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ABSTRACT 

 

Numerical and Artificial Neural Network (ANN) approaches are now frequently 

employed for modeling and optimizing the performance of industrial systems. Optimal 

machining parameters are of major relevance in production contexts, as machining 

operations efficiency is critical to market competitiveness. The optimal machining 

parameters (i.e., spindle speed, drill diameter, and feed rate) for drilling operations will be 

researched in this project in order to minimize the delamination factor. Regression 

modeling and Response Surface Methodology (RSM) was previously used to explore the 

effects of specified parameters on process variables (i.e., delamination factors). The data 

acquired during the machining operation is utilized to create machine learning (ML)-based 

surrogate models that test, assess, and optimize different input machining parameters. To 

predict different output reactions of bio-composites drilling, several ML approaches such 

as polynomial regression (PR), random forest (RF) regression, gradient boosted (GB) trees, 

and adaptive boosting (AB) based regression are utilized. The ML results will then be 

compared to the experimental and RSM results. 

 

Keywords: Artificial Neural Networks; Bio-Composites; Drilling; Machine Learning; 

Optimization; 
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CHAPTER ONE: INTRODUCTION 

 

1.1 Introduction 

Modern technologies are supposed to aid the human race in various fields. 

Manufacturing is one of the most important fields in human life development. To achieve 

a higher level of development and modernity, humans should rely on new technologies that 

will help reach this goal. This research will discuss the use of modern technologies in order 

to achieve the goals set. Machine learning based models will be used to determine the best 

parameters for manufacturing drilling in bio composite materials.  

Determining these parameters will save time, energy and cost. In finding out these 

parameters, drilling the bio composite materials will be more efficient and be at a better 

level of manufacturing. In bio-composite materials, the manufacturers face a very serious 

issue, delamination.  

Delamination is when the several layers or components in a material separate. This 

presents an issue in drilling these materials. Some of these issues are lack of accuracy in 

holes that were drilled, more time spent in repairing the delamination and others.   

In previous research (Nassar et al., 2021) ,2 machine learning based models were 

used to try and find the lowest delamination using ANN & RSM. This project will act as a 

continuous work based on the previous research. Machine learning based models will be 

trained with a given data sheet of the previous experiments to be the guideline of the 

training process. The results will be crucial in determining the optimal parameters in the 

drilling process to reduce the delamination in the bio composite material (DPF/PP) drilling. 

The new addition in this research is that more advanced and several other machine learning 

models will be used. By using them, it will be able not only to determine the drilling 

parameters but also to compare results between other models and discuss acquired results. 
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It will be observed how each model’s algorithms works and how will it contribute to 

finding or determining the drilling parameters needed to decide on them.  

The human error in determining the parameters is impractical. Regarding drilling 

and modern manufacturing, the most optimum results are expected with minimal error. The 

machine learning models will be able to determine them at a very high accuracy with very 

low error. After determining these errors, custom request of these parameters can be made 

to achieve the best results. 

1.2  Motivation 

In manufacturing, drilling is a very common and important process. Bio composite 

materials drilling is as well important, but an issue arises, delamination. Delamination is a 

serious issue when it comes to drilling bio composite materials. Achieving the lowest 

delamination is the key and the most important objective of this research.  

In order to find delamination, drilling the bio composite material with each 

parameter is an unpractical way to solve the problem. Instead, by using some actual drilling 

with different drilling parameters to train machine learning models, finding delamination 

will be easier, faster and much more accurate. 

Using machine learning models will provide a solution to the problem. This will 

happen by training the four models that will be used in the project to find the best 

parameters. In optimizing the drilling diameters for bio composite materials, more precise 

and efficient drilling can be used. After finding the best parameters, they can be sent to a 

manufacturing company to produce a customized drill with the parameters that have been 

found to obtain the best results in drilling.   

As a result, less damage done to the bio composite materials, more precise drilling, 

lowering the time, costs and efforts exponentially in the pursuit of finding the optimal 

parameters by trial and error or going through thousands of parameter combinations to find 

them. 
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1.3 Problem Statement 

Previously, an experimental design of drilling parameters using three distinct levels 

was accomplished, including drill bit diameter, feed rate and depth of cut. The delamination 

at the machined hole’s entering and exiting is determined using Full Factorial Design. The 

parametric study and interaction were then statistically examined with ANOVA and 

Response Surface Methodology (RSM) based on quadratic regression .(Nassar et al., 2021) 

RSM was primarily used to analyze interactions between input parameters and their impact 

on machining quality. However, choosing the appropriate models to optimize the 

machining parameters is a vital role in getting the desired quality of holes and slots. The 

implementation of machine learning (ML) modeling assists in reducing the cost and time 

required to carry out the machining process while producing trustworthy outcomes. Hence, 

this work intends to use machine learning-based modeling to determine the optimal 

parameters of machined hole quality. Various ML models will be investigated and 

developed in order to determine the ideal parameters for achieving the desired quality of 

machined holes. The machine learning algorithms are: Polynomial Regression, Random 

Forest Tree Regression, Adaptive Boosted Trees & Gradient Boosted Trees. The results 

will then be compared to the experimental and statistical results. 

 

1.4 Objectives 

In simple words the main objective of this research is to reduce the delamination to 

the utmost minimum. That will be achieved by determining the best and most optimal 

drilling parameters used in the drilling and manufacturing of bio composite materials. This 

is the general and main objective, use machine learning models to determine the parameters 

so that the delamination is at its lowest. 

- To develop ML based models for the drilling process of developed bio-composites, 

in order to find the lowest delamination in drilling and optimize the drilling 

parameters on the holed quality using ML models. 
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1.5 Project Activities 

 

Requirements  

The requirements needed for this project are as follows. A previous data sheet of 

results that will act as a guideline is needed for the work.(Nassar et al., 2021) This data will 

act as the input to the machine learning models to obtain the results needed. The algorithms 

for the machine learning model that were chosen must be acquired. These can be obtainable 

from the internet and coded in python programming language. Several research papers 

related to this topic to act as references and as a resource to work on and benefit from in 

writing the research paper. A laptop or computer to execute the work on it and run the 

models several times to obtain the best results.  

 

Expected results 

It is expected to gain reasonable results from the machine learning models that will be 

sufficient enough to satisfy said objectives. It is also expected that the parameter, feed rate 

will be the most influencing and determining factor in deciding the drilling parameters as 

it has been read in other research papers (Belaadi et al., 2020).  
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Contribution 

 

The contribution will be using several machine learning-based models in 

determining the parameters for drilling. This will be able to give a much better insight on 

the whole topic. Different machine learning models will obviously lead to more than one 

result. Several results will make it possible to be able to compare them and study them to 

find if there are any relations between the results of the different machine learning models. 

Some models may provide a completely different result than the others, this will be due to 

the nature of the machine learning model or algorithm itself that will lead to different 

results than the other machine learning models.  

After gaining the different results from the different models, the assumptions made 

can either turnout to be correct or not. An entire new perspective can appear that wasn’t 

known about. The different models used will prove to be a beneficial point rather than be 

a liability. 
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2CHAPTER TWO: LITERATURE REVIEW 

 

2.1 Introduction 

Several research studies examine how artificial intelligence can be used and 

exploited to develop methods that facilitate human work in several ways, such as reducing 

time, increasing accuracy, and decreasing the error rate. 

 

2.2 Bio composite Materials 

 

2.2.1 Definition 

A bio composite material is a material made up of a matrix, which is usually resin, 

and a reinforcement element, which is usually natural fibers derived from plants or 

cellulose. These materials have a wide range of applications, including biomedicine, 

construction, and the development of these materials is founded on the idea that each of 

their components is biocompatible.(R., 2012) 

 

2.2.2 Components of Bio composite Materials: 

It is largely made of natural fibers generated primarily from plants or cellulose, with 

a matrix, usually resin, and a reinforcement element. The development of these materials 

is predicated on the fact that each of their components is biocompatible. These bio 

composite materials are defined by the fact that the resin matrix is essentially natural, 

therefore biodegradable, and we are talking about substances like glass fiber and carbon 

fiber. Instead, natural fibers such as wood fibers, flax, and others are commonly employed 

for the fibrous component (R., 2012). 
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In their structure, composite materials combine two or more starting materials while 

keeping them separate, resulting in a third type of material created by combining the two, 

which has chemical and physical properties that are significantly better than the 

characteristics of the starting materials individually, and Reinforced concrete is one of the 

most prevalent composite materials used in building. In fact, the steel and concrete 

elements of reinforced concrete interact with one another without losing their original 

material identity (R., 2012). 

 

2.2.3 DPF/PP 

Due to many advantages of using natural resources, natural fibers have been used 

recently as a method of providing added strength and ductility to reinforced polymer 

composites. This is mainly due to their availability, renewability, low density, cost 

effectiveness as well as satisfactory mechanical properties.  

 

In this research, machine learning algorithms will be used to produce the best results for 

the drilling process on a class of bio-composites in which polypropylene (PP) is 

reinforced with palm fronds fibers.(Nassar et al., 2021) 

 

2.2.4 Drilling of Bio composite Material 

Damage caused by drilling bio composites differs greatly from damage caused by 

composites with synthetic reinforcement such as carbon or glass fibers. Induced damage 

increases with feed rate in composites reinforced with carbon or glass fibers, but damage 

decreases with feed rate in bio composites reinforced with natural fibers. (Díaz-Álvarez et 

al., 2021) 
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2.3 Drilling Process 

 

2.3.1 Definition 

Drilling is the most prevalent machining procedure used in the production of 

composite components and structures. For this, traditional drilling with a twist drill is 

commonly used. Due to their unique properties, however, ensuring good hole quality on 

composites is challenging. To increase the quality of drilled holes in composites, special 

drill bits with different geometries and materials, as well as unconventional hole-making 

techniques, have been created. Delamination is the most common drilling flaw that leads 

to composite construction failure. Various metrics or delamination factors are used to 

determine the severity of delamination damage. For many drilling applications, 

delamination suppression methods have been devised. (Zarif Karimi et al., 2013)  

Composites have recently become key materials in a variety of engineering 

applications; as a result, various final industrial procedures, such as cutting, trimming, and 

drilling, are required to use these materials. Because composites are heterogeneous, as 

opposed to homogenous materials like metals and polymers, various problems have 

occurred while processing composites using typical cutting processes, such as significant 

surface roughness and material degradation at the cutting zone. Unconventional cutting 

procedures were investigated in order to overcome these obstacles. Cutting forces, which 

are the principal source of cutting flaws in typical cutting techniques, were not taken into 

consideration in unconventional cutting methods.(Díaz-Álvarez et al., 2021) 

 

The most economical general-purpose drill material is high-speed steel (HSS). It is 

a cost-effective solution for many drilling applications. It is a popular metal drill bit 

material that can drill safely through several types of metals, plastic, and hardwood.(Nassar 

et al., 2021) 
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2.3.2 Drilling Scheme 

In this research, drilling was performed using 2-flutes high speed steel (HSS) drill. 

HSS drill bits are hardwearing and heat resistant. The large concentrations of chrome and 

nickel in stainless steel ensure that HSS bits are super strong and durable. HSS drill bits 

are capable of safely drilling through hardwood, some metals and plastic. They’re safe to 

operate at high speeds and provide long-lasting performance – as long as they are 

maintained. (Patil, 2020) 

 

2.3.3 Delamination 

Among all the manufacturing processes, the drilling process is one of the most used 

processes in the treatment of vital compounds, and one of the most serious problems that 

we face in the drilling process is Delamination, which is a major failure model in the 

drilling process. In addition to reducing the structural integrity of the material, also results 

in poor assembly tolerance and has the potential for long-term performance deterioration, 

Figure 2-1 shows the Schematic mechanisms for entry (peel-up) and exit (push-out) 

delamination. 
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Figure 2-1 : Schematic mechanisms for entry (peel-up) and exit (push-out) delamination. 

(Barbosa et al., 2019). 

Unloading is one of the most important problems in the drilling process that will 

lead to a decrease in the load-carrying capacity of the vehicles. Previous studies indicate 

that thrust is the main cause of the unloading process, which can be affected by tool 

geometry and drilling parameters. A high thrust force may cause a large-scale discharge of 

the workpiece. Both drilling type and feed rate have significant impacts on tool life, thrust, 

and, therefore, unloading. Besides, by changing the cutting speeds and feed rates, the 

average thrust force can be changed. In general, the final discharge factor is a synergistic 

result of cutting speed, drilling size, and feed rate (Zhang & Xu, 2021).  

 

Delamination of the bio-composites at the hole entrance and exit during drilling has 

a negative impact on the hole surface quality and engineering qualities of the material. The 

feed rate was found to be the most beneficial parameter on hole entrance and exit 

delamination of the composite material using ANOVA. Using regression analysis, first-

degree mathematical models for each cutting tool's entrance and exit delamination 

components were established. The acquired data revealed that optimization, mathematical 

models, and experimental test findings are all quite consistent (Bayraktar & Turgut, 2020).  
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- Factor of Delamination 

The hole quality must be maintained properly when drilling composite materials, 

as this is the most important aspect of production. Surface finish, roundness error, hole 

diameter with tolerance, and other factors are used to assess hole quality. Delamination is 

a type of damage that occurs as a result of the anisotropy and brittleness of composite 

materials (Sasikumar, 2015). 

  

The experimental results demonstrate that though the critical thrust force is higher 

with increasing wear, the delamination becomes more liable to occur because the actual 

thrust force increases with the wear to larger extent (Tsao & Hocheng, 2007). 

  

2.4 Machine Learning 

 

2.4.1 Definition 

Machine learning, which is a subset of artificial intelligence, can make a machine 

learn automatically from past information without having to explicitly program (Paturi & 

Cheruku, 2020). Many machine learning algorithms have been developed for this purpose, 

and these algorithms have been exploited in many applications that facilitate human work, 

and among these applications is the use of machine learning models to determine the best 

parameters for manufacturing pits in bio composites (Belaadi et al., 2020) (Belaadi et al., 

2020). 

Machine learning (ML)-based approaches have exploded in popularity over the last 

decade, affecting a wide range of industries, including autonomous driving, health care, 

banking, manufacturing, energy harvesting, and more. ML, like computers in the 1980s 

and 1990s, is often regarded as one of the most disruptive technologies of our ages (Carleo 

et al., 2019). 
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A learning problem is defined as the inability to improve some measure of 

performance while completing a task through training. For example, learning to detect 

credit card fraud entails categorizing each credit card transaction as "fraud" or "non fraud." 

This fraud classifier's accuracy might be improved, and the training experience could 

include a collection of past credit-card transactions, each of which could be classified as 

fraudulent or not in hindsight. Alternatively, when "fraud" is improperly labeled "not 

fraud" rather than "fraud" is incorrectly labeled "not fraud," a separate performance 

indicator could be defined. It's also possible to define a new type of training experience 

(Jordan & Mitchell, 2015). 

Machine learning aims to answer the question of how to create computers that learn 

on their own. It is one of the fastest-growing technical topics today, straddling the lines 

between computer science and statistics, as well as artificial intelligence and data science. 

The development of novel learning algorithms and theory, as well as the continual 

explosion in the availability of online data and low-cost computation, have fueled recent 

advances in machine learning. Data-intensive machine-learning methods are being adopted 

throughout science, technology, and commerce, resulting in greater evidence-based 

decision-making in a variety of fields, including health care, manufacturing, education, 

financial modeling, law enforcement, and marketing (Jordan & Mitchell, 2015).  

A machine learning algorithm is a computing process that uses input data to 

accomplish a goal without being literally programmed (i.e., "hard coded") to do so. These 

algorithms are "soft programmed" in the sense that they automatically adjust or adapt their 

design as a result of repetition (i.e., experience) to get better and better at doing the target 

objective. Training is the adaptation process, which involves providing samples of input 

data together with intended consequences. The algorithm then optimizes itself so that it 

cannot only provide the desired result when given the training inputs, but also generalize 

to create the desired result when given new, previously unknown data. The "learning" 

aspect of machine learning is this training. The training does not have to be limited to a 

single adaption over a set period of time. A good algorithm, like people, may learn 

"lifelong" as it analyses fresh data and learns from its failures (Naqa & Murphy, 2015). 
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The recent success of machine learning has been underlined at initially by major 

improvements on previous technologies, such as image recognition. These advancements 

were largely the first indications of the impact that machine learning approaches can have 

on specialized activities. More recently, deep learning technology has effectively enabled 

applications that were previously unreachable to automated software. The presentation of 

reinforcement learning techniques in game play, for example, has had a significant impact 

on the idea that the entire field is moving closer to what was expected from a general 

artificial intelligence system (AI) (Carleo et al., 2019). 

 

2.4.2 Mechanism of Work 

The way in which machine-learning algorithms represent candidate programs (e.g., 

decision trees, mathematical functions, and general programming languages) and the way 

in which they search through this space of programs differ greatly (e.g., optimization 

algorithms with well-understood convergence guarantees and evolutionary search methods 

that evaluate successive generations of randomly mutated programs) (Jordan & Mitchell, 

2015). 

A computer algorithm can evolve in a variety of ways in response to training. The 

input data can be chosen and weighted to produce the best results. Iterative optimization 

can be used to alter the algorithm's variable numerical parameters. It can arrange a network 

of possible computational pathways for the best outcomes. It can take the supplied data to 

generate probability distributions and use them to forecast outcomes (Naqa & Murphy, 

2015). 

A key scientific and practical goal, regardless of the learning algorithm, is to 

conceptually characterize the capabilities of various learning algorithms as well as the 

intrinsic complexity of each given learning problem: How well can an algorithm learn from 

a specific type and quantity of training data? How resistant is the algorithm to errors in the 

training data or in its modeling assumptions? Is it possible to construct a successful solution 

for a learning issue with a given volume of training data, or is this learning problem 
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essentially intractable? Statistical decision theory and computational complexity theory are 

commonly used in such theoretical characterizations of machine-learning algorithms and 

issues. In fact, attempts to theoretically characterize machine-learning algorithms have 

resulted in a mix of statistical and computational theory with the goal of simultaneously 

characterizing the sample complexity (how much data is required to learn accurately) and 

the computational complexity (how much computation is required) and specifying how 

these depend on features of the learning algorithm like the representation it uses for what 

it learns. Optimization theory, with upper and lower bounds on rates of convergence of 

optimization processes combining well with the presentation of machine-learning issues as 

the optimization of a performance metric, has proven particularly valuable in recent years 

(Jordan & Mitchell, 2015). 

 

2.5 Summary 

Like some data-based machine learning algorithms that were used in previous 

studies such as RSM and ANN (Belaadi et al., 2020). In this research some other data-

driven machine learning algorithms will be used to determine the best basic parameters of 

the drilling process in bio-composites (spindle speed, drilling diameter and feed rate), and 

compare the resulting results with practical data and conclude which of these algorithms 

yields the best results in terms of the lowest delamination and lowest error. 
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3CHAPTER THREE: DESIGN/METHOD 

 

3.1 Introduction  

This chapter outlines the detailed procedures of the work. It consists of 

programming the four machine learning models, training them & obtaining results from 

said models. Then, the results are analyzed, graphed and discussed in detail later in chapter 

4. 

3.2 Project activities.  

This section aims to provide a simple frame of the activates. The project is divided 

into two phases. The first phase is programming the models using Python programming 

language on Google Colab and training the models to predict the parameters. The second 

phase is acquiring the results from phase 1, analyzing it and sorting it into tables & graphs. 

Figure3-1 showcases the work steps in order. 

 

3.3 ML Algorithms 

3.3.1  Polynomial Regression Algorithm (PR) 

Polynomial Regression is a type of regression analysis in which the relationship 

between the independent and dependent variables is represented by an nth degree 

polynomial (Agrawal, 2021). 

Polynomial Regression models are more convenient to be used with the method of 

least squares. The least square method minimizes the variance of the coefficients, under 

the Gauss Markov Theorem. The data in Polynomial Regression is fitted with a polynomial 

equation that has a curvilinear relationship between the dependent and independent 

variables. 
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3.3.1.1 When is Polynomial Regression needed? 

 

When linear regression is applied and the linear line in the graph is nowhere near 

to cut the mean of the points. On the other hand, when the Polynomial Regression is 

applied, there is no need for a linear relationship between the independent and dependent 

variables in the dataset. 

The figure(3-1) below show the difference between the Linear Regression and 

Polynomial Regression (PR). 

Figure 3-1 : Difference between the Linear Regression and Polynomial 

Regression(Agrawal, 2021) 

  

 

 

Equations of the Polynomial Regression Model: 

 

Simple Linear Regression equation:        y = b0+b1x         .........(1) 

Multiple Linear Regression equation:  y= b0+b1x1+ b2x2+ b3x3+....+ bnxn  .....(2) 

Polynomial Regression equation:      y= b0+b1x + b2x2+ b3x3+....+ bnxn      ....(3) 
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When the three equations (1,2 & 3) are compared, it will be clear that the three 

equations are Polynomial equations, but differ by the degree of variables. The Simple and 

Multiple Linear equations are also Polynomial equations with a single degree. While the 

Polynomial regression equation is a Linear equation with the nth degree. So when a degree 

is added to the linear equations, then it will be converted into Polynomial Linear equations. 

 Polynomial regression’s benefit is that it can be able to work with any data set size. 

It also works very well with non-linear problems. The major issue or disadvantage of this 

machine learning algorithm is that the user must apply the exact right polynomial degree 

for good bias variance tradeoff (Reddy, 2020) . 

 

3.3.2 Random Forest Algorithm 

Random forest regression algorithm is a supervised machine learning algorithm that 

is popularly and widely used in classification and regression problems. This algorithm is 

combined with a series of tree classifiers. Each tree casts a unit vote for the most popular 

class, then combining these results, the final sort result is obtainable. When the number of 

trees in the forest is greater, it leads to gaining a higher accuracy and prevents the problem 

of overfitting (Javapoint, 2021; Sruthi, n.d.). 

3.3.2.1 Assumptions for Random Forest 

The random forest combines many trees to predict the class of the dataset. Some 

trees' decisions may predict the correct output, while others may not. But together, all the 

trees predict the correct output. So, for a better random forest classifier there are two 

assumptions  

The first assumption is that the feature variable of the dataset should include some 

actual values so that the classifier can predict accurate results rather than a guessed result. 

The second one is that the predictions from each tree must have very low correlations. 
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3.3.2.2 How does the Random Forest Algorithm work? 

Random Forest works in two-phase first is to create the random forest by combining 

N decision trees, and second is to make predictions for each tree created in the first phase. 

- The Working process can be explained with the following steps: 

 

1. The first step is to select random K data points from the training set. 

2. The second step is to build the decision trees associated with the selected 

data points (subsets). 

3. The third step is choosing the number (N) for decision trees that need to be 

built. 

4. Then repeat steps number 1 and 2. 

5. The final step is to find the predictions tree for the new data points and 

assign it to the category that wins the majority votes (Javapoint, 2021) . 

 

The deciding function is:  
 

H(x)= arg max ∑ 𝑰(𝒉𝒊(𝒙) = 𝒀)𝒌
𝒊=𝟏     ……….(4) 

H (x):combination of classification model. 

hi: single decision tree model. 

Y : the output variable. 

 I(⋅) : the indicator function 
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Figure 3-2 : Method of Random Forest Algorithm(Javapoint, 2021) 

 

3.3.2.3 Advantages 

There are many benefits to using random forest regression. It reduces the overfitting 

in decision trees and helps to improve the accuracy. It can be used for both classification 

and regression problems. It works well with both categorical and continuous values. It also 

can automatically handle missing values. 

 

3.3.2.4 Disadvantages 

The main limitation of random forest is that due to a large number of trees the 

algorithm takes a long time to train which makes it slow and ineffective for real-time 

predictions. 
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3.3.3 AdaBoost Algorithm 

AdaBoost algorithm, short for Adaptive Boosting, This algorithm improves the 

prediction power by converting a number of weak learners into strong learners.  

Boosting algorithm combines multiple models (weak learners) to reach the final 

output (strong learners). 

 

3.3.3.1 Types of Boosting Algorithms 

- Adaboost, gradient descent and xtreme gradient descent  

- Adaboost or adaptive boosting is a technique used in machine learning used as an 

ensemble method   .  

- The most common algorithm used with adaboost is decision trees with one level It 

means that they are decision trees with only 1 split. These trees are also called 

decision stumps 

This algorithm builds a model and gives equal weights to all the data points It then 

assigns higher weights to points that are wrongly classified. All the points with higher 

weights are given more importance to be focused on in the next model . 

It will keep training models until and unless a lower error is received. 

The whole point of this algorithm is assigning different weights to classify Wrong 

classifications get higher weight to focus on in the next model, we keep repeating this step 

until we reach a lower error and alpha will be a large number, in a perfect scenario the 
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alpha will be a very large number and the error is equal to or almost nearly 0 in a bad 

scenario alpha will be a negative integer and error is high Error is always between 1 and 0 

 

Figure 3-3 : Boosting Algorithm(Saini, 2021) 

 

 

 

 

3.3.4 Gradient-Boosted Trees 

Machine learning algorithms require more than just fitting models and making 

predictions to improve accuracy. Most of the industry or competition winning models use 

batch techniques or feature engineering to achieve better performance 

Cluster technologies in particular have gained popularity due to their ease of use 

compared to feature engineering. There are multiple assembly methods that have been 

proven to increase accuracy when used with advanced machine learning algorithms. One 

such way is gradient enhancement. While gradation is often discussed as if it were a black 

box, so we will explain it. 
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3.3.4.1 What are Gradient-Boosted Trees? 

Gradient-boosted trees is a machine learning technique for optimizing the 

predictive value of a model through successive steps in the learning process. Each iteration 

of the decision tree involves adjusting the values of the coefficients, weights, or biases 

applied to each of the input variables being used to predict the target value, with the goal 

of minimizing the loss function (the measure of difference between the predicted and actual 

target values). The gradient is the incremental adjustment made in each step of the process. 

boosting is a method of accelerating the improvement in predictive accuracy to a 

sufficiently optimum value. 

Gradient boosting machines is a class of sophisticated machine-learning techniques 

that have had a lot of success in a variety of applications. it is very adaptable to the 

application's specific requirements. introduction to gradient boosting methods' 

methodology, with a significant emphasis on machine learning components of modeling. 

Will is supplemented by extensive examples and images that cover all steps of the gradient 

boosting model design. 

 

3.3.4.2 Why are Gradient-Boosted Trees Important? 

Gradient-boosted decision trees is a popular method for solving prediction 

problems in both classification and regression domains. The approach improves the 

learning process by simplifying the objective and reducing the number of iterations to get 

to a sufficiently optimal solution. Gradient-boosted models have proven themselves time 

and again in various competitions grading on both accuracy and efficiency, making them 

a fundamental component in the data scientist’s tool kit. 

 

 

 

https://c3.ai/glossary/data-science/loss-function/
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3.3.4.3 Methodology 

One can arbitrarily specify both the loss function and the base-learner models on demand. 

In practice, given some specific loss function Ψ (y, f) and/or a custom base-learner h(x, 

θ), the solution to the parameter estimates can be difficult to obtain. To deal with this, it 

was proposed to choose a new function h (x, θ) to be the most parallel to the negative 

gradient {ǥt(xi)}N
i = 1 along the observed data: 

ǥ𝑡(𝑥) = 𝐸𝑦[𝑥]𝑓(𝑥) = 𝑓𝑡−1(𝑥)          …….…..(5) 

Instead of looking for the general solution for the boost increment in the function space, 

one can simply choose the new function increment to be the most correlated with −gt(x). 

This permits the replacement of a potentially very hard optimization task with the classic 

least-squares minimization one: 

(𝜌𝑡, 𝜃𝑡) = 𝑎𝑟𝑚𝑖𝑛𝜌,𝜃 ∑  𝑁
𝑖=1 [ǥ𝑡(𝑥𝑖) +  𝜌ℎ(𝑥𝑖, 𝜃)]2        ……..(6) 

To summarize, we can formulate the complete form of the gradient boosting algorithm, 

as originally proposed by Friedman (2001). The exact form of the derived algorithm with 

all the corresponding formulas will heavily depend on the design choices of Ψ(y, f) 

and h(x, θ). One can find some common examples of these algorithms in Friedman 

(2001). 

If we consider connections to earlier developments, it will turn out that the well-known 

cascade correlation neural networks by Friedman (2001) can be considered a special type 

of a gradient boosted model, as defined in Algorithm 5. Since the input-side weights of 

each neuron become fixed right after it was added to the network, this whole model can 

be considered a GBT, where the base-learner model is just one neuron and the loss 

function is the standard squared error. This algorithm also maximizes the correlation 

between the error of the whole network and the newly created neuron, which makes the 

comparison more evident. 

 

 

https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021/full#B19
https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021/full#B19
https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021/full#B19
https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021/full#B19
https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021/full#Al1
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3.3.4.4 Advantages and Disadvantages of Gradient Boost 

Advantages of Gradient Boosting are 

• it provides predictive accuracy that cannot be trumped. 

• Flexible: can optimize on different loss functions and provides several hyper 

parameter tuning options that make the function fit very flexible. 

• No data pre-processing required - often works great with categorical and 

numerical values as is Handles missing data - imputation not required 

 

Now look at some disadvantages  

• Gradient Boosting Models will continue improving to minimize all errors. This 

can overemphasize outliers and cause overfitting 

• Computationally expensive - often require many trees (>1000) which can be time 

and memory exhaustive 

• The high flexibility results in many parameters that interact and influence heavily 

the behavior of the approach (number of iterations, tree depth, regularization 

parameters, etc.). This requires a large grid search during tuning 

Less interpretative in nature, although this is easily addressed with various tools 
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Figure 3-4 : This is a flowchart that shows the work flow of the study. 
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Firstly, the results obtained from Nassar’s thesis (Nassar et al., 2021) will be the 

foundation to the whole study. It will act as the input to the machine learning models that 

will be used. As it is seen, there are 3 main parameters. Drill Bit Diameter, Spindle Speed 

& Feed Rate. Fd is the delamination factor, there is a factor for delamination in entry and 

exit. The machine learning models will predict 8 outputs. Each model will give prediction 

for entry and exit. 

Table 3-1 : Drilling parameters and calculated delamination factors of developed bio-

composites and pure PP.(Nassar et al., 2021) 

Exp. 

Run 

Control Drilling Parameters Calculated Responses 

d : Drill Bit 

Diameter (mm) 

s : Spindle 

 Speed (rpm) 

f : Feed 

 Rate (mm/min) 

Fd - Entry Fd - Exit 

DPF/PP DPF/PP 

1 4 1000 100 1.025 1.07 

2 4 1000 200 1.045 1.068 

3 4 1000 300 1.073 1.055 

4 4 3000 100 1.07 1.053 

5 4 3000 200 1.073 1.08 

6 4 3000 300 1.078 1.058 

7 4 5000 100 1.078 1.038 

8 4 5000 200 1.095 1.065 

9 4 5000 300 1.093 1.075 

10 6 1000 100 1.035 1.038 

11 6 1000 200 1.027 1.023 

12 6 1000 300 1.035 1.03 

13 6 3000 100 1.053 1.025 

14 6 3000 200 1.058 1.033 

15 6 3000 200 1.047 1.025 

16 6 3000 200 1.053 1.015 

17 6 3000 200 1.043 1.033 

18 6 3000 200 1.053 1.035 

19 6 3000 200 1.038 1.042 

20 6 3000 300 1.052 1.058 

21 6 5000 100 1.023 1.06 

22 6 5000 200 1.025 1.05 

23 6 5000 300 1.057 1.04 

24 8 1000 100 1.033 1.031 

25 8 1000 200 1.036 1.051 

26 8 1000 300 1.02 1.059 

27 8 3000 100 1.044 1.05 

28 8 3000 200 1.039 1.045 

29 8 3000 300 1.036 1.029 

30 8 5000 100 1.053 1.044 

31 8 5000 200 1.066 1.033 

32 8 5000 300 1.055 1.038 
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The machine learning algorithms used are: Polynomial Regression, Random Forest 

Tree Regression, Adaptive Boosted Trees & Gradient Boosted Trees. 

 

Google Colab will be used to program the models. Which is a product from Google 

Research. Colab allows anybody to write and execute arbitrary python code through the 

browser, and is especially well suited to machine learning.  

Google Colab is a hosted Jupyter Notebook service that requires no setup. The only 

thing needed is to upload the acquired results under the name “Data Input.csv”. CSV is 

short for comma separated value. Any excel file can be converted to a csv file which allows 

the researcher to work with it programming wise.  

The entry and exit are split and assigned into two data frames. First data frame is 

“df1” which holds   X_Entry & Y_Entry while the second data frame “df2” holds X_Exit 

& Y_Exit. 

 

df1=df.drop(['Exit'],axis=1) 

X_Entry = df1.drop(['Entry'],axis=1) 

Y_Entry = df1['Entry'] 

 

df2=df.drop(['Entry'],axis=1) 

X_Exit = df2.drop(['Exit'],axis=1) 

Y_Exit = df2['Exit'] 

 

 

 The data is then split into test and train.  

#Dividing the data into test and train 

X_entry_train, X_entry_test, y_entry_train, y_entry_test  

= train_test_split(X_Entry, Y_Entry, test_size=0.33) 

X_exit_train, X_exit_test, y_exit_train, y_exit_test  

= train_test_split(X_Exit, Y_Exit, test_size=0.33) 
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The machine learning models are then programmed with a call for the entry and 

exit outputs for each model. Then, an expansion code will be done to find the most accurate 

and lowest delamination.  

def expand_grid(dictionary): 

   return pd.DataFrame([row for row in product(*dictionary.values

())],  

                       columns=dictionary.keys()) 

    

dictionary = {'Drill Bit Diameter': np.linspace(6,7,100),  

              'Spindle Speed': np.linspace(3600,3700,200),  

              'Feed Rate': np.linspace(160,170,100)} 

 

new_testdf=expand_grid(dictionary) 

 

In this function, it will expand all values in the drilling diameters. The numbers 

inside the function are the value range desired. For example, in Drill Bit Diameter, the 

numbers 6,7 and 100 are shown. It means that it will generate 100 values between 6 and 7. 

The same thing goes for Spindle Speed and Feed Rate. The numbers in the picture are for 

example and do not necessarily mean in these ranges resides the lowest delamination. All 

these values are stored into a new data frame called “new_testdf”. 

The way this benefits the study is that by sorting the output from the models, it can 

be seen where the delamination is at its lowest. Then, the parameters value is chosen and 

put into this function to find the lowest delamination in range of said parameter values. 

   y_pred_entry_gbt = model_entry_gbt.predict(new_testdf) 

   y_pred_exit_gbt = model_exit_gbt.predict(new_testdf) 

   new_testdf['Entry_Predictions']=y_pred_entry_gbt 

   new_testdf['Exit_Predictions']=y_pred_exit_gbt 

    

 

In the previous code, new variables were defined. This code showcases an example 

for the Adaptive Boosted Trees machine learning model. The “y_pred_entry” and 

“y_pred_exit’ variables are used for tying the new data frame acquired earlier with the 

machine learning algorithms to find the lowest delamination value.  
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 The way this benefits the study is that by sorting the output from the models, it can 

be seen where the delamination is at its lowest. Then, the parameters value is chosen and 

put into this function to find the lowest delamination in range of said parameter values. 

Then the data frame is sorted using the last line in the code to show the needed value.  

This has been done for each of the models to find the lowest delamination value 

and specify the value of the parameters that hold said value.  

new_testdf.to_csv(GradientBoosted_Range.csv') 

gbt_entry.to_csv('GradientBoosted_Entry.csv') 

gbt_exit.to_csv('GradientBoosted_Exit.csv') 

 

In this code it shows the code used to download the output as .csv files in order to 

work with the data sheets and analyze the results separately using the suitable tools. This 

also has been for the models and this is an example for the adaboost algorithm. The 

“new_testdf” is the data frame acquired from the previous function. The other 2 files 

contain the results for the entry and exit predictions for said model.  
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4CHAPTER FOUR: STATITCAL ANALYSIS AND DISCUSSION 

 

4.1 Introduction 

In this chapter, the results obtained from the machine learning based models are 

shown. They are analyzed and then the model with the best results is decided.  

 

4.2 Measured Delamination Factor 

In Table 3-1, it shows the data which was taken from similar previous research 

using different models.(Nassar et al., 2021) With which the expected results of the models 

will be compared and analyze the results of the models by calculating how close they are 

to these results, and Table 3-1 shows Drilling parameters and calculated delamination 

factors of developed bio-composites. 

4.3 Accuracy of Developed  Models  

The experimental and the predicted values obtained from regression models are 

compared. The percentage of error is calculated using the following formula for the 

mathematical model validation:   

                                            %. 𝜀 =
𝐸𝑥𝑝.−𝑃𝑟𝑒𝑑.

𝐸𝑥𝑝.
 × 100%                                (1)              

Then, the developed model’s adequacy is evaluated using the average absolute error 

calculations. When the average absolute error is less than 10%, it means that the model is 

accepted for further application.  
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4.4 DPF/PP Delamination Factors Models Accuracy 

The DPF/PP Fd models are tests using the accuracy measurements and average absolute 

error. The results of the models will reveal that they can be used in further work to predict the 

responses as long as the error values are in the accepted ranges.   

4.5 Predicted Result of Models 

4.5.1 Predicted Results of Polynomial Regression Model 

Table 4-1: Comparison of experimental and predicted values of DPF/PP delamination factors 

based on the Polynomial Regression Based Model 

Control Drilling Parameters Predicted Response 

d :Drill Bit 

Diameter 

(mm) 

s:Spindle 

 Speed 

(rpm) 

f:Feed 

 Rate 

(mm/min) 

Fd - Entry Fd - Exit 

Exp. Pred. ε (%) Exp. Pred. ε (%) 

4 1000 100 1.025 1.047 2.146 1.16 1.053 9.224 

4 1000 200 1.045 1.052 0.67 1.04 1.054 1.346 

4 1000 300 1.073 1.057 1.491 1.06 1.056 0.377 

4 3000 100 1.07 1.059 1.028 1.08 1.054 2.407 

4 3000 200 1.073 1.064 0.839 1.02 1.055 3.431 

4 3000 300 1.078 1.069 0.835 1.06 1.057 0.283 

4 5000 100 1.078 1.071 0.649 1.05 1.055 0.476 

4 5000 200 1.095 1.076 1.735 1.04 1.056 1.538 

4 5000 300 1.093 1.081 1.098 1.03 1.058 2.718 

6 1000 100 1.035 1.034 0.097 1.04 1.042 0.192 

6 1000 200 1.027 1.038 1.071 1.04 1.044 0.385 

6 1000 300 1.035 1.043 0.773 1.05 1.046 0.381 

6 3000 100 1.053 1.046 0.665 1.08 1.043 3.426 

6 3000 200 1.058 1.05 0.756 1.05 1.045 0.476 

6 3000 200 1.047 1.05 0.287 1.05 1.045 0.476 

6 3000 200 1.053 1.05 0.285 1.05 1.045 0.476 

6 3000 200 1.043 1.05 0.671 1.05 1.045 0.476 

6 3000 200 1.053 1.05 0.285 1.05 1.045 0.476 

6 3000 200 1.038 1.05 1.156 1.05 1.045 0.476 

6 3000 300 1.052 1.055 0.285 1.06 1.047 1.226 

6 5000 100 1.023 1.058 3.421 1.08 1.044 3.333 

6 5000 300 1.025 1.062 3.61 1.08 1.046 3.148 

6 5000 200 1.057 1.067 0.946 1.06 1.048 1.132 

8 3000 200 1.033 1.02 1.258 1.04 1.032 0.769 

8 5000 200 1.036 1.025 1.062 1.02 1.034 1.373 

8 3000 300 1.02 1.029 0.882 1.03 1.036 0.583 

8 3000 100 1.044 1.032 1.149 1.06 1.033 2.547 

8 5000 100 1.039 1.037 0.192 1.03 1.035 0.485 

8 5000 300 1.036 1.041 0.483 1.06 1.037 2.17 

8 1000 300 1.053 1.044 0.855 1.03 1.034 0.388 

8 1000 200 1.066 1.049 1.595 1.04 1.036 0.385 

8 1000 100 1.055 1.053 0.19 1.02 1.038 1.765 

Av. abs. Error 1.015%  1.511% 
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a) 

 

 

b) 

 

Figure 4-1 : Comprsion of the exprrimental and calculated delamination factors of Polynomial 

Regression at Drill Bit Entry & Exit for DPF/PP  a) Fd – Entry  and b) Fd - Exit 
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4.5.2 Predicted Results of Random Forest Model 

Table 4-2: Comparison of experimental and predicted values of DPF/PP delamination 

factors based on Random Forest Based Model 

Control Drilling Parameters Predicted Response 

d :Drill 

Bit 

Diameter 

(mm) 

s:Spindle 

 Speed 

(rpm) 

f:Feed 

 Rate 

(mm/min) 

Fd - Entry Fd - Exit 

Exp. Pred. ε (%) Exp. Pred. ε (%) 

4 1000 100 1.025 1.055 2.927 1.16 1.044 10 

4 1000 200 1.045 1.055 0.957 1.04 1.044 0.385 

4 1000 300 1.073 1.055 1.678 1.06 1.044 1.509 

4 3000 100 1.07 1.055 1.402 1.08 1.044 3.333 

4 3000 200 1.073 1.055 1.678 1.02 1.044 2.353 

4 3000 300 1.078 1.055 2.134 1.06 1.044 1.509 

4 5000 100 1.078 1.055 2.134 1.05 1.044 0.571 

4 5000 200 1.095 1.055 3.653 1.04 1.044 0.385 

4 5000 300 1.093 1.055 3.477 1.03 1.044 1.359 

6 1000 100 1.035 1.055 1.932 1.04 1.044 0.385 

6 1000 200 1.027 1.055 2.726 1.04 1.044 0.385 

6 1000 300 1.035 1.055 1.932 1.05 1.044 0.571 

6 3000 100 1.053 1.055 0.19 1.08 1.044 3.333 

6 3000 200 1.058 1.055 0.284 1.05 1.044 0.571 

6 3000 200 1.047 1.055 0.764 1.05 1.044 0.571 

6 3000 200 1.053 1.055 0.19 1.05 1.044 0.571 

6 3000 200 1.043 1.055 1.151 1.05 1.044 0.571 

6 3000 200 1.053 1.055 0.19 1.05 1.044 0.571 

6 3000 200 1.038 1.055 1.638 1.05 1.044 0.571 

6 3000 300 1.052 1.055 0.285 1.06 1.044 1.509 

6 5000 100 1.023 1.055 3.128 1.08 1.044 3.333 

6 5000 300 1.025 1.055 2.927 1.08 1.044 3.333 

6 5000 200 1.057 1.055 0.189 1.06 1.044 1.509 

8 3000 200 1.033 1.055 2.13 1.04 1.044 0.385 

8 5000 200 1.036 1.055 1.834 1.02 1.044 2.353 

8 3000 300 1.02 1.055 3.431 1.03 1.044 1.359 

8 3000 100 1.044 1.055 1.054 1.06 1.044 1.509 

8 5000 100 1.039 1.055 1.54 1.03 1.044 1.359 

8 5000 300 1.036 1.055 1.834 1.06 1.044 1.509 

8 1000 300 1.053 1.055 0.19 1.03 1.044 1.359 

8 1000 200 1.066 1.055 1.032 1.04 1.044 0.385 

8 1000 100 1.055 1.055 0 1.02 1.044 2.353 

Av. abs. Error 1.582 %  1.617% 
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a) 

 

 

b) 

 

Figure 4-2 : Comprsion of the exprrimental and calculated Delamination factors of Random 

Forest Model at Drill Bit Entry & Exit DPF/PP  a) Fd – Entry  and b) Fd - Exit 
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4.5.3 Predicted Results of AdaBoost Model 

Table 4-3: Comparison of experimental and predicted values of DPF/PP delamination 

factors based on Adaptive Boosted Based Model 

Control Drilling Parameters Predicted Response 

d :Drill 

Bit 

Diameter 

(mm) 

s:Spindle 

 Speed 

(rpm) 

f:Feed 

 Rate 

(mm/min) 

Fd - Entry Fd - Exit 

Exp. Pred. ε (%) Exp. Pred. ε (%) 

4 1000 100 1.025 1.025 0 1.16 1.068 7.931 

4 1000 200 1.045 1.045 0 1.04 1.073 3.173 

4 1000 300 1.073 1.045 2.61 1.06 1.069 0.849 

4 3000 100 1.07 1.074 0.374 1.08 1.053 2.5 

4 3000 200 1.073 1.074 0.093 1.02 1.073 5.196 

4 3000 300 1.078 1.075 0.278 1.06 1.068 0.755 

4 5000 100 1.078 1.078 0 1.05 1.046 0.381 

4 5000 200 1.095 1.093 0.183 1.04 1.068 2.692 

4 5000 300 1.093 1.093 0 1.03 1.068 3.689 

6 1000 100 1.035 1.034 0.097 1.04 1.031 0.865 

6 1000 200 1.027 1.045 1.753 1.04 1.032 0.769 

6 1000 300 1.035 1.035 0 1.05 1.058 0.762 

6 3000 100 1.053 1.046 0.665 1.08 1.026 5 

6 3000 200 1.058 1.046 1.134 1.05 1.026 2.286 

6 3000 200 1.047 1.046 0.096 1.05 1.026 2.286 

6 3000 200 1.053 1.046 0.665 1.05 1.026 2.286 

6 3000 200 1.043 1.046 0.288 1.05 1.026 2.286 

6 3000 200 1.053 1.046 0.665 1.05 1.026 2.286 

6 3000 200 1.038 1.046 0.771 1.05 1.026 2.286 

6 3000 300 1.052 1.048 0.38 1.06 1.058 0.189 

6 5000 100 1.023 1.032 0.88 1.08 1.044 3.333 

6 5000 300 1.025 1.032 0.683 1.08 1.042 3.519 

6 5000 200 1.057 1.032 2.365 1.06 1.05 0.943 

8 3000 200 1.033 1.033 0 1.04 1.035 0.481 

8 5000 200 1.036 1.035 0.097 1.02 1.038 1.765 

8 3000 300 1.02 1.02 0 1.03 1.058 2.718 

8 3000 100 1.044 1.047 0.287 1.06 1.031 2.736 

8 5000 100 1.039 1.047 0.77 1.03 1.035 0.485 

8 5000 300 1.036 1.05 1.351 1.06 1.058 0.189 

8 1000 300 1.053 1.059 0.57 1.03 1.044 1.359 

8 1000 200 1.066 1.059 0.657 1.04 1.042 0.192 

8 1000 100 1.055 1.061 0.569 1.02 1.05 2.941 

Av. abs. Error 0.571%  2.160% 
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a) 

 

b) 

Figure 4-3: Comprsion of the exprrimental and calculated Delamination Factors of AdaBoost 

Model at Drill Bit Entry & Exit for DPF/PP a) Fd – Entry and b) Fd - Exit 
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4.5.4 Predicted Results of Gradient-Boosted Trees Model 

Table 4-4: Comparison of experimental and predicted values of DPF/PP delamination 

factors based on Gradient-Boosted Trees Based Model 

Control Drilling Parameters Predicted Response 

d :Drill 

Bit 

Diameter 

(mm) 

s:Spindle 

 Speed 

(rpm) 

f:Feed 

 Rate 

(mm/min) 

Fd - Entry Fd - Exit 

Exp. Pr. ε (%) Exp. Pr. ε (%) 

4 1000 100 1.025 1.024 0.098 1.16 1.07 7.759 

4 1000 200 1.045 1.047 0.191 1.04 1.068 2.692 

4 1000 300 1.073 1.024 4.567 1.06 1.055 0.472 

4 3000 100 1.07 1.067 0.28 1.08 1.051 2.685 

4 3000 200 1.073 1.075 0.186 1.02 1.077 5.588 

4 3000 300 1.078 1.078 0 1.06 1.063 0.283 

4 5000 100 1.078 1.082 0.371 1.05 1.039 1.048 

4 5000 200 1.095 1.091 0.365 1.04 1.064 2.308 

4 5000 300 1.093 1.093 0 1.03 1.075 4.369 

6 1000 100 1.035 1.037 0.193 1.04 1.03 0.962 

6 1000 200 1.027 1.046 1.85 1.04 1.034 0.577 

6 1000 300 1.035 1.03 0.483 1.05 1.059 0.857 

6 3000 100 1.053 1.052 0.095 1.08 1.03 4.63 

6 3000 200 1.058 1.046 1.134 1.05 1.033 1.619 

6 3000 200 1.047 1.046 0.096 1.05 1.033 1.619 

6 3000 200 1.053 1.046 0.665 1.05 1.033 1.619 

6 3000 200 1.043 1.046 0.288 1.05 1.033 1.619 

6 3000 200 1.053 1.046 0.665 1.05 1.033 1.619 

6 3000 200 1.038 1.046 0.771 1.05 1.033 1.619 

6 3000 300 1.052 1.055 0.285 1.06 1.058 0.189 

6 5000 100 1.023 1.031 0.782 1.08 1.044 3.333 

6 5000 300 1.025 1.025 0 1.08 1.042 3.519 

6 5000 200 1.057 1.034 2.176 1.06 1.046 1.321 

8 3000 200 1.033 1.034 0.097 1.04 1.034 0.577 

8 5000 200 1.036 1.042 0.579 1.02 1.038 1.765 

8 3000 300 1.02 1.019 0.098 1.03 1.059 2.816 

8 3000 100 1.044 1.045 0.096 1.06 1.034 2.453 

8 5000 100 1.039 1.039 0 1.03 1.038 0.777 

8 5000 300 1.036 1.042 0.579 1.06 1.058 0.189 

8 1000 300 1.053 1.053 0 1.03 1.044 1.359 

8 1000 200 1.066 1.058 0.75 1.04 1.042 0.192 

8 1000 100 1.055 1.063 0.758 1.02 1.038 1.765 

Av. abs. Error 0.578%  2.006% 
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a) 

 

 

b) 

 

Figure 4-4 : Comprsion of the exprrimental and calculated Delamination Factors of Gradient-

Boosted Trees Based Model at Drill Bit Entry & Exit for DPF/PP  a) Fd – Entry  and b) Fd – Exit 
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4.5.5 The most affective parameter in the models 

The most affective parameter in predicting the delamination factor was Drill Bit 

Diameter. In this segment which was an output of the Polynomial Based Model it 

shows it was the most affective. 

coef      std err          t         P>|t|         [0.025      0.975] 

---------------------------------------------------------------------------------- 

const              1.0642      0.014     78.602      0.000       1.036       1.092 

Drill Diameter    -0.0069      0.002     -4.046      0.000      -0.010      -0.003 

Spindle Speed       6e-06    1.7e-06      3.524      0.001    2.51e-06    9.49e-06 

Feed Rate       4.722e-05    3.4e-05      1.387      0.176   -2.25e-05       0.000 

 

 As it shows, the drill bit diameter has the lowest error and it is the most affective. 

4.6 The lowest delamination in the models. 

The machine learning based models proved useful and efficient. The lowest delamination 

has been calculated in each model and the parameters were determined as follows. 

4.6.1 Adaboost 

These are the values of the parameters that predict the lowest delamination possible 

in AdaBoost Model. 

Drill Diameter Spindle Speed Feed Rate Entry Exit 

6 1000 144.4444 1.034 1.031333 

 

4.6.2 Gradient Boosted  

These are the values of the parameters that predict the lowest delamination possible 

in Gradient Boosted Model. 

Drill Diameter Spindle Speed Feed Rate Entry Exit 

6 4111.111111 166.6667 1.025 1.041917 
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4.6.3 Polynomial  

These are the values of the parameters that predict the lowest delamination possible 

in Polynomial Model. As well as this model has predicted the lowest delamination factor 

value of all of the models. 

Drill Diameter Spindle Speed Feed Rate Entry Exit 

8 1000 100 1.019844 1.032337 

4.6.4 Random Forest 

Sadly, this model cannot determine the lowest delamination factor due to it failing 

in giving acceptable results. 

 

4.7 Summary 

The results show the value of the delamination factor that was predicted by the 

machine learning based models that were programmed.  

 

- The Random Forest Model fails to give good data, and the reason is that it 

needs very large amounts of data in order to work well and give better, more 

accurate results. (Han et al., 2021) 

- The Gradient-Boosted Trees Model provided the best and closest results in 

Entry to the actual values. 

- The Polynomial Regression Model provided the best and closest results in 

Exit to the actual values. 

- Drill Bit Diameter proved to be the most affective parameter based on the 

Polynomial Regression Based Model. 

- Polynomial Regression Model predicted the lowest delamination factor out 

of all of the models.  
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5CHAPTER FIVE: CONCLUSION AND FUTURE WORK 

 

5.1 Conclusion 

In this project, all of the objectives have been met. First, developing new machine 

learning based models using Polynomial Regression, Random Forest Trees Regression, 

Gradient Boosted Trees & Adaptive Boosted Trees Regression algorithms. Second, 

determining the optimal drilling parameters to reduce delamination in bio composite 

materials (Date Palm Fronds Reinforced Polypropylene (DPF/PP)) drilling. The following 

are the main points that can be concluded based on this research: 

- Drill Bit Diameter was the most affective parameter in predicting the values 

based on the Polynomial Regression Model. 

- If more experimental data were provided , the predicted results of the 

models will be much better and closer to the experimental data. 

- Random Forest didn’t yield results that were acceptable due to the training 

data being small. (Han et al., 2021) 

- The Gradient-Boosted Trees Model provided the best and closest Entry 

results to the actual values.  

- The Gradient-Boosted Trees Model provided the best and closest Exit 

results to the actual values.  

- The use of machine learning models in the drilling process effectively saves 

time and effort and gives much better results 

5.2 Future Work 

- To use other more advanced machine learning models to compare results 

with. 

- Optimize the data using different methods like Zeroth Order Optimization.  
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APPENDICES 

 

Polynomial Regression Model Code 

import pandas as pd 

import numpy as np 

import statsmodels.api as sm 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import accuracy_score 

from sklearn.metrics import mean_squared_error 

from sklearn.preprocessing import StandardScaler 

import matplotlib.pyplot as plt 

 

df=pd.read_csv("Data Input.csv") 

df.head() 

 

df1=df.drop(['Exit'],axis=1) 

X_Entry = df1.drop(['Entry'],axis=1) 

Y_Entry = df1['Entry'] 

 

df2=df.drop(['Entry'],axis=1) 

X_Exit = df2.drop(['Exit'],axis=1) 

Y_Exit = df2['Exit'] 

 

X_entry_train, X_entry_test, y_entry_train, y_entry_test = train_tes

t_split(X_Entry, Y_Entry, test_size=0.33) 

X_exit_train, X_exit_test, y_exit_train, y_exit_test = train_test_sp

lit(X_Exit, Y_Exit, test_size=0.33) 

 

#Polynomial regression 

def polyreg(X,Y): 

  X1 = sm.add_constant(X) 

  model= sm.OLS(Y, X1).fit() 

  print(model.summary()) 

  y_pred=model.predict(X1) 

  X2=X 

  X2['Actual']=Y 

  X2['Predicted']=y_pred 

  print("Error is: {}".format(mean_squared_error(Y,y_pred))) 
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  return model,X2 

 

model_entry_poly,reg_entry = polyreg(X_Entry,Y_Entry) 

reg_entry 

 

 

model_exit_poly,reg_exit=polyreg(X_Exit,Y_Exit) 

reg_exit 

 

def expand_grid(dictionary): 

   return pd.DataFrame([row for row in product(*dictionary.values())

],  

                       columns=dictionary.keys()) 

    

dictionary = {'Drill Bit Diameter': np.linspace(6,8,10),  

              'Spindle Speed': np.linspace(1000,5000,10),  

              'Feed Rate': np.linspace(100,300,10)} 

 

new_testdf=expand_grid(dictionary) 

 

 

y_pred_entry_poly = model_entry_poly.predict(new_testdf) 

y_pred_exit_poly = model_exit_poly.predict(new_testdf) 

new_testdf['Entry_Predictions']=y_pred_entry_poly 

new_testdf['Exit_Predictions']=y_pred_exit_poly 

 

new_testdf.to_csv('Polynomial_Range_result.csv') 

reg_entry.to_csv('Polynomial_Entry.csv') 

reg_exit.to_csv('Polynomial_Exit.csv') 

 

 

 

 

 

 

 



46 

 

Random Forest Model Code 

import pandas as pd 

import numpy as np 

import statsmodels.api as sm 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import accuracy_score 

from sklearn.metrics import mean_squared_error 

from sklearn.ensemble import RandomForestRegressor 

from sklearn.preprocessing import StandardScaler 

import matplotlib.pyplot as plt 

 

df=pd.read_csv("Data Input.csv") 

df.head() 

 

df1=df.drop(['Exit'],axis=1) 

X_Entry = df1.drop(['Entry'],axis=1) 

Y_Entry = df1['Entry'] 

 

df2=df.drop(['Entry'],axis=1) 

X_Exit = df2.drop(['Exit'],axis=1) 

Y_Exit = df2['Exit'] 

 

X_entry_train, X_entry_test, y_entry_train, y_entry_test = train_tes

t_split(X_Entry, Y_Entry, test_size=0.33) 

X_exit_train, X_exit_test, y_exit_train, y_exit_test = train_test_sp

lit(X_Exit, Y_Exit, test_size=0.33) 

 

def randomreg(X,Y): 

  X_train, X_test, y_train, y_test = train_test_split(X, Y, test_siz

e=0.33,random_state = 0) 

  scaler = StandardScaler() 

  scaler.fit(X_train) 

  X_train = scaler.transform(X_train) 

  X_test = scaler.transform(X_test) 

  estimators = np.arange(10, 200, 10) 

  scores = [] 

  for n in estimators: 

    model = RandomForestRegressor(n_estimators = n).fit(X_train,y_tr

ain) 

    scores.append(model.score(X_test, y_test)) 
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  model = RandomForestRegressor(n_estimators = 200).fit(X_train,y_tr

ain) 

  y_pred = model.predict(X) 

  X1 = X 

   

  X1['Actual']=Y 

  X1['Predicted']=y_pred 

 

  plt.title("Effect of n_estimators") 

  plt.xlabel("n_estimator") 

  plt.ylabel("score") 

  plt.plot(estimators, scores) 

  print("Error is: {}".format(mean_squared_error(y_test,model.predic

t(X_test)))) 

  return model,X1  

 

model_entry,random_entry=randomreg(X_Entry,Y_Entry) 

random_entry 

 

model_exit,random_exit=randomreg(X_Exit,Y_Exit) 

random_exit 

 

def expand_grid(dictionary): 

   return pd.DataFrame([row for row in product(*dictionary.values())

],  

                       columns=dictionary.keys()) 

    

dictionary = {'Drill Bit Diameter': np.linspace(6,8,10),  

              'Spindle Speed': np.linspace(1000,5000,10),  

              'Feed Rate': np.linspace(100,300,10)} 

 

new_testdf=expand_grid(dictionary) 

 

y_pred_entry=model_entry.predict(new_testdf) 

y_pred_exit=model_exit.predict(new_testdf) 

new_testdf['Entry_Predictions']=y_pred_entry 

new_testdf['Exit_Predictions']=y_pred_exit 

 

 

new_testdf.to_csv('RandomForest_Range_result.csv') 

random_entry.to_csv('RandomForest_Entry.csv') 

random_exit.to_csv('RandomForest_Exit.csv') 
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AdaBoost Model Code 

import pandas as pd 

import numpy as np 

import statsmodels.api as sm 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import accuracy_score 

from sklearn.metrics import mean_squared_error 

from sklearn.preprocessing import StandardScaler 

import matplotlib.pyplot as plt 

from sklearn.ensemble import AdaBoostRegressor 

 

df=pd.read_csv("Data Input.csv") 

df.head() 

 

 

df1=df.drop(['Exit'],axis=1) 

X_Entry = df1.drop(['Entry'],axis=1) 

Y_Entry = df1['Entry'] 

 

df2=df.drop(['Entry'],axis=1) 

X_Exit = df2.drop(['Exit'],axis=1) 

Y_Exit = df2['Exit'] 

 

 

X_entry_train, X_entry_test, y_entry_train, y_entry_test = train_tes

t_split(X_Entry, Y_Entry, test_size=0.33) 

X_exit_train, X_exit_test, y_exit_train, y_exit_test = train_test_sp

lit(X_Exit, Y_Exit, test_size=0.33) 

 

def adareg(X,Y): 

  X_train, X_test, y_train, y_test = train_test_split(X, Y, test_siz

e=0.33,random_state = 0) 

  model = AdaBoostRegressor().fit(X_train,y_train) 

  y_pred = model.predict(X) 

  X1=X 

  X1['Actual']=Y 

  X1['Predicted']=y_pred 

  print("Error is: {}".format(mean_squared_error(y_test,model.predic

t(X_test)))) 

  return model,X1 
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model_ada_exit,ada_exit=adareg(X_Exit,Y_Exit) 

ada_exit 

 

 

def expand_grid(dictionary): 

   return pd.DataFrame([row for row in product(*dictionary.values())

],  

                       columns=dictionary.keys()) 

    

dictionary = {'Drill Bit Diameter': np.linspace(6,8,10),  

              'Spindle Speed': np.linspace(1000,5000,10),  

              'Feed Rate': np.linspace(100,300,10)} 

 

new_testdf=expand_grid(dictionary) 

 

 

y_pred_entry_ada=model_ada_entry.predict(new_testdf) 

y_pred_exit_ada=model_ada_exit.predict(new_testdf) 

new_testdf['Entry_Predictions']=y_pred_entry_ada 

new_testdf['Exit_Predictions']=y_pred_exit_ada 

 

new_testdf.to_csv('AdaBoost_Range_result.csv') 

ada_entry.to_csv('AdaBoost_Entry.csv') 

ada_exit.to_csv('AdaBoost_Exit.csv') 
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Gradient-Boosted Trees Model Code 

import pandas as pd 

import numpy as np 

import statsmodels.api as sm 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import accuracy_score 

from sklearn.metrics import mean_squared_error 

from sklearn.preprocessing import StandardScaler 

import matplotlib.pyplot as plt 

from sklearn.ensemble import GradientBoostingRegressor 

 

df=pd.read_csv("Data Input.csv") 

df.head() 

 

 

df1=df.drop(['Exit'],axis=1) 

X_Entry = df1.drop(['Entry'],axis=1) 

Y_Entry = df1['Entry'] 

 

df2=df.drop(['Entry'],axis=1) 

X_Exit = df2.drop(['Exit'],axis=1) 

Y_Exit = df2['Exit'] 

 

#Dividing the data into test and train 

X_entry_train, X_entry_test, y_entry_train, y_entry_test = train_tes

t_split(X_Entry, Y_Entry, test_size=0.33) 

X_exit_train, X_exit_test, y_exit_train, y_exit_test = train_test_sp

lit(X_Exit, Y_Exit, test_size=0.33) 

 

 

def gbtree(X,Y): 

  X_train, X_test, y_train, y_test = train_test_split(X, Y, test_siz

e=0.33,random_state = 0) 

 params={'n_estimators':3,'max_depth':3,'learning_rate':1,'criterion

':'mse'} 

 model = GradientBoostingRegressor(**params).fit(X_train,y_train) 

  y_pred = model.predict(X) 

  X1=X 

  X1['Actual']=Y 

  X1['Predicted']=y_pred 
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  print("Error is: {}".format(mean_squared_error(y_test,model.predic

t(X_test)))) 

  return model,X1 

 

model_entry_gbt,gbt_entry=gbtree(X_Entry,Y_Entry) 

gbt_entry 

 

model_exit_gbt,gbt_exit=gbtree(X_Exit,Y_Exit) 

gbt_exit 

 

def expand_grid(dictionary): 

   return pd.DataFrame([row for row in product(*dictionary.values())

],  

                       columns=dictionary.keys()) 

    

dictionary = {'Drill Bit Diameter': np.linspace(6,8,10),  

              'Spindle Speed': np.linspace(1000,5000,10),  

              'Feed Rate': np.linspace(100,300,10)} 

 

new_testdf=expand_grid(dictionary) 

 

 

y_pred_entry_gbt = model_entry_gbt.predict(new_testdf) 

y_pred_exit_gbt = model_exit_gbt.predict(new_testdf) 

new_testdf['Entry_Predictions']=y_pred_entry_gbt 

new_testdf['Exit_Predictions']=y_pred_exit_gbt 

 

new_testdf.to_csv('GradientBoosted_Range.csv') 

gbt_entry.to_csv('GradientBoosted_Entry.csv') 

gbt_exit.to_csv('GradientBoosted_Exit.csv') 

 

 

 

 


