
Palestine Polytechnic University

College of Information Technology and Computer Engineering

Graduation Project

”Website for Hebron Electric Power Company“

Prepared By

Arwa Arafah Leen Maraqa

Supervised By

Ezdehar Jawabrah

This project was presented to fulfill the requirements of the graduation project in the
specialization of Computer Science at the College of Information Technology and Computer

Engineering.

2022/2023

Acknowledgement

We are humbled and grateful to Allah for giving us the strength and patience to complete this

work, and a huge thanks to our supervisor Mrs.Ezdehar for the insights and guidance she

provides. Also, it is our pleasure to work on such a project for our college including all faculty

members. Finally, thanks to the company members, we appreciate the support for promoting the

realization of the full potential.

2

Abstract

The aim of Hebron Electricity Company is to provide the best electrical services to the
community. To achieve this vision, we have developed a website that aims to facilitate
and enhance the customer experience in dealing with the company. The website
enables subscribers of Hebron Electricity Company to access a variety of electric
services. Customers can conveniently request services such as meter inspection, pole
relocation, and updating their personal information, among others. Additionally,
customers can view details of their past and current requests, as well as check the
amounts due from their bills, allowing them to monitor and track the status of their
requests and ensure their proper execution with minimal effort.

Furthermore, the website offers employees a platform to review and process
customer requests online, streamlining the response and handling of inquiries.
Employees can also leverage the website to disseminate the latest news and reports.
The electronic services provided by Hebron Electricity Company deliver convenience
and ease to customers in their electricity-related procedures. Ultimately, the website
contributes to the improvement of electronic services and fosters stronger
customer-company relationships.

موقعبتطویرقمناالرؤیة،ھذهولتحقیقللمجتمع.الكھربائیةالخدماتأفضلتوفیرإلىالخلیلكھرباءشركةتھدف
الخلیلكھرباءشركةفيللمشتركینالموقعیتیحالشركة.معالتعاملفيالعملاءتجربةوتحسینتسھیلإلىیھدفإلكتروني
فحصطلبمثلالمختلفةالخدمةطلباتتقدیمالآنللعملاءیمكنالإلكترونیة.الخدماتمنمتنوعةمجموعةإلىالوصول
والحالیةالسابقةالطلباتتفاصیلعرضالعملاءبإمكانأصبحأیضاوالمزید.الشخصیةبیاناتھموتغییرالأعمدةونقلالعداد

جھدوبأقلصحیحبشكلتنفیذھاوضمانطلباتھمحالةومتابعةمراقبةلھمیتیحمماالفواتیر،منالمستحقةالمبالغومعرفة
ممكن.

ویسرعیسھلمماالإنترنت،عبروالمعاملاتالطلباتھذهلمراجعةوسیلةللموظفینالموقعیوفرذلك،إلىبالإضافة
وتبادلوالتقاریرالأخبارآخرلنشرالموقعاستخدامللموظفینیمكنكماالعملاء.لطلباتوالاستجابةالمعالجةعملیة

فيوالسھولةالراحةلھمتوفرحیثللعملاءمفیدةالإلكترونیةالخلیلكھرباءشركةخدماتوتعتبرالھامة.المعلومات
العملاءبینالعلاقةوتعزیزالإلكترونیةالخدماتتحسینفيالاكترونيموقعناساھمكمابالكھرباء.المتعلقةإجراءاتھم
والشركة.

3

Table of contents:

Abstract 3
Chapter 1: Introduction 11

1.1 Overview 11
1.2 Description of the system 11
1.3 Problem Statement 11

1.3.1 Description of the current website 11
1.3.2 Suggested Improvements 11

1.4 The Significance and Motivation 12
1.5 Aims and Objectives 12
1.6 Context Diagram 12
1.7 Project Scope 13
1.8 Implementation Alternatives 13
1.9 Project Scheduling 14

Chapter 2: Functional and non-functional requirements 15
2.1 Overview 15
2.2 Functional Requirements 15

2.2.1 Admin 15
2.2.2 Public Relationships Employee 15
2.2.3 Customer 15
2.2.4 Customer Services Department Employees (CSE) 16

2.3 Non-Functional Requirements 16
2.4 Technical admin’s functional requirements tables 17
2.6 Public Relationships Employee’s functional requirements tables (PRE) 18
2.7 Customer functional requirements tables 19
2.8 CSE functional requirements tables 25
2.9 State Diagram 27
2.10 Class Diagram 28
2.11 Use Case Diagram 29
2.12 Sequence Diagram 30

2.12.1 Sequence Diagram For Accepting/Rejecting a Customer’s request 30
2.12.2 Sequence Diagram For Transferring Poles request 31
2.12.3 Sequence Diagram of View Subscriptions request 32

Chapter 3: System Design 33
3.1 Overview 33
3.2 Introduction 33
3.3 Design Alternatives 33
3.4 MVC Architectural Pattern 34

4

3.4.1 The system architecture (MVC) components 34
3.4.2 General Description 35

3.5 Model Objects Contains 35
3.6 Database Logical Mapping 36
3.7 Class diagram tables description 37
3.8 Database tables 40
3.9 User Interface 46

Login page 46
Services page 46
CSE dashboard 48
PRE dashboard 49
Admin dashboard 50
View submitted requests 51
Request form for changing payment method from bill to prepaid card 52

Chapter 4: Software Demonstration 53
4.1 Introduction 53
4.2 Software environment and tools 53
4.3 System programming 54

4.3.1 System structure 55
4.4 Key fragments of the code 57

4.4.1 Credential validation code 57
4.4.2 Create a request API 58
4.4.3 Employee Model 59
4.4.4 View requests and update request status 60
4.4.5 Retrieve and display customer bills 61
4.4.6 Admin dashboard for employee management and archiving 62

Chapter 5 : Testing 63
5.1 Introduction 63
5.2 Validation 63
5.3 API retesting 63

5.3.1 Frontend testing 63
5.3.2 Backend testing 69

Chapter 6: Conclusion 75
6.1 Conclusion 75
6.2 Recommendations 75
6.3 Future work 76
References 77

5

List of Figures

Figure number Figure name Page number

Figure 1.1 Context diagram 13

Figure 2.9 State diagram 27

Figure 2.10 Class diagram 28

Figure 2.11 Use case diagram 29

Figure 2.12.1 Sequence diagram for accepting/rejecting a

customer’s request

30

Figure 2.12.2 Sequence diagram for transferring poles request 31

Figure 2.12.3 Sequence diagram of View subscriptions request 32

Figure 3.4.1 The system architecture (MVC) components 34

Figure 3.6 Database logical mapping 36

Figure 3.9.1 Login page 46

Figure 3.9.2 Services page 47

Figure 3.9.3 CSE dashboard 48

Figure 3.9.4 PRE dashboard 49

Figure 3.9.5 Admin dashboard 50

Figure 3.9.6 View submitted requests 51

Figure 3.9.7 Request form for changing the payment method from

bill to card
52

Figure 4.3.1.1 Project folders 55

Figure 4.3.1.2 Controllers folder 55

Figure 4.3.1.3 Routes folder 56

Figure 4.3.1.4 Models folder 56

6

Figure 4.4.1 Authentication 57

Figure 4.4.2 Create a request Endpoint 58

Figure 4.4.3 Employee model 59

Figure 4.4.4 View requests and update request status 60

Figure 4.4.5 Retrieve and display customer bills 61

Figure 4.4.6 Admin dashboard for employee management and

archiving
62

Figure 5.3.1.1 Incorrect password 65

Figure 5.3.1.2 Account not found 65

Figure 5.3.1.3 Incomplete data entry while adding a new employee 67

Figure 5.3.1.4 Admin attempt to add existing employee 67

Figure 5.3.2.1 User access token 71

Figure 5.3.2.2 Verify JWT 72

Figure 5.3.2.3 Generating a new token 72

Figure 5.3.2.4 Create an advertisement 73

Figure 5.3.2.5 Reduction of installments request 73

Figure 5.3.2.6 Tenant Data 74

Figure 5.3.2.7 Tenant Data in the database 74

7

List of Tables

Table number Table name Page number

Table 1.1 Project tasks 14

Table 2.5.1 Admin creates new employee 17

Table 2.5.2 Admin view all employees’ data 17

Table 2.5.3 Admin archives an employee 18

Table 2.6.1 PRE creates an advertisement 18

Table 2.6.2 PRE creates an annual report 19

Table 2.7.1 Submit the main request 19

Table 2.7.2 View previous installments 20

Table 2.7.3 View previous requests 20

Table 2.7.4 Change subscription status 21

Table 2.7.5 Transfer poles and networks 22

Table 2.7.6 Request for modifying beneficiary's data 23

Table 2.7.7 View previous bills 24

Table 2.7.8 Submit the secondary request 24

Table 2.7.9 View all subscriptions 25

Table 2.8.1 View all requests 25

Table 2.8.2 Search for a request 26

Table 2.8.3 Update request status 26

Table 2.8.4 View all subscribers 27

Table 3.7.1 Customer table description 40

Table 3.7.2 Services table description. 41

Table 3.7.3 Advertisement table description 41

Table 3.7.4 Report table description 42

8

Table 3.7.5 Request table description 42

Table 3.7.6 UpdateTenantData table description 43

Table 3.7.7 SubscriptionStatus table description. 43

Table 3.7.8 TransferringPoles table description. 43

Table 3.7.9 Employee table description 44

Table 3.7.10 Request_Type table description 44

Table 3.7.11 Request_Status table description 44

Table 3.7.12 Installment table description. 45

Table 3.7.13 Bill table description. 45

Table 5.3.1.1 Login process 64

Table 5.3.1.2 Add new employee 66

Table 5.3.1.3 Sign up process 68

Table 5.3.2.1 Poles transfer request 69

Table 5.3.2.2 Testing JWT 70

9

List of Abbreviations

Abbreviation Definition

HEPCo Hebron Electric Power Company

CSE Customer Service Employee

PRE Public Relations Employee

ITDE IT Department Employee

JWT JSON Web Token

MVC Model View Controller

10

Chapter 1: Introduction

1.1 Overview

In this chapter, we provide an overview of our project, including a detailed description, key

performance indicators, problem statement, and the final results of the project.

1.2 Description of the system

The project entails the development of a website for HEPCo, the primary electricity provider

serving residents of Hebron and Halhul. The website aims to inform citizens about the available

services offered by the company and provide them with the convenience of placing orders online.

This eliminates the need for citizens to physically visit the company's premises, as they can now

access and manage their service requests through the website. Furthermore, the website enables

citizens to view their installment plans and invoices, offering them easy access to their payment

information.

1.3 Problem Statement

1.3.1 Description of the current website

The current website of HEPCo is one of the sites that does not allow the customer to interact

with the site. The customer can only see the services provided by the company, but she/he cannot

manage to get a service or contact with the company

1.3.2 Suggested Improvements

1. The customer will be able to send requests through the website, such as:

a. electricity meter inspection.

b. change the payment mechanism from bill to card.

c. street lighting installation.

2. The Customer will be able to view his previous installments and bills.

3. The Customer will be able to track his request status.

11

1.4 The Significance and Motivation

1. There is no official website for the customers to deal with the company.

2. HEPCo is the main provider of electricity to the citizens of Hebron, so it needs a

website to facilitate communication between customers and the company.

3. Spreading the culture of online services in the community.

4. Improve and develop the services provided to the customers.

5. It will be easier for the customers to submit a request for any service they need and

follow up on the status of their request online.

1.5 Aims and Objectives

1. Provide a platform for customers to get the services provided by HEPCo via the

website, which saves so much time and effort.

2. Provide a platform for PRE to publish news and advertisements instead of posting

them on social media.

3. Saving time and effort for the CSE, so that they can easily review customers'

complaints and requests via the Internet.

4. Made a new design with a user-friendly interface.

5. Give customers an easy way to track their installments, bills and requests.

6. Facilitate the management of customers data and save their privacy.

1.6 Context Diagram

Context models are utilized to depict the operational environment of a system, revealing the

elements existing beyond the system's boundaries. The model showcases the interconnections

between the electricity system and the adjacent systems in the project, as depicted in Figure 1.1.

12

Figure 1.1 Context diagram

1.7 Project Scope

Our aim is to produce a new proposed comprehensive website for the Hebron Electricity Power

Company (HEPCo) that will be beneficial to both the citizens and company employees. As a

result, that will increase the usage and need for the website for the citizens, at the same time leads

to efficient communication between people and employees serving them the required functionality.

1.8 Implementation Alternatives

The primary goal of Hebron Electricity Company is to offer services to a wide range of citizens. To

fulfill this objective, we developed a Custom-Coded website from scratch specifically to meet the

company's needs, the platform includes frequently used features to facilitate the process for

citizens to apply for any service remotely from the website.After careful consideration, we

concluded that an interactive web application based on transactions would be superior to the

mobile application in fulfilling all the essential requirements necessary for the system.

13

1.9 Project Scheduling

Table 1.1 Project tasks

Time SpentActivity/Details

3 weeksSystem definition and planning

6 weeksAnalyze system requirements

4 weeksSystem design

3 weeksSystem implementation

2 weeksSystem testing

Along the working periodDocumenting

14

Chapter 2: Functional and non-functional requirements

2.1 Overview

In this chapter, we will discuss the functional requirements for the end-user’s side, the

employee’s side and technical admin aspects of the project. Additionally, we will address the

non-functional requirements that are crucial for the project's implementation.

2.2 Functional Requirements

Functional requirements are typically defined and documented in collaboration with electricity

company employees. They help to ensure that the software system meets the needs and provides

the desired level of functionality and usability. The main actors of the system and their

requirements are as follows.

2.2.1 Admin

The Admin is basically the IT Department Employee (ITDE):

1. create a new employee.

2. archive an employee.

2.2.2 Public Relationships Employee

1. Create advertisements and news.

2. Create reports.

2.2.3 Customer

1. The customer will be able to submit one of the main requests, which are as follows:

a. check the electricity meter.

b. change the subscription type from bill to card.

c. install street lighting.

d. modify the type of property from commercial to home.

2. Submit a request to change the subscription status from temporary to permanent.

3. Submit a request to transfer the poles and networks opposing construction and

property.

4. Submit a request to modify the beneficiary's data (Tenant's name).

15

5. Submit one of the secondary requests, which are as follows:

a. solve the problem of weak electricity.

b. maintenance of equipment related to electrical installations.

c. reduce the old debt installments.

d. objection to the estimated amount of consumption during the period of failure

of the electricity meter.

6. View his previous requests.

7. View his previous bills.

8. View his previous installments.

9. View all his subscriptions and the information about each subscription.

2.2.4 Customer Services Department Employees (CSE)

1. View all requests.

2. Search for the request by the customer's name.

3. Change request status.

4. View subscriber information.

2.3 Non-Functional Requirements

Product Requirements:

1. The system is available for all customers who will be able to apply for any request.

2. The system provides high levels of security and privacy by using encryption algorithms and

time-dedicated tokens.

3. The system must obtain the best user experience, so users can deal with it easily .

4. The ability to log in to the system with a valid username and password.

16

2.4 Technical admin’s functional requirements tables

Admin creates new employee

Table 2.5.1 Admin creates new employee

Requirement Create a new employee with his/her information in the system

Actor Admin

Objective Admin can create an employee and fill all the required fields, the

employee will be given a password for the login process.

Precondition Must be specified in the system as admin

Scenario Admin clicks “new employee” button on the employees’ profiles

section and add the employee’s data (e.g: password, name, role)

Exceptions No internet connection

Admin view all employees’ data

Table 2.5.2 Admin view all employees’ data

Requirement Admin view all employees’ data

Actors Admin

Objective
Admin views a list of current employees and their data

including role, name and phone number.

Precondition Must be specified in the system as admin

Scenario
Admin clicks on the ‘employees’ button on the sidebar menu

then a table of all employees data will appear from the table.

Exceptions No internet connection

17

Admin archives an employee

Table 2.5.3 Admin archives an employee

Requirement
Archive an employee which will prevent them from appearing in

the admin interface

Actors Admin

Objective Admin archives an employee with their corresponding data

Precondition Must be specified in the system as admin

Scenario
Admin clicks on ‘Archive’ button located in each row of the

employees data table, then the archived employee will disappear.

Exceptions No internet connection

2.6 Public Relationships Employee’s functional requirements tables (PRE)

PRE creates a new advertisement or company related news

Table 2.6.1 PRE creates an advertisement

Requirement Create an advertisement or news

Actors PRE

Objective
PRE creates an advertisement of a specific topic, or company

related news

Precondition Must be specified in the system as a PRE

Scenario PRE specifies the advertisement or news body, picture and date

Exceptions No internet connection

18

PRE creates a new report

Table 2.6.2 PRE creates an annual report

Requirement Create an annual report

Actors PRE

Objective PRE creates a report of an issue

Precondition Must be specified in the system as a PRE

Scenario PRE specifies the report body, employee signature and date

Exceptions No internet connection

2.7 Customer functional requirements tables

Submit the main request

Table 2.7.1 Submit the main request

Requirement Submit one of the main requests that were mentioned on section

2.2.3

Actor Customer

Objective Create a new request for one of the main request

Precondition The customer must be logged in the system

Scenario 1. Click on the services on the home page in the header section.

2. Select one of the main requests.

3. Fill the form with the required details for example applicant's

name, applicant's phone number, address and service ID.

4. Click submit.

Exceptions 1. No internet connection

2. The Customer does not fill in all the required details.

19

View previous installments

Table 2.7.2 View previous installments

Requirement View previous installments

Actor Customer

Objective Enable the Customer to view previous installments

Precondition The customer must be logged in the system

Scenario Click on my installments on the home page in the header section

Exceptions No internet connection

View previous requests

Table 2.7.3 View previous requests

Requirement View previous requests

Actor Customer

Objective Enable the Customer to view his previous requests

Precondition The customer must be logged in the system

Scenario Click on my requests on the home page in the header section

Exceptions No internet connection

20

Submit a request to change the subscription status from temporary to permanent.

Table 2.7.4 Change subscription status

Requirement Change the subscription status from temporary to permanent

Actor Customer

Objective Send a request to HEPCo to inform them that the customer needs to

change the subscription status from temporary to permanent

Precondition The customer must be logged in the system

Scenario 1. Click on the services on the home page in the header

section

2. Select change the subscription status from temporary to

permanent

3. Fill the form with the required details for example

applicant's name, applicant's phone number, address

clarification of the reason for the request, service ID,

electrical engineer name and electrical engineer phone

number.

4. Click submit.

Exceptions 1. No internet connection

2. The Customer does not fill in all the required details.

21

Applying for transfer of poles and networks opposing construction and property

Table 2.7.5 Transfer poles and networks

Requirement Transfer the poles and networks opposing construction and

property

Actor Customer

Objective Send a request to HEPCo to inform them that the customer needs to

transfer the poles and networks opposing construction and property

Precondition The customer must be logged in the system

Scenario 1. Click on the services on the home page in the header

section

2. Click on the request for transferring poles and networks

3. Fill the form with the required details for example

applicant's name, applicant's phone number, clarification of

the reason for the request, service ID, address, image

showing the problem and footprint.

4. Click submit.

Exceptions 1. No internet connection

2. The Customer does not fill in all the required details.

22

Request for modifying beneficiary's data

Table 2.7.6 Request for modifying beneficiary's data

Requirement Modify the beneficiary's data

Actor Customer

Objective Send a request to HEPCo to inform them that the customer needs to

modify the beneficiary's data

Precondition The customer must be logged in the system

Scenario 1. Click on the services on the home page in the header

section

2. Click on the request for transferring poles and networks

3. Fill the form with the required details for example

applicant's name, applicant's phone number, service ID,

address, beneficiary's name, customer ID image and

beneficiary's ID image

4. Click submit.

Exceptions 1. No internet connection

2. The Customer does not fill in all the required details.

23

View previous bills

Table 2.7.7 View previous bills

Requirement View previous bills

Actor Customer

Objective Enable the Customer to view his previous bills

Precondition The customer must be logged in the system

Scenario Click on my bills on the home page in the header section

Exceptions No internet connection

Submit a request for one of the secondary requests

Table 2.7.8 Submit the secondary request

Requirement Submit one of the secondary requests that were mentioned on 2.3.3

Actor Customer

Objective Create a request for one of the secondary requests

Precondition The customer must be logged in the system

Scenario 1. Click on the services on the home page in the header section.

2. Select one of the main requests.

3. Fill the form with the required details for example applicant's

name, applicant's phone number, address, clarification of the

reason for the request and service ID.

4. Click submit.

Exceptions The Customer does not fill in all the required details.

24

View all subscriptions and the information about each subscription

Table 2.7.9 View all subscriptions

Requirement view all subscriptions

Actor Customer

Objective Enable the Customer view all subscriptions

Precondition The customer must be logged in the system

Scenario Click on my subscriptions on the home page in the header section

Exceptions No internet connection

2.8 CSE functional requirements tables

View all requests

Table 2.8.1 View all requests

Requirement View all requests

Actor CSE

Objective Enable the CSE to review customer requests

Precondition Must be specified in the system as CSE

Scenario Click on the ‘requests’ button on the sidebar menu

Exception No internet connection.

25

Search for the request by the customer's name.

Table 2.8.2 Search for a request

Requirement Search for the request

Actor CSE

Objective Enable the CSE to search and filter customer requests

Precondition Must be specified in the system as CSE

Scenario Click on customer requests

The CSE enters the customer name to search for his requests

Exception No internet connection.

Update the status of the request

Table 2.8.3 Update request status

Requirement CSE is able to track the request status and update it constantly

Actor CSE

Objective Enable the CSE to update the status of the request

Precondition Must be specified in the system as CSE

Scenario Click on request status input that appears on the requests table as a

column, then change the status from new to pending or rejected

Exceptions No internet connection.

26

View all subscribers.

Table 2.8.4 View all subscribers

Requirement View all subscribers in the system and their data

Actor CSE

Objective Enable the CSE to view a list of all customers data and their

subscriptions details .

Precondition Must be specified in the system as CSE

Scenario Click on ‘customers’ button on the side bar menu.

Exceptions No internet connection.

2.9 State Diagram

Figure 2.9 State diagram

27

2.10 Class Diagram

Figure 2.10: Class diagram

28

2.11 Use Case Diagram

Figure 2.11 Use case diagram.

29

2.12 Sequence Diagram

2.12.1 Sequence Diagram For Accepting/Rejecting a Customer’s request

Figure 2.12.1 Sequence diagram for accepting/rejecting a customer’s request.

30

2.12.2 Sequence Diagram For Transferring Poles request

Figure 2.12.2 Sequence diagram for transferring poles request.

31

2.12.3 Sequence Diagram of View Subscriptions request

Figure 2.12.3 Sequence diagram of view subscriptions request.

32

Chapter 3: System Design

3.1 Overview

In this chapter, we will discuss the system architecture and design pattern it uses, database tables,

normalized form of the relationship between tables, and a view of the intefaces.

3.2 Introduction

This chapter will focus on discussing the System model and its various components, as well as

the architecture employed in our project. We will also explore an alternative architecture.

Additionally, we will delve into the database section, covering topics such as mapping and

designing. The significance of this chapter lies in its ability to provide programmers with a

comprehensive understanding of the system's components. By doing so, it facilitates

programming tasks and enhances comprehension of the intercommunication among different

project elements.

3.3 Design Alternatives

As a web application it is considered to be a transaction-based application which might use

layered architectural pattern .

● Layered advantages

It organizes the subsystems into layers each of which provide a set of services to the layer

above it, it is recommended when making updates and adding new facilities and for

multi-level security.

● Layered disadvantages

Separation between layers is often difficult. Performance can be a problem because of

multiple levels of interpretation of a service request as it is processed at each layer.

33

● Why choose MVC?

The model and view components operate independently, ensuring a clear separation between

data presentation and data logic. This separation greatly simplifies the development of

complex applications. In case the model encounters an error, the controller takes charge by

instructing the view to generate an appropriate presentation for the error, which is then

delivered to the user.

3.4 MVC Architectural Pattern

MVC stands for Model-View-Controller, which is a software architectural pattern commonly

used in web development. It separates the application's logic and components into three

interconnected components as shown in figure 3.4.1.

3.4.1 The system architecture (MVC) components

Main components are:

1. View.

2. Model.

3. Controller.

Figure 3.4.1 The system architecture MVC components.adopted from [1]

34

3.4.2 General Description

When a user requests a specific page from the server, the server forwards all the request details to

the controller. The DB controller manages the client's request and retrieves relevant information

from the model based on the request. The model, responsible for interacting with the database,

focuses solely on data manipulation and doesn't handle user requests. Once the model provides

its response to the controller, the controller interacts with the view to display the data to the user.

After rendering the page, the controller receives the final presentation and sends it back to the

user.

3.5 Model Objects Contains

The following are the main models in the class diagram Figure 2.10

➢ Customer

➢ Service

➢ Advertisement

➢ Report

➢ Request

➢ Employee

➢ UpdateTenantData

➢ SubscriptionStatus

➢ TransferringPoles

➢ Request_Status

➢ Request_Type

➢ Installment

➢ Bill

35

3.6 Database Logical Mapping

Figure 3.6 Database logical mapping

36

3.7 Class diagram tables description

1. Customer:

a. CustomerID: unique integer of length 11, auto-increment for all Customers (PK).

b. CustomerName: varchar data type of length 40 and not-null.

c. PhoneNumber: unique integer whose length is 10 and not null

d. PlaceOfResidence: varchar data type of length 80 and not-null.

e. ID: unique integer data type of length 9 ,not null.

f. Password: text data type, not null.

2. Service:

a. ServicesID: unique integer of length 11 ,auto increment for all services(PK).

b. SubscriptionType: character data type of length 4, not-null.

c. Address: varchar data type of length 80, not-null.

d. SubscriptionStatus: character data type of length 9, not null

e. CustomerID: unique integer of length 9 (FK references CustomerID in Customer

table)

3. Advertisement:

a. ID: unique integer of length 11, auto increment for all advertisements(PK).

b. Title: varchar data type of length 100, not-null.

c. Body: varchar data type of length 250, not-null.

d. Image: text data type, not null.

e. CoverImage: text data type, not null.

f. Date: date (auto generated by sequelize).

g. EmployeeID: unique integer of length 11 (FK references EmployeeID in

Employee table)

4. Report:

a. ID: unique integer of length 11, auto increment for all reports(PK).

b. Title: varchar data type of length 100, not-null.

c. PDF: blob data type, not-null.

d. CoverImage: text data type, not null.

e. Date: date (auto generated by sequelize)

f. EmployeeID: FK references EmployeeID in Employee table.

37

5. Request:

a. RequestID: unique integer of length 11, auto increment for all requests (PK).

b. Reason: varchar data type of length 100.

c. ApplicantName: varchar data type of length 50, not null.

d. ApplicantPhoneNumber: integer data type of length 10, not null.

e. Address: varchar data type of length 80, not null.

f. EmployeeID: FK references EmployeeID in employee table, represents the

employee who tracks and constantly updates the status of the request.

g. ServiceID: integer, FK references ServiceID in Service table, represents the

service that the request belongs to.

h. TypeID: integer FK references TypeID in Request_Type table, represents the type

of the request.

i. StatusID: integer FK references StatusID in Request_Status table, represents the

status of the request.

6.Employee:

a. EmployeeID: unique integer, not-null, auto increment for all employees (PK).

b. Name: varchar of length 40, not-null.

c. Role: varchar of length 5, not-null.

d. ID: unique integer of length 9, not null.

e. Password : text data type, not null .

f. PhoneNumber: unique integer of length 10, not null.

7. UpdateTenantData:

a. ID: integer of length 11 (PK, FK references RequestID in Request table).

b. CustomerIDImage: text data type, not null .

c. TenantIDImage: text data type, not null .

d. TenantName: varchar data type of length 60, not-null.

38

8. SubscriptionStatus:

a. ID: integer of length 11 (PK, FK references RequestID in Request table).

b. ElectricianName: varchar data type of length 40, not-null.

c. ElectricianPhoneNumber: integer of length 10,not-null .

9. TransferringPoles:

a. ID: integer of length 11 (PK, FK references RequestID in Request table).

b. LocationOfPole: text data type, not null .

c. Footprint: text data type, not null .

10. Request_Type:

a. TypeID: integer of length 11, auto increment (PK).

b. TypeName: varchar data type of length 40.

11. Request_Status:

a. StatusID: integer of length 11, auto increment (PK).

b. StatusName: varchar data type of length 10.

12. Installment :

a. ID: unique integer of length 11, auto increment (PK).

b. Type: varchar data type of length 30, not null.

c. Date: Date data type, auto generated by sequelize.

d. InstallmentNumber: integer data type of length 2, not null.

e. Amount: Float(8,4) data type specifies a float column with a precision of 8(total

number of digits) and a scale of 4(number of digits after the decimal point), not

null.

f. PaymentTimesNumber: integer data type of length 2, not null.

g. CustomerID: integer data type of length 11 (FK references CustomerID in

Customer table)

39

13. Bill:

a. ID: unique integer of length 11, auto increment (PK).

b. Date: Date data type, auto generated by sequelize.

c. Address: varchar data type of length 80, not-null.

d. Amount: Float(8,4) data type specifies a float column with a precision of 8 and a scale

of 4 (number of digits after the decimal point), not null.

e. PaidAmount: Float(8,4) data type specifies a float column with a precision of 8 and a

scale of 4 (number of digits after the decimal point), not null.

f. ServiceID: integer of length 11 (FK references ServiceID in Service table).

3.8 Database tables

Customers

Table 3.7.1 Customer table description.

Attribute Type Length PK FK Null unique

CustomerID int 11 yes yes

CustomerName varchar 40

PhoneNumber int 10 yes

PlaceOfResidence varchar 80

ID int 9 yes

Password varchar 250 yes

40

Services

Table 3.7.2 Services table description.

Attribute Type Length PK FK Null unique

ServiceID int 11 yes yes

SubscriptionType char 4

Address varchar 80

SubscriptionStatus char 9

Date date

CustomerID int 11 yes

Advertisement

Table 3.7.3 Advertisement table description

Attribute Type Length PK FK Null unique

ID int 11 yes yes

Title varchar 100

Body varchar 250

Date date

Image text

CoverImage text

EmployeeID int 11 yes

41

Report

Table 3.7.4 Report table description.

Attribute Type Length PK FK Null unique

ID int 11 yes yes

Title varchar 100

PDF blob

CoverImage text

EmployeeID int 11 yes yes

Date date

Requests

Table 3.7.5 Request table description

Attribute Type Length PK FK Null unique

requestID int 11 yes yes

TypeID int 11 yes

StatusID int 11 yes

Address varchar 80

Reason varchar 100 yes

Date date

EmployeeID int 11 yes yes yes

ServiceID int 11 yes yes

ApplicantName varchar 50

ApplicantPhoneNumber int 10

42

UpdateTenantData

Table 3.7.6 UpdateTenantData table description.

Attribute Type Length PK FK Null unique

ID int 11 yes yes yes

CustomerIDImage text

TenantIDImage text

TenantName varchar 60 yes

SubscriptionStatus

Table 3.7.7 SubscriptionStatus table description.

Attribute Type Length PK FK Null unique

ID int 11 yes yes yes

ElectricianName varchar 40

ElectricianPhoneNumber int 10 yes

TransferringPoles

Table 3.7.8 TransferringPoles table description.

Attribute Type Length PK FK Null unique

ID int 11 yes yes yes

Footprint text

LocationOfPole text

43

Employee

Table 3.7.9 Employee table description.

Attribute Type Length PK FK Null unique

EmployeeID int 11 yes yes

EmployeeName varchar 40

Role varchar 5

ID int 9 yes

Password varchar 250

PhoneNumber int 10

EndDate Date yes

Request_Type

Table 3.7.10 Request_Type table description.

Attribute Type Length PK FK Null unique

TypeID int 11 yes yes

TypeName varchar 40

Request_Status

Table 3.7.11 Request_Status table description.

Attribute Type Length PK FK Null unique

StatusID int 11 yes yes

StatusName varchar 10

44

Installment
Table 3.7.12 Installment table description.

Attribute Type Length PK FK Null unique

ID int 11 yes yes

Type varchar 30

Date date

InstallmentNumber int 2

Amount float 8

PaymentTimesNumber int 2

CustomerID int 11 yes

Bill
Table 3.7.13 Bill table description.

Attribute Type Length PK FK Null unique

ID int 11 yes yes

Date date

Address varchar 80

Amount float 8

PaidAmount float 8

ServiceID int 11 yes

45

3.9 User Interface

Login page

Login requires entering the correct ID and password. Only subscribed individuals can log in and

access their electrical services information. This ensures that the login process remains exclusive

to registered users.

Figure 3.9.1 Login page

Services page

The services page offers a variety of requests that subscribers can easily submit online. These

requests include changing payment methods from a bill to a prepaid card, installing street

lighting and other essential services.

46

Figure 3.9.2 Services page

47

CSE dashboard

As shown in Figure 3.9.3, the CSE Dashboard enables customer services employees to view and

manage subscriber information and requests.

Figure 3.9.3 CSE dashboard

48

PRE dashboard

As shown in figure 3.9.4, the PRE Dashboard provides the functionality to add news articles and

upload annual reports. The PR team can easily add new articles and upload annual reports

through this user-friendly interface.

Figure 3.9.4 PRE dashboard

49

Admin dashboard

The admin has the ability to add a new employee by entering their relevant information, such as

name, position, and contact details. Additionally, the admin can view a list of all employees.

Furthermore, the admin can perform employee archiving, maintaining a record of past and

inactive employees.

Figure 3.9.5 Admin dashboard

50

View submitted requests

Once logged in, subscribers can easily track their submitted requests and their respective

statuses. They also have access to their subscription details, including bills and installment

information. This user-friendly dashboard enables subscribers to stay informed about their

interactions with HEPCo.

Figure 3.9.6 View submitted requests

51

Request form for changing payment method from bill to prepaid card

Figure 3.9.7 illustrates a request form that enables subscribers to submit a request for changing their

payment method from bill to card.

Figure 3.9.7 Request form for changing the payment method from bill to card

52

Chapter 4: Software Demonstration
__

4.1 Introduction

In this chapter, we will discuss how the system was built. The system implementation stage,

which is the preparatory stage of the system to the practical stage, and then start programming

and building the system. We will learn about the tools and programs we used while developing

our system.

4.2 Software environment and tools

There are many helpful tools and requests we used in developing our software including:

● Visual studio code : The platform that is used to program frontend and backend.

● Postman : Software development for testing backend API’s.

● Draw.io : Drawing all diagrams needed in demonstrating the system architecture.

● phpMyAdmin:MySQL Relational database.

● XAMPP: a software distribution which provides the Apache web server, MySQL

database and Php all in one package. Which provides a solution for setting up a local web

server.

● React.js framework : a powerful JavaScript framework used for building interactive

user interfaces in web applications. It follows a component-based approach, allowing

developers to create reusable UI components and efficiently manage state changes.

React.js leverages a virtual DOM, enabling efficient rendering and updating of UI

elements. It offers a declarative syntax and extensive ecosystem of libraries, making it a

popular choice for front-end development.

● Node.js framework : a runtime environment built on JavaScript that allows developers

to execute code on the server side. It is highly useful for building scalable and efficient

network applications. Node.js utilizes an event-driven, non-blocking I/O model, which

makes it well-suited for handling concurrent requests and real-time applications. It is

53

commonly used for creating APIs, server-side applications and building

high-performance web applications.

● GitHub: Constantly pushing our work to the cloud, it was very helpful because my SSD

in the laptop has crashed due to huge load and electricity hits while developing.

● Google Drive: sharing all documents with our team, editing and commenting is helpful.

● npm Docs : largest software registry to share and borrow packages including react.js.

In Addition to a promise-based node.js ORM tool named Sequelize for creating, updating and

synchronizing the database with using node and express .

4.3 System programming

The web application we have developed is centered around transactions and supports multiple

interfaces tailored to the specific user roles: customer, admin, and employee. Customers can

submit requests, which are then reviewed and approved or denied by the Customer Support

Executive (CSE). The Public Relations Executive (PRE) is tasked with publishing news and

advertisements related to the company. The admin panel, managed by the IT Department

Executive (ITDE), allows for adding new employees and maintaining an archive of existing

employees.

54

4.3.1 System structure

Figure 4.3.1.1 shows the basic backend folders in the project that represent some of the system

architecture components, previously mentioned in section 3.4 .

Figure 4.3.1.1 Project folders

1. Controllers folder: Each controller consists of multiple methods utilized in the routes folder

and carries out operations on models, such as create, update, delete, and review.

Figure 4.3.1.2 Controllers folder

55

2. Routes folder:Every route encapsulates all the APIs (endpoints) related to a specific class. It

utilizes the functions and methods imported from the controller. Subsequently, it provides an

appropriate response to the frontend API that requested the particular route.

Figure 4.3.1.3 Routes folder

3. Models folder: They represent the entirety of the system's database tables. These tables are

constructed using the sequelize Node.js ORM, which defines the table's name, fields, attributes,

indexes, and handles validations and relationships between models.

Figure 4.3.1.4 Models folder

56

4.4 Key fragments of the code

In this section we will be showing you snippets of react and nodeJS code.
4.4.1 Credential validation code

Login validation code consists of two stages, the first stage is to authenticate the user using the

middleware function userAuthentication, the second stage is where we include access and refresh

tokens to improve security in the subsequent call back function, the stages are shown in figure

4.4.1 as follows.

Figure 4.4.1 Authentication

57

4.4.2 Create a request API

Figure 4.4.2 shows a post route for creating a request of any type in the request route folder, and

calling the controller for some other types as shown below.

Figure 4.4.2 Create a request Endpoint

58

4.4.3 Employee Model

Figure 4.4.3 shows the employee model we created with sequelize, where we can add validations,

indexes and other attributes without having to deal with the database, changes will automatically

be saved.

Figure 4.4.3 Employee model

59

4.4.4 View requests and update request status

The code in Figure 4.4.4 enables CSE to view a list of requests and update the status of each

request. It fetches requests from an API endpoint and uses a PUT request to modify the status.

The user interface is then updated to reflect the changes made to the request status.

Figure 4.4.4 View requests and update request status

60

4.4.5 Retrieve and display customer bills

The code in the snippet retrieves and displays customer bills. It utilizes the fetchBills function to

make an authorized API request to retrieve the bills associated with the authenticated user. The

fetched data is then stored in the customerBills state variable using setCustomerBills. The code is

executed when the component mounts using the useEffect hook.

Figure 4.4.5 Retrieve and display customer bills

61

4.4.6 Admin dashboard for employee management and archiving

The code in Figure 4.4.6 implements an Admin Dashboard for managing and archiving

employees. It retrieves employee data from an API and shows only active employees without an

end date. The archiveEmployee function enables the admin to archive an employee by updating

their end date through a PUT request. The user interface is then updated accordingly.

Figure 4.4.6 Admin dashboard for employee management and archiving

62

Chapter 5 : Testing

__
5.1 Introduction

In the stage of testing, we make sure that the system works correctly without any issues, and we

also make sure that all the requirements of the project are fulfilled, and that the system performs

effectively. The stage of testing comes after the design and implementation of the system.

5.2 Validation

All information entered in all fields in the request are tested to ensure that the data entered by the

user matches all conditions as follows:

• Ensure that the user data is stored in the database during the login process.

• The process will not be executed if the users entered a file type that is not allowed.

• The process will not be executed if wrong data is entered.

5.3 API retesting

The system units were fully tested. The result of the examination was successful. The following

tables review the testing we have done:

5.3.1 Frontend testing

Front end testing is a crucial part of the project to ensure that the UI components work as

intended, providing a seamless and intuitive user experience. It involves verifying the handling

of messages received from the back end. As well as, front end testing helps confirm that users

are prompted to enter all the required information in the expected format. This validation ensures

data integrity and improves the overall user experience.

63

Table 5.3.1.1 Login process

case input Expected

output

Obtained

output

Pass/

Fail

1 Correct and

complete

information

Id :987654321

Password: GH%$#123

Successfully

Logged In

As Expected Pass

2 Wrong password Id :987654321

Password: GHs$#123

Incorrect

Password

As Expected Pass

3 Wrong id and

password

Id :987654321

Password: GHs$#123

Invalid Login

Credentials

As Expected Pass

Correct id but no

password exist

Id: 987654321

Password: NULL

No password

found. Please

sign up

As Expected Pass

In Figure 5.1.3.1, when the customer entered an incorrect password, an error message was

displayed, indicating that the password provided was invalid. Similarly, in Figure 5.1.3.2, when

the customer’s id is not associated with a password, an error message was displayed, indicating

that the user must sign up to the system.

64

Figure 5.3.1.1 Incorrect password

Figure 5.3.1.2 Account not found

65

Table 5.3.1.2 Add new employee

case input Expected

output

Obtained

output

Pass/

Fail

1 Correct and

complete

information

employeeName:

ahmad

Id:123451234

PhoneNumber:

567654321

Password: GH%$#123

Role:CSE

Successfully

added

As Expected Pass

2 Account Already

Exists

Id:123451234 An account

with the

provided

identification

number

already exists

As Expected Pass

The Figure 5.3.1.3. shows an admin trying to add a new employee but an error occurs due to

incomplete or inaccurate data entry. The error message indicates that certain required fields were

not properly filled out. Furthermore, in the Figure 5.3.1.4 the admin is attempting to add an

employee who already exists in the system

66

Figure 5.3.1.3 Incomplete data entry while adding a new employee

Figure 5.3.1.4 Admin attempt to add existing employee

67

Table 5.3.1.3 Sign up process

case input Expected

output

Obtained

output

Pass/

Fail

1 Correct and

complete

information

Id:223456789
PhoneNumber:591234

567

Password: GH%$#123

Successfully

Signed up

As Expected Pass

2 Account Already

Exists

Id:223456789 An account

with the

provided

identification

number

already exists

As Expected Pass

3 create an account

for

Non-Subscriber

Id:223123123 You cannot

create an

account if you

are not

subscribed to

the company

As Expected Pass

68

5.3.2 Backend testing

We have tested each route in the backend using Postman application before integrating them with
the frontend.
Figure 5.3.2.1 shows the testing process of the request route , specifically when the user submits
a form for transferring electrical poles away from a certain location.

Table 5.3.2.1 Poles transfer request

case input Expected output Obtained

output

Pass/

Fail

1 Correct and

complete

information

Reason: علىخطریشكلالاولالعامودعامودیننقل

بناءلورشةیعارضالثانيوالعامودالمنزلاصحاب

serviceID: 4

Footprint: footprint.jpg

locationImage: imageLocation.jpg

applicantAddress: الجامعةشارع

applicantName: اسعدنیرمین

applicantPhoneNumber: 598476398

Your request

has been sent

successfully

As

Expected

Pass

2 Wrong image type Reason: علىخطریشكلالاولالعامودعامودیننقل

بناءلورشةیعارضالثانيوالعامودالمنزلاصحاب

serviceID: 4

Footprint: footprint.png

locationImage: imageLocation.png

applicantAddress: الجامعةشارع

applicantName: اسعدنیرمین

applicantPhoneNumber: 598476398

Invalid file type

only jpeg /jpg

images are

allowed

As

Expected

Pass

69

Table 5.3.3 tests whether the access token was expired or typed incorrectly, the figures below

demonstrate the process using the Postman application for testing the backend routes , the user

login and an access token is generated, a refresh token will be stored in a cookie as in figure

5.3.2.1.

Table 5.3.2.2 Testing JWT

case input Expected output Obtained

output

Pass/

Fail

1 Valid

authentication

headers

Token:
eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.

eyJ1c2VySUQiOjIsImlhdCI6MTY4MzM5

ODc4MiwiZXhwIjoxNjgzNDAyMzgyfQ.TL

til595gBL15zwa85VIiJEgRHbimDrn6JBs

bc8Uekg

Bring all

services for the

customer

As

Expected

Pass

2 Access token is

expired

Token:
eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.

eyJ1c2VySUQiOjIsImlhdCI6MTY4MzM5

ODc4MiwiZXhwIjoxNjgzNDAyMzgyfQ.TL

til595gBL15zwa85VIiJEgRHbimDrn6JBs

bc8Uekg

Error:

forbidden

403 Pass

3 Access token not

provided

Token: Error:

Unauthorized

401 Pass

70

Figure 5.3.2.1

User access token

Then after applying the middleware that verifies the token in the api that brings all the services

we get the successful response as in figure 5.3.2.2

If the token was expired we get the result forbidden , and if the token was now provided in the

authorization headers we get the result unauthorized.

71

Figure 5.3.2.2: Verify JWT

Now, after passing access token check, here comes the refresh token functionality that generates

a new pair of access and refresh tokens. And after the refresh token expires the user must log in

again, figure 5.3.2.3 the user is logging in again to generate a new access and refresh token

which improves the security and protects the login process from XSS, CSRF attacks.

Figure 5.3.2.3: Generating a new token

72

In Addition, figure 5.3.2.4 shows the process when an employee creates an advertisement .

Figure 5.3.2.4: Create an advertisement

Finally, figures 5.3.2.5 and 5.3.2.6 represent the create request endpoint testing on two types of

requests .

Figure 5.3.2.5: Reduction of installments request

73

Figure 5.3.2.6: Objection on consumption amount

The request api testing appearing in figure 5.3.2.6 results in the request being stored into the

database as shown in figure 5.3.2.7.

Figure 5.3.2.7: Request stored in the database

74

Chapter 6: Conclusion

__

6.1 Conclusion

In conclusion, the development of the website for HEPCo will have a significant impact and

benefit for the organization. While the website has not been utilized yet, we are optimistic about

the positive impact it will have on improving operations and enhancing customer satisfaction.

Once the website is launched and put into action, it is expected to provide customers with a

convenient and user-friendly platform to engage with HEPCo services. The website will enable

customers to easily submit service requests, access important information, and manage their

accounts, thereby enhancing their overall experience.

Internally, the website will streamline processes for employees, allowing them to efficiently handle

customer inquiries, access relevant data, and collaborate effectively. This will result in improved

productivity and the ability to provide prompt and reliable services to customers.

We are excited about the potential of the website to strengthen the relationship between HEPCo

and its customers. It will facilitate better communication, transparency, and responsiveness,

ultimately enhancing customer satisfaction and loyalty.

6.2 Recommendations

We developed a web-application that facilitates the process of communication between the

customers and the company. We recommend all customers to take advantage of our system, they

will benefit from knowing details about their subscriptions, applying for requests, and keep

updated by the status of their request. This will make the process easier and flexible than before.

We recommend working on implementing the system at the company for at least one semester, to

specify the problems that result from using the system and working to solve them.

75

6.3 Future work

In the future, we are looking forward to adding many features to the current system such as:

● Adding a notification feature whenever the employee updates the status of the request.

● Log in using one time authentication code sent by phone number.

● Adding a live chatting feature that facilitates the communication between the customer

and the employees.

● Send emails that contains the title and body of the news using a cloud-based service.

● Use a cloud-based storage service like AWS S3 to store uploaded files.

76

References

[1] Sommerville, Ian. Software Engineering, 9/E. Pearson Education India, 2011

Sites used in developing the system:

Node.js. (n.d.). Node.js. https://nodejs.org/en

React – A JavaScript library for building user interfaces. (n.d.). React. https://legacy.reactjs.org/

Sequelize. (n.d.). Feature-rich ORM for Modern TypeScript & JavaScript. https://sequelize.org/

77

https://nodejs.org/en
https://legacy.reactjs.org/
https://sequelize.org/

