̂max = n̂i.
27: else if rdir · êi+1 > rdir · êi & rdir · êi+1 > êmax then
28: êmax = rdir · êi+1, n̂max = n̂i+1.
29: else
30: tmax = −∞.
31: end if
32: if rdir · n̂i > rdir · n̂i+1 & rdir · n̂i > tmax then
33: tmax = rdir · n̂i, n̂max = n̂i.
34: else if rdir · n̂i+1 > rdir · n̂i & rdir · n̂i+1 > tmax then
35: tmax = rdir · n̂i+1, n̂max = n̂i+1.
36: else
37: n̂max =

ni+ni+1

∥ni+ni+1∥ .

38: end if
39: end if
40: if r · n̂max ≥ 0 then
41: return q is outside.
42: end if
43: end if
44:
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Remarks:

• The figures4.1 and 4.2 demonstrate creating the structure of the geometry (
data structure in programming domain) of the polygons before conducting the
direct ray point inclusion algorithm in 2D and 3D.

Figure 4.1: Loops(polygons) geometric structure in 2D

Figure 4.2: Loops(polygons) geometric structure in 3D
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• The figures4.3 and 4.4 show the random dropping process of points in and out
of polygons.

Figure 4.3: Points dropping phase in 2D

Figure 4.4: Points dropping phase in 3D
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• The figures4.5 and 4.6 are clarifying the conduction of the direct ray point
location method in 3D algorithm in 2D and 3D.

Figure 4.5: The points inside the loops in 2D

Figure 4.6: The points inside the loops in 3D



Chapter 5

Smoothing of Planar Polygons in
2D and 3D

The first section in this chapter delves into the process of smoothing planar polygons
in R2 using single node relaxation and edge relaxation methods that include tangen-
tial and tangential and normal smoothing respectively to have smooth planar polygon
without any jaggedness or any stair-step phenomena in simulation the any object on
a grid. This process primarily seeks to an area-conserving smoothing process of the
polygons as we just need to smooth the shape not to change an geometrical or phys-
ical property ( in case in R3). The material of this section is taken from (Noufal,
B. (2019)), (J. Banks, J. S. Carson, and B. L. Nelson, (2010)), ( Kuprat,
A., Khamayseh, (1998)).
The final section delves into area-conserving smoothing process in R3 ,after the first
section paved the way for smoothing an object in R3, using the map ψ to downgrade
the object from 3D to 2D and smooth it, then we use the inverse map ψ−1 to return
it bake to its authentic habituate R3. This section’s material derived from (Noufal,
B. (2019)).

5.1 Area-Conserving Smoothing of Planar Poly-

gons Plane in 2D

Area-conserving smoothing is a technique used in computer graphics to smooth piece-
wise linear curves and surfaces while preserving their total area. This method is useful
in many applications, including computer-aided design, simulation, and visualization.

For our study, it is needed in simulation to smooth the surface grid to overcome the
jaggedness phenomena problem. Also to avoid the noise in the grid since the noise
will give us incorrect results for the physics quantities we simulate.
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Definition 5.1.1. The process of building a model for an existing or proposed system
to imitate it and its operation while making sure that we can test different scenarios
or process changes is called by the simulation process.

Definition 5.1.2. The polygonal mesh is defined as the process of association of
the parts of a polygon which include vertices(nodes, points), edges, and faces that
are used to define the shape of an object.
The vertices characterized the geometry of the shape, and the faces always either are
triangles(triangle mesh), quadrilaterals, or simple convex or non-convex polygons.
The surface of the grid constructed by the mesh is called surface grid.

Definition 5.1.3. The process of removing the noise of the surface grid with min-
imal damage to the geometric object is called smoothing or mesh smoothing.
Smoothing is carried out by moving the vertices of the geometric feature with the
constraint of not changing the connectivity of the edges or losing or adding vertices
to the polygon.

Physics-based simulations often result in curves or surfaces that are jagged or as
we call non-smooth which may be unsuitable for the simulation that will be conducted
after the initial simulation but in other conditions is called subsequent simulation.
This jaggedness represented by the stair-step phenomena in simulation might gen-
erate incorrect results in the subsequent simulation unless the curve or the surface
that is the interface of subsequent simulation is smoothed,
By smoothing the interface we smooth the surface grid, and to be this achieved, three
conditions have to be satisfied:

1. Adjacent facets of the surface grid have normals adjusted to vary
more gradually:
When we smooth the surface grid, we ensure that the normals of the adja-
cent facets change their direction gradually, since this helps to create a more
continuous and natural-locking surface.

2. Nodes densities are equidistributed on the surface:
As we know node density refers to the number of nodes in a given area, thus,
when the surface is smoothed, it is important to ensure that the node is uniform
across the surface. i.e., the nodes are equidistributed on the surface, since the
uneven distribution of nodes on a surface can result in irregularities, which may



5.1. AREA-CONSERVING SMOOTHINGOF PLANAR POLYGONS PLANE IN 2D88

X0 X2

X1 Xnew
1

Figure 5.1: Moving the node x1 in the tangential direction to the edge −−→x0x3

cause the surface to stretch or compress in certain areas, ultimately leading to
the appearance of noticeable defects or visual artifacts.

3. The aspect ratios of facets are improved:
The aspect ratio of a facet refers to the ratio of its longest side to its shortest
side. When smoothing a surface grid, it’s important to ensure that the aspect
ratios of the facets are improved. High aspect ratios can lead to stretched or
distorted facets, which can create visible artifacts on the surface.

5.1.1 Area Conserving Smoothing Using Single Node Relax-
ation Method

Suppose P = {x1,x2,x3, · · · ,xn} is a closed non-self intersecting curve(polygon)
in R2 that encloses a region R with a signed area with counterclockwise orienta-
tion. We seek a conservative smoothing operation of this curve locally for each
point xi which means changing the position of the point’s neighborhood set of points
{xi−s,xi−s+1, · · · ,xi+s}, s small.
To smooth the curve P , we should do it in each local neighborhood point in the
whole curve in some order, which is called sweep.
We aim to perform the smoothing operation without altering the area of the region
R. Thus, the number of sweeps should be as small as possible.
As a surface grid consists of either triangles or polygons, we first will apply the

smoothing operation on a triangle.
Suppose we have a triangle T with vertices x1,x2,x3 in R2 in, as shown in figure5.1,
with a signed area A1 based on a counterclockwise orientation, thus

Aprev =
1

2
(x2 − x0)

⊥ · (x1 − x0)

=
1

2
∥x2 − x1∥.h

(5.1)
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where h = hieght of triangle, and the vector n is the normal vector of the plane

containing the triangle T , and the unit normal vector n̂ = (x2−x0)⊥

∥(x2−x0)⊥∥ , where the

perpendicular vector to any vector m is the vector m⊥ = (−my,mx).
Thus

h =
2Aprev

∥x2 − x0∥
(5.2)

The determined new position of vertex x1 can be calculated as xnew1 = 1
2
(x0 + x2) +

hn̂. Then, by doing this process for all nodes sequentially ordered, we achieved the
needed smoothing process. Therefore, we have an algorithm for smoothing the whole
geometric object as follows:

Algorithm 5 The single node relaxation method for area-conserving smoothing of
a closed plane curve.

for i = 0 to n− 1 do
Perform the smoothing operation on the neighborhood xi,xi+1,xi+2 (i.e. Relax

the node xi+1)
Aprev ← 1

2
(xi+2 − xi)

⊥ · (xi+1 − xi)

h← 2Aprev

∥xi+2−xi∥

n̂← (xi+2−xi)
⊥

∥(xi+2−xi)⊥∥
xnewi+1 ← 1

2
(xi + xi+2) + hn̂

end for

Claim: Algorithm 4 is an area preserving algorithm.
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Proof:

Anew =
1

2
(xi+2 − xi)⊥ · (xnewi+1 − xi)

=
1

2
(xi+2 − xi)⊥.(

1

2
(xi+2 + xi) + hn̂− xi)

=
1

2
(xi+2 − xi)⊥.(

1

2
(xi+2 − xi) + hn̂)

=
1

2
(xi+2 − xi)⊥.

(
1

2
(xi+2 + xi) + h

(xi+2 − xi)⊥

∥(xi+2 − xi)⊥∥

)
=

1

4
(xi+2 − xi)⊥.(xi+2 − xi) +

h

2∥(xi+2 − xi)⊥∥
(xi+2 − xi)⊥ · (xi+2 − xi)⊥

=
h

2∥(xi+2 − xi)⊥∥
∥(xi+2 − xi)⊥∥2

=
h

2
∥(xi+2 − xi)⊥∥

=
h

2
∥(xi+2 − xi)∥

=
2Aprev

2∥(xi+2 − xi)∥
∥(xi+2 − xi)∥

= Aprev

■
Remarks:

• If the curve is open, then we don’t relax the endpoints, as the endpoints of a
given curve are stable and fixed, so any perturbation of them will distort the
curve.

• As the algorithm smooths in the tangential direction, the smoothing operation
in the normal direction means changing the position of the node in the direction
of the surface normal vector.
Thus, if we take a star shape as in figure 5.2. Normal smoothing is forbidden
because of the conservation area requirement. As a result, the single node
relaxation method algorithm does not work for all shapes; thus, we need a new
method for smoothing that guarantees normal smoothing, which is called the
edge relaxation method.
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R

x2 x0

x1

Figure 5.2: Algorithm 1 does not change the Star-shape.

5.1.2 Area Conserving Smoothing Using Edge Relaxation
Method

The edge relaxation method smooths shapes in the tangential and normal directions
while satisfying the condition of the conserving area.
Consider a closed curve ζ with four sequential points x0,x1,x2,x3 as shown in the
non-dashed shape in figure 5.3. Let the direction of the edge −−→x0x3 be the direction
tangential to the curve, and the direction normal to ζ refers to the direction orthog-
onal to the edge. We have a single constraint for normal smoothing while there are
two degrees of freedom (the normal components of x1 and x2). Therefore, to make
normal smoothing allowed, we simultaneously change the positions of x1 and x2 while
ensuring conserving area conditions.
The smoothing operation here is achieved by moving x1 and x2 such that their projec-
tion onto the edge −−→x0x3 are one third and two third of the length of −−→x0x3 respectively
so that the projections are spaced equally and the distance between x1 and −−→x0x3

which is represented by h is the same between x2 and −−→x0x3.
As the quadrilateral (x0,x3,x2,x0) will become a trapezium by smoothing with two
bases x0x3 and xnew

1 xnew
2 with lengths l and 1

3
l respectively. Thus, the area of the

quadrilateral Aprev
quad is :

Aprev
quad =

1

2
h(l +

1

3
l)

=
2

3
hl

(5.3)
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X0 X3

X2

X1

Xnew
1 Xnew

2

h

1/3 l 1/3 l 1/3 l

l

Figure 5.3: Smoothing the nodes x1,x2 by edge relaxation method.

therefore,

h =
3Aprev

quad

2l
(5.4)

and with the unit normal vector n̂ = (x3−x0)⊥

∥(x3−x0)⊥∥ , thus

xnew
1 = x0 +

1

3
(x3 − x0) + hn̂

xnew
2 = x0 +

2

3
(x3 − x0) + hn̂

(5.5)
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Algorithm 6 The edge relaxation method for area conserving smoothing of a closed
plane curve

1: for i = 0 to n− 1 do
2: Perform the smoothing operation on the neighbourhood xi,xi+1,xi+2,xi+3

(i.e. Relax the node xi+1xi+2)

3: Compute the unit normal vector n̂ = (xi+3−xi)
⊥

∥(xi+3−xi)⊥∥
4: Compute the perpendicular to the edge

• (xi+2 − xi)⊥ = (−(xi+2 − xi)y, (xi+2 − xi)x)
• (xi+3 − xi)⊥ = (−(xi+3 − xi)y, (xi+3 − xi)x)

5: Compute local area Aprev
quad as follows:

6: Aprev
quad =

1
2
(xi+3 − xi)⊥ · (xi+2 − xi) + 1

2
(xi+2 − xi)⊥ · (xi+1 − xi)

7: h = 3
2

Aprev
quad

∥xi+3−xi∥
8: xnew

i+1 = xi +
1
3
(xi+3 − xi) + hn̂

9: xnew
i+2 = xi +

2
3
(xi+3 − xi) + hn̂

10: end for

Lemma 5.1.1. Let a = (ax, ay), and b = (bx, by), where ax, ay, bx, by ∈ R, and
a⊥ = (−ay, ax) and b⊥ = (−by, bx), then (a+ b)⊥ = (a)⊥ + (b)⊥ for all a,b ∈ R2.

Proof.

(a+ b) · (a⊥ + b⊥) = (ax + bx, ay + by) · (−ay, ax) + (−by,bx)

= (ax + bx, ay + by) · (−ay, ax) + (ax + bx, ay + by) · (−by,bx)

= −axay +−bxay + axay + byax

− axby +−bxby + bxay + bybx

= 0

Hence, (a+ b)⊥ = (a)⊥ + (b)⊥.

Remark. The previous lemma is basic part for proving the next claim.
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Claim: Algorithm 5 is an area preserving algorithm.

Proof:

Anew
quad =

1

2
(xi+3 − xi)⊥ · (xnewi+2 − xi) +

1

2
(xnewi+2 − xi)⊥ · (xnewi+1 − xi)

=
1

2
(xi+3 − xi)⊥ · (

2

3
(xi+3 − xi) + hn̂) +

1

2
(
2

3
(xi+3 − xi) + hn̂)⊥ · (1

3
(xi+3 − xi) + hn̂)

=
1

2
(xi+3 − xi)⊥ · (hn̂) + (

1

3
(xi+3 − xi) +

hn̂

2
)⊥ · (1

3
(xi+3 − xi) +

hn̂

2
+
hn̂

2
)

=
1

2
(xi+3 − xi)⊥ · (hn̂) + (

1

3
(xi+3 − xi) +

hn̂

2
)⊥ · (1

3
(xi+3 − xi) +

hn̂

2
)

+ (
1

3
(xi+3 − xi) +

hn̂

2
)⊥ · (hn̂

2
)

=
1

2
(xi+3 − xi)⊥ · (hn̂) + (

1

3
(xi+3 − xi +

hn̂

2
)⊥ · (hn̂

2
)

=
1

2
(xi+3 − xi)⊥ · (hn̂) + (

1

3
(xi+3 − xi))

⊥ · (hn̂
2
) + (

hn̂

2
)⊥ · (hn̂

2
) using lemma5.1.1

=
1

2
(xi+3 − xi)⊥ · (hn̂) +

1

6
(xi+3 − xi)

⊥ · (hn̂)

=
2

3
(xi+3 − xi)⊥ · (hn̂)

=
2h

3
(xi+3 − xi)⊥ ·

(xi+3 − xi)⊥

∥(xi+3 − xi)⊥∥

=
2h

3
∥(xi+3 − xi)⊥∥

=
2h

3
∥(xi+3 − xi)∥

=
2

3

3Aprev
quad

2∥xi+3 − xi∥
∥(xi+3 − xi)∥

= Aprev
quad

■
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5.2 Area Conserving Smoothing of Planar Poly-

gons in 3D

Based on the previous section, in this section , we take the smoothing process into
another level which represented by area conserving smoothing of planar polygon in
3D using the smoothing operation in the previous section with the mapping between
2D and 3D realms ψ including the generation of orthonormal basis steps and other
needed steps for smoothing process.
The smoothing operation in 3D for any object ϑ with vertices x0,x1,x2, · · · ,xn−1

can be achieved by two main steps as follows:

I Applying the map ψ in section 1.7 to map the nodes from R3 to R2.

II Smooth the shape in 2D and use the inverse map ψ−1 to map the nodes to R3.

We will clarify the above steps.

• For step I.
The mapping is based on finding the orthonormal basis, so we need to find the
orthonormal basis to map every node xi,i = 0, 1, 2, · · · , n− 1.
The orthonormal basis for every node is computed as follows:

n̂ =
(x1 − x0)× (x2 − x0)

∥(x1 − x0)× (x2 − x0)∥

û1 =
x1 − x0

∥x1 − x0∥

û2 =
n̂× û1
∥n̂× û1∥

thus, every node xi, i = 0, 1, 2, · · · , n− 1 can be expressed as

xi = (xi.n̂)n̂+ (xi.û1)û1 + (xi.û2)û2

= (p0.n̂)n̂+ (xi.û1)û1 + (xi.û2)û2
(5.6)

As the equation of the plane that contained the shape is: (xi − p0).n̂ = 0.
Apply the map ψ on the node xi, i = 0, 1, 2, · · · , n− 1 from R3 to R2.

ψ(xi) = ψ(xi.n̂,xi.û1,xi.û2)

= (ξi, ηi)

= x*
i

where x*
i represents the mapped node xi from R3 to R2.
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• For step II.

This step includes the following steps to apply to the mapped shape:
{
x*
k

}n−1

k=0
:

1. specifies if we need tangential smoothing (i.e., a single node (vertex) xi)
only or we need normal smoothing (i.e., two consecutive nodes (an edge)
xi+1xi+2), where i = 0, 1, 2, · · · , n− 1 and xn = x0 as the shape is closed.

2. For tangential smoothing, we need to apply the single node relaxation
method and apply algorithm 1, but if we need both smoothings, then we
need the edge relaxation method and apply algorithm 2.

3. Map every vertex in the achieved smoothed shape x*new
0 x*new

1 x*new
2 · · ·x*new

n−1

from R2 to R3 by the inverse map ψ−1 as follows:

ψ−1(x*new
i ) = ψ−1(ξnewi , ηnewi )

= (xnew
i .n̂)n̂+ (xnew

i .û1)û1 + (xnew
i .û2)û2

= (p0.n̂)n̂+ (xnew
i .û1)û1 + (xnew

i .û2)û2

= xnew
i

(5.7)
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Remark. • The following figures explain the area-conservative smoothing process
in 2D and 3D.

Figure 5.4: Area-conservative smoothing in 3D
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• The following figures explain the curve smoothing process in 2D and 3D.

Figure 5.5: Curve smoothing in 2D

Figure 5.6: Curve smoothing in 3D

Figure 5.7: Curve smoothing in 3D in an-
other plane

Figure 5.8: Curve smoothing in 3D in an-
other plane
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