Palestine Polytechnic University
Deanship of Graduate Studies and Scientific Research

Master of Informatics

Semi-Automated Classification of Non-Functional Arabic User Requirements
using NLP Tools

By:
Eman Faiz Awad

Supervised By:
Dr. Faisal Khamayseh

Prof. Nabil Arman

Thesis submitted in partial fulfillment of requirements of the degree

Master of Informatics

February, 2024

The undersigned hereby certify that they have read, examined and recommended to the
Deanship of Graduate Studies and Scientific Research at Palestine Polytechnic University:
The undersigned hereby certify that they have read, examined, and recommended to the
Deanship of Graduate Studies and Scientific Research at Palestine Polytechnic University the
approval of a thesis entitled:

Semi-Automated Classification of Non-Functional Arabic User Requirements using NLP
Tools, submitted by Eman Awad in partial fulfilment of the requirements for the degree of

Master in Informatics.

Graduate Advisory Committee:

Dr. Faisal Khamayseh (Supervisor), Palestine Polytechnic University.

Signature: Date:

Prof. Nabil Arman (Co-Supervisor), Palestine Polytechnic University.

Signature: Date:

Dr. Nancy Alriji

(Internal committee member), (Palestine Polytechnic University.).

Signature: Date:

Dr. Husam Suwad

(External committee member), (Palestine Technical University - Kadoort).

Signature: Date:

Thesis Approved by:
Dr. Nafeth NaserAldeen
Dean of Graduate Studies & Scientific Research

Palestine Polytechnic University

DECLARATION

I declare that the Master Thesis entitled” Semi-Automated Classification of Non-Functional
Arabic User Requirements using NLP Tools” is my own original work, and herby certify that
unless stated, all work contained within this thesis is my own independent research and has not
been submitted for the award of any other degree at any institution, except where due

acknowledgement is made in the text.

Eman Faiz Awad

Signature: Date:

II

STATEMENT OF PERMISSION TO USE

In presenting this thesis in partial fulfilment of the requirements for the master’s degree in
Informatics at Palestine Polytechnic University, I agree that the library shall make it available
to borrowers under rules of the library. Brief quotations from this thesis are allowable without
special permission, provided that accurate acknowledgment of the source is made. Permission
for extensive quotation from, reproduction, or publication of this thesis may be granted by my
main supervisor, or in his absence, by the Dean of Graduate Studies and Scientific Research
when, in the opinion of either, the proposed use of the material is for scholarly purposes. Any
copying or use of the material in this thesis for financial gain shall not be allowed without my

written permission.

Eman Faiz Awad

Signature: Date:

II

Ladldl

Laboll bl go S Joiid Cum bl pglal Bl 895 3 doge dpe wldlaiall duwdids pias
Solgally Oy a1 W3 (3 Loy cplladd Baganll ailas dadbgll A Oldlaial sass duabbgll pe wldlatally
02599 Opedsdiall Ol dudtd dpwlial Hgal (29 dkeiidlly 4353y slasYl an oludlly Helaolly Sl
oo 5l pusvicnall ciladlaie lbids (o dxabsgll e coldbatell Cadual sim bl B35 (e dL5] 5548
o0 S Wie g2y B3y wldlarl odg) (o) Caniuardl by Jlxall (3 d8ya09 duasasiie whlge cdlany
e doglac daid 93 Wildlaioll Wl ¢po ldlatall odg) G acs o 3L Caniat)! Jaze oo ¢opshasll
Caniyad] 1o Urgd dog,bYl oda pudl .ooldlhatell sda Cariual (§ Cdglly (Saudl dgll (e dylall ode JU&S
e daglall OLUI dlland 80T (29 CAMeL 9ol plustiwl doyall Ll duadss)l e pasiunell ildlaie
Bran lio zhswiwd dewlud)l duyall dlazd) CuS39 sl] Uil 451 4idl delgall (o de game Al W
Oldlaia) L pludly Dgalll Hodanll zlysviwl ol (Old pw J) Oldlatell sds Cadual @ o9 lgo S
e delgdll Gadad 3yb oy Aax JSU 0,81 dxall i @iy @ 309 CAMeL gl plasiusly Aloall pusciansl
L2 § Ogb dady 8 aliyng CAMeL 1.3.1 @igol plaskiunl &> Adoll dd)lall Jiail o3 .CAMeL 811 colr s
B Lo bl s pdsviuall Wldlaie Caual (3 djiiell diylall duleldy 5olaS bl yglly Windows 10

Aoyl

IV

Semi-Automated Classification of Non-Functional Arabic User Requirements using NLP
Tools

Eman Faiz Awad

ABSTRACT

Requirements Engineering is a critical phase in the software development life cycle,
encompassing both Functional Requirements (FR) and Non-Functional Requirements (NFR).
NFR defines the quality attributes of the system, including performance, security, availability,
look and feel, fault tolerance, legal and operational, essential for meeting user needs and
imposing additional constraints on software quality. Prioritizing NFR from user requirements
is challenging, requiring specialized skills and domain knowledge. Manual categorization is
time-consuming and mentally taxing for developers, making automated or semi-automated
classification of NFR from requirements documents valuable. This approach reduces manual
effort and time in identifying specific NFR among numerous requirements. This thesis
introduces a novel semi-automated categorization approach for Arabic non-functional user
requirements using CAMeL Tools, a natural language processing tool. We propose a set of
heuristics based on fundamental Arabic sentence constructions to extract information and
categorize requirements into seven NFR classes. Tokens, PoS tags, and lemmas of parsed user
requirements are generated using CAMeL tools. The closest class for each statement is
determined by applying heuristic criteria to CAMeL outputs. The implementation of our
approach using CAMeL Tools 1.3.1 and Python code in a Windows 10 environment
demonstrates its practical applicability and efficiency in classifying Arabic non-functional user

requirements.

DEDICATION

To My Beloved Family,

To my parents, whose unwavering support and encouragement have been my guiding light

throughout this journey.

To my dear husband, for being my rock, my confidant, and my biggest cheerleader. Your

constant encouragement and understanding have given me the strength to pursue my dreams.

To my precious children, who inspire me every day to be the best version of myself. Your love

and joy have filled my life with purpose and motivation.

To my supportive sisters and caring brothers, thank you for always standing by my side, offering

words of wisdom, and being my pillars of strength.

This thesis is dedicated to all of you...

VI

ACKNOWLEDGEMENT

I would like to express my deepest gratitude and appreciation to my thesis supervisors, Dr. Nabil
Arman and Dr. Faisal Khamayseh, for their invaluable guidance, unwavering support, and
insightful feedback throughout the process of conducting this research. Your expertise,
encouragement, and dedication have been instrumental in shaping this thesis and enriching my

academic journey.

I am also immensely grateful to my colleague in the master's program, Karmel Shehada, for her
endless assistance and support. Her contributions and willingness to lend a helping hand have

been truly invaluable, and I am sincerely thankful for her generosity.

I would like to express my sincere gratitude to the faculty members at the College of Graduate
Studies for their invaluable guidance, support, and encouragement throughout the

course of my thesis.

Special appreciation goes to Eng Maeen and Khalil for their invaluable assistance and for
generously providing the necessary data for my research. Your support and collaboration have

been integral to the success of this project.

Finally, I extend my sincere thanks to all those who have contributed in any way to the
completion of this thesis. Your support and encouragement have been instrumental in this

achievement.

Thank you all

VI

Table of Content

LD) S O 72N 22\ B (0] I
STATEMENT OF PERMISSIONTO USE ..., I
ORIl Lttt R ettt ettt v
N I 0 e N A%
102 21 3] (072N 1 (0] VI
ACKNOWLEDGEMENToiitiiiiiiiiiiiiiiietiitiseninesinemerrmrmnmer.nn———————————— v
B o) (SR 0) A O) 111§ L OO PPTPPO PP VIII
LIST OF FIGUREScooeiiiiiiiiiiitiitiieitteeeeteeseeeaeesaeeseeesssssssseesssssassssssssssssssnsssssssssssnnssnnnnnnnnnnn XI
00 S 0) Rl 17N 2 5] 2 XII
LIST OF ABBREVIATIONS . ..ottt XIIT
CHAPTER ONE INTRODUCTIONoooiiiiiiiiiiiiiiiieeeeeeeeeee ettt 1
L1 IMIOTIVALION ...ttt ettt ettt ettt et e et e e eenree s 1
1.2, Problem STatemMENT:ooiieiiieie e 2
1.3, Proposed SOIULION......ccuviiiiiie et e e e et eeanree e 3
1.4, RESEAICH STEPS ..eiiiiiieiiii ettt 4
1.5, ReSEArCh ODJECLIVESoviiiiee et e e aree e 6
1.6, CONIIDULION ..ottt et e rbeenree s 7
1.7. Research IMPOItANCEccvviiiiie ittt e e e e aree e 7
1.8, ThesiS OrganizZation...........cceeiiiieiiiee ittt e e e e saeaeaaeae s 8
CHAPTER TWO BACKGROUND.......ccoiiiiiiiiiiieee e 10
2.1. Requirements ENGINEEring (RE)ccvveoiiieiiie e 10
2.1.1. Software Requirements Specification (SRS).........cccccvviiiiiiiiieiiii e, 12
2.1.2. Types Of REQUITEMENTS......cuviiieiiiiiie ettt e s 13
2.1.3. Benefits of Good User ReqUIFEMENTS..........ccoiiuiiiieiiiiiiiie e 16
2.1.4. User Requirements Written in ArabiC..........cccoovviiiiiiii i 17

VIII

2.2. Natural Language Processing TOOIS.......cccouiiiiiiiiiieie e 19

2.2.1. CAMEL TOOIS ...t 20
2.2.2. Importance of CAMEL TOOIccouiiiiiiiiiiieiie e 20
2.2.3. Functionality and FEAtUIES...........ccouiiiiiiiieiie e 21
2.2.4. Superiority OVer Other TOOISccoiiiiiiiiie e 21
2.2.5. Symbol Representation and Their SIgnificance............ccccevvieriiiiie e, 21
Chapter THREE LITERATURE REVIEW ..., 22

3.1. Automated Classification of Non-Functional User Requirements Using Machine

Learning AlGOITTNMSei e 22
3.2. Non-Functional User Requirements Classification Using Feature extraction........... 26
3.3. Previous studies Related to Arabic User Requirements Conducted at PPU.............. 27
CHAPTER FOUR RESEARCH APPROACHcooovviiiiiiiiiiiiiiiieeeeeeeeee e 30
4.1 Arabic User Non-Functional Requirements Classification Approach 30
4.1.1 Non-Functional User Requirements Linguistic Featuresccccccveviveerivnnnnn 31
4.1.2 The PropoSed HEUFISHICSccuuveiiiieiiiieeciiee e cee e sis s ee e iee e 32
CHAPTER FIVE EVALUATION......cooiiiiiiiiiieee ettt 62
5.1 EVAlUALION IMELIICSvviiiiiiieesieese ettt 62
5.1 PIECISION ..ttt ettt 62
5.1.2 RECAII ... 62
5.1.3 ACCUIACY vtiiieieiiiiiitttt e e e e e s ettt e e e e e s sttt e e e e e e e s e bbb a e e e e e e e s st b e e e e e e e e e e nnas 63
O.104 FL-SCOME....iiiiiiitii ettt 63

oI > { o 1= 11111) PSSP OUP PP 63
5.2.1 EXPErimental SEIUPcccveeiiiee ettt 63
5.2.2 Data Preparation...........cceeiiiieiiiee ettt e e 63
5.2.3 EXperimental ProCEAUIE..........ccoiiiiiiee ittt 63

5.3 RESUIL ANAIYSIS. . .ciiiiiiiii e 64
5.3.1 SINGIE-Class TeSHINGuuiiiiiiiiieeiiiiie ettt e e 64

IX

5.3.2 MUIti- ClaSS TESTING ..eeiuvveeiiiieeiieeeciiee e siiee ettt et ee e sraeeeanneee e 65

CHAPTER SIX CONCLUSION AND FUTURE WORKS ... 67
G T00 A O o] 11 oo SRS 67
6.2 FULUIE WOTK ..ottt e et e et e e 67

L3010 0 (0 T 7. N o & V2 69

1. N o g DA D 1 G N 73

LIST OF FIGURES

Figure 1.1: Proposed SOIULION.ciiiiiiiiiiiiiiiic et 4
Figure 1.2: Flowchart of the Steps of Our Approachccccveiiiiiiiiie i 6
Figure 2.1:Process of Requirements ENgINEeringcocvveiiviiiiiieiiiie e 12
Figure 4.1:Empirical MethodOLOZYcoovviiiiiiiiiiiiiiiie e 31

XI

LIST OF TABLES

Table 3.1:Summary of related works of automated classification of NFR using Machine

Learning AlOTItRMSueiiiiiiiiiii e 25
Table 3.2:Summary of related works of NFR Classification using Feature extraction............ 26
Table 3. 3: Previous Studies Related to Arabic User Requirements Conducted at PPU 28
Table 4.1:Performance Requirements KeyWordsccoveiiiiiiiiieiiiiiiiiiec e 43
Table 4.2: Security Requirements Keywords............ccooiiiiiiiiiiiiii e 44
Table 4.3: Availability Requirements Keywords............ccoooiiiiiiiiiii e 45
Table 4.4:: Look and Feel Requirements Keywordsccoooiiiiiiiiiicic e 46
Table 4.5: Fault Tolerance Requirements Keywords............ccoccoviiiiiiiiin e 47
Table 4.6: Legal Requirements KeyWords............ccoviiiiiiiiiiiiiiiiicecc e 48
Table 4.7: Operational Requirements Ke€yWordsccccviiiiiiiiiiiiiiiiec e 49
Table 4.8: Expert Evaluation...........coociiiiiiiiicccc e 50
Table 4.9: Case STUAYevviieiiieiie e 53
Table 5.1: Single- Class Testing RESULLS.vvviiiiiiiiiiiiiiiiiiiiee e 64
Table 5.2: Multi-Class Testing ReESULILS.uuviiiiiiiiiiiiiiiiiieee e 66

XII

LIST OF ABBREVIATIONS

ANN Artificial Neural Networks

BERT Bi-directional Encoder Representations from Transformers
CR Classification Rules

FN False Negative

FP False Positive

FRs Functional Requirements

GATE General Architecture for Text Engineering
LSTM Long Short-Term Memory

ML Machine Learning

NLP Natural Language Processing

NFRs Non-Functional Requirements

PoS Part of Speech

RNN Recurrent Neural Network

RE Requirements Engineering

SDLC Software Development Lifecycle

SRS Software Requirements Specification

TN True Negative

TP True Positive

UML Unified Modeling Language

XIII

Introduction

CHAPTER ONE
INTRODUCTION

1.1. Motivation

The realm of software development is a dynamic and ever-evolving field where the ability to
meet and exceed user expectations is the key to the success of a project. Central to this endeavor
is the accurate identification and classification of user requirements, a process that can be both
complicated and challenging, particularly when dealing with non-functional requirements
(NFRs). Considering this backdrop, our thesis is propelled by a deep-seated motivation to

address critical challenges in the software engineering landscape [1].

Non-functional requirements described as the quality attributes of the system. Determining the
NEFR is one of the most difficult steps during software development. These NFRs encompass
attributes such as performance, security, usability, reliability, legal, look and feel, fault tolerance
and scalability, which are crucial in determining the overall quality of a software product. They
dictate not just what a software system should do but how it should do it, encompassing a wide
spectrum of qualitative aspects that have a profound impact on user satisfaction [2]. Accurately
identifying, extracting, and classifying NFRs is a complex task that demands meticulous
attention to detail, cultural sensitivity, and linguistic expertise [3]. Within this complicated
ecosystem, there is an obvious need for a solution that not only solves these difficulties but also

streamlines the process for Arabic-speaking consumers [4].

Non-functional requirements (NFRs) are a critical aspect of software design that deeply
influences its overall quality and user experience. They extend beyond the core functionality to
define how a system operates, and they are often critical to the success or failure of software

applications [5].

This research focuses on leveraging Natural Language Processing (NLP), which lies at the
intersection of computational linguistics and artificial intelligence [6]. NLP has revolutionized
human-machine interactions by enabling machines to understand and process human language
in ways previously unimaginable. This advancement has broader implications, including its

application to the Arabic language.

Introduction

Applying NLP to Arabic language processing opens up opportunities for redefining how non-
functional requirements (NFRs) are identified and categorized. Customized NLP tools for

Arabic aim to address the unique linguistic and cultural nuances of the Arabic-speaking world.

Arabic-speaking users represent a significant and growing global demographic, and their
distinct characteristics pose both challenges and opportunities in software development.
Neglecting these nuances can lead to misalignment between software products and users,
compromising user experiences [7]. This research aims to create culturally and linguistically

accurate software tailored to Arabic-speaking audiences, going beyond basic functionality.

The thesis tackles the complex intersection of NFRs, advanced NLP capabilities, and the
intricate Arabic cultural context. It aims to develop a semi-automated classification system that
combines human expertise with NLP, improving the precision and speed of NFR classification

while respecting Arabic's linguistic subtleties and cultural nuances [8].

This proposed system will be intricately designed to handle Arabic's complexity, including its
extensive lexicon, diverse dialects, and cultural expressions. The research aims to set a new
standard in NFR classification for Arabic-speaking users, advancing culturally sensitive and
linguistically inclusive software engineering tools. The ultimate goal is not only to enhance
technology but also to contribute to a more inclusive and empathetic global community,

harnessing NLP's transformative power.

1.2. Problem Statement:

In the field of software engineering, the correct classification of user requirements, mainly non-
functional requirements (NFRs), has a major role to play in achieving the functionality and
quality of software systems. Despite their importance in clearly influencing the overall quality
and performance of software, NFRs often take the back seat behind functional requirements.
Because it is often considered that the requirements are only meant to specify a system’s
functionality and capabilities and they won’t involve operational aspects. The Classification of
these requirements into certain categories is a difficult task especially if the requirements are in
Arabic language because of the Arabic language unique linguistic and cultural features. NFRs
consist of a wide range of qualities such as Performance, Security, Availability, Look and Feel,
Fault Tolerance, Legal, Operational; these are prerequisites, which are essential to use positive
experience and, moreover, they are necessary to provide good operational systems. Proper NFR
classification is important to enhance the integration and management of NFR within the

Software Development Lifecycle (SDLC) and reflects the variety of users' intricate needs.

Introduction

Manually classifying NFRs is an onerous task, requiring domain-specific knowledge. It could
be error prone and inefficient in large-scale projects. Complexity increases further with Arabic
content because of its varied dialects, complex syntax, and deep culture. Traditional methods
are manual and have mainly addressed the content classification problem. There is a limitation
to manual and traditional contents classification, especially with little or no Arabic language
datasets available for applying machine learning algorithms. Machine learning algorithms have
been used in the requirement classification for some languages like English. To tackle these
challenges, our research proposes a semi-automated approach using NLP tools specifically
designed for Arabic. Leveraging the capabilities of CAMeL Tools, our approach aims to reduce
the manual effort, time and labour involved in classification. We are developing a system that
can automatically identify and classify NFRs in Arabic text with a high degree of accuracy as
well as cultural sensitivity. This ground-breaking approach will transform the way NFRs are
categorised, resulting in software development practices that are more inclusive, efficient and

responsive to the needs of their global users, particularly Arabic speakers.

1.3. Proposed Solution

We introduce in our thesis a novel semi-supervised approach that is dedicated to classify NFRs
in Arabic software documentation. We introduce a novel semi-supervised approach in our
thesis, dedicated to classifying NFRs in Arabic software documentation. Our proposed
definition and systematic categorization of NFRs draw from methodologies utilized by
prominent researchers in the field [9][10][8]. This existing literature may not specifically
categorize NFRs into these seven categories. However, our categorization comprises seven
categories: Performance, Security, Availability, Look and Feel, Fault Tolerance, Legal, and

Operational.

This classification categorized the non-functional requirements (NFRs) in seven categories
which includes Performance, Security, Availability, Look and Feel, Fault Tolerance, Legal, and
Operational. This categorization is in line with published frameworks used in other scholarly
works which make our analysis comprehensive and clear. Our approach is designed to work
specifically with the linguistic and cultural features that are unique to the Arab world. It relies
on a heuristic approach that exploits specific features of CAMeL Tools, an NLP toolkit
developed to handle the specific challenges of the Arabic language. We utilize NLP methods,
including tokenization, part-of-speech tagging, and sentence segmentation, tailored to
efficiently analyze and understand Arabic texts. Our approach specifically targets the unique

patterns and idioms of the Arabic language. The salt of our technique is a set of heuristics rooted

3

Introduction

in Arabic sentence structure basics extracted based on domain wisdom and linguistic
breakdown. These heuristics are well designed to resolve classify NFRs into the seven
predefined category types, seeking accurate classification without demanding extensive training
datasets which are painfully insufficient for Arabic NFRs. We have illustrated our approach for
classifying Arabic NFRs in Figure 1.1 in our thesis. Our method of classification is a semi-
supervised method rather than using typical data-driven machine learning techniques. This is a
shift to a more contextually aware and nuanced analysis in software requirements and not just
a data analysis approach but considering and complying with the user’s needs for software
requirements. This is noticeably different from the current software engineering practices hence
it is a great contribution to the practice of software engineering. We fill in the gap of software
engineering in recognizing NFRs in the To-be operational system. This is a break of the current
machine learning culture on software requirement analysis. This will not only add value to the
software engineering industry but also take into context the user’s requirements for software,

especially in the Arabic speaking market.

Requirments Data Preprocessing (parsing,tokenization,
Document POS tagging, sentence splitting)

Classified Classify

Requirements Requirements Classification Rules

Figure 1.1: Proposed Solution

1.4. Research Steps

As part of our research, we have followed a systematic and holistic approach while categorizing
NFRs in Arabic documentation with the help of NLP (Figure 1.2). Attempts have been made to
cover the entire process in key phases, focusing on the unique complexities of the Arabic

language and its cultural diversity.

Introduction

e Data Collection: We collected data which contained a huge collection of requirement
documents.

e Data Preprocessing: Utilizing CAMeL Tools, we perform preprocessing tasks on the
collected data. This step involves parsing the Arabic text for morphological analysis,
tokenization is done to divide the text into individual words, also called tokens. PoS
tagging is responsible for assigning the grammatical structure of the word. Sentence
splitting: tokenize the sentence into several sentences.

e C(lassification Rules Development: Instead of using machine learning algorithms, we
use a heuristics approach. We propose a set of classification rules (CR) derived from a
deep linguistic analysis of Arabic language considering Arabic sentence constructs to
categorize the NFR into seven classes: Performance, Security, Availability, look and
feel, Fault Tolerance, Legal, Operational. We did not consider scalability class SC as it
overlap with the other classes.

e Classify Requirements: Once the rules have been put in place, we are able to categorize
the preprocessed NFR’s. This step is semi-automated where we are guided by the rules
which we setup that are effective at distinguishing the seven types of NFRs.

e Post-Classification Processing (Evaluation): The processed classified necessities then
go for post-processing, which is utilized to refine and approve the consequences of
posting. The reason here is to expand the level of precision in ordering non-useful
necessities. The framework considers the setting and the Arab semantics shown in the

created content.

In this research, we have taken a broad and detailed approach to developing a partially
automated system that can successfully and efficiently classify non-functional requirements in
Arabic documents, with special attention to the complexity of the language and the cultural

characteristics it carries.

Introduction

Classification Rules

1.5.

Data Collection Data Preprocessing Development
Post-classification Classify
processing Requirements

Figure 1.2: Flowchart of the Steps of Our Approach

Research Objectives

This research aims to achieve the following objectives:

1. Develop a Heuristic-Based NFR Classification Framework:

Develop and implement a more complex semi-automated system that heuristically
classifies non-functional requirements (NFRs) in Arabic language documents. This
system will use Arabic-optimized NLP tools and will be able to process and comprehend
complex language structures and cultural idioms.

We are devising a set of heuristics that are developed by the analysis of the language to
do the task of classifying NFR’s into predefined classes like performance, security,
availability, look and feel, fault tolerance, legal, and operational without having to build

machine learning models.

2. Optimize System for Arabic Linguistic and Cultural Nuances:

The classification process must be tailored to the specific challenges of the Arabic
language, such as morphological richness and dialectal variation, while ensuring high
linguistic fidelity and cultural relevance.

Integrate contextual understanding and semantic analysis into our heuristics to enhance
the system's capability to understand the contextual context of Arabic NFRs and also the

semantics of the Arabic NFRs.

3. Validate the Classification Heuristics and System Performance:

Application of vigorous tests with an extensive and varied set of data in order to validate

the efficiency of the heuristic rules and the overall system of classification.

Introduction

e The system performance should be evaluated by both qualitative and quantitative
measures such as classification accuracy, rule precision, and adaptability of the system
with different Arabic dialects and domains; hence, the approach should be robust and

scalable to be fit for real-world applications.

1.6. Contribution

In the area of natural language processing (NLP) applied to software development, our work
presents a new approach compared to what has already been published. With a special interest
in Arabic, we are building a semi-automated, heuristic-based system that helps to classify non-
functional requirements (NFRs) from Arabic language documentation. What we contributed in
the natural language processing (NLP) field for software development is considered new
compared to the published papers before. Our main focus is on the Arabic language. We are
producing a system that depends on heuristics and is semi-automated to classify the non-
functional requirement (NFR) from an Arabic-language document. Our approach provides an
in-depth engagement with the complex grammar, rich morphology, and diverse dialects of
Arabic, which, combined with an accurate interpretation of the subtleties of the language, allow
us to achieve a level of understanding higher than any other available commercially, resulting
in unparalleled technological advancement and cultural sensitivity to the issues at hand. Since
we did not have large datasets available in Arabic, machine learning was not considered a
worthwhile solution for NLP. Instead, we adopted heuristic rules based on the expert linguistic
analysis system that helped us categorize the NFRs into specific classes such as performance,
security, availability, look and feel, fault tolerance, legal, and operational. The heuristic method
is very efficient in processing millions of Arabic documents in a scalable and very efficient way.
This methodology is geared towards setting a new standard of NFR classification that covers a
large proportion of the world-wide non-English-speaking linguistic community and
consequently opens a new era of NLP and software development software and opens new areas
and NFR standards to development, thus contributing to world-wide software development.
This research in a totally connected world is very important to provide technology with the
Arabic and Oriental languages as the only way to become closer to or friends with other nations

via technology. This way, we can provide sustainable technological development globally.

1.7. Research Importance
This study is a big step forward in achieving the integration of software engineering and Arabic
language processing. We are concerned with identifying and classifying non-functional

requirements (NFRs) in software development, an issue that has not been given enough

7

Introduction

attention. Non-functional requirements are required for software, like required functionality;
they determine the overall behavior of the system in regards to the user experience, such as
usability, reliability, security, and certain software features. We have developed an algorithm
applied as a semi-automated system where we process information based on racial, lexicon, and
heuristic approaches, enriched by Arabic-optimized NLP tools. Unlike the typical machine
learning algorithms, our system is based on a number of heuristics that have been developed
through an extensive linguistic analysis of Arabic. Our novel approach significantly extends the
state of the art of software engineering methodologies and will result in higher software quality
from non-functional aspects, which meets user expectations. Moreover, our research has a
direct, meritorious impact on the Arabic-speaking society worldwide, where it is specifically
concerned with the idiosyncratic challenges imposed by the linguistic nature of Arabic on
software development. Building such a system will allow us to make the development of
software that is consistent with Arabic, which will increase the satisfaction and user engagement
of the Arab speakers, and automating the NFR classification process will make the NFR
classification process less error-prone and more efficient, which is critically important for
languages like Arabic in order to develop a better quality of software that is sensitive to the
Arabic culture. The research that we have undertaken illustrates a somewhat modern software
development in a cross-cultural, global setting. Integrating linguistic and cultural intelligence
into software development is crucial in today's interconnected world. Our research serves not
only the Arabic-speaking community but also sets a standard in software development,
combining NLP and heuristic analysis. This approach is transformative for the broader field of
global software engineering, showcasing the importance of linguistic and cultural

considerations in creating effective software solutions.

1.8. Thesis Organization

This thesis is organized as follows:

e Chapter 1: Introduction

In the first chapter, the context for the thesis is established. It begins with the motivation,
highlighting the need to address requirements engineering challenges, especially for Arabic-
speaking customers. The problem statement outlines specific challenges, and the proposed
solution introduces the conceptual framework. Research steps detail the methodology, and
research aims clarify the goals. Contributions outline expected scientific and practical impacts,
while research importance emphasizes relevance within the field. Thesis organization provides

a structure overview.

Introduction

e Chapter 2: Background

Chapter 2 offers a comprehensive background to the thesis. It explores requirements
engineering (RE), requirements specification (SRS), types of requirements, and the importance
of clear user requirements. The chapter then delves into user requirements written in Arabic,
setting the stage for the relevance of Natural Language Processing (NLP) tools, with a focus on

CAMEL Tools for Arabic language analysis.

e Chapter 3: Literature Review

This chapter conducts a systematic review of literature related to the thesis. It compares
software requirements classification using rule-based and machine learning approaches for
English and German. The review also covers automated production of UML diagrams and its

relevance to Arabic and English user requirements.

e Chapter 4: Research Approach

Chapter 4 details the research approach for categorizing non-functional user needs. It describes
the step-by-step methodology, reasoning, and unique methodologies developed to address

Arabic language complexities in software development.

e Chapter 5: Evaluation

The evaluation chapter explains the process for assessing the solutions offered. It discusses the
evaluation methodology, experiments, and results, providing empirical evidence of the research
approach's effectiveness, including both achievements and limitations observed during the

assessment.

e Chapter 6: Conclusion and Future Work

The final chapter includes a conclusion and future work section. It summarizes significant
results and contributions, reflecting on the research journey and offering a critical appraisal of
the work performed. Additionally, it suggests directions for future research and developments

in the subject, providing a comprehensive conclusion to the entire research endeavor

Background

CHAPTER TWO
BACKGROUND

2.1. Requirements Engineering (RE)

Requirements Engineering (RE) is a basic subject in software engineering which is the driving
force of the requirement engineering habits in software engineering on which the excellent
structure of software systems will imbue [11]. RE abides by a simple definition. It is a method
of developing software repeatedly by tracing users anticipations and requirements totally and
carefully in order to prove that the ultimate product is what the users unwish. [10]. It is also the
most essential stage inside the whole software development life cycle and is responsible for
linking the Conceptual design of software system and its physical formation [12]. RE starts with
the identification of stakeholders. Requirements are then further explored, constrained, and
expressed as unambiguously as possible in order to be accurately represented as a software
requirements specification (SRS), which is the primary RE documentation essential for the
software system and includes functional and non-functional requirements [13]. The purpose of
these specifications is not only to provide what the software system should do but also how it
must respond under different conditions, the limitations of the software, and how it should be
expected to react not only to problems but to normal jump situations. So it is extremely
beneficial to have a well-structured SRS in order to have all of the project's stakeholders
engaged in the software development process, such as developers, testers, managers of the
project, and clients [7]. RE separates its requirements into two categories, namely functional
and non-functional. Functional requirements (FRs) describe in detail the functions, processes,
and features that the software system must deliver, whereas non-functional requirements
(NFRs) cover the quality attributes that govern how the system should behave. These kinds of
non-functional requirements are also critical in designing the whole user experience as well as
making sure that not only the software system works properly but also constantly exceeds user

expectations.

RE is a discipline that concentrates on good communication, comprehensible documentation
and determination of user objectives to result in software that is before the allocated time. If it
is not implemented then there is a huge chance that the development of the software will be
affected. It is a proactive risk reduction activity that is used to eliminate the probability of
project failure. RE also reduces the development cost by doing the software development right

at the first attempt and revealing what it is that the software has to do. In the world that we live

10

Background

in today, RE is the best practice and gives the best results, this means that software products are

enforced to under the development according to what the user is expecting [14].

The process of requirements engineering is an intricate journey that can be divided into four
core sections, each of which is integral to the success of a software development project. The
first component is known as a feasibility study, and it is used to assess the feasibility and
viability of the project. This is followed by a phase where the project is broken apart in depth
with respect to the goals in terms of the difficulties as well as the potential resources, helping
the stakeholders realize their decisions on the project. The requirement elicitation and analysis
phase is the next phase, which comes after the feasibility study. During this phase, end-users,
customers, and domain experts will work together to understand and establish what their
requirements and expectations are. The criteria, which have been obtained, are then assessed by
the team to ensure they are unambiguous, have no missing requirements, and that all parties

understand the requirements [15].

The next important stage is requirement specification, which means the determination of the
needs of the clients. More importantly, it contains a comprehensive and cohesive list of these
items. It’s usually in the form of a SRS document. In this stage, the SRS will act like a system
blueprint. SRS describes what the software is going to do. The software requirement
specification states both the functional and non-functional requirements and the way the
software should behave and perform [16]. Finally, after the requirements have been stated, they
undergo a process of requirement validation. Requirement validation is a process in which the
stated requirements are checked and validated to make sure that the requirements that the
customer says he is looking for are really what the project objectives are and are also realized
and checked by the various stakeholders. From the software engineering perspective, a major
goal of the requirements engineering processes is the quality control of requirements, which,
through systematic requirements validation, prevents mistakes in the early development of the
software and reduces the need for costly changes later in the development. In other words, the
four processes of requirements engineering aid effective software development mainly through
communication support, risk management, and the delivery of the software product that users

want and industry standards [17].

11

Background

Requirements

Feasibility Elicitation and

Study

Analysis
Requirements
1 Spedcification
Feasibility Requirements
Report Y Validation
System
Models '

User and System
Requirements

Y

=| Requirements
- Document

Figure 2.1:Process of Requirements Engineering

2.1.1. Software Requirements Specification (SRS)

The Software Requirements Specification (SRS) document is crucial in software engineering,
acting as a detailed guide outlining the software's requirements and specifications. It forms a
key agreement among stakeholders like clients, developers, and project managers, defining the
software's intended functionality and operational constraints. The SRS specifies both functional
requirements (actions the software must perform) and non-functional requirements (quality
attributes like performance, security, and usability). This document guides all stages of the
software development lifecycle, from design to updates, and helps avoid misunderstandings that

can cause project delays and failures to meet user needs.

The SRS also serves as a validation tool, ensuring the final product matches the agreed
specifications. It assists in estimating costs and timeframes, enhancing project planning and
management. Furthermore, it improves communication among team members, reducing
ambiguities and providing a common language for different expertise. Essentially, the SRS is a
comprehensive document that forms the foundation for a software project, offering a detailed

roadmap from inception to deployment.

A well-crafted SRS includes various essential elements. It starts with an introduction that
outlines the document's purpose, scope, definitions, acronyms, abbreviations, and references,
providing the reader with context. It then describes the intended audience and the software's

practical applications, ensuring clarity and relevance of the information provided [18-21].

12

Background

The Software Requirements Specification (SRS) is a crucial document in the software
development lifecycle (SDLC), serving as a comprehensive blueprint that guides the entire
development process. The main body of the SRS details functional requirements—actions the
system must perform, including user interactions, data processing, and behavior under specific
conditions. It also outlines non-functional requirements like performance metrics, security
features, and reliability standards. These combined elements form the SRS’s core, defining what

the software will do and how it will perform [22].

The SRS also specifies system constraints and assumptions, user scenarios, use cases, interface
requirements, and data models, providing a holistic view of the software's intended
functionality, interactions, and data flow. It includes performance requirements and design
constraints related to external standards or regulations. Appendices offer additional details,
while an index facilitates document navigation. Altogether, the SRS serves as a detailed
specification for subsequent software design, development, and deployment phases, aiming to

create a product that meets user needs and expectations [23].

Throughout the SDLC, the SRS plays a multifaceted role. Initially, it acts as a repository of
agreed-upon requirements, establishing a clear vision of the final product. It then guides
designers in making architectural decisions and formulating system design. During the testing
phase, the SRS becomes a basis for developing test cases and validation protocols, serving as
the standard against which software is verified. It helps manage the project scope, preventing
scope creep and facilitating a formal change control process. In the maintenance phase, the SRS
aids in troubleshooting and guiding future enhancements [24]. Furthermore, it is a vital
communication tool across technical and non-technical stakeholders, aiding in project planning,
time and cost estimation, and risk management. Overall, the SRS is indispensable in ensuring
that each development phase aligns with the initial vision and that the final software product

fulfills stakeholder expectations.

2.1.2. Types of Requirements

In the realm of software engineering, the distinction between functional and non-functional
requirements is pivotal, delineating the broad spectrum of expectations that software is
anticipated to meet. Functional requirements detail the various tasks the software must perform,
specifying actions the system must be able to execute in direct response to user inputs, events,
or interactions. They define the core operations of the software: what it will do in terms of
processes, data manipulation, and workflows. For instance, a functional requirement for an
email application might stipulate that the system should be able to send an email within a certain

13

Background

time frame after the user hits the send button. These requirements are often characterized by
use cases that provide a narrative of typical user interactions, offering concrete examples of
how the software will be used [25]. Conversely, non-functional requirements (NFRs) specify
the quality attributes of the software system, describing not what the software will do, but how
it will perform under various conditions and constraints. They encompass criteria such as
performance, which dictates the response times and throughput rates; reliability, which ensures
the software's stability and consistency over time; and usability, which focuses on the user
experience and ease of use. Non-functional requirements also address security, dictating the
levels of data protection and user authentication necessary; scalability, outlining how well the
software can adapt to increased workloads; and maintainability, defining the ease with which
the software can be updated and modified. For example, a non-functional requirement for the
same email application might require that it maintains a 99.9% uptime, indicating the system's

reliability and availability.

The dichotomy between functional and non-functional requirements is fundamental because it
collectively encapsulates the end-to-end spectrum of software capabilities, from its utility to its
endurance and efficiency. Functional requirements drive the development of features, while
non-functional requirements guide the system's architecture and long-term viability. Together,
they form a comprehensive suite of specifications that software must fulfill to be considered
complete and operational. In drafting an SRS, a meticulous balance between these two types of
requirements is crucial, as overlooking either can lead to a system that fails to satisfy end-user
expectations or one that is not sustainable in the long term [26]. Thus, in defining the success
of a software product, both functional and non-functional requirements hold significant weight,
with each playing an integral role in delivering a well-rounded, robust software solution. In the
tapestry of software engineering documentation, the distinction between user requirements and
system requirements is a critical one, each serving a unique function in capturing the
expectations and specifications of a software system. User requirements are expressed from the
perspective of the end-user and encapsulate the goals, needs, and desired outcomes of the
software utilization. These requirements are typically articulated in natural language and are
often less technical, focusing on what the user wants to achieve without delving into the
intricacies of how the system will deliver those functionalities. For example, a user requirement
might state that a user needs to retrieve a record quickly and easily, without specifying the

underlying technologies or algorithms that will enable this functionality.

14

Background

System requirements, on the other hand, are derived from user requirements but are
characterized by their detailed and technical nature. They provide a comprehensive and precise
description of the functionality and conditions necessary for the software system to fulfill user
requirements. These are often detailed enough for a system designer to use as a blueprint for
building the system. System requirements include detailed specifications of data structures,
algorithms, system interfaces, and other technical parameters that dictate the system's
development and operation [27]. For instance, a system requirement might specify the database
management system to be used, the query response time, or the exact method by which records
are to be retrieved and presented to the user. The clear delineation between user and system
requirements is vital as it addresses different stages of the requirements engineering process and
caters to various audiences. User requirements are primarily concerned with ensuring that the
stakeholders' and users' needs are comprehensively gathered and understood, serving as an
initial guide for the development process. In contrast, system requirements translate these needs
into technical specifications for the development team, ensuring that the software built aligns
with the functional and non-functional demands of the user base. This distinction also aids in
effective communication within the project team and among stakeholders. While user
requirements are accessible to a non-technical audience, providing a basis for initial agreements
and approvals, system requirements are primarily utilized by the project's technical team
members as a definitive reference for designing and building the system. Together, user and
system requirements form the continuum of specification that guides the transition from
conceptual understanding of user needs to the technical realization of those needs in the form

of a software product [28].

In the intricate process of system design, the interplay between different types of requirements
is both subtle and substantial, with each category bearing its unique impact on the final design.
Functional requirements, for example, might include specifics such as the ability of an e-
commerce platform to process transactions securely and efficiently, or the capability of a
database system to execute queries and return results within a specified timeframe. These
requirements directly inform the system's core functionalities, leading to design decisions about
the necessary algorithms, data processing mechanisms, and transaction handling protocols. The
implementation of such functional requirements will dictate the development of particular
features and user interfaces, compelling system designers to create architectures that enable
these functionalities while ensuring user-friendly interactions [29]. Non-functional

requirements, which address the quality attributes of the system, have a more pervasive and

15

Background

often more complex impact on system design. Consider the requirement for high availability in
a cloud storage service, which necessitates the design of redundant systems and failover
mechanisms to ensure uninterrupted service. Or take the demand for scalability in a social media
application, which requires a design that accommodates a growing number of users and data
without degradation in performance. Non-functional requirements like these influence
decisions regarding the underlying infrastructure, the choice of technologies, and the system's
overall resilience and adaptability. They often lead to the incorporation of advanced design
patterns, the selection of robust frameworks, and the consideration of future growth during the

design phase.

User requirements, expressing the end-user's perspective, might manifest as the need for an
intuitive workflow in a software application or the requirement for real-time notifications in a
project management tool. These requirements shape the system design by focusing on user
experience (UX) design elements, necessitating a user-centered design approach that prioritizes
ease of use, accessibility, and user engagement. They influence the layout of the user interface,
the interaction models, and the visual design, ensuring that the system is not only functional but
also pleasurable and efficient to use. System requirements, translating user needs into technical
specifications, have a definitive and detailed influence on system design. For instance, a system
requirement might stipulate the use of a particular SQL database with specific performance
benchmarks or the integration with a third-party authentication service using OAuth protocols.
These precise technical details compel designers to incorporate specific technologies and
architectures into the system to meet these stipulated requirements, often dictating the system's

structure, its modules, and the interactions between its components [30].

2.1.3. Benefits of Good User Requirements

The requirements of a software project are very important to the successful completion of the
latest version. The requirements give the development team a firm direction from the customer
and a common goal alignment among the stakeholders. The project requirements help the
project or development leader guide the team to the outcome desired [5]. For clients or end-
users, clear requirements guarantee that their needs are accurately captured, leading to a product
that meets their demands and enhances satisfaction. For developers, clear requirements define
the scope of work, enabling focused efforts and reducing the likelihood of rework. This clarity
also reduces cognitive load, allowing developers to focus on problem-solving and innovation.
For project managers and business analysts, clear requirements are benchmarks for measuring

project progress, aiding in accurate planning, resource allocation, and timeline estimation. They

16

Background

simplify change management, allowing effective decision-making and change control. For
quality assurance teams, clear requirements are the basis for comprehensive testing strategies,
ensuring each requirement is verified and improving communication with developers. In
regulatory compliance and auditing, clear requirements ensure the software meets industry
standards and legal requirements, protecting the organization from liabilities [31]. Clear
requirements build trust among stakeholders, manage expectations throughout the project
lifecycle, and ensure the delivery of a product that aligns with stakeholders' visions and users'
needs. Well-defined requirements are essential for successful project execution and delivery,
providing a detailed roadmap for all project activities [32]. They enable effective risk
management, detailed system design, and high-quality software development. Well-defined
requirements enhance team communication and stakeholder engagement and are vital for agile
project adaptation. Accurate initial requirements result in cost savings throughout the project
lifecycle, preventing revisions and rework caused by evolving or misunderstood requirements.
They ensure optimal resource allocation and reduce the costs associated with ambiguous
requirements, feature creep, and post-deployment fixes. Accurately capturing requirements
from the beginning aligns with cost avoidance in project management, reducing developmental
expenditures and maintenance costs, thus contributing to a favorable total cost of ownership

and a robust bottom line for the organization [33].

2.1.4. User Requirements Written in Arabic

Expressing software requirements in Arabic involves distinct challenges due to the language's
complex morphology and syntax, cultural nuances, and regional dialects. The rich
morphological structure of the Arabic language that introduces several word variations and, in
many cases, meaning changes based on vocalization, introduces complexity in writing correct,
clear, and unambiguous requirements [33]. The lack of vocalization in written text means that
the same sentence can lead to several interpretations by the software developer, causing
confusion regarding the functionality intended software. Additionally, the cultural aspects of
Arabic; the fact that there are no direct equivalents to a number of technical terms in other
languages plays a part in the challenge of translation and getting the terminologies right in
software engineering. The presence of different dialects in the Arabic language also adds to the
challenge as in one dialect you may be very clear in what you mean in terms of the requirement,
but that requirement may be misunderstood in a different dialect, given rise to
misunderstandings in the software of what should actually be done [33]. Further, incorrect

formatting in the Arabic language may arise from inadequately equipped requirements

17

Background

management tools for Arabic in terms of text direction, wrong character encoding, and
integration with a language system on the level from left to right [34]. In addition, the lack of
standard software engineering terminology for support being communicated in Arabic, as
mentioned above, is another major challenge [35]. To overcome these challenges, suitable
methodologies and tools should be developed for Arabic, including Natural Language
Processing (NLP) tools for analyzing the text, tools for building a database for standardized
technical terminology, and comprehensive stakeholder training in, but not limited to, how to
document requirements in Arabic. Ultimately, this will ensure suitable software is developed

for the Arabic market, meeting user needs and requirements [21].

Cultural and linguistic aspects are very important in software development, especially when
dealing with global audiences and languages such as Arabic, which encompasses deep history
and complex structures. For example, its right-to-left script dominantly impacts software
interface design and textual content presentation. The unique linguistic features of Arabic, such
as the root and pattern system, lots of diacritics, and vast dialects, all in all require a special
localization treatment in order to be accurately conveyed [36]. It’s very critical to recognize
cultural values, behaviors, and communication styles in the Arab world because software user
expectations and user interaction with technology are significantly influenced by their cultures.
For instance, cultural sensitivity in software design calls for such issues as choosing the
appropriate symbols to represent functions, the exact greeting formulations to use, and the
actual user interface structure. Besides, language translation of technical documentation and
interfaces is far beyond literal translation; it involves cultural adaptation to the local market,
including different socio-cultural contexts and idiomatic expressions used in the Arabic
language. Bilingual subject matter experts with a deep cultural understanding are essential when
developing software applications for Arabic speakers or capturing requirements in Arabic to
ensure that software products are culturally appropriate and linguistically accurate, providing
an intuitive and respectful user experience [36]. Case studies of Software Requirements
Specification (SRS) documents for Arabic software applications will illustrate these challenges
and solutions. For instance, a system for learning Arabic language dictated that the SRS should
specify how the system interacted with the user through the dual bilingual interface. This SRS
also addressed issues including script rendering, right-to-left text support, and culturally
appropriate content. Another example is an e-commerce application designed for the Middle
Eastern market, whose SRS included respect for specific linguistic requirements, such as

handling Arabic search queries, which are complicated by the morphological and agglutinative

18

Background

nature of the language. As we can see, it is very important to deal with the linguistic and cultural

aspects in software production in Arabic market.

When developing the Software Requirements Specification (SRS) for the Government Public
Service Portal in a particular Arabic-speaking country, special attention had been given to
comprehensively localize it, beyond language to include the administrative and legal issues,
cultural nuances as well as details of the region. The mentioned SRS is having detail that it
ensues the date and currency formats as per the region along with the incorporation of cultural
elements within the user interface of the developed application to enhance the local citizens'
familiarity and comfort level [35]. These case studies are sufficient to demonstrate the
complexity of structuring SRS documents for Arabic software systems and reveal the linguistic
aspects, cultural considerations, and engineering aspects a development team needs to know in
order to achieve a well-designed SRS document. If all these have been put into mind during the
development of these case studies, the outcome will be considered good practice and guidelines
for software engineers in the future, helping to bridge the cultural contexts of Arabic with the

technical aspects of software development.

2.2. Natural Language Processing Tools

At the core of our research lie Natural Language Processing (NLP) tools, which are the
technological enablers to analyze and understand human language with the help of any
computational agents [37]. NLP tools are a specialized field of computer science, artificial
intelligence, and linguistics that enables computers to process and interpret human language as
it is spoken and deciphered, whether that language is in the form of Arabic speech or any type
of written text. NLP is a critical component of our research work, as it will be the key player in
successfully characterizing the non-functional needs of Arabic users. NLP Technologies can
play a large role in bridging the complexity of human languages, in this case Arabic, and the
complexity of the revised world of software development. They can help us overcome the
problems that Arabic language texts consist of, which include dialect varieties, tangled
morphological functions, and cultural diversions. These techniques have made it possible to
understand the text, harvest the relative information, and finally classify the non-functional
requirements. The goal of this research is to increase both the effectiveness and accuracy of our
classification system using NLP technology, where the underlying system should be language
and culture independent and, most importantly, international, which can eventually help both

NLP and software development disciplines [38].

19

Background

2.2.1. CAMeL Tools

The technology developed by CAMeL Tools goes above and beyond basic corpus lexicography.
Arguably groundbreaking even for corpus linguistics, CAMeL Tools sets new standards in
Arabic Natural Language Processing (NLP) stemming from a computational perspective. It is
about Arabic’s specificities in relation, among others, to its morphological system, its dialectal
diversity, as well as its orthographic idiosyncrasy. CAMeL Tools doesn’t only perform basic
analysis on text sets but also advanced operations such as morphological analysis, part-of-
speech tagging, named entity recognition, or sentiment analysis [39]. Each tool in the suite has
been developed in response to a need in Arabic language processing, harnessing the latest
machine learning and deep learning techniques. For example, the morphological analyzer is
crucial for a derivational language like Arabic to identify word roots and patterns. The tools
have been trained on extensive corpora for Modern Standard Arabic as well as different regional
dialects, so as to be effective in different contexts. Unique to CAMEL Tools is how they are
developed. They are built by leveraging the open-source software development paradigm to
actively invite researchers and developers across the globe to involve, adapt, refine, and
optimize them with respect to real-life applications and user feedback, which creates an
ecosystem that evolves and creates the tools continuously based on feedback and user
satisfaction with proven workable performance metrics. CAMeL Tools value exists in various
platforms that were utilized to engage from educational software helping people to learn Arabic
and/or reconcile Arabic grammar exceptional cases to big data analytics platforms performing
analytics on Arabic social media sentiment. Its development is a milestone in the Arabic NLP,
bridging the human languages and computational understanding. The tool robustness and
adaptability make inclusiveness and representation in the digital landscape specifically for the

Arabic NLP, which is demanding and nuanced but not included in Arabic [39].

2.2.2. Importance of CAMeL Tool

In Arabic NLP, the CAMeL Tool is of supreme importance, as it is one of the few tools that
gives the aforementioned Windows interface while also covering many complexities and hidden
intricacies of the Arabic language [39]. As already mentioned, Arabic is a prominent language
with very rich morphology, different dialects, and a different structure in terms of its script,
which makes it challenging for most of the conventional NLP tools. CAMeL Tool is one of the
few tools that has given particular attention to all those challenges and is offering specialized

algorithms and functionalities for those mentioned Arabic linguistic phenomena.

20

Background

2.2.3. Functionality and Features

The CAMeL Tool is a package with lots of different tools that are very vital to the Arabic
process. For instance, it has advanced tokenization for Arabic, script-based tokenization,
morphological analysis for Arabic based on root words and derivatives, and PoS tagging for
correct syntactic analysis. The tool also has a sentence splitter and a text normalization, which
are very important due to the variations in Arabic script and dialectal differences. And the tools
have named entity recognition for Arabic, which is very difficult because of the nature of the

Arabic language.

2.2.4. Superiority Over Other Tools

What differentiates the Arabic NLP tool, CAMeL Tool, from any other available NLP tool is
the fact that Arabic is thoroughly studied. Even though the Arab World is very cohesive and
highly homogenous, unlike what is widely believed, Arab people speak different dialects of
Arabic and not just standard Arabic. CAMeL Tool is known for being able to process Standard
Arabic, which is mostly written in newspapers, books, or presented on news channels. The
dialects that are spoken in the Arab World are therefore processed by CAMeL Tool. While most
of the NLP tools have an Arabic module, the Arabic NLP Tool, CAMeL Tool, is updated

continuously to include the latest research findings in Arabic NLP [39].

2.2.5. Symbol Representation and Their Significance

Within the tool, there is a wide range of symbols and annotations that play an essential part to
the understanding/interpretation of Arabic text. The symbols used in the CAMeL Tool are
annotations that have a specific meaning or purpose. There are a few different types of
annotations that can be marked; for example, a word is a root word, the plural of the word, the
gender of the word, and other stuff. Song text could be used for NLP tasks. To be able to use
the NLP task, we need to know these symbols to use them correctly. Because these symbols

give deep insights into the Arabic language's grammar and syntax.

The CAMeL tool is without a doubt the best resource for Arabic NLP due to its specialization,
extensive features, and ability to adapt to the complexity of the Arabic language. Using the
CAMelL tool is ideal for our research because it simply brings such accuracy and no wasted

effort to processing and analyzing Arabic non-functional requirements.

21

Literature Review

CHAPTER THREE
LITERATURE REVIEW

3.1. Automated Classification of Non-Functional User Requirements Using Machine
Learning Algorithms

In this section, we consider software requirement classification by means of machine learning

(ML) approaches. We introduce innovative approaches to identify and classify non-functional

requirements (NFRs) and comprehend informal text descriptions in open-source projects. These

articles present fascinating ideas that may automate the process of requirements analysis,

potentially saving time and enhancing the accuracy of software development.

The main goal of this paper [40] is to solve the issue of the classification of non-functional
requirements in an loT-oriented healthcare system, which is error-prone and time-consuming
when done manually. The paper conducts experiment on various machine learning techniques
such as logistic regression, support vector machine, multinomial naive bayes, k-nearest
neighbors, ensemble, and random forest, and they also introduce a novel hybrid KNN rule-
based approach. The present study points out that the hybrid KNN rule-based machine learning
algorithm presents better performance with a classification accuracy of 75.9% on average. The
research is further important for proposing a machine learning technique to classify non-
functional requirements of IoT healthcare systems and provides a new dataset, even though it
is limited (104 requirements). This dataset can be used for further analysis in the area since it
has been built specifically for this purpose. It should be noted that the results should be
compared with other situations with a large data set to gather a more general conclusion or use

other classifiers.

This article [41] discusses how non-functional requirements can be automatically identified and
classified in software development. This research conducts a study to analyse a model that has
been produced automatically, through syntactic as well as semantic analysis aided by machine
learning. In order to be able to study this new model, the authors employ 79 public non-
functional requirements documents without any constraints and use several machine learning
algorithms like Naive Bayes. In addition, this research uses a number of statistical tools to
analyse the same dataset, while employing both traditional and advanced semantic analysis
tools, such as word2vec developed publicly by Google and BERT, which represent bi-
directional encoder representations from Transformers (BERT) models. This approach shows

classification accuracy from 84% to 87% using statistical-based vectorization, 88% to 92% with

22

Literature Review

word embedding semantic methods, and further improves 2.4% when combined with different
models trained on different features than the best individual classifier. This paper advocates that
the proposed method is an efficient and accurate approach to classifying non-functional

requirements in software documents compared to existing methods.

The purpose of the paper is [42] about the second RE17 data challenge on the detection of
functional requirements (FR) vs. non-functional requirements (NFR), focused on the data with
“quality attributes (NFR)" by the implementation of supervised machine learning. Further, the
paper looks at the fine-grained detection of certain types of NFR, such as usability, security,
operational, and performance requirements. The authors applied a machine learning approach,
while features are implemented by meta-data, lexical, and syntactical. The class imbalance in
the dataset has further been handled by under- and over-sampling approaches. In regard to
validating the coding, the used classifier was the Support Vector Machine classifier (SVM),
which achieved approx. 92% precision and recall for the functional vs. non-functional task (FR
vs. NFR), but further on, for specific NFRs, such as security or performance NFRs, the precision
and recall were very high. Further, in the paper, the authors tried to understand the
discriminative power of FRs and NFRs, the impact of the sampling strategies, and the impact

of the additional dataset on the accuracy of the classification.

The paper [43] has proposed a new hybrid deep learning model to detect and classify non-
functional requirements (NFRs) of mobile applications, such as performance, supportability,
usability, and reliability, from user reviews written in Arabic. The proposed model in this paper
combines three deep learning architectures, i.e., a recurrent neural network (RNN) and two long
short-term memory (LSTM) models. In the beginning, Arabic textual user reviews were
collected to establish the grounds for the study since the user reviews provide crucial
information about the apps. For evaluating the performance of the proposed hybrid model, it
was compared with different machine learning classifiers and deep learning architectures such
as artificial neural networks (ANN), LSTM, and bidirectional LSTM. Results achieved through
the study showed that the proposed hybrid model outperforms by achieving a 96% F1 score
compared to others. This will be useful for mobile app developers to improve the quality of

their apps, as it can effectively detect and address NFR issues based on natural user feedback.

The paper [44] explores the critical role of Non-Functional Requirements (NFR) in software
development, specifically in influencing system architecture. The main aim is to extract relevant
keywords from NFR descriptions using text mining techniques and then classify these
descriptions into one of nine NFR types. The methodology involves using Information-Gain

23

Literature Review

measure to extract keywords from pre-categorized specifications and developing classification
models using eight different Machine Learning (ML) techniques. The study utilized 15 projects
developed by MS students at DePaul University, which included 326 NFR descriptions, to
evaluate these models. The results focus on the performance of these ML models in terms of
classification and misclassification rates to identify the most effective model for predicting each
NEFR type. Notably, the Naive Bayes model was found to be the most effective for predicting

NFRs related to "maintainability" and "availability".

The paper [45] highlights the importance of non-functional requirements in the early stages of
software development, emphasizing their role in determining model alternatives and
implementation criteria. It discusses how recent advancements in artificial intelligence,
specifically machine learning and text mining, have enabled the automated extraction and
classification of quality attributes from textual data. The study proposes a supervised
categorization approach for the automated extraction and classification of non-functional
specifications. A well-known dataset was utilized to validate this approach, yielding significant
results, particularly in terms of security and performance, with a specific range of 85% to 98%
effectiveness. The best results were achieved in combining security, performance, and usability

considerations.

24

Literature Review

Table 3.1:Summary of related works of automated classification of NFR using Machine Learning Algorithms

non-functional requirements
from text files.

techniques like machine learning and text
mining for extraction and classification.

in the summary).

Ref. | Main Aims NFR Extraction Techniques Dataset Used Output NFR Classes

[40] Automated Classification of For classification ML algorithm: LR, SVM, New dataset is created which includes availability, security, usability, look and feel, legal
NFR From IoT Oriented MNB, KNN, RF, KNN rule-based. requirements for loT-oriented healthcare and licensing, maintainability, operability,
gealthcare Requirement For Feature Extraction: BoW and TF-IDF. systems. performance, scalability, fault tolerance, portability.

ocument.

[41] Automated Classification of ML approaches: NB, SVM, LR, CNN. The author utilised a dataset of open reliability, performance, security, availability, and
NFR utilising semantic and .) necessities archives (unadulterated) that usability.
syntactic investigation. NLP tech 11ques- Random and Word comprises 79 unconstrained requirements

embedding vectorization methods.
reports.

[42] Automatic classification of FRs ML approach: SVM classifier. Incorporates "Quality attributes (NFR)" dataset. Functional Requirements (FRs) and Non-functional
and NFRs using supervised meta-data, lexical, and syntactical features. Requirements (NFRs), with specific focus on
machine learning. Under- and over-sampling strategies for usability, security, operational, and performance

imbalanced classes. NFRs.

[43] Detecting and Classifying NFRs Deep Learning Models: RNN, LSTM, Dataset constructed from Arabic textual Usability, reliability, performance, and supportability
of Mobile Apps. Bidirectional LSTM. Uses NLP methods for user reviews of mobile apps. NFRs of mobile apps.

dataset extraction from user reviews.

[44] Mining NFRs using Machine ML techniques: 8 different ML algorithms. 15 projects developed by MS students at Nine types of NFRs

Learning Techniques. Uses Information-Gain measure for keyword | DePaul University, containing 326 NFR
extraction from NFR descriptions. descriptions.
[45] Extraction and classification of Supervised learning approach. Uses Al Well-known dataset (specifics not detailed | Specific range for security, performance, and best

results together for security, performance, and
usability NFRs (specific NFR types not detailed in
the summary).

25

Literature Review

3.2. Non-Functional User Requirements Classification Using Feature extraction

This paper [19] proposes a dual approach to classifying non-functional requirements (NFRs) to
enhance software quality and reduce the manual effort involved in identifying requirement
sentences from Software Requirement Specification (SRS) documents. The classification is
performed using a rule-based technique based on linguistic relations. The classification
accuracy is also tested on the PROMISE corpus, which achieves high accuracy with 97%
precision and 96% recall. The paper also investigates the inspection of NFRs, thematic roles,
and the General Architecture for Text Engineering (GATE) framework for improving software

requirement analysis.

The paper [46] deals with classifying NFRs in software requirements specification (SRS)
documents that usually contain a mix of NFR and functional requirements (FR) statements. The
NFRs are subjective and important for software system constraints and behavior, and thus, they
require special attention in software modeling and development. The manuscript provides an
automated way of detecting NFR sentences using a text classifier that is also supplied with a
PoS tagger. The approach outperforms existing works with an achieved accuracy of 98.56%,
employing 10-fold cross-validation. This work is part of a bigger project aiming to apply natural

language processing techniques in software requirements engineering.

This paper [47] discusses how to automate the detection and classification of NFRs based on
information retrieval (IR) techniques. The key motivation behind this paper’s theme is the
importance of early detection of NFRs, which allows us to provide for system-level constraints
in the early stages of architectural design rather than inserting them later. The technique
described has identified candidate NFRs in requirements specifications, meeting minutes,
interview notes, memos with stakeholder comments, etc. The effectiveness of our classification
algorithm is validated with an experiment involving fifteen requirements specifications that
were developed as part of MS class project work at DePaul University, and a case study on
classifying NFRs in a large (350400 page) free-form requirements document originating from

Siemens Logistics and Automotive Organization is also described.

Table 3.2:Summary of related works of NFR Classification using Feature extraction

Ref. Main Aims Technique for | Dataset Used Output NFR
NFR Classes
Extraction
[19] Classifying NFRs to | Rule-based PROMISE corpus. Accuracy, Suitability,
enhance software technique using Security, Operability,
quality and reduce linguistic relations. Understandability,
Attractiveness, Time

26

Literature Review

manual effort in
SRS documents.

Behavior, Resource
Utilization

[46] Automating Text classifier with | An integrated -
detection of NFR part-of-speech engineering toolset
sentences in SRS (POS) tagger. (IET)
documents, focusing
on subjective and
crucial NFRs.

[47] Automating Information Fifteen requirements Auvailability, Legal,
detection and retrieval-based specifications from MS | Look & Feel,
classification of method, identifying | students at DePaul Maintainability,
NFRs for early NFRs in various University, and a Operability,
integration into document types. document from Performance,
architectural Siemens Logistics and Scalability, Security,
designs. Automotive Usability

Organization.

3.3. Previous studies Related to Arabic User Requirements Conducted at PPU
The paper [48] introduces a semi-automated approach for classifying functional and non-
functional requirements in software engineering, specifically for documents written in Arabic.
It utilizes natural language processing (NLP) tools combined with a set of heuristics based on
the basic constructs of Arabic sentences. The goal is to efficiently extract and categorize
requirements from Arabic software requirement documents into functional and non-functional
requirements. This research aims to reduce the cost and time associated with manual
classification, thereby aiding software engineers in delivering quality software that fully meets

user expectations.

The paper [49] focuses on automating the construction of Unified Modeling Language (UML)
models, particularly use case models, from textual user requirements in the field of automated
software engineering. It emphasizes the importance of UML use case models in object-oriented
software system development and describes the main principles for obtaining these models. The
approach utilizes a natural language processing tool to analyze user requirements written in
Arabic, extracting nouns, noun phrases, verbs, and verb phrases to identify potential actors and
use cases. The paper outlines the steps of this approach and validates it through an experiment

with graduate students experienced in use case modeling.

The paper [50] is about the significance of automated software engineering, especially in the
domain of requirements analysis and modeling. In this paper, the major drawbacks of manual
development of systems and software requirements are removed quite a lot. The main advantage
of using automated systems and software engineering is improved system and software quality.
The paper has also introduced a semi-automated method for drawing activity diagrams from

user requirements written in Arabic by using the MADA+TOKAN parser. The proposed

27

Literature Review

approach has removed the cost and time involved in manual activity diagram drawing, and it
increases the cost and time effectiveness of the whole software development life cycle by
reducing the time and cost of software development when using automated software

engineering.

The article [51] deals with a subject slightly touched on by very little academia so far: automated
software engineering, and more specifically, constructing UML models semi-automatically
from Arabic textual user requirements. The article initially argues for the importance of UML
use case models, which are very essential and significant artifacts in object-oriented (OO)
development methodologies. The article introduces using MADA+TOKAN to parse the Arabic
user requirement statements to decompose the components like nouns, noun phrases, verbs, and
verb phrases. These components are crucial to identify the potential use cases and the actors.
The use case modeling steps are explained, and the future will be to validate the steps and

implement them in the research project.

The research paper [52] reveals a recent approach that helps software engineers analyze phases
of the software system's life cycle by generating sequence diagrams from a set of users'
requirements written in Arabic. The proposed approach is a semi-automated approach that
yields a semi-automated result, with the software developer still required to provide subjectivity
input during the analysis phase. The proposed approach uses an NLP tool to generate PoS tags
for the Arabic user’s requirements. Then, from the proposed sets of heuristics added and based
on these PoS tags, the proposed approach identified the sequence diagram components, which
are objects, messages, and workflow transitions. The generated sequence diagrams are
represented using XML format, enabling them to be drawn with sequence diagram drawing
tools. The approach's effectiveness is evaluated using three case studies from Isra Computer
and Programming Company, focusing on the correctness and completeness of the participants

and the messages exchanged between them.

Table 3. 3: Previous Studies Related to Arabic User Requirements Conducted at PPU

Ref. | Main Aims Technique for NFR Dataset Output NFR
Extraction Used Classes
[48] Semi-Automated NLP tools combined with a set SRS Functional and Non-
classification of Arabic of heuristics based on Arabic document functional
functional and non-functional | sentence constructs. Requirements.

requirements using NLP tools.

[49] Generating UML use case NLP tool to analyze Arabic user | - UML Use Case
models from Arabic user requirements, extracting nouns, Models.
requirements in a semi- noun phrases, verbs, verb

phrases.

28

Literature Review

automated approach using
NLP tools.

from Arabic user requirements
in a semi-automated approach
using NLP tools.

user requirements to produce
PoS tags, with heuristics.

[50] Constructing activity MADA+TOKAN parser for Activity Diagrams.
diagrams from Arabic user Arabic user requirements.
requirements using NLP tools.

[51] | Generating UML use case MADA+TOKAN parser to UML Use Case
models from Arabic user extract components from Models.
requirements in a semi- Arabic user requirements.
automated approach.

[52] | Generating sequence diagrams | NLP tool for parsing Arabic Sequence Diagrams

with focus on
correctness and
completeness of
components.

29

Research Approach

CHAPTER FOUR
RESEARCH APPROACH

This chapter is dedicated to the classification methodology for software Arabic user non-
functional requirements, distinguishing between the different categories. The novel approach
outlines the process of analyzing Arabic user requirements using the NLP CAMeL Tools, that
used for tokenizing and generating the part of speech tags of the requirement sentences that
implemented using Python programming language. We introduce a set of heuristics based on

fundamental structures of Arabic sentences to facilitate the classification.

4.1 Arabic User Non-Functional Requirements Classification Approach
In our study we classify NFR into seven main types: Performance (PE), Security (SE),

Availability (A), Look and Feel (LF), Fault Tolerance (FT), Legal (L), and Operational (O).
Scalability class will be excluded in this study as it is overlapped with other classes. This section
elucidates the approach for classifying user requirements into the different categories,
leveraging the grammatical structure and keywords of Arabic sentences. Our methodology
involves a thorough examination of various software graduation projects undertaken by PPU
students and Software Requirements Specifications (SRS) documents aimed at developers.
From this analysis, we discerned distinctive attributes that enable the classification of different
classes. These attributes form the basis for a set of heuristics in our approach. The process of
analyzing Arabic sentences entails the utilization of CAMeL NLP tools, which facilitate parsing,

tokenization, part-of-speech tagging, and sentence segmentation.

In our project, we utilize an empirical methodology detailed in Figure 4.1 to classify non-
functional Arabic user requirements. We devised a set of heuristics specifically tailored to
categorize user requirements into seven NFR categories by analyzing features extracted from
user requirements, leveraging Arabic grammar, analyzing Parts of Speech (PoS) tags, and
compiling relevant NFR keywords. The process begins with inputting a collection of
unclassified user requirements in Arabic. Initially, all requirements are normalized using
CAMeL tools before being processed further. Tokens for all statements are then generated using
the CAMeL tokens generator, followed by the generation of PoS tags for all words in the given
sentence. Subsequently, the proposed heuristics are applied utilizing the generated PoS and
tokens. Each sentence's classification involves comparing the NFR score with other pertinent
metrics such as confidence factors. Ultimately, the output of the approach is a categorized

collection of non-functional Arabic user requirements.

30

Research Approach

Start CAMel Tools

Unclassified ~
Arabic User Normalization
Non-Functional
Requirements l J
e
Tokens
Generation
P

PoS Tags
Generation

v

Apply Heuristics on Tokens

and PoS
® End

Classified
Weigh Modification based Arabic User
on Experts Evaluation — | Non-Functional
/ Requirements

Figure 4.1:Empirical Methodology

4.1.1 Non-Functional User Requirements Linguistic Features
e C(lass 1: Performance (PE):
1. May have Common structural elements may encompass expressions like: "at an acceptable

time" and "in the right time "—uliall 284l 8" "J g80 &8 4", This is represented by H#1.

2. Frequent use of numbers and digits, these numbers typically refer to: number of users, speed,

or time. This is represented by H#2.

3. Frequent use of several keywords and terms, these keywords are summarized in Table 4.1

This is represented by H#3.

e C(lass2: Security Requirements (SE)
1. May have negation tool in the sentence. This is represented by H#4.

2. May have Conditions, permissions written in conditional sentence format. This is represented

by H#5.
3. May have common structures that have word "Access ."d »= " "This is represented by H#6.

4. May contain some keyword regarding (sign in, viruses protection) as shown in the keyword

Table 4.2. This is represented by H#7.

31

Research Approach

e Class 3: Availability (A)

1. The presence of a percentage (%) punctuation followed by a number is denoted as H#8.
2.May have Time duration like (8:00 am till 8:00 pm). This is represented by H#9.

3. May have Adjectives or adverbs like (Available, break). This is represented by H#10.
4. May have keywords as mentioned in Table 4.3. This is represented by H#11

e C(lass 4: Look and feel (LF):

1. May have a proper noun in the sentence. This is represented by H#12.

2. May have keywords of Colors, shape, GUI, sounds, and list format as shown in Table 4.4.
This is represented by H#13.

e Class 5: Fault Tolerance (FT)
1. May have verbs and keywords as: break down, fail, error occur, problems, emergency, and

power outage which are compiled in Table 4.5. This is represented by H#14.

e Class 6: Legal (L)

1. The sentences usually have a common structure. This is represented by H#15.

2. May have keywords: (law, legislation, legal requirements, rules, licensing, standards,

regulations, legal issues). Shown in the keyword Table 4.6. This is represented by H#16.

e Class 7: Operational (O)
1. May contain non-Arabic words like: (HTML, Windows, firewall). This is represented by
H#17.

2. May Use the word system as the main subject (system work, system interaction). This is

represented by H#18.
3. May have keywords, as shown in the keywords Table 4.7. This is represented by H#19.

4.1.2 The Proposed Heuristics

e (lass 1: Performance (PE)
H#1: This Heuristic suggests the possibility of encountering common structural elements
containing expressions such as "at an acceptable time" and "in the right time", namely " #
Jsie 285" and " il 284 4" This heuristic is identified through an examination of diverse

instances, and an illustrative example is provided below:
Example; "Culiall < gl ‘;3 e\.@.d\ e e JWS) Ao 0538 5 sida gall) S0 u\ '

32

Research Approach

Translation: "Employees must be able to complete a set of tasks in a timely manner".

CAMCL Tokens: ’vag}j\v ’v‘#‘év ’vel_é_d\v ,IQAI ,'ic . ' ’vdusy "‘:Jc' ,'Q:.’)JG' ,voﬁb}d\' ,'OJS.%' "Qi' ’vg._‘.;:‘]
[g._m_'mﬂ'

CAMeL PoS :['verb', 'conj sub', 'verb', 'noun’, 'adj', 'prep', 'noun', 'noun’, 'prep', 'noun’, 'prep',
'"noun’, 'adj']

H#2: If [‘digit’] or [‘noun num’] tag exists at sentence PoS, then it is more likely to be

performance requirements.

The presence of numbers often signifies a high probability of a performance requirement. If
numbers appear within sentences, regardless of their representation in numerical or alphabetical
form, it tends to indicate that the sentence is likely a performance requirement. This distinction
can be made based on their Part of Speech (PoS) tags. To determine the presence of numbers in

a sentence, we need to identify all instances tagged as ['digit'] or ['noun num'].
A possible structure for requirements that show the locations of numbers in Arabic sentences:

(Verb + Subject + Object (1) | Object (2) | Object (3) -> Verb + (Noun | Pronoun) + (Noun |
Preposition + Noun | + name number + Noun | Digit + Noun) + (Noun | Preposition + Noun |
name number + Noun | Digit + Noun) + (Noun | Preposition + Noun | name number + Noun |

Digit + Noun)
CAMeL PoS Tags :

(Verb + (noun — pron) + (noun | prep + noun | noun num + noun | digit + noun) + (noun | prep
+ noun | noun num + noun | digit + noun) + (noun | prep + noun | noun num + noun | digit +

noun).

Example:"4sl 60 JS (aall duaady ol o 53"

Translation: "The system updates the display every 60 seconds".
CAMeL Tokens: [60" ,'dS' ' padl' \Euaat 1 faldaill' o 53]
CAMeL PoS: ['verb', 'noun', 'prep', 'noun’, 'noun', noun', 'num', noun']

H#3: Through the study of the different SRS for different projects we notice that there are many
terms and words are repeated in the performance requirements, theses terms are summarized in

Table 4.1.

33

Research Approach

e C(Class2: Security Requirements (SE)
H#4: Security requirements establish the limitations and restrictions on system access to

safeguard it from unauthorized entry .

Negative sentences could be categorized more closely with security requirements. This
determination can be made by examining whether any negative prefixes are present in the
sentence. The presence of negative prefixes in sentences, regardless of whether they are
expressed numerically or alphabetically, increases the likelihood that the sentence falls under
security requirements. To check for the presence of negative prefixes in a sentence, it is

necessary to inspect all ['part neg'] tags.

Negative Arabic sentences is constructed by adding one of the following negation tools:
" Le cagaall oY (ol (i eal e cad Y

The following sentences are examples of security requirements with negation tools:

a) Example: " <) ael 58 i il cile) 58ball J gea sl (g) gadiiusall (Saiy 1"
Translation: "Users will not be able to access data files or databases directly".

CAMeL Tokens el 'l Jelilal [l 1 W' ' pSladl ' sam sl 100! 10 saadiiuanall! Sa3 100
[ty

CAMeL PoS: ['part_neg', 'verb', noun', 'prep', 'noun', 'adj', 'prep', 'noun', noun', 'con;j', 'noun’,
'noun'].

b) Example" aUaill g 5ue dasd 50 V) aadiose s oLS) Sy Y

Translation: "User accounts can only be created by the system administrator".

CAMeL Tokens: ['wUaill' 'y gusa’ Aol g ") faodiiad fbaa! felll' 'oSad "Y'

CAMeL PoS: ['part_neg', 'verb', noun', 'noun', 'noun', 'conj', 'prep', 'noun', noun']

H#5: Conditional sentence is a linguistic structure that needs a tool to link two sentences, the
first is a condition for the answer to the second, and it states that something happens because of

something else associated with it and causes it [29].

Conditional sentences in Arabic are categorized into two types: Proof sentences and Negation
sentences. The structure of these sentences comprises the Conditional Particle, the Conditional

sentence, the Answer Particle, and the Conditional Answer [29]:

34

Research Approach

1.Conditional Particle: Arabic Language utilizes two common conditional particles, namely
"3"(idha) and " 5" (law) [29]. These particles are represented by (subordinating conjunction)
in CAMeL tools [‘conj’].

2. Conditional sentence: A conditional sentence is a verbal statement that falls into two
categories: proof and negation sentence [29]. A proof sentence consists of a conditional particle
followed directly by the conditional sentence, without the presence of a negation particle .(a))
On the other hand, a negation sentence includes the negation particle (o) after the conditional

particle .

3. Answer Particle: The answer particle functions as an adverb for the conditional answer. In

Arabic, the answer particles include(<esé ;a5 (\8) [29] ,with the corresponding tags being:
(” < connective particle +” &) Pseudo verb): (&

(” <" Future particle), (” < Response conditional): < sué

(” <= Future particle): <85

4. Conditional Answer: The conditional answer, a verbal sentence.

So, if the sentence structure as follow its more likely to be security requirement :

Subordinating Conjunction + (Verb | Negative Particle +Verb) + (Connective Particle + Pseudo

Verb) | Future Particle | (Response Conditional+ Future Particle) + verbal sentence.
CAMeL PoS Tags:

(conj + (verb | part neg + verb) + (part_rc + part emphac | part_fut | part rc+ part_ fut) +

(Verb + (Noun | Pronoun) + (Noun | Preposition + Noun | Adverb + Noun))
Example : " adaill J g 5uue ddasil g3 W) Al e oL) 3ale) Sy D8 addiiie s Jday) o513 "

Translation: "If a user account is deactivated, it cannot be re-created except by the system

administrator".

CAMeL Tokens : ,'&M\}JV ’vy!v ,v‘dv ,vd:&“v ,|¢my ’VBJL‘;!V ’v < ”v ,vmv a'("':. - 1 "g\.u;' ,'LJU:&‘!' 7'?3' ,v\‘J)v]
['?Uéd\' ,'dj}um'

CAMeL PoS: ['conj', 'verb', 'noun', 'noun', 'adj', 'part_neg', 'verb', 'noun', 'noun', noun', 'prep',

'part', 'noun’, 'noun’, 'noun']
Example; "1asd ua.\).a.\“ eﬁu: e gl S 1) (;S;@S‘z(\ cﬁf& Jaall ?.u P

35

Research Approach

Translation: "Entry to the clinical site will only be allowed if the person is a member of the
nursing staff".

CAMGL Tokens: [vjagév ,'U.A:‘)“:‘M' ,'féUn' "QA’ ’v 2 b“v ,IOlS| ’v\’d\v ’v . S“'“SS‘)I\' ’vcﬁ}dy ,vd}sﬂp "?37-" ’vq}uv]

CAMeL PoS: [' part_ fut ', 'verb', 'noun', 'noun', adj', 'conj', 'verb', 'noun’, 'prep', 'noun’, 'noun',

'adverb'].

H#6: After the study of different projects and SRS documents we noticed that there is a common

structure repeated in the security requirements all have the word " access" as followed:

” o + Verb + Subject + Object (1) | Object (2) | Object (3) -> oI +* Verb” + (Noun | Pronoun)

+”1_,3% + (Noun | Preposition + Noun) +” J s 5l

Token [0] = oM+ verb + (Noun | Pronoun) + Token [3] =" 1,3%” + (Noun | Preposition + Noun)

+ Token [5] =" J sl + (Preposition + Noun)

Example: " el @l S J gua sl e 1508 ulall S ¢

Translation: "The doctor should be able to access all patient records".

CAMeL Tokens['a ' ' lawd S 1] gagll' ' et 108 kit 1o oS4 100
CAMeL PoS: ['conj', 'verb', 'noun', 'adj', 'prep', 'verb', 'prep', 'noun', 'noun']

Verb + Subject + Object (1) | Object (2) | Object (3) -> (Verb) + (Noun | Pronoun) + (Noun |

Preposition + Noun) + (Noun | Preposition + Noun) + (Noun | Preposition + Noun)

Token [0] = verb + (Noun | Pronoun) + (Noun | Preposition + Noun) +(Adjective | Adverb) +

Token [5] =" Js= s + (Preposition + Noun).

Example : " aaill I J sea sl (e dath Cplaisall @l Jiall Cilaal aplaion

Translation: "Only registered property owners can access the system".

CAMeL Tokens: ['2daill ' ' 'J g sll e 1l " oalaiaall! 'l jlaall 'laal' faskinn']
CAMeL PoS: ['verb', 'noun', 'noun', 'adj', 'adv', 'prep', noun', 'prep', noun']

Subject + Verb + Object (1) | Object (2) | Object (3)-> (Noun | Pronoun) + Verb + (Noun |
Preposition + Noun | Adverb + Noun | + Adjective) “ds=sl" + (Noun | Preposition + Noun |

Adverb + Noun | Adjective) + (Noun | Preposition + Noun | Adverb + Noun | Adjective).

Example ;"] Jyaad LI J goasll () gadaion Y Ul "

36

Research Approach

Translation: "Students cannot access the grade editing screen".

CAMeL Tokens['@ladall' 'daaas RSN '] g gll' 'y sandaion "Y' '3

CAMeL PoS: ['noun', 'neg', 'verb', 'noun', 'prep', 'noun’, 'noun']

H#7: Through the study of the different SRS for different projects we notice that there are many

terms and words are repeated in the security requirements, theses terms are summarized in Table

4.2.

e C(lass 3: Availability (A)
H#8:When a sentence contains a percentage punctuation, it is more likely to indicate an
availability requirement. The percent sign is easily distinguished from other punctuation marks
by being preceded by a number. The percentage format is represented as [num, punc].
Therefore, if the part of speech is identified as 'num' and the '%' symbol is present in the token,

the specified condition is met.
if pos == 'num' and '%" in token.
Example: " Jadil e (191 A0l) IA <) (g0 7199 Agnaiy LAl oldail () sSus

Translation: "The system will be available 99% of the time during the first six months of

operation".

CAMeL Tokens: ,VQAV ,vujjiy\v ,':\.Luj\' ,VM‘Y\I ;d%v ’v&}l\v ,VL-)AV ’vzqu ;Mv ’vg&v ;?w\' ,'st;h-ﬂ']
[v L- il

CAMeL PoS: ['verb', 'noun', 'adj', 'prep', 'num', 'punc', 'noun', 'prep', 'noun', 'adj', 'adj', 'prep’,

"noun'|

Example: " i i) Ao Uil < gl 072 (e ST ziiall Qi ¥ of camg ™

Translation: "The product should not fail more than 2% of the available time online".
CAMeL Tokens: ['cui iVl |\ le' 'oliallh 'l gl ol 172" oe ST il 'dady Y ol ey

CAMeL PoS: ['verb', 'conj_sub', 'neg', 'verb', 'noun', 'adj', 'prep', num’, 'punc', 'prep', 'noun', 'adj',

'‘prep’, 'noun']
H#9: A sentence indicating time duration typically adheres to the following structured formats :

Digit + punctuation + digit + token [] = #bse 5l Wlua

37

Research Approach

The presence of such a structured sentence format is a strong indicator of an availability
requirement. If the sentence follows the pattern of Digit + punctuation + digit + token [], it is

more likely to convey a specific time duration, either in the morning (\Als=) or evening.(sbue)
Example: " #bus 6:00 5 Alia 8:00 delud) (g alaaiud AL sl () o of oy "

Translation: "The system must be available for use between 8:00 AM and 6:00 PM".

CAMCL Tokens: 6‘ ’v { "\Sl_.\m ,,OO‘ ’c :c ’5 84 "kmv ,'O:L." "e‘:- - M' "\SUA' "ew" ,'Ojsﬁ' ,'Oi' "g._\.;:a]
[vzmv ’7004 ’r. :c ’c

CAMeL PoS: ['verb', 'conj_sub', 'verb', noun', 'adj', noun_prop', 'noun’, noun', 'digit', 'punc',
'digit', moun', 'conj', 'digit', 'punc', 'digit’, ‘noun’,]

Digit + token [] = 3L 5l Alua

Example: " lase 9 delud) sl 5 8lun 9 deludl (o Lia s g sall Sl | s seiiall ()55 (o o ™
Translation: "The product must be available on the website daily from 9:00 AM to 9:00 PM".
CAMCL TOkel'lS: ,v { ,VL;L:L‘AV ;9! ’v;f_cu\v ,‘C)A‘ ’v\;“}:‘v ’vé}‘d‘v ,‘45&-" ’v“‘)é}:wv ’v:.*- nv "O}S:\' ’voiv ’vg._‘.;:‘v]
[vzmv ,v9v ,v;'u._u\v ":L)Ud'

CAMeL PoS: ['verb', 'conj_sub', 'verb', 'noun', 'adj', 'prep', 'noun', 'adv', 'prep', 'noun', 'digit',

'noun’, 'conj', noun', 'noun’, 'digit', 'noun']

H#10: The presence of these linguistic elements indicates a heightened probability of conveying

availability requirements.

" When a sentence is tagged with either 'adj' or 'adv' for its part of speech, it significantly raises
the likelihood of expressing availability requirements." The sentence structure may take the

form of a verbal or nominal sentence, as outlined below:
Verbal sentence format :

Verb + Subject + Object (1) | Object (2) | Object (3) -> Verb + (Noun | Pronoun) + (Noun |
Preposition + Noun | Adverb + Noun | + Adjective) + (Noun | Preposition + Noun | Adverb +

Noun | Adjective) + (Noun | Preposition + Noun | Adverb + Noun | Adjective).

CAMeL PoS Tags: Verb + (noun | pron) + (noun | prep + noun | noun + adv | adj) + (noun | prep

+ noun | noun + adv | adj) + (noun | prep + noun | noun + adv | adj)
Example; " aalad) Jeall clela JA AL C;'xl.d\ Ossa "

38

Research Approach

Translation: "The product is available during regular business hours".
CAMeL Tokens: [l 'daall' 'eilelat 'JMA" MALL 'miiall' ' 5S4
CAMeL PoS: ['verb', 'noun', 'adj', "prep', 'noun’, 'noun', 'ad;j']

Nominal sentence format :

Subject + Verb + Object (1) | Object (2) | Object (3) -> (Noun | Pronoun) + Verb + (Noun |
Preposition + Noun | Adverb + Noun | + Adjective) + (Noun | Preposition + Noun | Adverb +

Noun | Adjective) + (Noun | Preposition + Noun | Adverb + Noun | Adjective).

CAMeL PoS Tags: (noun | pron | foriegn) + Verb + (noun | prep + noun | noun + adv | adj) +

(noun | prep + noun | noun + adv | adj) + (noun | prep + noun | noun + adv | adj)

Example: "4l 3 3318 [0 oo 25 Y sy 3 jual slaill Jlaati s yid"

Translation: "The system downtime period is short, not exceeding 10 minutes per year".
CAMeL Tokens: [Aadl' ' & 'GiEY 110" oo’ u5d Y "umt 16 jual fallaill 'dlaat! 15)

CAMeL PoS (Part of Speech): ['noun', 'verb', 'noun', 'adj', 'conj', 'neg', 'verb', 'prep', num', 'noun’,
'prep', noun']

H#11: Through the study of the different SRS for different projects we notice that there are
many terms and words are repeated in the availability requirements, theses terms are

summarized in Table 4.3.

e C(lass 4: Look and feel (LF):
H#12: Look and feel requirements, usually consider the unique needs associated with various
nationalities and locations. These considerations involve recognizing the diverse cultural
elements and geographical factors that shape user preferences. The words specific for names of
countries, cities, or specific cultural terms are called proper nouns, and they are serving as
linguistic tools that specifically denote to look and feel requirement. Therefore, the presence of

the tag [noun_prop] enhances the probability of look and feel requirement.
Some examples show look and feel requirements that have proper nouns:
Example: " 28 ads a8 sall 5% o g ™

Translation: "The website should have an African character".

CAMeL Tokens: ['iil' \ak! 'ad sall' 1) 3 101 "and]

39

Research Approach

CAMeL PoS: ['verb', 'conj_sub', 'verb', 'prep', 'noun', 'noun_prop']
Example: " se\Se3 Ase & cladail) yolai Qs) ae giial) 335 o cama "

Translation: "The product must comply with the application development guidelines framework

in the city of Chicago ".

CAMeL Tokens:['s¢1Sud" | Auaa’ | & tcaudaill 1y glat? 1l Ul et towiall' 13815 10 ']
CAMeL PoS: ['verb', 'conj_sub', 'verb', 'noun', 'prep', 'noun', 'noun’, 'noun’, 'noun', 'prep', noun',
'noun_prop']

H#13: Through the study of the different SRS for different projects we notice that there are

many terms and words are repeated in the look and feel requirements, theses terms are

summarized in Table 4.4.

e Class 5: Fault Tolerance (FT)
H#14: Through the study of the different SRS for different projects we notice that there are
many terms and words are repeated in the look and feel requirements, theses terms are

summarized in Table 4.5.

e Class 6: Legal (L)
H#15: Through the study of different SRS documents, we notice that there a certain sentence

structure is repeated in the legal requirement as illustrated bellow:

(’verb’, *subordinating conjunction’,): "ol <=3 " + Subject + Object -> Verb + (Noun | Pronoun)

+ (Noun | Preposition + Noun | Adverb + Noun).

CAMeL PoS Tags: Verb + (noun | pron) + (noun | prep + noun | noun + adv) + (noun | prep +

noun | noun + adv) + (noun | prep + noun | noun + adv).

Example;" Jasiill C"‘Jj Lf sl gl ‘_Ac A 5ilall bl & Sile el Budat 380 64 Qi ST
Translation: "The dispute resolution application must comply with the legal requirements as
specified in the operating regulations".

CAMeL Tokens: ’VJM‘V ,'ja.m' ,vé‘._v ,'2_}3}3&!\' "Qw\' ’v@v ,'QLCJL'\A]\' ,'éﬂt‘ﬁ' ,'éé‘_pr\:" ’vdiv ’v‘._‘;_"v]
[v L- :-wnv ,'C:"JS' ,v‘;v

CAMeL PoS: ['verb', 'conj_sub', 'verb', noun', "noun', 'prep', 'noun', 'adj', 'prep', noun', 'adj',
'‘prep’, 'noun’, 'noun']

Example: " Glaltaall dallae ddlaiall Gaalill il 5l ae geiiall (38 5 o) any "

40

Research Approach

Translation: "The product must comply with the insurance regulations related to claims

processing".
CAMelL Tokens: ['&LL}XM\' ,':&;lbu..]' ,vw\' ’vw{ﬂ\v ,'Cj‘Jy ’vc‘év :VG:‘M\' ,'éé\jj:" ,voiv ,vg'_‘.;:,v]
CAMeL PoS: ['verb', 'conj_sub', 'verb', 'noun’, 'prep', 'noun’, 'noun', 'adj', '‘prep', 'noun’, 'noun']

H#16: Through the study of the different SRS for different projects we notice that there are

many terms and words are repeated in the legal requirements, theses terms are summarized in

Table 4.6.

e Class 7: Operational (O)
H#17: It is more likely to be operational requirement if the ['foreign'] tag is present at sentence
PoS. Non-Arabic words frequently indicate programming languages or techniques (such as
HTML, SQL, etc.). It is more likely that a sentence is a non-functional requirement if there are
foreign words present in it, regardless of the sentence syntax. Therefore, based on their PoS

tags, foreign words are able to distinguish the operational class.

There are several potential structures that indicate when foreign terms are used in Arabic

sentences:
Verbal sentence :

Verb + Subject + Object (1) | Object (2) | Object (3) -> Verb + (Noun | Pronoun | Foriegn Word)
+ (Noun | Preposition + Noun |Preposition + Foriegn Word | Foriegn Word) + (Noun |
Preposition + Noun | Preposition + Foriegn Word | Foriegn Word) + (Noun | Preposition + Noun

| Preposition + Foriegn Word | Foriegn Word).

CAMeL PoSTags :Verb + (noun | pron | foriegn) + (noun | prep + noun | prep + foriegn | foriegn)

+ (noun | prep + noun | prep + foriegn | foriegn) + (noun | prep + noun | prep + foriegn | foriegn).
Example: " HTML ziais sl ae sdaill Jelay

Translation: "The system interacts with any browser HTML".

CAMeL Tokens: ['ziaic 'l 'aa' fabaill 'delsly, 'HTML']

CAMeL PoS: ['verb', 'noun', 'prep', 'adj', 'noun', 'foriegn']

Nominal sentence :

41

Research Approach

Subject + Verb + Object (1) | Object (2) | Object (3) -> (Noun | Pronoun | Foriegn Word) + Verb
+ (Noun | Preposition + Noun | Foriegn Word | Preposition + Preposition) + (Noun | Preposition
+ Noun | Foriegn Word | Preposition + Preposition) + (Noun | Preposition + Noun | Preposition

+ Foriegn Word | Foriegn Word)

CAMeL PoS Tags :(noun | pron | foriegn) + verb + (noun | prep + noun | prep + foriegn | foriegn)

+ (noun | prep + noun | prep + foriegn | foriegn) + (noun | prep + noun | prep + foriegn | foriegn)
Example: " Oracle SQL Server <iblull ac! s zali j axdiu of g iiall "

Translation: "The product should use a database management program like Oracle SQL

Server ".
CAMeL Tokens: ['ziall!, 'cany, 'Ol Taddiaa | 'zl) ael) 'l 'Oracle’, 'SQL, 'Server']
\l

CAMeL PoS: ['noun', 'verb', 'prep’, 'verb', 'noun', 'noun’, 'noun', 'foriegn’, 'foriegn', 'foriegn']

H#18: Operational requirement is more likely if the primary actor is the "system "adaill" "or one

of its Arabic synonyms like (gl zitall | Gukill 8 5all) ;

The Arabic sentence could be verbal or nominal sentence, if the sentence is verbal then the main
subject in the sentence will be: the system "2Usdl" that follow the main verb in the sentence. If
the sentence is nominal, then the main subject in the sentence will be the system ,"sUaill" Jas

llustrated bellow:
Nominal sentence :

Subject + Verb + Object -> Subject +Verb + (Noun | Pronoun) + (Noun | Preposition + Noun |

Adverb + Noun)

CAMeL PoS: Subject +Verb + (noun | pron) + (noun | prep + noun | noun + adv) + (noun | prep

+ noun | noun + adv) + (noun | prep + noun | noun + adv)

Where token "adaill" = [0] or "zl or "zl)" or "G@nkill" or"ad sl

Example: " callall sie Lgialein) 5 Gak Glalia) Jue Y1 by s e Jany allaill

Translation: "The system automatically backs up business data and restores it upon request".
CAMeL Tokens: [l lxie" lgislainl 5 AR Ullgal' 'Jlee Y1 felily | et "Jaay ol
CAMeL PoS: ['noun', 'verb', 'prep', 'verb', 'noun', 'noun', 'adv', 'adv', 'conj_sub', 'prep’, 'noun']

Verbal Sentence:

42

Research Approach

Verb + Subject + Object -> Verb + (Noun | Pronoun) + (Noun | Preposition + Noun | Adverb +
Noun)

CAMeL PoS: Verb + (noun | pron) + (noun | prep + noun | noun + adv) + (noun | prep + noun |

noun + adv) + (noun | prep + noun | noun + adv).
Where token "?M\" — [1] or MG_UA‘" or "Gﬁu)'}”" or "é;\..daﬂ\" OI'"QAJA‘"
Example: (U'_al_ml\ tm;l 33 g2 gall 3)’@;%{\ ‘_Ac GZ\.’\A\ dﬂ":‘)

"

Translation: "The product works on the available devices for all environments".
CAMeL Tokens ['clad) 'aaeal 53 s sall' '3 5621 ' et atiall' "Jand] :
CAMeL PoS: ['verb', 'noun', 'prep', 'noun', 'adj', 'prep', 'noun']
H#19: Through the study of the different SRS for different projects we notice that there are

many terms and words are repeated in the operational requirements, theses terms are

summarized in Table 4.7.

Table 4.1:Performance Requirements Keywords

English keywords Arabic keywords
1 Response L lxiwl
2 Verification Gaall
3 Register ezl
4 Waiting B1=
5 Answer L)
6 Administration 8yld)

7 Repetition sale|
8 Completion JLs|
9 Cancellation sla)
10 Construction elid|
11 Performance el
12 Maximum @afﬂ
13 Research Eoo
14 Update ol
15 Flow RERv

43

Research Approach

16 Registration rE
17 Activation s
18 Report BEIY-H
19 Second 456
20 Save NEY.ES
21 Minute 45,8
22 Speed de
23 Long Jogb
24 Practical ddos
25 Attached 3950
26 Synchronization dialyo
27 User pSiuo
28 Complete JoiSe
29 Time GX:T
30 Takes RELE
31 Leave ke
Table 4.2: Security Requirements Keywords
English keywords Arabic keywords
1 Inquiry et
2 Revocation Jay)
3 Clinical Sals)
4 Security ol
5 Data Gy
6 Audit (383
7 Registration Jaas
8 Access Jsaall
9 Collision palad
10 Categories Sldyial
11 Report BB
12 Integration Jalss
13 Protection Ales

44

Research Approach

14 Harmful 3 jua
15 Display =y
16 Correct Ta
17 Viruses il g b
18 Authorized Jsia
19 User PREG
20 Authentication A8liaa
21 Processing Aallza
22 Product e
23 Forbid &
24 Trusted P
25 Employees Crala 5
26 System alas
27 Access Jsas
28 Protect oce!
29 Tell g
30 Guaranteed Cyaran
31 Prevent v
32 Access Jpa
33 Only RYER|
34 Members elac
35 Safe Bl
Table 4.3: Availability Requirements Keywords
English keywords Arabic keywords
1 Week & gail
2 Response sl
3 Internet <y
4 Operation Jawdil)
5 Service sl
6 Work Caadl
7 Customers & Slaall
8 Web sl

45

Research Approach

9 Day ol
10 Disruption g Uadil
11 Broadcast <y
12 Percentage LW
13 Failure Jass
14 Technical k]
15 Presence 2l g
16 Availability A
17 Schedule Jsan
18 Fault Jia
19 Support pcd
20 Hour aclu
21 Year iy
22 Long dish
23 Period 5y
24 Duration Bla
25 Rate Jaza
26 Product e
27 Percentage I
28 Time g
29 Achieve e
30 Daily L 5o
Table 4.4:: Look and Feel Requirements Keywords
English keywords Arabic keywords
1 Professional PPN
2 Respect al sl
3 Framework k)
4 Buttons Sl
5 Formatting (o
6 Appeal YERIEN
7 Attractive @l

46

Research Approach

8 Logo s
9 Shape J8E
10 Sound & gua
11 Panel ia gl
12 Color O
13 Brand S
14 Simulation s
15 Appearance b
16 Standards lza
17 Animated i< jaia
18 Profession ga
19 Enjoyable &ian
20 View 5 lai
21 Interface igal
22 Feels e
23 Attracts G
24 Graphics A g)l
25 Bright 43 yia
26 Dark)
27 Groups Slelaaldl
28 Religious aaual)
Table 4.5: Fault Tolerance Requirements Keywords
English keywords Arabic keywords
1 Exception P kv
2 Recovery Balatinl
3 Connection Juaiy
4 Broadcast |
5 Power gl
6 Disconnection g Uadil
7 Failure Maxs
8 Compensatory duiay gal
9 Preferences i lcads

47

Research Approach

10 Save BEVIN
11 Server PREN
12 Error s
13 Log Jaw
14 Emergency L)
15 Malfunction Mac
16 Connected Jraiia
17 Strength 368
18 Robust Odla
19 Problem Al
20 Displays U
21 Fails Jdy
22 Exception LY
23 Failure Juasl)
Table 4.6: Legal Requirements Keywords
English keywords Arabic keywords
1 Consideration el
2 Parts el xY)
3 Merchant k)
4 License oas il
5 Estimation yasil)
6 Guidance 4aa il
7 Returned Maall
8 Compliance Jlial
9 Insurance Ol
10 Recycling Ly g
11 Legislation &
12 Estimative (§ RS
13 Record Jas
14 Rule 3ac\d
15 Law sl
16 Regulation aany

48

Research Approach

17 Principles tslea
18 Requirements cltlata
19 Standards ulza
20 Disputes Gle i
21 Requires llaty
22 Compliant 438 gia
23 Organizations Ciladaiall
24 Case Ayad
Table 4.7: Operational Requirements Keywords
English keywords Arabic keywords
1 Electronic s STy
2 Parts NN
3 Devices 3 ey
4 Programming daa
5 Mail 2l
6 Card addad)
7 Data bl
8 Environment Ayl
9 Application Caukatl)
10 Server PREN
11 Company Al
12 Maintenance sl
13 Work Jasdl
14 Statistics ¢liaa)
15 Repair)
16 Interaction Jelss
17 Technology L 5l 93
18 Distribution &S
19 Timing Cad 6
20 Firewall Qlall Hlaa
21 Server PREN
22 Support acd

49

Research Approach

23 Disk oap
24 Sheets 8 gdS
25 Accounts el
26 Language VeS|
27 Browser Zhalie
28 Compressed L grias
29 Windows 34 g5
30 Engineering Auaia
31 Windows BT

To enhance our method's accuracy, we enlisted the help of three seasoned software engineering
specialists to evaluate it. Two of them have doctorates in software engineering, while the third
is a distinguished engineer working for a top software engineering company. The experts
provided a numerical percentage rating out of 100 for each heuristic, their evaluations depicted

in the Expert Evaluation Table 4.8 below:

Table 4.8: Expert Evaluation

Class Heuristic Evaluation Evaluation Evaluation Average
Percentage Percentage Percentage Percentage
(Expert #1) (Expert #2) (Expert #3)
Performance 1 90 85 80 85
(PE) 2 80 90 90 86.7
3 85 80 80 81.7
Security (SE) 4 95 90 85 90
5 85 85 80 83.3
6 95 90 85 90
7 95 90 85 90
Availability 8 92 85 85 87.3
(A) 9 96 80 85 87
10 92 80 85 85.6
11 88 85 90 87.7
Look and 12 85 80 82 82.3
Feel (LF) 13 85 80 90 85
Fault 14 90 85 80 85
Tolerance
(FT)
Legal (L) 15 90 80 80 83.3
16 90 80 90 86.7

50

Research Approach

Operational 17 90 75 80 81.7
O) 18 80 80 90 83.3
19 80 80 85 81.6

Leveraging their collective expertise and insights, we meticulously refined our heuristics based
on their evaluations, invaluable comments, and constructive feedback. Overall, the evaluation
shows our heuristics' advantages as well as their shortcomings. We can prioritize improvements
by identifying the particular areas that need attention based on our analysis of these outcomes.
For the purpose of enhancing our heuristics and ultimately raising the caliber of our program,

this iterative review and refining process is essential.

4.2 Algorithm of the Novel Approach for Classification of Non-Functional Arabic User

Requirements

The bellow algorithm presents our heuristic-based requirements classification, which utilizes a
set of predefined heuristic rules to predict labels for input sentences. These heuristic rules are
designed to capture specific linguistic patterns or conditions indicative of different categories,
such as performance, security, availability, look and feel, fault tolerance, legal, and operational

aspects.

Algorithm #1: Heuristic-based Non- Functional Arabic User Requirements Classification:

Input:

- Input CSV file containing text data and associated labels (testing.csv)

- Text files containing key phrases related to different categories (e.g., 1.csv, 2.csv, ..., 7.csv, 5ft.csv)
- Pretrained models and modules for tokenization, disambiguation, tagging, and normalization
Output:

- CSV file containing predicted labels ('pe', 'se', 'a', 'If', 'ft', 'I', '0") for each input sentence (outFile.csv)

- Classification report showing accuracy, precision, recall, and F1-score for each class based on true

and predicted labels

Steps:

1. Import necessary libraries and modules:

2. Initialize MLEDisambiguator and DefaultTagger:

3. Read input data:

51

Research Approach

4. Initialize output file:

5. Data Preparation:
- Normalize each sentence in the input data.
- Tokenize normalized sentences into words.
- Tag tokens with part-of-speech.

6. Apply Heuristic Rules:

- Define and apply a set of heuristic rules to classify sentences into different categories ('pe', 'se', 'a',

Ilf’ 'ft" lll, '0').

- Each heuristic rule assigns a score to each sentence based on specific conditions and patterns found

in tokens or part-of-speech tags.
7. Prediction and Output Writing:
- Use heuristic scores to predict the label (category) for each sentence.
- Write predicted labels and original sentences to the output CSV file.
8. Evaluation:

- Print the heuristic scores for each category and a classification report showing accuracy, precision,

recall, and F1-score for each class based on true and predicted labels.

End of Algorithm

4.3 Case Study

In this section, we illustrate the proposed approach and show how we classify software
requirements. We used the PROMISE Software Engineering Repository [53] to test our
methodology. It is a collection of freely accessible datasets and resources designed to help the
software engineering community as a whole and researchers in the process of developing
predictive software models (PSMs). The repository is designed to support software engineering

prediction models that are repeatable, verifiable, refutable, and/or improvable.

To assess the efficacy of our suggested method, a subset of the PROMISE Software Engineering
Repository dataset was used in this investigation. Our methodology was tested and validated
using the chosen portion of dataset, which included 105 labeled non- functional user

requirement sentences. A qualified translator translated the dataset from English to Arabic to

52

Research Approach

guarantee accessibility and inclusivity. The portion of the dataset we chose and its translation is

shown in the Case Study Table 4.9 bellow:

Table 4.9: Case Study

Class Requirements in English Language Translation to Arabic Language

Performance | The product must respond quickly to e Blasl) de e gl Cauziaw Of czm
maintain updated data on the screen. daladl § Busall UL
The product should produce search 39 § Co 5 il e gk of o
results in an acceptable time. Jgsie
Search results should be returned 30 ol Y uego (3 Coondl LG gl oz
within 30 seconds after the user Codl pland pusiuell Jls-5] day 456
enters search criteria.
The product should generate a CMA Cd9 § CMA 85 il (ol Ol e
report in an acceptable time. Jgain
CMD report should be regenerated 60 9l Y dege (§ CMD s Bole] o
within 60 seconds after the user 25 mlae) pustiuad! JIso| da 436
enters report criteria.
The product should synchronize Juail Olgzr duslpay ginall pois o s
contacts and appointments in an Jgudo 89 (§ duslgally

acceptable time.
The product should synchronize with | dsls J5 CaSall plas ae gisadl ool OF o
the desktop system every hour.
Response time for general student &3] ples Lloviwl g i I o
management tasks should not exceed | (§,iiw M 209 <0l 5 ¢po ST dalall I
5 seconds, and the response time to 30 oo AST 2wyl d}.\qJ\ slady Ll cdy

create the timetable should not FRIG
exceed 30 seconds.)
The maximum wait time for a user Sl cdg) (9a8Vl sl i M e
navigating between screens within s 63t U] dals (e Jais @I pdstianal
the dispute's application should not 0195 5 e wileilal udas
exceed 5 seconds.

The disputes application should Busciwse 350 wlejlall Gudas eedo Ol e
support 350 concurrent users without Gl 3 eloYl (3 55005 (ST (190 Lualiio
any performance degradation in the

application.

Searching for recyclable parts should slaadl =Yl e Eodl 3yainn M o
not take more than 15 seconds; B oye i 466 15 o ST aygus
search results should be displayed in 356 15 e U381 3 Casedl
less than 15 seconds.)
Searching for the preferred repair 2l 2l (3350 oy Codl i)
attachment should not take more aial oYl Aliwg £lmy] o Ols3 8 (30 AST
than 8 seconds; the preferred repair Olgd 8 Yguat §
method should be returned within 8 i
seconds.

The audit report for recyclable parts | |95 slaadl sly=Y 3805 1,85 8ole) o
should be returned to the user within 285)l o 0195 10 Oguad (§ pustiunal!
10 seconds; the audit report should 0195 10 Oguat (3 (G300l
be returned within 10 seconds.)
Saving preferred repair attachment 3 Jaaall 2 3850 wladual Jad> Com
classifications should occur within 5 Ot (3 Jadsdl Gdow O o 013 5 Oguat
seconds; saving should occur within) Olgs 5
5 seconds.

53

Research Approach

Modifying inventory quantities for
the previous thirty days should not
take more than 30 minutes.

BA8) Ogseall S oukal B3le] Gpii Wl o
L4835 30 ¢po AST dludl La g ¢y

The system should allow at least 6
users to work simultaneously.

&y‘&meJfUaJ\Muiuzg
gl o § Jasll

The administrator should be able to
activate a prepaid card through the
management section in less than 5
seconds.

Bllay oS e 5306 Jggauad) 0950 O s
Olg5 5 oo J31 3 9)15Y) pud e 23l dnno

The customer should be able to
verify the status of their prepaid card
by entering a PIN number in less
than 5 seconds.

Ul o Gasadl e 536 Jaoad! 0950 OF czo
63 3] 2y (5 s e iutall 4l
Ols3 5 ;e J3T GPIN

The system should allow customers
to register on the website as 'pay

e Jemadlls Mlasll plladl o OF o
T (3" Jai) sUdl adll' pusvinsS o)l aBge

attempts.

while roaming' users in less than 5 3B 5 (e
minutes.

Security The product will be able to anedsianadl o el e 536 miiall O gSis
distinguish between authorized and TS FE R PVIF SN B TRV F P
unauthorized users in all access Jyo 4l

Authentication and licensing of each
system user must be performed.

plail) pusvivne S pansyig BBolias oy

The product must prevent the entry
of incorrect data.

2 Oble J-o| (e il |¢3A30Tu>v, >
dousuo

The system should include a
fundamental data integrity check to
reduce the likelihood of submitting
incorrect or invalid data.

A Ol @ouids ddlai>! Julad bl

The system must protect private
information according to the
organization's information policy.

(B9 Aol iloghanll plladll oz OF
dabaiall ©lo glas duoled

The system should be built to be as
secure as possible against malicious
interference.

o0 QKA}’\ gut Gl 0553 Caso ‘ALE:.Z“ slo coo
ol Js-udl

All additions of new users and
modifications to user access must be
logged in the user report.

Lol LBLEYI pax Jomad Com

Only the system administrator
should be able to reset a canceled
user login account.

Ao 538 Jaad pladl Jg§une 0950 Ol o
© pdstiue J933 Juzeud Ol (pual Bole]
oyl

All updates to data files or databases
must start from the dispute system.

3T UL wlaled elipus T sy o
olejlall pllas (e OBLAI 8UcB

Only officers can request audits of
recyclable parts. Any user without an
officer role cannot request audits of
recyclable parts.

B2l 3805)5 (b 0giSey Jaad bluall
A e pdstis Y J9z Y W ygus slasll
o323 3805 ©lidae by of Lol 49
5395 dlasdl

Only officers with a supervisor role
can update preferred repair facility

ratings. Users without a supervisor

role cannot access preferred repair

facility ratings.

o0 2 Jadd Ui y9d og) (pddl bluall
oY Blads Slaiuas Codss @agiSas

(“'@'3"\'] o RESUNRSVNES IS Qs.og Y .dlaadl
oY 8lain wladual) dgmos)l Briall 59

54

Research Approach

Only collision estimators should
search for recyclable parts. Users
without a collision estimator role
cannot search for recyclable parts.

2l o8 Gy O o Jad ol jake
o ool ppedsianad Jaz Y Ly 95 slall
o* c"".‘” dl dj»soj-” “-'.)ngﬁ.“).).ﬁ.a‘)}) W'JJ

5195 olawdl ;!}?;)’\

Only valid data should be entered
into the system. No invalid data will
be entered into the system.

o -pUadl 3 Jaid ddlall bl Jso] Com
pladll § dxlle pe wlly &1 L) o2

One insurance company will not be
able to view claim data from other
insurance companies.

Sy o258 o By (el A5 (S o
63 el O ddlas

The product must be free from

lagnd oo WS gl 0550 Of e

computer viruses. 39Sl
The system must prevent malicious 3 (8 Loy sl Olazgll pladl pies ol
attacks, including denial of service. Aozl e Olayll

The product must ensure that only
company employees or external
users with company-approved user
IDs can access the product.

91 881 poge O el (e O o
o (pddl add ol predsine]|
gl dl dgwe 9!

Internal Security.

Availability | The product must be available for el 24 plaso Bl guiell 0985 of o
use 24 hours a day, 365 days a year. Aol (3590365 Loy
The system will be available 999 out | Jsse9 1000 ¢x ¢y 830 999 >Lie plaill 95
of 1000 times when accessing the el
system.
The system must achieve a 95% .95% Ay Jriisd <9 plaidl 3am Ol e
uptime.
The product must comply with the COAY e 39l Jguzm el ek Ol m
company's online availability Ogas § lasd Gudadll Hlax ox o8l
schedule. The application is only Jouo) B89 Uguoxall gladiVl I8 (10 798
brought up during 98% of scheduled ogl
downtime periods according to the
availability schedule.
The website must be available for 24 plascwl Ble Cogll gdge 0950 O
use 24 hours a day, 365 days a year. Ad) (§ agy 365 gy dclus
The site must achieve 99.5% uptime. iy Juisd 89 adgall Bz Of

./99.5

All on-demand movies must be a3y 6l 3 callall wie SN aaar o o
available at any time of day. ol o
The system will provide 800 toll-free | dcluw 24 Hldo (fe 3o 03 800 pladl ,8 gm0
numbers 24 hours a day for customer Alas el
support.

Look and The application must match the color Jalaseall Og) g Gaedatll 3ollaiy OF

Feel scheme specified by the Ministry of A1 opadl B)l39 U pe dudoeadl

The system's form and appearance
must comply with the smart device's
user interface standards.

las g plladl yglang S (38153 Of e
é.)..”)l.@:db 4ol ﬁ.).:um.” EVEST

The user interface must have

@153 5131 e pastiu)l dgy Ggims Of cox

standard menu buttons for Jaal) dwld
navigation.
The system must have a professional QA yelae pllad) 0980 Ol
appearance.
The product must have consistent bglasg Olgll Jalases guinal) 0955 Of
color schemes and fonts. ddwlioe

55

Research Approach

The dispute application must comply
with the company's standards for
creating an internal and external
application user interface.

e go Olejliall Gedal 33190 Of o
il pSiune dg=>lg slady as el
Gomylig G dakiune)

All screens created as part of the
dispute application must comply
with the company's interface
creation standards.

dg=19)!

The product must comply with
company user interface guidelines.

dgzly sl wo el 33190 Of
ISJL Lol pusill

The product must comply with the
company's color scheme.

Al olgh plas ae guinell (3819% OF

The product's appearance must be
professional.

Ll iiedl yekae gk o oo

The product's form and appearance
should be able to incorporate aspects

e 026 g guiall S 0950 O
)t Lodall o Sl G §o S92 e

of the client's enterprise, such as dgglly Hlasdlg
branding, logo, and identity.
The product must have a 09 hadlows yelan gial) 0550 Of o

conservative and professional
appearance.

The website must be appealing to all
audiences. It should appear
enjoyable with bright and lively
colors.

kel grad G adsall 0580 of o
0955 Of g Bitow @89l 9 OF oo
Ll dualig 48 e OV

The design of the website should be
modern, clean, and concise.

Wudass By @890l paoual 090 Of e

e at)
The website must not discriminate 9 &l Glelazd!) adgall £ [
against religious or ethnic groups. a3l
The website should attract all ey 38)8Y1 ez adgall Lo Of
Africans, not just Nigerians. 128 ozl

The product should emulate the
appearance of ships at sea.

ol § el gl ial) Sl of

The product should display networks
within a circle as if viewed through a
periscope.

B3l Ja-ls oeadl ginall (om0 of e
Hiall (o (2528

The product should showcase each
type of ship in a network using an
image of a specific type of ship.

Sev § ol 0 £ S el G2y OF o
Ol (0 (pan Eoid)90 pldinly

When the attacking player takes a
shot, the product should mimic the
sound of a ship at sea.

Fault
Tolerance

The product must operate in offline
mode when internet connection is
unavailable.

Jlail pAe 249 L“g @.U.c.ll S Qiu:z:a
Rgie pd CIAYL Jbail 5% Ledis

he product should allow the user to
view reports and schedules of
previously downloaded search
results.

)::JLES 3Ly ‘zw 67.:.0.” Muiu:g
lz.wl.éalﬁ]\s & LEJ‘ Gl z3LS duelgog

The product must retain user
preferences in case of a malfunction.

(3(" o I‘C,\:“'."‘,M]‘I" “C)TUJL“’
Jlae &gu> Al

56

Research Approach

100% of the user preferences saved
must be restored upon system return
to an internet-connected state.

pasiuall S o 7100 8laiwl ox
COAYL Juate pllaidl Bage die 4l gaseoll

The product must create an
exception log for issues encountered
within the product to be sent to our

company for analysis and resolution.

M ial) £l d.?:..w ;Lwl é.'i.ha.” L,LC— [3]
Jl by el J31s zgrlse caes 3
gl Lghaloed LS

The website must continue to

a3 13] Joall § cogll @890 w0 Gz

function if the streaming server fails. El pols
The website must continue to Doy cllaad 13] Joadl § gBgall yatan O o
function if the payment gateway Y

fails.

The product must create an
exception log for issues encountered

MW éadd el d::..w ;L:ul G:QAJ‘ uLC (3]
1 by el J31 zgrlse caes 3

within the product to be sent to our L9 Leddmetd BsS
company for analysis and resolution.
The product must be robust, and 0950 O g e gizall 0555 OF

error avoidance should be based on
standards compliance.

bl slazel e 20y Uasl Gionie gl

The product should be strong with
error tolerance; it should be fault-
tolerant using compensatory
transaction handling for recovery
and routing around failure scenarios.

dlasdl ao roleaill o Gg8 gminall 0555 OF o
ozl go eolcio gl 0950 OF s
Sl &uas) dupngail] Alslaall plasvinly
Jid)l WY Jg> duzrgilly

Legal

The dispute resolution application
must comply with the legal
requirements as specified in the
Merchant Operating Regulations.

Oldlaiall pe Oleliall Gadas 3819% Of o
Juict gls) 3 el gl e &5 9318
geavi]

All operational rules specified in the
dispute resolution system must be
compliant with the Merchant
Operating Regulations.

L:g Badall d.o.a]\ J..cb.é e Qﬂ QT L3
Sl s @‘)\5.] & 3.5_"3\3.‘240 olejladl ‘QLb.J

The dispute resolution application
must adhere to the legal
requirements as specified in
Regulations E and Regulation Z
governing credit card dispute
processing.

Oldlaiall ae Oleliall Gadas 3819% Of o
a3l E glsll (3 suseall 9ol e a5 g3l
Ol Gllay ilejlie dxllae (S5 (JIZ

All operational rules specified in the
dispute resolution system must be
compliant with the guidance
principles of Regulations E and
Regulation Z.

@ 83dxall Jasnll del g8 aunz 0555 Of
dagemrgdl 180luall ao Al gin ilejliall pllas
2459 E 4=

The dispute application must
maintain a detailed record of every
action taken by the user in a dispute
case.

e Jaug Olelll Gadad Jadio Of G
8ﬂ|wéﬁm@|ow ey N

All actions modifying an existing
dispute case must be logged in the
case's history.

dund Juas LEJ‘ C)\;b.?}’\ o izl Co
duall 70yl (§ 43 gl

The product must comply with laws
regarding the use of recycled parts.

Akl sl (193 ae giiell (38153 O e
945 dlaall 291 alasuiunly

57

Research Approach

Operational

The system must be able to operate
within a typical office environment
for the nursing department at DePaul
University.

By 51 Jeadl e 1500 alasdl 0550 of
daal 3 panedl o) 3 g Jlasl S
Jgma

The system must adhere to the
specifications set by the computers
used by program managers/nursing
staff members.

Sadoeall Olasolgall (paus pllaidl plusviwl oo
Jud e dodsina! 3 9uuaSJl B3¢ dasl g
oyl @Bl slact / el Wl Sy

The system must operate within the
Windows XP Professional operating
system.

Windows XP Professional

The system must interact with the
central server for CampusConnect.

CampusConnect

The system must interact with the
college's central server.

AW (G385l palsdl pe pllaill Jelasy Of

The system must interact with the
main student server.

@udyll @l e plladll Jelany of
Il

The dispute application must be
available 24/7, except during
scheduled maintenance windows:
Monday - Saturday 3:00 AM to 4:00
AM Eastern Time, Sunday 1:00 AM
to 5:00 AM Eastern Standard Time.

24 Jlae e 3lie Olelil Gadas 0550 OF o
Bluall 1155 sliials goudl bl Jlgbs delus
13Loo 3:00 ol - Y1 AW A gaeal!

1:00 4591 ¢34l cudgill 5-lus 4:00 o>
G ()l cdgill Bls 5:00 J) Bl

The dispute application must interact
with a data account database. The
account database provides
transaction details for the dispute
system. All transaction details must
be obtained from the account
database.

Be b ao clejliall Badas Jelany of oo
3548 by Basld Lbg5 bl by
olelall pliad) Alsbaall Juuols Sl
oo Aalrall Juo S arazr e Jgamll cm
Ol 8948 ULy 5ucld

The dispute application must interact
with a card member information
database. The card member
information database provides
detailed information regarding the
card member. All detailed card
member information must be
obtained from the card member
information database.

Be b ao olejliall Baudas Jelany of e
Ollo 8ucld 4345 .d8ladl guae loglan il
loxd dhado wleglao Cardmember leglao
gz Je Jgaxdl com Bladl pam 3lan
oo Bladl gyan Aol ddaisll Oleglasll
Bl gae Ologlao Glily ucld

The dispute application must interact
with a merchant information
database. The merchant information
database provides detailed
information regarding the merchant.
All merchant detail information must
be obtained from the merchant
information database.

8o b o lelill Olidas Jelas Of
o 2 Wb 3lak lad dbate Ologlas

OA)_?L’U\ Juo a3 C)Lojl;m s LﬁLc d}‘a_xn
=Wl obly 8ueld

The dispute application must interact
with the Letters application. This
allows the dispute application to
request letters as part of the dispute
initiation and follow-up process. All
letter requests must be sent to the
Print Letter Utility application.

Gl o Olejluall adad Jelany of e
by wlejlal gudad 14 mewvwletters
&b\]\ daling &\J\J‘ 2o ddos o 2328 Gbllas
Gedal] obllasdl bl area Jlwy]
Print Letter Utility

58

Research Approach

The dispute application must interact
with the card member migration and
billing system. This allows the
dispute application to request
modifications to card member and
merchant accounts. All modification
requests must be sent to the card
member migration and billing
system.

Pl o wleliedl adas Jelins Of

i ranen 33Ul guaa) 8,39ally Lol
Gblus de cdlbdad Cllay lejlall Gadasd
o Jly] o 52 Wy Bladl c>bo
soand 8y55allg Juo Ul pllas] ol 0Ll
FEI

The product must interact with the
parts selection system. This provides
recycled parts data feed.

=21 Hles plas & goadl Jelany ol e
2,395 Sla]l sl Gblo das 14 g

The product must adhere to company
engineering guidelines.

a1 dudin wlolinb el ol of o

For estimators, the product must be
able to operate in a repair facility
during dirty and noisy conditions.

596 zuiill 0S5 O o ccpyiall] deaudlly
Gy ball Ul Do) slade (3 Jeadl s
d3-lally dscuwdiall

The product must interact with the
once daily CoiceParts system around
1:00 AM.

Bo g By 8y0 pllas po il Jeliny Of ey
CoiceParts\>lue 1:00 delull Jls=> 3

The product will be available for
licensing as a single server and five
servers or five servers or more.

d>lg ‘:JBS yaus-pl) 15-le uﬁsé*“@*d
8T g1 polgs duuas o pol g3 duassg

The product must be installable in
any operating environment within
two days.

@éTéW‘J‘BJ@@AJ‘OﬂOT%
(g Oyt 3 il

The product must be developed

using J2SE/J2EE programming J2SE / J2EEdza |
language libraries.

The system must utilize currently ASglanll 39Sl Bygrt pllasll auseinw Of e
owned computers. B

Upon inputting these requirement sentences into CAMeL Tools, the resulting output will
encompass both PoS tags and tokens. An illustrative example of each class will be provided

below
Arabic sentence:
“Canall julaal aadiiall JA) 2 4305 30 Jslah Y e g (8 Gl Al gl iy

CAMeL Tokens: [v ’vemp ,vd&{\v ,vJ’_jv ,'37\31:1' ,|30| ,')J‘A,:\,-J' ,|\y| ’vva ’v‘;v ’VM\V ,v@u}v ,’tlé_);\' ,';,\,313
> nv ,vﬁl’_‘dn]

CAMeL Tokens: ['verb', moun', 'noun', 'noun’, 'prep', 'noun’, 'part_neg', 'verb', 'digit’, 'adj', 'noun’,

'noun’, 'noun’, 'noun’, 'noun']

Arabic sentence:

59

Research Approach

“Jgua sll Y slae gien 8 ol 7 emall 5 aed el pariinall (el o 15008 i) () o

CAMCL TOkel’lS: [v "C)m.d\' ’v):}t}v a’(’éj "C)m.d\' "O&AM" ,’L.):."." ;M‘v ’vé;v "\33&' ’vc:dd‘v ,'Q}S:.‘“
d}&é}j\' ’vuyjmv ,v@gv "‘g' :'?GJ”]

CAMeL PoS: ['verb', 'noun', 'adj', 'prep', 'noun', 'noun', 'noun', 'adj', 'prep', 'noun', 'adj', 'prep',
'‘prep', 'noun’, 'noun’, noun'|
Arabic sentence:
“aBlac aedldelu 24 e e Jlas i) 800 pdaill i s
CAMeL Tokens: [’ acal' el 124" ' jlaa' ! le! ' Saa' 148) '800" ,'aUaill ' i su']
CAMeL PoS: ['verb', 'noun', 'digit', noun', 'adj', 'prep', 'noun', 'digit', 'noun’, noun', 'noun']
Arabic sentence:
“Aauliie Ja gl 5 o sl lalada eeiiall 6% o any”
CAMeL Tokens: [Aiuliia’ 'L sha o 10 i abada’ oiiall' oS4 10l 'an]
CAMeL PoS: ['verb', 'conj_sub', 'verb', 'noun', noun', 'noun', 'noun', 'adj']
5. Arabic sentence:
ol s Lellatd LS 5) lls ;Y peisall Jala Ltea) o aad il oSSRl ol o o] il o cany”

CAMeL Tokens: [v ,'di\ﬁ' ’v] - - \‘5.4' ’vuv ,'g_‘sﬂ" ’v@_’ < nv ;;Uﬁh\' ,vde ’I;udjl ’v?*- “v ,v‘s_‘cv ,v Ly
Lé_‘;_" ,'LQJ:\M' ’luﬁsﬁv ’v‘jjy ’v‘dl_m‘)“yv :'Gi.\d\”]

CAMeL PoS: ['verb', 'prep', 'noun', 'noun', 'verb', 'noun’, 'noun', '‘pron_rel', 'verb', noun', noun’,

'noun’, 'noun’, 'prep', noun', 'noun', noun']
6. Arabic sentence:
“o) il Ayl 8 aadiall 2330 o)) JS) deaie Javs e) 3l Gaakas Jading () (o

CAMeL Tokens: [v ’v‘;v a'?:. Lol "5.35:\..3' ,v;|ﬁ!v "dﬁ' ’v S ad ’v S .v ,'Q\.c\‘}ﬂ\' ’v) - ’11- a4 "v ,'Qi' ’v;.‘;_}
&\Jﬂ\v ,v';" . "sn]

CAMeL PoS: ['verb', 'conj_sub', 'verb', 'noun’, 'noun', 'noun’, 'adj', 'noun’, 'noun', 'verb', 'noun’,

'‘prep’, 'noun’, 'noun’]

7. Arabic sentence:

60

Research Approach

“J g 38 all pIA) pe plaill Jeliiy o iy CampusConnect
CAMeL Tokens: ['CampusConnect', '3 ,'cs S yall' Jadladl faal fallaill 'deldyy "ot 'cany']

CAMeL PoS: ['verb', 'conj_sub', 'verb', 'noun', 'prep', 'noun’, 'adj', 'prep', 'foreign']

61

Evaluation

CHAPTER FIVE

EVALUATION
In this chapter, we go into the critical process of evaluating our approach performance.
Evaluation serves as the compass guiding the effectiveness and reliability of the approach, we
developed. Through rigorous assessment, we gain insights into how well our approach
generalize to unseen data, their strengths, and their limitations. By employing various

evaluation metrics, we can quantify and interpret the performance of our approach.

5.1 Evaluation Metrics

Evaluation metrics offer numerical measurements for evaluating approach performance. They
provide insights into several facets of an approach's functionality, including its precision in
predicting outcomes, its ability to locate pertinent data, and its general efficacy in resolving the
intended issue. In our study, the evaluation of classification models was conducted utilizing the
classification report functionality provided by the Sklearn.metrics library within the Python
programming environment. The metrics included in the classification report are: Precision,

Recall, Accuracy, and F1-Score.

5.1.1 Precision

Precision, also known as positive predictive value, measures the accuracy of positive
predictions made by the approach. It quantifies the proportion of true positive predictions
(correctly identified instances of a class) out of all positive predictions made, including both

true positives and false positives. Mathematically, precision is calculated as:

Precision = e 5.1
recision = TPLFP ...(5.1)

A high precision indicates that our approach tends to make accurate positive predictions and
has a low rate of false positives, which is crucial in tasks where the cost of false positives is

high.

5.1.2 Recall

Recall, also known as sensitivity or true positive rate, measures the approach's ability to
correctly identify all positive instances, including both true positives and false negatives. It
quantifies the proportion of true positive predictions out of all actual positive instances in the

data. Mathematically, recall is calculated as:

Recall = —2— (5.2)

TP+FN

62

Evaluation

A high recall indicates that the approach captures a large proportion of positive instances,
minimizing the number of false negatives, which is crucial in tasks where identifying all

positive instances is essential, even at the cost of some false positives.

5.1.3 Accuracy

Accuracy measures the overall correctness of the approach's predictions across all classes. It
quantifies the proportion of correctly classified instances (both true positives and true negatives)
out of the total instances evaluated. Mathematically, accuracy is calculated as:

TP+TN
TP+FP+FN+TN '™

Accuracy = ...(5.3)

Accuracy provides a general assessment of the approach's performance.

5.1.4 F1-Score

The harmonic mean of recall and precision is what determines an F1-score. The F1-score, which
combines precision and recall into a single metric for evaluation purposes in binary and multi-

class classification, is frequently used to improve comprehension of model performance.

2 * Precision = Recall

Fl = Score = Precision + Recall " D

5.2 Experiments
In this section, we detail the experimental setups and the results obtained from evaluating our

proposed approach for classifying non-functional Arabic user requirements using a set of

heuristics.

5.2.1 Experimental Setup

We used 105 requirement sentences from the PROMISE dataset, which was divided into seven
different classes: legal, operational, performance, security, availability, look and feel, and fault

tolerance, which tested on our software.

5.2.2 Data Preparation

Prior to conducting the experiments, we divided the requirement sentences into individual
classes. For each class, we created a separate CSV file containing the respective sentences.

Additionally, we prepared another CSV file containing all the requirement sentences combined.

5.2.3 Experimental Procedure
1. Single- Class Testing: We started by giving individual tests to each class. In order to

accomplish this, we fed the sentences from each class into a Python code that used the

63

Evaluation

5.3

CAMeL tools to process the data and provide the appropriate PoS tags and tokens. We

were able to evaluate the effectiveness of our method for each non-functional category

separately since this process was performed for every class.

Multi- Class Testing: We then tested all the classes collectively as part of a thorough
assessment. We delivered the CSV file comprising sentences from every class along
with the Python code. After processing the combined data, the code classified the

required statements into the appropriate non-functional classes using our suggested

heuristics.

Result Analysis
Through this section we show and analyze the resulting classification report for single — class

testing and multi- class testing.

5.3.1 Single-Class Testing

The Single- Class Testing Results are shown in Table 5.1, giving a thorough summary of how
well each class performed in the examined system's categorization. The number of input
sentences per class, the number of sentences that were successfully classified, and specific
classification metrics: precision, recall, F1-score, and total accuracy are all summarized in this

table.

Table 5.1: Single- Class Testing Results.

Class # of Input | #of Correctly Classification Report
Sentences | Classified =
SNy Precision | Recall | F1- Accuracy
Score

Performance 19 16 1.00 0.84 | 091 |0.84
Security 17 13 1.00 0.82 1090 |0.82
Availability 10 8 1.00 0.88 1093 |0.88
Look and feel | 20 19 1.00 0.90 |0.95 |0.90
Fault tolerance | 10 9 1.00 0.90 0.95 |0.90
Legal 9 7 1.00 0.86 |0.92 |0.86
Operational 20 17 1.00 0.85 0.92 |0.85

The performance class shows a high precision score of 1.00, indicating that when the model
predicts an input sentence as related to performance, it is almost always correct. However, the

recall score of 0.84 suggests that the model missed some relevant sentences related to

64

Evaluation

performance. Overall, the F1-score and accuracy are also quite high but could be improved by

increasing recall.

Additionally, the security class shows a minimal false positive rate with a high precision score
of 1.00. Nonetheless, it appears from the recall score of 0.82 that the model did not accurately
identify all lines linked to security. Although the accuracy and Fl-score are often rather

excellent, recall might be raised.

With a precision score of 1.00 for the availability class, there are no false positives. The majority
of the availability-related statements were accurately detected by the model, according to the
recall score of 0.88. While still quite high overall, the F1-score and accuracy could be raised by
sharpening their focus. The look and feel class exhibit high accuracy, recall, F1-score, and
precision, demonstrating how well the model identified phrases pertaining to look and feel.
High precision, recall, F1-score, and accuracy are also displayed by the fault tolerance class,
indicating that the model did a good job of detecting sentences that were linked to fault

tolerance.

The legal class has a lower F1-score due to their high precision but significantly lower recall.
This suggests that although the model accurately recognized statements with a legal theme. The
operational class has a lower F1-score due to its high precision but significantly lower recall.
This suggests that although the model detected sentences related to operations accurately, it

failed to identify certain other relevant sentences. To summarize;

1. There is a low false positive rate in every category, as seen by the consistently high
precision ratings for all classes.

2. The recall scores vary across classes, with some classes showing higher recall rates than
others.

3. All classes have typically high Fl-scores and accuracies, showing that the model
performs well overall in categorizing requirements into the appropriate categories.

4. To improve the total F1-score and accuracy, more relevant sentences could be captured
by raising recall for classes with lower recall scores. Further improving classification
performance may involve fine-tuning the model and possibly expanding and

diversifying the training set.

5.3.2 Multi- Class Testing

The Multi-Class Testing Results are shown in Table 5.2, providing a detailed summary of how

well each class performed overall in classifying the input sentences of the case study. It lists all

65

Evaluation

of the input sentences in all classes, counts the number of sentences that were successfully
classified, and provides comprehensive classification metrics including recall, precision, F1-

score, and overall accuracy.

Table 5.2: Multi-Class Testing Results.

Class # of Input | #of Correctly | Classification Report
Sentences | Classified
ey Average Average | Average | Overall
Precision | Recall | Fl1- Accuracy
Score
All Classes. 105 94 0.88 0.89 0.88 0.88

In the initial script iteration, our algorithm was designed to increment a category score by one
if there was a match between the sentence's tokens and the category's table of keywords. The
initial results yielded a satisfactory accuracy of 67%. However, upon consultation with experts,
they recommended enhancing the code by not only adding one to the category score in the case
of a match but also determining the number of matches and incorporating that count into the
score. This modification proved to be a significant improvement, resulting in a new overall

accuracy of 88% as shown in the classification report for all seven classes of our case study.

In summary, although the system performs well overall (88% accuracy), there are differences
in precision, recall, and fl-score amongst classes. This study shows the model's strong points

and potential areas for modification to increase overall classification performance.

66

Conclusion and Future Works

CHAPTER SIX
CONCLUSION AND FUTURE WORKS

6.1 Conclusion

In summary, this thesis has centered on the semi-automated categorization of Arabic user non-
functional requirements into seven categories using natural language processing tools called
CAMeL tools. We have devised a series of strategies to effectively classify these requirements,
utilizing the linguistic components generated by CAMeL tools, including tokens, Part of Speech

(PoS) tags, and lemmas.

Our approach, implemented through Python code and the CAMeL tools, offers a practical
solution tailored for software engineers tasked with handling Arabic user non- functional
requirements. By automating aspects of the classification process, our research aims to
streamline the analysis phase, thereby reducing the time and resources traditionally required for

manual classification.

Through the enhancement of efficiency and accuracy in user non- functional requirements
analysis, our methodology equips software engineers with the tools to make well-informed

decisions, ultimately resulting in the delivery of higher-quality software products.

Moreover, our research plays a pivotal role in advancing the field of natural language processing
(NLP) specifically tailored to the Arabic language. By addressing the unique linguistic nuances
and challenges inherent to Arabic, we contribute to the expansion and refinement of NLP
capabilities in this domain. This, in turn, lays the foundation for future innovations and
developments in Arabic NLP, opening up new avenues for research and application across

various industries and sectors.

Overall, this project not only improves the software development process but also drives
progress in the broader field of Arabic natural language processing, offering far-reaching

benefits for both technological advancement and societal impact.

Ultimately, this project serves as a crucial step towards optimizing software development

practices and enhancing the overall quality of software products in Arabic-speaking regions.

6.2 Future Work
Some directions for further research and development are presented in the future work section

of our thesis on semi-automated classification of non-functional Arabic user requirements:

67

Conclusion and Future Works

1. Heuristic refinement: Future research should focus on improving the heuristics created
in this thesis in order to increase classification accuracy. This could entail adding more
language features, investigating different classification strategies, or optimizing the
heuristics' rules and criteria.

2. Data Collection Expansion: In order to confirm and improve our methodology, we need
to collect a larger and more varied dataset of Arabic-language SRS. This can entail
contacting more organizations or software providers in order to secure more SRS
projects in Arabic.

3. Testing on More Case Studies: Future study should test our method on a wider variety
of case studies in order to evaluate its robustness and generalizability. This might
comprise SRS documents from different sectors and disciplines to assess how well our
classification algorithm works in diverse scenarios.

4. Creating Huge Datasets: Work should be done to create sizable datasets of user
requirements that are written in Arabic in cooperation with user requirements
researchers. These datasets would be very helpful in creating and educating new
completely automated categorization systems. They could also be utilized to implement

machine learning techniques to raise the efficiency and accuracy of classification.

Our goal in exploring these areas further is to improve the current state of the art in semi-
automated classification of non-functional Arabic user requirements. This will ultimately aid in
the creation of more precise and effective software development processes in Arabic-speaking

environments.

68

Bibliography

Bibliography

[1] Mairiza, D., Zowghi, D., & Nurmuliani, N. (2010, March). An investigation into the
notion of non-functional requirements. In Proceedings of the 2010 ACM symposium on
applied computing (pp. 311-317).u

[2] Habibullah, K. M., Gay, G., & Horkoff, J. (2023). Non-functional requirements for
machine learning: Understanding current use and challenges among
practitioners. Requirements Engineering, 28(2), 283-316.

[3] Kopczynska, S., Ochodek, M., & Nawrocki, J. (2020). On importance of non-functional
requirements in agile software projects—a survey. Integrating Research and Practice in
Software Engineering, 145-158.

[4] R. Amro, A. Althunibat and B. Hawashin, "Arabic Non-Functional Requirements
Extraction Using Machine Learning," 2023 International Conference on Information
Technology (ICIT), Amman, Jordan, 2023, pp- 489-494, doi:
10.1109/1CIT58056.2023.10225951.

[5] Engstrom, E., Storey, M. A., Runeson, P., Host, M., & Baldassarre, M. T. (2020). How
software engineering research aligns with design science: a review. Empirical Software
Engineering, 25, 2630-2660.

[6] Chowdhary, K., & Chowdhary, K. R. (2020). Natural language
processing. Fundamentals of artificial intelligence, 603-649.

[7] Ali, A., Chowdhury, S., Afify, M., El-Hajj, W., Hajj, H., Abbas, M., ... & Alqudah, A.
(2021). Connecting Arabs: Bridging the gap in dialectal speech
recognition. Communications of the ACM, 64(4), 124-129.

[8] Younas, M., Jawawi, D. N., Ghani, I., & Shah, M. A. (2020). Extraction of non-
functional requirement using semantic similarity distance. Neural Computing and
Applications, 32, 7383-7397.

[9] Behutiye, W., Karhapéi, P., Costal, D., Oivo, M., & Franch, X. (2017). Non-functional
Requirements Documentation in Agile Software Development: Challenges and Solution
Proposal. Product-Focused Software Process Improvement. Springer. doi: 10.1007/978-
3-319-69926-4 41

[10] Iftikhar, K., Ali, S., & Ngadi, M. A. (2016). Enhancement of Non Functional
Requirements in Agile Software Development. International Journal of Computer
Science and Information Security, 14(12), 820.

[11] Adetoba, B., & Ogundele, 1. (2018). Requirements engineering techniques in
software development life cycle methods: A systematic literature review. International
Journal of Advanced Research in Computer Engineering & Technology, 7(10), 733-743.

[12] BATOOL, I, KOSAR, L., & MEHMOOD, M. NON-FUNCTIONAL
REQUIREMENTS AS CONSTRAINTS AND THEIR VALUES IN SOFTWARE
DEVELOPMENT: A REVIEW. 2018.

[13] Umar, M., & Khan, N. A. . Analyzing Non-Functional Requirements (NFRs) for
software development. 2011 IEEE 2nd International Conference on Software
Engineering and Service Science. IEEE. doi: 10.1109/ICSESS.2011.5982328

[14] Wang, X., Zhao, L., Wang, Y., & Sun, J. (2014). The role of requirements
engineering practices in agile development: an empirical study. In Requirements
Engineering: First Asia Pacific Requirements Engineering Symposium, APRES 2014,
Auckland, New Zealand, April 28-29, 2014. Proceedings (pp. 195-209). Springer Berlin
Heidelberg.

69

Bibliography

[15] Daun, M., Grubb, A. M., Stenkova, V., & Tenbergen, B. (2023). A systematic
literature review of requirements engineering education. Requirements
Engineering, 28(2), 145-175.

[16] Pandey, D., & Pandey, V. (2012). Requirement Engineering: An Approach to
Quality Software Development. Journal of Global Research in Computer Science, 3(9),
31-33.

[17] Adetoba, B., & Ogundele, 1. (2018). Requirements engineering techniques in
software development life cycle methods: A systematic literature review. International
Journal of Advanced Research in Computer Engineering & Technology, 7(10), 733-743.

[18] AlSanad, A., & Chikh, A. (2014). Reengineering of Software Requirement
Specification. New Perspectives in Information Systems and Technologies, Volume 2.
Springer. doi: 10.1007/978-3-319-05948-8 10

[19] Singh, P., Singh, D., & Sharma, A. (2016, December). Classification of non-
functional requirements from SRS documents using thematic roles. In 2016 IEEE
International Symposium on Nanoelectronic and Information Systems (iNIS) (pp. 206-
207). IEEE.

[20] Tayefeh Hashemi, S., Ebadati, O. M., & Kaur, H. (2020). Cost estimation and
prediction in construction projects: A systematic review on machine learning
techniques. SN Applied Sciences, 2, 1-27.

[21] Choi, S. S., Chae, S. Y., & Lee, G. S. (2005, May). SRS-tool: A security
functional requirement specification development tool for application information
system of organization. In International Conference on Computational Science and Its
Applications (pp. 458-467). Berlin, Heidelberg: Springer Berlin Heidelberg.

[22] Abdeen, W., Chen, X., & Unterkalmsteiner, M. (2023). An approach for
performance requirements verification and test environments generation. Requirements
Engineering, 28(1), 117-144.

[23] Navita, M. (2017). A Study on Software Development Life Cycle & its
Model. International Journal of Engineering Research in Computer Science and
Engineering (IJERCSE), 4, 9.

[24] Hussain, S., Asghar, M. Z., Ahmad, B., & Ahmad, S. (2009). A step towards
software corrective maintenance using RCM model. arXiv preprint arXiv:0909.0732.
[25] Budake, R., Bhoite, S., & Kharade, K. (2023). Identification and classification

of functional and non-functional software requirements using machine learning. AIP
Conf. Proc., 2946(1). doi: 10.1063/5.0178116

[26] Handa, N., Sharma, A., & Gupta, A. (2022). Framework for prediction and
classification of non functional requirements: a novel vision. Cluster Computing, 25(2),
1155-1173.

[27] Maiden, N. (2008). User requirements and system requirements. /[EEE
Software, 25(2), 90-91..

[28] Coughlan, J., & Macredie, R. D. (2002). Effective communication in
requirements elicitation: a comparison of methodologies. Requirements Engineering, 7,
47-60.

[29] Benfell, A. (2021). Modeling functional requirements using tacit knowledge: a
design science research methodology informed approach. Requirements
engineering, 26(1), 25-42.

70

Bibliography

[30] Maguire, M., & Bevan, N. (2002, August). User requirements analysis: a review
of supporting methods. In IFIP World Computer Congress, TC 13 (pp. 133-148).
Boston, MA: Springer US.

[31] Burek, P. (2008). Creating clear project requirements: differentiating "what"
from "how" Paper presented at PMI® Global Congress 2008—North America, Denver,
CO. Newtown Square, PA: Project Management Institute.

[32] Serrador, P. (2012). The importance of the planning phase to project success.
Paper presented at PMI® Global Congress 2012—North America, Vancouver, British
Columbia, Canada. Newtown Square, PA: Project Management Institute.

[33] E. Gottesdiener, "Requirements by collaboration: getting it right the first time,"
in IEEE Software, vol. 20, no. 2, pp. 52-55, March-April 2003, doi:
10.1109/MS.2003.1184167.

[34] Tukur, M., Umar, S., & Hassine, J. (2021). Requirement engineering challenges:
A systematic mapping study on the academic and the industrial perspective. Arabian
Journal for Science and Engineering, 46, 3723-3748.

[35] B. Alsawareah, A. Althunibat and B. Hawashin, "Classification of Arabic
Software Requirements Using Machine Learning Techniques," 2023 International
Conference on Information Technology (ICIT), Amman, Jordan, 2023, pp. 631-636, doi:
10.1109/1CIT58056.2023.10225789.

[36] Mishra, A., & Mishra, D. (2014). Cultural issues in distributed software
development: A review. In On the Move to Meaningful Internet Systems: OTM 2014
Workshops: Confederated International Workshops: OTM Academy, OTM Industry
Case Studies Program, C&TC, EI2N, INBAST, ISDE, META4eS, MSC and OnToContent
2014, Amantea, Italy, October 27-31, 2014. Proceedings (pp. 448-456). Springer Berlin
Heidelberg.

[37] Khurana, D., Koli, A., Khatter, K., & Singh, S. (2023). Natural language
processing: State of the art, current trends and challenges. Multimedia tools and
applications, 82(3), 3713-3744.

[38] Wahdan, A., Al-Emran, M., & Shaalan, K. (2023). A systematic review of Arabic
text classification: areas, applications, and future directions. Soft Computing, 1-22.
[39] Obeid, O., Zalmout, N., Khalifa, S., Taji, D., Oudah, M., Alhafni, B., ... &

Habash, N. (2020, May). CAMeL tools: An open source python toolkit for Arabic
natural language processing. In Proceedings of the Twelfth Language Resources and
Evaluation Conference (pp. 7022-7032).

[40] Khurshid, 1., Imtiaz, S., Boulila, W., Khan, Z., Abbasi, A., Javed, A. R., & Jalil,
Z. (2022). Classification of Non-Functional Requirements From IoT Oriented
Healthcare Requirement Document. Front. Public Health, 10, 860536. doi:
10.3389/fpubh.2022.860536

[41] Shreda, Q. A., & Hanani, A. A. (2021). Identifying non-functional requirements
from unconstrained documents using natural language processing and machine learning
approaches. /IEEE Access.

[42] Z. Kurtanovi¢ and W. Maalej, "Automatically Classifying Functional and Non-
functional Requirements Using Supervised Machine Learning," 2017 IEEE 25th
International Requirements Engineering Conference (RE), Lisbon, Portugal, 2017, pp.
490-495, doi: 10.1109/RE.2017.82.

[43] Yahya, A. E., Gharbi, A., Yafooz, W. M. S.; & Al-Dhagm, A. (2023). A Novel
Hybrid Deep Learning Model for Detecting and Classifying Non-Functional

71

Bibliography

Requirements of Mobile Apps Issues. Electronics, 12(5), 1258. doi:
10.3390/electronics12051258

[44] Jindal, R., Malhotra, R., Jain, A., & Bansal, A. (2021). Mining Non-Functional
Requirements using Machine Learning Techniques. e-Informatica Software
Engineering Journal, 15(1).

[45] Kumar, M. S., & Harika, A. (2020). Extraction and classification of non-
functional requirements from text files: a supervised learning approach. Psychology and
Education, 57(9), 4120-4123.

[46] Hussain, I., Kosseim, L., & Ormandjieva, O. (2008). Using linguistic knowledge
to classify non-functional requirements in SRS documents. In Natural Language and
Information Systems: 13th International Conference on Applications of Natural
Language to Information Systems, NLDB 2008 London, UK, June 24-27, 2008
Proceedings 13 (pp. 287-298). Springer Berlin Heidelberg.

[47] Cleland-Huang, J., Settimi, R., Zou, X., & Solc, P. (2006, September). The
detection and classification of non-functional requirements with application to early
aspects. In /4th IEEE International Requirements Engineering Conference (RE'06) (pp.
39-48). IEEE.

[48] Shehadeh, K., Arman, N., & Khamayseh, F. (2021, July). Semi-Automated
Classification of Arabic User Requirements into Functional and Non-Functional
Requirements using NLP Tools. In 2021 International Conference on Information
Technology (ICIT) (pp. 527-532). IEEE.

[49] Arman, N., & Jabbarin, S. (2015). Generating use case models from Arabic user
requirements in a semiautomated approach using a natural language processing
tool. Journal of Intelligent Systems, 24(2), 277-286.

[50] Nassar, I. N., & Khamayseh, F. T. (2015, April). Constructing activity diagrams
from Arabic user requirements using Natural Language Processing tool. In 2015 6th
International Conference on Information and Communication Systems (ICICS) (pp. 50-
54). IEEE.

[51] Arman, N. (2015). Using MADA+ TOKAN to Generate Use Case Models from
Arabic User Requirements in a Semi-Automated Approach. ICIT 2015 The 7th
International Conference on Information Technology.

[52] Alami, N., Arman, N., & Khamyseh, F. (2017, May). A semi-automated
approach for generating sequence diagrams from Arabic user requirements using a
natural language processing tool. In 2017 8th International Conference on Information
Technology (ICIT) (pp. 309-314). IEEE

[53] Karim, S., Warnars, H. L. H. S., Gaol, F. L., Abdurachman, E., & Soewito, B.
(2017, November). Software metrics for fault prediction using machine learning
approaches: A literature review with PROMISE repository dataset. In 2017 IEEE
international conference on cybernetics and computational intelligence
(CyberneticsCom) (pp. 19-23). IEEE.

72

Bibliography

Appendix A
Code

from camel tools.tokenizers.word import simple word_tokenize
from camel_tools.disambig.mle import MLEDisambiguator

from camel tools.tagger.default import DefaultTagger

from camel_tools.utils.normalize import normalize alef maksura ar
from camel _tools.utils.normalize import normalize alef ar

from camel tools.utils.normalize import normalize teh marbuta ar
import pandas as pd

import csv

from sklearn.metrics import classification report

mle = MLEDisambiguator.pretrained()

tagger = DefaultTagger(mle, 'pos')

infile = pd.read_csv('casel.csv',encoding="utf-8',quotechar=""")

outfile = open(‘outFile.csv', 'W', encoding="utf-8' ,newline=")

true = []

pred =[]

sentences = []

tokens =[]

pos_tags=[]

NFRKey =[]

Stype =[]

Data =]

lemmas = []

true = infile["T"].values.tolist()
sentences = infile["S"].values.tolist()
F_CF =[0]*(len(sentences))
NF_CF =[0]* (len(sentences))
F_Score = [0]*(len(sentences))
NF_Score = [0]* (Ien(sentences))

cl=0

73

Bibliography

c2=0
c3=0
c4=0
c5=0
c6=0
c8=0

for i in range(0, len(sentences)):
Normalize alef variants to "'
sentences[i] = normalize alef ar(sentences[i])

Normalize alef maksura 's' to yeh 'cs'

sentences[i] = normalize alef maksura ar(sentences][i])

Normalize teh marbuta "?' to heh "'
sentences[i] = normalize teh marbuta ar(sentences[i])
pre-tokenized text
tokens.append(simple word tokenize(sentences[i]))
POS tagger of tokens
pos_tags.append(tagger.tag(tokens[i]))
otttk [| sk ok ok
DigPOS= ['digit', 'noun_num']
for Ist in pos_tags:
if any(item in Ist for item in DigPOS):
NF_CF[cl] +=78.33
NF_Score[cl] +=1
cl+=1

star = ['foreign']
for Ist in pos_tags:
if any(item in Ist for item in star):
NF_CF[c2] +=80
NF_Score[c2] +=1

74

Bibliography

c2 +=1
AdjPOS =['adj' ,'adv']
for Ist in pos_tags:
if any(item in Ist for item in AdjPOS):
NF_CF[c3] +=86
NF_Score[c3] +=1
c3+=1
with open('NFRKey.txt', ' ,encoding="utf-8") as filehandle:
for line in filehandle:
remove linebreak which is the last character of the string
currentPlace = line[:-1]
add item to the list

NFRKey.append(currentPlace)

for i in range(0, len(NFRKey)):
NFRKey[i] = normalize alef ar(NFRKey[i])
NFRKey[i] = normalize alef maksura ar(NFRKey[i])
NFRKey[i] = normalize teh marbuta_ar(NFRKey[i])
for Ist in tokens:
if any(item in Ist for item in NFRKey):
NF_CF[c4] +=90
NF_Score[c4] +=1
c4 +=1
ot R [skt
for ¢5 in range(0, len(sentences)):
if(len(tokens[c5]) >= 3):
if (tokens[c5][0] == '¢)" and
pos_tags[c5][1] == 'verb' and
tokens[c5][1] != "0 and

75

Bibliography

tokens[c5][2] == skl or
tokens[c5][2] == 'Gxbil' or
tokens[c5][2] == 'zl
NF_CF[i] += 53.33
NF_Score[c5] +=1
if(len(tokens[c5]) >= 3):
if (pos_tags[0] == 'verb' and #
tokens[c5][1] == "0 and
pos_tags[c5][2] == 'verb' and
tokens[c5][2] != "0 and
tokens[c5][3] == skl or
tokens[c5][3] == 'Gukill' or
tokens[c5][3] == "zelAl"):
NF_CF[c5] +=53.33
NF_ Score[c5] +=1
c5 +=1
R [R ks R ok
DigPOS= ['part_neg']
for Ist in pos_tags:
if any(item in Ist for item in DigPOS):
NF_CF[c6] += 82.66
NF_Score[c6] +=1
c6 +=1
R R [7 R R Rk
#H7.1

for i in range(0, len(sentences)):

if(len(tokens[i]) >= 5):
if (tokens[i][0] =="'¢)" and
pos_tags[i][1] == 'verb' and
pos_tags[i][2] == noun' and

pos_tags[i][3] == 'adj' and

76

Bibliography

(pos_tags[i][4] == 'prep' and

pos_tags[i][5] == noun")):
F_CFJ[i] += 88.33
F_Score[i] +=1

#H7.2

if(len(tokens[i]) >= 6):

if (tokens[i][0] == 'o/" and

pos_tags[i][1] == 'verb' and

pos_tags[i][2] == noun' and

tokens[i][3] == '0<' and

pos_tags[i][4] == noun' and

[

(pos_tags[i][S] == 'noun' or
pos_tags[i][S] =="adj' or
pos_tags[i][5] == "prep")):
F_CFJi] += 88.33
F Score[i] +=1
if(len(tokens[i]) >= 6):

if (tokens[i][0] == "'«»' and

tokens[i][1] == "¢/ and
pos_tags[i][2] == 'verb' and
pos_tags[i][3] == "noun' and
pos_tags[i][4] == 'adj' and
pos_tags[i][5] == 'prep'):

F CFJi] += 88.33

F_Score[i] +=1

' U} \ 1 \ U \ L A asd v \
X = [‘hnad, daw | dany sy e el G nd

1R (N (N ERR U
uAAﬁ’;.uu;ﬁ’@.u.\:ljﬁ_\a..\:\]

for Ist in tokens:

77

Bibliography

if any(item in Ist for item in x):
F _CF[c8] +=88.33
F Score[c8] +=1
c8 +=1
stttk okl [Qs sk s s s s e e e ek
#conditinal sentences
for i in range(0, len(sentences)):
if(len(tokens[i]) > 5):
if (pos_tags[i][0] == 'conj' and #13) ¢ 5!
pos_tags[i][1] == 'verb' and

pos_tags[i][2] == noun' and

pos_tags[i][3] == 'noun' and

pos_tags[i][4] == 'verb pseudo'):
F CF[i] += 76.66

F Score[i] +=1

writer = csv.writer(outfile , escapechar="", quoting=csv.QUOTE NONE)
for i in range(0, len(sentences)):
if(F_Score[i] > NF_Score[i]):
pred.append('FR")
elif(F_Score[i] < NF_Score[i]):
pred.append('NFR")
elif(F_Score[i] == NF_Score[i]):
if(F_CF[i] > NF_CFT[i]):
pred.append('FR")
elif(F_CF[i] <NF_CF[i]):
pred.append('FR")
elif(F_CF[i] == NF_CF[i]):
pred.append('Nan')
Data.append([pred[i], sentences[i]])
writer.writerow(Data[i])

outfile.close()

78

Bibliography

print(classification report(true, pred))

79

