
1

Palestine Polytechnic University

College Of Information Technology and Computer

Engineering

Department of Computer Engineering

PC Remote Control

Team Members

Ahmad Hashim Titi

Amane Sharawneh

sSupervisor

Eng. Islam Amar

Dr. Zain Salah

2022 - 2023

2

PC Remote Control

:By

Ahmad Hashim Titi

Amane Sharawneh

:Supervised By

Eng. Islam Amar

Dr. Zain Salah

3

Contents

Chapter 1 Introduction

 1.1 Overview . 7

1.2 Motivation . 7

1.3 Project Objectives 7

1.4 Problem Statement . 8

Chapter 2 Background

2.1 Introduction . 9

2.2 Theoretical Background . 9

2.3 Conceptual Design . 11

2.4 Literature Review 12

 W10 Gyro 13

 Warren Parsons Remote 14

 WeChip 14

Chapter 3 System Design15

3.1 System Design15

3.2 System Hardware Components . 16

3.2.1 Arduino Nano 17

3.2.2 MPU6050 Module 19

3.2.3 TSOP 1838 IR Receiver . 23

3.2.4 ESP32 24

3.2.5 ESP32 vs UNO vs Nano 26

3.3 System Software Components 27

3.4 C++ vs Java 28

3.5 Libraries 29

3.6 System Components Detailed Diagrams & Pinouts . 30

3.6.1 Arduino Nano Pinout 30

3.6.2 ESP32 Pinout . 31

3.6.3 MPU6050 Pinout . 31

3.6.4 Air Mouse Circuit Design 32

3.6.5 IR Receiver Circuit Design 32

3.6.6 Air Mouse Schematic. 33

3.6.7 Receiver Schematic . 34

3.7 Summary 35

4

Chapter 4 System Implementation and Testing 36

4.1 Overview . . 36

4.2 The Receiver . 36

4.2.1 Receiver Functionality . 36

4.2.2 Receiver Logic (TSOP sensor) 36

4.3 The Sender 38

4.3.1 The Air Mouse Functionality 38

4.3.2 The Air Mouse Logic .. 38

4.4 System Testing . . 41

4.4.1 The Receiver Testing . 41

4.4.2 The Air Mouse Testing 45

4.5 Challenges and Issues 46

Chapter 5 Conclusions & Future Upgrades . 47

5.1 Future Upgrades . . . 47

5.2 Conclusions . . . 48

References . 49

5

List of Figures

2.1 PC Remote Conceptual Design . 11

2.2 Air Mouse Conceptual Design . 12

3.1 System Design 15

3.2 Arduino Nano 17

3.3 MPU-6050 Orientation & Polarity of Rotation . 19

3.4 3-Axis Gyro Accelerometer Movement. 20

3.5 Digital Motion Processor. 21

3.6 MPU-6050 Module. 22

3.7 TSOP Infrared Receiver vs1838B . 23

3.8 TSOP 1838B Sensing Distance & Degree 23

3.9 TSOP 1838B Pinout . 23

3.10 Arduino Nano Pinout 30

3.11 Arduino Nano Pinout Numbered . 30

3.12 ESP WROOM32 Pinout . 31

3.13 MPU-6050 Pinout . 31

3.14 Air Mouse Circuit Design . 32

3.15 IR Receiver Circuit Design . 32

3.16 Air Mouse Schematic Diagram . 33

3.17 IR Receiver Schematic Diagram . 34

4.1 Receiver Logic . . 37

4.2 The Hardware Components of the Receiver . 38

4.3 Air Mouse Logic . 39

4.4 Air Mouse Hardware Components 40

List of Tables

3.1 System Hardware Components . 16

3.2 Arduino Nano Specifications . 18

3.3 TSOP VS1838B Feat . 23

3.4 Recommended Conditions of Use for TSOP 1838B sensor 23

3.5 Table of Comparison (ESP VS UNO VS NANO) . 26

3.6 Table of Comparison between C++ & Python . 28

3.7 Arduino Nano Pins and Description . 30

4.1 The Remote Buttons and their Serial Bytes . 41

4.2 The Remote Buttons and their Actions .43

4.3 The Air Mouse test Results . 45

Appendices ……………………………………………………………………………………..…………….................... 50

6

 Abstract:

This project aims to design an infrared remote control that controls the PC, it was

cases. With the remote, somefound as an alternative for Keyboard and Mouse in

you have full control over the PC, you can control the mouse and move it in all

directions, and you can open any application, increase or decrease the volume, or

even shut the computer down using the remote. We will assign a task for each

button and explain it in later sections of the document. The project requires an

Infrared remote, infrared receiver, Arduino Nano, ESP32, and a gyroscope.

It’s planned that the Infrared receiver will be connected to the Computer directly

using a USB cable, and the Air Mouse (ESP32 & Gyroscope MPU6050) will be

connected to the PC through a Bluetooth adapter. Note that the system will be

designed for LG Infrared remotes. Any other brands can be programmed to control

the PC, but in our system we’re planning to program an LG remote.

7

Chapter 1: Introduction

1.1 Overview

In our project, we’re planning to make an IR Remote Controller that can

control computers. You will be able to control the cursor using hand

gestures (By moving the gyroscope in all directions). And do actions on the

PC by pressing different remote buttons.

For example, some buttons will work for turning up/down the volume, some

buttons will start the browser, some buttons will open up the win menu, etc.

1.2 Motivation

With this IR Remote you will be able to control the PC screen easily without

difficulties, if you were laying on the couch a distance away from your PC,

you’ll still be able to control it however you want. Plus that you won’t need a

surface to run the mouse on.

The product will give you the freedom to control your PC like you’re

controlling a TV.

1.3 Project Objectives

 The project aims to:

1. Replace the traditional mouse and keyboard in some cases.

2. Save desk space.

3. Reduce the clutter caused by wired mouse and keyboard.

4. Improving productivity and introducing multitasking.

H
A

R
D

W
A

R
E

 G
R

A
D

U
A

T
IO

N
 P

R
O

J
E

C
T

 R
E

P
O

R
T

A
h

m
a

d
 T

it
i


A

m
a

n
i S

h
a

r
a

w
n

e
h


F

ir
s
t
 S

e
m

e
s
t
e

r
 2

0
2

2
/2

0
2

3

8

1.4 Problem Statement

This product gives you the ability to control the screen by a remote control

when you’re not able to use the mouse and keyboard. If you’re lying on the

couch or standing in the middle of the room, you don’t have to find a surface to

sweep the mouse on it. But you have a remote control that you can hold with

one hand and control the screen with it.

9

Chapter 2: Background

2.1 Introduction

To control the PC using a remote, you will need a transmitter, which comes with the

remote control, and a receiver which has to be connected to the computer, this

requires Arduino components. In this chapter I will present a background of the

project, and some of the formal products of other developers.

2.2 Theoretical Background

1. Arduino:

Arduino is an open-source hardware and software company, project, and user

community that designs and manufactures single-board microcontrollers and

interactive microcontroller kits for building digital devices enabling users to create

]1[.electronic projects

2. Infrared Technology:

IR wireless is the use of wireless technology in devices or systems that convey data

through infrared (IR) radiation. Infrared is electromagnetic energy at a wavelength or

]2[.wavelengths somewhat longer than those of red light

2.1 Infrared Remote Control:

The dominant remote-control technology in home-theater applications is infrared

(IR). Infrared light is also known as plain-old "heat." The basic premise at work in an

IR remote control is the use of light to carry signals between a remote control and

the device it's directing. Infrared light is in the invisible portion of the electromagnetic

spectrum. An IR remote control (the transmitter) sends out pulses of infrared light

that represent specific binary codes. These binary codes correspond to commands,

such as Power On/Off and Volume Up. The IR receiver in the TV, stereo or other

device decodes the pulses of light into the binary data (ones and zeroes) that the

device's microprocessor can understand. The microprocessor then carries out the

corresponding command. [3]

10

:Programming Language Used. 4

The programming language used by the Arduino NANO is the C++. The Arduino

NANO IDE has a well-defined function for each task that is easy to remember, for

the remote control, we used a C++ code to program the receiver to receive signals

from the remote and decode these signal, an additional Python coded application is

used to program functions for each button.

For the Air Mouse, C++ was used in Arduino IDE environment as will, by using

different useful libraries.

5. Air Mouse Technology:

An air mouse is a computer mouse that controls the cursor using

motion-sensing technology and does not require a desk. You can

control the cursor by waving the mouse in the air as if you were

pointing to where you want the cursor to go. For example, a

person doing a presentation may use an air mouse to control a

cursor and the presentation while standing.

In addition to controlling the mouse pointer while standing, an air mouse often has

additional buttons to help control the presentation slides. One button may be used to

go back to the previous slide, and another button to go forward to the next slide.

]4[.asks mentioned above with easeOur Remote should be able to do the t

11

Figure 2.1: PC Remote Conceptual Design

2.3 Conceptual Design

This section describes the concept of the project. Simplified, input and

.output

1. Remote: LG Infrared Remote that sends data to the receiver.

2. Receiver: IR receiver connected to the PC, attached to Arduino

components.

3. The PC will receive the signals from the remote and perform actions on

the screen.

12

Figure 2.2: Air Mouse Conceptual Design

This section describes the concept of the air mouse. Simplified.

Gyroscope: Accelerometer sensor, used to control the mouse movement.

Connected to an ESP32. When you move the gyroscope, you will be able to

control the mouse movement on the screen.

2.4 Literature Review

Some of the previous projects that inspired me.

1- In 2009 a similar project to this one was applied by 2 Computer Engineering

students at Al-Najah University. Adham Al-Dwiek & Ibrahim Al-Adham both

. Dr. Luai Malhisproject under the supervision of PC remote controlworked on a

and PIC18F6420 microcontrollerThey designed the hardware circuit using a

 C#they used programmed the circuit using PIC C compiler. In the software part,

language to develop their product’s software user interface on Windows. With the

ability to adapt to any infrared remote control, which means that you can use any

]6[.zremote with frequency 38 kH

13

2- W10 GYRO Smart Remote

W10 GYRO is the world's 1st and only 6-axis gyro air mouse designed

specifically for the Windows 10 system.

All shortcut buttons and hotkeys are fully optimized for Windows 10. Utilizing

2.4GHz wireless technology with a USB receiver, W10 GYRO can be operated

without any need for a manual driver installation. Simply plug in the bundled

USB receiver to your Windows 10 based PC and you're all set and ready to

enjoy the amazing control experience from the comfort of your own sofa. W10

GYRO is equipped with backlit LED which means you don't have to worry about

not seeing the keys while using it in the dark. The operating distance of W10

GYRO is up to 10 meters from your computer. In addition, W10 GYRO comes

with TV remote learning features on the front side, allowing it to learn up to 34

keys from your TV IR remote! [7]

W10 GYRO Smart Remote

W10 GYRO Smart Remote

14

3- Warren Parsons’ DIY USB Receiver.

Warren Parsons is a Canadian programmer who worked in 2021 on the same idea of

programming an IR remote that can control the PC. Using HTPC + WinLIRC, he

made his own USB IR Receiver for his PC that helped him control anything on his

PC using any 38 kHz remote.

The items that Warren used in his project are very similar to the items I am using in

mine. An Arduino Nano (using an ATmega328P w/ USB) and a SM0038 IR

]8[.Receiver

4- WeChip Air Mouse

Axis inertia sensors and infrared -and mouse combo, 62.4GHz wireless keyboard

]9[.remote control. Air mouse with keyboard

WeChip 2 in 1 Air Mouse & Keyboard

15

Chapter 3 System Design:

In this chapter we’re discussing the system needed components and the system’s

design.

3.1 System Design

 Figure 3.1 below shows how the hardware components are planned to be designed:

Figure 3.1: System Design

The figure shows two parts, part 1 shows an IR TSOP sensor connected to an

Arduino Nano which is responsible of receiving data from the LG infrared remote,

this part is connected to the PC through USB. Part 2 shows a gyro sensor connected

to an esp32 which is responsible of controlling the mouse movement, part 2 will be

paired to a Bluetooth adapter connected to the PC.

16

3.2 System Hardware Components.

Component
No. of
pieces

Image Component
No. of
pieces

Image

Arduino Nano 1

LG IR remote 1

MPU-6050 1

USB Cable 2

TSOP VS1838b
universal Infrared

receiver
1

ESP32 1

Bluetooth 4.2
USB adapter

1

Breadboard
Mini

2

5V lithium battery 1

LED 1

Table 3.1: System Hardware Components

17

]10[Arduino Nano .123.

friendly board based on -is a small, complete, and breadboard Arduino NanoThe

the ATmega328 (Arduino Nano 3.x). It has more or less the same functionality of the

Arduino Duemilanove, but in a different package. It lacks only a DC power jack, and

 .ble instead of a standard oneB USB ca-works with a Mini

20V -B USB connection, 6-The Arduino Nano can be powered via the Mini

unregulated external power supply (pin 30), or 5V regulated external power supply

) pin 27(

.automatically selected to the highest voltage sourceThe power source is

The ATmega328 has 32 KB, (also with 2 KB used for the bootloader. The

2 KB of SRAM and 1 KB of EEPROM ATmega328 has

Figure 3.2: Arduino Nano

18

l specifications of Arduino NanoThe Table below shows the ful

Microcontroller ATmega328

Architecture AVR

Operating Voltage 5 V

Flash Memory 32 KB of which 2 KB used by bootloader

SRAM 2 KB

Clock Speed 16 MHz

Analog IN Pins 8

EEPROM 1 KB

DC Current per I/O Pins 40 mA (I/O Pins)

Input Voltage 7-12V

Digital I/O Pins 22 (6 of which are PWM)

PWM Output 6

Power Consumption 19 mA

PCB Size 18 x 45 mm

Weight 7 g

Product Code A000005

Table 3.2: Arduino Nano Specifications

19

3.2.2 MPU6050 Module

MPU6050 sensor module is complete 6-axis Motion

Tracking Device. It combines 3-axis Gyroscope, 3-

axis Accelerometer and Digital Motion Processor all

in small package. Also, it has additional feature of

on-chip Temperature sensor. It has I2C bus

interface to communicate with the microcontrollers.

It has Auxiliary I2C bus to communicate with other

sensor devices like 3-axis Magnetometer, Pressure

sensor etc.

If 3-axis Magnetometer is connected to auxiliary I2C bus, then MPU6050 can provide

complete 9-axis Motion Fusion output. [11][17][18][21]

MPU6050 inside sensors.

- When the gyros are rotated about any of the sense

axes, the Coriolis Effect causes a vibration that is

detected by a MEM inside MPU6050.

- The resulting signal is amplified, demodulated, and

filtered to produce a voltage that is proportional to the

angular rate.

- This voltage is digitized using 16-bit ADC to sample

each axis.

- The full-scale range of output are +/- 250, +/- 500, +/- 1000, +/- 2000.

- It measures the angular velocity along each axis in degree per second unit.

Figure 3.3

MPU-6050 Orientation & Polarity of

Rotation

MPU6050 Sensor

20

3-Axis Accelerometer

The MPU6050 consist 3-axis Accelerometer with Micro Electro Mechanical (MEMs)

technology. It used to detect angle of tilt or inclination along the X, Y and Z axes as

shown in below figure.

- Acceleration along the axes deflects the movable mass.

- This displacement of moving plate (mass) unbalances the differential capacitor

which results in sensor output. Output amplitude is proportional to acceleration.

- 16-bit ADC is used to get digitized output.

- The full-scale range of acceleration are +/- 2g, +/- 4g, +/- 8g, +/- 16g.

- It measured in g (gravity force) unit.

- When device placed on flat surface it will measure 0g on X and Y axis and +1g on

Z axis.

Figure 3.4: 3-Axis Gyro Accelerometer movement

21

DMP (Digital Motion Processor)

The embedded Digital Motion Processor (DMP) is used to compute motion

processing algorithms. It takes data from gyroscope, accelerometer and additional

3rd party sensor such as magnetometer and processes the data. It provides motion

data like roll, pitch, yaw angles, landscape and portrait sense etc. It minimizes the

processes of host in computing motion data. The resulting data can be read from

DMP registers.

Figure 3.5: Digital Motion Processor

22

MPU-6050 Module

The MPU-6050 module has 8 pins:

INT: Interrupt digital output pin.

AD0: I2C Slave Address LSB pin. This is 0th bit in 7-bit slave address of device. If

connected to VCC then it is read as logic one and slave address changes.

XCL: Auxiliary Serial Clock pin. This pin is used to connect other I2C interface enabled

sensors SCL pin to MPU-6050.

XDA: Auxiliary Serial Data pin. This pin is used to connect other I2C interface enabled

sensors SDA pin to MPU-6050.

SCL: Serial Clock pin. Connect this pin to microcontrollers SCL pin.

SDA: Serial Data pin. Connect this pin to microcontrollers SDA pin.

GND: Ground pin. Connect this pin to ground connection.

VCC: Power supply pin. Connect this pin to +5V DC supply.

MPU-6050 module has Slave address (When AD0 = 0, i.e. it is not connected to Vcc)

as,

Slave Write address(SLA+W): 0xD0

Slave Read address(SLA+R): 0xD1

Figure 3.6: MPU-6050 module

23

Infrared Receiver VS1838BTSOP .323.

VS1838 includes high-speed high-sensitivity PIN photodiode

and a low-power, high-gain Preamplifier IC, using epoxy plastic

package design, the product has passed REACH and SGS

certified as environmentally friendly products, as in the infrared

remote control system receiver Uses. There is a commonly

used IR receiver, you can use it with the Infrared Remote Control to build your

remote control project. It is easy to use and low cost. It mates well with

embedded electronics and can be used with common IR remotes. [12]

Features:

Working Voltage 2.7V to 5.5V

Reception Distance 10-15 M

Reception Angle
±35 Degree

Low Level Voltage 0.4V

High Level Voltage 4.5V

4.5V Alloy

Carrier frequency 38KHz

Figure 3.9: TSOP 1838B sensor pinout

Figure 3.8: TSOP 1838B sensor sensing distance & sensing degree

Figure 3.7: TSOP infrared
receiver vs1838B

Table 3.2: TSOP vs1838B features

Table 3.3: Recommended Conditions of Use for TSOP 1838B sensor

24

]31[32Wroom ESP .423.

ESP32 is a series of low-cost, low-power system on a chip microcontrollers with

integrated Wi-Fi and dual-mode Bluetooth. The ESP32 series employs either a

Tensilica Xtensa LX6 microprocessor in both dual-core and single-core variations,

Xtensa LX7 dual-core microprocessor and a single-core RISC-V microprocessor and

includes built-in antenna switches, RF balun, power amplifier, and low-noise receive

amplifier, filters, and power-management modules. ESP32 is created and developed

by Espressif Systems, a Shanghai-based Chinese company, and is manufactured by

TSMC using their 40 nm process. It is a successor to the ESP8266 microcontroller.

Programming

 Arduino IDE with the ESP32 Arduino Core

 Espruino – JavaScript SDK and firmware closely emulating Node.js

 MicroPython (and CircuitPython) – lean implementation of Python 3 for microcontrollers

 Lua Network/IoT toolkit for ESP32-Wrover

 Mongoose OS – an operating system for connected products on microcontrollers;

programmable with JavaScript or C. A recommended platform by Espressif Systems, AWS

IoT, and Google Cloud IoT

 mruby for the ESP32

 NodeMCU – Lua-based firmware

 PlatformIO

 Visual Studio Code with the officially supported Espressif Integrated Development

Framework (ESP-IDF) Extension

 Zerynth – Python for IoT and microcontrollers, including the ESP32

https://en.wikipedia.org/wiki/Arduino#IDE
https://en.wikipedia.org/wiki/Espruino
https://en.wikipedia.org/wiki/Node.js
https://en.wikipedia.org/wiki/MicroPython
https://en.wikipedia.org/wiki/CircuitPython
https://en.wikipedia.org/wiki/Mongoose_OS
https://en.wikipedia.org/wiki/Mruby
https://en.wikipedia.org/wiki/NodeMCU
https://en.wikipedia.org/wiki/Lua_(programming_language)
https://en.wikipedia.org/wiki/Visual_Studio_Code
https://en.wikipedia.org/wiki/Zerynth

25

ESP32 specifications:

Robust Design

ESP32 is capable of functioning reliably in industrial environments,

with an operating temperature ranging from –40°C to +125°C.

Powered by advanced calibration circuitries, ESP32 can

dynamically remove external circuit imperfections and adapt to

changes in external conditions.

Ultra-Low Power Consumption

Engineered for mobile devices, wearable electronics and IoT

applications, ESP32 achieves ultra-low power consumption with a

combination of several types of proprietary software. ESP32 also

includes state-of-the-art features, such as fine-grained clock gating,

various power modes and dynamic power scaling.

High Level of Integration

ESP32 is highly-integrated with in-built antenna switches, RF

balun, power amplifier, low-noise receive amplifier, filters, and

power management modules. ESP32 adds priceless functionality

and versatility to your applications with minimal Printed Circuit Board (PCB)

requirements.

Hybrid Wi-Fi & Bluetooth Chip

ESP32 can perform as a complete standalone system or as a

slave device to a host MCU, reducing communication stack overhead on the main

application processor. ESP32 can interface with other systems to provide Wi-Fi and

Bluetooth functionality through its SPI / SDIO or I2C / UART interfaces.

26

3.2.5 ESP32, Arduino UNO & Arduino Nano comparison.

]24[Arduino Nano

]23[Arduino UNO

]22[ESP32

Features #

ATmega328 ATmega168
Tensilica Xtensa LX6

microprocessor @ 160
or 240 MHz

Microcontroller 1

5V 5 V 2.2 – 3.6 V Voltage Usage 2

30 (6 PWM output) 20 25 Total Pins 3

16 MHz 16 MHz 240 MHz Clock Speed 4

2Kbytes 2Kbytes 250 Kbytes SRAM 5

32Kbytes (2KB used by
bootloader)

32 Kbytes 16 Mbytes Flash Memory 6

2.4 GHz Wi-Fi 7

Bluetooth 8

Table 3.4: Table of Comparison

27

 componentssoftware System 3.3

The best languages to match the way project components are used to create them

and to get the best accuracy, outcomes, and performance for the project were

sought after in the software section. We decided to use C++ in Arduino environment

as the language for programming the Air Mouse functions. We also used C++ in

Arduino environment for decoding the remote signals to get their serial codes. And

the Python language for programming the application for the remote functions.

Choosing the best programming language

In order for the system to work as a whole, it was necessary to take into account the

languages through which we wanted to connect the system's components. After

conducting research, learning the appropriate language, and comparing it to other

languages, it was found that the C++ language, was the best suitable language for

programming the system's Air Mouse to get the best performance. And the Python

programming language for programming the Remote functions due to the libraries

Python has that helped us a lot. Let’s briefly talk about these languages.

]19[:C++ Programming Language

oriented programming language that can identify both classes and -s an objectC++ i

It is a flexible programming language with many potential applications. It can objects.

make games, browsers, and operating systems, among other things. It offers a

oriented, -variety of programming paradigms, including functional, procedural, object

nsequently robust and flexible. C++ is an old but still functional etc. C++ is co

language. It is frequently used to create highly skilled gaming software and powerful

.applications

28

]20[:Programming Language Python

automatic dynamic typing, the Python is a powerful programming language that has

capability to dynamically bind different operations. Beginner programmers frequently

ins. organized packages, and plug-lluse Python due to its straightforward syntax, we

ace, which makes its Python's design philosophy makes extensive use of whitesp

oriented programming methodology ensures that -code simpler to read. Its object

programmers will receive assistance in writing clear, logical code for both

. complicated and straightforward applications

for programming the remote functions is the high The main reason we used Python

.capabilities with GUI programming and the availability of useful libraries

3.4 Differences between C++ & Java

C++

Python

languageCompiled Programming Interpreted Programming Language

.Operator overload is supported .Operator overload is supported

Has a small number of library patrons
It includes a sizable library collection that
makes it possible to use it for applications

.AI, and other fieldsin data science,

The programming language C++
.compilers quickly

When an interpreter is used, execution is
.delayed

Platform dependent Platform independent

.Syntax rules are strictly followed ‘;’ It isn’t necessary to use semicolon

Table 3.5: Table of Comparison between C++ & Python

29

3.5 Libraries Used

Libraries play the main role in system software, they come with great benefits to

ready-to-use codes, and with libraries you can save so much time and effort. In our

system software we used the following libraries:

1. ESP32 BLE Mouse for Air Mouse using Gyroscope MPU6050 in Arduino. This

library doesn’t come with Arduino and has to be manually installed, the github link to

.this library will be provided in the references

2. IRremote for decoding remote signals in Arduino.

3. EspSoftwareSerial for programming ESP32 on Arduino environment in Arduino.

4. Adafruit_BusIO for gyroscope sensor in Arduino.

5. Pyserial for programming remote functions in Python.

6. Pyautogui for programming remote functions in Python.

30

3.6 System Components Detailed Diagrams & Pinouts

]14[Arduino Nano Pinout .163.

Arduino has 14 digital PINs for digital devices and 8

analog PINs for analog devices. The Table 3.1 below

shows each Pin and information about it

Figure 3.10: Arduino Nano Pinout

Figure 3.11: Arduino Nano Pinout
Numbered

Table 3.5: Arduino Nano Pins and Description

31

]51[ESP32 Pinout 4.63.

]16[6050 Pinout-MPU .563.

Figure 3.13: MPU-6050 pinout

Figure 3.12: ESP WROOM32 Pinout

32

3.6.6 Air Mouse Circuit Design

The following sketch shows the system design for the air mouse and

connected to the PC via USB or Bluetooth.

3.6.2 IR Receiver Circuit Design:

Note: The circuit shows Arduino Micro. They’re not different, Micro and Nano

perform same operations.

Figure 3.15: IR Receiver Circuit Design

Figure 3.14: Air Mouse Circuit Design

33

3.6.7 Air Mouse Schematic Diagram

Circuit Connections:

SDA is connected to GPIO21

SCL is connected to GPIO22

GND is connected to GND

VCC is connected to the 3.3V

Figure 3.16: Air Mouse Schematic Diagram

34

3.6.3 Receiver Schematic Diagram

Figure 3.17: IR Receiver Schematic Diagram

Circuit Connections:

VCC is connected to D2

GND is connected to D3

OUTPUT is connected to D4

Led Cathode is connected to the Output

Led Anode is connected to the GND

35

3.7 Summary:

At the end of Chapter 3, we were able to describe the project’s operation and the

procedures. A decision on the parts to use and how to connect them was also made

after viewing sources of each hardware components and checking libraries on

different environments.

The initial setting of the system, we need a PC using Windows OS. The Arduino

Nano should be connected to the PC via USB port, the Arduino Nano has an infrared

receiver attached to it to receive signals from the remote and perform actions.

For Air Mouse, the sensor will be attached to the ESP32 and sticked to the remote

so you can air control the mouse corsair as you move your hand in all directions.

Remote needed: Any spare LG remote will work, as long as the frequency is 38 kHz.

36

Chapter 4: System Implementation

4.1 Overview

We present the system implementation in this chapter. It is done by designing and

implementing the receiver and sender as we mentioned earlier in chapter 3. We will

describe the logic of the receiver and the logic of the sender.

4.2 The Receiver

In this section we will describe the receiver logic, connection, functionality, and how it

works.

4.2.1 Receiver Functionality

The main functionality of the receiver is to catch the remote signal and send it to the

computer to execute it, these operations also have to be in real time and synced

between the remote press and action execution on the computer.

4.2.2 Receiver Logic (TSOP sensor)

1. The receiver has to connect to the computer and run it to start.

2. The user press a button on the remote control

3. The receiver will receive the signal from the remote, such that the remote sends

the signal and the VS1838b universal IR receiver, which is connected to the Arduino,

will receive this signal.

4. The Arduino will read the signal from the VS1838b universal IR receiver and

converts this signal into an executable signal (action) according to the type of this

signal.

5. Transfers the decoded signal to the computer (target device).

Figure 4.1 summarize the receiver logic steps in order, and figure 4.2 shows the

hardware components of the receiver and how they’re connected with each other.

37

Figure 4.1: Receiver Logic

User press a button in

the remote control

Receive the Signal
using VS1838b

universal IR receiver

Convert the received
signal to executable one

in Arduino

Send the executable
signal from Arduino to

the Computer

Send Signal from the
remote

38

 4.3 The Sender

In this section we will describe the sender logic, we have 2 sending components, an

IR remote and an MPU 6050 sensor (Air Mouse).

4.3.1 The Air Mouse Functionality.

The main functionality of the mouse is to control the movement of the corsair on the

computer, this operation have to be in real time and synced between the mouse

movement and action execution on the computer.

4.3.2 The Air Mouse Logic

1. The Mouse has to be connected to the computer via the Bluetooth and run it to

start.

2. The use freely moves the mouse.

3. The MPU6050 sensor module detects the user movement and sends it to the

ESP32 through I2C protocol to process the movement.

4. The ESP32 receives the movement from the MPU6050 and converts this

movement into an executable signal.

5. The ESP32 will transfer the decoded signal to the computer via Bluetooth.

Figure 4.2: The Hardware components of the Receiver

39

Figure 4.3 summarizes the (Air Mouse) logic steps in order, and figure 4.4 shows the

hardware component of the Air Mouse and how connected with each other

Send the executable
signal from ESP32 to

the Computer via
Bluetooth

The user move the Air
Mouse

Send the detected
movement from the

MPU6050 sensor module
to the ESP32

Convert the received
movement in ESP32 to

executable signal

Detect the movement
from the user using

MPU6050 sensor module

Figure 4.3: Air Mouse Logic

40

Figure 4.4: Air Mouse Hardware Components

41

Table 4.1: The Remote Buttons and their Serials

4.4 System Testing

The system testing used to make sure that the system is achieved the target of it

successfully or not, so in this section we represent the test result for the sender and

receiver

4.4.1 Receiver Testing

We run the Arduino board and the computer to be ready for testing and then start

testing the buttons to collect the serial bytes of each button.

The Table 4.1 shows each button and its serial bytes in Hexadecimal. No buttons

duplicate the same serial

Button Serial

1 POWER 20DF10EF

2 HOME
20DF7E81

3 DISP
20DFCA35

4 RETURN
20DF14EB

5 EXIT 20DFDA25

6 MUTE 20DF906F

7 SOURCE 20DFD02F

8 CH + 20DF00FF

9 CH - 20DF907F

10 VOL + 20DF40BF

11 VOL - 20DFC03F

12 OK 20DF22DD

13 1 20DF8877

14 2
20DF48B7

15 3 20DFC837

16 4 20DF28D7

42

Button Serial

17 5 20DFA857

18 6 20DF6897

19 7
20DFE817

20 8 20DF18E7

21 9 20DF9867

22 0
20DF08F7

23 YouTube 20DFD52A

24 Amazon
20DF3AC5

25 SLEEP 20DF708F

26 MENU 20DFC23D

27 -/--
20DF7887

28
Yellow Button

20DFC639

29
Arrow Right

20DF609F

30
Arrow Left

20DFE01F

31
Arrow Up

20DF02FD

32
Arrow Down

20DF827D

33 Amazon 20DF3AC5

After testing the receiver and collecting each button’s serial, we can program these

buttons to do certain actions using a python code.

Each button will be assigned with certain action to perform, table 4.2 will show the

testing and the performed action of each button.

43

Case expected output Obtained Output
status

(pass/fail)

1
Press POWER

button
Shutdown the

computer
Shutdown the

computer
pass

2 Press HOME button Show the desktop Show the desktop pass

3 Press DISP button
The same behavior

of click the right
mouse button

The same
behavior of click
the right mouse

button

pass

4
Press RETURN

button

The same behavior
of click the

backspace button

The same
behavior of click
the backspace

button

pass

5 Press EXIT button
The same behavior
of click the alt + f4

The same
behavior of click

the alt + f4
pass

6 Press MUTE button
Mute the computer

volume
Mute the

computer volume
pass

7
Press SOURCE

button
Do nothing Do nothing pass

8 Press CH + button Page Up Page Up pass

9 Press CH - button Page Down Page down pass

10 Press VOL + button
Turn up the

computer volume
Turn up the

computer volume
pass

11 Press VOL - button
Turn down the

computer volume
Turn down the

computer volume
pass

12 Press OK button
The same behavior
of clicking the left

mouse button

The same
behavior of

clicking the left
mouse button

pass

13 Press 1 button Ctrl + A Ctrl + A Pass

14 Press 2 button Ctrl + C Ctrl + C Pass

Table 4.2: The Remote Buttons and their Actions

44

Case expected output Obtained Output
status

(pass/fail)

 Press 3 button Ctrl + V Ctrl + V pass

 Press 4 button Ctrl + X Ctrl + X pass

17 Press 5 button Ctrl + Z Ctrl + Z pass

18 Press 6 button Delete Delete pass

19 Press 7 button Caps Lock Caps Lock pass

20 Press 8 button Win + R Win + R pass

21 Press 9 button Win + S Win + S pass

22
Press NETFLIX

button
Open browser and

visit Netflix.com
Open browser and

visit Netflix.com
pass

23
Press YouTube

button
Open browser and
visit YouTube.com

Open browser and
visit YouTube.com

pass

24
Press Amazon

button
Open browser and

visit Shahid.net
Open browser and

visit Shahid.net
pass

25 Press MENU button
Open Windows

Menu
Open Windows

Menu
pass

26 -/--
The same behavior

of click the spacebar
button

The same behavior
of click the spacebar

button
pass

26 Press Yellow button Open Chrome.exe Open Chrome.exe pass

27
Press Right Arrow

button
Right Button Right Button pass

28
Press Left Arrow

button
Left Button Left Button pass

29
Press Up Arrow

button
Up Button Up Button pass

30
Press Down Arrow

button
Down Button Down Button pass

31 Press 0 button Enter Enter pass

45

4.4.2 Air Mouse Testing

We run the Arduino board and the computer to be ready for testing, then connect the

ESP32 with the computer via Bluetooth. Start test the mouse movement by moving

the Air Mouse and see what happened in the computer mouse. The result was seen

as the following in table 4.3 below.

Case expected output Obtained Output
status

(pass/fail)

1
Move the sender to

the north

The computer
mouse move to the

north

The computer
mouse move to

the north
pass

2
Move the sender to

the south

The computer
mouse move to the

south

The computer
mouse move to

the south
pass

3
Move the sender to

westthe

The computer
mouse move to the

west

The computer
mouse move to

westthe
pass

4
Move the sender to

the east

The computer
mouse move to the

east

The computer
mouse move to

the east
pass

5
Move the sender to

northeastthe

The computer
mouse move to the

northeast

The computer
mouse move to

northeastthe
pass

6
Move the sender to

 southeastthe

The computer
mouse move to the

 southeast

The computer
mouse move to

southeastthe
pass

7
Move the sender to

 southwestthe

The computer
mouse move to the

 southwest

The computer
mouse move to

 southwestthe
pass

8
Move the sender to

 northwestthe

The computer
mouse move to the

 northwest

The computer
mouse move to

 northwestthe
pass

Table 4.3: The Mouse test Results

46

4.5 Challenges and Issues.

This section represent the main challenges that we faced in this system and how we

solved them. The main issues are the following:

1- Turning the PC on with the remote was a challenge we face because the receiver

won’t work unless:

 a. The PC is turned on to power it.

 b. The Python application (System Software) has to be running as long as

you’re using the Remote. If the Software was turned off, you can’t control your PC.

2- Receiver changes behavior after turning off the PC/Laptop for more than a day,

and it starts giving some random signals even without any key pressed on

remote, after doing some research I reached out that it might be one of these

reasons:

 Possibility 1: remote sensor, may be TSOP1838 or so, is not working properly.

 Possibility 2: if sensor is ok, there might be loose contacts

 Possibility 3: there are other IR emitters active in the room

There’re some ways to fix this issue:

1. Disconnect and reconnect the Arduino to check whether bytes are received

properly.

2. Disconnect the Arduino, shut down the PC and turn it back on, reconnect the

Arduino and use it to check whether bytes are received properly.

3. Make sure there’re no remotes of other devices being used in the room.

4. Make sure there’re no IR emitters working in the room, such as LED emitters.

5. If none of the steps above worked, disconnect the Arduino and change the

position of the TSOP sensor on the breadboard.

47

Chapter 5: Conclusion and Future Upgrades

5.1 Future Upgrades:

:Wireless Keyboard (possible future expansion). 1

A wireless keyboard is a computer keyboard that allows the user to communicate

with computers, tablets, or laptops with the help of radio frequency such as Wi-Fi

and Bluetooth or with infrared (IR) technology.

It is common for wireless keyboards available these days to be accompanied by a

wireless mouse.

Wireless keyboards based on infrared technology use light waves to transmit signals

to other infrared-enabled devices. But, in case of radio frequency technology, a

wireless keyboard communicates using signals which range from 27 MHz to up to

2.4 GHz.

Most wireless keyboards today work on 2.4 GHz radio frequency. Bluetooth is

another technology that is being widely used by wireless keyboards. These devices

connect and communicate to their parent device via the Bluetooth protocol. A

wireless keyboard can be connected using RF technology with the help of two parts,

a transmitter and a receiver. The radio transmitter is inside the wireless keyboard.

The radio receiver plugs into a keyboard port or USB port. Once the receiver and

transmitter are plugged in, the computer recognizes the keyboard and mouse as if

]5[. they were connected via a cable

able to apply the weren’tIn our project, we

wireless keyboard technology to the remote

due to the lack of resources. But it’s always

possible to add this technology to the remote

.in the future PC remote control with wireless Keyboard

48

5.2 Conclusion:

What we know is a drop, what we don’t know is an ocean.

The idea of this project came from what I noticed to be a struggle that people have

with controlling their PCs or Laptops when they want to connect them to a big TV

screen to watch a football game or watch a movie, I myself struggle from this issue

because I have a TV screen connected to my PC through an HDMI cable, and it’s

attached on the wall, I use it for watching YouTube, Football games or Netflix movies

usually when it’s bed time. Every time I want to change the movie or skip a video on

YouTube I have to get up, do it and come back to bed. This can be annoying when it

happens repeatedly, this life scenario stormed the idea of a TV IR remote controlling

the PC.

I introduced this idea to my team member, and I thought to myself a lot, whether we

will be able to apply it or not. And here we are today, the project met its goals

successfully. We managed to build a PC Infrared Remote Control with Air Mouse

that solved this problem.

With the great help of Arduino environment, we were able to use the minimal

hardware requirements to build this project, we didn’t struggle with finding and

assembling codes due to the enormous libraries that it offers for all types of projects.

49

References:

[1] https://www.arduino.cc

[2] https://www.techtarget.com

[3] https://www.techtarget.com

[4] https://www.computerhope.com/jargon/a/air-mouse.htm

[5] Wikipedia

[6] https://eng-old.najah.edu/ar/graduation-projects/2760

remote-smart-gyro-jobs.com/products/w10-https://www.pepper]7[

 [8] https://github.com/AdvancedNewbie/IRNanoLIRC

http://www.wechipbox.com]9[

[10] https://store.arduino.cc/products/arduino-nano

[11] https://www.electronicwings.com/sensors-modules/mpu6050-gyroscope-accelerometer-
temperature-sensor-module

[12] https://www.makerfabs.com/infrared-receiver-vs1838b.html

[13] https://www.espressif.com/en/products/socs/esp32

https://docs.arduino.cc/hardware/nano] 14[

-and-pinout-resolution-high-v4-devkitc-https://www.mischianti.org/2021/07/17/esp32] 15[
/specs

050mpu6-module-sensor-gyroscope-and-diy.com/accelerometer-https://circuits] 16[

-accelerometer-gyroscope-atmega/mpu6050-https://www.electronicwings.com/avr] 17[
atmega16-with-interface-temperature

[18] https://www.electronicwings.com/arduino/mpu6050-interfacing-with-arduino-uno

[19] https://en.wikipedia.org/wiki/C%2B%2B

[20] https://en.wikipedia.org/wiki/Python_(programming_language)

[21] https://www.electronicwings.com/esp32/mpu6050-gyroscope-interfacing-with-esp32

[22] https://www.electronicshub.org/getting-started-with-esp32/

[23] https://docs.arduino.cc/hardware/uno-rev3

[24] https://store.arduino.cc/products/arduino-nano &

https://components101.com/microcontrollers/arduino-nano

https://docs.arduino.cc/hardware/nano
https://www.mischianti.org/2021/07/17/esp32-devkitc-v4-high-resolution-pinout-and-specs/
https://www.mischianti.org/2021/07/17/esp32-devkitc-v4-high-resolution-pinout-and-specs/
https://circuits-diy.com/accelerometer-and-gyroscope-sensor-module-mpu6050
https://www.electronicwings.com/avr-atmega/mpu6050-gyroscope-accelerometer-temperature-interface-with-atmega16
https://www.electronicwings.com/avr-atmega/mpu6050-gyroscope-accelerometer-temperature-interface-with-atmega16
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Python_(programming_language)
https://www.electronicshub.org/getting-started-with-esp32/
https://docs.arduino.cc/hardware/uno-rev3
https://store.arduino.cc/products/arduino-nano

50

Appendices

A. Air Mouse:

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

#include <BleConnectionStatus.h>

#include <BleMouse.h>

#include <Wire.h>

#include <SPI.h>

#include <SoftwareSerial.h>

uint8_t data[6];

int16_t gyroX, gyroZ;

int Sensitivity = 600;

int delayi = 20;

BleMouse bleMouse;

uint32_t timer;

uint8_t i2cData[14];

const uint8_t IMUAddress = 0x68;

const uint16_t I2C_TIMEOUT = 1000;

uint8_t i2cWrite(uint8_t registerAddress, uint8_t* data, uint8_t

length, bool sendStop) {

 Wire.beginTransmission(IMUAddress);

 Wire.write(registerAddress);

 Wire.write(data, length);

 return Wire.endTransmission(sendStop); // Returns 0 on success

}

uint8_t i2cWrite2(uint8_t registerAddress, uint8_t data, bool sendStop)

{

 return i2cWrite(registerAddress, &data, 1, sendStop); // Returns 0 on

success

}

uint8_t i2cRead(uint8_t registerAddress, uint8_t* data, uint8_t nbytes)

{

 uint32_t timeOutTimer;

 Wire.beginTransmission(IMUAddress);

 Wire.write(registerAddress);

 if(Wire.endTransmission(false))

 return 1;

 Wire.requestFrom(IMUAddress, nbytes,(uint8_t)true);

 for(uint8_t i = 0; i < nbytes; i++) {

51

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

 if(Wire.available())

 data[i] = Wire.read();

 else {

 timeOutTimer = micros();

 while(((micros() - timeOutTimer) < I2C_TIMEOUT) &&

!Wire.available());

 if(Wire.available())

 data[i] = Wire.read();

 else

 return 2;

 }

 }

 return 0;

}

void setup() {

 Wire.begin();

 i2cData[0] = 7;

 i2cData[1] = 0x00;

 i2cData[3] = 0x00;

 while(i2cWrite(0x19, i2cData, 4, false));

 while(i2cWrite2(0x6B, 0x01, true));

 while(i2cRead(0x75, i2cData, 1));

 delay(100);

 while(i2cRead(0x3B,i2cData,6));

 void ICACHE_RAM_ATTR ISRoutine ();

 timer = micros();

 Serial.begin(115200);

 bleMouse.begin();

 delay(100);

}

void loop() {

 while(i2cRead(0x3B,i2cData,14));

 gyroX = ((i2cData[8] << 8) | i2cData[9]);

 gyroZ = ((i2cData[12] << 8) | i2cData[13]);

 gyroX = gyroX / Sensitivity / 1.1 * -1;

 gyroZ = gyroZ / Sensitivity * -1;

 if(bleMouse.isConnected()){

 Serial.print(gyroX);

 Serial.print(" ");

 Serial.print(gyroZ);

 Serial.print("\r\n");

 bleMouse.move(gyroZ, -gyroX);

 }

 delay(delayi);

}

52

B. Arduino Remote Receive Demo

1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

/*

 * IRremote: IRrecvDemo - demonstrates receiving IR codes with IRrecv

 * An IR detector/demodulator must be connected to the input RECV_PIN.

 * Version 0.1 July, 2009

 * Copyright 2009 Ken Shirriff

 * http://arcfn.com

 */

#include <IRremote.h>

int RECV_PIN = 4; //DEFAULT RECEIVER PIN, IF WE WANT WE CAN CHANGE

IRrecv irrecv(RECV_PIN);

decode_results results;

void setup()

{

 pinMode(3,OUTPUT); digitalWrite(3,LOW);// GND

 pinMode(2,OUTPUT); digitalWrite(2,HIGH);//VCC

 Serial.begin(115200);

 Serial.println("Enabling IRin");

 irrecv.enableIRIn(); // Start the receiver

 Serial.println("Enabled IRin");

}

void loop() {

 if (irrecv.decode(&results)) {

 Serial.println(results.value, HEX);

 irrecv.resume(); // Receive the next value

 }

 delay(10);//DELAY FOR STABILITY

}

53

C. Remote Python Application

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

 30

 31

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

 44

 45

PC Remote Control

import time

import threading

import tkinter

from tkinter import ttk

from tkinter import *

import serial

import win32api

import pyautogui

import os

import subprocess

import serial.tools.list_ports

ports=serial.tools.list_ports.comports()

print ("list of COM ports: \n")

for port, desc,hwid in sorted(ports):

 print("{}: {} ".format(port, desc))

code assembled and edited by Ahmad Titi

serial_data = ''

filter_data = ''

update_period = 5

serial_object = None

gui = Tk()

gui.title("PC Remote Control")

gui.configure(background="blue")

def connect():

 global serial_object

 port = port_entry.get()

 baud = 115200 # baud_entry.get()

 try:

 serial_object = serial.Serial('COM'+ str(port), baud)

 except ValueError:

 print ("Enter Baud and Port")

 return

 t1 = threading.Thread(target = get_data)

 t1.daemon = True

 t1.start()

def get_data():

 """This function serves the purpose of collecting data from the

serial object and storing the filtered data into a global variable.

 The function has been put into a thread since the serial event is

a blocking function. """

54

 46

 47

 48

 49

 50

 51

 52

 53

 54

 55

 56

 57

 58

 59

 60

 61

 62

 63

 64

 65

 66

 67

 68

 69

 70

 71

 72

 73

 74

 75

 76

 77

 78

 79

 80

 81

 82

 83

 84

 85

 86

 87

 88

 89

 90

 91

 92

 93

 94

 95

 96

 97

 98

 99

100

101

 global serial_object

 global filter_data

 while(1):

 try:

 serial_data = serial_object.readline()

 refined=str(serial_data.decode('ascii'))

 serial_data=refined

 text.insert(END, serial_data)

 if '20DF40BF' in serial_data:

 pyautogui.press('volumeup',10)

 elif '20DFC03F' in serial_data:

 pyautogui.press('volumedown',10)

 elif '20DF906F' in serial_data:

 pyautogui.press('volumemute')

 elif '20DF00FF' in serial_data:

 pyautogui.press('pageup')

 elif '20DF807F' in serial_data:

 pyautogui.press('pagedown')

 elif '180BD9FF' in serial_data:

 pyautogui.press('win')

 elif '20DFCA35' in serial_data:

 pyautogui.rightClick()

 elif '20DF22DD' in serial_data:

 pyautogui.click()

 elif '20DF02FD' in serial_data:

 pyautogui.press('up')

 elif '20DF827D' in serial_data:

 pyautogui.press('down')

 elif '20DFE01F' in serial_data:

 pyautogui.press('left')

 elif '20DF609F' in serial_data:

 pyautogui.press('right')

 elif '20DF7887' in serial_data:

 pyautogui.press('space')

 elif '20DF14EB' in serial_data:

 pyautogui.press('backspace')

 elif '20DF8877' in serial_data:

 pyautogui.hotkey('ctrl', 'a')

 elif '20DF48B7' in serial_data:

 pyautogui.hotkey('ctrl', 'c')

 elif '20DFC837' in serial_data:

 pyautogui.hotkey('ctrl', 'v')

 elif '20DF28D7' in serial_data:

 pyautogui.hotkey('ctrl', 'x')

 elif '20DFA857' in serial_data:

 pyautogui.hotkey('ctrl', 'z')

55

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

 elif '20DF6897' in serial_data:

 pyautogui.press('delete')

 elif '20DFE817' in serial_data:

 pyautogui.press('capslock')

 elif '20DF18E7' in serial_data:

 pyautogui.hotkey('win', 'r')

 elif '20DF9867' in serial_data:

 pyautogui.hotkey('win', 's')

 elif '20DF08F7' in serial_data:

 pyautogui.press('enter')

 elif '20DF7E81' in serial_data:

 pyautogui.hotkey('win','d')

 elif '20DFDA25' in serial_data:

 pyautogui.hotkey('alt','F4')

 elif '20DFC23D' in serial_data:

 pyautogui.press('win')

 elif '20DF10EF' in serial_data:

 subprocess.call(["shutdown", "/s"])

 elif '20DF6A95' in serial_data:

 win32api.ShellExecute(0, 'open', 'C:\Program

Files\Google\Chrome\Application\\Netflix.html', '', '', 1)

 elif '20DF3AC5' in serial_data:

 win32api.ShellExecute(0, 'open', 'C:\Program

Files\Google\Chrome\Application\Shahid.html', '', '', 1)

 elif '20DFD52A' in serial_data:

 win32api.ShellExecute(0, 'open', 'C:\Program

Files\Google\Chrome\Application\YouTube.html', '', '', 1)

 elif '20DFC639' in serial_data:

 win32api.ShellExecute(0, 'open', 'C:\Program

Files\Google\Chrome\Application\chrome.exe', '', '', 1)

 except TypeError:

 pass

def update_gui():

 """" This function is an update function which is also threaded.

The function assimilates the data and applies it to its corresponding

progress bar. The text box is also updated every couple of seconds.

 A simple auto refresh function .after() could have been used, this

has been avoid purposely due to various performance issues. """

 global filter_data

 global update_period

 global serial_object

 text.place(x = 12, y = 170)

 new = time.time()

 while(1):

 if time.time() - new >= update_period:

 text.delete(0.0, END)

 new = time.time()

56

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

def send():

 """This function is for sending data from the computer to the host

controller.

 The value entered in the entry box is pushed to the UART. The

data can be of any format, since

 the data is always converted into ASCII, the receiving device

has to convert the data into the required f

 format."""

 send_data = data_entry.get()

 if not send_data:

 print ("Sent Nothing")

 serial_object.write((send_data))

def disconnect():

 """

 This function is for disconnecting and quitting the application.

 Sometimes the application throws a couple of errors while it is

being shut down, the fix isn't out yet

 but will be pushed to the repo once done.

 simple GUI.quit() calls. """

 try:

 serial_object.close()

 except AttributeError:

 print ("Closed without Using it -_-")

 gui.destroy()

 gui.quit()

if __name__ == "__main__":

 """

 The main loop consists of all the GUI objects and its placement.

 The Main loop handles all the widget placements.

 """

global serial_data

 #frames

 frame_1 = Frame(height = 285, width = 480, bd = 3, relief =

'groove').place(x = 7, y = 5)

 frame_2 = Frame(height = 150, width = 480, bd = 3, relief =

'groove').place(x = 7, y = 300)

 text = Text(width = 58, height = 7)#17

#threads

 t2 = threading.Thread(target = update_gui)

 t2.daemon = True

 t2.start()

57

labels

 heading=Label(text="PC REMOTE CONTROL",font="Times 25 bold italic

").place(x=12, y=10)

 heading10=Label(text="Ahmad H. Titi",font="Times 15 bold

").place(x=120, y=50)

 #baud = Label(text = "Baud").place(x = 100, y = 348)

 port = Label(text = "Port").place(x = 200, y = 348)

 received=Label(text="Received Serial data:",font="Times 15

").place(x=12, y=140)

 contact = Label(text = "Designed by \n

ahmadtheotherside@gmail.com

",font="Tahoma 9 bold ").place(x =8 , y = 450)

data input

 #baud_entry = Entry(width = 7)

 #baud_entry.place(x = 100, y = 365)

 port_entry = Entry(width = 7)

 port_entry.place(x = 200, y = 365)

#commands

 connect = Button(text = "Connect", command = connect).place(x =

15, y = 360)

 disconnect = Button(text = "Exit", command =

disconnect,width=17).place(x =300, y = 360)

#mainloops

 gui.geometry('500x500')

 gui.mainloop()

	1.1 Overview
	1.2 Motivation
	1.3 Project Objectives
	1.4 Problem Statement

