

Palestine Polytechnic University

Deanship of Graduate Studies and Scientific Research

Master of Informatics

Semi-Automated Classification of Non-Functional Arabic User Requirements

using NLP Tools

By:

Eman Faiz Awad

Supervised By:

Dr. Faisal Khamayseh

Prof. Nabil Arman

Thesis submitted in partial fulfillment of requirements of the degree

Master of Informatics

February, 2024

I

The undersigned hereby certify that they have read, examined and recommended to the

Deanship of Graduate Studies and Scientific Research at Palestine Polytechnic University:

The undersigned hereby certify that they have read, examined, and recommended to the

Deanship of Graduate Studies and Scientific Research at Palestine Polytechnic University the

approval of a thesis entitled:

Semi-Automated Classification of Non-Functional Arabic User Requirements using NLP

Tools, submitted by Eman Awad in partial fulfilment of the requirements for the degree of

Master in Informatics.

Graduate Advisory Committee:

Dr. Faisal Khamayseh (Supervisor), Palestine Polytechnic University.

Signature: Date:

Prof. Nabil Arman (Co-Supervisor), Palestine Polytechnic University.

Signature: Date:

Dr. Nancy Alriji

(Internal committee member), (Palestine Polytechnic University.).

Signature: Date:

Dr. Husam Suwad

(External committee member), (Palestine Technical University - Kadoori).

Signature: Date:

Thesis Approved by:

Dr. Nafeth NaserAldeen

Dean of Graduate Studies & Scientific Research

Palestine Polytechnic University

Signature:……………...…………………

Date:…..……………...…………………

II

DECLARATION

I declare that the Master Thesis entitled” Semi-Automated Classification of Non-Functional

Arabic User Requirements using NLP Tools” is my own original work, and herby certify that

unless stated, all work contained within this thesis is my own independent research and has not

been submitted for the award of any other degree at any institution, except where due

acknowledgement is made in the text.

Eman Faiz Awad

Signature: Date:

III

STATEMENT OF PERMISSION TO USE

In presenting this thesis in partial fulfilment of the requirements for the master’s degree in

Informatics at Palestine Polytechnic University, I agree that the library shall make it available

to borrowers under rules of the library. Brief quotations from this thesis are allowable without

special permission, provided that accurate acknowledgment of the source is made. Permission

for extensive quotation from, reproduction, or publication of this thesis may be granted by my

main supervisor, or in his absence, by the Dean of Graduate Studies and Scientific Research

when, in the opinion of either, the proposed use of the material is for scholarly purposes. Any

copying or use of the material in this thesis for financial gain shall not be allowed without my

written permission.

Eman Faiz Awad

Signature: Date:

IV

 الملخص

الوظيفية المتطلبات من تشمل كل حيث مجيات، البر تطوير حياة دورة ي
ف مهمة مرحلة المتطلبات هندسة تعتبر

ي ذلك الأداء والأمان والتوافر
الوظيفية خصائص الجودة لنظام، بما ف المتطلبات غبر الوظيفية. تحدد والمتطلبات غبر

ية والتشغيلية، وهي أمور أساسية لتلبية احتياجات المستخدمير وفرض والشكل والمظهر والتسامح مع الأخطاء والقانون

مجيات. يعتبر تصنيف المتطلبات غبر الوظيفية من مستندات متطلبات المستخدم أمرًا صعبًا، قيود إضافية على جودة البر

ً
وجهد ا

ً
وقت المتطلبات لهذه اليدوي التصنيف يتطلب المجال. ي

ف ومعرفة متخصصة مهارات من يتطلب ا ً عقليًا كببر ا

ي لـهذه المتطلبات من مستندات المتطلبات ذو قيمة عظيمة بحيث
ي أو شبه التلقائ

المطورين، مما يجعل التصنيف التلقائ

المتطلبات. ي تصنيف هذه
الطريقة من الجهد اليدوي والوقت ف ا لتصنيف تقلل هذه

ً
تقدم هذه الأطروحة نهجًا جديد

وهي أداة لمعالجة اللغات الطبيعية بحيث CAMeLية باللغة العربية باستخدام أدوات متطلبات المستخدم غبر الوظيف

ة ح مجموعة من القواعد الشبه التلقائية بالاستناد إلى بناء وتركيب الجملة العربية الأساسية لاستخراج صفات ممبر أننا نقبر

ال استخراج يتم فئات. سبع إلى المتطلبات هذه تصنيف ثم ومن منها لمتطلبات لكل الكلمة وأقسام اللغوية جذور

ومن ثم يتم تحديد الفئة الأقرب لكل جملة عن طريق تطبيق القواعد على CAMeLالمستخدم المحللة باستخدام أدوات

حة باستخدام أدوات .CAMeLمخرجات أداة ي بيئة CAMeL 1.3.1تم تنفيذ الطريقة المقبر
وبرنامج كتب بلغة بايثون ف

Windows 10 ي تصنيف متطلبات المستخدم غبر الوظيفية باللغة وأ
حة ف ظهرت النتائج كفاءة وفاعلية الطريقة المقبر

 العربية.

V

Semi-Automated Classification of Non-Functional Arabic User Requirements using NLP

Tools

Eman Faiz Awad

ABSTRACT

Requirements Engineering is a critical phase in the software development life cycle,

encompassing both Functional Requirements (FR) and Non-Functional Requirements (NFR).

NFR defines the quality attributes of the system, including performance, security, availability,

look and feel, fault tolerance, legal and operational, essential for meeting user needs and

imposing additional constraints on software quality. Prioritizing NFR from user requirements

is challenging, requiring specialized skills and domain knowledge. Manual categorization is

time-consuming and mentally taxing for developers, making automated or semi-automated

classification of NFR from requirements documents valuable. This approach reduces manual

effort and time in identifying specific NFR among numerous requirements. This thesis

introduces a novel semi-automated categorization approach for Arabic non-functional user

requirements using CAMeL Tools, a natural language processing tool. We propose a set of

heuristics based on fundamental Arabic sentence constructions to extract information and

categorize requirements into seven NFR classes. Tokens, PoS tags, and lemmas of parsed user

requirements are generated using CAMeL tools. The closest class for each statement is

determined by applying heuristic criteria to CAMeL outputs. The implementation of our

approach using CAMeL Tools 1.3.1 and Python code in a Windows 10 environment

demonstrates its practical applicability and efficiency in classifying Arabic non-functional user

requirements.

VI

DEDICATION

To My Beloved Family,

To my parents, whose unwavering support and encouragement have been my guiding light

throughout this journey.

To my dear husband, for being my rock, my confidant, and my biggest cheerleader. Your

constant encouragement and understanding have given me the strength to pursue my dreams.

To my precious children, who inspire me every day to be the best version of myself. Your love

and joy have filled my life with purpose and motivation.

To my supportive sisters and caring brothers, thank you for always standing by my side, offering

words of wisdom, and being my pillars of strength.

This thesis is dedicated to all of you…

VII

ACKNOWLEDGEMENT

I would like to express my deepest gratitude and appreciation to my thesis supervisors, Dr. Nabil

Arman and Dr. Faisal Khamayseh, for their invaluable guidance, unwavering support, and

insightful feedback throughout the process of conducting this research. Your expertise,

encouragement, and dedication have been instrumental in shaping this thesis and enriching my

academic journey.

I am also immensely grateful to my colleague in the master's program, Karmel Shehada, for her

endless assistance and support. Her contributions and willingness to lend a helping hand have

been truly invaluable, and I am sincerely thankful for her generosity.

I would like to express my sincere gratitude to the faculty members at the College of Graduate

Studies for their invaluable guidance, support, and encouragement throughout the

course of my thesis.

Special appreciation goes to Eng Maeen and Khalil for their invaluable assistance and for

generously providing the necessary data for my research. Your support and collaboration have

been integral to the success of this project.

Finally, I extend my sincere thanks to all those who have contributed in any way to the

completion of this thesis. Your support and encouragement have been instrumental in this

achievement.

Thank you all

VIII

Table of Content

DECLARATION ...II

STATEMENT OF PERMISSION TO USE .. III

 IV .. الملخص

ABSTRACT .. V

DEDICATION ... VI

ACKNOWLEDGEMENT .. VII

Table of Content ... VIII

LIST OF FIGURES ... XI

LIST OF TABLES .. XII

LIST OF ABBREVIATIONS .. XIII

CHAPTER ONE INTRODUCTION ... 1

1.1. Motivation .. 1

1.2. Problem Statement: .. 2

1.3. Proposed Solution... 3

1.4. Research Steps ... 4

1.5. Research Objectives ... 6

1.6. Contribution ... 7

1.7. Research Importance .. 7

1.8. Thesis Organization .. 8

CHAPTER TWO BACKGROUND ... 10

2.1. Requirements Engineering (RE) ... 10

2.1.1. Software Requirements Specification (SRS) .. 12

2.1.2. Types of Requirements .. 13

2.1.3. Benefits of Good User Requirements ... 16

2.1.4. User Requirements Written in Arabic .. 17

IX

2.2. Natural Language Processing Tools .. 19

2.2.1. CAMeL Tools ... 20

2.2.2. Importance of CAMeL Tool .. 20

2.2.3. Functionality and Features ... 21

2.2.4. Superiority Over Other Tools .. 21

2.2.5. Symbol Representation and Their Significance .. 21

Chapter THREE LITERATURE REVIEW .. 22

3.1. Automated Classification of Non-Functional User Requirements Using Machine

Learning Algorithms ... 22

3.2. Non-Functional User Requirements Classification Using Feature extraction 26

3.3. Previous studies Related to Arabic User Requirements Conducted at PPU 27

CHAPTER FOUR RESEARCH APPROACH ... 30

4.1 Arabic User Non-Functional Requirements Classification Approach 30

4.1.1 Non-Functional User Requirements Linguistic Features 31

4.1.2 The Proposed Heuristics .. 32

CHAPTER FIVE EVALUATION .. 62

5.1 Evaluation Metrics ... 62

5.1.1 Precision ... 62

5.1.2 Recall .. 62

5.1.3 Accuracy ... 63

5.1.4 F1-Score .. 63

5.2 Experiments ... 63

5.2.1 Experimental Setup ... 63

5.2.2 Data Preparation .. 63

5.2.3 Experimental Procedure... 63

5.3 Result Analysis ... 64

5.3.1 Single-Class Testing .. 64

X

5.3.2 Multi- Class Testing .. 65

CHAPTER SIX CONCLUSION AND FUTURE WORKS .. 67

6.1 Conclusion ... 67

6.2 Future Work ... 67

BIBLIOGRAPHY ... 69

APPENDIX A.. 73

XI

LIST OF FIGURES

Figure 1.1: Proposed Solution ... 4

Figure 1.2: Flowchart of the Steps of Our Approach ... 6

Figure 2.1:Process of Requirements Engineering .. 12

Figure 4.1:Empirical Methodology ... 31

XII

LIST OF TABLES

Table 3.1:Summary of related works of automated classification of NFR using Machine

Learning Algorithms ... 25

Table 3.2:Summary of related works of NFR Classification using Feature extraction 26

Table 3. 3: Previous Studies Related to Arabic User Requirements Conducted at PPU 28

Table 4.1:Performance Requirements Keywords ... 43

Table 4.2: Security Requirements Keywords ... 44

Table 4.3: Availability Requirements Keywords .. 45

Table 4.4:: Look and Feel Requirements Keywords .. 46

Table 4.5: Fault Tolerance Requirements Keywords .. 47

Table 4.6: Legal Requirements Keywords ... 48

Table 4.7: Operational Requirements Keywords ... 49

Table 4.8: Expert Evaluation ... 50

Table 4.9: Case Study ... 53

Table 5.1: Single- Class Testing Results. ... 64

Table 5.2: Multi-Class Testing Results. ... 66

XIII

LIST OF ABBREVIATIONS

ANN Artificial Neural Networks

BERT Bi-directional Encoder Representations from Transformers

CR Classification Rules

FN False Negative

FP False Positive

FRs Functional Requirements

GATE General Architecture for Text Engineering

LSTM Long Short-Term Memory

ML Machine Learning

NLP Natural Language Processing

NFRs Non-Functional Requirements

PoS Part of Speech

RNN Recurrent Neural Network

RE Requirements Engineering

SDLC Software Development Lifecycle

SRS Software Requirements Specification

TN True Negative

TP True Positive

UML Unified Modeling Language

Introduction

1

CHAPTER ONE

INTRODUCTION

1.1. Motivation

The realm of software development is a dynamic and ever-evolving field where the ability to

meet and exceed user expectations is the key to the success of a project. Central to this endeavor

is the accurate identification and classification of user requirements, a process that can be both

complicated and challenging, particularly when dealing with non-functional requirements

(NFRs). Considering this backdrop, our thesis is propelled by a deep-seated motivation to

address critical challenges in the software engineering landscape [1].

Non-functional requirements described as the quality attributes of the system. Determining the

NFR is one of the most difficult steps during software development. These NFRs encompass

attributes such as performance, security, usability, reliability, legal, look and feel, fault tolerance

and scalability, which are crucial in determining the overall quality of a software product. They

dictate not just what a software system should do but how it should do it, encompassing a wide

spectrum of qualitative aspects that have a profound impact on user satisfaction [2]. Accurately

identifying, extracting, and classifying NFRs is a complex task that demands meticulous

attention to detail, cultural sensitivity, and linguistic expertise [3]. Within this complicated

ecosystem, there is an obvious need for a solution that not only solves these difficulties but also

streamlines the process for Arabic-speaking consumers [4].

Non-functional requirements (NFRs) are a critical aspect of software design that deeply

influences its overall quality and user experience. They extend beyond the core functionality to

define how a system operates, and they are often critical to the success or failure of software

applications [5].

This research focuses on leveraging Natural Language Processing (NLP), which lies at the

intersection of computational linguistics and artificial intelligence [6]. NLP has revolutionized

human-machine interactions by enabling machines to understand and process human language

in ways previously unimaginable. This advancement has broader implications, including its

application to the Arabic language.

Introduction

2

Applying NLP to Arabic language processing opens up opportunities for redefining how non-

functional requirements (NFRs) are identified and categorized. Customized NLP tools for

Arabic aim to address the unique linguistic and cultural nuances of the Arabic-speaking world.

Arabic-speaking users represent a significant and growing global demographic, and their

distinct characteristics pose both challenges and opportunities in software development.

Neglecting these nuances can lead to misalignment between software products and users,

compromising user experiences [7]. This research aims to create culturally and linguistically

accurate software tailored to Arabic-speaking audiences, going beyond basic functionality.

The thesis tackles the complex intersection of NFRs, advanced NLP capabilities, and the

intricate Arabic cultural context. It aims to develop a semi-automated classification system that

combines human expertise with NLP, improving the precision and speed of NFR classification

while respecting Arabic's linguistic subtleties and cultural nuances [8].

This proposed system will be intricately designed to handle Arabic's complexity, including its

extensive lexicon, diverse dialects, and cultural expressions. The research aims to set a new

standard in NFR classification for Arabic-speaking users, advancing culturally sensitive and

linguistically inclusive software engineering tools. The ultimate goal is not only to enhance

technology but also to contribute to a more inclusive and empathetic global community,

harnessing NLP's transformative power.

1.2. Problem Statement:

In the field of software engineering, the correct classification of user requirements, mainly non-

functional requirements (NFRs), has a major role to play in achieving the functionality and

quality of software systems. Despite their importance in clearly influencing the overall quality

and performance of software, NFRs often take the back seat behind functional requirements.

Because it is often considered that the requirements are only meant to specify a system’s

functionality and capabilities and they won’t involve operational aspects. The Classification of

these requirements into certain categories is a difficult task especially if the requirements are in

Arabic language because of the Arabic language unique linguistic and cultural features. NFRs

consist of a wide range of qualities such as Performance, Security, Availability, Look and Feel,

Fault Tolerance, Legal, Operational; these are prerequisites, which are essential to use positive

experience and, moreover, they are necessary to provide good operational systems. Proper NFR

classification is important to enhance the integration and management of NFR within the

Software Development Lifecycle (SDLC) and reflects the variety of users' intricate needs.

Introduction

3

Manually classifying NFRs is an onerous task, requiring domain-specific knowledge. It could

be error prone and inefficient in large-scale projects. Complexity increases further with Arabic

content because of its varied dialects, complex syntax, and deep culture. Traditional methods

are manual and have mainly addressed the content classification problem. There is a limitation

to manual and traditional contents classification, especially with little or no Arabic language

datasets available for applying machine learning algorithms. Machine learning algorithms have

been used in the requirement classification for some languages like English. To tackle these

challenges, our research proposes a semi-automated approach using NLP tools specifically

designed for Arabic. Leveraging the capabilities of CAMeL Tools, our approach aims to reduce

the manual effort, time and labour involved in classification. We are developing a system that

can automatically identify and classify NFRs in Arabic text with a high degree of accuracy as

well as cultural sensitivity. This ground-breaking approach will transform the way NFRs are

categorised, resulting in software development practices that are more inclusive, efficient and

responsive to the needs of their global users, particularly Arabic speakers.

1.3. Proposed Solution

We introduce in our thesis a novel semi-supervised approach that is dedicated to classify NFRs

in Arabic software documentation. We introduce a novel semi-supervised approach in our

thesis, dedicated to classifying NFRs in Arabic software documentation. Our proposed

definition and systematic categorization of NFRs draw from methodologies utilized by

prominent researchers in the field [9][10][8]. This existing literature may not specifically

categorize NFRs into these seven categories. However, our categorization comprises seven

categories: Performance, Security, Availability, Look and Feel, Fault Tolerance, Legal, and

Operational.

 This classification categorized the non-functional requirements (NFRs) in seven categories

which includes Performance, Security, Availability, Look and Feel, Fault Tolerance, Legal, and

Operational. This categorization is in line with published frameworks used in other scholarly

works which make our analysis comprehensive and clear. Our approach is designed to work

specifically with the linguistic and cultural features that are unique to the Arab world. It relies

on a heuristic approach that exploits specific features of CAMeL Tools, an NLP toolkit

developed to handle the specific challenges of the Arabic language. We utilize NLP methods,

including tokenization, part-of-speech tagging, and sentence segmentation, tailored to

efficiently analyze and understand Arabic texts. Our approach specifically targets the unique

patterns and idioms of the Arabic language. The salt of our technique is a set of heuristics rooted

Introduction

4

in Arabic sentence structure basics extracted based on domain wisdom and linguistic

breakdown. These heuristics are well designed to resolve classify NFRs into the seven

predefined category types, seeking accurate classification without demanding extensive training

datasets which are painfully insufficient for Arabic NFRs. We have illustrated our approach for

classifying Arabic NFRs in Figure 1.1 in our thesis. Our method of classification is a semi-

supervised method rather than using typical data-driven machine learning techniques. This is a

shift to a more contextually aware and nuanced analysis in software requirements and not just

a data analysis approach but considering and complying with the user’s needs for software

requirements. This is noticeably different from the current software engineering practices hence

it is a great contribution to the practice of software engineering. We fill in the gap of software

engineering in recognizing NFRs in the To-be operational system. This is a break of the current

machine learning culture on software requirement analysis. This will not only add value to the

software engineering industry but also take into context the user’s requirements for software,

especially in the Arabic speaking market.

Figure 1.1: Proposed Solution

1.4. Research Steps

As part of our research, we have followed a systematic and holistic approach while categorizing

NFRs in Arabic documentation with the help of NLP (Figure 1.2). Attempts have been made to

cover the entire process in key phases, focusing on the unique complexities of the Arabic

language and its cultural diversity.

Requirments
Document

Data Preprocessing (parsing,tokenization,
POS tagging, sentence splitting)

Classification Rules
Classify

Requirements
Classified

Requirements

Introduction

5

• Data Collection: We collected data which contained a huge collection of requirement

documents.

• Data Preprocessing: Utilizing CAMeL Tools, we perform preprocessing tasks on the

collected data. This step involves parsing the Arabic text for morphological analysis,

tokenization is done to divide the text into individual words, also called tokens. PoS

tagging is responsible for assigning the grammatical structure of the word. Sentence

splitting: tokenize the sentence into several sentences.

• Classification Rules Development: Instead of using machine learning algorithms, we

use a heuristics approach. We propose a set of classification rules (CR) derived from a

deep linguistic analysis of Arabic language considering Arabic sentence constructs to

categorize the NFR into seven classes: Performance, Security, Availability, look and

feel, Fault Tolerance, Legal, Operational. We did not consider scalability class SC as it

overlap with the other classes.

• Classify Requirements: Once the rules have been put in place, we are able to categorize

the preprocessed NFR’s. This step is semi-automated where we are guided by the rules

which we setup that are effective at distinguishing the seven types of NFRs.

• Post-Classification Processing (Evaluation): The processed classified necessities then

go for post-processing, which is utilized to refine and approve the consequences of

posting. The reason here is to expand the level of precision in ordering non-useful

necessities. The framework considers the setting and the Arab semantics shown in the

created content.

In this research, we have taken a broad and detailed approach to developing a partially

automated system that can successfully and efficiently classify non-functional requirements in

Arabic documents, with special attention to the complexity of the language and the cultural

characteristics it carries.

Introduction

6

Figure 1.2: Flowchart of the Steps of Our Approach

1.5. Research Objectives

This research aims to achieve the following objectives:

1. Develop a Heuristic-Based NFR Classification Framework:

• Develop and implement a more complex semi-automated system that heuristically

classifies non-functional requirements (NFRs) in Arabic language documents. This

system will use Arabic-optimized NLP tools and will be able to process and comprehend

complex language structures and cultural idioms.

• We are devising a set of heuristics that are developed by the analysis of the language to

do the task of classifying NFR’s into predefined classes like performance, security,

availability, look and feel, fault tolerance, legal, and operational without having to build

machine learning models.

2. Optimize System for Arabic Linguistic and Cultural Nuances:

• The classification process must be tailored to the specific challenges of the Arabic

language, such as morphological richness and dialectal variation, while ensuring high

linguistic fidelity and cultural relevance.

• Integrate contextual understanding and semantic analysis into our heuristics to enhance

the system's capability to understand the contextual context of Arabic NFRs and also the

semantics of the Arabic NFRs.

3. Validate the Classification Heuristics and System Performance:

• Application of vigorous tests with an extensive and varied set of data in order to validate

the efficiency of the heuristic rules and the overall system of classification.

Data Collection Data Preprocessing
Classification Rules

Development

Classify
Requirements

Post-classification
processing

Introduction

7

• The system performance should be evaluated by both qualitative and quantitative

measures such as classification accuracy, rule precision, and adaptability of the system

with different Arabic dialects and domains; hence, the approach should be robust and

scalable to be fit for real-world applications.

1.6. Contribution

In the area of natural language processing (NLP) applied to software development, our work

presents a new approach compared to what has already been published. With a special interest

in Arabic, we are building a semi-automated, heuristic-based system that helps to classify non-

functional requirements (NFRs) from Arabic language documentation. What we contributed in

the natural language processing (NLP) field for software development is considered new

compared to the published papers before. Our main focus is on the Arabic language. We are

producing a system that depends on heuristics and is semi-automated to classify the non-

functional requirement (NFR) from an Arabic-language document. Our approach provides an

in-depth engagement with the complex grammar, rich morphology, and diverse dialects of

Arabic, which, combined with an accurate interpretation of the subtleties of the language, allow

us to achieve a level of understanding higher than any other available commercially, resulting

in unparalleled technological advancement and cultural sensitivity to the issues at hand. Since

we did not have large datasets available in Arabic, machine learning was not considered a

worthwhile solution for NLP. Instead, we adopted heuristic rules based on the expert linguistic

analysis system that helped us categorize the NFRs into specific classes such as performance,

security, availability, look and feel, fault tolerance, legal, and operational. The heuristic method

is very efficient in processing millions of Arabic documents in a scalable and very efficient way.

This methodology is geared towards setting a new standard of NFR classification that covers a

large proportion of the world-wide non-English-speaking linguistic community and

consequently opens a new era of NLP and software development software and opens new areas

and NFR standards to development, thus contributing to world-wide software development.

This research in a totally connected world is very important to provide technology with the

Arabic and Oriental languages as the only way to become closer to or friends with other nations

via technology. This way, we can provide sustainable technological development globally.

1.7. Research Importance

This study is a big step forward in achieving the integration of software engineering and Arabic

language processing. We are concerned with identifying and classifying non-functional

requirements (NFRs) in software development, an issue that has not been given enough

Introduction

8

attention. Non-functional requirements are required for software, like required functionality;

they determine the overall behavior of the system in regards to the user experience, such as

usability, reliability, security, and certain software features. We have developed an algorithm

applied as a semi-automated system where we process information based on racial, lexicon, and

heuristic approaches, enriched by Arabic-optimized NLP tools. Unlike the typical machine

learning algorithms, our system is based on a number of heuristics that have been developed

through an extensive linguistic analysis of Arabic. Our novel approach significantly extends the

state of the art of software engineering methodologies and will result in higher software quality

from non-functional aspects, which meets user expectations. Moreover, our research has a

direct, meritorious impact on the Arabic-speaking society worldwide, where it is specifically

concerned with the idiosyncratic challenges imposed by the linguistic nature of Arabic on

software development. Building such a system will allow us to make the development of

software that is consistent with Arabic, which will increase the satisfaction and user engagement

of the Arab speakers, and automating the NFR classification process will make the NFR

classification process less error-prone and more efficient, which is critically important for

languages like Arabic in order to develop a better quality of software that is sensitive to the

Arabic culture. The research that we have undertaken illustrates a somewhat modern software

development in a cross-cultural, global setting. Integrating linguistic and cultural intelligence

into software development is crucial in today's interconnected world. Our research serves not

only the Arabic-speaking community but also sets a standard in software development,

combining NLP and heuristic analysis. This approach is transformative for the broader field of

global software engineering, showcasing the importance of linguistic and cultural

considerations in creating effective software solutions.

1.8. Thesis Organization

This thesis is organized as follows:

• Chapter 1: Introduction

In the first chapter, the context for the thesis is established. It begins with the motivation,

highlighting the need to address requirements engineering challenges, especially for Arabic-

speaking customers. The problem statement outlines specific challenges, and the proposed

solution introduces the conceptual framework. Research steps detail the methodology, and

research aims clarify the goals. Contributions outline expected scientific and practical impacts,

while research importance emphasizes relevance within the field. Thesis organization provides

a structure overview.

Introduction

9

• Chapter 2: Background

Chapter 2 offers a comprehensive background to the thesis. It explores requirements

engineering (RE), requirements specification (SRS), types of requirements, and the importance

of clear user requirements. The chapter then delves into user requirements written in Arabic,

setting the stage for the relevance of Natural Language Processing (NLP) tools, with a focus on

CAMEL Tools for Arabic language analysis.

• Chapter 3: Literature Review

This chapter conducts a systematic review of literature related to the thesis. It compares

software requirements classification using rule-based and machine learning approaches for

English and German. The review also covers automated production of UML diagrams and its

relevance to Arabic and English user requirements.

• Chapter 4: Research Approach

Chapter 4 details the research approach for categorizing non-functional user needs. It describes

the step-by-step methodology, reasoning, and unique methodologies developed to address

Arabic language complexities in software development.

• Chapter 5: Evaluation

The evaluation chapter explains the process for assessing the solutions offered. It discusses the

evaluation methodology, experiments, and results, providing empirical evidence of the research

approach's effectiveness, including both achievements and limitations observed during the

assessment.

• Chapter 6: Conclusion and Future Work

The final chapter includes a conclusion and future work section. It summarizes significant

results and contributions, reflecting on the research journey and offering a critical appraisal of

the work performed. Additionally, it suggests directions for future research and developments

in the subject, providing a comprehensive conclusion to the entire research endeavor

Background

10

CHAPTER TWO

BACKGROUND

2.1. Requirements Engineering (RE)

Requirements Engineering (RE) is a basic subject in software engineering which is the driving

force of the requirement engineering habits in software engineering on which the excellent

structure of software systems will imbue [11]. RE abides by a simple definition. It is a method

of developing software repeatedly by tracing users anticipations and requirements totally and

carefully in order to prove that the ultimate product is what the users unwish. [10]. It is also the

most essential stage inside the whole software development life cycle and is responsible for

linking the Conceptual design of software system and its physical formation [12]. RE starts with

the identification of stakeholders. Requirements are then further explored, constrained, and

expressed as unambiguously as possible in order to be accurately represented as a software

requirements specification (SRS), which is the primary RE documentation essential for the

software system and includes functional and non-functional requirements [13]. The purpose of

these specifications is not only to provide what the software system should do but also how it

must respond under different conditions, the limitations of the software, and how it should be

expected to react not only to problems but to normal jump situations. So it is extremely

beneficial to have a well-structured SRS in order to have all of the project's stakeholders

engaged in the software development process, such as developers, testers, managers of the

project, and clients [7]. RE separates its requirements into two categories, namely functional

and non-functional. Functional requirements (FRs) describe in detail the functions, processes,

and features that the software system must deliver, whereas non-functional requirements

(NFRs) cover the quality attributes that govern how the system should behave. These kinds of

non-functional requirements are also critical in designing the whole user experience as well as

making sure that not only the software system works properly but also constantly exceeds user

expectations.

RE is a discipline that concentrates on good communication, comprehensible documentation

and determination of user objectives to result in software that is before the allocated time. If it

is not implemented then there is a huge chance that the development of the software will be

affected. It is a proactive risk reduction activity that is used to eliminate the probability of

project failure. RE also reduces the development cost by doing the software development right

at the first attempt and revealing what it is that the software has to do. In the world that we live

Background

11

in today, RE is the best practice and gives the best results, this means that software products are

enforced to under the development according to what the user is expecting [14].

The process of requirements engineering is an intricate journey that can be divided into four

core sections, each of which is integral to the success of a software development project. The

first component is known as a feasibility study, and it is used to assess the feasibility and

viability of the project. This is followed by a phase where the project is broken apart in depth

with respect to the goals in terms of the difficulties as well as the potential resources, helping

the stakeholders realize their decisions on the project. The requirement elicitation and analysis

phase is the next phase, which comes after the feasibility study. During this phase, end-users,

customers, and domain experts will work together to understand and establish what their

requirements and expectations are. The criteria, which have been obtained, are then assessed by

the team to ensure they are unambiguous, have no missing requirements, and that all parties

understand the requirements [15].

The next important stage is requirement specification, which means the determination of the

needs of the clients. More importantly, it contains a comprehensive and cohesive list of these

items. It’s usually in the form of a SRS document. In this stage, the SRS will act like a system

blueprint. SRS describes what the software is going to do. The software requirement

specification states both the functional and non-functional requirements and the way the

software should behave and perform [16]. Finally, after the requirements have been stated, they

undergo a process of requirement validation. Requirement validation is a process in which the

stated requirements are checked and validated to make sure that the requirements that the

customer says he is looking for are really what the project objectives are and are also realized

and checked by the various stakeholders. From the software engineering perspective, a major

goal of the requirements engineering processes is the quality control of requirements, which,

through systematic requirements validation, prevents mistakes in the early development of the

software and reduces the need for costly changes later in the development. In other words, the

four processes of requirements engineering aid effective software development mainly through

communication support, risk management, and the delivery of the software product that users

want and industry standards [17].

Background

12

Figure 2.1:Process of Requirements Engineering

2.1.1. Software Requirements Specification (SRS)

The Software Requirements Specification (SRS) document is crucial in software engineering,

acting as a detailed guide outlining the software's requirements and specifications. It forms a

key agreement among stakeholders like clients, developers, and project managers, defining the

software's intended functionality and operational constraints. The SRS specifies both functional

requirements (actions the software must perform) and non-functional requirements (quality

attributes like performance, security, and usability). This document guides all stages of the

software development lifecycle, from design to updates, and helps avoid misunderstandings that

can cause project delays and failures to meet user needs.

The SRS also serves as a validation tool, ensuring the final product matches the agreed

specifications. It assists in estimating costs and timeframes, enhancing project planning and

management. Furthermore, it improves communication among team members, reducing

ambiguities and providing a common language for different expertise. Essentially, the SRS is a

comprehensive document that forms the foundation for a software project, offering a detailed

roadmap from inception to deployment.

A well-crafted SRS includes various essential elements. It starts with an introduction that

outlines the document's purpose, scope, definitions, acronyms, abbreviations, and references,

providing the reader with context. It then describes the intended audience and the software's

practical applications, ensuring clarity and relevance of the information provided [18-21].

Background

13

The Software Requirements Specification (SRS) is a crucial document in the software

development lifecycle (SDLC), serving as a comprehensive blueprint that guides the entire

development process. The main body of the SRS details functional requirements—actions the

system must perform, including user interactions, data processing, and behavior under specific

conditions. It also outlines non-functional requirements like performance metrics, security

features, and reliability standards. These combined elements form the SRS’s core, defining what

the software will do and how it will perform [22].

The SRS also specifies system constraints and assumptions, user scenarios, use cases, interface

requirements, and data models, providing a holistic view of the software's intended

functionality, interactions, and data flow. It includes performance requirements and design

constraints related to external standards or regulations. Appendices offer additional details,

while an index facilitates document navigation. Altogether, the SRS serves as a detailed

specification for subsequent software design, development, and deployment phases, aiming to

create a product that meets user needs and expectations [23].

Throughout the SDLC, the SRS plays a multifaceted role. Initially, it acts as a repository of

agreed-upon requirements, establishing a clear vision of the final product. It then guides

designers in making architectural decisions and formulating system design. During the testing

phase, the SRS becomes a basis for developing test cases and validation protocols, serving as

the standard against which software is verified. It helps manage the project scope, preventing

scope creep and facilitating a formal change control process. In the maintenance phase, the SRS

aids in troubleshooting and guiding future enhancements [24]. Furthermore, it is a vital

communication tool across technical and non-technical stakeholders, aiding in project planning,

time and cost estimation, and risk management. Overall, the SRS is indispensable in ensuring

that each development phase aligns with the initial vision and that the final software product

fulfills stakeholder expectations.

2.1.2. Types of Requirements

In the realm of software engineering, the distinction between functional and non-functional

requirements is pivotal, delineating the broad spectrum of expectations that software is

anticipated to meet. Functional requirements detail the various tasks the software must perform,

specifying actions the system must be able to execute in direct response to user inputs, events,

or interactions. They define the core operations of the software: what it will do in terms of

processes, data manipulation, and workflows. For instance, a functional requirement for an

email application might stipulate that the system should be able to send an email within a certain

Background

14

time frame after the user hits the send button. These requirements are often characterized by

use cases that provide a narrative of typical user interactions, offering concrete examples of

how the software will be used [25]. Conversely, non-functional requirements (NFRs) specify

the quality attributes of the software system, describing not what the software will do, but how

it will perform under various conditions and constraints. They encompass criteria such as

performance, which dictates the response times and throughput rates; reliability, which ensures

the software's stability and consistency over time; and usability, which focuses on the user

experience and ease of use. Non-functional requirements also address security, dictating the

levels of data protection and user authentication necessary; scalability, outlining how well the

software can adapt to increased workloads; and maintainability, defining the ease with which

the software can be updated and modified. For example, a non-functional requirement for the

same email application might require that it maintains a 99.9% uptime, indicating the system's

reliability and availability.

The dichotomy between functional and non-functional requirements is fundamental because it

collectively encapsulates the end-to-end spectrum of software capabilities, from its utility to its

endurance and efficiency. Functional requirements drive the development of features, while

non-functional requirements guide the system's architecture and long-term viability. Together,

they form a comprehensive suite of specifications that software must fulfill to be considered

complete and operational. In drafting an SRS, a meticulous balance between these two types of

requirements is crucial, as overlooking either can lead to a system that fails to satisfy end-user

expectations or one that is not sustainable in the long term [26]. Thus, in defining the success

of a software product, both functional and non-functional requirements hold significant weight,

with each playing an integral role in delivering a well-rounded, robust software solution. In the

tapestry of software engineering documentation, the distinction between user requirements and

system requirements is a critical one, each serving a unique function in capturing the

expectations and specifications of a software system. User requirements are expressed from the

perspective of the end-user and encapsulate the goals, needs, and desired outcomes of the

software utilization. These requirements are typically articulated in natural language and are

often less technical, focusing on what the user wants to achieve without delving into the

intricacies of how the system will deliver those functionalities. For example, a user requirement

might state that a user needs to retrieve a record quickly and easily, without specifying the

underlying technologies or algorithms that will enable this functionality.

Background

15

System requirements, on the other hand, are derived from user requirements but are

characterized by their detailed and technical nature. They provide a comprehensive and precise

description of the functionality and conditions necessary for the software system to fulfill user

requirements. These are often detailed enough for a system designer to use as a blueprint for

building the system. System requirements include detailed specifications of data structures,

algorithms, system interfaces, and other technical parameters that dictate the system's

development and operation [27]. For instance, a system requirement might specify the database

management system to be used, the query response time, or the exact method by which records

are to be retrieved and presented to the user. The clear delineation between user and system

requirements is vital as it addresses different stages of the requirements engineering process and

caters to various audiences. User requirements are primarily concerned with ensuring that the

stakeholders' and users' needs are comprehensively gathered and understood, serving as an

initial guide for the development process. In contrast, system requirements translate these needs

into technical specifications for the development team, ensuring that the software built aligns

with the functional and non-functional demands of the user base. This distinction also aids in

effective communication within the project team and among stakeholders. While user

requirements are accessible to a non-technical audience, providing a basis for initial agreements

and approvals, system requirements are primarily utilized by the project's technical team

members as a definitive reference for designing and building the system. Together, user and

system requirements form the continuum of specification that guides the transition from

conceptual understanding of user needs to the technical realization of those needs in the form

of a software product [28].

In the intricate process of system design, the interplay between different types of requirements

is both subtle and substantial, with each category bearing its unique impact on the final design.

Functional requirements, for example, might include specifics such as the ability of an e-

commerce platform to process transactions securely and efficiently, or the capability of a

database system to execute queries and return results within a specified timeframe. These

requirements directly inform the system's core functionalities, leading to design decisions about

the necessary algorithms, data processing mechanisms, and transaction handling protocols. The

implementation of such functional requirements will dictate the development of particular

features and user interfaces, compelling system designers to create architectures that enable

these functionalities while ensuring user-friendly interactions [29]. Non-functional

requirements, which address the quality attributes of the system, have a more pervasive and

Background

16

often more complex impact on system design. Consider the requirement for high availability in

a cloud storage service, which necessitates the design of redundant systems and failover

mechanisms to ensure uninterrupted service. Or take the demand for scalability in a social media

application, which requires a design that accommodates a growing number of users and data

without degradation in performance. Non-functional requirements like these influence

decisions regarding the underlying infrastructure, the choice of technologies, and the system's

overall resilience and adaptability. They often lead to the incorporation of advanced design

patterns, the selection of robust frameworks, and the consideration of future growth during the

design phase.

User requirements, expressing the end-user's perspective, might manifest as the need for an

intuitive workflow in a software application or the requirement for real-time notifications in a

project management tool. These requirements shape the system design by focusing on user

experience (UX) design elements, necessitating a user-centered design approach that prioritizes

ease of use, accessibility, and user engagement. They influence the layout of the user interface,

the interaction models, and the visual design, ensuring that the system is not only functional but

also pleasurable and efficient to use. System requirements, translating user needs into technical

specifications, have a definitive and detailed influence on system design. For instance, a system

requirement might stipulate the use of a particular SQL database with specific performance

benchmarks or the integration with a third-party authentication service using OAuth protocols.

These precise technical details compel designers to incorporate specific technologies and

architectures into the system to meet these stipulated requirements, often dictating the system's

structure, its modules, and the interactions between its components [30].

2.1.3. Benefits of Good User Requirements

The requirements of a software project are very important to the successful completion of the

latest version. The requirements give the development team a firm direction from the customer

and a common goal alignment among the stakeholders. The project requirements help the

project or development leader guide the team to the outcome desired [5]. For clients or end-

users, clear requirements guarantee that their needs are accurately captured, leading to a product

that meets their demands and enhances satisfaction. For developers, clear requirements define

the scope of work, enabling focused efforts and reducing the likelihood of rework. This clarity

also reduces cognitive load, allowing developers to focus on problem-solving and innovation.

For project managers and business analysts, clear requirements are benchmarks for measuring

project progress, aiding in accurate planning, resource allocation, and timeline estimation. They

Background

17

simplify change management, allowing effective decision-making and change control. For

quality assurance teams, clear requirements are the basis for comprehensive testing strategies,

ensuring each requirement is verified and improving communication with developers. In

regulatory compliance and auditing, clear requirements ensure the software meets industry

standards and legal requirements, protecting the organization from liabilities [31]. Clear

requirements build trust among stakeholders, manage expectations throughout the project

lifecycle, and ensure the delivery of a product that aligns with stakeholders' visions and users'

needs. Well-defined requirements are essential for successful project execution and delivery,

providing a detailed roadmap for all project activities [32]. They enable effective risk

management, detailed system design, and high-quality software development. Well-defined

requirements enhance team communication and stakeholder engagement and are vital for agile

project adaptation. Accurate initial requirements result in cost savings throughout the project

lifecycle, preventing revisions and rework caused by evolving or misunderstood requirements.

They ensure optimal resource allocation and reduce the costs associated with ambiguous

requirements, feature creep, and post-deployment fixes. Accurately capturing requirements

from the beginning aligns with cost avoidance in project management, reducing developmental

expenditures and maintenance costs, thus contributing to a favorable total cost of ownership

and a robust bottom line for the organization [33].

2.1.4. User Requirements Written in Arabic

Expressing software requirements in Arabic involves distinct challenges due to the language's

complex morphology and syntax, cultural nuances, and regional dialects. The rich

morphological structure of the Arabic language that introduces several word variations and, in

many cases, meaning changes based on vocalization, introduces complexity in writing correct,

clear, and unambiguous requirements [33]. The lack of vocalization in written text means that

the same sentence can lead to several interpretations by the software developer, causing

confusion regarding the functionality intended software. Additionally, the cultural aspects of

Arabic; the fact that there are no direct equivalents to a number of technical terms in other

languages plays a part in the challenge of translation and getting the terminologies right in

software engineering. The presence of different dialects in the Arabic language also adds to the

challenge as in one dialect you may be very clear in what you mean in terms of the requirement,

but that requirement may be misunderstood in a different dialect, given rise to

misunderstandings in the software of what should actually be done [33]. Further, incorrect

formatting in the Arabic language may arise from inadequately equipped requirements

Background

18

management tools for Arabic in terms of text direction, wrong character encoding, and

integration with a language system on the level from left to right [34]. In addition, the lack of

standard software engineering terminology for support being communicated in Arabic, as

mentioned above, is another major challenge [35]. To overcome these challenges, suitable

methodologies and tools should be developed for Arabic, including Natural Language

Processing (NLP) tools for analyzing the text, tools for building a database for standardized

technical terminology, and comprehensive stakeholder training in, but not limited to, how to

document requirements in Arabic. Ultimately, this will ensure suitable software is developed

for the Arabic market, meeting user needs and requirements [21].

Cultural and linguistic aspects are very important in software development, especially when

dealing with global audiences and languages such as Arabic, which encompasses deep history

and complex structures. For example, its right-to-left script dominantly impacts software

interface design and textual content presentation. The unique linguistic features of Arabic, such

as the root and pattern system, lots of diacritics, and vast dialects, all in all require a special

localization treatment in order to be accurately conveyed [36]. It’s very critical to recognize

cultural values, behaviors, and communication styles in the Arab world because software user

expectations and user interaction with technology are significantly influenced by their cultures.

For instance, cultural sensitivity in software design calls for such issues as choosing the

appropriate symbols to represent functions, the exact greeting formulations to use, and the

actual user interface structure. Besides, language translation of technical documentation and

interfaces is far beyond literal translation; it involves cultural adaptation to the local market,

including different socio-cultural contexts and idiomatic expressions used in the Arabic

language. Bilingual subject matter experts with a deep cultural understanding are essential when

developing software applications for Arabic speakers or capturing requirements in Arabic to

ensure that software products are culturally appropriate and linguistically accurate, providing

an intuitive and respectful user experience [36]. Case studies of Software Requirements

Specification (SRS) documents for Arabic software applications will illustrate these challenges

and solutions. For instance, a system for learning Arabic language dictated that the SRS should

specify how the system interacted with the user through the dual bilingual interface. This SRS

also addressed issues including script rendering, right-to-left text support, and culturally

appropriate content. Another example is an e-commerce application designed for the Middle

Eastern market, whose SRS included respect for specific linguistic requirements, such as

handling Arabic search queries, which are complicated by the morphological and agglutinative

Background

19

nature of the language. As we can see, it is very important to deal with the linguistic and cultural

aspects in software production in Arabic market.

When developing the Software Requirements Specification (SRS) for the Government Public

Service Portal in a particular Arabic-speaking country, special attention had been given to

comprehensively localize it, beyond language to include the administrative and legal issues,

cultural nuances as well as details of the region. The mentioned SRS is having detail that it

ensues the date and currency formats as per the region along with the incorporation of cultural

elements within the user interface of the developed application to enhance the local citizens'

familiarity and comfort level [35]. These case studies are sufficient to demonstrate the

complexity of structuring SRS documents for Arabic software systems and reveal the linguistic

aspects, cultural considerations, and engineering aspects a development team needs to know in

order to achieve a well-designed SRS document. If all these have been put into mind during the

development of these case studies, the outcome will be considered good practice and guidelines

for software engineers in the future, helping to bridge the cultural contexts of Arabic with the

technical aspects of software development.

2.2. Natural Language Processing Tools

At the core of our research lie Natural Language Processing (NLP) tools, which are the

technological enablers to analyze and understand human language with the help of any

computational agents [37]. NLP tools are a specialized field of computer science, artificial

intelligence, and linguistics that enables computers to process and interpret human language as

it is spoken and deciphered, whether that language is in the form of Arabic speech or any type

of written text. NLP is a critical component of our research work, as it will be the key player in

successfully characterizing the non-functional needs of Arabic users. NLP Technologies can

play a large role in bridging the complexity of human languages, in this case Arabic, and the

complexity of the revised world of software development. They can help us overcome the

problems that Arabic language texts consist of, which include dialect varieties, tangled

morphological functions, and cultural diversions. These techniques have made it possible to

understand the text, harvest the relative information, and finally classify the non-functional

requirements. The goal of this research is to increase both the effectiveness and accuracy of our

classification system using NLP technology, where the underlying system should be language

and culture independent and, most importantly, international, which can eventually help both

NLP and software development disciplines [38].

Background

20

2.2.1. CAMeL Tools

The technology developed by CAMeL Tools goes above and beyond basic corpus lexicography.

Arguably groundbreaking even for corpus linguistics, CAMeL Tools sets new standards in

Arabic Natural Language Processing (NLP) stemming from a computational perspective. It is

about Arabic’s specificities in relation, among others, to its morphological system, its dialectal

diversity, as well as its orthographic idiosyncrasy. CAMeL Tools doesn’t only perform basic

analysis on text sets but also advanced operations such as morphological analysis, part-of-

speech tagging, named entity recognition, or sentiment analysis [39]. Each tool in the suite has

been developed in response to a need in Arabic language processing, harnessing the latest

machine learning and deep learning techniques. For example, the morphological analyzer is

crucial for a derivational language like Arabic to identify word roots and patterns. The tools

have been trained on extensive corpora for Modern Standard Arabic as well as different regional

dialects, so as to be effective in different contexts. Unique to CAMEL Tools is how they are

developed. They are built by leveraging the open-source software development paradigm to

actively invite researchers and developers across the globe to involve, adapt, refine, and

optimize them with respect to real-life applications and user feedback, which creates an

ecosystem that evolves and creates the tools continuously based on feedback and user

satisfaction with proven workable performance metrics. CAMeL Tools value exists in various

platforms that were utilized to engage from educational software helping people to learn Arabic

and/or reconcile Arabic grammar exceptional cases to big data analytics platforms performing

analytics on Arabic social media sentiment. Its development is a milestone in the Arabic NLP,

bridging the human languages and computational understanding. The tool robustness and

adaptability make inclusiveness and representation in the digital landscape specifically for the

Arabic NLP, which is demanding and nuanced but not included in Arabic [39].

2.2.2. Importance of CAMeL Tool

In Arabic NLP, the CAMeL Tool is of supreme importance, as it is one of the few tools that

gives the aforementioned Windows interface while also covering many complexities and hidden

intricacies of the Arabic language [39]. As already mentioned, Arabic is a prominent language

with very rich morphology, different dialects, and a different structure in terms of its script,

which makes it challenging for most of the conventional NLP tools. CAMeL Tool is one of the

few tools that has given particular attention to all those challenges and is offering specialized

algorithms and functionalities for those mentioned Arabic linguistic phenomena.

Background

21

2.2.3. Functionality and Features

The CAMeL Tool is a package with lots of different tools that are very vital to the Arabic

process. For instance, it has advanced tokenization for Arabic, script-based tokenization,

morphological analysis for Arabic based on root words and derivatives, and PoS tagging for

correct syntactic analysis. The tool also has a sentence splitter and a text normalization, which

are very important due to the variations in Arabic script and dialectal differences. And the tools

have named entity recognition for Arabic, which is very difficult because of the nature of the

Arabic language.

2.2.4. Superiority Over Other Tools

What differentiates the Arabic NLP tool, CAMeL Tool, from any other available NLP tool is

the fact that Arabic is thoroughly studied. Even though the Arab World is very cohesive and

highly homogenous, unlike what is widely believed, Arab people speak different dialects of

Arabic and not just standard Arabic. CAMeL Tool is known for being able to process Standard

Arabic, which is mostly written in newspapers, books, or presented on news channels. The

dialects that are spoken in the Arab World are therefore processed by CAMeL Tool. While most

of the NLP tools have an Arabic module, the Arabic NLP Tool, CAMeL Tool, is updated

continuously to include the latest research findings in Arabic NLP [39].

2.2.5. Symbol Representation and Their Significance

Within the tool, there is a wide range of symbols and annotations that play an essential part to

the understanding/interpretation of Arabic text. The symbols used in the CAMeL Tool are

annotations that have a specific meaning or purpose. There are a few different types of

annotations that can be marked; for example, a word is a root word, the plural of the word, the

gender of the word, and other stuff. Song text could be used for NLP tasks. To be able to use

the NLP task, we need to know these symbols to use them correctly. Because these symbols

give deep insights into the Arabic language's grammar and syntax.

The CAMeL tool is without a doubt the best resource for Arabic NLP due to its specialization,

extensive features, and ability to adapt to the complexity of the Arabic language. Using the

CAMeL tool is ideal for our research because it simply brings such accuracy and no wasted

effort to processing and analyzing Arabic non-functional requirements.

Literature Review

22

CHAPTER THREE

LITERATURE REVIEW

3.1. Automated Classification of Non-Functional User Requirements Using Machine

Learning Algorithms

In this section, we consider software requirement classification by means of machine learning

(ML) approaches. We introduce innovative approaches to identify and classify non-functional

requirements (NFRs) and comprehend informal text descriptions in open-source projects. These

articles present fascinating ideas that may automate the process of requirements analysis,

potentially saving time and enhancing the accuracy of software development.

The main goal of this paper [40] is to solve the issue of the classification of non-functional

requirements in an IoT-oriented healthcare system, which is error-prone and time-consuming

when done manually. The paper conducts experiment on various machine learning techniques

such as logistic regression, support vector machine, multinomial naïve bayes, k-nearest

neighbors, ensemble, and random forest, and they also introduce a novel hybrid KNN rule-

based approach. The present study points out that the hybrid KNN rule-based machine learning

algorithm presents better performance with a classification accuracy of 75.9% on average. The

research is further important for proposing a machine learning technique to classify non-

functional requirements of IoT healthcare systems and provides a new dataset, even though it

is limited (104 requirements). This dataset can be used for further analysis in the area since it

has been built specifically for this purpose. It should be noted that the results should be

compared with other situations with a large data set to gather a more general conclusion or use

other classifiers.

This article [41] discusses how non-functional requirements can be automatically identified and

classified in software development. This research conducts a study to analyse a model that has

been produced automatically, through syntactic as well as semantic analysis aided by machine

learning. In order to be able to study this new model, the authors employ 79 public non-

functional requirements documents without any constraints and use several machine learning

algorithms like Naïve Bayes. In addition, this research uses a number of statistical tools to

analyse the same dataset, while employing both traditional and advanced semantic analysis

tools, such as word2vec developed publicly by Google and BERT, which represent bi-

directional encoder representations from Transformers (BERT) models. This approach shows

classification accuracy from 84% to 87% using statistical-based vectorization, 88% to 92% with

Literature Review

23

word embedding semantic methods, and further improves 2.4% when combined with different

models trained on different features than the best individual classifier. This paper advocates that

the proposed method is an efficient and accurate approach to classifying non-functional

requirements in software documents compared to existing methods.

The purpose of the paper is [42] about the second RE17 data challenge on the detection of

functional requirements (FR) vs. non-functional requirements (NFR), focused on the data with

“quality attributes (NFR)" by the implementation of supervised machine learning. Further, the

paper looks at the fine-grained detection of certain types of NFR, such as usability, security,

operational, and performance requirements. The authors applied a machine learning approach,

while features are implemented by meta-data, lexical, and syntactical. The class imbalance in

the dataset has further been handled by under- and over-sampling approaches. In regard to

validating the coding, the used classifier was the Support Vector Machine classifier (SVM),

which achieved approx. 92% precision and recall for the functional vs. non-functional task (FR

vs. NFR), but further on, for specific NFRs, such as security or performance NFRs, the precision

and recall were very high. Further, in the paper, the authors tried to understand the

discriminative power of FRs and NFRs, the impact of the sampling strategies, and the impact

of the additional dataset on the accuracy of the classification.

The paper [43] has proposed a new hybrid deep learning model to detect and classify non-

functional requirements (NFRs) of mobile applications, such as performance, supportability,

usability, and reliability, from user reviews written in Arabic. The proposed model in this paper

combines three deep learning architectures, i.e., a recurrent neural network (RNN) and two long

short-term memory (LSTM) models. In the beginning, Arabic textual user reviews were

collected to establish the grounds for the study since the user reviews provide crucial

information about the apps. For evaluating the performance of the proposed hybrid model, it

was compared with different machine learning classifiers and deep learning architectures such

as artificial neural networks (ANN), LSTM, and bidirectional LSTM. Results achieved through

the study showed that the proposed hybrid model outperforms by achieving a 96% F1 score

compared to others. This will be useful for mobile app developers to improve the quality of

their apps, as it can effectively detect and address NFR issues based on natural user feedback.

The paper [44] explores the critical role of Non-Functional Requirements (NFR) in software

development, specifically in influencing system architecture. The main aim is to extract relevant

keywords from NFR descriptions using text mining techniques and then classify these

descriptions into one of nine NFR types. The methodology involves using Information-Gain

Literature Review

24

measure to extract keywords from pre-categorized specifications and developing classification

models using eight different Machine Learning (ML) techniques. The study utilized 15 projects

developed by MS students at DePaul University, which included 326 NFR descriptions, to

evaluate these models. The results focus on the performance of these ML models in terms of

classification and misclassification rates to identify the most effective model for predicting each

NFR type. Notably, the Naïve Bayes model was found to be the most effective for predicting

NFRs related to "maintainability" and "availability".

The paper [45] highlights the importance of non-functional requirements in the early stages of

software development, emphasizing their role in determining model alternatives and

implementation criteria. It discusses how recent advancements in artificial intelligence,

specifically machine learning and text mining, have enabled the automated extraction and

classification of quality attributes from textual data. The study proposes a supervised

categorization approach for the automated extraction and classification of non-functional

specifications. A well-known dataset was utilized to validate this approach, yielding significant

results, particularly in terms of security and performance, with a specific range of 85% to 98%

effectiveness. The best results were achieved in combining security, performance, and usability

considerations.

Literature Review

25

Table 3.1:Summary of related works of automated classification of NFR using Machine Learning Algorithms

Ref. Main Aims NFR Extraction Techniques Dataset Used Output NFR Classes

[40] Automated Classification of
NFR From IoT Oriented
Healthcare Requirement
Document.

 For classification ML algorithm: LR, SVM,
MNB, KNN, RF, KNN rule-based.

 For Feature Extraction: BoW and TF-IDF.

New dataset is created which includes
requirements for IoT-oriented healthcare
systems.

availability, security, usability, look and feel, legal
and licensing, maintainability, operability,
performance, scalability, fault tolerance, portability.

[41] Automated Classification of
NFR utilising semantic and
syntactic investigation.

ML approaches: NB, SVM, LR, CNN.

NLP techniques: Random and Word
embedding vectorization methods.

The author utilised a dataset of open
necessities archives (unadulterated) that
comprises 79 unconstrained requirements

reports.

reliability, performance, security, availability, and
usability.

[42] Automatic classification of FRs
and NFRs using supervised
machine learning.

ML approach: SVM classifier. Incorporates
meta-data, lexical, and syntactical features.
Under- and over-sampling strategies for
imbalanced classes.

"Quality attributes (NFR)" dataset. Functional Requirements (FRs) and Non-functional
Requirements (NFRs), with specific focus on
usability, security, operational, and performance
NFRs.

[43] Detecting and Classifying NFRs
of Mobile Apps.

Deep Learning Models: RNN, LSTM,
Bidirectional LSTM. Uses NLP methods for

dataset extraction from user reviews.

Dataset constructed from Arabic textual
user reviews of mobile apps.

Usability, reliability, performance, and supportability
NFRs of mobile apps.

[44] Mining NFRs using Machine
Learning Techniques.

ML techniques: 8 different ML algorithms.
Uses Information-Gain measure for keyword
extraction from NFR descriptions.

15 projects developed by MS students at
DePaul University, containing 326 NFR
descriptions.

Nine types of NFRs

[45] Extraction and classification of
non-functional requirements

from text files.

Supervised learning approach. Uses AI
techniques like machine learning and text

mining for extraction and classification.

Well-known dataset (specifics not detailed
in the summary).

Specific range for security, performance, and best
results together for security, performance, and

usability NFRs (specific NFR types not detailed in
the summary).

Literature Review

26

3.2. Non-Functional User Requirements Classification Using Feature extraction

This paper [19] proposes a dual approach to classifying non-functional requirements (NFRs) to

enhance software quality and reduce the manual effort involved in identifying requirement

sentences from Software Requirement Specification (SRS) documents. The classification is

performed using a rule-based technique based on linguistic relations. The classification

accuracy is also tested on the PROMISE corpus, which achieves high accuracy with 97%

precision and 96% recall. The paper also investigates the inspection of NFRs, thematic roles,

and the General Architecture for Text Engineering (GATE) framework for improving software

requirement analysis.

The paper [46] deals with classifying NFRs in software requirements specification (SRS)

documents that usually contain a mix of NFR and functional requirements (FR) statements. The

NFRs are subjective and important for software system constraints and behavior, and thus, they

require special attention in software modeling and development. The manuscript provides an

automated way of detecting NFR sentences using a text classifier that is also supplied with a

PoS tagger. The approach outperforms existing works with an achieved accuracy of 98.56%,

employing 10-fold cross-validation. This work is part of a bigger project aiming to apply natural

language processing techniques in software requirements engineering.

This paper [47] discusses how to automate the detection and classification of NFRs based on

information retrieval (IR) techniques. The key motivation behind this paper’s theme is the

importance of early detection of NFRs, which allows us to provide for system-level constraints

in the early stages of architectural design rather than inserting them later. The technique

described has identified candidate NFRs in requirements specifications, meeting minutes,

interview notes, memos with stakeholder comments, etc. The effectiveness of our classification

algorithm is validated with an experiment involving fifteen requirements specifications that

were developed as part of MS class project work at DePaul University, and a case study on

classifying NFRs in a large (350–400 page) free-form requirements document originating from

Siemens Logistics and Automotive Organization is also described.

Table 3.2:Summary of related works of NFR Classification using Feature extraction

Ref. Main Aims Technique for

NFR

Extraction

Dataset Used Output NFR

Classes

 [19] Classifying NFRs to
enhance software

quality and reduce

Rule-based
technique using

linguistic relations.

PROMISE corpus. Accuracy, Suitability,
Security, Operability,

Understandability,
Attractiveness, Time

Literature Review

27

manual effort in
SRS documents.

Behavior, Resource
Utilization

 [46] Automating
detection of NFR

sentences in SRS
documents, focusing
on subjective and
crucial NFRs.

Text classifier with
part-of-speech

(POS) tagger.

An integrated
engineering toolset

(IET)

-

 [47] Automating
detection and
classification of

NFRs for early
integration into
architectural
designs.

Information
retrieval-based
method, identifying

NFRs in various
document types.

Fifteen requirements
specifications from MS
students at DePaul

University, and a
document from
Siemens Logistics and
Automotive
Organization.

Availability, Legal,
Look & Feel,
Maintainability,

Operability,
Performance,
Scalability, Security,
Usability

3.3. Previous studies Related to Arabic User Requirements Conducted at PPU

The paper [48] introduces a semi-automated approach for classifying functional and non-

functional requirements in software engineering, specifically for documents written in Arabic.

It utilizes natural language processing (NLP) tools combined with a set of heuristics based on

the basic constructs of Arabic sentences. The goal is to efficiently extract and categorize

requirements from Arabic software requirement documents into functional and non-functional

requirements. This research aims to reduce the cost and time associated with manual

classification, thereby aiding software engineers in delivering quality software that fully meets

user expectations.

The paper [49] focuses on automating the construction of Unified Modeling Language (UML)

models, particularly use case models, from textual user requirements in the field of automated

software engineering. It emphasizes the importance of UML use case models in object-oriented

software system development and describes the main principles for obtaining these models. The

approach utilizes a natural language processing tool to analyze user requirements written in

Arabic, extracting nouns, noun phrases, verbs, and verb phrases to identify potential actors and

use cases. The paper outlines the steps of this approach and validates it through an experiment

with graduate students experienced in use case modeling.

The paper [50] is about the significance of automated software engineering, especially in the

domain of requirements analysis and modeling. In this paper, the major drawbacks of manual

development of systems and software requirements are removed quite a lot. The main advantage

of using automated systems and software engineering is improved system and software quality.

The paper has also introduced a semi-automated method for drawing activity diagrams from

user requirements written in Arabic by using the MADA+TOKAN parser. The proposed

Literature Review

28

approach has removed the cost and time involved in manual activity diagram drawing, and it

increases the cost and time effectiveness of the whole software development life cycle by

reducing the time and cost of software development when using automated software

engineering.

The article [51] deals with a subject slightly touched on by very little academia so far: automated

software engineering, and more specifically, constructing UML models semi-automatically

from Arabic textual user requirements. The article initially argues for the importance of UML

use case models, which are very essential and significant artifacts in object-oriented (OO)

development methodologies. The article introduces using MADA+TOKAN to parse the Arabic

user requirement statements to decompose the components like nouns, noun phrases, verbs, and

verb phrases. These components are crucial to identify the potential use cases and the actors.

The use case modeling steps are explained, and the future will be to validate the steps and

implement them in the research project.

The research paper [52] reveals a recent approach that helps software engineers analyze phases

of the software system's life cycle by generating sequence diagrams from a set of users'

requirements written in Arabic. The proposed approach is a semi-automated approach that

yields a semi-automated result, with the software developer still required to provide subjectivity

input during the analysis phase. The proposed approach uses an NLP tool to generate PoS tags

for the Arabic user’s requirements. Then, from the proposed sets of heuristics added and based

on these PoS tags, the proposed approach identified the sequence diagram components, which

are objects, messages, and workflow transitions. The generated sequence diagrams are

represented using XML format, enabling them to be drawn with sequence diagram drawing

tools. The approach's effectiveness is evaluated using three case studies from Isra Computer

and Programming Company, focusing on the correctness and completeness of the participants

and the messages exchanged between them.

Table 3. 3: Previous Studies Related to Arabic User Requirements Conducted at PPU

Ref. Main Aims Technique for NFR

Extraction

Dataset

Used

Output NFR

Classes

 [48] Semi-Automated
classification of Arabic
functional and non-functional

requirements using NLP tools.

NLP tools combined with a set
of heuristics based on Arabic
sentence constructs.

SRS
document

Functional and Non-
functional
Requirements.

 [49] Generating UML use case
models from Arabic user
requirements in a semi-

NLP tool to analyze Arabic user
requirements, extracting nouns,
noun phrases, verbs, verb
phrases.

- UML Use Case
Models.

Literature Review

29

automated approach using
NLP tools.

 [50] Constructing activity
diagrams from Arabic user

requirements using NLP tools.

MADA+TOKAN parser for
Arabic user requirements.

- Activity Diagrams.

 [51] Generating UML use case
models from Arabic user
requirements in a semi-
automated approach.

MADA+TOKAN parser to
extract components from
Arabic user requirements.

- UML Use Case
Models.

 [52]

Generating sequence diagrams

from Arabic user requirements
in a semi-automated approach
using NLP tools.

NLP tool for parsing Arabic

user requirements to produce
PoS tags, with heuristics.

- Sequence Diagrams

with focus on
correctness and
completeness of
components.

Research Approach

30

CHAPTER FOUR

RESEARCH APPROACH

This chapter is dedicated to the classification methodology for software Arabic user non-

functional requirements, distinguishing between the different categories. The novel approach

outlines the process of analyzing Arabic user requirements using the NLP CAMeL Tools, that

used for tokenizing and generating the part of speech tags of the requirement sentences that

implemented using Python programming language. We introduce a set of heuristics based on

fundamental structures of Arabic sentences to facilitate the classification.

4.1 Arabic User Non-Functional Requirements Classification Approach

In our study we classify NFR into seven main types: Performance (PE), Security (SE),

Availability (A), Look and Feel (LF), Fault Tolerance (FT), Legal (L), and Operational (O).

Scalability class will be excluded in this study as it is overlapped with other classes. This section

elucidates the approach for classifying user requirements into the different categories,

leveraging the grammatical structure and keywords of Arabic sentences. Our methodology

involves a thorough examination of various software graduation projects undertaken by PPU

students and Software Requirements Specifications (SRS) documents aimed at developers.

From this analysis, we discerned distinctive attributes that enable the classification of different

classes. These attributes form the basis for a set of heuristics in our approach. The process of

analyzing Arabic sentences entails the utilization of CAMeL NLP tools, which facilitate parsing,

tokenization, part-of-speech tagging, and sentence segmentation.

In our project, we utilize an empirical methodology detailed in Figure 4.1 to classify non-

functional Arabic user requirements. We devised a set of heuristics specifically tailored to

categorize user requirements into seven NFR categories by analyzing features extracted from

user requirements, leveraging Arabic grammar, analyzing Parts of Speech (PoS) tags, and

compiling relevant NFR keywords. The process begins with inputting a collection of

unclassified user requirements in Arabic. Initially, all requirements are normalized using

CAMeL tools before being processed further. Tokens for all statements are then generated using

the CAMeL tokens generator, followed by the generation of PoS tags for all words in the given

sentence. Subsequently, the proposed heuristics are applied utilizing the generated PoS and

tokens. Each sentence's classification involves comparing the NFR score with other pertinent

metrics such as confidence factors. Ultimately, the output of the approach is a categorized

collection of non-functional Arabic user requirements.

Research Approach

31

Figure 4.1:Empirical Methodology

4.1.1 Non-Functional User Requirements Linguistic Features

• Class 1: Performance (PE):

1. May have Common structural elements may encompass expressions like: "at an acceptable

time" and "in the right time "في وقت مقبول", "في الوقت المناسب" . This is represented by H#1.

2. Frequent use of numbers and digits, these numbers typically refer to: number of users, speed,

or time. This is represented by H#2 .

3. Frequent use of several keywords and terms, these keywords are summarized in Table 4.1

This is represented by H#3 .

• Class2: Security Requirements (SE)

1. May have negation tool in the sentence. This is represented by H#4.

2. May have Conditions, permissions written in conditional sentence format. This is represented

by H#5 .

3. May have common structures that have word "Access ."الوصول" ,"This is represented by H#6.

4. May contain some keyword regarding (sign in, viruses protection) as shown in the keyword

Table 4.2. This is represented by H#7 .

Research Approach

32

• Class 3: Availability (A)

1. The presence of a percentage (%) punctuation followed by a number is denoted as H#8 .

2.May have Time duration like (8:00 am till 8:00 pm). This is represented by H#9 .

3. May have Adjectives or adverbs like (Available, break). This is represented by H#10 .

4. May have keywords as mentioned in Table 4.3. This is represented by H#11

• Class 4: Look and feel (LF):

1. May have a proper noun in the sentence. This is represented by H#12 .

2. May have keywords of Colors, shape, GUI, sounds, and list format as shown in Table 4.4.

This is represented by H#13 .

• Class 5: Fault Tolerance (FT)

1. May have verbs and keywords as: break down, fail, error occur, problems, emergency, and

power outage which are compiled in Table 4.5. This is represented by H#14 .

• Class 6: Legal (L)

1. The sentences usually have a common structure. This is represented by H#15 .

2. May have keywords: (law, legislation, legal requirements, rules, licensing, standards,

regulations, legal issues). Shown in the keyword Table 4.6. This is represented by H#16.

• Class 7: Operational (O)

1. May contain non-Arabic words like: (HTML, Windows, firewall). This is represented by

H#17.

2. May Use the word system as the main subject (system work, system interaction). This is

represented by H#18 .

3. May have keywords, as shown in the keywords Table 4.7. This is represented by H#19.

4.1.2 The Proposed Heuristics

• Class 1: Performance (PE)

H#1: This Heuristic suggests the possibility of encountering common structural elements

containing expressions such as "at an acceptable time" and "in the right time", namely في "

and " وقت مقبول "في الوقت المناسب " This heuristic is identified through an examination of diverse

instances, and an illustrative example is provided below:

Example: "يجب أن يكون الموظفون قادرين على إكمال مجموعة من المهام في الوقت المناسب"

Research Approach

33

Translation: "Employees must be able to complete a set of tasks in a timely manner ".

CAMeL Tokens: ,'يجب', 'أن', 'يكون', 'الموظفون', 'قادرين', 'على', 'إكمال', 'مجموعة', 'من', 'المهام', 'في', 'الوقت[

 'المناسب[

CAMeL PoS :['verb', 'conj_sub', 'verb', 'noun', 'adj', 'prep', 'noun', 'noun', 'prep', 'noun', 'prep',

'noun', 'adj']

H#2: If [‘digit’] or [‘noun num’] tag exists at sentence PoS, then it is more likely to be

performance requirements.

The presence of numbers often signifies a high probability of a performance requirement. If

numbers appear within sentences, regardless of their representation in numerical or alphabetical

form, it tends to indicate that the sentence is likely a performance requirement. This distinction

can be made based on their Part of Speech (PoS) tags. To determine the presence of numbers in

a sentence, we need to identify all instances tagged as ['digit'] or ['noun num'].

A possible structure for requirements that show the locations of numbers in Arabic sentences:

)Verb + Subject + Object (1) | Object (2) | Object (3) -> Verb + (Noun | Pronoun) + (Noun |

Preposition + Noun | + name number + Noun | Digit + Noun) + (Noun | Preposition + Noun |

name number + Noun | Digit + Noun) + (Noun | Preposition + Noun | name number + Noun |

Digit + Noun (

 CAMeL PoS Tags :

)Verb + (noun — pron) + (noun | prep + noun | noun num + noun | digit + noun) + (noun | prep

+ noun | noun num + noun | digit + noun) + (noun | prep + noun | noun num + noun | digit +

noun) .

 Example :ثانية" 60"يقوم النظام بتحديث العرض كل

Translation: "The system updates the display every 60 seconds".

CAMeL Tokens ', 'ثانية'[: 60]'يقوم', 'النظام', 'ب', 'تحديث', 'العرض', 'كل', '

CAMeL PoS: ['verb', 'noun', 'prep', 'noun', 'noun', 'noun', 'num', 'noun']

H#3: Through the study of the different SRS for different projects we notice that there are many

terms and words are repeated in the performance requirements, theses terms are summarized in

Table 4.1.

Research Approach

34

• Class2: Security Requirements (SE)

H#4: Security requirements establish the limitations and restrictions on system access to

safeguard it from unauthorized entry .

Negative sentences could be categorized more closely with security requirements. This

determination can be made by examining whether any negative prefixes are present in the

sentence. The presence of negative prefixes in sentences, regardless of whether they are

expressed numerically or alphabetically, increases the likelihood that the sentence falls under

security requirements. To check for the presence of negative prefixes in a sentence, it is

necessary to inspect all ['part neg'] tags .

Negative Arabic sentences is constructed by adding one of the following negation tools:

" لا، ليس، غير، لم، لمّا، لن، لام الجحود، ما "

The following sentences are examples of security requirements with negation tools :

a) Example من الوصول المباشر إلى ملفات البيانات أو قواعد البيانات " :" لن يتمكن المستخدمون

Translation: "Users will not be able to access data files or databases directly ".

CAMeL Tokens]'لن', 'يتمكن', 'المستخدمون', 'من', 'الوصول', 'المباشر', 'إلى', 'ملفات', 'البيانات', 'أو', : 'قواعد',

 'البيانات'[

CAMeL PoS: ['part_neg', 'verb', 'noun', 'prep', 'noun', 'adj', 'prep', 'noun', 'noun', 'conj', 'noun',

'noun'] .

b) Example " لا يمكن إنشاء حساب مستخدم إلا بواسطة مسؤول النظام" :

Translation: "User accounts can only be created by the system administrator".

CAMeL Tokens]'لا', 'يمكن', 'إنشاء', 'حساب', 'مستخدم', 'إلا', 'بواسطة', 'مسؤول', 'النظام'[:

CAMeL PoS: ['part_neg', 'verb', 'noun', 'noun', 'noun', 'conj', 'prep', 'noun', 'noun']

H#5: Conditional sentence is a linguistic structure that needs a tool to link two sentences, the

first is a condition for the answer to the second, and it states that something happens because of

something else associated with it and causes it [29].

Conditional sentences in Arabic are categorized into two types: Proof sentences and Negation

sentences. The structure of these sentences comprises the Conditional Particle, the Conditional

sentence, the Answer Particle, and the Conditional Answer [29]:

Research Approach

35

1.Conditional Particle: Arabic Language utilizes two common conditional particles, namely

and (idha)"إذا" "لو" (law) [29]. These particles are represented by (subordinating conjunction)

in CAMeL tools [‘conj’] .

2. Conditional sentence: A conditional sentence is a verbal statement that falls into two

categories: proof and negation sentence [29]. A proof sentence consists of a conditional particle

followed directly by the conditional sentence, without the presence of a negation particle)لم(.

On the other hand, a negation sentence includes the negation particle)لم(after the conditional

particle .

3. Answer Particle: The answer particle functions as an adverb for the conditional answer. In

Arabic, the answer particles include)فان, سوف, فسوف([29] ,with the corresponding tags being :

 فإن :(Pseudo verb ”إن ”+ connective particle ”ف ”)

 فسوف :(Response conditional ”ف ”) ,(Future particle ”سوف ”)

 سوف :(Future particle ”سوف ”)

4. Conditional Answer: The conditional answer, a verbal sentence.

So, if the sentence structure as follow its more likely to be security requirement :

Subordinating Conjunction + (Verb | Negative Particle +Verb) + (Connective Particle + Pseudo

Verb) | Future Particle | (Response Conditional+ Future Particle) + verbal sentence.

CAMeL PoS Tags :

 (conj + (verb | part_ neg + verb) + (part_ rc + part_ emphac | part_ fut | part_ rc+ part_ fut) +

(Verb + (Noun | Pronoun) + (Noun | Preposition + Noun | Adverb + Noun))

Example : " إذا تم إبطال حساب مستخدم فلا يمكن إعادة إنشاء مثيل له إلا بواسطة مسؤول النظام "

Translation: "If a user account is deactivated, it cannot be re-created except by the system

administrator ".

CAMeL Tokens : ,'إذا', 'تم', 'إبطال', 'حساب', 'مستخدم', 'فلا', 'يمكن', 'إعادة', 'إنشاء', 'مثيل', 'له', 'إلا', 'بواسطة'[

 'مسؤول', 'النظام'[

CAMeL PoS: ['conj', 'verb', 'noun', 'noun', 'adj', 'part_neg', 'verb', 'noun', 'noun', 'noun', 'prep',

'part', 'noun', 'noun', 'noun']

Example: " "سوف يتم الدخول للموقع الاكلينيكي اذا كان الشخص من طاقم التمريض فقط

Research Approach

36

Translation: "Entry to the clinical site will only be allowed if the person is a member of the

nursing staff ".

CAMeL Tokens:]'سوف', 'يتم', 'الدخول', 'للموقع', 'الاكلينيكي', 'اذا', 'كان', 'الشخص', 'من', 'طاقم', 'التمريض', 'فقط'[

CAMeL PoS: [' part_ fut ', 'verb', 'noun', 'noun', adj', 'conj', 'verb', 'noun', 'prep', 'noun', 'noun',

'adverb'].

H#6: After the study of different projects and SRS documents we noticed that there is a common

structure repeated in the security requirements all have the word " access" as followed:

 Verb” + (Noun | Pronoun) ”+ ”أن ”<- Verb + Subject + Object (1) | Object (2) | Object (3) + ”أن ”

 ”الوصول ”+ (Noun | Preposition + Noun) + ”قادرا ”+

Token [0] = أن+ verb + (Noun | Pronoun) + Token [3] =” قادرا” + (Noun | Preposition + Noun)

+ Token [5] =” الوصول” + (Preposition + Noun)

 Example: "أن يكون الطبيب قادرا على الوصول لكافة سجلات المرضى

Translation: "The doctor should be able to access all patient records".

CAMeL Tokens]'أن', 'يكون', 'الطبيب', 'قادرا', 'على', 'الوصول', 'لكافة', 'سجلات', 'المرضى'[:

CAMeL PoS: ['conj', 'verb', 'noun', 'adj', 'prep', 'verb', 'prep', 'noun', 'noun']

Verb + Subject + Object (1) | Object (2) | Object (3) -> (Verb) + (Noun | Pronoun) + (Noun |

Preposition + Noun) + (Noun | Preposition + Noun) + (Noun | Preposition + Noun)

Token [0] = verb + (Noun | Pronoun) + (Noun | Preposition + Noun) +(Adjective | Adverb) +

Token [5] =” الوصول” + (Preposition + Noun).

Example : " يستطيع أصحاب العقارات المسجلين فقط من الوصول الى النظام "

Translation: "Only registered property owners can access the system ".

CAMeL Tokens: تطيع', 'أصحاب', 'العقارات', 'المسجلين', 'فقط', 'من', 'الوصول', 'إلى', 'النظام'[]'يس

CAMeL PoS: ['verb', 'noun', 'noun', 'adj', 'adv', 'prep', 'noun', 'prep', 'noun']

Subject + Verb + Object (1) | Object (2) | Object (3)-> (Noun | Pronoun) + Verb + (Noun |

Preposition + Noun | Adverb + Noun | + Adjective) “الوصول" + (Noun | Preposition + Noun |

Adverb + Noun | Adjective) + (Noun | Preposition + Noun | Adverb + Noun | Adjective).

Example : " الطلاب لا يستطيعون الوصول لشاشة تعديل العلامات"

Research Approach

37

Translation: "Students cannot access the grade editing screen".

CAMeL Tokens]'الطلاب', 'لا', 'يستطيعون', 'الوصول', 'لشاشة', 'تعديل', 'العلامات'[:

 CAMeL PoS: ['noun', 'neg', 'verb', 'noun', 'prep', 'noun', 'noun']

H#7: Through the study of the different SRS for different projects we notice that there are many

terms and words are repeated in the security requirements, theses terms are summarized in Table

4.2.

• Class 3: Availability (A)

H#8:When a sentence contains a percentage punctuation, it is more likely to indicate an

availability requirement. The percent sign is easily distinguished from other punctuation marks

by being preceded by a number. The percentage format is represented as [num, punc].

Therefore, if the part of speech is identified as 'num' and the '%' symbol is present in the token,

the specified condition is met .

if pos == 'num' and '%' in token .

Example: من الوقت خلال الأشهر الستة الأولى من التشغيل 99" سيكون النظام متاحًا بنسبة ٪ "

Translation: "The system will be available 99% of the time during the first six months of

operation".

CAMeL Tokens: ' ,'من', 'الوقت', 'خلال', 'الأشهر', 'الستة', 'الأولى', 'من', ٩٩]'سيكون', 'النظام', 'متاحًا', 'بنسبة' ,'٪

 'التشغيل'[

CAMeL PoS: ['verb', 'noun', 'adj', 'prep', 'num', 'punc', 'noun', 'prep', 'noun', 'adj', 'adj', 'prep',

'noun']

Example: من الوقت المتاح على الانترنت "2" يجب أن لا يفشل المنتج أكثر من٪

Translation: "The product should not fail more than 2% of the available time online ".

CAMeL Tokens: ' ,'من', 'الوقت', 'المتاح', 'على', 'الانترنت'[2]'يجب', 'أن', 'لا', 'يفشل', 'المنتج', 'أكثر', 'من' ,'٪

CAMeL PoS: ['verb', 'conj_sub', 'neg', 'verb', 'noun', 'adj', 'prep', 'num', 'punc', 'prep', 'noun', 'adj',

'prep', 'noun']

H#9: A sentence indicating time duration typically adheres to the following structured formats :

Digit + punctuation + digit + token [] = ًصباحًا أو مساء

Research Approach

38

The presence of such a structured sentence format is a strong indicator of an availability

requirement. If the sentence follows the pattern of Digit + punctuation + digit + token [], it is

more likely to convey a specific time duration, either in the morning)صباحًا(or evening)مساءً(.

Example: مساءً 6:00صباحًا و 8:00" يجب أن يكون النظام متاحًا للاستخدام بين الساعة "

Translation: "The system must be available for use between 8:00 AM and 6:00 PM ".

CAMeL Tokens: ‘ ,'6’, صباحًا', 'و', ‘00‘, ‘: ‘, ‘ 8]يجب', 'أن', 'يكون', 'النظام', 'متاحًا', 'للاستخدام', 'بين', 'الساعة

’, 'مساءً'[00‘, ‘: ‘, ‘

CAMeL PoS: ['verb', 'conj_sub', 'verb', 'noun', 'adj', 'noun_prop', 'noun', 'noun', 'digit', 'punc',

'digit', 'noun', 'conj', 'digit', 'punc', 'digit’, ‘noun',]

Digit + token [] = ًصباحًا أو مساء

Example: مساءً " 9الساعة صباحًا و لغاية 9" يجب أن يكون المنتج متوفرا على الموقع يوميا من الساعة

Translation: "The product must be available on the website daily from 9:00 AM to 9:00 PM ".

CAMeL Tokens: ' ,'صباحًا', 'و', 9]'يجب', 'أن', 'يكون', 'المنتج', 'متوفرًا', 'على', 'الموقع', 'يوميًا', 'من', 'الساعة' ,'

ءً'[', 'مسا 9'لغاية', 'الساعة', '

CAMeL PoS: ['verb', 'conj_sub', 'verb', 'noun', 'adj', 'prep', 'noun', 'adv', 'prep', 'noun', 'digit',

'noun', 'conj', 'noun', 'noun', 'digit', 'noun']

H#10: The presence of these linguistic elements indicates a heightened probability of conveying

availability requirements .

 " When a sentence is tagged with either 'adj' or 'adv' for its part of speech, it significantly raises

the likelihood of expressing availability requirements." The sentence structure may take the

form of a verbal or nominal sentence, as outlined below:

Verbal sentence format :

Verb + Subject + Object (1) | Object (2) | Object (3) -> Verb + (Noun | Pronoun) + (Noun |

Preposition + Noun | Adverb + Noun | + Adjective) + (Noun | Preposition + Noun | Adverb +

Noun | Adjective) + (Noun | Preposition + Noun | Adverb + Noun | Adjective) .

CAMeL PoS Tags: Verb + (noun | pron) + (noun | prep + noun | noun + adv | adj) + (noun | prep

+ noun | noun + adv | adj) + (noun | prep + noun | noun + adv | adj)

Example: ل العادية "" يكون المنتج متاحًا خلال ساعات العم

Research Approach

39

Translation: "The product is available during regular business hours".

CAMeL Tokens:]'يكون', 'المنتج', 'متاحًا', 'خلال', 'ساعات', 'العمل', 'العادية'[

CAMeL PoS: ['verb', 'noun', 'adj', 'prep', 'noun', 'noun', 'adj']

Nominal sentence format :

Subject + Verb + Object (1) | Object (2) | Object (3) -> (Noun | Pronoun) + Verb + (Noun |

Preposition + Noun | Adverb + Noun | + Adjective) + (Noun | Preposition + Noun | Adverb +

Noun | Adjective) + (Noun | Preposition + Noun | Adverb + Noun | Adjective) .

CAMeL PoS Tags: (noun | pron | foriegn) + Verb + (noun | prep + noun | noun + adv | adj) +

(noun | prep + noun | noun + adv | adj) + (noun | prep + noun | noun + adv | adj)

Example: دقائق في السنة" 10"فترة تعطل النظام قصيرة بحيث لا تزيد عن

Translation: "The system downtime period is short, not exceeding 10 minutes per year ".

CAMeL Tokens: ' ,'دقائق', 'في', 'السنة'[10]'فترة', 'تعطل', 'النظام', 'قصيرة', 'بحيث', 'لا', 'تزيد', 'عن' ,'

CAMeL PoS (Part of Speech): ['noun', 'verb', 'noun', 'adj', 'conj', 'neg', 'verb', 'prep', 'num', 'noun',

'prep', 'noun']

H#11: Through the study of the different SRS for different projects we notice that there are

many terms and words are repeated in the availability requirements, theses terms are

summarized in Table 4.3.

• Class 4: Look and feel (LF):

H#12: Look and feel requirements, usually consider the unique needs associated with various

nationalities and locations. These considerations involve recognizing the diverse cultural

elements and geographical factors that shape user preferences. The words specific for names of

countries, cities, or specific cultural terms are called proper nouns, and they are serving as

linguistic tools that specifically denote to look and feel requirement. Therefore, the presence of

the tag [noun_prop] enhances the probability of look and feel requirement .

Some examples show look and feel requirements that have proper nouns:

Example: " يجب أن يكون للموقع طابع أفريقي "

Translation: "The website should have an African character".

 CAMeL Tokens:]'يجب', 'أن', 'يكون', 'للموقع', 'طابع', 'أفريقي'[

Research Approach

40

CAMeL PoS: ['verb', 'conj_sub', 'verb', 'prep', 'noun', 'noun_prop']

Example: في مدينة شيكاغو " " يجب أن يتوافق المنتج مع إطار دليل تطوير التطبيقات

Translation: "The product must comply with the application development guidelines framework

in the city of Chicago ".

CAMeL Tokens:]'يجب', 'أن', 'يتوافق', 'المنتج', 'مع', 'إطار', 'دليل', 'تطوير', 'التطبيقات', 'في', 'مدينة', 'شيكاغو'[

CAMeL PoS: ['verb', 'conj_sub', 'verb', 'noun', 'prep', 'noun', 'noun', 'noun', 'noun', 'prep', 'noun',

'noun_prop']

H#13: Through the study of the different SRS for different projects we notice that there are

many terms and words are repeated in the look and feel requirements, theses terms are

summarized in Table 4.4.

• Class 5: Fault Tolerance (FT)

H#14: Through the study of the different SRS for different projects we notice that there are

many terms and words are repeated in the look and feel requirements, theses terms are

summarized in Table 4.5.

• Class 6: Legal (L)

H#15: Through the study of different SRS documents, we notice that there a certain sentence

structure is repeated in the legal requirement as illustrated bellow:

(’verb’, ’subordinating conjunction’,): "يجب أن " + Subject + Object -> Verb + (Noun | Pronoun)

+ (Noun | Preposition + Noun | Adverb + Noun).

CAMeL PoS Tags: Verb + (noun | pron) + (noun | prep + noun | noun + adv) + (noun | prep +

noun | noun + adv) + (noun | prep + noun | noun + adv).

Example: " يجب أن يتوافق تطبيق المنازعات مع المتطلبات القانونية على النحو المحدد في لوائح التشغيل "

Translation: "The dispute resolution application must comply with the legal requirements as

specified in the operating regulations ".

CAMeL Tokens: ,'يجب', 'أن', 'يتوافق', 'تطبيق', 'المنازعات', 'مع', 'المتطلبات', 'القانونية', 'على', 'النحو', 'المحدد'[

 'في', 'لوائح', 'التشغيل'[

CAMeL PoS: ['verb', 'conj_sub', 'verb', 'noun', 'noun', 'prep', 'noun', 'adj', 'prep', 'noun', 'adj',

'prep', 'noun', 'noun']

Example: " يجب أن يتوافق المنتج مع لوائح التأمين المتعلقة بمعالجة المطالبات "

Research Approach

41

Translation: "The product must comply with the insurance regulations related to claims

processing ".

CAMeL Tokens: المتعلقة', 'بمعالجة', 'المطالبات'[]'يجب', 'أن', 'يتوافق', 'المنتج', 'مع', 'لوائح', 'التأمين' ,'

CAMeL PoS: ['verb', 'conj_sub', 'verb', 'noun', 'prep', 'noun', 'noun', 'adj', 'prep', 'noun', 'noun']

H#16: Through the study of the different SRS for different projects we notice that there are

many terms and words are repeated in the legal requirements, theses terms are summarized in

Table 4.6.

• Class 7: Operational (O)

H#17: It is more likely to be operational requirement if the ['foreign'] tag is present at sentence

PoS. Non-Arabic words frequently indicate programming languages or techniques (such as

HTML, SQL, etc.). It is more likely that a sentence is a non-functional requirement if there are

foreign words present in it, regardless of the sentence syntax. Therefore, based on their PoS

tags, foreign words are able to distinguish the operational class.

There are several potential structures that indicate when foreign terms are used in Arabic

sentences:

Verbal sentence :

Verb + Subject + Object (1) | Object (2) | Object (3) -> Verb + (Noun | Pronoun | Foriegn Word)

+ (Noun | Preposition + Noun |Preposition + Foriegn Word | Foriegn Word) + (Noun |

Preposition + Noun | Preposition + Foriegn Word | Foriegn Word) + (Noun | Preposition + Noun

| Preposition + Foriegn Word | Foriegn Word) .

 CAMeL PoSTags :Verb + (noun | pron | foriegn) + (noun | prep + noun | prep + foriegn | foriegn)

+ (noun | prep + noun | prep + foriegn | foriegn) + (noun | prep + noun | prep + foriegn | foriegn).

Example: " HTML " يتفاعل النظام مع أي متصفح

Translation: "The system interacts with any browser HTML".

CAMeL Tokens: [' ', 'النظام', 'مع', 'أي', 'متصفحيتفاعل ', 'HTML']

CAMeL PoS: ['verb', 'noun', 'prep', 'adj', 'noun', 'foriegn']

Nominal sentence :

Research Approach

42

Subject + Verb + Object (1) | Object (2) | Object (3) -> (Noun | Pronoun | Foriegn Word) + Verb

+ (Noun | Preposition + Noun | Foriegn Word | Preposition + Preposition) + (Noun | Preposition

+ Noun | Foriegn Word | Preposition + Preposition) + (Noun | Preposition + Noun | Preposition

+ Foriegn Word | Foriegn Word)

CAMeL PoS Tags : (noun | pron | foriegn) + verb + (noun | prep + noun | prep + foriegn | foriegn)

+ (noun | prep + noun | prep + foriegn | foriegn) + (noun | prep + noun | prep + foriegn | foriegn)

Example: " Oracle SQL Server المنتج يجب أن يستخدم برنامج قواعد البيانات "

Translation: "The product should use a database management program like Oracle SQL

Server ".

CAMeL Tokens: ['البيانات' ,'قواعد' ,'برنامج' ,'يستخدم' ,'أن' ,'يجب' ,'المنتج', 'Oracle', 'SQL', 'Server']

CAMeL PoS: ['noun', 'verb', 'prep', 'verb', 'noun', 'noun', 'noun', 'foriegn', 'foriegn', 'foriegn']

H#18: Operational requirement is more likely if the primary actor is the "system "النظام" ,"or one

of its Arabic synonyms like)الموقع, التطبيق, المنتج, البرنامج(:

The Arabic sentence could be verbal or nominal sentence, if the sentence is verbal then the main

subject in the sentence will be: the system "النظام" ,that follow the main verb in the sentence. If

the sentence is nominal, then the main subject in the sentence will be the system ,"النظام" ,as

illustrated bellow :

Nominal sentence :

Subject + Verb + Object -> Subject +Verb + (Noun | Pronoun) + (Noun | Preposition + Noun |

Adverb + Noun)

 CAMeL PoS: Subject +Verb + (noun | pron) + (noun | prep + noun | noun + adv) + (noun | prep

+ noun | noun + adv) + (noun | prep + noun | noun + adv)

Where token [= "النظام" 0] or "المنتج" or "البرنامج" or "التطبيق" or "الموقع"

Example: " النظام يعمل على نسخ بيانات الأعمال احتياطيًا تلقائيًا واستعادتها عند الطلب "

Translation: "The system automatically backs up business data and restores it upon request ".

CAMeL Tokens:]'النظام', 'يعمل', 'على', 'نسخ', 'بيانات', 'الأعمال', 'احتياطيًا', 'تلقائيًا', 'واستعادتها', 'عند', 'الطلب'[

 CAMeL PoS: ['noun', 'verb', 'prep', 'verb', 'noun', 'noun', 'adv', 'adv', 'conj_sub', 'prep', 'noun']

Verbal Sentence :

Research Approach

43

Verb + Subject + Object -> Verb + (Noun | Pronoun) + (Noun | Preposition + Noun | Adverb +

Noun)

CAMeL PoS: Verb + (noun | pron) + (noun | prep + noun | noun + adv) + (noun | prep + noun |

noun + adv) + (noun | prep + noun | noun + adv) .

Where token [= "النظام" 1] or "المنتج" or "البرنامج" or "التطبيق" or "الموقع"

Example:)يعمل المنتج على الأجهزة الموجودة لجميع البيئات(

 Translation: "The product works on the available devices for all environments".

CAMeL Tokens]'يعمل', 'المنتج', 'على', 'الأجهزة', 'الموجودة', 'لجميع', 'البيئات'[:

CAMeL PoS: ['verb', 'noun', 'prep', 'noun', 'adj', 'prep', 'noun']

H#19: Through the study of the different SRS for different projects we notice that there are

many terms and words are repeated in the operational requirements, theses terms are

summarized in Table 4.7.

Table 4.1:Performance Requirements Keywords

English keywords Arabic keywords

1 Response استجابة

2 Verification التحقق

3 Register التسجيل

4 Waiting انتظار

5 Answer إجابة

6 Administration إدارة

7 Repetition إعادة

8 Completion إكمال

9 Cancellation إلغاء

10 Construction إنشاء

11 Performance أداء

12 Maximum أقصى

13 Research بحث

14 Update تحديث

15 Flow تدفق

Research Approach

44

16 Registration تسجيل

17 Activation تفعيل

18 Report تقرير

19 Second ثانية

20 Save حفظ

21 Minute دقيقة

22 Speed سرعة

23 Long طويل

24 Practical عملية

25 Attached مرفق

26 Synchronization مزامنة

27 User مستخدم

28 Complete مكتمل

29 Time وقت

30 Takes يأخذ

31 Leave ك يبر

Table 4.2: Security Requirements Keywords

English keywords Arabic keywords

1 Inquiry استعلامات

2 Revocation إبطال

3 Clinical إكلينيكي

4 Security آمن

5 Data بيانات

6 Audit تدقيق

7 Registration تسجيل

8 Access الدخول

9 Collision تصادم

10 Categories تصنيفات

11 Report تقرير

12 Integration تكامل

13 Protection حماية

Research Approach

45

14 Harmful ضارة

15 Display عرض

16 Correct صحيح

17 Viruses فيروسات

18 Authorized مخول

19 User مستخدم

20 Authentication مصادقة

21 Processing معالجة

22 Product منتج

23 Forbid منع

24 Trusted موثوق

25 Employees موظفين

26 System نظام

27 Access وصول

28 Protect يحمي

29 Tell يخبر

30 Guaranteed يضمن

31 Prevent يمنع

32 Access الوصول

33 Only الوحيد

34 Members أعضاء

35 Safe آمنًا

Table 4.3: Availability Requirements Keywords

English keywords Arabic keywords

1 Week اسبوع

2 Response استجابة

3 Internet الإنترنت

4 Operation التشغيل

5 Service الخدمة

6 Work العمل

7 Customers العملاء

8 Web الويب

Research Approach

46

9 Day اليوم

10 Disruption انقطاع

11 Broadcast بث

12 Percentage نسبة

13 Failure تعطل

14 Technical تقني

15 Presence تواجد

16 Availability توفر

17 Schedule جدول

18 Fault خلل

19 Support دعم

20 Hour ساعة

21 Year سنة

22 Long طويل

23 Period فترة

24 Duration مدة

25 Rate معدل

26 Product منتج

27 Percentage نسبة

28 Time وقت

29 Achieve يحقق

30 Daily يوميا

Table 4.4:: Look and Feel Requirements Keywords

English keywords Arabic keywords

1 Professional احترافي

2 Respect احترام

3 Framework إطار

4 Buttons أزرار

5 Formatting تنسيق

6 Appeal جاذبية

7 Attractive جذاب

Research Approach

47

8 Logo شعار

9 Shape شكل

10 Sound صوت

11 Panel لوحة

12 Color لون

13 Brand ماركة

14 Simulation محاكاة

15 Appearance مظهر

16 Standards معايير

17 Animated متحركة

18 Profession مهنة

19 Enjoyable ممتع

20 View نظرة

21 Interface واجهة

22 Feels يشعر

23 Attracts يجذب

24 Graphics الرسومية

25 Bright مشرقة

26 Dark داكنة

27 Groups الجماعات

28 Religious الدينية

Table 4.5: Fault Tolerance Requirements Keywords

English keywords Arabic keywords

1 Exception استثناء

2 Recovery استعادة

3 Connection الاتصال

4 Broadcast البث

5 Power الطاقة

6 Disconnection انقطاع

7 Failure تعطل

8 Compensatory تعويضية

9 Preferences تفضيلات

Research Approach

48

10 Save حفظ

11 Server خادم

12 Error خطأ

13 Log سجل

14 Emergency طارئ

15 Malfunction عطل

16 Connected متصل

17 Strength قوة

18 Robust متين

19 Problem مشكلة

20 Displays يعرض

21 Fails يفشل

22 Exception الاستثناء

23 Failure الفشل

Table 4.6: Legal Requirements Keywords

English keywords Arabic keywords

1 Consideration اعتبار

2 Parts الأجزاء

3 Merchant التاجر

4 License الترخيص

5 Estimation التقدير

6 Guidance التوجيه

7 Returned المعاد

8 Compliance امتثال

9 Insurance تأمين

10 Recycling تدويرها

11 Legislation تشريع

12 Estimative تقديري

13 Record سجل

14 Rule قاعدة

15 Law قانون

16 Regulation لائحة

Research Approach

49

17 Principles مبادئ

18 Requirements متطلبات

19 Standards معايير

20 Disputes منازعات

21 Requires يتطلب

22 Compliant متوافقة

23 Organizations المنظمات

24 Case قضية

Table 4.7: Operational Requirements Keywords

English keywords Arabic keywords

1 Electronic الإلكتروني

2 Parts الأجزاء

3 Devices الأجهزة

4 Programming البرمجة

5 Mail البريد

6 Card البطاقة

7 Data البيانات

8 Environment البيئة

9 Application التطبيق

10 Server الخادم

11 Company الشركة

12 Maintenance الصيانة

13 Work العمل

14 Statistics إحصاء

15 Repair إصلاح

16 Interaction تفاعل

17 Technology تكنولوجيا

18 Distribution توزيع

19 Timing توقيت

20 Firewall جدار الحماية

21 Server خادم

22 Support دعم

Research Approach

50

23 Disk قرص

24 Sheets كشوف

25 Accounts الحسابات

26 Language لغة

27 Browser متصفح

28 Compressed مضغوط

29 Windows نوافذ

30 Engineering هندسة

31 Windows وندوز

To enhance our method's accuracy, we enlisted the help of three seasoned software engineering

specialists to evaluate it. Two of them have doctorates in software engineering, while the third

is a distinguished engineer working for a top software engineering company. The experts

provided a numerical percentage rating out of 100 for each heuristic, their evaluations depicted

in the Expert Evaluation Table 4.8 below:

Table 4.8: Expert Evaluation

Class Heuristic

Evaluation

Percentage

(Expert #1)

Evaluation

Percentage

(Expert #2)

Evaluation

Percentage

(Expert #3)

Average

Percentage

Performance

(PE)

1 90 85 80 85

2 80 90 90 86.7

3 85 80 80 81.7

Security (SE) 4 95 90 85 90

5 85 85 80 83.3

6 95 90 85 90

7 95 90 85 90

Availability

(A)

8 92 85 85 87.3

9 96 80 85 87

10 92 80 85 85.6

11 88 85 90 87.7

Look and

Feel (LF)

12 85 80 82 82.3

13 85 80 90 85

Fault

Tolerance

(FT)

14 90 85 80 85

Legal (L) 15 90 80 80 83.3

16 90 80 90 86.7

Research Approach

51

Operational

(O)

17 90 75 80 81.7

18 80 80 90 83.3

19 80 80 85 81.6

Leveraging their collective expertise and insights, we meticulously refined our heuristics based

on their evaluations, invaluable comments, and constructive feedback. Overall, the evaluation

shows our heuristics' advantages as well as their shortcomings. We can prioritize improvements

by identifying the particular areas that need attention based on our analysis of these outcomes.

For the purpose of enhancing our heuristics and ultimately raising the caliber of our program,

this iterative review and refining process is essential.

4.2 Algorithm of the Novel Approach for Classification of Non-Functional Arabic User

Requirements

The bellow algorithm presents our heuristic-based requirements classification, which utilizes a

set of predefined heuristic rules to predict labels for input sentences. These heuristic rules are

designed to capture specific linguistic patterns or conditions indicative of different categories,

such as performance, security, availability, look and feel, fault tolerance, legal, and operational

aspects.

Algorithm #1: Heuristic-based Non- Functional Arabic User Requirements Classification:

Input:

- Input CSV file containing text data and associated labels (testing.csv)

- Text files containing key phrases related to different categories (e.g., 1.csv, 2.csv, ..., 7.csv, 5ft.csv)

- Pretrained models and modules for tokenization, disambiguation, tagging, and normalization

Output:

- CSV file containing predicted labels ('pe', 'se', 'a', 'lf', 'ft', 'l', 'o') for each input sentence (outFile.csv)

- Classification report showing accuracy, precision, recall, and F1-score for each class based on true

and predicted labels

Steps:

1. Import necessary libraries and modules:

2. Initialize MLEDisambiguator and DefaultTagger:

3. Read input data:

Research Approach

52

4. Initialize output file:

5. Data Preparation:

 - Normalize each sentence in the input data.

 - Tokenize normalized sentences into words.

 - Tag tokens with part-of-speech.

6. Apply Heuristic Rules:

 - Define and apply a set of heuristic rules to classify sentences into different categories ('pe', 'se', 'a',

'lf', 'ft', 'l', 'o').

 - Each heuristic rule assigns a score to each sentence based on specific conditions and patterns found

in tokens or part-of-speech tags.

7. Prediction and Output Writing:

 - Use heuristic scores to predict the label (category) for each sentence.

 - Write predicted labels and original sentences to the output CSV file.

8. Evaluation:

 - Print the heuristic scores for each category and a classification report showing accuracy, precision,

recall, and F1-score for each class based on true and predicted labels.

End of Algorithm

4.3 Case Study

In this section, we illustrate the proposed approach and show how we classify software

requirements. We used the PROMISE Software Engineering Repository [53] to test our

methodology. It is a collection of freely accessible datasets and resources designed to help the

software engineering community as a whole and researchers in the process of developing

predictive software models (PSMs). The repository is designed to support software engineering

prediction models that are repeatable, verifiable, refutable, and/or improvable.

To assess the efficacy of our suggested method, a subset of the PROMISE Software Engineering

Repository dataset was used in this investigation. Our methodology was tested and validated

using the chosen portion of dataset, which included 105 labeled non- functional user

requirement sentences. A qualified translator translated the dataset from English to Arabic to

Research Approach

53

guarantee accessibility and inclusivity. The portion of the dataset we chose and its translation is

shown in the Case Study Table 4.9 bellow:

Table 4.9: Case Study

Class Requirements in English Language Translation to Arabic Language

Performance The product must respond quickly to

maintain updated data on the screen.
يجب أن يستجيب المنتج بسرعة للحفاظ على

ي الشاشة

 البيانات المحدثة ف

The product should produce search

results in an acceptable time.
ي وقت يجب

أن ينتج عن المنتج نتائج بحث ف

 مقبول
Search results should be returned

within 30 seconds after the user
enters search criteria.

ي موعد لا يتجاوز

 30يجب إرجاع نتائج البحث ف

 ثانية بعد إدخال المستخدم لمعايبر البحث

The product should generate a CMA

report in an acceptable time.
ي وقت CMA يجب أن يُنش المنتج تقرير

ف

 .مقبول
CMD report should be regenerated

within 60 seconds after the user
enters report criteria.

ي موعد لا يتجاوز CMD يجب إعادة تقرير

 60ف

 ثانية بعد إدخال المستخدم لمعايبر تقرير

The product should synchronize

contacts and appointments in an

acceptable time.

يجب أن يقوم المنتج بمزامنة جهات الاتصال
ي وقت مقبول

 والمواعيد ف

The product should synchronize with

the desktop system every hour.
امن المنتج مع نظام المكتب كل ساعة يجب أن يبر

Response time for general student

management tasks should not exceed
5 seconds, and the response time to

create the timetable should not

exceed 30 seconds.

يجب ألا يستغرق وقت استجابة مهام إدارة
ثوانٍ، ويجب ألا يستغرق 5الطلاب العامة أكبر من

ي أكبر من وقت الاستجابة ل
 30نشاء الجدول الزمن

 ثانية

The maximum wait time for a user
navigating between screens within

the dispute's application should not

exceed 5 seconds.

يجب ألا يزيد الحد الأقصى لوقت انتظار
المستخدم الذي يتنقل من شاشة إلى أخرى داخل

 ثوان 5عن تطبيق المنازعات

The disputes application should

support 350 concurrent users without

any performance degradation in the

application.

مستخدمًا 350يجب أن يدعم تطبيق المنازعات
ي التطبيق

ي الأداء ف

ا دون أي تدهور ف

ً
امن مبر

Searching for recyclable parts should

not take more than 15 seconds;

search results should be displayed in
less than 15 seconds.

يجب ألا يستغرق البحث عن الأجزاء المعاد
ثانية سيتم عرض نتائج 15تدويرها أكبر من

ي أقل من
 ثانية 15البحث ف

Searching for the preferred repair

attachment should not take more

than 8 seconds; the preferred repair
method should be returned within 8

seconds.

لن يستغرق البحث عن مرفق الصلاح المفضل
ثوانٍ يتم إرجاع وسيلة الصلاح المفضلة 8أكبر من

ي غضون
 ثوان 8ف

The audit report for recyclable parts

should be returned to the user within
10 seconds; the audit report should

be returned within 10 seconds.

يجب إعادة تقرير تدقيق الأجزاء المعاد تدويرها إلى
ي غضون

ثوان يجب إرجاع تقرير 10المستخدم ف
ي غضون

 ثوان 10التدقيق ف

Saving preferred repair attachment
classifications should occur within 5

seconds; saving should occur within

5 seconds.

ي
يجب حفظ تصنيفات مرفق الصلاح المفضل ف

ي غضون 5غضون
ثوان يجب أن يحدث الحفظ ف

 ثوان 5

Research Approach

54

Modifying inventory quantities for
the previous thirty days should not

take more than 30 minutes.

ة يجب ألا يس تغرق إعادة تعديل كمية المخزون لفبر
 .دقيقة 30الثلاثير يومًا السابقة أكبر من

The system should allow at least 6

users to work simultaneously.
مستخدمير على الأقل 6يجب أن يسمح النظام لـ
ي نفس الوقت

 بالعمل ف

The administrator should be able to

activate a prepaid card through the
management section in less than 5

seconds.

يجب أن يكون المسؤول قادرًا على تنشيط بطاقة
ي أقل من

 ثوان 5مسبقة الدفع عبر قسم الدارة ف

The customer should be able to

verify the status of their prepaid card
by entering a PIN number in less

than 5 seconds.

يجب أن يكون العميل قادرًا على التحقق من حالة
ا عن طريق إدخال رقم

ً
 بطاقته المدفوعة مسبق

PIN ي أقل من

 ثوان 5ف

The system should allow customers
to register on the website as 'pay

while roaming' users in less than 5

minutes.

يجب أن يسمح النظام للعملاء بالتسجيل على
ي أقل

موقع الويب كمستخدم 'الدفع أثناء التنقل' ف

 دقائق 5من

Security The product will be able to
distinguish between authorized and

unauthorized users in all access

attempts.

خدمير سيكون المنتج قادرًا على التميبر بير المست
ي جميع محاولات

المصرح لهم وغبر المصرح لهم ف

 الوصول

Authentication and licensing of each
system user must be performed.

 يجب مصادقة وترخيص كل مستخدم للنظام

The product must prevent the entry

of incorrect data.
بيانات غبر إدخال من يجب أن يمنع المنتج

 صحيحة
The system should include a

fundamental data integrity check to
reduce the likelihood of submitting

incorrect or invalid data.

أن يشتمل النظام على فحص أساسي لتكامل
البيانات لتقليل احتمالية تقديم بيانات غبر

 صحيحة أو غبر صالحة

The system must protect private

information according to the
organization's information policy.

ا
ً
يجب أن يحمي النظام المعلومات الخاصة وفق

 لسياسة معلومات المنظمة

The system should be built to be as

secure as possible against malicious
interference.

ا قدر المكان من يجب بناء ا
ً
لنظام بحيث يكون آمن

 التدخل الضار

All additions of new users and

modifications to user access must be

logged in the user report.

يجب تسجيل جميع الضافات الخاصة
بالمستخدمير الجدد والتعديلات على وصول

ي تقرير المستخدم
 المستخدم ف

Only the system administrator

should be able to reset a canceled

user login account.

يجب أن يكون مسؤول النظام فقط قادرًا على
إعادة تعيير حساب تسجيل دخول مستخدم تم

 إلغاؤه
All updates to data files or databases

must start from the dispute system.
التحديثات لملفات البيانات أو يجب بدء جميع

 قاعدة البيانات من نظام المنازعات
Only officers can request audits of

recyclable parts. Any user without an

officer role cannot request audits of
recyclable parts.

الضباط فقط يمكنهم طلب تقارير تدقيق الأجزاء
يجوز لأي مستخدم ليس لديه المعاد تدويرها. لا

دور الضبط أن يطلب عمليات تدقيق للأجزاء
 المعاد تدويرها

Only officers with a supervisor role

can update preferred repair facility
ratings. Users without a supervisor

role cannot access preferred repair

facility ratings.

ف فقط هم من الضباط الذي ن لهم دور مسر
يمكنهم تحديث تصنيفات منشأة الصلاح

المفضلة. لا يمكن للمستخدمير الذين ليس لديهم
ف الوصول إلى تصنيفات منشأة الصلاح دور المسر

Research Approach

55

Only collision estimators should
search for recyclable parts. Users

without a collision estimator role

cannot search for recyclable parts.

مقدر التصادم فقط يجب أن يبحث عن الأجزاء
المعاد تدويرها. لا يجوز للمستخدمير الذين ليس
لديهم دور مقدر التصادم الوصول إلى البحث عن

 الأجزاء المعاد تدويرها
Only valid data should be entered
into the system. No invalid data will

be entered into the system.

ي النظام. لن

يجب إدخال البيانات الصالحة فقط ف

ي النظام

 يتم إدخال أي بيانات غبر صالحة ف

One insurance company will not be

able to view claim data from other
insurance companies.

كة تأمير واحدة من عرض بيانات لن تتمكن سر
كات التأمير الأخرى مطالبة سر

The product must be free from

computer viruses.
وسات يجب أن يكون المنتج خاليًا من فبر

 الكمبيوتر
The system must prevent malicious

attacks, including denial of service.
ي ذلك

يجب أن يمنع النظام الهجمات الخبيثة بما ف

 الخدمة الحرمان من
The product must ensure that only

company employees or external
users with company-approved user

IDs can access the product.

كة أو ي السر
يجب أن يضمن المنتج أن موظف

المستخدمير الخارجيير فقط الذين لديهم
كة يمكنهم معرفات مستخدم معتمدة من السر

 المنتجالوصول إلى
Availability The product must be available for

use 24 hours a day, 365 days a year.
ساعة 24يجب أن يكون المنتج متاحًا للاستخدام

ي السنة 365يوميًا
 .يومًا ف

The system will be available 999 out

of 1000 times when accessing the
system.

وصول 1000مرة من بير 999النظام متاحا يكون
 .إلى النظام

The system must achieve a 95%

uptime.
 .95يجب أن يحقق النظام وقت تشغيل بنسبة %

The product must comply with the
company's online availability

schedule. The application is only

brought up during 98% of scheduled
downtime periods according to the

availability schedule.

نت م المنتج بجدول التوفر عبر النبر
يجب أن يلبر

ي غضون
كات. يتم إحضار التطبيق فقط ف للسر

ا لجدول 98
ً
ات الانقطاع المجدولة وفق ٪ من فبر

 .التوفر

The website must be available for

use 24 hours a day, 365 days a year.
 24يجب أن يكون موقع الويب متاحًا للاستخدام

ي السنة 365ساعة يوميًا
 .يومًا ف

The site must achieve 99.5% uptime. يجب أن يحقق الموقع وقت تشغيل بنسبة
99.5٪.

All on-demand movies must be
available at any time of day.

ي أي وقت يجب بث جميع
الأفلام عند الطلب ف

 .من اليوم
The system will provide 800 toll-free
numbers 24 hours a day for customer

support.

ي على مدار 800سيوفر النظام
ساعة 24رقم مجائ

 .لدعم عملائه

Look and

Feel

The application must match the color

scheme specified by the Ministry of
Internal Security.

يجب أن يتطابق التطبيق مع لون المخطط
 المحدد من قبل وزارة الأمن الداخلىي

The system's form and appearance

must comply with the smart device's

user interface standards.

يجب أن يتوافق شكل ومظهر النظام مع معايبر
 واجهة المستخدم الخاصة بالجهاز الذكي

The user interface must have

standard menu buttons for

navigation.

يجب أن تحتوي واجهة المستخدم على أزرار قوائم
 قياسية للتنقل

The system must have a professional
appearance.

ي
اف يجب أن يكون للنظام مظهر احبر

The product must have consistent

color schemes and fonts.
يجب أن يكون للمنتج مخطط ألوان وخطوط

 متناسقة

Research Approach

56

The dispute application must comply
with the company's standards for

creating an internal and external

application user interface.

زعات مع معايبر يجب أن يتوافق تطبيق المنا
كة لنشاء واجهة مستخدم للتطبيقات السر

 المستخدمة داخليًا وخارجيًا

All screens created as part of the
dispute application must comply

with the company's interface

creation standards.

ي تم إنشاؤها
يجب أن تتوافق جميع الشاشات النر

كة لنشاء كجزء من اعات مع معايبر السر تطبيق الب
 الواجهة

The product must comply with
company user interface guidelines.

يجب أن يتوافق المنتج مع إرشادات واجهة
كات المستخدم الخاصة بالسر

The product must comply with the
company's color scheme.

كة يجب أن يتوافق المنتج مع نظام ألوان السر

The product's appearance must be

professional.
افيًا يجب أن يظهر مظهر المنتج احبر

The product's form and appearance
should be able to incorporate aspects

of the client's enterprise, such as

branding, logo, and identity.

شكل المنتج وشكله قادرين على يجب أن يكون
دمج جوانب مؤسسة العميل مثل العلامة التجارية

 والشعار والهوية

The product must have a

conservative and professional

appearance.

ي
 يجب أن يكون للمنتج مظهر محافظ ومهن

The website must be appealing to all
audiences. It should appear

enjoyable with bright and lively

colors.

 . يجب أن يكون الموقع جذابًا لجميع الجماهبر
يجب أن يبدو الموقع ممتعًا ويجب أن تكون

قة ونابضة بالحياة الألوان مسر

The design of the website should be

modern, clean, and concise.
ا يجب أن يكون تصميم الموقع

ً
ا ونظيف

ً
حديث

 وموجزًا
The website must not discriminate

against religious or ethnic groups.
ء الموقع إلى الجماعات الدينية أو يجب ألا يشي

 العرقية
The website should attract all

Africans, not just Nigerians.
يجب أن يجذب الموقع جميع الأفارقة وليس

يير فقط النيجبر
The product should emulate the

appearance of ships at sea.
ي البحر

 يجب أن يحاكي المنتج مظهر السفن ف

The product should display networks

within a circle as if viewed through a
periscope.

يجب أن يعرض المنتج الشبكات داخل دائرة
 ر كعرض من المنظا

The product should showcase each

type of ship in a network using an

image of a specific type of ship.

ي شبكة
يجب أن يعرض المنتج كل نوع من السفن ف

 باستخدام صورة لنوع معير من السفن

When the attacking player takes a

shot, the product should mimic the

sound of a ship at sea.

عندما يأخذ اللاعب المهاجم لقطة، يجب أن
ي البحر

 يحاكي المنتج صوت سفينة ف

Fault

Tolerance

The product must operate in offline

mode when internet connection is

unavailable.

ي وضع عدم الاتصال
يجب أن يعمل المنتج ف
نت غبر متوفرعندما يكون الاتصال بالنبر

he product should allow the user to

view reports and schedules of

previously downloaded search

results.

يجب أن يسمح المنتج للمستخدم بعرض تقارير
ا
ً
يلها مسبق ي تم تب

 ومواعيد نتائج البحث النر

The product must retain user

preferences in case of a malfunction.
ي
يجب أن يحتفظ المنتج بتفضيلات المستخدم ف

 حالة حدوث عطل

Research Approach

57

100% of the user preferences saved
must be restored upon system return

to an internet-connected state.

٪ من تفضيلات المستخدم 100يجب استعادة
نت المحفوظة عند عودة النظام متصل بالنبر

The product must create an

exception log for issues encountered
within the product to be sent to our

company for analysis and resolution.

يجب على المنتج إنشاء سجل استثناء للمشكلات
ي تمت مواجهتها داخل المنتج لرساله إلى

النر
كتنا لتحليلها وحلها سر

The website must continue to

function if the streaming server fails.
ي العمل إذا تعطل

يجب أن يستمر موقع الويب ف

 خادم البث
The website must continue to

function if the payment gateway
fails.

ي العمل إذا تعطلت بوابة

يجب أن يستمر الموقع ف

 الدفع

The product must create an

exception log for issues encountered
within the product to be sent to our

company for analysis and resolution.

يجب على المنتج إنشاء سجل استثناء للمشكلات
ي تمت مواجهتها داخل المنتج لرساله إلى

النر
كتنا لتحليلها وحلها سر

The product must be robust, and

error avoidance should be based on
standards compliance.

ا، ويجب أن يكون
ً
يجب أن يكون المنتج متين

 المنتج متجنبًا للخطأ بناءً على اعتماد المعايبر

The product should be strong with

error tolerance; it should be fault-

tolerant using compensatory
transaction handling for recovery

and routing around failure scenarios.

يجب أن يكون المنتج قويًا مع التسامح مع الخطأ،
يجب أن يكون المنتج متسامحا مع الخطأ

داد باستخدام المعاملة التعويضية لتقنية الاسبر
 والتوجيه حول حالات الفشل

Legal The dispute resolution application
must comply with the legal

requirements as specified in the

Merchant Operating Regulations.

يجب أن يتوافق تطبيق المنازعات مع المتطلبات
ي لوائح تشغيل

القانونية على النحو المحدد ف
 التاجر

All operational rules specified in the
dispute resolution system must be

compliant with the Merchant

Operating Regulations.

ي
يجب أن تكون جميع قواعد العمل المحددة ف

 نظام المنازعات متوافقة مع لوائح تشغيل التاجر

The dispute resolution application
must adhere to the legal

requirements as specified in

Regulations E and Regulation Z
governing credit card dispute

processing.

يجب أن يتوافق تطبيق المنازعات مع المتطلبات
ي اللوائح

 واللائحة E القانونية على النحو المحدد ف
Z ي تحكم معالجة منازعات بطاقات الائتمان

 النر

All operational rules specified in the

dispute resolution system must be
compliant with the guidance

principles of Regulations E and

Regulation Z.

ي
يجب أن تكون جميع قواعد العمل المحددة ف

نظام المنازعات متوافقة مع المبادئ التوجيهية
 Z واللائحة E للائحة

The dispute application must

maintain a detailed record of every

action taken by the user in a dispute

case.

اعات بسجل مفصل يجب أن يحتفظ تطبيق الب
ي قضية

اع. اللكل إجراء يتخذه المستخدم ف ب

All actions modifying an existing

dispute case must be logged in the

case's history.

ي تعدل قضية يجب تسجيل
جميع الجراءات النر

ي تاريــــخ القضية
 نزاع قائمة ف

The product must comply with laws
regarding the use of recycled parts.

يجب أن يتوافق المنتج مع قوانير التقدير المتعلقة
 باستخدام الأجزاء المعاد تدويرها

Research Approach

58

Operational The system must be able to operate
within a typical office environment

for the nursing department at DePaul

University.

يجب أن يكون النظام قادرًا على العمل داخل بيئة
ي جامعة

مكتب أعمال نموذجية لقسم التمريض ف

 ديبول

The system must adhere to the
specifications set by the computers

used by program managers/nursing

staff members.

يجب استخدام النظام ضمن المواصفات المحددة
بواسطة أجهزة الكمبيوتر المستخدمة من قبل

نامج / أعضاء طاقم التمريض مديري البر

The system must operate within the
Windows XP Professional operating

system.

 ب أن يعمل النظام ضمن نظام التشغيليج
Windows XP Professional

The system must interact with the
central server for CampusConnect.

 يجب أن يتفاعل النظام مع الخادم المركزي لـ
CampusConnect

The system must interact with the
college's central server.

 يتفاعل النظام مع الخادم المركزي للكليةيجب أن

The system must interact with the

main student server.
يجب أن يتفاعل النظام مع الخادم الرئيشي

 للطالب
The dispute application must be

available 24/7, except during

scheduled maintenance windows:
Monday - Saturday 3:00 AM to 4:00

AM Eastern Time, Sunday 1:00 AM

to 5:00 AM Eastern Standard Time.

اعات متاحًا على مدار 24يجب أن يكون تطبيق الب
ساعة طوال أيام الأسبوع باستثناء نوافذ الصيانة

صباحًا 3:00السبت - المجدولة التالية: الاثنير
، الأح 4:00حنر ي

فر 1:00د صباحًا بالتوقيت السر
ي 5:00صباحًا إلى

فر صباحًا بالتوقيت الرسمي السر

The dispute application must interact

with a data account database. The

account database provides

transaction details for the dispute
system. All transaction details must

be obtained from the account

database.

يجب أن يتفاعل تطبيق المنازعات مع قاعدة
بيانات البيانات. توفر قاعدة بيانات كشوف

الحسابات تفاصيل المعاملة لنظام المنازعات.
يجب الحصول على جميع تفاصيل المعاملة من

 قاعدة بيانات كشوف الحسابات

The dispute application must interact
with a card member information

database. The card member

information database provides
detailed information regarding the

card member. All detailed card

member information must be
obtained from the card member

information database.

دة يجب أن يتفاعل تطبيق المنازعات مع قاع
بيانات معلومات عضو البطاقة. توفر قاعدة بيانات

معلومات مفصلة فيما Cardmember معلومات
يتعلق بعضو البطاقة. يجب الحصول على جميع
المعلومات التفصيلية الخاصة بعضو البطاقة من

 قاعدة بيانات معلومات عضو البطاقة

The dispute application must interact

with a merchant information
database. The merchant information

database provides detailed

information regarding the merchant.
All merchant detail information must

be obtained from the merchant

information database.

اعات مع قاعدة يجب أن تتفاعل تطبيقات الب
التاجر. توفر قاعدة بيانات التاجر بيانات معلومات

معلومات مفصلة فيما يتعلق بالتاجر. يجب
الحصول على جميع معلومات تفاصيل التاجر من

 قاعدة بيانات التاجر

The dispute application must interact
with the Letters application. This

allows the dispute application to

request letters as part of the dispute
initiation and follow-up process. All

letter requests must be sent to the

Print Letter Utility application.

 يجب أن يتفاعل تطبيق المنازعات مع تطبيق
Letters سيسمح هذا لتطبيق المنازعات بطلب

اع ومتابعة الب اع. خطابات كجزء من عملية بدء الب
 يجب إرسال جميع طلبات الخطابات إلى تطبيق

Print Letter Utility

Research Approach

59

The dispute application must interact
with the card member migration and

billing system. This allows the

dispute application to request

modifications to card member and
merchant accounts. All modification

requests must be sent to the card

member migration and billing
system.

يجب أن يتفاعل تطبيق المنازعات مع نظام
حيل والفوترة لعضو البطاقة. سيسمح هذا البر

لتطبيق المنازعات بطلب تعديلات على حسابات
صاحب البطاقة والتاجر. يجب إرسال جميع

حيل والفوترة لعضو طلبات التعدي ل إلى نظام البر
 البطاقة

The product must interact with the

parts selection system. This provides

recycled parts data feed.

يجب أن يتفاعل المنتج مع نظام اختيار الأجزاء
 يوفر هذا تغذية بيانات الأجزاء المعاد تدويرها

The product must adhere to company

engineering guidelines.
كة م المنتج بإرشادات هندسة السر يجب أن يلبر

For estimators, the product must be

able to operate in a repair facility
during dirty and noisy conditions.

بالنسبة إلى المقدرين، يجب أن يكون المنتج قادرًا
ي م

نشأة إصلاح أثناء الظروف على العمل ف

 المتسخة والصاخبة
The product must interact with the
once daily CoiceParts system around

1:00 AM.

مرة واحدة يوميًا يجب أن يتفاعل المنتج مع نظام
ي حوالىي الساعة

 CoiceParts صباحًا 1:00ف

The product will be available for

licensing as a single server and five
servers or five servers or more.

خيص كخادم واحد لمنتج سيكون متاحًا للبر
 وخمسة خوادم أو خمسة خوادم أو أكبر

The product must be installable in

any operating environment within

two days.

ي أي بيئة جب أن يكون المنتج قادرًا على
التثبيت ف

ي غضون يومير
 تشغيل ف

The product must be developed

using J2SE/J2EE programming

language libraries.

يجب تطوير المنتج باستخدام مكتبات لغة
مجة J2SE / J2EE البر

The system must utilize currently
owned computers.

الكمبيوتر المملوكة يجب أن يستخدم النظام أجهزة
 حاليًا

Upon inputting these requirement sentences into CAMeL Tools, the resulting output will

encompass both PoS tags and tokens. An illustrative example of each class will be provided

below

Arabic sentence:

“ دخال المستخدم لمعايير البحثإثانية بعد 30يجب ارجاع نتائج البحث في موعد لا يتجاوز ”

CAMeL Tokens: [' ', 'ثانية', 'بعد', 'إدخال', 'المستخدم', 30ز', 'يجب', 'إرجاع', 'نتائج', 'البحث', 'في', 'موعد', 'لا', 'يتجاو

 [''لمعايير', 'البحث

CAMeL Tokens: ['verb', 'noun', 'noun', 'noun', 'prep', 'noun', 'part_neg', 'verb', 'digit', 'adj', 'noun',

'noun', 'noun', 'noun', 'noun']

Arabic sentence:

Research Approach

60

“ بين المستخدمين المصرح لهم وغير المصرح لهم في جميع محاولات الوصولسيكون المنتج قادرًا على التمييز ”

CAMeL Tokens: [' ,'سيكون', 'المنتج', 'قادرًا', 'على', 'التمييز', 'بين', 'المستخدمين', 'المصرح', 'لهم', 'وغير', 'المصرح

 [''لهم', 'في', 'جميع', 'محاولات', 'الوصول

CAMeL PoS: ['verb', 'noun', 'adj', 'prep', 'noun', 'noun', 'noun', 'adj', 'prep', 'noun', 'adj', 'prep',

'prep', 'noun', 'noun', 'noun']

Arabic sentence:

“ ساعة لدعم عملائه 24رقم مجاني على مدار 800سيوفر النظام ”

CAMeL Tokens: [' ', 'ساعة', 'لدعم', 'عملائه24'مدار', '', 'رقم', 'مجاني', 'على', 800سيوفر', 'النظام', ' ']

CAMeL PoS: ['verb', 'noun', 'digit', 'noun', 'adj', 'prep', 'noun', 'digit', 'noun', 'noun', 'noun']

Arabic sentence:

 ”يجب أن يكون للمنتج مخطط ألوان وخطوط متناسقة“

CAMeL Tokens: [' , 'ألوان', 'وخطوط', 'متناسقةيجب', 'أن', 'يكون', 'للمنتج', 'مخطط' ']

CAMeL PoS: ['verb', 'conj_sub', 'verb', 'noun', 'noun', 'noun', 'noun', 'adj']

5. Arabic sentence:

 ”يجب على المنتج إنشاء سجل استثناء للمشكلات التي تمت مواجهتها داخل المنتج لإرساله إلى شركتنا لتحليلها وحلها “

CAMeL Tokens: [' 'داخل', يج 'مواجهتها', 'تمت', 'التي', 'للمشكلات', 'استثناء', 'سجل', 'إنشاء', 'المنتج', 'على', ب',

 [''المنتج', 'لإرساله', 'إلى', 'شركتنا', 'لتحليلها', 'وحلها

CAMeL PoS: ['verb', 'prep', 'noun', 'noun', 'verb', 'noun', 'noun', 'pron_rel', 'verb', 'noun', 'noun',

'noun', 'noun', 'prep', 'noun', 'noun', 'noun']

6. Arabic sentence:

“ النزاع يجب أن يحتفظ تطبيق النزاعات بسجل مفصل لكل إجراء يتخذه المستخدم في قضية ”

CAMeL Tokens: [' دم', 'في', يجب', 'أن', 'يحتفظ', 'تطبيق', 'النزاعات', 'بسجل', 'مفصل', 'لكل', 'إجراء', 'يتخذه', 'المستخ

 [''قضية', 'النزاع

CAMeL PoS: ['verb', 'conj_sub', 'verb', 'noun', 'noun', 'noun', 'adj', 'noun', 'noun', 'verb', 'noun',

'prep', 'noun', 'noun']

7. Arabic sentence:

Research Approach

61

 CampusConnect ”يجب أن يتفاعل النظام مع الخادم المركزي لـ“

CAMeL Tokens: ['CampusConnect', 'يجب', 'أن', 'يتفاعل', 'النظام', 'مع', 'الخادم', 'المركزي', 'لـ']

CAMeL PoS: ['verb', 'conj_sub', 'verb', 'noun', 'prep', 'noun', 'adj', 'prep', 'foreign']

Evaluation

62

CHAPTER FIVE

EVALUATION

In this chapter, we go into the critical process of evaluating our approach performance.

Evaluation serves as the compass guiding the effectiveness and reliability of the approach, we

developed. Through rigorous assessment, we gain insights into how well our approach

generalize to unseen data, their strengths, and their limitations. By employing various

evaluation metrics, we can quantify and interpret the performance of our approach.

5.1 Evaluation Metrics

Evaluation metrics offer numerical measurements for evaluating approach performance. They

provide insights into several facets of an approach's functionality, including its precision in

predicting outcomes, its ability to locate pertinent data, and its general efficacy in resolving the

intended issue. In our study, the evaluation of classification models was conducted utilizing the

classification report functionality provided by the Sklearn.metrics library within the Python

programming environment. The metrics included in the classification report are: Precision,

Recall, Accuracy, and F1-Score.

5.1.1 Precision

Precision, also known as positive predictive value, measures the accuracy of positive

predictions made by the approach. It quantifies the proportion of true positive predictions

(correctly identified instances of a class) out of all positive predictions made, including both

true positives and false positives. Mathematically, precision is calculated as:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
… … . (5.1)

A high precision indicates that our approach tends to make accurate positive predictions and

has a low rate of false positives, which is crucial in tasks where the cost of false positives is

high.

5.1.2 Recall

Recall, also known as sensitivity or true positive rate, measures the approach's ability to

correctly identify all positive instances, including both true positives and false negatives. It

quantifies the proportion of true positive predictions out of all actual positive instances in the

data. Mathematically, recall is calculated as:

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
… … (5.2)

Evaluation

63

A high recall indicates that the approach captures a large proportion of positive instances,

minimizing the number of false negatives, which is crucial in tasks where identifying all

positive instances is essential, even at the cost of some false positives.

5.1.3 Accuracy

Accuracy measures the overall correctness of the approach's predictions across all classes. It

quantifies the proportion of correctly classified instances (both true positives and true negatives)

out of the total instances evaluated. Mathematically, accuracy is calculated as:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
… … . (5.3)

Accuracy provides a general assessment of the approach's performance.

5.1.4 F1-Score

The harmonic mean of recall and precision is what determines an F1-score. The F1-score, which

combines precision and recall into a single metric for evaluation purposes in binary and multi-

class classification, is frequently used to improve comprehension of model performance.

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
… … (5.4)

5.2 Experiments

In this section, we detail the experimental setups and the results obtained from evaluating our

proposed approach for classifying non-functional Arabic user requirements using a set of

heuristics.

5.2.1 Experimental Setup

We used 105 requirement sentences from the PROMISE dataset, which was divided into seven

different classes: legal, operational, performance, security, availability, look and feel, and fault

tolerance, which tested on our software .

5.2.2 Data Preparation

Prior to conducting the experiments, we divided the requirement sentences into individual

classes. For each class, we created a separate CSV file containing the respective sentences.

Additionally, we prepared another CSV file containing all the requirement sentences combined.

5.2.3 Experimental Procedure

1. Single- Class Testing: We started by giving individual tests to each class. In order to

accomplish this, we fed the sentences from each class into a Python code that used the

Evaluation

64

CAMeL tools to process the data and provide the appropriate PoS tags and tokens. We

were able to evaluate the effectiveness of our method for each non-functional category

separately since this process was performed for every class.

2. Multi- Class Testing: We then tested all the classes collectively as part of a thorough

assessment. We delivered the CSV file comprising sentences from every class along

with the Python code. After processing the combined data, the code classified the

required statements into the appropriate non-functional classes using our suggested

heuristics.

5.3 Result Analysis

Through this section we show and analyze the resulting classification report for single – class

testing and multi- class testing.

5.3.1 Single-Class Testing

The Single- Class Testing Results are shown in Table 5.1, giving a thorough summary of how

well each class performed in the examined system's categorization. The number of input

sentences per class, the number of sentences that were successfully classified, and specific

classification metrics: precision, recall, F1-score, and total accuracy are all summarized in this

table.

Table 5.1: Single- Class Testing Results.

Class # of Input

Sentences

#of Correctly

Classified

Sentences

Classification Report

Precision Recall F1-

Score

Accuracy

1 Performance 19 16 1.00 0.84 0.91 0.84

2 Security 17 13 1.00 0.82 0.90 0.82

3 Availability 10 8 1.00 0.88 0.93 0.88

4 Look and feel 20 19 1.00 0.90 0.95 0.90

5 Fault tolerance 10 9 1.00 0.90 0.95 0.90

6 Legal 9 7 1.00 0.86 0.92 0.86

7 Operational 20 17 1.00 0.85 0.92 0.85

The performance class shows a high precision score of 1.00, indicating that when the model

predicts an input sentence as related to performance, it is almost always correct. However, the

recall score of 0.84 suggests that the model missed some relevant sentences related to

Evaluation

65

performance. Overall, the F1-score and accuracy are also quite high but could be improved by

increasing recall.

Additionally, the security class shows a minimal false positive rate with a high precision score

of 1.00. Nonetheless, it appears from the recall score of 0.82 that the model did not accurately

identify all lines linked to security. Although the accuracy and F1-score are often rather

excellent, recall might be raised.

With a precision score of 1.00 for the availability class, there are no false positives. The majority

of the availability-related statements were accurately detected by the model, according to the

recall score of 0.88. While still quite high overall, the F1-score and accuracy could be raised by

sharpening their focus. The look and feel class exhibit high accuracy, recall, F1-score, and

precision, demonstrating how well the model identified phrases pertaining to look and feel.

High precision, recall, F1-score, and accuracy are also displayed by the fault tolerance class,

indicating that the model did a good job of detecting sentences that were linked to fault

tolerance.

The legal class has a lower F1-score due to their high precision but significantly lower recall.

This suggests that although the model accurately recognized statements with a legal theme. The

operational class has a lower F1-score due to its high precision but significantly lower recall.

This suggests that although the model detected sentences related to operations accurately, it

failed to identify certain other relevant sentences. To summarize;

1. There is a low false positive rate in every category, as seen by the consistently high

precision ratings for all classes.

2. The recall scores vary across classes, with some classes showing higher recall rates than

others.

3. All classes have typically high F1-scores and accuracies, showing that the model

performs well overall in categorizing requirements into the appropriate categories.

4. To improve the total F1-score and accuracy, more relevant sentences could be captured

by raising recall for classes with lower recall scores. Further improving classification

performance may involve fine-tuning the model and possibly expanding and

diversifying the training set.

5.3.2 Multi- Class Testing

The Multi-Class Testing Results are shown in Table 5.2, providing a detailed summary of how

well each class performed overall in classifying the input sentences of the case study. It lists all

Evaluation

66

of the input sentences in all classes, counts the number of sentences that were successfully

classified, and provides comprehensive classification metrics including recall, precision, F1-

score, and overall accuracy.

Table 5.2: Multi-Class Testing Results.

Class # of Input

Sentences

#of Correctly

Classified

Sentences

Classification Report

Average

Precision

Average

Recall

Average

F1-

Score

Overall

Accuracy

All Classes. 105 94 0.88 0.89 0.88 0.88

In the initial script iteration, our algorithm was designed to increment a category score by one

if there was a match between the sentence's tokens and the category's table of keywords. The

initial results yielded a satisfactory accuracy of 67%. However, upon consultation with experts,

they recommended enhancing the code by not only adding one to the category score in the case

of a match but also determining the number of matches and incorporating that count into the

score. This modification proved to be a significant improvement, resulting in a new overall

accuracy of 88% as shown in the classification report for all seven classes of our case study.

In summary, although the system performs well overall (88% accuracy), there are differences

in precision, recall, and f1-score amongst classes. This study shows the model's strong points

and potential areas for modification to increase overall classification performance.

Conclusion and Future Works

67

CHAPTER SIX

CONCLUSION AND FUTURE WORKS

6.1 Conclusion

In summary, this thesis has centered on the semi-automated categorization of Arabic user non-

functional requirements into seven categories using natural language processing tools called

CAMeL tools. We have devised a series of strategies to effectively classify these requirements,

utilizing the linguistic components generated by CAMeL tools, including tokens, Part of Speech

(PoS) tags, and lemmas.

Our approach, implemented through Python code and the CAMeL tools, offers a practical

solution tailored for software engineers tasked with handling Arabic user non- functional

requirements. By automating aspects of the classification process, our research aims to

streamline the analysis phase, thereby reducing the time and resources traditionally required for

manual classification.

Through the enhancement of efficiency and accuracy in user non- functional requirements

analysis, our methodology equips software engineers with the tools to make well-informed

decisions, ultimately resulting in the delivery of higher-quality software products.

Moreover, our research plays a pivotal role in advancing the field of natural language processing

(NLP) specifically tailored to the Arabic language. By addressing the unique linguistic nuances

and challenges inherent to Arabic, we contribute to the expansion and refinement of NLP

capabilities in this domain. This, in turn, lays the foundation for future innovations and

developments in Arabic NLP, opening up new avenues for research and application across

various industries and sectors.

Overall, this project not only improves the software development process but also drives

progress in the broader field of Arabic natural language processing, offering far-reaching

benefits for both technological advancement and societal impact.

Ultimately, this project serves as a crucial step towards optimizing software development

practices and enhancing the overall quality of software products in Arabic-speaking regions.

6.2 Future Work

Some directions for further research and development are presented in the future work section

of our thesis on semi-automated classification of non-functional Arabic user requirements:

Conclusion and Future Works

68

1. Heuristic refinement: Future research should focus on improving the heuristics created

in this thesis in order to increase classification accuracy. This could entail adding more

language features, investigating different classification strategies, or optimizing the

heuristics' rules and criteria.

2. Data Collection Expansion: In order to confirm and improve our methodology, we need

to collect a larger and more varied dataset of Arabic-language SRS. This can entail

contacting more organizations or software providers in order to secure more SRS

projects in Arabic.

3. Testing on More Case Studies: Future study should test our method on a wider variety

of case studies in order to evaluate its robustness and generalizability. This might

comprise SRS documents from different sectors and disciplines to assess how well our

classification algorithm works in diverse scenarios.

4. Creating Huge Datasets: Work should be done to create sizable datasets of user

requirements that are written in Arabic in cooperation with user requirements

researchers. These datasets would be very helpful in creating and educating new

completely automated categorization systems. They could also be utilized to implement

machine learning techniques to raise the efficiency and accuracy of classification.

Our goal in exploring these areas further is to improve the current state of the art in semi-

automated classification of non-functional Arabic user requirements. This will ultimately aid in

the creation of more precise and effective software development processes in Arabic-speaking

environments.

Bibliography

69

Bibliography

[1] Mairiza, D., Zowghi, D., & Nurmuliani, N. (2010, March). An investigation into the

notion of non-functional requirements. In Proceedings of the 2010 ACM symposium on

applied computing (pp. 311-317).u

[2] Habibullah, K. M., Gay, G., & Horkoff, J. (2023). Non-functional requirements for

machine learning: Understanding current use and challenges among

practitioners. Requirements Engineering, 28(2), 283-316.

[3] Kopczyńska, S., Ochodek, M., & Nawrocki, J. (2020). On importance of non-functional

requirements in agile software projects—a survey. Integrating Research and Practice in

Software Engineering, 145-158.

[4] R. Amro, A. Althunibat and B. Hawashin, "Arabic Non-Functional Requirements

Extraction Using Machine Learning," 2023 International Conference on Information

Technology (ICIT), Amman, Jordan, 2023, pp. 489-494, doi:

10.1109/ICIT58056.2023.10225951.

[5] Engström, E., Storey, M. A., Runeson, P., Höst, M., & Baldassarre, M. T. (2020). How

software engineering research aligns with design science: a review. Empirical Software

Engineering, 25, 2630-2660.

[6] Chowdhary, K., & Chowdhary, K. R. (2020). Natural language

processing. Fundamentals of artificial intelligence, 603-649.

[7] Ali, A., Chowdhury, S., Afify, M., El-Hajj, W., Hajj, H., Abbas, M., ... & Alqudah, A.

(2021). Connecting Arabs: Bridging the gap in dialectal speech

recognition. Communications of the ACM, 64(4), 124-129.

[8] Younas, M., Jawawi, D. N., Ghani, I., & Shah, M. A. (2020). Extraction of non-

functional requirement using semantic similarity distance. Neural Computing and

Applications, 32, 7383-7397.

[9] Behutiye, W., Karhapää, P., Costal, D., Oivo, M., & Franch, X. (2017). Non-functional

Requirements Documentation in Agile Software Development: Challenges and Solution

Proposal. Product-Focused Software Process Improvement. Springer. doi: 10.1007/978-

3-319-69926-4_41

[10] Iftikhar, K., Ali, S., & Ngadi, M. A. (2016). Enhancement of Non Functional

Requirements in Agile Software Development. International Journal of Computer

Science and Information Security, 14(12), 820.

[11] Adetoba, B., & Ogundele, I. (2018). Requirements engineering techniques in

software development life cycle methods: A systematic literature review. International

Journal of Advanced Research in Computer Engineering & Technology, 7(10), 733-743.

[12] BATOOL, I., KOSAR, L., & MEHMOOD, M. NON-FUNCTIONAL

REQUIREMENTS AS CONSTRAINTS AND THEIR VALUES IN SOFTWARE

DEVELOPMENT: A REVIEW. 2018.

[13] Umar, M., & Khan, N. A. . Analyzing Non-Functional Requirements (NFRs) for

software development. 2011 IEEE 2nd International Conference on Software

Engineering and Service Science. IEEE. doi: 10.1109/ICSESS.2011.5982328

[14] Wang, X., Zhao, L., Wang, Y., & Sun, J. (2014). The role of requirements

engineering practices in agile development: an empirical study. In Requirements

Engineering: First Asia Pacific Requirements Engineering Symposium, APRES 2014,

Auckland, New Zealand, April 28-29, 2014. Proceedings (pp. 195-209). Springer Berlin

Heidelberg.

Bibliography

70

[15] Daun, M., Grubb, A. M., Stenkova, V., & Tenbergen, B. (2023). A systematic

literature review of requirements engineering education. Requirements

Engineering, 28(2), 145-175.

[16] Pandey, D., & Pandey, V. (2012). Requirement Engineering: An Approach to

Quality Software Development. Journal of Global Research in Computer Science, 3(9),

31-33.

[17] Adetoba, B., & Ogundele, I. (2018). Requirements engineering techniques in

software development life cycle methods: A systematic literature review. International

Journal of Advanced Research in Computer Engineering & Technology, 7(10), 733-743.

[18] AlSanad, A., & Chikh, A. (2014). Reengineering of Software Requirement

Specification. New Perspectives in Information Systems and Technologies, Volume 2.

Springer. doi: 10.1007/978-3-319-05948-8_10

[19] Singh, P., Singh, D., & Sharma, A. (2016, December). Classification of non-

functional requirements from SRS documents using thematic roles. In 2016 IEEE

International Symposium on Nanoelectronic and Information Systems (iNIS) (pp. 206-

207). IEEE.

[20] Tayefeh Hashemi, S., Ebadati, O. M., & Kaur, H. (2020). Cost estimation and

prediction in construction projects: A systematic review on machine learning

techniques. SN Applied Sciences, 2, 1-27.

[21] Choi, S. S., Chae, S. Y., & Lee, G. S. (2005, May). SRS-tool: A security

functional requirement specification development tool for application information

system of organization. In International Conference on Computational Science and Its

Applications (pp. 458-467). Berlin, Heidelberg: Springer Berlin Heidelberg.

[22] Abdeen, W., Chen, X., & Unterkalmsteiner, M. (2023). An approach for

performance requirements verification and test environments generation. Requirements

Engineering, 28(1), 117-144.

[23] Navita, M. (2017). A Study on Software Development Life Cycle & its

Model. International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE), 4, 9.

[24] Hussain, S., Asghar, M. Z., Ahmad, B., & Ahmad, S. (2009). A step towards

software corrective maintenance using RCM model. arXiv preprint arXiv:0909.0732.

[25] Budake, R., Bhoite, S., & Kharade, K. (2023). Identification and classification

of functional and non-functional software requirements using machine learning. AIP

Conf. Proc., 2946(1). doi: 10.1063/5.0178116

[26] Handa, N., Sharma, A., & Gupta, A. (2022). Framework for prediction and

classification of non functional requirements: a novel vision. Cluster Computing, 25(2),

1155-1173.

[27] Maiden, N. (2008). User requirements and system requirements. IEEE

Software, 25(2), 90-91..

[28] Coughlan, J., & Macredie, R. D. (2002). Effective communication in

requirements elicitation: a comparison of methodologies. Requirements Engineering, 7,

47-60.

[29] Benfell, A. (2021). Modeling functional requirements using tacit knowledge: a

design science research methodology informed approach. Requirements

engineering, 26(1), 25-42.

Bibliography

71

[30] Maguire, M., & Bevan, N. (2002, August). User requirements analysis: a review

of supporting methods. In IFIP World Computer Congress, TC 13 (pp. 133-148).

Boston, MA: Springer US.

[31] Burek, P. (2008). Creating clear project requirements: differentiating "what"

from "how" Paper presented at PMI® Global Congress 2008—North America, Denver,

CO. Newtown Square, PA: Project Management Institute.

[32] Serrador, P. (2012). The importance of the planning phase to project success.

Paper presented at PMI® Global Congress 2012—North America, Vancouver, British

Columbia, Canada. Newtown Square, PA: Project Management Institute.

[33] E. Gottesdiener, "Requirements by collaboration: getting it right the first time,"

in IEEE Software, vol. 20, no. 2, pp. 52-55, March-April 2003, doi:

10.1109/MS.2003.1184167.

[34] Tukur, M., Umar, S., & Hassine, J. (2021). Requirement engineering challenges:

A systematic mapping study on the academic and the industrial perspective. Arabian

Journal for Science and Engineering, 46, 3723-3748.

[35] B. Alsawareah, A. Althunibat and B. Hawashin, "Classification of Arabic

Software Requirements Using Machine Learning Techniques," 2023 International

Conference on Information Technology (ICIT), Amman, Jordan, 2023, pp. 631-636, doi:

10.1109/ICIT58056.2023.10225789.

[36] Mishra, A., & Mishra, D. (2014). Cultural issues in distributed software

development: A review. In On the Move to Meaningful Internet Systems: OTM 2014

Workshops: Confederated International Workshops: OTM Academy, OTM Industry

Case Studies Program, C&TC, EI2N, INBAST, ISDE, META4eS, MSC and OnToContent

2014, Amantea, Italy, October 27-31, 2014. Proceedings (pp. 448-456). Springer Berlin

Heidelberg.

[37] Khurana, D., Koli, A., Khatter, K., & Singh, S. (2023). Natural language

processing: State of the art, current trends and challenges. Multimedia tools and

applications, 82(3), 3713-3744.

[38] Wahdan, A., Al-Emran, M., & Shaalan, K. (2023). A systematic review of Arabic

text classification: areas, applications, and future directions. Soft Computing, 1-22.

[39] Obeid, O., Zalmout, N., Khalifa, S., Taji, D., Oudah, M., Alhafni, B., ... &

Habash, N. (2020, May). CAMeL tools: An open source python toolkit for Arabic

natural language processing. In Proceedings of the Twelfth Language Resources and

Evaluation Conference (pp. 7022-7032).

[40] Khurshid, I., Imtiaz, S., Boulila, W., Khan, Z., Abbasi, A., Javed, A. R., & Jalil,

Z. (2022). Classification of Non-Functional Requirements From IoT Oriented

Healthcare Requirement Document. Front. Public Health, 10, 860536. doi:

10.3389/fpubh.2022.860536

[41] Shreda, Q. A., & Hanani, A. A. (2021). Identifying non-functional requirements

from unconstrained documents using natural language processing and machine learning

approaches. IEEE Access.

[42] Z. Kurtanović and W. Maalej, "Automatically Classifying Functional and Non-

functional Requirements Using Supervised Machine Learning," 2017 IEEE 25th

International Requirements Engineering Conference (RE), Lisbon, Portugal, 2017, pp.

490-495, doi: 10.1109/RE.2017.82.

[43] Yahya, A. E., Gharbi, A., Yafooz, W. M. S., & Al-Dhaqm, A. (2023). A Novel

Hybrid Deep Learning Model for Detecting and Classifying Non-Functional

Bibliography

72

Requirements of Mobile Apps Issues. Electronics, 12(5), 1258. doi:

10.3390/electronics12051258

[44] Jindal, R., Malhotra, R., Jain, A., & Bansal, A. (2021). Mining Non-Functional

Requirements using Machine Learning Techniques. e-Informatica Software

Engineering Journal, 15(1).

[45] Kumar, M. S., & Harika, A. (2020). Extraction and classification of non-

functional requirements from text files: a supervised learning approach. Psychology and

Education, 57(9), 4120-4123.

[46] Hussain, I., Kosseim, L., & Ormandjieva, O. (2008). Using linguistic knowledge

to classify non-functional requirements in SRS documents. In Natural Language and

Information Systems: 13th International Conference on Applications of Natural

Language to Information Systems, NLDB 2008 London, UK, June 24-27, 2008

Proceedings 13 (pp. 287-298). Springer Berlin Heidelberg.

[47] Cleland-Huang, J., Settimi, R., Zou, X., & Solc, P. (2006, September). The

detection and classification of non-functional requirements with application to early

aspects. In 14th IEEE International Requirements Engineering Conference (RE'06) (pp.

39-48). IEEE.

[48] Shehadeh, K., Arman, N., & Khamayseh, F. (2021, July). Semi-Automated

Classification of Arabic User Requirements into Functional and Non-Functional

Requirements using NLP Tools. In 2021 International Conference on Information

Technology (ICIT) (pp. 527-532). IEEE.

[49] Arman, N., & Jabbarin, S. (2015). Generating use case models from Arabic user

requirements in a semiautomated approach using a natural language processing

tool. Journal of Intelligent Systems, 24(2), 277-286.

[50] Nassar, I. N., & Khamayseh, F. T. (2015, April). Constructing activity diagrams

from Arabic user requirements using Natural Language Processing tool. In 2015 6th

International Conference on Information and Communication Systems (ICICS) (pp. 50-

54). IEEE.

[51] Arman, N. (2015). Using MADA+ TOKAN to Generate Use Case Models from

Arabic User Requirements in a Semi-Automated Approach. ICIT 2015 The 7th

International Conference on Information Technology.

[52] Alami, N., Arman, N., & Khamyseh, F. (2017, May). A semi-automated

approach for generating sequence diagrams from Arabic user requirements using a

natural language processing tool. In 2017 8th International Conference on Information

Technology (ICIT) (pp. 309-314). IEEE

[53] Karim, S., Warnars, H. L. H. S., Gaol, F. L., Abdurachman, E., & Soewito, B.

(2017, November). Software metrics for fault prediction using machine learning

approaches: A literature review with PROMISE repository dataset. In 2017 IEEE

international conference on cybernetics and computational intelligence

(CyberneticsCom) (pp. 19-23). IEEE.

Bibliography

73

Appendix A

Code

from camel_tools.tokenizers.word import simple_word_tokenize

from camel_tools.disambig.mle import MLEDisambiguator

from camel_tools.tagger.default import DefaultTagger

from camel_tools.utils.normalize import normalize_alef_maksura_ar

from camel_tools.utils.normalize import normalize_alef_ar

from camel_tools.utils.normalize import normalize_teh_marbuta_ar

import pandas as pd

import csv

from sklearn.metrics import classification_report

mle = MLEDisambiguator.pretrained()

tagger = DefaultTagger(mle, 'pos')

infile = pd.read_csv('case1.csv',encoding='utf-8',quotechar="'")

outfile = open('outFile.csv', 'w', encoding='utf-8' ,newline='')

true = []

pred = []

sentences = []

tokens = []

pos_tags=[]

NFRKey = []

Stype = []

Data = []

lemmas = []

true = infile["T"].values.tolist()

sentences = infile["S"].values.tolist()

F_CF = [0]*(len(sentences))

NF_CF = [0]* (len(sentences))

F_Score = [0]*(len(sentences))

NF_Score = [0]* (len(sentences))

c1 = 0

Bibliography

74

c2 = 0

c3 = 0

c4 = 0

c5 = 0

c6 = 0

c8 = 0

for i in range(0, len(sentences)):

 # Normalize alef variants to 'ا'

 sentences[i] = normalize_alef_ar(sentences[i])

 # Normalize alef maksura 'ى' to yeh 'ي'

 sentences[i] = normalize_alef_maksura_ar(sentences[i])

 # Normalize teh marbuta 'ة' to heh 'ه'

 sentences[i] = normalize_teh_marbuta_ar(sentences[i])

 # pre-tokenized text

 tokens.append(simple_word_tokenize(sentences[i]))

 # POS tagger of tokens

 pos_tags.append(tagger.tag(tokens[i]))

#********************H1********************

DigPOS= ['digit', 'noun_num']

for lst in pos_tags:

 if any(item in lst for item in DigPOS):

 NF_CF[c1] += 78.33

 NF_Score[c1] +=1

 c1+=1

#********************H2********************

 star = ['foreign']

for lst in pos_tags:

 if any(item in lst for item in star):

 NF_CF[c2] += 80

 NF_Score[c2] +=1

Bibliography

75

 c2 +=1

#********************H3********************

AdjPOS =['adj' ,'adv']

for lst in pos_tags:

 if any(item in lst for item in AdjPOS):

 NF_CF[c3] += 86

 NF_Score[c3] +=1

 c3 += 1

#********************H4********************

with open('NFRKey.txt', 'r' ,encoding='utf-8') as filehandle:

 for line in filehandle:

 # remove linebreak which is the last character of the string

 currentPlace = line[:-1]

 # add item to the list

 NFRKey.append(currentPlace)

for i in range(0, len(NFRKey)):

 NFRKey[i] = normalize_alef_ar(NFRKey[i])

 NFRKey[i] = normalize_alef_maksura_ar(NFRKey[i])

 NFRKey[i] = normalize_teh_marbuta_ar(NFRKey[i])

 for lst in tokens:

 if any(item in lst for item in NFRKey):

 NF_CF[c4] += 90

 NF_Score[c4] +=1

 c4 +=1

#*******************H5********************

 for c5 in range(0, len(sentences)):

 if(len(tokens[c5]) >= 3):

 if (tokens[c5][0] == 'ان' and

 pos_tags[c5][1] == 'verb' and

 tokens[c5][1] != 'يكون' and

Bibliography

76

 tokens[c5][2] == 'النظام' or

 tokens[c5][2] == 'التطبيق' or

 tokens[c5][2] == 'البرنامج'):

 NF_CF[i] += 53.33

 NF_Score[c5] +=1

 if(len(tokens[c5]) >= 3):

 if (pos_tags[0] == 'verb' and # يجب

 tokens[c5][1] == 'ان' and

 pos_tags[c5][2] == 'verb' and

 tokens[c5][2] != 'يكون' and

 tokens[c5][3] == 'النظام' or

 tokens[c5][3] == 'التطبيق' or

 tokens[c5][3] == 'البرنامج'):

 NF_CF[c5] += 53.33

 NF_Score[c5] +=1

c5 +=1

#********************H6********************

DigPOS= ['part_neg']

 for lst in pos_tags:

 if any(item in lst for item in DigPOS):

 NF_CF[c6] += 82.66

 NF_Score[c6] +=1

 c6 +=1

#********************H7********************

#H7.1

for i in range(0, len(sentences)):

 if(len(tokens[i]) >= 5):

 if (tokens[i][0] == 'ان' and

 pos_tags[i][1] == 'verb' and

 pos_tags[i][2] == 'noun' and

 pos_tags[i][3] == 'adj' and

Bibliography

77

 (pos_tags[i][4] == 'prep' and

 pos_tags[i][5] == 'noun')):

 F_CF[i] += 88.33

 F_Score[i] +=1

 #H7.2

 if(len(tokens[i]) >= 6):

 if (tokens[i][0] == 'أن' and

 pos_tags[i][1] == 'verb' and

 pos_tags[i][2] == 'noun' and

 tokens[i][3] == 'من' and

 pos_tags[i][4] == 'noun' and

 (pos_tags[i][5] == 'noun' or

 pos_tags[i][5] == 'adj' or

 pos_tags[i][5] == 'prep')):

 F_CF[i] += 88.33

 F_Score[i] +=1

 if(len(tokens[i]) >= 6):

 if (tokens[i][0] == 'يجب' and

 tokens[i][1] == 'ان' and

 pos_tags[i][2] == 'verb' and

 pos_tags[i][3] == 'noun' and

 pos_tags[i][4] == 'adj' and

 pos_tags[i][5] == 'prep'):

 F_CF[i] += 88.33

 F_Score[i] +=1

#********************H8********************

x = ['يعرض' ,'يفعل ' ,'يعبئ ' , 'يحدث' , 'يعدل' , 'يسجل' ,'يضيف',

 ['يبحث','ينشئ ','يحسب','يحذف'

for lst in tokens:

Bibliography

78

 if any(item in lst for item in x):

 F_CF[c8] += 88.33

 F_Score[c8] +=1

 c8 +=1

#********************H9********************

#conditinal sentences

for i in range(0, len(sentences)):

 if(len(tokens[i]) > 5):

 if (pos_tags[i][0] == 'conj' and # لو، إذا

 pos_tags[i][1] == 'verb' and

 pos_tags[i][2] == 'noun' and

 pos_tags[i][3] == 'noun' and

 pos_tags[i][4] == 'verb_pseudo'):

 F_CF[i] += 76.66

 F_Score[i] +=1

#--

writer = csv.writer(outfile , escapechar=' ', quoting=csv.QUOTE_NONE)

for i in range(0, len(sentences)):

 if(F_Score[i] > NF_Score[i]):

 pred.append('FR')

 elif(F_Score[i] < NF_Score[i]):

 pred.append('NFR')

 elif(F_Score[i] == NF_Score[i]):

 if(F_CF[i] > NF_CF[i]):

 pred.append('FR')

 elif(F_CF[i] < NF_CF[i]):

 pred.append('FR')

 elif(F_CF[i] == NF_CF[i]):

 pred.append('Nan')

 Data.append([pred[i], sentences[i]])

 writer.writerow(Data[i])

outfile.close()

Bibliography

79

print(classification_report(true, pred))

