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Abstract

In this thesis, we give the definitions of fractional derivatives, fractional integral, and

the concept of the fuzzy sets. In particular, we use these definitions in addition to

the generalization of the Hukuhara differences for the closed intervals on the real line

to develop the theory of inerval-valued fractional calculus and fractional differential

equations with fractional order. Several examples are presented.
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Chapter 1

Fractional Calculus and Interval

Analysis

1.1 Frational Calculus

Fractional calculus is a branch of mathematics which is as old as calculus [12]. It deals

with studies several different possibilities of defining real number orders or complex num-

ber order of the differentiation operator.

It’s story can be traced back to the end of the 17th century, the time when Newton and

Leibniz developed the foundation of differential and integral calculus. It was started as

a trial to understand the question of whether the meaning of a derivative to an integer

order n could be extended when n is not an integer. This question was first raised by

L’Hopital in 30th, 1695. In a letter to Leibniz, he posed a question about dn

dxn , Leibniz

notation for the nth derivative of the linear function f(x) = x. L’hopital curiously asked

what the result would be if n = 1
2
. Leibniz responded that it would be ” an apparent

paradox, from which one day useful consequences will be drawn”[26].

In the following, the discussion of the subject of fractional calculus caught the attention

of other great mathematicians, many of whom directly or indirectly contributed to it’s

development. They included Euler, Laplace, Fourier, Riemann, Liouville and many oth-

ers [19].

Over the years, many mathematicians, using their own notation and approachs, have

found various definitions that fit the idea of non-integer order integral or derivative such

that Riemann Liouville, Grunwald-Letnikov, and Caputo derivatives.
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In this chapter, we present several definitions of fractional derivetives and integrals such

as Riemann Liouville, Grunwald-Letnikov, Caputo derivatives, and conformable frac-

tional derivative and the fractional integral.

In the next chapter, we will present these definition using interval valued functions in

addition to present the fractional differential equation.

1.1.1 Riemann Liouville Fractional Derivative

In this section, we present the necessary definitions and theorems that are related to the

Riemann Liouville fractional derivative and integral.

Riemann Liouville definition of fractional integral can be motivated by the general-

ization of Gamma formula which defined as a generalization of the factorial for all real

numbers as follows

Γ(α) =

∫ ∞

0

tα−1 exp{−t} dx.

In the following we denote by C([a, b],R) the set of all continuous functions in the

interval of real numbers [a, b].

Definition 1.1. [3] Let f(x) ∈ C([a, b],R). The integrals

aI
α
t f(t) =

1

Γ(α)

∫ t

a

(x− t)α−1f(t) dx, t > a,

and

xI
α
b f(t) =

1

Γ(α)

∫ b

t

(t− x)α−1f(t) dx, t < b,

where α > 0, are called, respectively the left and right Riemann-Liouville fractional

integrals of order α.

In this thesis, we will consider only the left Riemann-Liouville fractional integral,

and denoted by

Iαa f(t) =
1

Γ(α)

∫ t

a

(t− x)α−1f(x) dx,

Proposition 1.1. [3] If f(t) ∈ C([a, b],R), α1, α2 ≥ 0, then

Iα1
a Iα2

a f(t) = Iα1+α2
a f(t) (1.1)

Proof.

Iα1
a Iα2

a f(t) =
1

Γ(α1)Γ(α2)

∫ t

a

∫ t

τ

(t− x)α1−1(x− τ)α2−1f(τ) dx dτ

=
1

Γ(α1)Γ(α2)

∫ t

a

f(τ)

[∫ t

τ

(t− τ)α1−1(x− τ)α2−1 dx

]
dτ,
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the substitution x = τ + s(t− τ), yields

Iα1
a Iα2

a f(t) =
1

Γ(α1)Γ(α2)

∫ t

a

f(τ)

∫ 1

0

[(t− τ)(1− s)]α1−1[s(t− τ)]α2−1(t− τ) ds dτ

=
1

Γ(α1)Γ(α2)

∫ t

a

f(τ)(t− τ)α1+α2−1

∫ 1

0

(1− s)α−1sn−1 ds dτ

=
1

Γ(α1)Γ(α2)

∫ t

a

f(τ)(t− τ)α1+α2−1β(α1, α2) dτ,

where β(α1, α2) is the Beta function, which is defined as the following [10]

β(x, y) =

∫ 1

0

tx−1(1− t)y−1 dt, x, y > 0. (1.2)

Also, the Beta function has a close relationship to the Gamma function, where

β(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
. (1.3)

Hence,

Iα1
a Iα2

a f(t) =
1

Γ(α1)Γ(α2)

∫ t

a

f(τ)(x− τ)α1+α2−1Γ(α1)Γ(α2)

Γ(α1 + α2)
dτ

=
1

Γ(α1 + α2)

∫ t

a

(t− τ)α1+α2−1f(τ) dτ

= Iα1+α2f(t).

Definition 1.2. [28] The Riemann-Liouville fractional derivative of order α for a func-

tion f(t) ∈ C1([a, b],R); b > 0 is given by:

Dα
a f(t) =

dn

dtn
I1−α
a f(t)

=
1

Γ(1− α)

dn

dtn

∫ t

a

(t− x)n−α−1f(x) dx,

for every t ∈ [a, b] and n− 1 < α < n, where n > 0 is an integer.

The following Example illustrates the previous two definitions

Example 1.1. Let f(t) = C where C is an arbitrary constant in the interval [0, 2].

Then

3



• The Riemann-Liouville Fractional Integral

Iα0 f(t) =
1

Γ(α)

∫ t

0

(t− x)α−1C dx

=
C

Γ(α)

∫ t

0

(t− x)α−1 dx

=
−C
Γ(α)

[
(t− x)α

α

∣∣∣∣t
0

=
C

αΓ(α)
tα

=
C

Γ(α + 1)
tα.

• The Riemann-Liouville Fractional Derivative

Dα
0 f(t) =

1

Γ(1− α)

dn

dtn

∫ t

0

(t− x)n−α−1C dx

=
C

Γ(1− α)

dn

dtn

(
−(t− x)n−α

n− α

∣∣∣∣t
0

=
C

(n− α)Γ(1− α)

dn

dtn
(
tn−α

)
.

after n-times derivatives, we get that

Dα
0 f(t) =

C

(n− α)Γ(1− α)
(n− α)(n− α− 1) . . . (−α)t−α.

Definition 1.3. [12] For order α and f ∈ (C[a, b],R), Dα
a f(t) = I−α

a f(t).

The following is the composition rules and the relation between the Riemann Liou-

ville Fractional Derivative and Integral which can be derived from definitions

Theorem 1.1. Composition Rule[12]

Let f ∈ C([a, b],R). Then

1. Dα1
a Dα2

a f = Dα1+α2
a f , α1, α2 > 0.

2. Dα1
a Iα2

a f =

Dα1−α2f if α1 > α2,

Iα2−α1f if α1 < α2.

Proof. Using Proposition 1.1. and Definition 1.3., we get that

4



1.

Dα1
a Dα2

a f = I−α1
a I−α2

a f,

= I−(α1+α2)
a f,

= D(α1+α2)
a f.

2.

Dα1
a Iα2

a f = I−α1Iα2
a ,

= Iα2−α1 , if α2 > α1,

= Dα1−α2 , if α1 > α2.

Theorem 1.2. [3, 18] The Relation between Riemann-Loiuville Fractional In-

tegral and Derivative

Let α > 0. Then for every f ∈ (C[a, b],R):

1. Dα
a I

α
a f(t) = f(t).

2. IαaD
α
a f(t) = f(t)−

∑n−1
k=0

(t−a)α−k−1

Γ(α−1)
I1−α
a f(t).

Example 1.2. In this example, we verify that

Iαa (x− a)p =
Γ(p+ 1)

Γ(p+ α + 1)
(x− a)α+p,

for some p > −1 and α > 0.

By definition

Iαa (x− a)p =
1

Γ(α)

∫ x

a

(x− t)α−1(t− a)p dt

Now by substituting t = a+ s(x− a), we get

Iαa (x− a)p =
1

Γ(α)

∫ 1

0

(x− a)α(x− a)p(1− s)α−1sp ds

=
(x− a)α+p

Γ(α)

∫ 1

0

(1− s)α−1sp ds

=
(x− a)α+p

Γ(α)
β(p+ 1, α), by (1.2).

=
(x− a)α+p

Γ(α)

Γ(p+ 1) · Γ(α)
Γ(α + p+ 1)

, by (1.3)

=
Γ(p+ 1)

Γ(p+ α + 1)
(x− a)α+p.

5



1.1.2 Caputo Fractional Derivative

In this section we present a definition of fractional derivative which is called the Caputo

Fractional Definition and it’s relationship to the Riemann-Liouville Fractional derivative.

The Caputo definition of fractional derivative can be written as [30]

C
a D

α
x =

1

Γ(n− α)

∫ x

a

f (n)(t)

(x− t)α−n+1
dt, n− 1 < α < n.

and
C
a D

n
xf(x) = f (n)(x),

for n ∈ N.

Remark 1.1.1. [12] C
a D

p
xK = 0 if K is constant.

The relationship between Riemman Liouville fractional derivative and the Caputo deriva-

tive can be obtained using the composition Rule which was derived before as follows [39].

For n− 1 < α < n, n ∈ N:

RL
a Dα

xf(x) = RLDn
(
RLDα−nf(x)

)
= RLDn

(
RLDα−n(Dnf (n)(x))

)
= RLDn

In−α

Inf (n) +
n−1∑
k=0

f (k)(a)(x− a)k

k!




= In−αf (n)(x) +
n−1∑
k=0

f (k)(a)
(x− a)k−a

Γ(k + 1− α)
.

Hence

RL
a Dα

xf(x) =
C
a D

α
xf(x) +

n−1∑
k=0

f (k)(a)(x− a)k−α

Γ(k − α + 1)
.

Thus under the homogeneous initial conditions, the Riemann-Liouville and the Caputo

fractional derivatives are equivalent. i.e.,

RL
a Dα

xf(x) =
C
a D

α
xf(x) ⇐⇒ f (k)(a) = 0, 0 ≤ k ≤ n− 1.

1.1.3 Grünwald-Letnikov Fractional Derivative

In this section, we introduce another definition of fractional derivative, which is called

the Grünwald-Letnikov Fractional Derivative and its implementation.
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Let f be a continuous function. Then the ordinary derivatives are defined in terms of

the so-called backward differences as follows

df

dx
= lim

h→0

f(x)− f(x− h)

h
,

d2f

dx2
= lim

h→0

f(x)− 2f(x− h) + f(x− 2h)

h
,

d3f

dx3
= lim

h→0

f(x)− 3f(x− h) + 3f(x− 2h)− f(x− 3h)

h
.

If we continue in this manner, then we can write a general formula for the nth-derivative

of a function f(x). Indeed, for n ∈ N, f ∈ (Cj[a, b],R) and j > n, then

dnf

dxn
= lim

h→0

1

hn

n∑
j=0

[
(−1)j

(
n

j

)
f(x− jh)

]
, (1.4)

where the relation (1.4) expresses a linear combination of function values of f(x) in

variable x, and the binomial coefficient with alternating signs for positive values of n

[30] (
n

j

)
=

n!

j!(n− j)!

=
n(n− 1) . . . (n− j + 1)

j!
.

In the case of negative value of n, we define(
−n
j

)
=
−n(−n− 1)(−n− 2) . . . (−n− j + 1)

j!

= (−1)j n(n+ 1) . . . (n+ j − 1)

j!

= (−1)j
[
n

j

]
.

so, replacing n by −n in (1.4), we get

d−nf

dx−n
= f (−n)(x)

= lim
h→0

1

hn

n∑
j=0

(−1)j
[
n

j

]
f(x− jh),

where n is a positive integer number.

7



Remark 1.1.2. [30]

For the binomial coefficients calculations, we can use the relation between Euler’s

Gamma function and fractorial, defined as(
n

j

)
=

n!

j!(n− j)!
=

Γ(n+ 1)

Γ(j + 1)Γ(n− j + 1)
,

and for
(
n
0

)
:= 1.

Grünwald-Letnikov fractional derivative is the generalization of the n-derivative func-

tion which is given by (1.4). The idea behind it is that h should approaches 0 as n

approaches ∞, and since
(
n
j

)
:= 0 for n < j, n ∈ N, and assume that h take only the

values

hN =
x− a

N
,N = 1, 2, . . . .

Hence
dnf(x)

dxn
= lim

h→0
h−n

∞∑
j=0

(−1)j
(
n

j

)
f(x− jh),

since N goes to ∞ when hN goes to 0, then the following definition is derived.

Definition 1.4. If n > 0, f ∈ Cn[a, b] and a ≤ x ≤ b and n < α < n+ 1, then

Dα
a f(x) = lim

h→0

1

hα

N∑
j=0

(−1)j
(
α

j

)
f(x− jh)

is called the Grünwald-Letnikov derivative of order α of f(x).

Implementation of Grünwald-Letnikov Fractional Order Derivative

The most contents of this subsection are from [38].

In this subsection we present the The Grünwald-Letnikov definition of the fractional

order derivative which defined as

Dα
a f(x) = lim

h→0

L∑
j=o

w
(α)
j f(x− jh),

where w
(α)
j are the binomial coefficient calculated recursively as following:

w
(α)
0 = 1, w

(α)
j =

(
1− α + 1

j

)
w

(α)
j−1, j = 1, 2, 3, . . . ,

8



where h is the step size and L is the window size.

In order to implement this operator, an approximate version of length L is given by:

Dα
x−Lf(x) =

1

hα

(α)∑
j=0

w
(α)
j f(x− jh),

According to the short memory principle, the error in calculating this approximated

derivative is bounded by:

∆x =
∣∣Dα

a f(x)−Dα
x−Lf(x)

∣∣ ≤ ML−α

|Γ(1− α)|
,

where (a+L < x < b) and |f(x)| < M when a < x < b. So, it can be concluded that the

error is reduced by increasing the window size and the magnitude of the wα
j decreases

with increasing of j.

The above procedure can be applied to solve the general form of a fractional order

differential equation which is given as following

Dq1 = P (x, t).

To simulate this system based on Grünwald-Letnikov definition, the following set of

equations are used:

xtk = P (x(tk−1), tk)h
q1 −

m∑
j=1

wq1
j=1x(tk−j),

where m = L for the approximated window variation of the Grünwald-Letnikov operator

and m = k when the entire state memory is used in calculation.

Grünwald-Letnikov equation consists of two parts, the first is the binomial coefficients:

w
(α)
0 = 1, w

(α)
j =

(
1− α + 1

j

)
w

(α)
j−1, j = 1, 2, 3, . . . , (1.5)

the second part is the dot product of the row and column vectors presented by

Dα
x−Lf(x) =

1

hα

(α)∑
j=0

w
(α)
j f(x− jh),

9



The following system represented the row and column vector dot products output:

w0x0

w0x1 + w1x0

w0x2 + w1x1 + w2x0

...

w0xn + w1xn−1 + . . .+ wnx0.

The above procedure can be extended to solve order system of three differential equa-

tions, the following example illustrates an application of the Grünwald-Letnikov system

of equations:

Example 1.3. (Liu System Implementation):

The fractional order Liu system is given by:

Dq1 = −ax− ey2

Dq2 = by − kxz

Dq3 = −cz +mxy.

A numerical solution of the Liu system can be represented as follows

xtk = (−ax(tk−1)− ey2(tk−1))h
q1 −

m∑
j=1

wq1
j=1x(tk−j)

ytk = (by(tk−1)− kx(tk−1)z(tk−1))h
q2 −

m∑
j=1

wq2
j=1y(tk−j)

ztk = (−cz(tk−1) +mx(tk−1)y(tk−1))h
q3 −

m∑
j=1

wq3
j=1z(tk−j).

where q1, q2, q3 are the fractional orders.

1.1.4 Conformable Fractional Derivative

In this section, we present the definition of the Conformable Fractional and it’s propri-

eties.

In 2014, the authors in [17] defined a new simple fractional derivative called ”The Con-

formable Fractional Derivative” depending just on the basic limit definition of the deriva-

tive.

10



Definition 1.5. [17] Given a function f : [0,∞) → R. Then the The Conformable

Fractional Derivative of f of order α is defied by

T (α)(f)(t) = lim
ϵ→0

f(t+ ϵt1−α)− f(t)

ϵ
,

for all t > 0, α ∈ (0, 1). So, if the Conformable fractional derivative of f of order α

exist, then we simply say f is α-diffrentiable.

If f is α-differentiable in some intervals (0, a), a > 0, and limt→0+ f (α)(t) exist, then

define

f (α)(0) := lim
t→0+

f (α)(t).

Note that, this definition coincides with the classical definition of Riemann-Liouville and

Caputo Fractional Derivative on polynomials, i.e., up to constant multiple.

As a consequence of the above definition, we can easily show that Tα satisfies all the

properties in the following theorem.

Theorem 1.3. [17, 11] Let α ∈ (0, 1] and f, g be α-differentiable. Then

1. Linearity

T (α)(af + bg) = aT (α)(f) + bT (α)(g).

2. Leibniz Rule

T (α)(fg) = [T (α)(f)]g + f [T (α)(g)].

3. T (α)(tp) = ptp−α, for all p ∈ R.

4. T (α)(λ) = 0, for all constant functions f(t) = λ.

5. T (α)(f
g
) = gTα(f)−fTα(g)

g2
.

6. If f is differentiable, then T (α)(f)(t) = t1−α df
dt
.

As a consequence of the previous theorem, the following are Conformable Fractional

Derivative of some certain functions.

(1) T (α)(ect) = ct1−αect, c ∈ R.

(2) T (α)(cos(bt)) = −bt1−α sin(bt).
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(3) T (α)(sin(bt)) = bt1−α cos(bt).

(4) T (α)
(
1
α
tα
)
= 1.

such that

1. Tα

(
sin
(
1
α
tα
))

= cos 1
α
tα.

2. Tα

(
cos
(
1
α
tα
))

= −sin 1
α
tα.

3. Tα(e
1
α
tα) = e

1
α
tα .

Remark 1.1.3. A function f could be α- differentiable but not differentiable.

For example; take f(t) = 2
√
t, then T 1

2
f(0) = limt→0+ T 1

2
f(t) = 1, where T 1

2
f(t) = 1,

for t > 0. But T1f(t) does not exist.

Fractional Integral

When it comes to integration, the most important class of functions to define the in-

tegral is the space of continuous functions. particularly, define the fractional integral

on polynomials, using the Weistrass theorem [7].and let Jα(f(t)) denote the fractional

integral of a continuous function f(t).

Let α ∈ (0,∞). Define Jα(t
p) = tp+α

p+α
for any p ∈ R, and α ̸= −p, then

1. If f(t) =
∑n

k=0 bkt
k, then define

Jα(f) =
n∑

k=0

bkJα(t
k) =

n∑
k=0

bk
tk+α

k + α
.

2. If f(t) =
∑n

k=0 bkt
k, where the series is uniformly convergent, then define

equation*Jα(f) =
∑∞

k=0 bk
tk+α

k+α
.

Note that, Jα is linear on it is domain, and if α = 1, then Jα is the usual integral.

The following definition for the α-fractional integral of a function f ∈ C[0,∞), a ≥ 0.

Definition 1.6. [17]

Iaαf(t) = Ia1 (t
α−1f)(t) =

∫ t

a

f(s)

s1−α
ds,

where the integral is the usual Riemann improper integral, and α ∈ (0, 1).
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For example, I01
2

(
√
tsint) =

∫ t

0
sinx dx = 1− cos t.

The following theorems illustrates some results of the Conformable Fractional Integral.

Theorem 1.4. TαI
a
αf(t) = f(t), for t ≥ a, where f is any continuous function in the

domain of Iα.

Proof. Since f is continuous, then Iaαf(t) is differentiable. Hence,

Tα(I
a
αf)(t) = t1−α d

dt
Iaαf(t)

= t1−α d

dt

∫ t

a

f(s)

s1−α
ds

= t1−α f(t)

t1−α

= f(t).

Theorem 1.5. [33] Let f be α- differentiable. Then

IaαTαf(t) = f(t)− f(a).

Proof. Using the definition of the usual Riemann improper integral and the Conformable

fractional derivative, we get that

IaαTαf(t) =

∫ t

a

Tαf(s)

s1−α
ds

=

∫ t

a

s1−αf ′(s)

s1−α
ds

= f(t)− f(a).

1.2 Interval Analysis

Since not all numbers can be represented exactly with finite number of digits such that

irrational number, so the result of each calculation may contain some errors, then we

need a new arithmetic form to use with mathematical calculations which works with an

interval [a, b] that defines the range of values that x can have instead of working with

an uncertain single real number.

This treatment is typically limited to real intervals, i.e., quantities in the form

[a, b] =
{
x ∈ R|a ≤ x ≤ b

}
,

13



where a = −∞ and b =∞ are allowed [27].

This interval would be an unbounded interval; with both infinite or would be the ex-

tended real number line, addition to other types of intervals open such that (a, b),or

half-open such that (a, b], and [a, b) appear through mathematics.

1.2.1 Basic Terms and Concepts:

We will adopt the convenient of denoting intervals and their endpoints by capital letters.

The following are some definitions corresponding to intervals concepts:

1. End Point Notation

The left and right endpoint of an interval X will be denoted by X and X, respec-

tively. Thus,

X = [X,X].

2. Interval Equality

Two intervals X and Y are said to be equal if the corresponding endpoints are

equal:

X = Y if X = Y and X = Y .

3. Intersection Interval

• The intersection of two intervals X and Y is empty if either Y < X orX < Y ,

and we write

X ∩ Y = ∅

• Interval intersection is defined as follows

X ∩ Y = {z : z ∈ X and z ∈ Y }
= [max {X, Y } ,min

{
X,Y

}
].

• Intersection plays a key role in interval analysis. If we have two intervals

containing a result of interest, then the intersection which may be narrower,

also contains the result.

4. Union Interval and Interval Hull

14



• The union of two intervals X and Y can be defined as

X ∪ Y = {z : z ∈ Xorz ∈ Y }
= [min {X, Y } ,max

{
X,Y

}
].

• In general, the union of two intervals may not be an interval, such that [0, 2],

and [4, 5] are two intervals, but there union is not an intervals, since they

have a nonempty intersection, where ϕ is not an interval.

• The interval hull of two intervals defined by

X∪Y = [min {X, Y } ,max
{
X,Y

}
],

is always an interval and it is used in interval computations.In general;

X ∪ Y ⊆ X∪Y.

5. Width, Absolute Value, and Midpoints

• The width (length) of an interval X is defined and denoted by

w(X) = X −X,

• The absolute values (Magnitude) of X, denoted by |X| is the maximum of

the absolute values of it’s endpoints

|X| = max
{
|X|, |X|

}
,

where |x| ≤ |X| for all x ∈ X.

• The midpoint of X is given by

m(X) =
1

2

{
X +X

}
.

The following example illustrate the previous definitions of the interval concepts:

Example 1.4. Let X = [0, 3] and Y = [−2, 2]. Then:

• The intersection and union of X and Y are

X ∩ Y = [0, 2],

X ∪ Y = [−2, 3].
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• The width of X and Y respectively

w(X) = 3,

w(Y ) = 4.

• The absolute value of X and Y is

|X| = 3,

|Y | = 2.

• The midpoint of X is m(X) = 3
2
and m(Y ) = 0.

1.2.2 Order Relations for Intervals

We say that

X < Y if X < Y ,

where the relation < is transitive such that let A,B and C three intervals where

A < B and B < C then A < C,

Also; we call the interval X is positive if x > 0 for all x ∈ X or negative if x < 0 for all

x ∈ X.

Another transitive order relation for intervals is the set inclusion:

X ⊆ Y if and only if Y ≤ X and X ≤ Y .

1.2.3 Arithmetic Operations on Intervals

We define arithmetic operations and functions on intervals in such a way that the result

of the calculation is a new interval that is guaranteed to contain the true range of the

function.

Let K indicate the set of all nonempty compact intervals of the real line R, and let X

and Y be two intervals such that x ∈ X = [X,X] and y ∈ Y = [Y, Y ], then using the

intervals proprieties we have the following;

1. The Minkowski Addition of two intervals X and Y is the set[22]

X + Y = {x+ y : x ∈ X, y ∈ Y }
= [X + Y ,X + Y ].
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2. The difference of two intervals X and Y is the set

X − Y = {x− y : x ∈ X, y ∈ Y }
= [X − Y ,X − Y ].

3. The scalar multiplication is defined by [22, 33], let λ1, λ2, λ3, λ4 ∈ R, λ1, λ2 ≥ 0,

and λ3, λ4 are both have the same sign (i.e. either both of them are positive or

negative), then it holds that

(a)

λX = λ[X,X]

=


[λX, λX], if λ > 0,

0, if λ = 0,

[λX, λX], if λ < 0.

respectively.

(b)

λ1(λ2X) = (λ1λ2)X,

(λ3 + λ4)X = λ3X + λ4X.

(c) If λ = −1, then the scalar multiplication gives the opposite of X

−X = (−1)X
= (−1)[X,X]

= [−X,−X].

(d) In general; (X) + (−X) ̸= 0; that is the opposite of X is not the inverse

of X with respect to Minkowski addition. Minowski difference is X − Y =

X + (−Y ) = [X − Y ,X − Y ] with respect to the above operations.

4. The product of X and Y is given by

X · Y = {xy : x ∈ X, y ∈ Y }
= [min {S} ,max {S}],

where S =
{
XY ,XY ,XY ,XY

}
, we sometimes write X · Y more briefly as XY .
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5. The quotient X
Y

is defined as

X

Y
= X ·

(
1

Y

)
,

where

1

Y
=

{
y :

1

y
∈ Y

}
=

[
1

Y
,
1

Y

]
,

this assumes 0 /∈ Y .

6. Given that, an interval X can be written as

X = m(X) +
1

2
w(X)[−1, 1]

The following example illustrates the interval arithmetic operations:

Example 1.5. let X=[-2,-1] and Y=[-2,4] then:

• X + Y = [−4, 3],

• X − Y = [0,−5],

• To find X ·Y , we need to find first S = {−4, 2,−8, 4}, so X ·Y = [minS,maxS] =

[−8, 4],

• Y
X

= [1,−4]

1.2.4 Interval Vectors and Matrices

By an n-dimensional interval vector, we mean an ordered n−tuple of intervals,

(X1, X2, . . . , Xn).

We will also denote interval vectors as capital letters such as X.

Example 1.6. A three dimensional interval vector

X = (X1, X2, X3)

= ([X1, X1], [X2, X2], [X3, X3]),
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can be represented in the x1x2x3−plane ; it is the set of all points (x1, x2, x3) such that

X1 ≤ x1 ≤ X1,

X2 ≤ x1 ≤ X2,

X3 ≤ x1 ≤ X3.

Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be two interval vectors. Then we

have the following proprieties:

1. The intersection of two interval vectors is empty if the intersection of any of their

corresponding components is empty, i.e.,

If Xi ∩ Yi = ∅ for some i ∈ {1, 2, . . . , n}

then X ∩ Y = ∅. Otherwise,

X ∩ Y = (X1 ∩ Y1, X2 ∩ Y2, . . . , Xn ∩ Yn),

which is again an interval vector.

2. X ⊆ Y if Xi ⊆ Yi for all i = 1, . . . , n.

3. The width(length) of an interval vector X is the largest of the width of any of it is

component intervals

w(X) = max
i∈{1,2,...,n}

w(Xi),

4. The midpoint of an interval vector X is

m(X) = (m(X1),m(X2), . . . ,m(Xn)),

5. The norm of an interval vector X is

||X|| = max
i∈{1,2,...,n}

|Xi|,

this serves as a generalization of absolute value.
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Chapter 2

Interval Fractional Analysis

The study of fractional calculus starts from the beginning of 1695s, and continued to

benifit from it’s development forms in various fields such as electrochemistry and radi-

ology. Also, the fractional differential equation and its applications have been widely

used in various fields such, as science and engineering.

The interval arithmetic provides a possibility to measure uncertainties of uncertain vari-

ables regarding the lack of knowledge of the complex information of the system, where

the interval-valued arithmetic and interval- valued differential equations are the partic-

ular cases of the set-valued analysis and set differential equations, respectively [33].

Recently, the theory of fuzzy calculus and fuzzy differential equations have become one

of the most important subjects in the mathematical analysis area [39], where the con-

nection between the fuzzy analysis and the interval analysis introduced as an attempt

to handle interval uncertainty that appears in many mathematical models of some de-

terministic real world phenomena [22].

The concept of Hukuhara derivative of a set-valued mapping is rigorously combined with

the theoretical foundation of the initial differential equations and the fuzzy differential

equation, where we can use this mapping to permit them to achieve the solutions of

initial differential equations with diminishing diameter of solutions values [33].

2.1 Derivatives and Integrals of Interval-Valued Func-

tions

In this section, we present some recent and basic notions on the integral and differential

calculus for interval-valued functions. In addition to that, some essential theorems for

interval spaces and interval functions are introduced.
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Generalized Hukuhara Differences:

The generalized Hukuhara difference (or gH-difference for short) of two intervals A =

[a, a] and B = [b, b] ∈ K is defined as follows [25, 37]

A θgB = [min
{
a− b, a− b

}
,max

{
a− b, a− b

}
],

which can be written as follows

A θgB =

[a− b, a− b] if w(A) ≥ w(B),

[a− b, a− b] if w(B) > w(A).

If A,B ∈ K and w(A) ≥ w(B), then the gH-difference A θgB will be denoted by

AθgB and it is called Hukuhara Differenceor (H+- difference for short) of A and B.

Note that A θgB ̸= A + (−1)B. If w(A) ≤ w(B), then the gH- DifferencesA θgB which

denoted by A⊟B[24] and it is called the second Hukuhara difference (H−-difference) [24].

Note that the second Hukuhara difference is equivalent to

A⊟B = A θg B = −(B θ A), if w(A) < w(B).

We recall that

1. w(−A) = w(A).

2. w(A+B) = w(A) + w(B).

3. w(A θg B) = |w(A)− w(B)|.

If A = [a, a], then norm of A is given by

∥A∥ := max
{
|a|, |a|

}
.

A metric structure on K is given by the Housedorff-Pompeiu distanceH : K×K → [0,∞)

is defined by H(A,B) = max
{
|a− b|, |a− b|

}
for A = [a, a] and B = [b, b] [22]. It is

known that (K,H) is a complete, separable and locally compact metric space [13].

Let A,B ∈ K. Then we have [33, 39]

• H(A,B) = ∥AθgB∥.

• If there exist an interval C ∈ K such that A = B+C, then we call C the Hukuhara

difference of A and B.
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Definition 2.1. [24] Let X, Y ∈ K. Then X ⪯ Y (Y ⪯ X) if and only if X ≤ Y and

X ≤ Y (X ≥ Y and X ≥ Y ). We call ⪯ the partial ordering on K.

In following lemma, we will show some interesting properties on the partial ordering ⪯.

Lemma 2.1. [39] Suppose X, Y, Z,W ∈ K and c ∈ R+. Then

1. X = Y iff X ⪯ Y and Y ⪯ X.

2. If X ⪯ Y , then X + Z ⪯ Y + Z.

3. If X ⪯ Y , then cX ⪯ cY .

4. X ⪯ Y , then (−1)Y ⪯ (−1)X.

5. If XθY exists, then X ⪯ Y iff Y θX ⪯ 0.

6. If the Hukuhara difference XθZ, and XθY exist, then Z ⪯ Y ⇐⇒ XθY ⪯ XθZ.

7. If X ⪯ Y ⪯ Z, then H(X, Y ) ≤ H(X,Z) and H(Y, Z) ≤ H(X,Z).

On the other hand, for k ∈ N. We say that the sequence (Xk), k ∈ N, Xk ∈ K is

nondecreasing (nonincreasing), if Xk ⪯ Xk+1(Xk ⪰ Xk+1) for all k ∈ N. Consider the

interval functions X, Y : [a, b]→ K, then the partial ordering ⪯ can be extended to the

space of interval functions as follows [24]

X ⪯ Y ←→ X(t) ≤ Y (t) andX(t) ≤ Y (t),

for all t ∈ [a, b] .

If F : [a, b] → K is an interval-valued function such that F (t) = [f(t), f(t)], then

limt→t0 F (t) exist if and only if limt→t0 f(t) and limt→t0 f(t) exist as finite number.

In this case, we have[22]

lim
t→t0

F (t) = [lim
t→t0

f(t), lim
t→t0

f(t)].

In particular, F is continuous if and only if f and f are continuous. If F,G : [a, b]→ K
are two interval-valued function, then we define the interval-valued function FθgG :

[a, b] → K by (FθgG)(t) = F (t)θgG(t) for all t ∈ [a, b]. If there exist limt→t0 F (t) = A

and limt→t0 G(t) = B, then limt→t0 (F θg G)(t) exist, and [22]

lim
t→t0

(F θg G)(t) = A θg B.
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In particular, If F,G : [a, b] into K are continuous functions, then the interval function

(FθgG) is a continues interval-valued function.

Let C([a, b],K) denote the set of continuous interval-valued function from [a, b] → K.
Then C([a, b],K) is a complete normed space with respect to the norm [22]

∥F∥c := sup
a≤t≤b

∥F (t)∥.

We say that an interval-valued function F : [a, b]→ K is w-increasing (w-decreasing) on

[a, b] if the real function t → wF (t) := w(F (t)) is increasing (decreasing) on [a, b], and

we say that F is w-monotone on [a, b] [22, 24].

Lemma 2.2. [24] Let X : [a, b]→ K be a w-monotone interval-valued function and A ∈
K and let Y : [a, b]→ K, be the interval-valued function defined by Y (t) = A θg X(t), t ∈
[a, b]. Then

1. If w(X(t)) ≤ w(A) for all t ∈ [a, b], then Y and X are differently w-monotone

(that is, one is w-increasing and the other is w-decreasing) on [a, b].

2. If (w(X(t)) ≥ w(A) for all t ∈ [a, b], then Y and X are equally w-monotone (that

is, both are w-increasing or both w-decreasing) on [a, b].

Generalized Hukuhara Derivative:

Definition 2.2. [25, 37] Let F : [a, b] → K be an interval-valued function and let

t0 ∈ [a, b]. We define F ′(t0) ∈ K (provided it exists) as follows

F ′(t0) = lim
h→0

F (t0 + h) θg F (t0)

h
∈ K.

We call F ′(t0) the generalized Hukuhara derivative ( gH-derivative for short) of F at t0.

Also we define the left gH-derivative F ′
−(t0) ∈ K (provided it exists) as

F ′
−(t0) = lim

h→0−

F (t0 + h) θg F (t0)

h
,

and the right gH-derivative F ′
+(t0) ∈ K (provided it exists) as

F ′
+(t0) = lim

h→0+

F (t0 + h) θg F (t0)

h
.
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We say that F is generalized Hukuhara differentiable (gH-differentiable for short) on

[a, b] if F ′(t) ∈ K exist for all t ∈ [a, b]. At the endpoints of [a,b] we consider only the

one sided gH-derivative [22].

The following are some properties which illustrate the behaviour of the gH-derivative

Proposition 2.1. [25, 37] Let F : [a, b] → K be such that F (t) = [f(t), f(t)], t ∈
[a, b]. If the real-valued functions f and f are differentiable at t ∈ [a, b], then F is

gH-differentiable at t ∈ [a, b] and

F ′(t) = [min
{
f ′(t), f

′
(t)
}
,max

{
f ′(t), f

′
(t)
}
].

Note that the gH-differentiablity of F does not imply the differentiability of f and

f [25, 9]. For example, F (t) = [t,
√
t] : [0, 1] −→ K, is gH- differentiable but f =

√
t is

not differntiable at t = 0.

Proposition 2.2. [25] Let F : [a, b] → K be such that F (t) = [f(t), f(t)], t ∈ [a, b]. If

F is w-monotone and gH-differentiable on [a, b], then f ′ and f ′ exist for all t ∈ [a, b].

Moreover, we have that:

1. F ′(t) = [f ′(t), f
′
(t)] for all t ∈ [a, b], if F is w-increasing.

2. F ′(t) = [f
′
(t), f ′(t)] for all t ∈ [a, b], if F is w-decreasing.

Note that if F : [a, b]→ K is gH-differentiable and w-monotone on [a, b], then w(F (t))

is differentiable on [a, b] and for all t ∈ [a, b] we have [24]

w(F ′(t)) =
d

dt
(f(t)− f(t)) =

d

dt
(w(F (t))),

if F is w-increasing on [a, b], and

w(F ′(t)) =
d

dt
(f(t)− f(t)) =

d

dt
(−w(F (t))),

if F is w-decreasing on [a, b]. The follows is an example that illustrates the previous

propositions.

Example 2.1. Consider the interval-valued function F : [0, 1]→ K given by

F (t) = [t2 − 2t, t2]

Since w(F (t)) = 2t, it follows that F is w-increasing on [0, 1]. Because f(t) = t2 − 2t

and f(t) = t2 are differentiable on [0, 1], then by Proposition 2.1, we obtain that:

F ′(t) = [2t− 2, 2t], t ∈ [a, b].
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If we consider the interval-valued function G : [2t − 3, |t2 − 1|], then G is w-decreasing

on [0, 1] and w-increasing on [1, 2]. Also g and g are differentiable on [0, 2]/ {1}, where
[22]

d−

dt
g(1) =

d+

dt
g(1) = 2,

and
d−

dt
g(1) = −2 and

d+

dt
g(1) = 2.

It follows that G′
−(1) = [−2, 2], G′

+(1) = 2, then G is gH-differentiable on [0, 2]/ {1}
and

G′(t) =

[−2t, 2] if t ∈ [0, 1),

[2, 2t] if t ∈ (1, 2].

Proposition 2.3. [25] Let F : [a, b]→ K be w-monotone and gH-differentiable on [a, b].

The following are true:

1. For all F ∈ K and for all λ ∈ R, the interval-valued functions F + λ, F θgλ and

λF are the gH-differentiable on [a, b],and

(F + λ)′ = F ′,

(F θg λ)
′ = F ′,

(λF )′ = λF ′.

2. If F and G are equally w-monotone, then

(F +G)′ = F ′ +G′ and

(F θg G)′ = F ′ θg G
′.

3. If F and G are differently w-monotone, then

(F +G)′ = F ′ θg (−G′) and

(F θg G)′ = F ′ + (−G′).

The Lebesgue integral for interval-valued function is a special case of the Lebesgue

integral for the set-valued mapping [6].

Let F : [a, b] → K be an interval valued function such that F (t) = [f(t), f(t)], where f
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and f are measurable and Lebesgue integrable on [a, b]. Then we define
∫ b

a
F (t) dt by

[22] ∫ b

a

F (t) dt =

[∫ b

a

f(t) dt,

∫ b

a

f(t) dt

]
,

and we say that F is Lebesgue integrable on [a, b].

An interval-valued function F : [a, b] →∈ K is called a step set valued function if there

exists a partition {Jk : k = 1, 2, . . . , n} of disjoint Lebesgue measurable subset in [a, b].

i.e,
n⋃

k∈N

Jk = [a, b],

such that F is constant on each set Jk, k ∈ N [22].

In the following, we present a definition which we will need it in the coming formulas

Definition 2.3. [31]The Space L∞(Ω)

Let Ω be any set, and a function f that is measurable on Ω is said to be essentially

bounded on Ω, if there is a constant K such that |f(x)| ≤ K a.e on Ω. The greatest

lower bound of such constants K is called the essential supremum of |f | on Ω, and is

denoted by

ess sup
x∈Ω
|f(x)|.

We denote by L∞(Ω) the vector space of all functions f , that are essentially bounded on

Ω, functions being once again identified if they are equal a.e. on Ω. Then ||f ||∞ can be

defined by

||f ||∞ = ess sup
x∈Ω
|f(x)|.

An interval-valued function F : [a, b] → K is called measurable if it is almost ev-

erywhere in [a, b] a point wise-limit of the sequence Fm : [a, b] → K,m ≥ 1 of simple

interval-valued functions such that

lim
m→∞

H(Fm(t), F (t)) = 0.

for a.e t ∈ [a, b][22].

It is clear that an interval-valued function F : [a, b]→ K is measurable if and only if

f and f are measurable. In addition, it is clear that F : [a, b]→ K is integrable on [a, b]

if and only if F is measurable and the real function t 7→ ||F (t)|| is Lebesgue integrable

on [a, b] [6, 5].

For 1 ≤ p ≤ ∞, let Lp([a, b]) be the set of all interval-valued functions F : [a, b] → K
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such that the real function t 7→ ||F (t)|| belongs to Lp([a, b]). Then Lp([a, b]) is a complete

metric space with respect to the metric Hp defined by Hp(F,G) := ||F θgG||p, where

||F ||p :=

(
∫ b

a
||F ||p dt)

1
p 1 ≤ p <∞,

ess supt∈[a,b] |F (t)| p =∞.

An interval-valued function F : [a, b] → K is said to be absolutely continuous if for all

ξ > 0, there exist δ > 0 such that for each family
{
(sk, tk) : k = 1, 2, . . . , n

}
of disjoint

open intervals in [a, b] with
n∑

k=1

(tk − sk) < δ,

we have
n∑

k=1

H(F (tk)− F (sk)) < ξ.

Let AC([a, b],K) denote the set of all absolutely continuous interval function from [a, b]

to K [22].

Proposition 2.4. [22] An interval-valued function F : [a, b]→ K is absolutely continu-

ous if and only if f and f are both absolutely continuous.

Proposition 2.5. [22, 25] Let F : [a, b]→ K be Lebesgue integrable on [a, b]. Then the

interval-valued function G : [a, b]→ K defined by

G(t) :=

∫ t

a

F (s) ds, t ∈ [a, b]. (2.1)

Then we have the following

1. G is absolutely continuous and G′(t) = F (t), for a.e. t ∈ [a, b].

2. If F is continuous on [a, b], then G is continously gH-differentiable on [a, b] and

G′(t) = F (t), for all t ∈ [a, b].

Proposition 2.6. [22, 25] If F ∈ AC([a, b],K), then F is gH-differentiable for a.e. on

[a, b] and F ′ ∈ L1([a, b],K).
Moreover, if F is w-monotone on [a, b], then

F (t)θgF (a) =

∫ t

a

F ′(s) ds (2.2)

for all t ∈ [a, b].
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Also, if we assume that if F is w-increasing on [a, b], then (2.2) is equivalent to

F (t) = F (a) +

∫ t

a

F ′(s) ds,

and if F is w-decreasing on [a, b], then (2.2) is equivalent to

F (t) = F (a)θg(−1)
∫ t

a

F ′ ds,

for all t ∈ [a, b]][24].

We note that the relation (2.2) is not true if F is not w-monotone on [a, b] [22].

Example 2.2. If F : [0, 1]→ K is the interval valued function given by

F (t) = [−2t, 1− t2],

since w(F (t)) = −(t2 − 2t− 1), then F is w-increasing on [0, 1], and since f , and f are

differentiable on [0, 1]. Then by Proposition 2.2., we obtain that

F ′(t) = [−2,−2t], t ∈ [0, 1].

Now, we have that ∫ t

0

F ′(s) ds =

∫ t

0

[−2,−2t] ds

= [−2t,−t2],

and

F (t) θ F (0) = [2t, t2 − 2] ̸=
∫ t

0

F ′(s) ds

for all t ∈ [0, 1]. Therefore, (2.2) is not true for each t ∈ [0, 1].

2.2 Fractional Derivatives and Integrals of Interval-

Valued Functions

In this section we present definitions and some properties of the Riemann-Liouville, Con-

formable, and Caputo fractional derivatives and integrals of interval-valued functions.
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2.2.1 Riemann-Liouville Fractional Integral of Interval-Valued

Functions

We recall that if f ∈ L1[a, b], then the Riemann-Liouville fractional integral Iαa+f of

order α > 0 is defined by

(Iαa+f)(t) =
1

Γ(α)

∫ t

a

(t− s)α−1f(s)ds,

for a.e. t ∈ [a, b].

Definition 2.4. For a given real valued function f ∈ L1[a, b] and α > 0, we define fα :

[a, b]→ R by fα(t) := (Iαa+f)(t), t ∈ [a, b], and for α ∈ (0, 1], we define f1−α : [a, b]→ R
by f1−α(t) := (I1−α

a+ f)(t), t ∈ [a, b].

In the following, we present some properties of the Riemann-Liouville fractional

integral [24, 14, 34].

1. If f ∈ AC[a, b], then fα ∈ AC[a, b] and

d

dt
fα(t) = (Iαa+

d

dt
f)(t) +

(t− a)α−1

Γ(α)
f(a),

for a.e. t ∈ [a, b].

2. For any α ∈ (0, 1], we have that fα(t) ∈ AC[a, b] if and only if f1−α(t) ∈ AC[a, b].

Moreover, in this case

d

dt
f1−α(t) = (I1−α

a+
d

dt
f)(t) +

(t− a)−α

Γ(1− α)
f(a),

for a.e. t ∈ [a, b].

3. If f ∈ L∞[a, b], then fα(t) ∈ C[a, b] and fα(a) = 0.

Definition 2.5. [24] Let F ∈ Lp([a, b],K), 1 ≤ p ≤ ∞. Then the interval-valued

Riemann-Liouville fractional integral of order α > 0 of the interval-valued function F is

defined for a.e. t ∈ [a, b] by

(J α
a+F )(t) =

1

Γ(α)

∫ t

a

(t− s)α−1F (s) ds.

If F = [f, f ] ∈ L1([a, b],K) and α > 0, it is obvious that

(J α
a+F )(t) = [Iαa+f(t), I

α
a+f(t)],

for all t ∈ [a, b].
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In the following, we will discuss the cases of increasing and decreasing of the interval-

valued Riemann-Liouville fractional integral.

Lemma 2.3. [22]

Let Φ ∈ L1[a, b] be a positive and increasing real function on [a, b] and let α ∈ (0, 1].Then

the real function ϕ(t) :=
∫ t

a
(t− s)−αΦ(s) ds is also increasing on [a,b].

Remark 2.2.1. [22]

From the previous lemma it follows that if F ∈ Lp([a, b],K) (1 ≤ p ≤ ∞) is w-increasing

on [a, b], then the interval-valued functions (J α
a+F )(t) and (J 1−α

a+ F )(t) are w-increasing

on [a, b] if α ∈ (0, 1). If Φ ∈ L1[a, b] is positive and decreasing on [a, b], then the real

function ϕ(t) is not decreasing on [a, b], in general.

For example, if ϕ : [0, 2]→ [0, 2] is given by ϕ(t) = 1− t. Then the function

ϕ(t) =

∫ t

0

(t− s)−αϕ(s) ds

=

∫ t

0

(t− s)−α(1− s) ds

let t− s = x, and substitute it in the integral. Then we get

ϕ(t) =
t1−α

1− α

(
1− t

α− 2

)
,

is increasing on [0, 2− α] and decreasing on [2− α, 2] for α ∈ (0, 1).

In the following theorems, we present the operations on the interval-valued Riemann-

Liouville fractional integral.

Theorem 2.1. [24]

If F,G ∈ Lp([a, b],K), (p ∈ [1,∞)) and α, β > 0, then for a.e. t ∈ [a, b] we have that

1. w
(
(J α

a+F )(t)
)
= Iαa+w(F (t)).

2.
(
J α

a+((J
β
a+F )(t))

)
(t) = (J α+β

a+ F )(t).

3.
(
(J α

a+(cF ))
)
(t) = c(J α

a+F )(t) for each c ∈ R+.

4.
(
J α

a+(F +G)
)
(t) = (J α

a+F )(t) + (J α
a+G)(t).

Theorem 2.2. [22] If F,G ∈ L1([a, b],K) and α > 0, then

J α
a+F (t) θg J α

a+G(t) ⊆ J α
a+(F θg G)(t), (2.3)
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for all t ∈ [a, b].

Moreover, if the difference w(F (t))− w(G(t)) has a constant sign on [a, b], then

J α
a+F (t) θg J α

a+G(t) = J α
a+(F θg G)(t), (2.4)

for all t ∈ [a, b].

In the following example, we show that the inclusion in Theorem 2.2 is strict.

Example 2.3. [22] Let F,G : [0, 3] → K be given by F (t) = [0, t] and G(t) = [−2, 0],
respectively. First, we remark that w(F (t))− w(G(t)) has not a constant sign on [0, 3].

so we have

J
1
2

0+F (t) =
1

Γ(1
2
)

∫ t

0

(t− s)−
1
2 [0, s] ds

=
1√
π

[
0,

∫ t

0

(t− s)
−1
2 s ds

]

=

[
0,

4

3
√
π
t
3
2

]
, t ∈ [0, 3].

J
1
2

0+G(t) =
1

Γ(1
2
)

∫ t

0

(t− s)−
1
2 [−2, 0] ds

=
1√
π

[
−2
∫ t

0

(t− s)
−1
2 ds, 0

]

=

[
4√
π
t
1
2 , 0

]
, t ∈ [0, 3].

Hence

J
1
2

0+F (t)θgJ
1
2

0+G(t) = [min

{
4√
π
t
1
2 ,

4

3
√
π
t
3
2

}
,max

{
4√
π
t
1
2 ,

4

3
√
π
t
3
2

}
]

=

[
4√
π
t
1
2 ,

4

3
√
π
t
3
2

]
=

4

3
√
π
[t

3
2 , 3t

1
2 ],

for all t ∈ [0, 3].

On the other hand, we have that

(FθgG)(t) = [min {2, t} ,max {2, t}]

=

[t, 2] if t ∈ [0, 2],

[2, t] if t ∈ (2, 3],
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for t ∈ [0, 2], the difference w(F (t))−w(G(t)) = t− 2 has a constant sign on [0, 2], and

we have

J
1
2

0+(F θgG)(t) =
1

Γ(1
2
)

∫ t

0

(t− s)−
1
2 [s, 2] ds

=
1√
π

[∫ t

0

s(t− s)
1
2 ds, 2

∫ t

0

(t− s)
1
2 ds

]
=

4

3
√
π
[t

3
2 , 3t

1
2 ],

that is

J
1
2

0+(F θgG)(t) = J
1
2

0+F (t)θgJ
1
2

0+G(t).

But for t ∈ (2, 3], we have

J
1
2

0+(F θgG)(t) =
1

Γ(1
2
)

∫ 2

0

(t− s)−
1
2 [s, 2] ds+

1

Γ(1
2
)

∫ t

2

(t− s)−
1
2 [2, s] ds

=
4

3
√
π

[
t
3
2 − (t− 2)

3
2 , 3t

1
2 + (t− 2)

3
2

]
⊃ [t

3
2 , 3t

1
2 ],

that is J
1
2

0+(F θgG)(t) ⊃ J
1
2

0+F (t)θgJ
1
2

0+G(t) for t ∈ (2, 3]. It follows that the inclusion in

(2.3) is strict on [0, 3].

Theorem 2.3. [22, 34] The interval-valued Riemann-Liouville fractional integral of or-

der α > 0 is a bounded operator from Lp([a, b],K) into Lp([a, b],K) where p ∈ [1,∞),i.e.,

||J α
a+F ||p ≤

(b− a)α

Γ(α + 1)
||F ||p.

Moreover, if α ∈ (0, 1) and 1 < p < 1
α
, then J α

a+ is a bounded operator from Lp([a, b],K)
into Lq([a, b],K) where q = p

(1−αp)
.

2.2.2 Riemann-Liouville Fractional Derivative of Interval-Valued

Functions

First, from Section 1.1 we recall the Riemann-Liouville fractional derivative of order

α ∈ (0, 1] for a real function f ∈ C([a, b],R) is defined for a.e. t ∈ [a, b] by

Dα
a+f(t) =

d

dt
I1−α
a+ f(t) =

1

Γ(1− α)

d

dt

∫ t

a

(t− τ)−αf(τ) dτ.
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In particular, when α = 1, then D1
a+f(t) = f ′(t) for a.e. t ∈ [a, b]. For a given interval-

valued function F = [f, f ] ∈ L1([a, b],K) and α ∈ (0, 1], we define the interval-valued

function F1−α : [a, b]→ K by

F1−α(t) = (J 1−α
a+ F )(t) :=

∫ t

a

(t− s)−α

Γ(1− α)
F (s) ds,

for a.e. t ∈ [a, b].

If the gH-derivative (F1−α)
′ exist for a.e. t ∈ [a, b], then (F1−α)

′ is called the interval-

valued Riemann-Liouville fractional derivative (or Riemann-Liouville gH-fractional deriva-

tive ) of order α ∈ (0, 1]. The Riemann-Liouville gH-fractional derivative of F will be

denoted by Dα
a+F . Therefore

(Dα
a+F )(t) = (J 1−α

a+ F )′(t),

for a.e. t ∈ [a, b].

In particular, when α = 1 and F ∈ AC([a, b],K), then (D1
a+F )(t) = F ′(t) for a.e.

t ∈ [a, b].

In the following, we present some theorems and lemmas which illustrate the Interval-

Valued Riemann-Liouville Fractional Derivative with the interval function’s increasing

or decreasing.

Theorem 2.4. [22] Let F = [f, f ] ∈ AC([a, b],K). Then

1. F1−α ∈ AC([a, b],K) and

Dα
a+f(t) =

[
min

{
(Dα

a+f)(t), (D
α
a+f)(t)

}
,max

{
(Dα

a+f)(t), (D
α
a+f)(t)

}]
,

for a.e. t ∈ [a, b].

2. If either F is w-increasing on [a, b] or F is w-decreasing and F1−α is w-increasing

on [a, b], then

(Dα
a+F )(t) = [(Dα

a+f)(t), (D
α
a+f)(t)]

for a.e. t ∈ [a, b].

3. If F1−α is w-decreasing on [a, b]. Then

(Dα
a+F )(t) = [(Dα

a+f)(t), (D
α
a+f)(t)]

In the following, we present a lemma that will be used to prove the coming theorem.
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Lemma 2.4. [18] If 0 < α < 1, then

(Iαa+D
α
a+f)(t) = f(t)− f1−α(a)

Γ(α)
(t− a)α−1.

Moreover, if α = n ∈ N. Then the following equality holds

(Ina+D
n
a+f)(t) = f(t)−

n−1∑
k=0

f (k)(a)

k!
(t− a)k.

Theorem 2.5. [22] Let F ∈ L1([a, b],K) be such that F1−α ∈ AC([a, b],K). Then

1. If d
dt
w(F1−α) ≥ 0 for a.e. t ∈ [a, b], then

w(F (t)) ≥ (t− a)α−1

Γ(α)
w(F1−α(a)),

for a.e. t ∈ [a, b].

2. If d
dt
w(F1−α) ≤ 0 for a.e. t ∈ [a, b], then

w(F (t)) ≤ (t− a)α−1

Γ(α)
w(F1−α(a)),

for a.e. t ∈ [a, b].

Proof. (1)

Using lemma 2.4., we get

Iαa+D
α
a+w(F (t)) = w(F (t))− (t− a)α−1

Γ(α)
w(F1−α(a)) (2.5)

for a.e. t ∈ [a, b]. Now since

Iαa+D
α
a+w(F (t)) = Iαa+

d

dt
I1−α
a+ w(F (t))

= Iαa+
d

dt
w(F1−α(a))

for a.e. t ∈ [a, b], it follows that

w(F (t))− (t− a)α−1

Γ(α)
w(F1−α(a)) = Iα−1

a+
d

dt
w(F1−α(t)),

for a.e. t ∈ [a, b].

Noting that Iαa+
d
dt
w(F1−α(t)) ≥ 0 for a.e. t ∈ [a, b] if d

dt
w(F1−α(t)) ≥ 0 for a.e. t ∈ [a, b],

so we are done. Similarly, we can prove (2).
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Lemma 2.5. [24] Let F = [f, f ] ∈ AC([a, b],K). Then

1. If either F is w-increasing on [a, b] or F is w-decreasing and F1−α is w-increasing

on [a, b], then

(Dα
a+F )(t) = (J 1−α

a+ F ′)(t) +
(t− a)−α

Γ(1− α)
F (a),

for a.e. t ∈ [a, b].

2. If F and F1−α are w-decreasing on [a, b], then

(Dα
a+F )(t) = (J 1−α

a+ F ′)(t)θg
(t− a)−α

Γ(1− α)
(−F (a)),

for a.e. t ∈ [a, b].

The following theorem is a direct consequence of Proposition 2.3.

Theorem 2.6. [24] Let F,G ∈ AC([a, b],K) be w-monotone on [a, b] and let α ∈ (0, 1]

a) If F1−α and G1−α are equally w-monotone on [a, b], then

(Dα
a+(F +G))(t) = (Dα

a+(F ))(t) + (Dα
a+(G))(t),

for a.e. t ∈ [a, b], and

(Dα
a+(F θg G))(t) = (Dα

a+(F ))(t) θg (Dα
a+(G))(t),

for a.e. t ∈ [a, b].

b) If F1−α and G1−α are differently w-monotone on [a, b], i.e., if one of them is w-

increasing on [a, b], then the other is w-deacreasing on [a, b], then

(Dα
a+(F +G))(t) = (Dα

a+(F ))(t)θg (−(Dα
a+(G)))(t),

for a.e. t ∈ [a, b], and

(Dα
a+(F θgG))(t) = (Dα

a+(F ))(t) + (−(Dα
a+(G)))(t),

for a.e. t ∈ [a, b].

The following propositions represent the relation between interval-valued Riemann-

liouville fractional integral and derivative.
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Proposition 2.7. [22] If F ∈ LP ([a, b],K) (1 ≤ p ≤ ∞), then

Dα
a+J α

a+F (t) = F (t),

for a.e. t ∈ [a, b].

Proof. From previous definitions and theorems, we have

Dα
a+J α

a+F (t) = (J 1−α
a+ J

α
a+F )′(t)

= (J 1
a+F )′(t)

= (

∫ t

a

F (s) ds)′

= F (t).

for a.e. t ∈ [a, b].

Proposition 2.8. [22] Let F ∈ Lp([a, b],K) (1 ≤ p ≤ ∞) be such that F1−α ∈
AC([a, b],K). If there exists an interval-valued function G ∈ Lp([a, b],K) with F =

J α
a+G. Then

J α
a+Dα

a+F (t) = F (t),

for a.e. t ∈ [a, b].

Proof. Indeed, we have that

J α
a+Dα

a+F (t) = J α
a+(J 1−α

a+ F )′(t)

= J α
a+(J 1−α

a+ J
α
a+G)′ Using the proof of the previous proposition.

= F (t). Given from the statement of the proposition.

Proposition 2.9. [22, 24] Let F ∈ L1([a, b],K) be such that F1−α ∈ AC([a, b],K). If

either d
dt
w(F1−α(t)) ≥ 0 for a.e. t ∈ [a, b] or d

dt
w(F1−α(t)) ≤ 0 for a.e. t ∈ [a, b], then

the gH-Difference F (t) θg
(t−a)α−1

Γ(α)
F1−α(a) exists for a.e. t ∈ [a, b], and

J α
a+Dα

a+F (t) = F (t) θg
(t− a)α−1

Γ(α)
F1−α(a), (2.6)

for a.e. t ∈ [a, b].

Proof. From Theorem 2.5 and its proof, we get that

36



1. The existence of the difference

F (t)θg
(t− a)α−1

Γ(α)
F1−α(a),

for a.e. t ∈ [a, b].

2.

Iαa+D
α
a+F (t) = F (t)− (t− a)α−1

Γ(α)
F1−α(a),

for a.e. t ∈ [a, b].

3. If d
dt
w(F1−α(t)) ≥ 0 for a.e. t ∈ [a, b], then F1−α is w-increasing on [a, b].

Thus

J α
a+Dα

a+F (t) = J α
a+(F1−α)

′(t)

= J α
a+ [D

α
a+f,D

α
a+f ]

= [(Iαa+D
α
a+f)(t), (I

α
a+D

α
a+f)(t)]

= [f(t)− (t− a)α−1

Γ(α)
f
1−α

(a), f(t)− (t− a)α−1

Γ(α)
f

1−α(a)]

= F (t)θg
(t− a)α−1

Γ(α)
F1−α(a),

for a.e. t ∈ [a, b]. By a similar reasoning we obtain (2.6) if d
dt
w(F1−α(t)) ≤ 0 for

a.e. t ∈ [a, b].

Remark 2.2.2. [22] Under the conditions of Proposition 2.7, the relation (2.6) can be

written as

F (t) =
(t− a)α−1

Γ(α)
F1−α(a) + J α

a+Dα
a+F (t)

for a.e. t ∈ [a, b], if d
dt
w(F1−α(t)) ≥ 0 for a.e. t ∈ [a, b], and as

F (t) =
(t− a)α−1

Γ(α)
F1−α(a)θg(−J α

a+Dα
a+F (t))

for a.e. t ∈ [a, b], if d
dt
w(F1−α(t)) ≤ 0 for a.e. t ∈ [a, b]

The following example illustrates the previous proposition.
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Example 2.4. [22] Let us consider the interval-valued function F : [0, 1]→ K given by

F (t) = [t
1
2 , t−

1
2 ] if t ∈ (0, 1] and F (0) = [0, 1]. Then F ∈ L1([0, 1],K), F is w-decreasing

on (0, 1], and

F1− 1
2
(t) = J 1− 1

2

0+ F (t) =
1√
π

[
π

2
t, π

]
,

for all t ∈ [0, 1].

It follows that F1− 1
2
∈ AC([0, 1],K) and d

dt
w(F1−α(t)) ≤ 0 for all t ∈ [0, 1]. Since the

interval-valued function F1− 1
2
is w-decreasing on [0, 1], then we have that

D
1
2

0+F (t) = F ′
1− 1

2
(t) = [0,

√
π

2
],

for all t ∈ [0, 1], and so J
1
2

0+D
1
2

0+F (t) = [0, t
1
2 ], for all t ∈ [0, 1].

On the other hand,

F (t)θg
t
1
2
−1

Γ(1
2
)
F1− 1

2
(0) = [t

1
2 , t−

1
2 ]θg[0, t

− 1
2 ] = [0, t

1
2 ].

that is J
1
2

0+D
1
2

0+F (t) = F (t)θg
t
1
2−1

Γ( 1
2
)
F1− 1

2
(0) for all t ∈ [0, 1].

2.2.3 Conformable Fractional Derivative of Interval-Valued

Functions

In this subsection, we introduce and study the conformable fractional derivative which

developed under interval arithmetic. The most content of this subsection is from [7, 33].

Definition 2.6. Let T : (a, b) → K and t ∈ (a, b), we say that T is generalized con-

formable fractional differential at t, if there exists Tα(t) ∈ R such that

T (α)
gH (t) = lim

ϵ→0

T (t+ ϵt1−α)θgT (t)
ϵ

,

then T is called α-differentiable at t ∈ (a, b).

In the following theorem, we discuss the value of T according to the function be-

haviour of monotonicity .

Theorem 2.7. Let T (t) = [T1(t), T2(t)] be α-differentiable and w-monotone on (a, b).

Then for every t ∈ (a, b), the derivatives T1(t) and T2(t) exist and

1. T (α)(t) = [T (α)
1 (t), T (α)

2 (t)], if T is w-increasing.

2. T (α)(t) = [T (α)
2 (t), T (α)

1 (t)], if T is w-decreasing.
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Proof. Using the generalized conformable fractional derivative, we have for the case of

w-increasing

T (α)(t) = lim
ϵ→0

T (t+ t1−α)θgT (t)
ϵ

= lim
ϵ→0

[T (α)
1 (t+ ϵt1−α), T (α)

2 (t+ ϵt1−α)]θg[T (α)
1 (t), T (α)

2 (t)]

ϵ

= lim
ϵ→0

[T (α)
1 (t+ ϵt1−α)− T (α)

1 (t), T (α)
2 (t+ ϵt1−α)− T (α)

2 (t)]

ϵ

= [T (α)
1 (t), T (α)

2 (t)].

Similarly, we can get the proof of the case of w-decreasing.

In the following theorem, we state the relation between Conformable fractional

derivative and Conformable fractional integral of interval-valued functions.

Theorem 2.8. [33] Let F be α-differentiable and w-monotone, then

IαT (α)F (t) = F (t)θgF (a)

for a.e. t ∈ [a, b], where Iα is the fractional integral.

Proof. Similarly to the proof of Theorem 1.4 and using the definition of integrability,

differentiability and Theorem 2.7, the proof is straightforward.

2.2.4 Caputo Fractional Derivative of Interval-Valued Func-

tions

First, from Section 1.1.3, we get that if f ∈ C[a, b], then the Caputo fractional derivative

denoted by cDα
a+f of order α is defined for a.e. t ∈ [a, b] by

C
a D

α
x =

1

Γ(n− α)

∫ x

a

f (n)(t)

(x− t)α−n+1
dt, n− 1 < α < n.

Let F ∈ L1([a, b],K) such that the Riemann-Liouville fractional derivative Dα
a+F exists

a.e. on [a, b], for α ∈ (0, 1]. In this case we will define the interval valued Caputo

fractional derivative (cDα
a+F )(t) of order α ∈ (0, 1] of F by

(cDα
a+F )(t) =

1

Γ(1− α)

∫ t

a

(t− s)−αF ′(s) ds,

for a.e. t ∈ [a, b]. Certainly, (cDα
a+F )(t) = J 1−α

a+ F ′(t) for a.e. t ∈ [a, b] where (cDα
a+F )(t)

is called the Interval-Valued Caputo Fractional Derivative (or Caputo gH-Fractional
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Derivative) of order α ∈ (0, 1) [22].

In the following Proposition and Remark, we show how we can find the value of the

interval-valued Caputo fractional derivative with respect to its from the function in-

creasing or decreasing behaviour.

Proposition 2.10. [23] Let F ∈ AC([a, b],K) with F (t) = [f, f ]. Then

(cDα
a+F )(t) ⊇ [min

{
cDα

a+f,
cDα

a+f
}
,max

{
cDα

a+f,
cDα

a+f
}
], (2.7)

for a.e. t ∈ [a, b].

Now, the following remark illustrates the condition where the inequality (2.7) is hold.

Remark 2.2.3. [22] If F (t) = [f, f ] ∈ AC([a, b],K) and α ∈ (0, 1), then it is obvious

that

(cDα
a+F )(t) = [min

{
cDα

a+f,
cDα

a+f
}
,max

{
cDα

a+f,
cDα

a+f
}
],

for a.e. t ∈ [a, b]. If F is w-monotone, then

i . cDα
a+F (t) = [cDα

a+f,
cDα

a+f ] for a.e. t ∈ [a, b], if F is w-increasing.

ii . cDα
a+F (t) = [cDα

a+f,
cDα

a+f ] for a.e. t ∈ [a, b], if F is w-decreasing.

In the following theorems, we will discuss the operation between interval function

via interval-valued Caputo fractional derivative.

Theorem 2.9. [22] Let F,G ∈ AC([a, b],K) be w-monotone on [a, b] and let α ∈ (0, 1)

1. If F and G are equally w-monotone on [a, b]. Then

cDα
a+(F +G)(t) = (cDα

a+F )(t) + (cDα
a+G)(t),

for a.e. t ∈ [a, b], and

cDα
a+(FθgG)(t) ⊇ (cDα

a+F )(t)θg(
cDα

a+G)(t),

for a.e. t ∈ [a, b]. Moreover, if the difference
(
w(F ′(t))− w(G′(t))

)
has a constant

sign for a.e. t ∈ [a, b], then

cDα
a+(FθgG)(t) = (cDα

a+F )(t)θg(
cDα

a+G)(t),

for a.e. t ∈ [a, b].
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2. If F and G are differently w-monotone on [a, b], then

cDα
a+(F θg G)(t) = (cDα

a+F )(t) + (−cDα
a+G)(t),

for a.e. t ∈ [a, b], and

cDα
a+(F +G)(t) ⊇ (cDα

a+F )(t)θg(−cDα
a+G)(t),

for a.e. t ∈ [a, b]. Moreover, if the difference
(
w(F ′(t))− w(G′(t))

)
has a constant

sign for a.e. t ∈ [a, b], then

cDα
a+(FθgG)(t) = (cDα

a+F )(t)θg(−cDα
a+G)(t),

for a.e. t ∈ [a, b].

The following example illustrates that relations in the Theorem 2.9 can be false if

the assumptions are not satisfied.

Example 2.5. [22] Consider the interval-valued functions F,G : [0, 2] → K, given by

F (t) = [0,−t2+2t] and G(t) = [0, 2t2−4t+3], respectively. We have that wF (t) = −t2+2t

and wG(t) = 2t2 − 4t+ 3 for all t ∈ [0, 2]. It follows that F is w-increasing on [0, 1] and

w-decreasing on [1, 2], and G is w-decreasing on [0, 1] and w-increasing on [1, 2]. Then

we have that

(F +G)(t) = [0, t2 − 2t+ 3],

(FθgG)(t) = [−3t2 + 6t− 3, 0],
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for all t ∈ [0, 2]. Also, it is easy to check that

F ′(t) =


[0, 2− 2t], t ∈ [0, 1),

{0} , t = 1,

[2− 2t, 0], t ∈ (1, 2],

G′(t) =


[4t− 4, 0], t ∈ [0, 1),

{0} , t = 1,

[0, 4t− 4], t ∈ (1, 2],

(F +G)′(t) =


[2− 2t, 0], t ∈ [0, 1),

{0} , t = 1,

[0, 2t− 2], t ∈ (1, 2],

and

(FθgG)′(t) =


[0, 6− 6t], t ∈ [0, 1),

0, t = 1,

[6− 6t, 0], t ∈ (1, 2].

We see that w(F ′(t))−w(G′(t)) has a constant sign on each interval [0, 1] and [1, 2], but

it does not have a constant sign on the interval [0, 2]. For all t ∈ [0, 1], we obtain that

cD
1
2

0+F (t) =
4√
π

[
0, t

1
2 − 2

3
t
3
2

]
,

cD
1
2

0+G(t) =
8√
π

[
−t

1
2 +

2

3
t
3
2 , 0

]
,

cD
1
2

0+(F +G)(t) =
4√
π

[
−t

1
2 +

2

3
t
3
2 , 0

]
,

cD
1
2

0+(FθgG)(t) =
12√
π

[
−t

1
2 +

2

3
t
3
2 , 0

]
,

and

cD
1
2

0+F (t) + cD
1
2

0+G(t) =
4√
π

[
−t

1
2 +

2

3
t
3
2 , t

1
2 − 2

3
t
3
2

]
̸= cD

1
2

0+(F +G)(t),

cD
1
2

0+F (t)θg
cD

1
2

0+G(t) =
4√
π

[
t
1
2 − 2

3
t
3
2 , 2t

1
2 − 4

3
t
3
2

]
⊈ cD

1
2

0+(FθgG)(t).
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Also,
cD

1
2

0+(FθgG)(t) ⊈ cDα
0+F (t)θg

cDα
0+G(t),

but

cD
1
2

0+F (t) + (−cD
1
2

0+)G(t) =
12√
π

[
−t

1
2 +

2

3
t
3
2 , 0

]
= cD

1
2

0+(FθgG)(t),

and

cD
1
2

0+F (t)θg(−cD
1
2

0+)G(t) =
4√
π

[
−t

1
2 +

2

3
t
3
2 , 0

]
= cD

1
2

0+(F +G)(t).

Similarly, using the same procedure we obtain that for t ∈ (1, 2]

cD
1
2

0+F (t) + (−cD
1
2

0+)G(t) =
8

3
√
π

[
3(t− 1)

3
2 + (t− 3

2
)t

1
2 , 3(t− 1)

3
2 + (

3

2
− t)t

1
2

]
̸= cD

1
2

0+(FθgG)(t),

and

cD
1
2

0+F (t)θg(−cD
1
2

0+)G(t) =
8√
π

[
(t− 1)

3
2 , (t− 1)

3
2 + (

3

2
− t)t

1
2

]
̸= cD

1
2

0+(F +G)(t).

But
cD

1
2

0+F (t)θg(−cD
1
2

0+)G(t) ⊃ cD
1
2

0+(F +G)(t) for t ∈ (
3

2
, 2].

The next theorem gives an equivalent formula of the interval-value Caputo fractional

derivative. But before that, we will present a lemma we need it in the proof of the

theorem.

Lemma 2.6. [34] For a real-valued function ϕ ∈ AC[a, b], we have

Dα
a+ϕ(t) =

cDα
a+ϕ(t) +

(t− a)−α

Γ(1− α)
ϕ(a),

for a.e. t ∈ [a, b].

Theorem 2.10. [22, 24] Let F = [f, f ] ∈ AC([a, b],K). Then the following Properties

are then true
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1. If either F is w-increasing on [a, b] or F is w-decreasing and F1−α is w-increasing

on [a, b], then

cDα
a+F (t) = Dα

a+F (t)θg
(t− a)−α

Γ(1− α)
F (a), (2.8)

for a.e. t ∈ [a, b].

2. If both F and F1−α are w-decreasing on [a, b], then

Dα
a+F (t) = cDα

a+F (t)θg
(t− a)−α

Γ(1− α)
(−F (a)), (2.9)

for a.e. t ∈ [a, b].

Proof. If F is w-increasing, then F1−α is w-increasing on [a, b] and we have

cDα
a+F (t) +

(t− a)−α

Γ(1− α)
F (a) = [cDα

a+f(t),
cDα

a+f(t)] +
(t− a)−α

Γ(1− α)
[f(a), f(a)]

= [cDα
a+f(t) +

(t− a)−α

Γ(1− α)
f(a), cDα

a+f(t) +
(t− a)−α

Γ(1− α)
f(a)]

= [Dα
a+f(t), D

α
a+f(t)]

= Dα
a+F (t),

that is (2.8) is true for a.e. t ∈ [a, b].

If F is w-decreasing and F1−α is w-increasing on [a, b], then

cDα
a+F (t) + (−Dα

a+F (t)) = [cDα
a+f(t),

cDα
a+f(t)] + [Dα

a+f(t), D
α
a+f(t)]

=

[
−(t− a)−α

Γ(1− α)
f(a),

(t− a)−α

Γ(1− α)
f(a)

]
=

(t− a)−α

Γ(1− α)
(−F (a)).

It follows that

cDα
a+F (t) =

(t− a)−α

Γ(1− α)
(−F (a))θg(−Dα

a+F (t)))

= Dα
a+F (t))θg

(t− a)−α

Γ(1− α)
(F (a)),

for a.e. t ∈ [a, b].

Using the same procedures, we get (2.9) if both F and F1−α are w-decreasing on [a, b].

In the following there are some properties which illustrate the relationships between

the interval-valued Riemann-Liouville fractional integral and Caputo fractional deriva-

tive.
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Proposition 2.11. [22] If F ∈ AC([a, b],K) is a w-monotone interval-valued function

and α ∈ (0, 1], then

J α
a+

cDα
a+F (t) = F (t)θgF (a), (2.10)

for a.e t ∈ [a, b].

Proof. By Proposition 2.5, we have that

J α
a+

cDα
a+F (t) = J α

a+J 1−α
a+ F (t)

= J 1
a+F

′(t)

=

∫ t

a

F ′(s) ds

= F (t)θgF (a),

for a.e. t ∈ [a, b].

Remark 2.2.4. [22] The relation (2.10) can be written as

F (t) = F (a) + J α
a+

cDα
a+F (t),

if F is w-increasing on [a, b], and as

F (t) = F (a)θg(−1)J α
a+

cDα
a+F (t),

if F is w-decreasing on [a, b]. Also, we remark that the equality (2.10) can be false if F

is not monotone on [a, b].

Indeed, for interval-valued function F (t) = [0,−t2 + 2t], t ∈ (1, 2], we have that

cD
1
2

0+F (t) =
8

3
√
π

[
(t− 1)

3
2 , (t− 1)

3
2 + (

3

2
− t)t

1
2

]
,

for all t ∈ (1, 2]. Hence we obtain that

J
1
2

0+
cD

1
2

0+F (t) = [−2t2 + 4t+ 2, t2 + 2t+ 2]

̸= F (t)θgF (0).

Proposition 2.12. [22] Let F ∈ L∞([a, b],K) be such that either F is w-increasing on

[a, b], or F is w-decreasing on [a, b] and Fα(t) := J α
a+F (t) is w-increasing on [a, b], then

cDα
a+J α

a+F (t) = F (t), (2.11)

for a.e. t ∈ [a, b].
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Proof. It is known that for a real-valued function ϕ ∈ L∞[a, b], we have that cDα
a+I

α
a+ϕ(t) =

ϕ(t) for a.e. t ∈ [a, b]1. If F is w-increasing on [a, b], then from Lemma 2.3 it follows

that Fα is also w-increasing on [a, b]. Therefore in both cases, Fα is w-increasing on [a, b]

and we have

cDα
a+J α

a+F (t) = cDα
a+ [I

α
a+f, I

α
a+f ](t)

= [cDα
a+I

α
a+f,

cDα
a+I

α
a+f ](t)

= [f, f ](t)

= F (t),

for a.e. t ∈ [a, b].

The equality (2.11) can be false if F is not w-monotone on [a, b] [22]. Now, the

following example illustrates the Proposition 2.12.

Example 2.6. [22] Consider the interval-valued function F : [0, 1]→ K, given by F (t) =

[t
1
2 , t−

1
2 ] if t ∈ (0, 1], and F (0) = [0, 1]. Then F ∈ L1([0, 1],K), but F /∈ L∞([0, 1],K).

we have that

F 1
2
(t) = J

1
2

0+F (t) =
1√
π

[
π

2
t, π

]
,

for all t ∈ [0, 1].

It follows that F 1
2
∈ AC([0, 1],K) and d

dt
w(F 1

2
) ≤ 0 for all t ∈ [0, 1]. Since the

interval-valued function F 1
2
= J

1
2

0+F is w-decreasing on [0, 1], we have that

cDα
0+F 1

2
= F ′

1
2
(t) = [0,

√
π

2
], (2.12)

for all t ∈ [0, 1], and so cD
1
2

0+J
1
2

0+F (t) = [0, t
1
2 ] ̸= F (t), for all t ∈ [a, b].

The following theorem show the interval-valued differential equations with there initial

conditions.

Theorem 2.11. [24] Let H be an interval-valued function such that H(t) ∈ C1([a, b],K),
and let (J α

0+H)(t) be w-increasing on [a, b]. Then there is a w-monotone unique solution

X ∈ C([a, b],K) of the initial-value problem(cDα
a+X)(t) = H(t),

X(a) = X0 ∈ K,
(2.13)

given by

X(t)θgX0 =
1

Γ(α)

∫ t

a

(t− s)α−1H(s) ds, (2.14)

1see Lemma 2.21 in Kilbas et al. [18]
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Proof. From (2.14) we get that X(a) = X0 and X ∈ C([a, b],K), and for t ∈ (a, b] and

H ∈ C([a, b],K), we get that

(Dα
a+ [X(t)θgX(a)]) = (J 1−α

a+ [X(t)θgX(a)])′

= (J 1−α
a+ J

α
a+H)′(t)

= H(t).

This infers that X is a solution of (2.13). Then the proof is completed.

If X ∈ C([a, b],K) is such that w(X(t)) ≥ w(X0) for all t ∈ [a, b], then (2.14) can be

written as

X(t) = X0 +

∫ t

a

(t− s)α−1

Γ(α)
H(s) ds, t ∈ [a, b].

Otherwise, if w(X(t)) ≤ w(X0) for all t ∈ [a, b], then (2.14) can be written as

X(t) = X0θ(−1)
∫ t

a

(t− s)α−1

Γ(α)
H(s) ds, t ∈ [a, b].

If X ∈ C([a, b],K) is an interval-valued function such that Xa(t) := X(t)θgX(a), t ∈
[a, b], satisfies (2.14), then Xa is called the Condensed solution of (2.14). Moreover,

if X ∈ C([a, T ],K) may produce two solutions of (2.14): a w-increasing solution X ↑
(t) = X(a) +Xa(t), t ∈ [a, b], if X is w-increasing on [a, b], and a w-decreasing solution

X ↓ (t) = X(a)θ(−Xa(t)), t ∈ [a, b], if X is w-decreasing on [a, b].

The following Example illustrates the interval-valued differential equation and its solu-

tion.

Example 2.7. [24] Let us consider the following initial-value problem(cD
1
2

0+X)(t) = [t, 1], t ∈ [0, 1],

X(0) = [0, 1],
(2.15)

and its associated integral equation

X(t)θgX(0) = (J
1
2

0+F )(t), t ∈ [0, 1], (2.16)

where F (t) := [t, 1], t ∈ [0, 1]. We have that

(J
1
2

0+F )(t) =
1

Γ(1
2
)

∫ t

0

(t− s)−
1
2 [s, 1] ds

=

[
4

3
√
π
t
3
2 ,

2√
π
t
1
2

]
, t ∈ [t0, 1],
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where t0 = 0. If we put Y0(t) := (J
1
2

0+F )(t), t ∈ [t0, 1]. Then

d

dt
w(Y0(t)) =

t−
1
2

√
π
(1− 2t), t ∈ (t0, 1].

It follows that Y0 is w-increasing on [t0,
1
2
] and w-decreasing on [1

2
, 1]. Then the condensed

solution X0 of the integral equation (2.16), namely

X0(t) = X0(t)θgX0(t0),

=

[
4

3
√
π
t
3
2 ,

2√
π
t
1
2

]
, t ∈ [t0, 1]

produces a w-monotone solution X0 of (2.15) only on the interval [t0,
1
2
]. We obtain the

w-increasing solution

X0 ↑ (t) := X(0) + (J
1
2

t+0
)X(t),

= [0, 1] +

[
4

3
√
π
t
3
2 ,

2√
π
t
1
2

]
,

=

[
4

3
√
π
t
3
2 , 1 +

2√
π
t
1
2

]
, t ∈ [t0, t1],

and the w-decreasing solution

X0 ↓ (t) := [0, 1]θ(−(J
1
2

0+X)(t))

= [0, 1]θ

[
− 2√

π
t
1
2 ,− 4

3
√
π
t
3
2

]
=

[
2√
π
t
1
2 , 1 +

4

3
√
π
t
3
2

]
, t ∈ [t0, t1].

The solution X0 can be extended to the right of the point t1 up to a point t2 ∈ (t1, 1] such

that (J
1
2

0+F )(t) is w-increasing on [t1, t2]. The extension of X0 up to t2 is an interval-

valued function X1 : [t0, t2] → K such that X1(t) = X0(t) for t ∈ [t0, t1] and X1 is the

solution of the following initial-value problem(cD
1
2

0+X)(t) = [t, 1], t ∈ [t1, 1],

X(t1) = X0(t1).
(2.17)

where X0(t1) = X0(t1)θgX0(t0) = (J
1
2

0+F )(t1); that is,

X(t1) = X0 ↑ (t1) = X(t0) + (J
1
2

0+F )(t1),

if X0 is w-increasing and

X(t1) = X0 ↓ (t1) = X0(t0)θ(−(J
1
2

0+F )(t1)),
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if X0 is w-decreasing. Here, X0(t0) = [0, 1] and X(t1) = X0 ↑ (t1) =
[
1
3

√
2
π
, 1 +

√
2
π

]
,

if X is w-increasing, and X(t1) = X0 ↓ (t1) =
[√

2
π
, 1 + 1

3

√
2
π

]
if X is w-decreasing.

The integral equation associated to (2.17) is

X(t)θgX(t1) = (J
1
2

t+1
)F (t), t ∈ [t1, 1]. (2.18)

Next, we have that

(J
1
2

t+1
F )(t) =

∫ t

t1

(t− s)−
1
2

Γ(1
2
)

[s, 1] ds

=

[
4t+ 2t1
3
√
π

√
t− t1,

2√
π

√
t− t1

]
, t ∈ [t1, 1].

If we put Y1(t) := (J
1
2

t+1
)F (t), t ∈ [t1, 1]. Then

d

dt
w(Y1(t)) =

1

2
√

π(t− t1)
(1 + t1 − 2t), t ∈ (t1, 1],

it follows that Y1 is w-increasing on [t1, t2], and w-decreasing on [t2, 1], where t2 =
1
2
(1 + t1) =

3
4
.

Then the condensed solution X1 of the integral equation (2.18) is

X1(t) := X1(t)θgX1(t1) =

[
4t+ 2t1
3
√
π

√
t− t1,

2

π

√
t− t1

]
, t ∈ [t1, t2],

and it is produces four w-monotone solutions for initial value problem (2.17), namely

X1 ↑↑ (t) := X0 ↑ (t1) + (J
1
2

t+1
)F (t),

=

[
1

3

√
2

π
, 1 +

√
2

π

]
+

[
4t+ 2t1
3
√
π

√
t− t1,

2

π

√
t− t1

]
,

=

[
1

3

√
2

π
+

4t+ 2t1
3
√
π

√
t− t1, 1 +

√
2

π
+

2

π

√
t− t1

]
, t ∈ [t1, t2],

and

X1 ↓↑ (t) := X1 ↓ (t) + ((J
1
2

t+1
)F (t))

=

[√
2

π
, 1 +

1

3

√
2

π

]
+

[
4t+ 2t1
3
√
π

√
t− t1,

2√
π

√
t− t1

]

=

[√
2

π
+

4t+ 2t1
3
√
π

√
t− t1, 1 +

1

3

√
2

π
+

2√
π

√
t− t1

]
,
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for t ∈ [t1, t2], and two w-decreasing solutions

X1 ↑↓ (t) := X1 ↑ (t)θ(−((J
1
2

t+1
)F (t)))

=

[
1

3

√
2

π
, 1 +

√
2

π

]
θ

[
− 2

π

√
t− t1,−

4t+ 2t1
3
√
π

√
t− t1

]

=

[
1

3

√
2

π
+

2√
π

√
t− t1, 1 +

√
2

π
+−4t+ 2t1

3
√
π

√
t− t1

]
, t ∈ [t1, t2],

and

X1 ↓↓ (t) := X1 ↓ (t)θ(−((J
1
2

t+1
)F (t)))

=

[√
2

π
, 1 +

1

3

√
2

π

]
θ

[
− 2√

π
+
√
t− t1,−

4t+ 2t1
3
√
π

√
t− t1

]

=

[√
2

π
+

2√
π

√
t− t1, 1 +

1

3

√
2

π
+

4t+ 2t1
3
√
π

√
t− t1

]
, t ∈ [t1, t2].

In fact, X1 ↑↑ (t) is the w-increasing solution and X1 ↑↓ (t) is the w-decreasing solution

of (2.17), if we use the initial condition X(t1) = X0 ↑ (t1). Similarly, X1 ↓↑ (t) is the

w-increasing solution and X1 ↓↓ (t) is the w-decreasing solution of (2.17) if we use the

initial condition X(t1) = X0 ↓↑ (t1).
Now, one can check that the interval-valued function X ↑: [0, 1]→ K given by

X ↑ (t) =

X0 ↑ (t), t ∈ [t0, t1],

X1 ↑↑ (t), t ∈ [t1, t2],

is a w-increasing solution of (2.15) on [t0, t2]. Similar, the interval-valued function X ↓:
[0, 1]→ K given by

X ↓ (t) =

X0 ↓ (t), t ∈ [t0, t1],

X1 ↓↓ (t), t ∈ [t1, t2],

is a w-increasing solution of (2.15) on [t0, t2]. By mathematical induction we can show

that for any X0 can be extended to the right of the point tn up to the point tn+1 ∈ (tn, 1]

such that ((J
1
2

t+1
)F (t)) is w-increasing on [tn, tn+1], where tn+1 =

1
2
(1 + tn), n ≥ 0; that is

tn = 1− (1
2
)n, n ≥ 0. Indeed, suppose that X0 was extended up to the point tn such that

Xn−1(t) = Xn−1(t)θgXn−1(tn−1)

=

[
4t+ 2tn−1

3
√
π

√
t− tn−1,

2√
π

√
t− tn−1

]
,
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where t ∈ [tn−1, tn]. The extension of X0 up to tn+1 is an interval-valued function

Xn : [t0, tn+1] → K such that Xn(t) = Xn−1(t) for t ∈ [t0, tn] and Xn is the solution of

the following initial value problem(cD
1
2

t+n
X)(t) = [1, t], t ∈ [tn, 1],

X(tn) = Xn−1(tn),
(2.19)

where Xn−1(tn) = Xn−1(tn)θXn−1(tn−1) = ((J
1
2

t+n−1

)F (t)). Next,

((J
1
2

t+n−1

)X(t)) =

∫ t

tn−1

(t− s)−
1
2

Γ(1
2
)

[s, 1] ds,

=

[
4t+ 2tn
3
√
π

√
t− tn,

2√
π

√
t− tn

]
,

where t ∈ [tn, 1]. If we put Yn := ((J
1
2

t+n
)F (t)), t ∈ [tn, 1], then

d
dt
w(Yn(t)) =

1

2
√

π(t−tn)
(1+

tn − 2t), t ∈ (tn, 1]. It follows that Yn is w-increasing on [tn, tn+1] and w-decreasing on

[tn+1, 1], where tn+1 =
1
2
(1+ tn). Then the condensed solution Xn of the integral equation

associated with (2.19) is given by

Xn(t) := Xn(t)θgXn(tn)

=

[
4t+ 2tn
3
√
π

√
t− tn,

2√
π

√
t− tn

]
, t ∈ [tn, tn+1],

and it produces 2n w-increasing solutions and 2n w-decreasing solutions for initial value

problem (2.19).

A reasoning, not so difficult, lead us to establish the extended monotone solutions of

(2.19) on [0, 1]. We obtain the w-increasing solution X ↑: [0, 1]→ K given by

X ↑ (t) =

X0 ↑ (t), t ∈ [t0, t1],

Xn ↑n (t), t ∈ [tn, tn+1], n ≥ 1,

where

Xn ↑n (t) :=

[
an +

4t+ 2tn
3
√
π

√
t− tn, bn +

2√
π

√
t− tn

]
, t ∈ [tn, tn+1], n ≥ 1,

an :=
2

3
√
π

n∑
k=1

(
3− 1

2k−2

)√
1

2k
, bn = 1 +

2√
π

n∑
k=1

1√
2k

, n ≥ 1,

and ↑n means ↑↑ . . . ↑ −n+ 1− times

Also, the w-decreasing solution X ↓: [0, 1]→ K is given by

X ↓ (t) =

X ↓0 (t), if t ∈ [t0, t1],

X ↓nn (t), if t ∈ [tn, tn+1], n ≥ 1,
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where

Xn ↓n (t) =

[
cn +

2√
π

√
t− tn, dn +

4t+ 2tn
3
√
π

√
t− tn

]
, t ∈ [tn, tn+1], n ≥ 1.

cn =
2√
π

n∑
k=1

1√
2k

, dn = 1 +
2

3
√
π

n∑
k=1

(
3− 1

2k−2

)
1√
2k

.

and ↓n means ↓↓ . . . ↓ −n+ 1− times

2.3 Fuzzy Fractional Differential Equations

This section consists of subsections: In the first, we introduce some basic notions of

fuzzy set and fractional calculus, and in the second, we present several topics such as

differential equations of fractional order with uncertainty.

2.3.1 Definitions and Preliminaries

Definition 2.7. [21] A fuzzy set (class) A in X is characterized by a membership func-

tion UA(x) which associated with each point in X or a real number in the interval [0, 1]

with the value of UA(x) at x representing the ” grade of membership” of x in A.

The space of fuzzy numbers in R is denoted by E with the following properties [4]

1. u is normal. i.e., there exists an x0 ∈ R such that u(x0) = 1.

2. u is fuzzy convex. i.e., for x, y ∈ R and 0 ≤ λ ≤ 1, then

u(λx+ (1− λ)y) ≥ min
{
u(x), u(y)

}
.

3. u is upper semicontinuous.

4. [u]0 = cl
{
x ∈ R;u(x) > 0

}
is compact.

For 0 < q < 1, denoted [u]q =
{
x ∈ R : u(x) ≥ q

}
, it follows that the q-level set [u]q

is closed interval for each q ∈ [0, 1]. From this characterization of fuzzy numbers, it

follows that a fuzzy number u is completely determined by the end point of the interval

[u]q = [uq
1, u

q
2], then we can define 0̂ as following

0̂ =

1, x = 0,

0, x ̸= 0,
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Then we need to define a metric space d on E which is denoted by dH and defined as

d(u, v) = sup
0≤q≤1

dH([u]
q, [v]q), (2.20)

where dH is the Hausedorff metric which is given by

dH([u]
q, [v]q) = max

{
|vq1 − uq

1|, |v
q
2 − uq

2|
}
. (2.21)

Note that the arithmetic operations on E are the same of the arithmetic operations

under intervals.

Now; we need to define some spaces related to the fuzzy sets, let T ⊂ R, then [4]

1. C(T,E) is the space of all continuous fuzzy functions on T .

2. L1(T,E) is the space of all fuzzy functions f : T → E which are Lebesgue integrable

on the bounded interval T of R.

3. Cr([a, b], E) is a complete metric space with respect to the metric

hr(u, v) = max
t∈[0,a]

trd(u(t), v(t)),

and

Cr([0, a], E) =
{
u ∈ C((0, a], E) : tru ∈ C([0, a], E)

}
.

Definition 2.8. [4] Let α > 0 and u : (0, a]→ E be such that [u(t)]q = [uq
1(t), u

q
2(t)] for

every t ∈ (0, a] and q ∈ [0, 1]. Suppose that uq
1, u

q
2 ∈ C((0, a], E) ∩ L1((0, a),R) for each

q ∈ [0, 1], and let

Aq =
1

Γ(α)

[∫ t

0

(t− s)α−1uq
1(s) ds,

∫ t

0

(t− s)α−1uq
2(s) ds

]
,

then the family
{
Aq : q ∈ [0, 1]

}
is defined a fuzzy number u ∈ E such that [u]q = Aq.

Let u : T → E be a fuzzy function such that [u(t)]q = [uq
1(t), u

q
2(t)], t ∈ T and

q ∈ [0, 1]. Then we have [4, 35]

1. The derivative u′(t) of a fuzzy function u is defined as follows:

[u′(t)]q = [(uq
1)

′(t), (uq
2)

′(t)], q ∈ [0, 1], (2.22)

where this equation provided a fuzzy number u′(t) ∈ E.
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2. The fuzzy integral is defined by[∫ b

a

u(t) dt

]q
=

[∫ b

a

uq
1(t) dt,

∫ b

a

uq
2(t) dt

]
, q ∈ [0, 1],

provided that uq
1(t) and uq

2(t) are Lebesgue integrable, and we get that fuzzy inte-

gral is a fuzzy number.

3. We have that
d

dt

∫ t

a

u(s) ds = u(t),

for a.e. on [a, b].

4. If the endpoints functions (uq
1)

′(t) and (uq
2)

′(t) in (2.22) are integrable, then

u(t) = u(a) +

∫ t

a

u′(s) ds, t ∈ [a, b].

2.3.2 Fuzzy Fractional Derivative and Fuzzy Fractional Inte-

gral

Definition 2.9. [5] Let u ∈ C((0, a], E) ∩ L1((0, a), E). Then the fuzzy fractional

integral of order α > 0 of u

Iαu(t) =
1

Γ(α)

∫ t

0

(t− s)α−1u(s) ds, t ∈ (0, a).

and

[Iαu(t)]q =
1

Γ(α)

[∫ t

0

(t− s)α−1uq
1(s) ds,

∫ t

0

(t− s)α−1uq
2(s) ds

]
, t ∈ (0, a).

For α = 1, we obtain I1u(t) =
∫ t

0
u(s) ds, which is the integral operator.

Let u, v ∈ C((0, a], E)∩L1((0, a), E). Then the fuzzy fractional integral function satisfies

the following properties [4]:

1. Iα(cu)(t) = cIαu(t) for each constant c ∈ E.

2. Iα(u+ v)(t) = Iαu(t) + Iαv(t).

3. Iα1Iα2u(t) = Iα1+α2u(t), where α1, α2 > 0.

Now; we introduce an example to illustrate the concept of fuzzy fractional integral

function.
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Example 2.8. Let u : [0, a] → E be a constant fuzzy function. Then u(t) = c ∈ E for

t ∈ [0, a].

Now, if [c]q = [cq1, c
q
2], then

[Iαu(t)]q =
1

Γ(α)

[∫ t

0

(t− s)α−1cq1 ds,

∫ t

0

(t− s)α−1cq2 ds

]
=

1

Γ(α + 1)
tα[cq1, c

q
2]

=
1

Γ(1 + α)
tα[c]q.

Hence,

Iαu(t) =
1

Γ(α + 1)
tαu(t).

Definition 2.10. [4] Let u ∈ C((0, a], E) ∩ L1((0, a), E) be a given function such that

[u(t)]q = [uq
1(t), u

q
2(t)] for every t ∈ (0, a] and q ∈ [0, 1]. Then the fuzzy fractional

derivative of order 0 < α < 1 of u is given by the following

Dαu(t) =
1

Γ(1− α)

d

dt

∫ t

0

(t− s)−αu(s) ds,

and

[Dαu(t)]q =
1

Γ(1− α)

[
d

dt

∫ t

0

(t− s)−αuq
1(s) ds,

d

dt

∫ t

0

(t− s)−αuq
2(s) ds

]
,

provided that the equation defines a fuzzy number Dαu(t) ∈ E, where

[Dαu(t)]q = [Dαuq
1(t), D

αuq
2(t)],

for every t ∈ (0, a] and q ∈ [0, 1].

Note that Dαu(t) = d
dt
I1−αu(t) for t ∈ (0, a].

In the following proposition some properties of the fuzzy fractional derivative are intro-

duced.

Proposition 2.13. [5] Let u, v ∈ C((0, a], E) ∩ L1((0, a), E) be a given fuzzy functions

and 0 < α < 1. Then the fuzzy fractional derivative satisfies the following properties

1. Dα(cu)(t) = cDαu(t), for each constant c ∈ E.

2. Dα(u+ v)(t) = Dαu(t) +Dαv(t).

3. DαIαu(t) = u(t).

55



The following is an example which illustrates the fuzzy fractional derivative.

Example 2.9. [5] Let u : (0, a] → E be a constant fuzzy function, u(t) = c ∈ E for

t ∈ (0, a].

If [c]q = [cq1, c
q
2], then

[Dαu(t)]q =
1

Γ(1− q)

[
d

dt

∫ t

0

(t− s)−αcq1 ds,
d

dt

∫ t

0

(t− s)−αcq2 ds

]

=
t−α

Γ(1− α)
[cq1, c

q
2]

=
t−α

Γ(1− α)
[u(t)]q.

Hence

Dαc =
t−α

Γ(1− α)
c,

for every c ∈ E

In the following, we combine two types of differential equations of fractional order

and with uncertainty [5].

Let α ∈ (0, 1], T > 0, and E be the set of fuzzy numbers. Consider the differential

equation with uncertainty of the type:

DαX(t) = f(t,X(t)), t ∈ (0, T ], (2.23)

where f : [0, T ]×E → E is a contionous Riemann-Liouville fractional derivative of order

α which is given by Definition 1.2 of the function X : (0, T ]→ R.
In this case, the initial condition is

lim
t→0+

t1−αX(t) = X0 ∈ R. (2.24)

For example, consider the corresponding equation, for a ∈ R and σ : [0, T ]→ R

DαX(t) + aX(t) = σ(t), t ∈ (0, T ], (2.25)

with the initial condition

X(0) = X0.

If we apply to both side of (2.25) by Iα, then the solution is given by [18]

X(t) = X0Γ(α)t
α−1Eα,α(−atα) +

∫ t

0

(t− s)α−1Eα,α(−a(t− s)α)σ(s) ds, (2.26)

56



where Eα,α is the classical Mittage Leffler function which given by [15]

Eα,α(z) =
∞∑
k=0

zk

Γ(α(k + 1))
.

If α = 1, then

X(t) = X0 exp{−at}+
∫ t

0

exp
{
−a(t− s)

}
σ(s) ds.

Let E be the set of real numbers and consider the nonlinear differential equation

with uncertainty

X ′(t) = f(t,X(t)), t ∈ (0, T ], (2.27)

where f : [0, T ]× E → E is continuous, and the initial condition

X(0) = X0 ∈ E. (2.28)

For a > 0, the solution of the linear problem

X ′(t) = aX(t) + σ(t), t ∈ (0, T ],

with the initial condition (2.28) is given by [21]

X(t) = exp{at}

(
X0 +

∫ t

0

exp{−as}σ(s) ds

)
.

Let us consider the fractional differential equation with uncertainty (2.24), where f :

[0, T ]× E → E is continuous, with the initial condition

lim
t→0+

t1−αX(t) = X0 ∈ E.

Suppose that λ > 0 such that f is given by

f(t,X) = λX + g(t,X),

where g : [0, T ]× E → E is continuous.

We can write (2.23) as

DαX(t) = λX(t) + g(t,X(t)), t ∈ [0, T ]. (2.29)

Hence the solution of (2.29) can be derived from (2.26), and it can be written as

X(t) = Γ(α)tα−1Eα,α(λt
α)X0 +

∫ t

0

(t− s)α−1Eα,α(λ(t− s)α)g(s,X(s)) ds,

where a = −λ and σ(t) = g(t,X(t)).
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Example 2.10. [2] Consider the fractional differential equation

DαX(t) = 0, t ∈ (0, T ]

with the initial condition

lim
t→0+

t1−αX(t) = X0 ∈ R.

Then the general solution given in [18] is

X(t) = ctα−1,

with c = X0 ∈ R.

2.3.3 Fuzzy Fractional Differential Equation

The most content of this part is from [5].

Consider the following fuzzy fractional differential equation

Dαu = f(t, u) (2.30)

where 0 < α < 1 and f : [0, a] × E → E is continuous function on (0, a] × E, with the

initial condition

lim
t→0+

t1−αu(t) = u0 ∈ E. (2.31)

A fuzzy function u ∈ C((0, a], E) ∩ L1((0, a), E) is a solution of fuzzy fractional dif-

ferential equation (2.30) if Dαu is continuous on (0, a], and satisfy (2.30). A function

u ∈ C([0, a], E) is called an integral solution for (2.30) if f(t, u(t)) ∈ C((0, a], E) ∩
L1((0, a), E) and

u(t) = ctα−1 + Iαf(t, u(t)), (2.32)

holds a.e. on [0, a].

In the following, are some properties of the solution of fuzzy fractional differential equa-

tion are presented.

Proposition 2.14. If f(t, u(t)) ∈ C((0, a], E)∩L1((0, a), E). Then an integral solution

of (2.30) is also a solution of (2.30).

Proposition 2.15. Let f : (0, a] × E → E be a given fuzzy function. If t1−αf(t, u) is

continuous on [0, 1]×E and there exists M > 0 such that d(t1−αf(t, u), 0̂) ≤M for each

t ∈ (0, a] and u ∈ E. Then

u(t) = u0t
α−1 + Iαf(t, u(t)), (2.33)

is a solution for the initial value problem (2.30) and (2.31).
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Proof. It is clear that u(t) given by (2.33) is an integral solution of (2.30). Then, it’s

sufficient to show that

lim
t→0+

d(t1−αu(t), u0) = u0,

so we have

lim
t→0+

d(t1−αu(t), u0) = lim
t→0+

d(t1−αu0t
α−1 + t1−αI1−αf(t, u(t)), u0)

= lim
t→0+

d(u0 +
t1−α

Γ(α)

∫ t

0

(t− s)α−1f(t, u(t)) ds, u0)

≤ lim
t→0+

t1−α

Γ(α)

∫ t

0

(t− s)α−1d(f(s, u(s)), 0̂) ds

≤ lim
t→0+

Mt1−α

Γ(α)

∫ t

0

(t− s)α−1s1−α ds

= lim
t→0+

MΓ(α)tα

Γ(2α)
= 0.

We conclude with the following theorems which describe the integral equation and

the cases where the fuzzy differential equation has a unique solution.

Theorem 2.12. Let 0 < α < 1. If f : E → E satisfies the following:f(0̂) = 0̂,

d(f(u), f(v)) ≤ Ld(u, v),
(2.34)

for some L > 0 independent of u, v ∈ E. Then for any fixed c ∈ E, the fuzzy fractional

integral equation

u(t) = ctα−1 +
1

Γ(α)

∫ t

0

(t− s)α−1f(u(s)) ds

has a unique solution u ∈ C1−α([0, a], E) for each a > 0.

Theorem 2.13. Let 0 < α < 1. Assume that tαf(t, u) is continuous on [0, 1]× E, and

that

h0(f(t, u), f(t, v)) ≤ Lt−αh0(u, v), (2.35)

for every u, v ∈ E and t ∈ (0, 1]. If LΓ(1−α) < 1, then the initial value problem (2.30)

and (2.31) has a unique integral solution u ∈ C([0, 1], E).

Theorem 2.14. Let 0 < α < 1, if f : E → E satisfies (2.34), then for each u0 ∈ E, the

fuzzy value problem Dαu = f(u),

limt→0+ t1−αu(t) = u0,
(2.36)
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has a unique solution u ∈ C1−α([0, a], E) for all a > 0.

Proof. Assume that

u(t) = ctα−1 +
1

Γ(α)

∫ t

0

(t− s)α−1f(u(s)) ds,

be an integral equation for (2.36), with c ∈ E. Then by Theorem 2.12, this integral

equation has a unique solution u ∈ C1−α([0, a], E). So, it is sufficient to show that

lim
t→0+

t1−αu(t) = c.

Then, we have

lim
t→0+

d(t1−αu(t), c) = lim
t→0+

d(c+
t1−α

Γ(α)

∫ t

0

(t− s)α−1f(u(s)) ds, 0̂)

≤ lim
t→0+

t1−α

Γ(α)

∫ t

0

(t− s)α−1d(f(u(s)), 0̂) ds

≤ lim
t→0+

Lt1−α

Γ(α)

∫ t

0

(t− s)α−1d(u(s), 0̂) ds

≤ lim
t→0+

Lt1−α

Γ(α)
||u||1−α

∫ t

0

(t− s)α−1sα−1 ds

= lim
t→0+

LΓ(α)tα

Γ(2α)
||u||1−α

= 0.
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