
Palestine Polytechnic University

College of Information Technology and Computer Engineering

Goalkeeper Robot using Reinforcement
Learning and Computer Vision

Team Members:
Amro Amro
Ruba Irshaid
Majd Ewawi

Supervisor Name:
Dr. Hashem Tamimi

December 2021

Abstract
In this project, we aim to build an intelligent goalkeeper robot that is able to prevent the

ball from passing the goal border. The robot will move in a linear direction. It will be trained by

trial and error through reinforcement learning (using the Q-learning algorithm) and computer

vision techniques. After training, the robot should be able to detect where the ball is and move

toward the ball to prevent it from passing the goal border. The hardware components include an

Arduino UNO microcontroller, linear actuator (slider with a stepper motor), motor drivers, HP

laptop for processing, and a camera as an input device. Since Python is an efficient language for

dealing with complex algorithms in machine learning (ML) and computer vision (CV), we are

going to use it to develop the software part of the system.

2

List of Contents
Chapter 1: Introduction 7

1.1 Overview and Motivation 7
1.2 Objective 7
1.3 Description of the system 7
1.4 Importance 8
1.5 Requirements 8
1.6 Constraints 9
1.7 Overview of the next chapters 9

Chapter 2: Background 11
2.1 Theoretical background 11

2.2.1 Machine Learning 11
2.2.3 Computer Vision 12
2.2.4 Reinforcement learning 12

How does reinforcement learning work? 13
2.2.5 Q-Learning: 13

2.3 Literature Review 15
2.4 System Hardware Components 17

2.4.3 V-Slot NEMA 23 Linear Actuator (Belt Driven) Bundle 19
2.4.4 EasyDriver A3967 20

2.5 Software background 20
2.5.1 programming languages 21
2.5.2 Libraries 21

Chapter 3: System Design 23
3.1. Conceptual description of the system 23
3.2. System Logic & Methodology 23

3.2.1 Q-learning 24
3.2.2. Computer vision: Binary HSV Thresholding 26
3.2.3. Goalkeeper position and movement 27

3.3. System Block Diagram 28
3.4 System Schematic 29

Chapter 4: Implementation 30
4.1 Hardware Implementation 30
4.2 Software Implementation 32

4.2.1 Goalkeeper module 32
4.2.2 Camera module 33

3

4.2.3 Detection module 34
4.2.4 The Environment Simulation module 34
4.2.5 The Learning Loop 36
4.2.6 Managing the work 37

Chapter 5: Testing and Results 39
5.1 Hardware Testing 39

5.1.1 Testing the Microcontroller (Arduino UNO) 39
5.1.2 Testing the Camera (Logitech C905) 39
5.1.3 Testing the System Circuit 39

5.2 Software Testing 40
5.4 Conclusion and Future work 41

References 42

List of Figures
Figure 1.1 Basic system block diagram 7
Figure 2.1 How does Reinforcement Learning work 12
Figure 2.2 Q-learning Method steps 13
Figure 2.3 Goalkeeper movement 15
Figure 2.4 Goalkeeper hardware 15
Figure 2.5 Breakout-ram-v0 16
Figure 2.6 Arduino UNO 17
Figure 2.7 Logitech camera c905 17
Figure 2.8 V-Slot NEMA 23 Linear Actuator 18
Figure 2.9 L298N Motor Driver 19
Figure 3.1 System logic of the Goalkeeper robot 22
Figure 3.2 The interactions between Goalkeeper and the environment 23
Figure 3.3 System Block Diagram 27
Figure 3.4 System Schematic Diagram 28
Figure 4.1 Assembled V-Slot with environment 30
Figure 4.2 System circuit 31
Figure 4.3 Serial communication between laptop and Arduino 32
Figure 4.4 Simulation environment 36
Figure 5.1 Accumulated reward as a function of episode 41

List of Tables
Table 2.1. Quantitative test results in simulation 14
Table 3.1. The Q-Table Structure 24

4

Chapter One

5

Chapter 1: Introduction

1.1 Overview and Motivation

Nowadays, the appearance of Intelligent Systems (IS) in human life has become an

inevitable truth, as well the development in this field is incredibly fast. One of the most

important and powerful techniques of building intelligent systems is Machine Learning (ML).

Machine Learning can make the machine learn and construct its decision-making model from

experiences without human intervention.

One of those systems is the robotic football team and the agent we chose in our project,

the goalkeeper, which has particularly challenging characteristics, different from the other

teammates in the football team, when designing and coordinating the overall system.

The main purpose of a goalkeeper, human or robot, is to defend the goal from the kicks of

the opponent team and it should perform a perfect coordination between all its behaviors,

depending on the game state, such as: tracking and following the ball motion, intercepting the

ball before reaching the goal, covering the goal and removing the ball from the goal

neighborhood. Moreover, the goalkeeper should always keep track of the ball, reacting

differently depending on the position. We will talk in more detail in the next chapter about our

system and how it works.

1.2 Objective

In this project we aim to build a small-scale microcontroller-based Goalkeeper Robot

capable of preventing the ball from passing the goal border through a track using Reinforcement

Learning (RL) with the help of a single camera module.

6

1.3 Description of the System

In this project, the goalkeeper system consists of a robot, a microcontroller, and a camera

module positioned at the top of the area where the ball can move. The robot is implemented as a

linear actuator that can move linearly left and right only.

The camera will observe the ball, and the goalkeeper will move left or right depending on

the previous position and the motion direction of the ball to prevent it from passing the goal

border. Figure 1.1 shows the basic block diagram of our system.

Figure 1.1. Basic system block diagram

1.4 Importance

A long-term goal of artificial intelligence and building intelligent systems is the

development of algorithms capable of general efficiency in a variety of tasks and fields without

the need for domain-specific tailoring. So, we will build a Goalkeeper robot capable of doing fast

and intelligent reactions based on the variables of the environment. Hence, this project with a

few adjustments can be a part of many systems that require similar behavior. In addition, it can

be used as a game that provides a sense of fun and challenge for people.

7

1.5 Requirements

The system is expected to perform the following requirements:

● The user should be able to throw the ball within a specific area.

● The system should be able to detect a specific moving object which is a ball in our

case in real-time using Computer Vision (CV).

● The robot should be able to move to prevent the ball from passing through the

goal using Reinforcement learning (RL).

1.6 Constraints

The project is subject to the following constraints:

● The GoalKeeper robot will move in two directions left and right at constant speed.

● Only one ball should be in the area at a time.

● The ball has a distinctive (highly saturated) color that makes it easy to be detecte.

1.7 Overview of the Next Chapters

For the rest of the document, we will talk in more detail about the system from a
theoretical background, design, implementation, and testing for software and hardware.

8

Chapter Two

9

Chapter 2: Background
This chapter introduces the different theoretical backgrounds required for this project, a

brief description of the techniques, and the hardware components parts used in our system.

2.1 Theoretical background

In this section, we will provide some information about the general terms, such as

machine learning, reinforcement learning, and computer vision:

2.2.1 Machine Learning

In 1959, computer scientist Arthur Samuel defined machine learning as a subfield of

artificial intelligence that gives the computer the flexibility to learn by itself without being

explicitly programmed.

Also, scientist Tom M. Mitchell provides a general definition of algorithms used in the

field of machine learning: "A computer program is said to learn from experience E with respect

to some class of tasks T and performance measure P if its performance at tasks in T, as measured

by P, improves with experience E"[1].

Machine Learning algorithms can be categorized into three main fields, which are

Supervised Learning (SL), Un-Supervised Learning (USL), and Reinforcement Learning. In

Supervised Learning, the machine is provided with labeled data. Labeled data means that: when

data with X: features appear in such a situation, what is the output of this situation Y: Label. In

Un-Supervised Learning, the data is not labeled, and the task of the machine is to recognize the

pattern between data then put them into clusters to discover more information about data.

In general, the availability of clean and enough data to train the system is not an easy

process. So, in reinforcement learning (RL), there is no need for preprocessed data, and the task

of the machine is to learn by itself through the concept of reward and punishment depending on

his action. The goal is to maximize the total reward.

10

2.2.3 Computer Vision

Computer vision is a field of artificial intelligence (AI) that allows computers to extract

information or get knowledge from digital images, videos, and other visual inputs, then make an

action depending on such information. So, we can say that computer vision enables machines to

see the world around them [2].

The image in digital form is represented by a 2D matrix of pixels where the dimensions

correspond to the height and width of the image. Also, it can be represented using different color

models such as RGB (red, green, blue), Gray, CMYK, or HSV. The values of pixels in the image

vary depending on the color model used to represent it.

HSV is a color model used to represent digital images, in which each pixel is represented

using three values: hue, saturation, and value. Hue value is used to indicate the primary color

whose value ranges from 0 to 360, whereas saturation is a measure of the degree of intensity of

color ranges from 0 to 100, and value is a measure of the amount of brightness of the color

whose value ranges from 0 to 100.

In our project, each frame will be converted from the RGB color model into the HSV

color model before being processed. The HSV is more robust to illumination changes of color

than the RGB color model, making it a more attractive option in color thresholding applications

compared to RGB [11].

2.2.4 Reinforcement Learning

Reinforcement learning is a machine learning (ML) method that takes place due to

interactions between agents and the surrounding environment. In general, perceptions received

by the agent are used not only for acting but also for improving the agent’s ability to behave

optimally in the future to achieve the goal. So, reinforcement learning is all about learning

through trial and error [5].

11

How does reinforcement learning work?

In Reinforcement learning, the agent is rewarded for the desired behaviors and punished

for the undesired ones. To be more specific, positive values are assigned to the desired actions to

encourage the agent and negative values to undesired behaviors. With time, the agent learns to

avoid the negative and seek the positive to achieve the goal [5].

Figure 2.1. How does Reinforcement Learning work

2.2.5 Q-Learning:

Q-Learning is one of the most common reinforcement learning algorithms. In this

algorithm, the agent tries an action at a particular state and evaluates its consequences in terms of

the reward or punishment it receives and its estimate of the value for the current state to which it

is taken. By trying all actions in all states repeatedly, it learns which are best overall, judged by

long-term reward [6]. This algorithm is based on the Bellman Equation [14] as shown in

equation 2.1. It’s used to calculate the Q-value of each state-action in the environment which

represents how good it is to take the action at state s:

(2.1)𝑄(𝑠 , 𝑎) 𝑛𝑒𝑤 = 𝑄(𝑠, 𝑎) + α [𝑅(𝑠, 𝑎) + 𝑀𝑎𝑥[𝑄(𝑠 , 𝑎 *)] * γ − 𝑄(𝑠, 𝑎)]

In the previous equation (2.1):

: The Q-value at state s and action a𝑄(𝑠 , 𝑎)

: The reward at state s and action a𝑅(𝑠, 𝑎)

: The maximum Q-value for the next state at all possible actions.𝑀𝑎𝑥 [𝑄(𝑠 , 𝑎 *)]

12

: The Discount value. It’s a value between 0 and 1γ

: The Learning rateα

How does the Q-Learning method work?

In the Q-learning method, several steps are performed to generate the Q-Table which is

the table where we calculate the maximum expected future rewards for action at each state

(Q-value). Basically, this table will guide the agent to the best action at each state to achieve a

goal. Figure 2.2. Shows the steps of the Q-learning algorithm [6].

Figure 2.2. Q-learning Method steps

After many iterations, the Q-Table will contain the values that the agent will use to

achieve the desired goal, the agent in any state will choose the action with maximum Q-value

that leads it to the goal. The pseudo-code for the Q-Learning algorithm is as follows:

13

Initialize Q (s, a) arbitrarily

Repeat (for each episode):

Initialize s

Repeat (for each step of episode):

Choose a from S using policy derived from Q

Take action a, observe r, 𝑠'

Update :

𝑄(𝑠 , 𝑎) 𝑛𝑒𝑤 = 𝑄(𝑠, 𝑎) + α [𝑅(𝑠, 𝑎) + 𝑀𝑎𝑥[𝑄(𝑠 , 𝑎 *)] * γ − 𝑄(𝑠, 𝑎)]

𝑠 → 𝑠'

Until is terminal𝑠

2.3 Literature Review

Foosball Table Goalkeeper Automation Using Reinforcement Learning [10]:

This project is done by a set of students at Darmstadt University of Applied

Sciences in Germany. It aimed to automate physical foosball games (table soccer)

systems. In the beginning, they create a simulated goalkeeper using the Unity platform

and other pythons' libraries, then train it using the reinforcement learning algorithm in a

try-and-error manner then they deploy it to the physical system.

They used discrete actions: move left, right, or do nothing, and the goalkeeper gets a

positive reward when it held the ball and a negative one otherwise. Also, they used a

Deep Q-learning algorithm to calculate the Q-values required to choose the best action.

Table 2.1. shows the results of system simulation using the Unity platform.

Tested with 100%
random shots

Tested with 100% smart
shots

Trained with 80% smart
shots

76.3 % 74.2%

Trained with 100% random
shots

70.7% 62.9%

Table 2.1. Quantitative test results in simulation

14

Figure 2.3 shows how the goalkeeper moves in his environment.

Figure 2.3. Goalkeeper movement

This project has the same goal as our project, which is to get a goalkeeper and train it

until it can make the right movement decisions to prevent the ball from passing the goal border.

What makes our project different is we will use a different algorithm which is the Q-learning

algorithm. In their project, they used a Deep Q-learning algorithm. The difference between those

two is the implementation of the Q-table. Critically, Deep Q-Learning replaces the regular

Q-table with a neural network, which leads to more complexity. While using Q-learning we will

have the same results with less software complexity. Also, we will reduce the hardware

complexity - without losing the effectiveness of the system - by using simple hardware

components: Arduino UNO, stepper motor, motor driver, and camera module. See Figure 2.4.

Figure 2.4. Goalkeeper hardware

15

The Arcade Learning Environment: Breakout-ram-v0 (Software System) [12]:
Also, Reinforcement learning (RL) is widely used in video games, for example, the

Arcade Learning Environment (ALE) offers over 500 atari games using the Stella Atari emulator.

In those games, the developers used SARSA(λ), a traditional technique for model-free

reinforcement learning. Breakout-ram-v0 is one of those Atari games similar to our system idea

with different algorithm implementation. The sliding bar can move left or right, and this game

ends if the ball is not caught by the sliding bar or if the ball breaks all of the wall's pieces. See

Figure 2.5.

Figure 2.5. Breakout-ram-v0

2.4 System Hardware Components

In this section, we will describe the hardware component that we will use in our project.

We will discuss the alternatives.

16

2.4.1 Board Chips “Arduino UNO”

Arduino UNO is a microcontroller based

on ATmega328p with an operating voltage of 5

volts. It has 14 digital I/O pins and 6 of them

provide PWM output. It has a 32 KB flash

memory and a clock speed equal to 16MHz. It

has a USB port, we used it to power the Arduino

by connecting it to the computer.[13]

Figure 2.6. Arduino UNO

Our Choice:
Arduino UNO is our choice for the project since we need a real-time response for moving

the keeper, and it's faster in dealing with hardware components "in the Goalkeeper project we

deal with a stepper motor".

2.4.2 Logitech Camera c905

The c905 is a USB Portable Webcam, with

2-megapixel resolution for high-clarity video, it provides

attractive video features such as light correction, contrast

enhancements, and smooth high-quality video recording.

Figure 2.7. Logitech camera c905

The following are the important specifications of the camera module [9]:

● Max Resolution: 720p/30fps

● Diagonal field of view (dFoV): 55°

● Compatible with: Windows 7 or later, macOS 10.10 or later, and USB - A port

17

In this project, we will use the c905 camera to capture a video stream in the top of the

Goalkeeper and feed the image as input to the laptop. It is also suitable because it offers a good

field of view and suitable smooth videos.

The alternative in this system would be the use of the cheaper Arduino camera module

instead of the Logitech camera c905. However, due to the wider field of view, better image

quality, and the built-in video encoding hardware of the c905, it seemed like a better option.

2.4.3 V-Slot NEMA 23 Linear Actuator (Belt Driven) Bundle

The V-Slot Linear Actuator is a powerful component in any linear system such as our

system. It consists of V-Slot Linear Rail, Mini V Gantry Plate (to save the ball from passing the

goal border), Solid V wheel, GT2 Timing Pulley 30T, GT2 Belts, and Assembly Hardware.

The following are the important specifications of

the V-Slot Linear Actuator [7]:

● provided with a NEMA 23 stepper motor.

● Max Speed: ~12000 mm/min

● Accuracy Positioning: 0.260mm

● Max Force: 2.5lb (11N)

Figure 2.8. V-Slot NEMA 23 Linear Actuator

The alternative in this system would be the use of a similar linear actuator with a DC

motor rather than a stepper motor. However, stepper motors are more suited to applications that

require accurate positioning and repeatability with a fast response to starting, stopping, and

reversing as our system needs.

18

2.4.4 EasyDriver A3967

The motor driver acts as an interface between the motors and the control circuits. Motors

require a high amount of current where the controller circuit works on low current signals. So,

the purpose of motor drivers is to take a low-current control

signal and then convert it into a higher-current signal that

can drive a motor. The EasyDriver is a complete

microstepping motor driver with a built-in translator. It is

designed to operate bipolar stepper motors in full, half,

quarter, and eighth-step modes.

Figure 2.9. EasyDriver

The following are the important specifications are of the EasyDriver [8]:

● Driving Voltage (6V - 30V)

● Logical Voltage (3V - 5.5V)

● Max drive current (750mA/phase)

● Automatic current-decay mode detection/selection

● Internal UVLO and thermal shutdown circuitry

● Crossover-current protection

The alternative in this system would be the use of the L298N Motor driver, both of which

are compatible with our system. However, EasyDriver provides a higher voltage, it has a current

protection circuit, and a thermal shutdown circuit which makes the EasyDriver better than the

L298N motor driver.

2.5 Software Background

This section focuses on the software tools we plan to use in this system, such as

programming languages, frameworks, and libraries.

19

2.5.1 Programming Languages

We are planning to use Python as our primary programming language. Python programs

are simple and easy to read. Few lines in Python often correspond to tens of lines in other

programming languages like C/C++, which means that writing programs in Python is

time-saving practice. In addition, it deals with complex algorithms in machine learning (ML)

and computer vision (CV) efficiently. Python also has a very large community, and a lot of

resources help us in the coding and debugging process. And We use the Arduino IDE to program

Arduino UNO in C++.

2.5.2 Libraries

The main libraries that we will use:

● OpenCV: Is an open-source C-based library to deal with digital data (images and

videos) and includes a lot of computer vision (CV) algorithms [3].

● NumPy: Is a numerical computing tool and open-source python library that

includes powerful functions for handling matrix arithmetic, Linear Algebra,

Fourier transforms, statistical operations, basic statistical operations, etc [4].

● PyGame: Is a cross-platform set of Python modules designed for writing video

games. It includes computer graphics and sound libraries designed to be used with

the Python programming language [15].

20

Chapter Three

21

Chapter 3: System Design
This chapter introduces the design part of our project and the way its components are

integrated together, showing the block diagram and schematic diagram for the design, in addition

to some details about the algorithms we are going to use.

3.1. Conceptual Description of the System

This project aims to build a goalkeeper robot capable of tracking and detecting a moving

ball and repelling it. In the system, we will use reinforcement learning to allow the goalkeeper to

train itself through trial and error without having to rely on huge amounts of pre-existing data. A

camera positioned at the top of the area where the ball will move will detect the ball and

goalkeeper positions using computer vision. Following that, based on the prediction of the ball's

final position, the goalkeeper can take one of three actions: move to the left, right, or do not

change its position; a stepper motor will move the goalkeeper to perform these actions.

3.2. System Logic & Methodology

This section will briefly describe the software logic, system design and how we will build

the overall system using the methods and components we discussed in the previous chapter.

Figure 3.1 shows the software logic of the system starting from receiving images from the

camera, detecting ball position, applying Q-learning algorithm and ending with Goalkeeper

movement to the right position.

Figure 3.1. System Logic of the Goalkeeper Robot

22

3.2.1 Q-learning

The whole idea of Reinforcement learning is to define the best sequence of actions, in

this case Goalkeeper movement, that allow it to achieve the goal in an efficient way by

maximizing a long-term reward. And that sequence of actions is learned through the interaction

with the environment and observation of rewards in every state. So after the training the

Goalkeeper will be able to take the proper actions to prevent the ball from passing the defined

goal based on the previous knowledge [5][6]. Figure 3.2. Shows the interaction between the

Goalkeeper and the surrounding environment in the system.

Figure 3.2. The interactions between Goalkeeper and the environment

To achieve the goal in Reinforcement learning, there must be a training stage that aims to

generate the Q-Table that the Goalkeeper will use to take action in the real environment. The first

step is to initialize the Q-Table with zeros for every state-action. Then the Goalkeeper starts to

attempt actions at the different states in the system and observes the reward from the

environment for the current state-action. After many episodes and using the good reward method

the Goalkeeper will have larger Q-values for the state-action pairs which lead to a state where a

higher reward action could be taken [6].

The training stage is done in a virtual environment that simulates the real system. Since

we have a large number of states and actions and require an exponentially larger number of

iterations to reach a good result, using the virtual environment we will cover thousands of

iterations in a very short period of time.

23

We define the state space S in the following equation. In Our system, we have a set of

metrics that would generate the final state. Those metrics are related to the ball position and the

Goalkeeper position that can move horizontally.

(3.1)𝑆 = { 𝐵𝑎𝑙𝑙 (𝑌), 𝐺𝑜𝑎𝑙𝑘𝑒𝑒𝑝𝑒𝑟(𝑌) }

In equation 3.1, ball (Y) and goalkeeper (Y) are explained in sections 3.2.2 and 3.2.3

respectively. X - coordinate for both goalkeeper and ball would be constant in the training stage.

We can imagine that is making sense by thinking about the speed of the goalkeeper (see sections

1.6 and 2.4.3), so the speed is set to the max speed possible, which means the action of the

goalkeeper when Y-Goalkeeper = 20 and Y-ball = 50, X-ball = 80 will not differ when the same

Y-Goalkeeper, and Y-ball but X-ball = 90.

We also define the action space A in the following equation. We have exactly 3 actions

that the Goalkeeper would take in a specific state.

(3.2)𝐴 = { 𝐿𝑒𝑓𝑡, 𝑅𝑖𝑔ℎ𝑡, 𝑁𝑜𝐴𝑐𝑡𝑖𝑜𝑛 }

Given the proposed observation space S and action and action space A, Table 3.1 displays

the set of states and actions in this system. Each state-action pair in the table is unique and has a

Q-value. Q-values are read and updated during the training process as described before.

State/ Action Left Right No - Action

𝑆 (𝐵𝑎𝑙𝑙 (𝑌), 𝐺𝑜𝑎𝑙𝑘𝑒𝑒𝑝𝑒𝑟(𝑌)) Q value Q value Q value

… ... … …

𝑆 (𝐵𝑎𝑙𝑙 (𝑌), 𝐺𝑜𝑎𝑙𝑘𝑒𝑒𝑝𝑒𝑟(𝑌)) Q value Q value Q value

Table 3.1. The Q-Table Structure

24

A higher Q value indicates a more rewarding action for the given state. When the system

is in the operational stage, and the Goalkeeper has already accumulated a good policy, it will

select the action having the highest Q value at any state. We will discuss in more detail the

number of states and the q-table size in the next chapter.

The last thing we need in this stage is a good reward function. The reward value returned

by the environment to the agent should be representative of the correctness of any possible action

at any given state. In other words, the reward value serves as an indication of reward and

punishment. So, when the goalkeeper and ball have collided, the reward value will be increased

by ten (10), and when the goalkeeper can not catch the ball, we will decrease the reward value by

one (-1), and so on.

3.2.2. Computer Vision: Binary HSV Thresholding

The first step to detecting and isolating the ball is to specify its color, which also needs to

be distinct from other colors in the environment (we chose orange).

In our project, we use a camera that takes 30 frames per second. We perform some

processing on each frame to detect the ball and its position. First, we convert the image from

RGB to be represented in the HSV color model. Then apply a threshold to the image to isolate

the ball from other objects in the environment based on its color (the threshold range is

determined by manually attempting different values for the threshold's minimum and maximum

values and selecting the best values). As a result of this process, we get a binary image (mask

image). Then a Blob detection (used to determine the connected components in the image) is

performed on this image, with the largest blob representing the object to be detected.

Therefore, in order to determine the ball position, we calculate the CoG (center of

gravity) for the connected component by using the following equations:

Xc = , Yc =

𝑖=1

𝑁

∑ 𝑋𝑖

𝑁

𝑖=1

𝑁

∑ 𝑌𝑖

𝑁

25

The point (Xc, Yc) represents the position of the ball in the coordinates. In our system, we are

concerned just in Yc.

3.2.3. Goalkeeper Position and Movement

We first define some variables in stepper motor:

● The number of steps per revolution (step/rev): refers to how many steps that the

stepper motor can do in one revolution that is equal to 360°/(1.8° per full step is a

common step size rating) = 200 steps per revolution.

● The distance per revolution(dist/rev): indicates how much the travel distance in

one revolution, this can be calculated by trial.

So, we can calculate the goalkeeper position by knowing the distance per revolution and

dividing it by the distance we need to move. Example: let the dist/rev = 1.5 cm and we need to

move the goalkeeper from Y = 0 to Y = 50. So, we need to find how many revolutions we need

to move goalkeeper 0 to 50 to input this result into stepper motor: if one revolution leads to 1.5

cm, how many revolutions leads to 50 cm. Number of revolutions = 50 cm / 1.5 (cm/rev) ≈ 33

revolutions. The position of the V-slot (slider bar in sec 2.4.3) is fixed, so the X - coordinate of

the goalkeeper will be constant.

26

3.3. System Block Diagram

As discussed in section 2.2.4 and 2.2.5, any RL system is made of two main components,

the agent and the environment. Figure 3.3 shows the system block diagram from the perspective

of an agent and an environment.

Figure 3.3. System Block Diagram

The diagram involves a loop between the two main components. The system starts by

capturing the state of the environment using a camera module. This module is responsible for

handling the logic related to managing the camera. The output of the camera module is an image,

which is transferred to the laptop to be processed. Inside the laptop, the image input is processed

by the detection module. The modules denoted by the blue color in the diagram represent a

collection of logically related functions. The position of the ball produced by the detection

module is then passed to the agent. We initialize the position of the goalkeeper at y = width/2,

then we can find the position of it as we show in section 3.2.3. Finally, the agent issues an action

in the form of control commands (go left, go right, do nothing) which are passed to the

goalkeeper module. The goalkeeper module, in turn, translates the control commands into the

corresponding physical motion signals that drive the system (V-Slot linear actuator).

27

3.4 System Schematic

Figure 3.4. System schematic Diagram

Figure 3.4 shows the schematics of this project. It displays the various hardware

components of the system and their interconnections. In this schematic, the stepper motor is

connected to the EasyDriver. Which is controlled by the microcontroller to supply up to 30v. The

motor driver is therefore directly powered by the power supply with voltage around 15v.

The Arduino Uno connects to the motor driver via digital Input/output bins. The Arduino

is connected to a laptop with serial communication between them. Also, the Logitech camera

C905 is connected to a laptop.

Moving the processing (detection and taking actions) to the laptop (high hardware

resources), and sending actions to the Arduino via serial communication, will decrease the

processing time and increase the response time of our system.

28

Chapter Four

29

Chapter 4: Implementation
This chapter explains the implementation part for the hardware components and the

software algorithms. It dives into more details about the project overall, different hardware

components, and software modules.

4.1 Hardware Implementation

Figure 3.4 provides a detailed schematic diagram of the connection of system

components. Here, we attempt to describe the assembly process and arrangement of those

components.

The process started with the assembly of the V-Slot NEMA 17 Linear actuator. Which is

described in section 2.4.3, and can be found on the manufacturer’s website.

After that, the linear actuator is put on the actual environment, see figure 4.1.

Figure 4.1. Assembled V-Slot with environment

30

Now, we can move to the second part of our system, which is the circuit we need to

control the linear actuator (stepper motor). Figure 4.2 shows the hardware components we used

to implement the main circuit for moving the stepper. The figure was generated using an online

simulator called Fritzing which demonstrates the actual design of each component as well as the

connections between them.

Figure 4.2. System circuit

In this system, the processing will be on the laptop. This means we need to build

communication between Arduino and the laptop using a USB cable. The laptop sends the actions

to the Arduino, and it will control the linear actuator see figure 4.3. Also, the camera is

connected to a laptop to make the detection, and it is placed at the top of the environment in

figure 4.1.

31

Figure 4.3. Serial communication between laptop and Arduino

As a result, the connection between the environment and the circuit in figure 4.2,

implementing serial communication with a laptop and the circuit, and connecting the camera

with the laptop, expresses our system's overall hardware implementation.

4.2 Software Implementation

This section describes the implementation details of the various software components of

the system. It also explains the choice of different parameters and the features and functions of

each software component in the system.

An essential step of this system is to install a few software libraries such as OpenCV,

Numpy, and PyGame. We used the pip package manager to install all the packages we used on

different platforms.

In the following, we will go in more detail about different modules in our software

implementation that showed in figure 3.3.

4.2.1 Goalkeeper Module

The Goalkeeper module (linear actuator module or Arduino module) is responsible for

controlling and managing the state of the physical goalkeeper. This module will be located in the

Arduino and receive the actions (go left, go right, or do nothing) from the laptop via serial

32

communication. The following list summarizes the expected responsibilities of the Goalkeeper

module.

- Initialize the stepper motor

- Provide an interface for easily controlling the goalkeeper direction and movement

- Provide an interface for easily controlling the speed of the goalkeeper

The module should expose the following functionalities:

- move():

- Accepts a direction should the goalkeeper do from serial communication.

- Calling one of the following functions based on the direction parameter.

- goRight():

- Accepts a speed parameter (constant at the maximum speed).

- Change the stepper motion to be clockwise.

- goLeft():

- Accepts a speed parameter (constant at the maximum speed).

- Change the stepper motion to be counterclockwise.

4.2.2 Camera Module

The camera module is responsible for controlling and managing the state of the camera

connected to the laptop. This module is responsible for initializing and controlling a reliable

video stream from the camera. The following list summarizes the expected responsibilities of the

camera module.

- Initialize and manage a video stream from the camera

- Provide an interface for reading frames

- Close the stream upon termination

The module should expose the following functionalities:

- read_frame():

- Returns the last frame in the buffer.

33

- print_status():

- Outputs debugging information to the console including the resolution, FPS and

buffer size.

- release():

- Releases the camera stream.

4.2.3 Detection Module

This module with the camera module will provide the detection process of the ball in the

system. The following list summarizes the expected responsibilities of the camera module.

- Initialize the camera module

- Provide a border to surround the environment so the ball can move in this border

- Return the (x, y) coordinates of the ball

The module should expose the following functionalities:

- draw_border():

- Draw the border of in the frame

- get_the_coordinate_values():

- Return the x and y for the ball in the frame

4.2.4 The Environment Simulation Module

This module is considered the most important module in our system. This module

provides a virtual environment to train the goalkeeper without dealing with any hardware

components. In virtual environments, we can make a lot of experiments, save time, and avoid

hardware failures using just software. The following list summarizes the expected

responsibilities of the environment module.

- Initialize the learning loop so the Q-Table will be generated in this module

34

- Provide a software environment to train the agent

- Provide an effective reward function that rewards good behavior and punishes

inferior behavior

This module exposes the following functionalities:

- init():

- Initializes the simulation’s software components like: window, ball, paddle

- reset():

- Reinitialize the state of the ball and paddle

- render():

- Render the simulation environment with ball, paddle, and number of goals

and hits, see figure 4.4.

- step():

- Accepts action as a parameter

- Executes the action and observes the change in features.

- Return a calculated reward, the next state, and a flag indicating if we

reached the terminal state or not

- Terminal state is the state when the ball collides with paddle (goalkeeper)

- get_discrete_state():

- Accepts state as parameter

- Return the normalized state

- This function is used to reduce the number of states possible

35

Figure 4.4. Simulation environment

4.2.5 The Learning Loop

The learning loop is a continuous interaction between the environment and the

goalkeeper. in which the goalkeeper takes actions and the environment returns back the next state

of the system and a reward value.The system will use these values from the environment to

update the Q-table as we described in section 3.2.1.

The loop starts by initializing the Q-table with zero values. Since the goalkeeper has not

learned anything yet. Then we will start the loop, the goalkeeper will start the loop taking action

and observing the result.

An important part of this loop is called an episode. An episode usually ends after a

specific number of iterations or when we reach some specific goal based on the system we are

developing. We decided to end the episode when the goalkeeper reaches a terminal state. When

the agent reaches the terminal state of the interaction loop and hence updates the table, the

episode is ended, and a new episode is initiated with the modified table.

36

The advantage of using episodes is that it makes it easier to track the progress of the

goalkeeper over different episodes, and we can easily compare the different learning stages. In

each episode as long as the goalkeeper didn’t reach the terminal state, the goalkeeper selects the

best action for the current state based on the corresponding values in the Q-table. It then passes

that action to the environment. The environment executes the action and returns the next state of

the system, a reward value. The goalkeeper uses those returned values to update the table with

the help of equation 2.1.

Finally, the next state is set as the current state of the system and another iteration of the

loop is executed. Our choices for the learning rate, α, and the discount factor, γ are 0.00001 and 1

respectively. We chose those values by trial and error method.

4.2.6 Managing the Work

As for writing and managing the code, we made use of the popular version control tool

called Git. Using Git, we were able to write code off-campus at home away from the system,

push it to the cloud and easily pull it on any device. The code was hosted on a private GitHub

repository.

37

Chapter Five

38

Chapter 5: Testing and Results

This chapter discusses the testing of the various system components and the overall

operation of the system. It describes the results obtained from running the learning loop until

obtaining a good policy.

5.1 Hardware Testing

5.1.1 Testing the Microcontroller (Arduino UNO)

Testing the microcontroller and ensuring its functionalities is vital to the success of the

project. We started by running a simple program to ensure that the Arduino worked without any

problems. We then connected it to the laptop and sent simple data from the laptop to Arduino,

and checked if the data was transmitted correctly or not. We finally verified that all pins worked

correctly, and the data received as expected.

5.1.2 Testing the Camera (Logitech C905)

Testing the camera is pretty easy, so we connected it with the laptop and confirmed that it

works correctly.

5.1.3 Testing the System Circuit

After testing the microcontroller and camera, we can now do an integrated testing, by

gathering all the hardware components in one circuit, see figure 4.1.

In this stage, we want to ensure that the goalkeeper can move right or left with a specific

speed and a number of steps. It is verified that the testing passed correctly.

39

5.2 Software Testing

We tested the functionality of the software components described in section 4.2 starting

from the lower-level components like goalkeeper module to the higher-level ones like the

environment.

The methodology for testing the software components was very simple. We first ran each

module separately (unit testing) and ensured that all of the functionality exposed by the software

module is working correctly. The details of the software modules and their intended functionality

are described, in detail, in section 4.2. As far as the testing is concerned, we ran the software

module through a variety of cases and ensured that it returns the expected outputs.

The next step was integrating the software modules (integrating testing). We started by

integrating the camera and detection modules together. After the Q-table is produced from the

learning loop in the environment simulation, we write a python script that connects both camera

and detection module with the goalkeeper module (Arduino module) by using the serial library.

Similar to the previous unit tests, we ran the integrated system through a number of possible

cases to ensure the proper functionality of the system.

5.3 Results

The following section introduces and discusses the results obtained from the operation of

the project. It describes the outcomes of the project.

We conducted our experiments on a whiteboard with a yellow ball (40mm diameter). The

goalkeeper was at the edge of the board, the camera that tracks the ball was at the top, while the

Arduino was connected to the laptop. Based on the ball movement the goalkeeper was moving.

In the beginning, it couldn’t prevent the ball from passing the limits, and it was moving

randomly, but the increase of the episodes led to improvement in the performance of the

goalkeeper, and when it reached 4000 episodes, it was able to move with the ball movement and

prevent it from passing the board limit.

40

Figure 5.1 shows the average reward accumulated by the agent over the course of 4000

episodes as a function of the episode

number. The rate of punishable actions that

the agent would take during the learning

process decreased gradually as the agent

moved through the first 1500 episodes until

the agent reached a state where Q-table

converged into an effectively rewarding

policy. At that point, the agent was actively

only choosing actions with a good Q-value

and ignoring the ones with lower values.

Figure 5.1. Accumulated reward as a function of episode

Recall table 3.1. After running 4000 episodes, the agent was able to achieve a policy that

maximizes its view of the environment area, and therefore it was able to take suitable actions

based on the high Q-Value in the Q-Table. However, we conducted our environment to be

600X440 pixels, but we are concerned about the Y-axis as we mentioned in section 3.2.1. That

means the Q-Table should have 193600 (440 states possible for Goalkeeper-Y, and 440 states

possible for Ball-Y states possible), and as we know, this is a big number, and it will affect the

performance of our system.

A solution to this would be the use of the get_discrete_state() function that is mentioned

in section 4.2.4. So, we can consider a group of pixels as one pixel, and this will not affect the

accuracy of the system, because the size of a pixel is very small. So, we can neglect some of

them. After trying many values of how many pixels can be grouped, we put every 15 pixels in

one group, and this will reduce the Q-Table to be 30X30 states or 900 states, and this is a very

small number compared to the previous value.

Finally, and as a result of the achieved Q-table, we are able to build an intelligent

goalkeeper with minimal Q-Table size, and minimal hardware components possible.

41

5.4 Conclusion and Future Work

Developing an intelligent system using artificial intelligence techniques is not an easy

task. However, Machine learning (ML) allowed for robust intelligent systems that could react to

a wide range of situations.

In this project, we managed to build an intelligent microcontroller-based goalkeeper

robot, with the help of a camera module. The camera was used to capture images of the

environment. By processing the input and extracting the proper point of the ball, we were able to

train our Reinforcement Learning agent to prevent the ball from passing through it.

We were able to achieve these results with a very minimal hardware and software

configuration. This is done using an Arduino microcontroller, single camera module, one motor,

and one driver.

One important lesson that we learned through the course of this project was the learning

agent in the virtual environment, then using the results obtained from this learning, and applying

them to the real world, is not an easy process, it requires a lot of adjustment, a lot of testing, and

very precise is needed. However, the learning of agents in a virtual environment (VE) will save

tons of time. Absolutely, this is a very important advantage of using the VE.

For future work, we can enhance the current system in different aspects:

- The current design of this system applies for one dimension, just moving right or left, so

we can improve the movement by adding a new dimension. In other words, with the new

design, the goalkeeper can move right, left, up, and down.

- The current implementation of the system is color distinctive when detecting the ball. We

can improve this, so the system can see any ball with any color.

42

References
[1] “History and relationships to other fields. Machine Learning.” Accessed 10 24, 2021.
https://en.wikipedia.org/wiki/Machine_learning.

[2] “What is computer vision?” Accessed 10 26, 2021.
https://www.ibm.com/topics/computer-vision.

[3] “OpenCV Documentation.” Accessed 10 28, 2021.
https://docs.opencv.org/.

[4] “NumPy Documentation.” Accessed 10 28, 2021.
https://numpy.org/doc/.

[5] “Reinforcement learning” Accessed 10, 29 2021.
https://en.wikipedia.org/wiki/Reinforcement_learning.

[6] “Q-learning” Accessed 10, 29 2021.
https://en.wikipedia.org/wiki/Q-learning.

[7] “V-Slot NEMA 17 Linear Actuator Bundle (Belt Driven).” Accessed 11 6, 2021.
https://openbuildspartstore.com/v-slot-nema-17-linear-actuator-bundle-belt-driven/

[8] “A3967, Datasheet”. Accessed 11 6, 2021
https://www.alldatasheet.com/datasheet-pdf/pdf/83571/ALLEGRO/A3967.html

[9] “C905 HD WEBCAM.” Accessed 20 5, 2022.
25173.1.0.pdf (logitech.com)

[10] Tobias Rohrer, Ludwig Samuel, Adriatik Gashi, Gunter Grieser and Elke Hergenröther,
Foosball Table Goalkeeper Automation Using Reinforcement Learning, 2021.

[11] Gonzalez, Rafael; Richard Woods. Basic Edge Detection, “Digital Image Processing”, (3rd
ed.), 2008.

[12] “Gym.” Gym. Accessed 12, 24 2021.
https://gym.openai.com/envs/Breakout-ram-v0/.

[13] “Arduino UNO ”. Accessed 11, 22 2021.
Arduino Uno Rev3 — Arduino Online Shop

43

https://en.wikipedia.org/wiki/Machine_learning
https://www.ibm.com/topics/computer-vision
https://docs.opencv.org/
https://numpy.org/doc/
https://en.wikipedia.org/wiki/Reinforcement_learning
https://en.wikipedia.org/wiki/Q-learning
https://openbuildspartstore.com/v-slot-nema-17-linear-actuator-bundle-belt-driven/
https://www.alldatasheet.com/datasheet-pdf/pdf/83571/ALLEGRO/A3967.html
https://download01.logitech.com/support/25173.1.0.pdf
https://gym.openai.com/envs/Breakout-ram-v0/
http://store-usa.arduino.cc/products/arduino-uno-rev3

[14] “Bellman equation”. Accessed 10, 29 2021.
https://en.wikipedia.org/wiki/Bellman_equation

[15] “Pygame”. Accessed 05, 23 2022.
https://en.wikipedia.org/wiki/Pygame

44

https://en.wikipedia.org/wiki/Bellman_equation
https://en.wikipedia.org/wiki/Pygame

