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Abstract: A wide range of applications, including sports and healthcare, use human activity recog-
nition (HAR). The Internet of Things (IoT), using cloud systems, offers enormous resources but
produces high delays and huge amounts of traffic. This study proposes a distributed intelligence
and dynamic HAR architecture using smart IoT devices, edge devices, and cloud computing. These
systems were used to train models, store results, and process real-time predictions. Wearable sen-
sors and smartphones were deployed on the human body to detect activities from three positions;
accelerometer and gyroscope parameters were utilized to recognize activities. A dynamic selection of
models was used, depending on the availability of the data and the mobility of the users. The results
showed that this system could handle different scenarios dynamically according to the available
features; its prediction accuracy was 99.23% using the LightGBM algorithm during the training stage,
when 18 features were used. The prediction time was around 6.4 milliseconds per prediction on the
smart end device and 1.6 milliseconds on the Raspberry Pi edge, which can serve more than 30 end
devices simultaneously and reduce the need for the cloud. The cloud was used for storing users’
profiles and can be used for real-time prediction in 391 milliseconds per request.

Keywords: Internet of Things (IoT); edge computing; distributed intelligence; feature fusion; wearable
sensors; human activity recognition

1. Introduction

The Internet of Things (IoT) has revolutionized the way we interact with our envi-
ronment, enabling the connection of things to the internet [1,2]. One application of the
IoT is human activity recognition (HAR), where smart devices can monitor and recog-
nize human activities for various purposes. HAR is essential in a number of industries,
including the sport [3,4], healthcare [5–7], and smart environment industries [8–11]; infor-
mation about human activities has been collected using smartphones and wearable sensor
technologies [12–16].

Machine learning (ML) plays a significant role in HAR systems [11]. ML automatically
identifies and classifies different activities performed by individuals based on sensor data or
other input sources. Feature extraction has been used to extract relevant features from raw
sensor data, such as accelerometer or gyroscope readings, to represent different activities.
ML models can be trained on labeled data to recognize patterns, make predictions, and
classify activities based on the extracted features. ML models can be deployed to perform
real-time activity recognition, allowing for immediate feedback or intervention. Feature
fusion can be used by combining information from different sources to improve the accuracy
and robustness of activity recognition systems [17–19].
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Cloud computing offers virtually unlimited resources for data storage and processing,
making it an attractive option for HAR applications. In the context of HAR, using wearable
sensors, cloud computing can be utilized. The integration of edge and cloud computing
offers promising solutions to address the challenges associated with processing wearable
sensor data. Edge computing provides low-latency and privacy-preserving capabilities,
while cloud computing offers scalability and storage advantages [20–22].

To combine the benefits of both edge and cloud computing, researchers have proposed
hybrid architectures that combine the strengths of both paradigms [21,22]. These architec-
tures aim to achieve a balance between real-time processing at the edge and the scalability
and storage capabilities of the cloud. Authors of different publications demonstrated im-
proved recognition accuracy and reduced response times compared to a solely cloud-based
approach [23–25].

Distributed intelligence methods that make use of cloud and edge computing have
shown promise in addressing these issues [26,27]. The concept of distributed intelligence
has emerged, leveraging the power of multiple interconnected devices to perform complex
tasks. This paper explored the application of distributed intelligence in the IoT for human
activity recognition, specifically focusing on the use of Raspberry Pi as a platform. Health-
care systems using wearable sensors are an emerging field that aims to understand and
classify human activities based on data collected from sensors integrated into wearable
devices. These sensors can include accelerometers, gyroscopes, magnetometers, heart
rate monitors, blood pressure monitors, and other medical sensors [8,12,27]. Here, only
accelerometers and gyroscopes were used.

Healthcare applications have been improved by combining wearable and mobile sen-
sors with IoT infrastructure, and medical device usability has been improved by combining
mobile applications with IoT technology. The IoT has been expected to have a particularly
significant impact on healthcare, with the potential to improve people’s quality of life in
general. The authors of [28] presented a “Stress-Track” system using machine learning.
Through measurements of body temperature, perspiration, and movement rate during
exercise, their device was intended to monitor an individual’s stress levels. With a high
accuracy percentage of 99.5%, this suggested model demonstrated its potential influence
on stress reduction and better health.

Wearable sensors and computer vision were employed to recognize activities. Wear-
able sensors are made to be worn by individuals, allowing for activity recognition in indoor
and outdoor environments. Wearable sensors can also offer portability and continuous
data collection, enabling long-term monitoring and analysis. In order to provide more
contextual information for activity recognition, computer vision algorithms can capture
a wider perspective of the environment, including objects, scenes, and interactions with
other people. Sufficient lighting and clear perspectives are required for precise computer
vision-based activity recognition.

HAR has been implemented with different types of motion sensors; one of them is the
MPU6050 inertial measurement unit (IMU) sensor, which included a tri-axial gyroscope
and a tri-axial accelerometer [16,29]. This small sensor module, with a size of 21.2 mm in
length, 16.4 mm in width, and 3.3 mm in height, along with a weight of 2.1 g, is a cheap
and popular choice for capturing motion data under different applications, including HAR
systems [7,16], sports [30,31], and earthquake detection [29]. MPU6050 can be used for HAR,
and achieving high accuracy requires careful consideration of sensor placement, feature
extraction, classification algorithms, training data quality, and environmental factors [32].

Also, smartphones have become increasingly popular as a platform for HAR due
to their availability, built-in sensors, computational power, and connectivity capabilities.
Smartphone sensors have been widely used in machine learning; they have been used
to recognize different categories of daily life activities. In recent research, several papers
used smartphone sensors and focused on enhancing prediction accuracy and optimizing
algorithms to speed up processing [14,15,32].
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The orientation of these sensors should be considered according to the place of their
installation, the nature of movements, and the dataset being used for training [17,33,34].
In this study, an MPU6050 module connected to an ESP32 microcontroller was vertically
installed on the shin; another module connected to Raspberry Pi version 3 was installed
horizontally on the waist, and a smartphone was vertically placed inside the pocket on the
thigh. Under the vertical installation, the +Y component direction of the accelerometer is
upward, and in the horizontal installation, the +X component direction is upward. The
directions of the MPU6050 module are explained in Figure 1a,b, and the smartphone
direction is explained in Figure 1c [32,35].
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(a,b) shows MPU6050 directions, and (c) shows the smartphone directions [32,35].

This study proposed an architecture that uses several devices to collect motion sensor
signals from three different human body positions in order to recognize four different
human activities. Four primary components were utilized:

1. A smart IoT device with machine learning models was mounted on the waist and
wirelessly collected readings from the attached sensor and from the shin and the thigh.

2. Some users may have used simple IoT sensor devices on their waists with no ma-
chine learning.

3. Edge devices with machine learning models were used to serve the IoT sensor devices,
aggregate their results, and send updates to the cloud.

4. The Microsoft Azure cloud system (Microsoft Corporation, Redmond, WA, USA) was
used for training models, online prediction, storage, and analyses.

Four models were trained on the smart end device, the edge, and the cloud. This
system was scalable and dynamic in gathering the necessary values based on the availability
and connectivity between devices. The accuracy for recognizing four different human
activities approached 99.23% when all the features were used, with an average prediction
time of less than 2 milliseconds per prediction if the Raspberry Pi 4 edge was used.

The remainder of this article will discuss the literature review, the suggested architec-
ture, and the devices that were used. After that, an explanation of the extracted datasets,
the training results, and the machine learning models will be outlined. Then, the real-time
experiments will be demonstrated. In the discussion and conclusions, we will analyze our
findings and compare the results with those of related articles.

2. Literature Review

In recent years, researchers have used public and private datasets that have been used
for HAR using wearable sensors and feature fusion to recognize various movements. Two
smartphones were used by the authors of [8] with the WISDM public dataset. Applications
in healthcare have used this dataset, which contains three-dimensional inertia signals of
thirteen time-stamped human activities, including walking, writing, smoking, and other
activities. A HAR system was used based on effective hand-crafted features and random
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forest as a classifier. These authors conducted sensitivity analyses of the applied model’s
parameters, and the accuracy of their model reached 98.7% on average using two devices
on the hand’s wrist and in the pocket.

The authors of [16] used a deep learning algorithm and employed three parallel
convolutional neural networks for local feature extraction to establish feature fusion models
of varying kernel sizes to increase the accuracy of HAR. Two datasets were used: the UCI
dataset and a self-recorded dataset comprising 21 participants wearing devices on their
waists and performing six activities in their laboratory. The accuracy of the activities in the
UCI dataset and in the self-recorded dataset was 97.49% and 96.27%, respectively.

In the study published by the authors of [35], the authors used waist sensors and
two graphene/rubber sensors for the knees to detect falls in elderly people. They used
one MPU6050 sensor located at the waist to monitor the attitude of the body. The rubber
sensors were used to monitor the movements of their legs by monitoring their tilt angles
in real time. They recorded four activities of daily living and six fall postures. Four basic
fall-down postures can be identified with the MPU6050 sensor integrated with rubber
sensors. The accuracy results for the activities of daily living recognition were 93.5%, and
for fall posture identification, they were 90%.

It was proposed to use a smart e-health framework to monitor the health of the
elderly and disabled people in the study published by the authors of [36]. The authors
generated notifications and performed analyses using edge computing. Three MPU9250
sensors were positioned on the body, on the left ankle, right wrist, and chest, using the
MHEALTH dataset. The MPU9250 sensor integrates a magnetometer, a gyroscope, and
a 3-axis accelerometer. A random forest machine learning model was used for inertial
sensors in HAR. Two levels of analyses were considered; the first level was carried out
using scalar sensors embedded in wearable devices, and cameras were only used as the
second level if inconsistencies were identified at the first level. A video-based HAR and
fall detection module achieved an accuracy of 86.97% on the DML Smart Actions dataset.
The authors deployed the proposed HAR model with inertial sensors under a controlled
experimental environment and achieved results with an accuracy of 96%.

A smart system for the quality of life of elderly people was proposed by the authors
of [37]. These authors proposed an IoT system that uses large amounts of data, cloud
computing, low-power wireless sensing networks, and smart devices to identify falls. Their
technology gathered data from elderly people’s movements in real time by integrating an
accelerometer into a wearable device. The signals from their sensor were processed and
analyzed using a machine learning model on a gateway for fall detection. They employed
sensor positioning and multiple channeling information changes in the training set, using
the MobiAct public dataset. Their system achieved 95.87% accuracy, and their edge system
was able to detect falls in real time.

The majority of these studies focused on improving algorithms, employing different
datasets, or adding new features to increase accuracy. Occasionally, specialized hardware
was added to improve efficiency and assist with classification. Wearable technology em-
ploys sensors installed on humans to gather data from their sensors. Comfort and mobility
should be taken into account when gathering data from sensors positioned at various
body locations.

This study proposed an architecture and used different types of sensor nodes, smart
IoT devices, and edge computing in collaboration with cloud computing to monitor a group
of people using wearable sensors. The process of prediction is dynamic and depends on the
nature of the device, available features, and connectivity. Different scenarios were tested,
accuracy was measured in training and real time, and prediction time was recorded for the
machine learning models on different devices. In this article’s conclusion, a comparison
between this proposal and related articles has been given, along with an overview of the
main components, datasets, and performance.
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3. The Proposed Architecture

In this proposal, two different Raspberry Pi microcomputer types were used. The
first was a Raspberry Pi 3 device connected to an MPU6050 module worn as a smart
IoT end device, horizontally mounted on the waist. The other was an edge device that
made use of a Raspberry Pi 4 device to gather telemetry data from nearby devices to
predict activity and transfer data to the cloud. The quad-core ARM Cortex-A72 CPU
in the Raspberry Pi 4 device has eight gigabytes of RAM, whereas the quad-core ARM
Cortex-A53 processor in the Raspberry Pi 3 device has one gigabyte of RAM. This will
obviously impact performance.

The proposed architecture, as shown in Figure 2, clarifies the used hardware and the
connectivity between these parts; the solid lines denote the default connections, while the
dashed lines are the alternatives, as explained later in the dynamic connectivity scenarios.
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The following points outline the types of IoT end devices, edge devices, and the IoT
cloud that were used:

1. A smart IoT device, which was a Raspberry Pi 3 device with a machine learning
model at the waist, was used. This wearable microcomputer was equipped with
trained models and wired to the MPU6050 module. The values from this module were
processed locally; the rest of the values came from the shin and the thigh wirelessly.
The other MPU6050 module was located on the shin, where the movement of the
leg was measured during performing activities. The ESP32 microcontroller read
the values and sent them via Wi-Fi to the Raspberry Pi device on the waist. The
smartphone in the pant pocket at the thigh has several functions: it measures the
accelerometer and gyroscope coordinates using the built-in sensor, sends them to the
Raspberry Pi device, and provides internet connectivity to support mobility in case
the user is out of the range of the wireless LAN.

2. An IoT end device without machine learning, the ESP32, was used instead of the
Raspberry Pi 3 device. It collected the values from the waist, the shin, and the thigh
and sent them to either the IoT edge or the cloud.

3. A smart IoT edge using the Raspberry Pi 4 device was employed. With its high
performance, this microcomputer can predict behaviors, handle traffic from several
devices, and send logs to the cloud. This device is necessary for other IoT devices
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that do not use machine learning. It is compact, lightweight, and may be powered
by a battery or power bank, making it portable. To handle more requests and users,
the edge may skip predictions for the requests coming from the smart IoT device and
forward aggregated predictions to the cloud.

4. A stationary IoT edge personal computer device was also used in this study. It
provides an optional alternative for nearby users; the priority between the two edges
may be changed on demand based on the location of the users.

5. Azure cloud services: This cloud was used to train models, store data, create profiles
for different users, and provide real-time predictions for several requests. The received
predictions and telemetry data may be analyzed on the cloud for further decisions
based on monitoring users for long periods of time.

With the help of a wide belt, the Raspberry Pi device and the MPU sensor could
be worn around the waist and powered by a small power bank. With adjustable straps
or bands, the ESP32 and the MPU sensor can be fastened to the shin and powered by
small batteries. Elastic fasteners are frequently used on these straps to hold the sensor
firmly in place. The ESP32 and the smartphone were configured to send updates every 50
milliseconds. The updates were received on the waist and stored temporarily until the next
prediction process commences. After tuning the update time on these devices, we were
able to handle new updates every cycle if all the devices were online.

The procedure on the smart end device includes managing sensing through the
MPU6050 module, receiving shin and thigh parameters, performing predictions locally,
and sending them to the next device. There are some cases of missing parameters from
the shin, thigh, or both, but the end device can still perform predictions with the available
parameters using the pre-trained models deployed on the smart end device. Its connectivity
also depends on its mobility and network coverage; the default is through the Raspberry
Pi 4 IoT edge; another option was to send to a stationary personal computer with edge
capability or send directly to the cloud if there was no reachable IoT edge at that time. The
procedure for running a smart IoT device can be summarized as follows:

Initialize the MPU sensor
Loop

Read the MPU sensors
Wait for sensor values from the shin
Wait for sensor values from the thigh
If all values arrived, then use Model-18wst
Else, if values from the shin only arrived, then use model-12ws
Else, if values from the thigh only arrived, then use model-12wt
Else, use model-6w
Perform prediction
If Raspberry Pi 4 is reachable, send to Raspberry Pi 4 IoT edge
Else, if PC is reachable, send to PC IoT edge
Else, send to the Azure cloud

The traditional IoT end device does not have a prediction model, so after receiving the
available parameters, it will pass them onto the available edge in sequence or to the cloud.
The Raspberry Pi 4 IoT edge and the PC will perform the following procedure:

Loop
Wait for requests

If all values arrived, then use Model-18wst
Else, if values from the shin only arrived, then use model-12ws
Else, if values from the thigh only arrived, then use model-12wt
Else, use model-6w

Aggregate values and predictions
Send aggregated results to the Azure cloud
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4. Datasets

In the context of HAR, there are considerations regarding the use of public datasets
versus private datasets. Several popular public datasets for activity recognition include
UCI HAR, WISDM, ActivityNet, and other datasets. Public datasets often come with
standardized evaluation protocols, enabling a fair comparison of different algorithms and
techniques. Private datasets, on the other hand, could record activities and situations that
are particular to certain domains or uses. The Discussion section provides some articles
where these datasets were used. In this proposal, we used a public dataset and focused on
using distributed intelligence with different scenarios rather than focusing on accuracy.

This research used a public dataset, Realworld HAR, that was created by recording
a wide range of daily activities [38]. This dataset from Manheim University covers more
than seven activities. This dataset’s features include acceleration, GPS, gyroscope, light,
magnetic field, and sound level data of the activities of climbing stairs, jumping, lying,
standing, sitting, running/jogging, and walking of fifteen subjects. For each activity, the
researchers simultaneously recorded the parameters of the body positions: chest, forearm,
head, shin, thigh, upper arm, and waist. A smaller version of this dataset with selected
features and positions was extracted to make it possible for the IoT devices to perform.

From the hardware side, the smartphone and the MPU6050 sensor covered the accel-
eration and the gyroscope, respectively. These parameters were deemed to be sufficient
to predict activities from three positions for four selected activities: walk, run, lie, and
climb, with an accuracy that exceeded 99%. The selected positions were the waist, the shin
using the MPU6050 modules, and the thigh using a smartphone in the holder’s pocket.
Choosing the locations of these sensors depended on the nature of our target group of
activities and the ability of the devices to be worn or held comfortably by the user. The
waist movement distinguishes many body behaviors; the waist was chosen in different
research studies [16,26] to be the most used place to install these sensors. The shin was
used to detect movements of the legs during motion activities, and the thigh is a common
place to carry a smartphone and can detect motion as well.

Different versions of the extracted datasets were used in this work. The main dataset
used eighteen features from three positions and one output that recognized the activity
among the four possible activities. The number of entries for this dataset was 164,000;
seventy percent of the dataset was used for training, and the remainder was used for
testing. The number of entries in each category is listed in Table 1. The features comprised
the following:

• Ax1, Ay1, Az1, Gx1, Gy1, and Gz1—from the accelerometer and gyroscope on the
waist.

• Ax2, Ay2, Az2, Gx2, Gy2, and Gz2—from the accelerometer and gyroscope on the
shin.

• Ax3, Ay3, Az3, Gx3, Gy3, and Gz3—from the accelerometer and gyroscope on the
thigh.

Table 1. Number of entries in the dataset.

Category Number of Entries

Climb 39,000
Lie 41,000
Run 40,000
Walk 44,000

Total 164,000
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5. Experiments and Results
5.1. Training Experiments

In this section, experiments were conducted to train the models in the cloud and
the local network and test their performance, including accuracy for different algorithms
and datasets.

5.1.1. Training Algorithms

Five algorithms were used to compare performance, including decision trees, extra
trees, support vector machines (SVMs), random forests, and the light gradient-boosting
machine (LightGBM). Decision trees are relatively fast and have a low computational cost
during training, but decision trees can be prone to overfitting, especially when the trees
become deep and complex. They may capture irrelevant features, leading to reduced
generalization performance. Extra trees can be effective in capturing complex relationships
in the data due to the randomness introduced during tree construction. They reduce
overfitting by averaging predictions from multiple trees [5,17].

The LightGBM is a gradient-boosting framework that is designed to be efficient and
scalable. It uses a technique called gradient boosting, which combines multiple models into
a strong predictive model. The LightGBM is faster and more memory-efficient, making it
suitable for large-scale datasets. In human activity recognition, LightGBM can be trained
on diverse features and activity labels, enabling accurate classification of human activities.
Support vector machines (SVMs) and random forests were also considered, and both also
produced a lower level of accuracy than the LightGBM as shown in Table 2. The LightGBM
was used in the rest of this work for training and real-time experiments.

Table 2. Accuracy of five algorithm trainings.

Model Training Accuracy (%)

LightGBM 99.23
Extra trees 98.03

Decision trees 96.56
SVM 97.68

Random forest 91.8

5.1.2. Confusion Matrix

The confusion matrix measures how frequently the predicted classes were confused
with one another when the trained model was tested. After training the model using
the LightGBM, the confusion matrix was generated, as shown in Table 3. It shows the
confusion between the four categories in 30% of the dataset utilized for testing. The results
showed that, in comparison to other categories, there was almost no confusion between
the lie category and other categories and little confusion between other categories. The
percentages of confusion between the walk, climb, and run categories were slightly higher,
but they were still relatively small. For example, the confusion between the run and walk
categories occurred 128 times among more than 24,000 entries for these two categories.

Table 3. The confusion matrix of the model with the LightGBM.

Predicted Category

Climb Lie Run Walk

Tr
ue

ca
te

go
ry Climb 11,482 0 24 144

Lie 2 12,264 7 4

Run 18 0 11,937 100

Walk 55 0 28 13,138
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5.1.3. Training Reduced Datasets

The resources of IoT devices are typically limited; large datasets demand fast pro-
cessors and large memory. Smaller datasets can greatly speed up the inference process,
especially for complex models with high volumes of input. Smaller datasets require less
memory to process and store. This may lead to increased inference efficiency since the
model will need to load and transform less data, which will speed up execution times. In
our approach, the reduced datasets used fewer entries with the same number of features;
the 40,000-entry dataset was enough to capture the required characteristics of the dataset
with adequate accuracy. Other researchers, such as the authors of [39], proposed reduced
datasets for activity recognition with fewer features and entries, and they achieved 96.36%
accuracy using only half the size of the dataset, compared to 98.7% when all the features
and entries were used.

This architecture employed restricted devices for their price and availability. With less
than 25% of the total entries, the accuracy difference was only 0.04%, yet the accuracy was
still quite excellent at 99.19%. It was clear from this experiment that an accurate model may
be extracted from the reduced dataset. Furthermore, it was seen that the smaller dataset
had faster prediction times for the edge and smart end devices; instead of 8.33 milliseconds
for each prediction for the Raspberry Pi 3 end device, it took 6.38 milliseconds, and for the
Raspberry Pi 4 edge device, it took 1.62 milliseconds instead of 2.44 milliseconds for the
larger dataset. This was another reason for choosing the smaller dataset of the two kits.

Under real-time prediction, numerous factors could prevent these features from being
available. For instance, the smartphone might not work, or the shin-wearable sensor might
have connectivity issues or problems with operation. In the case of missing features, we
considered the waist-worn smart device with its sensor module as the primary component,
and the other two positions were deemed to be optional. The sensor at the waist will be
necessary for the system to function. We noted that some papers that have been listed in the
references only used the waist. Therefore, as indicated in Table 4, three more datasets were
employed to train additional optional models: one with the waist and shin (model-12ws),
one with the waist and thigh (model-12wt), and the last only with the waist (model-6w).

Table 4. Four models using the LightGBM with different numbers of features.

Model Features Accuracy (%)

Model-18wst
Waist: Ax1, Ay1, Az1, Gx1, Gy1, and Gz1
Shin: Ax2, Ay2, Az2, Gx2, Gy2, and Gz2

Thigh: Ax3, Ay3, Az3, Gx3, Gy3, and Gz3
99.19

Model-12ws Waist: Ax1, Ay1, Az1, Gx1, Gy1, and Gz1
Shin: Ax2, Ay2, Az2, Gx2, Gy2, and Gz2 97.66

Model-12wt Waist: Ax1, Ay1, Az1, Gx1, Gy1, and Gz1
Thigh: Ax3, Ay3, Az3, Gx3, Gy3, and Gz3 95.46

Model-6w Waist: Ax1, Ay1, Az1, Gx1, Gy1, and Gz1 85.97

According to the accuracy results that have been presented in Table 4, the more features
present in a model (model-18wst), the more accurate the system will be; however, even
when some of the features were missing, the device was still able to operate fairly. Twelve
features out of the eighteen produced more than 95% accuracy, and six features from the
waist produced 86% accuracy. Table 4 further demonstrates that combining the waist
and shin produced better results than combining the waist and thigh. This was because
the movements we predicted primarily relied on the shin’s movement, which made it
easier to identify how walking, running, and climbing affected the sensed values that were
located there.
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5.2. Real-Time Experiments

After the models were trained, they were deployed on different devices to predict
activities in real time. In this section, response times and real-time accuracy were measured.
The dynamic selection of models was tested on the smart end device and the edge. Dynamic
connectivity to the edges was tested on the end devices, and scalability was calculated by
gradually increasing the number of users.

5.2.1. Prediction Time

Table 5 illustrates the prediction time on the smart devices for the four models ex-
plained earlier. It was noted that the fewer the parameters, the faster the response time, but
the difference was not significant on the same device. The prediction time was measured
using a sample of one thousand requests for each value in the table.

Table 5. Average prediction time for different models in milliseconds on three devices.

Role Device Model-18wst Model-12ws Model-12wt Model-6w

Smart IoT device Raspberry Pi 3 6.38 5.63 5.41 5.20
Portable IoT edge Raspberry Pi 4 1.62 1.51 1.52 1.48

Stationary IoT edge PC 1.17 0.92 0.91 0.86

The smart IoT device was the slowest among other devices; it took 6.38 milliseconds
per request on average for model-18wst, but this device only serves one user, and the arrival
rate of requests was one every 50 milliseconds, which makes it adequate to handle all the
requests for this user even if the arrival rate becomes one request every 10 milliseconds.
The Raspberry Pi 4 edge was used to serve more users, so it received requests from a group
of users and executed predictions. If one request took 1.62 milliseconds on this edge and
the arrival rate was one every 50 milliseconds from each user, then it would serve about
30 users. For users with mobility requirements, the Raspberry Pi 4 edge was deemed
to be the ideal option due to its portability. The personal computer edge was found to
be faster than the Raspberry Pi 4; it took around 1 millisecond per prediction. Since the
hardware components like memory and CPU for computers are normally higher than those
for microcomputers, this will enable the PC edge to serve more users at a time.

5.2.2. Real-Time Accuracy

Real-time accuracy measures how accurate the results are while running on the device
after being trained; the reference in this case was the model with the dataset before reduc-
tion, which was located on the Azure cloud using a cloud web service. As mentioned earlier,
the training accuracy for this dataset using the LightGBM was 99.23%, which made it ideal
to compare the results of other models with this model since it gave the best accuracy
among the others. Here, the configuration was to predict activities on two models at a
time, the models on the edge against the model on the cloud, and compare their results.
Model-18wst produced 93.5% accuracy, Model-12ws came next with 91.2%, Model-12wt
with 89.6%, and finally Model-6w with 82.4%, as illustrated in Table 6.

Table 6. Real-time accuracy using the four models.

Model-12wst Model-12ws Model-12wt Model-6w

93.5% 91.2% 89.6% 82.4%

The results of the real-time accuracy were not as high as they were in training, but
they are still sufficient for a wide range of applications. Some reasons include the MPU6050
sensor’s accuracy, which is affected by calibration, noise, and sensor orientation. The smart-
phone has a number of similar issues with reading sensor values, and the synchronization
between the different devices during motion also affects their results.
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The cloud service in this case was used for real-time prediction, but the time consumed
was around 391 milliseconds, from request to the cloud, to the prediction process in
the cloud, and back to the IoT device. The cloud’s time was around 240 times that of
the Raspberry Pi 4 edge and 61 times that of the Raspberry Pi 3 smart end device. The
transmission delay between the local devices and the cloud took up the majority of the time,
which made it unrealistic to send all the requests to be processed there. The other option
was to send frequent updates to the cloud to update users’ profiles to be used for analyses
and recommendations and to assure the results coming from the edge and end devices.

5.2.3. Dynamic Model Deployment

Dynamic decisions were used in two cases: the first in the model selection for the
smart IoT device and the IoT edge when performing predictions, and the second for the
end device in the connection to the suitable edge or cloud based on the connectivity status.
According to the procedure previously outlined in the section on the proposed architecture,
both cases operated successfully.

In the first case, the normal scenario was that the sensors were capturing signals and
sending frequent updates every 50 milliseconds. But sometimes the smartphone in the
pocket is not connected, missing, or out of battery; in that case, the device on the waist will
detect the missing features and use a suitable model. A similar situation occurs when the
shin device does not send features for similar reasons. For several applications, it is better
to send the available features and obtain less accurate results than to stop the operation.
Table 7 describes the cases where all the features, or a smaller number of features, are
present and the reaction of the system in each case on the smart end device. The same
applied for the edge, but the prediction time was better than the smart end device, and
all the models were also available there. The default case is when all the features arrive;
this will produce the best accuracy; the next priority was when two out of three sensors
worked, and the minimum was when the waist only worked, as described in Table 7.

Table 7. Smart IoT end device scenarios.

Scenario Reaction Prediction Time (ms) Real-Time Accuracy (%)

IoT device received parameters from all three sensors Use Model-18wst 6.38 93.5
IoT device received parameters from the waist and shin Use Model-12ws 5.63 91.2
IoT device received parameters from the waist and thigh Use Model-12wt 5.41 89.6
IoT device only received parameters from the waist Use Model-6w 5.20 82.4

In the second case, the scenarios were tested according to the available connection,
where the smart end and the IoT sensor devices periodically checked the connection status
to the edge device. Since the UDP is connectionless, these devices should use other network
protocols, like the Internet Control Message Protocol (ICMP), to test the connection between
the device and the edge from time to time. The following scenarios were tested, and the
reactions were executed successfully:

1. In the first scenario, when the Raspberry Pi 4 edge device is online, the device sends
data to the Raspberry P4 edge. Here, the edge supports aggregation, mobility, and
fast responses.

2. In the second scenario, when the Raspberry Pi 4 edge is offline and the edge PC is
online, the device sends data to the PC edge. Here, the edge supports aggregation
and fast responses but does not provide mobility.

3. In the third scenario, when the connection with both edges is not available, the end
device can directly communicate with the cloud.

5.2.4. Scalability

The choice of transport protocol inside the wireless LAN, such as the Transmission
Control Protocol (TCP) or the User Datagram Protocol (UDP), for sending telemetry IoT
data in a local environment depends on the required application [40,41]. The UDP is
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connectionless, faster, and more effective at transmitting short, frequent data packets, as
it has less protocol overhead. Compared to the UDP, the TCP offers enhanced security,
a three-way handshake, error detection, retransmission in case of a transmission failure,
and network congestion avoidance. The UDP can result in lower latency for real-time or
time-sensitive applications like HAR. The UDP does not have the built-in mechanisms for
acknowledging and retransmitting lost packets; it is often described as best-effort delivery.
There could be fewer requests delivered if some requests are dropped in the UDP, but HAR
can still work with fewer requests but with fewer frequent updates.

The Message Queuing Telemetry Transport (MQTT) protocol is based on the TCP
and is used by the Azure cloud. The MQTT protocol is a lightweight messaging protocol
designed for efficient communications between devices and the cloud. Due to its low
bandwidth and low power consumption requirements, which make it appropriate for
devices with limited resources, it is widely used in the IoT [42]. The communication
between the devices and Azure is encrypted to ensure the confidentiality and integrity of
the data transmitted [1,40].

In this architecture, MQTT was used between the local network and the cloud, and the
UDP was employed inside the local network. Table 8 shows that an increasing number of
users and requests produced a lower percentage of requests received. Sending 20 requests
every one second from each user using the UDP produced fewer received requests, some
of which were dropped via congestion, buffer overflow, or timeout. The more users send
to the same edge, the fewer requests are received. Theoretically, if the arrival rate is
one request every 50 milliseconds from each user and the edge can serve one request in
1.62 milliseconds on average, then the edge can serve around 30 users without dropping
any request, but since the behavior of the UDP is connectionless and other devices and
applications are using the network, this will cause a lower delivery rate.

Table 8. Number of senders and received requests at the edge.

Number of Users Percentage of Received
Requests per User (%)

Average Number of
Received Requests

1 93.47 18.7
2 87.3 17.46
3 84 16.8
4 68.92 13.78
5 58.69 11.74
11 40.16 8.03
16 38.75 7.75
21 37.51 7.5
31 29.5 5.9

The number of active users in a wireless LAN affects the number of requests that
are received at the edge; request delivery also depends on network capacity, the number
of active devices, and usage. Figure 3 shows that as more users produce more requests,
one user may face drop messages since the network is being used for different network
connections. This figure showed that when there are 11 active end devices, only 40% of
the requests are being delivered in one second; this means that 8 requests per second will
arrive instead of 20 requests for one user, and 12 requests are dropped. This amount can
still recognize the user behavior for some applications, like sports, for example, but not
for other applications like healthcare or time-sensitive applications, and this may cause
a problem. This figure also demonstrated that this architecture was scalable by handling
more than 30 users with around 6 requests per second from each user, and if we need to add
more users or increase the successful delivered requests, we may add more edge devices.
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6. Discussion

A number of recent research studies were discussed in the literature review [8,16,35–37].
These studies were published between the years of 2019 and 2023. The authors developed
systems to recognize human activity and detect falls using a variety of sensor types and
datasets that were both publicly available and self-recorded. The primary elements and
results of these articles are listed in Table 9. The listed publications did not mention cases
where loss of features or abnormal conditions occurred. Most of the solutions focused on a
single user, and some of them used special types of sensors. Some of these sensors were
reportedly neither easy nor comfortable to wear.

Table 9. Related publication comparisons.

Ref., Year Dataset Sensors Performance

[8], 2022 WISDM Two smartphones in the
pocket and on the hand HAR accuracy: 98.7%

[16], 2021 UCI and self-recorded MPU6050 HAR using the UCI dataset: 97.49%
HAR using the self-recorded dataset: 96.27%

[35], 2019 No dataset—the system used
tilt angle and acceleration

MPU6050 and
graphene/rubber sensors

Daily living detection: 93.5%
Fall posture identification: 90%

[36], 2023 MHEALTH dataset
DML Smart Actions dataset

ECG sensors, MPU9250, and
multimedia sensors

HAR training accuracy: 96%
Video-based HAR and fall detection: 86.97%

[37], 2022 MobiAct Five sensors from the
LSM6DS0 accelerometer HAR training: 95.87%

This paper Realworld HAR

Two modules of MPU6050
and one smartphone,
accelerometers, and

gyroscopes

HAR training accuracy: 99.23%
HAR real-time accuracy: 93.5%

Edge prediction time: 1.62 milliseconds
IoT device prediction time: 5.83 milliseconds

Dynamic model selection
Dynamic edge selection

Scalable number of users

The architecture in this proposal used accelerometer and gyroscope readings from
each of the three positions. A public dataset was utilized to identify four different activities.
The retrieved datasets were deployed on cloud, edge, and smart devices with varying
numbers of features. Potential cases in local network and cloud scenarios were used to
measure performance. Real-time testing showed the accuracy was still high with 93.5%,
and dynamic selection worked efficiently, even with one sensor on the waist with more
than 82.4% and more than 90% with two active sensors. The system also managed to
connect dynamically with the suitable edge and send information to the cloud. Finally,
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the scalability was measured in real time, and the edges were able to handle a reasonable
number of users with the same accuracy but with fewer requests.

The employed dataset is a portion of a larger dataset; these smaller datasets were used
on devices with limited resources without lowering the accuracy. The types of sensors and
other wearable hardware elements in this proposal are small or typically available, like
the smartphone in a pocket. This architecture offers mobility by employing portable edge
devices and smart end devices.

7. Conclusions

Wearable sensors are being used to monitor human activities and detect falls using
machine learning techniques, and datasets are available to train systems and architectures.
This paper proposes an architecture to monitor a group of people and recognize their
behavior. This system was distributed over various devices, including sensor devices,
smart IoT devices, edge devices, and cloud computing. The architecture used different
machine learning models with different numbers of features to be able to handle scenarios
where not all the sensors are available. The smart IoT device used a simple version of the
Raspberry Pi microcomputer that was configured to run predictions locally. The Raspberry
Pi 4 IoT edge could serve IoT devices and then run predictions and aggregate results in
the cloud. The cloud process requests achieved an accuracy of 99.23% in training, while
the edge and smart end devices achieved 99.19% accuracy with smaller datasets. The
accuracy under real-time scenarios was measured and achieved 93.5% when all the features
were available. The smart end device could process every request in 6.38 milliseconds on
average, and the edge could process faster with 1.62 milliseconds on average and serve a
group of users with a sufficient number of predictions per user, and the system is capable
of serving more people using more edges or smart end devices. The architecture used
distributed intelligence to be dynamic, accurate, and support mobility.

In addition to its great performance, this proposal provided the following features:

• Integration and cooperation between the devices were efficient.
• The achieved accuracy was 99.19% in training and 93.5% in real time.
• The prediction time was efficient using the smart end and IoT edge devices.
• Dynamic selection worked efficiently in the case of connectivity with the edges.
• Dynamic selection of models worked efficiently in the case of feature availability.
• The architecture is scalable and serves more than 30 users per edge.
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