
Palestine Polytechnic University
College of Information Technology and Computer Engineering

Object Finder Robot

Team Members:

Hamza Sameeh Dwaik

Moayad Amjad Hrebat

Motaz Iyad Natsheh

Supervisor:

Dr.Amal Al-Dweik

Mr.Wael AL Takrouri

Hebron - Palestine

January-2023



Acknowledgment

In the name of ”Allah”, the most beneficent and merciful who gave us strength,
knowledge and helped us to get through this project. For those who deserve our
thanks the most, our parents, we are indebted to you for the rest of our lives
for your unconditional love and support. We know that thanks is not enough
and there are not enough words to describe how thankful we are.To our families
and friends, thank you for your endless encouragement all our lives and especially
during the completion of this project.We would like to thank our supervisors of
this project, Dr.Amal Al-Dweik and Mr.Wael AL Takrouri help us and advice
during this project.

We also thank our faculty and Professors at the College of Information Tech-
nology and Computer Engineering for their hard work and support to the students

i



Abstract

We frequently spend a lot of time looking for objects that we don’t remember
where put it leave consequently, technological assistance for users some individuals
find the process of looking for a specific object to be boring or annoying, This It
is particularly difficult for people with special needs and when there are several
objects that are challenging for a person to identify all at the same time solution
we suggest is an intelligent mobile robot that will interact with a mobile to detect
objects according to user request by using artificial intelligence YOLO and ROS
algorithm. The purpose of this system is to find objects specified by the user and
returns the objects coordinates within the generated map.

In this project, we achieved results, which is detect the object in the places
where we inserted the robot. The speed of detect the object was good, but the
accuracy was less. We were also able to calculate the distance between the robot
and the object, but not with high accuracy.

Keywords::Object Detection, Simultaneous,Localization and Mapping,SLAM, Mo-
bile Robot.

ii



�
é�C

	
mÌ'@

ú


ÍA
�
JËAK. ð AëA

	
Jª

	
�ð 	áK
@ Q»

	
Y
�
J
	
K B ZAJ


�
�

@ 	á«

�
IjJ. Ë @ ú




	
¯

�
I

�
¯ñË@ 	áÓ Q�


�
JºË@ ú



æ
	
�
�
®
	
K AÓ AJ. Ë A

	
«

�
éJ.ª�ð ,

�
éj. «

	QÓ ð

@
�
éÊÜØ

	
àñº

�
K

	á�
ªÓ Zú


æ
�
� 	á«

�
IjJ. Ë @

�
éJ
ÊÔ

« 	
à@ X@Q

	
¯B@

	
�ªK. Y

�
®
�
JªK


ZAJ

�
�

B@ 	áÓ YK
YªË@ ¼A

	
Jë

	
àñºK
 AÓY

	
J«ð

�
é�A

	
mÌ'@

�
HAg. AJ


�
JkB@ ø



ð
	
X �A

	
m�
�
�

CË �A

	
g É¾

�
��.

A
��
KñK. ðP hQ��

�
®
	
K ñë ÉmÌ'@

�
I

�
¯ñË@ �

	
®
	
K ú




	
¯ AêªJ
Ô

g
.
AîD
Ê«

	
¬Qª

�
JË @ �

	
j

�
�Ë@ úÎ« I. ª��
 ú




�
æË @

I. Ê£ I. �k
	á�
ªÓ

úæ



�
� 	á«

�
IjJ.ÊË ÈñÒjÖÏ @

	


�
KAêË @ úÎ«

�
�J
J.¢

�
� ©Ó É«A

	
®
�
JK


�
É
�
®
	
J
�
JÓ A

�
J
»
	
X

@
	
Yë 	áÓ

	
�Q

	
ªË@ . ROS

�
é

J�
K. ð YOLO ú



«A
	
J¢�B@ ZA¿

	
YË@

�
éJ
Ó

	PP@ñ
	
k Ð@Y

	
j
�
J�AK. ÐY

	
j
�
J�ÖÏ @

�
HA

	
J

KA¾Ë@

�
HAJ


�
K @Yg@


¨Ag. P@

ð ÐY
	
j
�
J�ÖÏ @ ÉJ.

�
¯ 	áÓ

�
èXYjÖÏ @

�
HA

	
J

KA¾Ë@ úÎ« Pñ

�
JªË@ ñë ÐA

	
¢
	
JË @

.
	


�
KAêË @

�
�J
J.¢

�
� ú




	
¯

�
é¢�
Q

	
mÌ'@ úÎ« AîD

	
�Q«ð

ÈA
	
gX@ Õç

�
' ú




�
æË @ 	á» AÓ


B@ ú




	
¯ 	á


KA¾Ë@

	
¬A

�
�
�
�» @ ù



ëð l .

�

'A
�
J
	
K A

	
J
�
®
�
®k , ¨ðQå

�
�ÖÏ @ @

	
Yë ú




	
¯

A
�	
��



@ A

	
JºÖ

�
ß . É

�
¯

@
�
é
�
¯YË@

�
I

	
KA¿ 	áºËð

�
èYJ
k.

	á

KA¾Ë@

	
¬A

�
�
�
�» @

�
é«Qå�

�
I

	
KA¿

�
IJ
k . AîD


	
¯

�
HñK. ðQË@

.
�
éJ
ËA«

�
é
�
¯YK. ��
Ë

	áºËð, Zú


æ
�
�Ë @ð

�
HñK. ðQË@

	á�
K.
�
é
	
¯A�ÖÏ @ H. A�k 	áÓ

�
HñK. ðP, ¡


�@Q

	
mÌ'@ Õæ�P , ©

�
¯ñÖÏ @, Yg@ð

�
I

�
¯ð ú




	
¯ , ZAJ


�
�

B@ YK
Ym

�
�
' :

�
éJ
kA

�
J
	
®ÖÏ @

�
HAÒÊ¾Ë@

. ÈñÒm×

iii



Table of Contents

List of Figures vi

List of Tables vii

List of Acronyms viii

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Project Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.4 Short Description Of The System . . . . . . . . . . . . . . . . . . . 2

1.5 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.6 List Of Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.6.1 Functional Requirement: . . . . . . . . . . . . . . . . . . . . 2

1.6.2 Nonfunctional Requirement: . . . . . . . . . . . . . . . . . . 3

1.7 Overview Of The Rest Of Report Sections . . . . . . . . . . . . . . 3

2 Background 4

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 YOLO (You Only Look Once) Algorithm . . . . . . . . . . . 4

2.2.2 ROS (Robot Operating System) . . . . . . . . . . . . . . . . 6

2.2.3 Turtlebot2 Motion . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.4 Mapping Algorithm . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 The System Components And Design Options . . . . . . . . . . . . 11

2.4.1 Hardware Components and Options: . . . . . . . . . . . . . 11

2.4.2 System Software Components: . . . . . . . . . . . . . . . . . 19

3 System Design 23

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Detailed Description Of The System . . . . . . . . . . . . . . . . . 23

3.3 System Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.1 System Block Diagram . . . . . . . . . . . . . . . . . . . . . 24

3.3.2 Schematic Diagram . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Pseudo-Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

iv



TABLE OF CONTENTS TABLE OF CONTENTS

3.5 Adjustments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 System Implementation 31

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Hardware Implementation: . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Software Implementation: . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.1 Operating System . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.2 Installing needed packages . . . . . . . . . . . . . . . . . . . 33

4.3.3 OpenCV implementation . . . . . . . . . . . . . . . . . . . . 33

4.3.4 Object detection implementation . . . . . . . . . . . . . . . 33

4.3.5 YOLO Implementation . . . . . . . . . . . . . . . . . . . . . 34

4.3.6 ROS implementation . . . . . . . . . . . . . . . . . . . . . . 34

4.3.7 ROS algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4 Mobile Application Implementation . . . . . . . . . . . . . . . . . . 35

4.4.1 MQTT Protocol . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4.2 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.5 Implementation issues and challenges . . . . . . . . . . . . . . . . . 38

5 Validation and Testing 39

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 Hardware Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2.1 Testing DC Motor In Kobuki . . . . . . . . . . . . . . . . . 39

5.2.2 Testing Kinect XBOX 360 . . . . . . . . . . . . . . . . . . . 39

5.3 Software testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3.1 OpenCV testing . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3.2 Testing Of YOLO Algorithm . . . . . . . . . . . . . . . . . . 40

5.3.3 Software Testing Tables . . . . . . . . . . . . . . . . . . . . 41

5.3.4 Mobile Application Testing . . . . . . . . . . . . . . . . . . . 42

5.4 System Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6 Conclusion and Future work 44

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

References..................................................................................................43

v



List of Figures

2.1 YOLO Methodology [4] . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Bounding Box [4] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 ROS communication between nodes[5] . . . . . . . . . . . . . . . . 7

2.4 Figure 2.4 Raspberry Pi 3[8] . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Xbox Kinect [11] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 TurtleBot 2[12] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 System Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Schematic diagram for DC Motor(kobuki robot) with Raspberry Pi 26

3.3 Schematic diagram for Xbox Kinect Camera with Raspberry Pi . . 27

3.4 Schematic diagram for LIDAR Sensor with Raspberry Pi . . . . . . 28

3.5 from raspberry pi to Dell laptop . . . . . . . . . . . . . . . . . . . . 29

3.6 CPU and Memory usage of Raspberry Pi . . . . . . . . . . . . . . . 30

3.7 URG LiDAR and XBOX Kinect . . . . . . . . . . . . . . . . . . . . 30

4.1 System Components . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Connect XBOX 360 Kinect Sensor to Kobuki . . . . . . . . . . . . 32

4.3 Gmapping Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4 Mobile Application Implementation . . . . . . . . . . . . . . . . . . 37

5.1 OpenCV Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 Testing YOLO Result . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3 MQTT Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.4 Topic in MQTT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

vi



List of Tables

vii



List of Acronyms

CPU Central Processing Unit
DC Direct Current
FOV Filed Of View
FRCN Fast Region-Convolutional Neural Network
OpenCV Open-Source Computer Vision
OS Operating System
mAP mean Average Precision
MQTT Message Queuing Telemetry Transport
RAM Random Access Memory
R-FCN Region-based Fully Convolutional Network
RGB Red Green Blue
RVIZ ROS visualization
ROS Robot Operating System
SBC Single Board Computer
SLAM Simultaneous Localization and Mapping
USB Universal Serial Bus
VGA Video Graphics Array
YOLO You Only Look Once

viii



Chapter 1

Introduction

1.1 Overview

In our project, we are going to develop a robot that will interact with a mobile to

find objects according to user selections. The purpose of this system is to search

objects specified by the user that are sometimes difficult for humans to find. The

proposed system is supposed to save time and efforts.

This chapter presents a general idea about the project, overview, motivation

and importance, objectives, short description of the system, problem statement,

list of functional and nonfunctional requirements, and an overview of the rest of

report sections.

1.2 Motivation

One of the most important motivations for the project is to help people and spe-

cially those with special needs in particular to search for objects that exist in closed

or limited areas. It can be used for many different jobs and functions that may be

too boring, difficult or dangerous for a human to do.

1.3 Project Objectives

The system aims to:

1. Learn to use the ROS and YOLO algorithm.

2. Using Artificial Intelligence methodologies to enable the robot to search

for specific objects.

3. Generate map for the searching area.

4. Determine the coordinates of the desired object within the generated map. .

1



1.4. SHORT DESCRIPTION OF THE SYSTEM CHAPTER 1. INTRODUCTION

1.4 Short Description Of The System

At first, The robot generates a map of the place where it is located using the

mapping algorithm. Then, instructions are given to the robot using a mobile

application to search for certain objects. After that, the robot is able to detect the

selected object such as: a ball, or remote,...etc, by a special camera equipped with

it. It performs the object identification and localization of each object using ROS

and YOLO algorithm. The robot should avoid any obstacles while it is searching

and navigating in the targeted area. Each time the robot finds the aimed object ,

it sends a message to the mobile application pointing the coordinates.

1.5 Problem Statement

Looking for an object we do not remember where it is left occurs frequently, and

it considered as a frequent problem regardless of age [1]. One survey reported that

people waste 2.5 days a year looking for misplaced objects [2] .Thus, technological

support to assist users in finding lost objects is demanded some people consider

searching for a specific object boring or annoying. This is more demanding with

special needs and in causes when there are a large number of objects that is difficult

for a person to identify all at the same time. When a person searches for a specific

purpose, his mind becomes blurred and focus is less, which makes it more difficult

and he needs a proper solution to search for the object.

1.6 List Of Requirements

Some of the Functional and Nonfunctional Requirements for our system are:

1.6.1 Functional Requirement:

The system should be able to:

• Generate the place map.

• Navigate a space safely by avoiding obstacles.

• Find coordinates of searched objects.

2



1.7. OVERVIEW OF THE REST OF REPORT SECTIONS CHAPTER 1. INTRODUCTION

1.6.2 Nonfunctional Requirement:

The system should be able to:

• User friendly and easy to be used.

• Acceptable response time.

• Safe (no damage occurs to the searched objects).

1.7 Overview Of The Rest Of Report Sections

The next chapters of our report will be as the following:Chapter 2 (Background),

introduces the theoretical background and literature review, design options (hard-

ware components and software component), Chapter 3 (Design), introduces the

detailed conceptual description of the system, detailed design, structural diagrams,

block diagrams, and any necessary information about the design.

3



Chapter 2

Background

2.1 Overview

This chapter introduces the theoretical background of our project, literature re-

view, the system components, and design options.

2.2 Theoretical Background

Our current world is witnessing a very wide scope of the use of robots. it has

many uses in several fields such as medical, military, and technological fields. In

the following subsections, we will introduce YOLO Algorithm, ROS, and mapping

algorithms which are the main that will be used in our developed system and

algorithms.

2.2.1 YOLO (You Only Look Once) Algorithm

YOLO is a distinct kind of object detection algorithm than region-based algorithms

[4]. The Bounding boxes are rectangles that mark objects on an image. There are

multiple formats of bounding boxes annotations. Class probabilities for these boxes

are predicted by a single neural network in YOLO. It is proposed as an end-to-end

neural network that makes predictions of bounding boxes and class probabilities

all at once and it can detect 80 different objects such as a Chair,Table, Person.

YOLO Methodology

First of all, the algorithm divides the image into N grids, each with an equal di-

mensional regions of SxS. Each of these N grids is responsible for the detection and

localization of the object it contains. These grids predict bounding box coordinates

relative to their cell coordinates as shown in figure 2.1 [4].

4



2.2. THEORETICAL BACKGROUND CHAPTER 2. BACKGROUND

Figure 2.1: YOLO Methodology [4]

Each bounding box in the image consists of the following properties:

• Width (bw).

• Height (bh).

• Class (for example, person, car, etc.) and this is represented by the letter c.

• Bounding box center (bx, by).

• Pc:it is probability of the existence or non-existence of the object.

To illustrate the above properties Figure,shows an example for the bounding box

that has been represented by a yellow outline:

5



2.2. THEORETICAL BACKGROUND CHAPTER 2. BACKGROUND

Figure 2.2: Bounding Box [4]

It is suitable to be used in the project for the following reasons [5]:

1. High accuracy: it provides accurate results with minimal errors.

2. It is a pre-trained model.

3. Learning capabilities: it learns object representations and uses them to

detect objects.

2.2.2 ROS (Robot Operating System)

ROS is an open-source, and it is a software platform that provides libraries and

tools to help software developers create robotics applications. It provides hard-

ware abstractions, device drivers, libraries, visualizers, message-passing, pack-

age management, and more. ROS is similar in some respects to robot frame-

works[3],programming languages used in ROS python and c++.

ROS Methodology

ROS consists of a code and tools that help you run your project code and do the

required task. ROS is designed to be a loosely coupled system where a process is

called a node and every node should be responsible for one task. Nodes communi-

cate with each other using message passing via logical channels called topics. Each

node can send or get data from the other nodes using the publish/subscribe model.

Software in ROS is organized in packages. A package might contain ROS nodes, a

ROS-independent library, a dataset, configuration files, a third-party piece of soft-

ware, or anything else that logically constitutes a useful module. The goal of these

packages is to provide this useful functionality in an easy-to-consume manner so

that software can be easily reused. In general, ROS packages follow a ”Goldilocks”

principle: enough functionality to be useful, but not too much that the package is

6



2.2. THEORETICAL BACKGROUND CHAPTER 2. BACKGROUND

weight and difficult to use from other software[7]

Figure 2.3: ROS communication between nodes[5]

ROS has multiple versions,currently there are two main versions that are sup-

ported[21]:

• ROS Noetic Ninjemys has released in May 23rd, 2020.

• ROS Melodic Morenia has released in May 23rd, 2018.

• ROS Kinetic Kame release stopped support in April, 2021 but you can used

it.

The tools that are used in ROS[22]:

1. Rviz: rviz (short for “ROS visualization”) is a 3D visualization software

tool for robots, sensors, and algorithms. It enables you to see the robot’s perception

of its world (real or simulated). The purpose of rviz is to enable you to visualize

the state of a robot. It uses sensor data to try to create an accurate depiction of

what is going on in the robot’s environment.

2. Gazebo: is a 3D robot simulator. Its objective is to simulate a robot, It

gives a close substitute to how your robot would behave in a real-world physical

environment. It can compute the impact of forces (such as gravity).

ROS is used in project for the following reasons:

1. ROS is a language-agnostic. it enables a Python node to easily commu-

nicate with C++ node. It supports reusability and possibilities of co-working. It

contains many libraries that allow user to use other languages (because ROS has

mainly targeted C++ and Python) [17].

7



2.2. THEORETICAL BACKGROUND CHAPTER 2. BACKGROUND

2. ROS has great simulation tools. such as Rviz and Gazebo that enable the

unreal run of robot.

3. It can control multiple robots.

4. It doesn’t take much space and resources.

5. It is an open-source project with a permissive license.

2.2.3 Turtlebot2 Motion

The turtlebot2 have a tow parts to drive linear and angular speed The linear

speed refers to the speed at which the robot moves forward or backward, while

the angular speed refers to the speed at which the robot rotates or turns. These

speeds can be controlled through the use of commands sent to the robot motors.

TurtleBo2t rotates around its own axis.

The x, y, and z directions refer to the standard Cartesian coordinate system,

with x being the horizontal axis, y being the vertical axis, and z being the axis

perpendicular to the xy plane. To control the linear and angular speed of the

TurtleBot in the x, y, and z directions, you would need to use a more complex

system of controls. The TurtleBot is primarily designed to move in the x and y

directions ( forwards and backwards, and left and right) using its wheels, and to

rotate around its own axis (the z-axis) using its onboard motors. It is not designed

to move in the z-direction, as it does not have the ability to fly or jump.

2.2.4 Mapping Algorithm

Mapping is a technique used for the purpose of making a map, updating it and to

estimate the position of the robot to map the environment. There are many ROS

packages which can be used, such as Gmapping.

Gmapping

Path Planing Techniques

Gampping is one method that can be used for path planning in robotics. In this

approach, the robot constructs a map of its environment using sensors or other

means, and then uses this map to plan a path to the desired destination. Gampping

algorithms can be used to generate paths that are optimal in some sense, such as

being the shortest or fastest path, or paths that minimize the risk of collision with

obstacles. Gampping algorithms can also be used to plan paths that avoid certain

areas or follow specific routes.

8



2.3. LITERATURE REVIEW CHAPTER 2. BACKGROUND

1) A*Planning Algorithm

It is a tracking algorithm that determines the path from the current location of the

robot to a specific goal point while avoiding obstacles and giving greater priority

to the goals that are closer with lower costs[15].

2) D*Planning Algorithm

The A* algorithm assumes that the entire environment is known, but there may

be moving obstacles.To include this, D* has been proposed, as it aims to plan the

effective course of the unknown and dynamic environments[15].

Mapping Methodology

The map generation is carried out by first, generating the environment and import-

ing turtlebot in Gazebo. The mapping process is implemented using the gmapping

package. To use gmapping the robot model must provide odometry. it is the use

of data from motion sensors to estimate change in position over time. It is used

in robotics by some legged or wheeled robots to estimate their position relative to

a starting location. This method is sensitive to errors due to the integration of

velocity measurements over time to give position estimates. Rapid and accurate

data collection, instrument calibration, and processing are required in most cases

for odometry to be used effectively.

2.3 Literature Review

In this section we will discuss some projects similar to the idea of our project.

1.Object Detection And Tracking System [14]

The main idea of that project this [14] is,to design a system for detecting and

tracking objects based on their color.Its mechanism of action is to take pictures

of the object continuously through the camera that is interfaced to the Raspberry

Pi. When it is detected, the robot tracks the target. In this project, the object

was only the ball and detection of object is not fast. In our project, there will be

more than one object to be detected and the used algorithms makes the object

detection faster.

9



2.3. LITERATURE REVIEW CHAPTER 2. BACKGROUND

2. Autonomous Wheelchair Project [15]

The main idea of the project is to design a wheelchair capable of overcoming

obstacles, in crowded environments without bumping into objects. The user’s job

was to enter commands via the mobile phone, either by voice (file name location

such as the kitchen, go ahead) or by touch locate on map or control the movement

of the chair such as moving forward. After the user enters the command and with

the help of the stored map, the chair can locate it on the map, locate the target,

then select the optimal path while avoiding obstacles. In [15], the wheelchaired

finds and determines the way to go it. In our project, the robot defines a way to

go and find objects automatically.

3. Sanitizer Spider Robot [16]

The main idea of the project is to design and implement a sanitizer spider robot

using Raspberry Pi by using some sensors to sense by the camera. The camera

captures an image for the suspected objects to be infected. Then, it moves in

the affected area, and it can measure the distance of objects for example, Chair

or Table after that it determines the desired object and then sterilizes it. The

main similarity between our project and the “Sanitizer Spider Robot”, is the use

of some algorithms, the most important of which is the YOLO algorithm, as there

is a similarity in some hardware components such as the camera and some sensors.

The difference between our work and listed previous works is presented in Table

2.1:

10



2.4. THE SYSTEM COMPONENTS AND DESIGN OPTIONS CHAPTER 2. BACKGROUND

Table 2.1: Comparison Between Previous Objects Detection-Based Projects

2.4 The System Components And Design Op-

tions

This section introduces designs options and system components.

2.4.1 Hardware Components and Options:

We need processing unit to processes the data that will sent to a robot.it is con-

sidered as one of the essential parts of the project. The choice of the processor

depends on specific characteristics such as:

1) Cost.

2) Sufficient memory.

3) Suitable size.

4) Speed.

5) Number of I/O pins.

11



2.4. THE SYSTEM COMPONENTS AND DESIGN OPTIONS CHAPTER 2. BACKGROUND

We have studied the possible options, compared them, and choose the most

suitable for our project.Which are presents in the Table 2.2.

Table 2.2: List of Processing Options

We chose the Raspberry Pi 3 Model B because it is the lowest price and avail-

able in the local market, below is a more technical description about it.

12



2.4. THE SYSTEM COMPONENTS AND DESIGN OPTIONS CHAPTER 2. BACKGROUND

Raspberry pi 3

It is Single Board Computer (SBC) that can be connected to a computer monitor

or TV, made by Raspberry Pi Foundation in the UK charity that aims to educate

people in computing and create easier access to computing education specially for

developing countries. Uses a keyboard and mouse and can be used easily by all

ages. Also, can be learn how to programming in Python or Scratch languages.

The system features 2 GB or 4 GB of RAM, plus a Micro USB port for power

and micro-HDMI port for connecting to two displays. There are also USB 2.0

and USB 3.0 ports for connecting peripherals, as well as a Gigabit Ethernet port

and a Wi-Fi and Bluetooth module for connecting to wired or wireless networks

respectively.[8] and the operating system is Raspberry Pi OS.

Figure 2.4: Figure 2.4 Raspberry Pi 3[8]

Obstacle Avoidance Sensor

We need a sensor to measure distance to avoid obstacles also it is needed by ROS

Gamapping to generate maps for the environment. Table 2.3 presents the list of

options of such sensors.

13



2.4. THE SYSTEM COMPONENTS AND DESIGN OPTIONS CHAPTER 2. BACKGROUND

Table 2.3: List of Sensors Options

We chose URG-04LX-UG01 LIDAR sensor, although it has a higher cost

but compared to ultrasonic and infrared sensors, it is suitable for detecting fast-

moving objects and it is good at detecting small objects. It is also able to detect

3D structures and it has a continuous beam that scans the environment.

14



2.4. THE SYSTEM COMPONENTS AND DESIGN OPTIONS CHAPTER 2. BACKGROUND

Depth Camera

We need a camera to capture what resides in front of it and know what is moving

in front of it.

Table 2.4: List of Depth Cameras Options

We chose Xbox 360 Kinect because it has an infrared projector, infrared cam-

era, and color camera. It’s a great imaging tool, even for robots. It enhances

the range and autonomous nature of robots and has a lower cost, and the depth

resolution is better.

15



2.4. THE SYSTEM COMPONENTS AND DESIGN OPTIONS CHAPTER 2. BACKGROUND

Xbox Kinect

The Kinect is a depth camera, and it contains three vital pieces that work together

to detect your motion and create your physical image on the screen: an RGB color

VGA video camera, a depth sensor, and a multi-array microphone. The camera

detects the red, green, and blue color components as well as body-type and facial

features. that can judge depth and distance to take photography to new levels.

It uses the known speed of light to measure distance, and effectively calculates

the amount of time it takes for a reflected beam of light to return to the camera

sensor. In our project we will use Kinect camera and it use in Video games in

Xbox device [11].

Figure 2.5: Xbox Kinect [11]

Mobile Robot

We need a robot to design the project and to link the components together and

communicate with each other, which will be given instructions by the user through

the mobile application. Table 2.5 presents the list of options of such robot.

16



2.4. THE SYSTEM COMPONENTS AND DESIGN OPTIONS CHAPTER 2. BACKGROUND

Table 2.5: List of Robot Options

17



2.4. THE SYSTEM COMPONENTS AND DESIGN OPTIONS CHAPTER 2. BACKGROUND

TurtleBot 2

TurtleBot 2 is the world’s most popular low cost, open-source robot for education

and research. This second edition TurtleBot robot is equipped with a powerful

Kobuki robot base and a trays for the installation of these components as shown

in Figure 2.4 below. All components have been seamlessly integrated to deliver

an out-of-the-box development platform. This robot officially proposed by Willow

Garage to develop in the operating system dedicated to robotics (ROS) [12]. The

Turtelbot2 have some components [19]:

• Kobuki Base is a low-cost mobile research base designed for education and

research on state of art robotics. Kobuki provides power supplies for an

external computer as well as additional sensors and actuators such as wheel

encoder and Dc motor and motor driver. Its highly accurate odometry,

amended by our factory calibrated gyroscope, enables precise navigation and

contains 1x4S1P battery 2200 mAh, Battery charger, USB communication

cable.

• Trays: It is used to install pieces on it.

18



2.4. THE SYSTEM COMPONENTS AND DESIGN OPTIONS CHAPTER 2. BACKGROUND

Figure 2.6: TurtleBot 2[12]

2.4.2 System Software Components:

Object detection algorithm

We need a algorithm for detecting objects. and It should have high quality spec-

ifications and easy to programming. Table 2.6: lists Object detection algorithms

options.

Table 2.6: List Object Detection Algorithms Option.

19



2.4. THE SYSTEM COMPONENTS AND DESIGN OPTIONS CHAPTER 2. BACKGROUND

We chose YOLOv3-tiny algorithm although it has a medium accuracy but

compared has a higher Speed in detection objects and higher accuracy and it is a

pre-trained model and it can be trained easily.

Python Programming Language

Python is an open-source computer programming language and a high-level dy-

namically typed one that is among the most popular general-purpose programming

languages. It is more quickly than other programming languages built in data

structures. Python is combined with dynamic typing and dynamic binding which

makes it has an easy structure that enhances readability and reduces the cost of

code maintenance and debugging. Python programs is easy, while languages can

pick up on Python very quickly. Also, beginners of use a python language find the

clean syntax. and the indentation structure is easy to learn. Furthermore, it was

supported by the OpenCV library that provides which are objects recognized on

features in the researchers’ projects [9].

OpenCV Library

Open CV is a library of Python bindings designed to solve computer vision prob-

lems. It is developed by intel and now supported by Willow Garage and it’s free

for both academic and commercial use. OpenCV was designed for computational

efficiency and with a strong focus on real-time applications. Written in optimized

C/C++, the library can take advantage of a multi-core processing [10].

TensorFlow

TensorFlow is a free and open-source software library for machine learning and

artificial intelligence. It can be used across a range of tasks but has a particular

focus on training and inference of deep neural networks. TensorFlow was developed

by the Google Brain team for internal Google use in research and production.

TensorFlow can be used in a wide variety of programming languages, most notably

Python, as well as JavaScript, C++, and Java. This flexibility lends itself to a

range of applications in many different sectors [20].

20



2.4. THE SYSTEM COMPONENTS AND DESIGN OPTIONS CHAPTER 2. BACKGROUND

Mobile Application Language

Table 2.7: Comparison List for Mobile Applications Language

We chose flutter framework because it has a high performance and easy for be-

ginners to programming and the User interface is easy to use as shown in Table 2.7

and the flutter have a feature called hot Reload while your application is running,

you can make changes to the code and apply them to the running application. No

recompilation is needed, and when possible, the state of your application is kept

intact.

21



2.4. THE SYSTEM COMPONENTS AND DESIGN OPTIONS CHAPTER 2. BACKGROUND

Flutter Framework

Flutter is an open-source framework released by Google in May 2017 for building

beautiful, natively compiled, multi-platform applications from a single codebase

and Flutter code compiles to ARM or Intel machine code as well as JavaScript,

for fast performance on any device [13].

We will use flutter framework in our mobile application in project because a

several reason [13]:

Reduced Code Development Time ,Similar to Native App Performance ,Sim-

ple Platform-Specific Logic Implementation and Open-source platform.

22



Chapter 3

System Design

3.1 Overview

In this chapter, we will explain the abstract block diagram of the system. Next,

show the detailed description of the system and the detailed design for each com-

ponent including its schematic diagram will be introduced.Finally, we will explain

the schematic diagram of the hardware components of the system.

3.2 Detailed Description Of The System

We are going to design and implement an object finder robot using Raspberry Pi

and based on a python environment. The system will use ROS, which is a flexible

framework for writing robot software. ROS is a collection of tools, libraries, and

conventions that aims to simplify the task of creating complex and robust robot

behavior across a wide variety of robotic platforms [3].

TurtleBot will be used since it is a low-cost, personal robot kit with an open-

source hardware platform that has a mobile base and is supported by ROS and

localization and mapping and vision and obstacle avoidance [12]. A depth camera

is used as a special camera that can determine depth and distance to take image

of new levels. It uses the know speed of light to measure distance, and effectively

calculates the amount of time it takes for a reflected beam of light to return to the

camera sensor.

In our project, we will use Xbox 360 Kinect camera.It contains three vital pieces

that work together to detect your motion and create your physical image on the

screen: an RGB color VGA video camera, a depth sensor, and a multi-array

microphone.

23



3.3. SYSTEM DIAGRAMS CHAPTER 3. SYSTEM DESIGN

3.3 System Diagrams

This section introduces two diagrams that represent block diagram and schematic

diagram to understand the project concepts and design.

3.3.1 System Block Diagram

The general block diagram of the system is shown in Figure 3.1 As illustrated be-

low, first, the user requset the objects to be searched from turtlebot2,The Turtle-

Bot2 starts explore the place and the map is generated by gmapping algorithm

which it is programmed with it and simultaneously YOLO algorithm is running

and detecting the known objects and classifies them with x and y coordinates

of object in each frame captured by camera saves it in raspberry Pi.The LIDAR

sensor sends a data indicating if there is an obstacle or not to the Raspberry pi.

Finally, the Raspberry pi sends the result to the mobile application by MQTT

protocal to display the existence or absence of the objects and if is exists, the

mobile application displays the coordinates of the objects in the map.

Figure 3.1: System Block Diagram

24



3.3. SYSTEM DIAGRAMS CHAPTER 3. SYSTEM DESIGN

From the above discussions,

The main components of the system diagram are:

1.Raspberry pi: It is the main component of the system and The processing node

of the mobile robot and it controls components connect to it for example:LIDAR

Sensor, Xbox Kinect camera and motor driver of the mobile robot.

2.Xbox Kinect camera: It captures images of objects using a command from

Raspberry Pi.

3.LIDAR Sensor: It checks if there is any object in front of the system in the

range of about 4 meters for 240º degree detection then sends a signal to raspberry

pi to give an order to the Xbox Kinect camera to capture an image.

4.TurtleBot2:It is one of the most important components of the project as it is

the component on which will be implemented the project in it and will discovering

the place and avoid obstacles so that all other components are linked to it.

5.Mobile Application: The user selects the object through the application

and sends the data as input. The result of the search for an object is displayed as

output in the mobile application.

25



3.3. SYSTEM DIAGRAMS CHAPTER 3. SYSTEM DESIGN

3.3.2 Schematic Diagram

Figure 3.2 shows The connect between Raspberry Pi and DC motor(kobuki robot).

Figure 3.2: Schematic diagram for DC Motor(kobuki robot) with Raspberry Pi

We connect dc motor the pin 1 to Out3(Controlled by Enable2) and the pin 2

to Out4(Controlled by Enable2) in L293D motor driver and GND pin in Raspberry

Pi to 0V(GND) in L293D motor driver and the vcc pin in Raspberry Pi to +V pin

26



3.3. SYSTEM DIAGRAMS CHAPTER 3. SYSTEM DESIGN

in in motor driver then connect In3 and in4 pins to GPIO23 and GPIO20 pins in

Raspberry Pi and Enable2 in motor driver pin to GPIO21 pin in Raspberry Pi.

Figure 3.2 shows The connect between Raspberry Pi and Xbox Kinect camera.

Figure 3.3: Schematic diagram for Xbox Kinect Camera with Raspberry Pi

We connect the XBOX Kinect camera to USB Port.

27



3.3. SYSTEM DIAGRAMS CHAPTER 3. SYSTEM DESIGN

Figure 3.4 shows The LIDAR Sensor with Raspberry Pi.

We connect pin 6(GND) in Lidar sensor to GND in Raspberry Pi and pin 1

vcc to pin 5v and pin2(Mode) and pin3 (PWR EN) to Usb port in Raspberry Pi.

Figure 3.4: Schematic diagram for LIDAR Sensor with Raspberry Pi

28



3.4. PSEUDO-CODE CHAPTER 3. SYSTEM DESIGN

3.4 Pseudo-Code

Algorithm 1 Finding The Object

procedure Finding The Object
INPUT The user Request any object from turtlebot

While:
procedure (LIDAR sensor reading data using ROS SLAM algorithm to

generated the map)
procedure (Camera reading images using YOLO algorithm)

if class == select object and probability>=thresholdvalue then
distance between robot and obstacle equal 0.5m
obstacle avoidance
Mapping Map x and y coordinate detected object from YOLO with x and y

coordinate in the gerated map
OUTPUT The Raspberry Pi sends data to mobile application by

MQTT to display it

End While

3.5 Adjustments

When we started working on the project, we ran into some issues that forced us

to make some changes:

1.Raspberry pi 3 model B

The Raspberry Pi 3 model B, which we intended to use in the project, has been

replaced by a laptop Because the Raspberry Pi 3 model B a rather weak processor

and a one gigabyte of memory, and when we ran the whole project, the processor

consumption was 100%, and the memory was over 80% and Figure 3.6 shows this

case , and therefore there is a not of responding in the system Significantly.This

is because the YOLO algorithm requires a fairly powerful processor and consumes

a large part of the memory. The mapping algorithm also consumes part of the

processor and memory, so the two algorithms cannot be run at the same time. so

we replaced Raspberry Pi .

Figure 3.5: from raspberry pi to Dell laptop

29



3.5. ADJUSTMENTS CHAPTER 3. SYSTEM DESIGN

Figure 3.6: CPU and Memory usage of Raspberry Pi

2.URG-LIDAR Sensor

The URG-LIDAR sensor, which we had intended to use in the project, we

encountered problems programming in the ability of the robot to avoid obstacles

by LIDAR sensor, and to solve that we replaced it with a kinect camera XBOX

360 because it contains a laser to sense what is in front of it.

Figure 3.7: URG LiDAR and XBOX Kinect

30



Chapter 4

System Implementation

4.1 Overview

This chapter covers the software and hardware implementation of the project, as

well as the various components and tools needed to construct the robot

4.2 Hardware Implementation:

The main component is the laptop which is connected with the other system

components as follows:

1. We connected Turtlebot2(kobuki) to laptop by USB cable.

2. We connect XBOX 360 Kinect Sensor to laptop with adapter power supply

Cable by USB and connected power supply with kobuki 12V/5A.

31



4.2. HARDWARE IMPLEMENTATION: CHAPTER 4. SYSTEM IMPLEMENTATION

Figure 4.1: System Components

Figure 4.4 shows the Xbox 360 Kinect sensor to laptop with adapter power supply

Cable by USB and connected power supply with kobuki 12V/5A

Figure 4.2: Connect XBOX 360 Kinect Sensor to Kobuki

32



4.3. SOFTWARE IMPLEMENTATION: CHAPTER 4. SYSTEM IMPLEMENTATION

4.3 Software Implementation:

4.3.1 Operating System

We installed Ubuntu 16.04 OS on laptop because the ROS kinetic release only

supports Ubuntu 15.10, Ubuntu 16.04.

4.3.2 Installing needed packages

Raspbian comes with many useful pre-installed packages such as JDK, Python, and

others, but we need to install some needed packages for our project. The most

important one is the OpenCV library that will be used to provide object detection

features. Many essential pre-installed packages, such as JDK, Python, and others,

come with Raspbian, but we’ll need to install a few more for our project. The

OpenCV library, which will be utilized to offer object detection characteristics, is

the most significant.

4.3.3 OpenCV implementation

OpenCV is a Python binding library for solving computer vision problems. The

researchers followed the steps to install this library[23]:

• Install OpenCV dependencies on system.

• Download the OpenCV source from github .

• Setup suatible Python environment(python2.7)for our system.

• Install NumPy package on Python,This package is necessary to run OpenCV.

• Configured and compiled OpenCV on system.

4.3.4 Object detection implementation

We need an algorithm to implement object detection in our robot so that it can

detect the bottle , remote and ball that need to find it. As for this project the

YOLOV3-tiny algorithm was chosen for this project.

33



4.3. SOFTWARE IMPLEMENTATION: CHAPTER 4. SYSTEM IMPLEMENTATION

4.3.5 YOLO Implementation

The researchers followed the steps to implement YOLO[24]:

• Install the necessary dependencies, such as OpenCV and NumPy,on system.

• We Download the YOLO3-tiny.weight file and configuration YOLO3-tiny.cfg

file and coco.names from the official website[24].

• Clone the Darknet repository from GitHub on system.

Darknet is an open-source framework that includes the YOLO object detec-

tion algorithm.

• Build Darknet on system by running the ’make’ command in the Darknet

directory.

4.3.6 ROS implementation

ROS provides libraries and tools to help software developers create robot appli-

cations. It provides hardware abstraction, device drivers, libraries, visualizers,

message-passing, package management, and more.

The researchers use Ros Kinetic release Because its compatibility with the

Ubuntu 16.04 OS We use the follow the instructions in [25] to install ROS Kinetic.

4.3.7 ROS algorithms

The following are the algorithms that are responsible for fully directing the robot.

Gmapping

The map is drawn by the movement of the robot in a specific location, with distance

sensors reading the distances between the robot and nearby obstacles, and during

the drawing the robot evreything around is being discoved.

A.Inputs:

1.Distance sensors readings.

2.Encoders sensors readings.

B. Outputs:

The map

34



4.4. MOBILE APPLICATION IMPLEMENTATION CHAPTER 4. SYSTEM IMPLEMENTATION

C.How to use Gmapping in Terminal(as commands):

Bring a TurtleBot2 to Create a Map.

$ roslaunch turtlebot_bringup minimal.launch.

$ roslaunch turtlebot_navigation gmapping_demo.launch.

Launch the rviz program.

$ roslaunch turtlebot_rviz_launchers view_navigation.launch.

To control the Turtlebot2 by keyboard.

$ roslaunch turtlebot_teleop keyboard_teleop.launch.

Gmapping result:

The map resulted using Rviz tool is shown in Figure 4.3

Figure 4.3: Gmapping Result

4.4 Mobile Application Implementation

4.4.1 MQTT Protocol

MQTT is a lightweight open messaging protocol that provides resource-constrained

network clients with a simple way to distribute telemetry information in low-

bandwidth environments. The protocol, which employs a publish/subscribe com-

munication pattern, is used for machine-to-machine (M2M) communication[26].

35



4.4. MOBILE APPLICATION IMPLEMENTATION CHAPTER 4. SYSTEM IMPLEMENTATION

We have used the following libraries in the pubspec.yaml

file Every pub package needs some metadata so it can specify its dependencies. Pub

packages that are shared with others also need to provide some other information

so users can discover them. All of this metadata goes in the package’s pubspec: a

file named pubspec. yaml that’s written in the YAML language.

dependencies:

flutter:

sdk: flutter

mqtt_client: ^9.3.1 #^7.2.1

provider: ^5.0.0 #^4.1.3+1

The library mqtt-client is a plugin that Responsible for exchanging data between

the application and the robot so that it achieves effectiveness and ease of dealing.

The library provider is a plugin that easy to use package which is basically a

wrapper around the Inherited widgets that makes it easier to use and manage. It

provides a state management technique that is used for managing a piece of data

around the application[27].

4.4.2 User Interface

This section will introduce the interface that were designed in the application.

There are main page in our application.It contains AppBar at the top of the appli-

cation contains the name of the our project,and contains two buttons Connect and

disconnect When we want to connect to an application to the laptop by MQTT

protocol, you must press the Connect button and make sure that the phone is

connected to the Internet and the MQTT protocol connection has been success-

ful.it contains a place design for placing the map inside, and the coordinates of

the objects are set on the map, and each object has a special color to distinguish

it on the map,Such as ball is red, remote is green and bottle is yellow.

36



4.4. MOBILE APPLICATION IMPLEMENTATION CHAPTER 4. SYSTEM IMPLEMENTATION

Figure 4.4 shows the Flutter Application Implementation.

Figure 4.4: Mobile Application Implementation

This interface contains the following functionalities:

OpenPainter({this.x_value, this.y_value}):

This class obtains the coordinates that were sent from the robot and draws and

set these coordinates in the form of points within the map created by the robot

37



4.5. IMPLEMENTATION ISSUES AND CHALLENGESCHAPTER 4. SYSTEM IMPLEMENTATION

each object have a color distinguish it.

MQTTManager: This class, its main function is the application is connected to

mqtt protocol or not.

MQTTView: This class contains 2 buttons to display the status of the application

connected or not and contains a map of the place to search for an object and

contains a function to draw points on the map

4.5 Implementation issues and challenges

• At the beginning of the project implementation, we use the URG-LIDAR

sensor to draw map the movement of the robot in a specific location and

avoid the obstacles in front of it, as was planned in the implementation of

the project, but we encountered problems in the ability of the robot to avoid

obstacles, and we solved this issue by replacing it with Kinect XBOX 360.

• We faced problems in finding compatibility between downloading opencv

library and tensorflow library on the version of the system that we have to

run the YOLO algorithm, and to slove that replaced with opencv library and

Darknet.

• When running the ROS environment and the YOLO algorithm in Raspberry

Pi OS, we faced a problem that the system stopped responding, because the

Ros environment uses more than half of the processing in cpu and the Yolo

algorithm, when it runs, consumes a large amount of processing,and to solve

that we replaced the Raspberry Pi 3 with a Laptop and when running the

ros environment with the Yolo algorithm it was much better.

• We faced a problem in the process of transferring data between the Raspberry

Pi and flutter application and to solve that we used the MQTT protocol to

transfer data between the two parties.

• We faced a problem when using the Kinect Camera to identify the object

using the Yolo algorithm and Gmapping algorithm to draw the map through

it, but the camera port cannot be used for the two algorithms at the same

time, so to solve that we used kinect Camera for the Gmapping algorithm

to draw the map and used the webcam on the laptop for the Yolo algorithm

to identify the object.

38



Chapter 5

Validation and Testing

5.1 Overview

This chapter explains the project component testing methodology and displays

the project system implementation outcomes.

5.2 Hardware Testing

5.2.1 Testing DC Motor In Kobuki

The Wheels in kobuki was tested by connected to a laptop by usb cable And run

the python script that was written for drive kobuki in linear motion or angular,

in linear motion the robot drive forward or backward,in angular motion the robot

dive to left or right with angular.

5.2.2 Testing Kinect XBOX 360

The Kinect XBOX 360 camera was attached to laptop with adapter power supply

Cable by USB and connected power supply with Kobuki 12V/5A .

rosrun image view image view image c̄amera/rgb image color.

Command was written to open live video stream, and we tested the sensor in

Kinect camera by Gmapping algorithm and verify that when the robot moves, the

map is drawn within the Rviz program as shown in figure 4.3.

Autonomous Motion And Avoiding Obstacles

We tested a self-motion for the robot, robot and we checked if it was moving

correctly, and we written python code to avoiding obstacles during movement and

the python code is exist in Appendix B.

39



5.3. SOFTWARE TESTING CHAPTER 5. VALIDATION AND TESTING

5.3 Software testing

5.3.1 OpenCV testing

To test if the OpenCV library was installed correctly. We tried the below in figure

5.1 show the commands in the python terminal and print the version of opencv

3.3.1 that mean it’s installed correctly.

Figure 5.1: OpenCV Testing

5.3.2 Testing Of YOLO Algorithm

YOLO algorithm that will be used to provide object detection. We downloaded a

Github project of the YOLO algorithm. It contains files such as yolov3-tiny.cfg,

yolov3-tiny.weights ,and coco.names. Then run a python script to detect objects

that exist in front of the camera. Then detected objects were bound by a box and

above each box there is a label which is the name of detected object figure 5.2

shows the output of YOLO algorithm.

40



5.3. SOFTWARE TESTING CHAPTER 5. VALIDATION AND TESTING

Figure 5.2: Testing YOLO Result

5.3.3 Software Testing Tables

Table 5.3 shows the Software testing of system.

Table 5.3: Software Testing Table

41



5.3. SOFTWARE TESTING CHAPTER 5. VALIDATION AND TESTING

5.3.4 Mobile Application Testing

We linked the mobile application with the laptop by MQTT protocol, and verified

sending and receiving data between them, and we written a Python code to send

the data from laptop to application,we used the MQTT protocol free website to

reserve host,port and topic as shown in figure 5.3 and figure 5.4.

Figure 5.3: MQTT Setting

42



5.4. SYSTEM VALIDATION CHAPTER 5. VALIDATION AND TESTING

Figure 5.4: Topic in MQTT

5.4 System Validation

After each component is individually connected to the laptop and tested. We

connect all the parts of the robot, and run the Python code check that the system

is working correctly and the robot draws a map of where it is located correctly

and identifies what is in front of it using the YOLO algorithm correctly and the

coordinates of the objects are mapped correctly on the map within the mobile

appliaction.

43



Chapter 6

Conclusion and Future work

6.1 Conclusion

In this project, we have presented an approach to building a prototype intelligent

mobile robot when it moves map is drawn . We created a communication between

the smartphone and the laptop using mqtt protocol to send the objects coordinates

from the robot to the mobile application The robot also can detect objects using

Yolo algorithm and localize a certain object within its environment, and develped

a mobile application to determine coordinates of objects in the map. It can be

concluded that higher speed to detect objects in yolo algorithm could be achieved

with using higher CPU and using GPU with microcontroller.

6.2 Future work

Some future works are suggested and recommended to improve the project:

1. Adding additional objects to be finding.

2. Attach a robotic arm to be able to bring the object.

3. Add feature of self charging using automatic docking for recharging when

the battery is low by itself.

44



Appendix A

Schematic Diagram for the system

45



Appendix B 
avoid_obstacle.py script 

import rospy 

from move_base_msgs.msg import MoveBaseAction, MoveBaseGoal 

class GoForwardAvoid(): 

    def __init__(self): 

        rospy.init_node('nav_test', anonymous=False) 

 rospy.on_shutdown(self.shutdown) 

 self.move_base = actionlib.SimpleActionClient("move_base", MoveBaseAction) 

 rospy.loginfo("wait for the action server to come up") 

 self.move_base.wait_for_server(rospy.Duration(5)) 

 goal = MoveBaseGoal() 

 goal.target_pose.header.frame_id = 'base_link' 

 goal.target_pose.header.stamp = rospy.Time.now() 

 goal.target_pose.pose.position.x = 3.0  

 goal.target_pose.pose.orientation.w = 1.0 

        self.move_base.send_goal(goal) 

 success = self.move_base.wait_for_result(rospy.Duration(60))  

 if not success: 

     else:   

              state = self.move_base.get_state() 

  if state == GoalStatus.SUCCEEDED: 

      rospy.loginfo("Hooray, the base moved 3 meters forward") 

  if __name__ == '__main__': 

    try: 

        GoForwardAvoid() 

    except rospy.ROSInterruptException: 

        rospy.loginfo("Exception thrown") 

46 



drawing coordinate on the map Ganvas.dart 

 

connect to MQTT protocol MQTT_Connection.dart 



 

References 

[1] Rodney E Peters, Richard Pak, Gregory D Abowd, Arthur D Fisk, and Wendy A 

Rogers. May,2004. Finding lost objects: Informing the design of ubiquitous computing 

services for the home. Technical Report GIT-GVU-04-01. Georgia Institute of 

Technology. 

[2]“An article on the average number of days a person spends searching for a particular 

-https://www.prnewswire.com/newsobject?” May, 2017,. [Online]. Available: 

-for-looking-year-each-days-25-spends-averageamerican-the-found-and-releases/lost

-costs-replacement-in-billionannually-27-households-us-stingco-collectively-items-lost

./html.300449305 

 [3] “Wiki,” ros.org. [Online]. Available: http://wiki.ros.org/gmapping/. [Accessed: 27-May-

2022].   

[4] Medium. [Online]. Available: https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-

r-cnn-yolo-object-detectionalgorithms-36d53571365e. [Accessed: 22-Dec-2022].   

[5] “Introduction to yolo algorithm for object detection,” Section. [Online]. Available: 

https://www.section.io/engineering-education/introduction-to-yolo-algorithm-for-object-

detection/. [Accessed: 21-Dec-2022].  

 [6] “Real-time operating system,” Wikipedia, 19-Dec-2022. [Online]. Available: 

https://en.wikipedia.org/wiki/Real-time_operating_system. [Accessed: 25-Oct-2022].  

[7] “An introduction to robot operating system (ROS) - technical articles,” All About 

Circuits. [Online]. Available: https://www.allaboutcircuits.com/technical-articles/an-

introduction-to-robot-operating-system-ros/. [Accessed: 11-Dec-2022].  

 [8]“ “Raspberry,” Wikipedia, 08-Dec-2022. [Online]. Available: 
https://en.wikipedia.org/wiki/Raspberry. [Accessed: 27-Dec-2022].  

[9] “Welcome to Python.org,” Python.org. [Online]. Available: https://www.python.org/. 
[Accessed: 22-Dec-2022]. 

[10] “Home,” OpenCV, 21-Dec-2022. [Online]. Available: https://opencv.org/. [Accessed: 

27-Dec-2022]. 

[11] “How does the xbox kinect work,” How It Works: Xbox Kinect. [Online]. Available: 

https://www.jameco.com/Jameco/workshop/howitworks/xboxkinect.html. [Accessed: 10-

Nov-2022]. 

48 

https://www.prnewswire.com/news-releases/lost-and-found-the-averageamerican-spends-25-days-each-year-looking-for-lost-items-collectively-costing-us-households-27-billionannually-in-replacement-costs-300449305.html/
https://www.prnewswire.com/news-releases/lost-and-found-the-averageamerican-spends-25-days-each-year-looking-for-lost-items-collectively-costing-us-households-27-billionannually-in-replacement-costs-300449305.html/
https://www.prnewswire.com/news-releases/lost-and-found-the-averageamerican-spends-25-days-each-year-looking-for-lost-items-collectively-costing-us-households-27-billionannually-in-replacement-costs-300449305.html/
https://www.prnewswire.com/news-releases/lost-and-found-the-averageamerican-spends-25-days-each-year-looking-for-lost-items-collectively-costing-us-households-27-billionannually-in-replacement-costs-300449305.html/


 

 [12] “A ‘Getting started’ guide for developers interested in robotics,” Learn TurtleBot 

and ROS. [Online]. Available: https://learn.turtlebot.com/. [Accessed: 5-Jun-2022].  

[13] “Build apps for any screen,” Flutter. [Online]. Available: https://flutter.dev/. 

[Accessed: 30Dec-2022]. 

[14] Object detection and tracking system: Oraib Daas, Safa Shehada June-2017, Dr. 

Ashraf Armoush, Dr.Emad Natsheh ,[Online] 

.334?show=fullhttps://repository.najah.edu/handle/20.500.11888/14 

[15] Autonomous Wheelchair Project: Akram abu ayyash ,Islam warasna , June-2021 , 

Dr. mohammad aldesht ,[Online] 

https://scholar.ppu.edu/handle/123456789/38/browse?type=author&value=abu+ayyash

%2C+Akram. 

[16] Sanitizer Spider Robot: Bayan Karajat,Rana Awlad Mohammad, June-2021, 

vailable: Eng.Wael Takrouri. [17]“Why use ROS”April, 2018, [Online]. A

.projects-rosrobotics-use-reasons-https://service.niryo.com/en/blog/8 

 [18] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy 

Leibs, Rob Wheeler, Andrew Y Ng, may-2009., ROS: an open-source Robot Operating 

System. 

 [19] “Online store for robotic products supported by Ros,” ROS Components. [Online]. 

Available: https://www.roscomponents.com/en/. [Accessed: 27-Dec-2022]. 

 [20] “Tensorflow,” Wikipedia, 18-Dec-2022. [Online]. Available: 

https://en.wikipedia.org/wiki/TensorFlow. [Accessed: 20-Oct-2022].  

 [21] “Wiki,” ros.org. [Online]. Available: http://wiki.ros.org./. [Accessed: 16-May-2022].  

 [22] “Wiki,” ros.org. [Online]. Available: http://wiki.ros.org/ROS/CommandLineTools. 
[Accessed: 25-Oct-2022].  

[23] A. Rosebrock, “Ubuntu 16.04: How to install opencv,” PyImageSearch, 17-Apr-
2021. [Online]. Available: https://pyimagesearch.com/2016/10/24/ubuntu-16-04-
how-to-install-opencv/. [Accessed: 27-Dec-2022].  

[24] J. Redmon, Installing darknet. [Online]. Available: 
https://pjreddie.com/darknet/install/. [Accessed: 10-Apr-2022].  

[25] “Wiki,” ros.org. [Online]. Available: http://wiki.ros.org/kinetic/Installation/Ubuntu. 
[Accessed: 12-Oct-2022].  

49 

https://repository.najah.edu/handle/20.500.11888/14334?show=full
https://service.niryo.com/en/blog/8-reasons-use-rosrobotics-projects


 

[26] C. Bernstein, K. Brush, and A. S. Gillis, “What is MQTT and how does it work?,” IoT 
Agenda, 27-Jan-2021. [Online]. Available: 
https://www.techtarget.com/iotagenda/definition/MQTT-MQ-Telemetry-Transport. 
[Accessed: 27-Dec-2022].  

[27] “Flutter - provider package,” GeeksforGeeks, 01-Feb-2021. [Online]. Available: 
https://www.geeksforgeeks.org/flutter-provider-package/. [Accessed: 27-Dec-2022].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

50 


	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Overview
	Motivation
	Project Objectives
	Short Description Of The System
	Problem Statement
	List Of Requirements
	Functional Requirement:
	Nonfunctional Requirement:

	Overview Of The Rest Of Report Sections

	Background
	Overview
	Theoretical Background
	YOLO (You Only Look Once) Algorithm
	ROS (Robot Operating System)
	Turtlebot2 Motion
	Mapping Algorithm

	Literature Review
	The System Components And Design Options
	Hardware Components and Options:
	System Software Components:


	System Design
	Overview
	Detailed Description Of The System
	System Diagrams
	System Block Diagram
	Schematic Diagram

	Pseudo-Code
	Adjustments

	System Implementation
	Overview
	Hardware Implementation:
	Software Implementation:
	Operating System
	Installing needed packages
	OpenCV implementation
	Object detection implementation
	YOLO Implementation
	ROS implementation
	ROS algorithms

	Mobile Application Implementation
	MQTT Protocol
	User Interface

	Implementation issues and challenges

	Validation and Testing
	Overview
	Hardware Testing
	Testing DC Motor In Kobuki
	Testing Kinect XBOX 360

	Software testing
	OpenCV testing
	Testing Of YOLO Algorithm
	Software Testing Tables
	Mobile Application Testing

	System Validation

	Conclusion and Future work
	Conclusion
	Future work


