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A B S T R A C T

The Internet of Things (IoT), cloud computing, and machine learning opened an opportunity for new smart
systems. These technologies have triggered huge traffic and delay by continuously transmitting telemetry data
to the cloud. IoT edge choice made decision-making closer to the environment, which decreases traffic and
speeds up response time. Human activity recognition (HAR) systems, among other IoT applications, require
systems with quick response time; reduce costs using constrained traffic to the cloud while maintaining
accurate prediction results. This study proposes an application of HAR for predicting activities using up to
three smartphone accelerometers. Three models are developed, trained, and deployed to achieve the necessary
accuracy at the IoT edge and in the cloud, with an acceptable response time. Since each coordinate value
from the three accelerometers has different importance in activity category prediction, focusing on the data
from the most related values can help minimize the amount of information transferred from the edge to
the cloud. Six models were trained in the cloud; three were deployed and tested at the edge with different
features by selecting the most important ones using Principal Component Analysis (PCA). Different experiments
showed that traffic and processing time decreased significantly based on the time required to predict HAR
categories with acceptable accuracy. Since there is significant latency between the edge and the cloud and
within the cloud, sending samples for verification save bandwidth, and processing requests locally at the edge
speed up predictions. Results illustrate that the time required to serve one request from the environment
where smartphones generate traffic through the internet connection to the cloud took about 5.8 s on average,
including transmission delays and the prediction process. During this time, the model at the edge can serve
150 requests with the same accuracy using nine features. In addition, the edge can serve 286 requests in 5.8 s
with 94.8 % accuracy when choosing the top four features at the edge.
. Introduction

The Internet of Things (IoT) gives devices a platform to connect
o the Internet and other devices, and allows them to gather data
bout their surroundings. IoT and Artificial Intelligence (AI) support
mart systems like smart cities, smart healthcare, smart transportation,
nd smart energy management systems [1–3]. In recent years, modern
evices like smartphones and smartwatches have gained popularity.
hese devices now have a large number of sensors, including micro-
hones, accelerometers, and gyroscopes, which considerably increase
heir feature sets. These tools make it possible to create many user-
entered applications, including Human Activity Recognition (HAR)
ystems [4–10].

The field of using machine learning with HAR is rapidly growing,
here smartphones and machine learning are significant elements.
here are several uses for the capacity to identify and categorize
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human activity utilizing smartphones and machine learning, including
in healthcare, sports, and rehabilitation [11–13]. Also, HAR can be
applied for automated observation to predict fall detection of elderly
people that may happen [14–16].

Significant research has been done in recent years to create ac-
curate and effective HAR systems employing smartphones and ma-
chine learning techniques [17–21]. Many HAR systems were surveyed
[11,22–24], the authors focused on several daily life activities in dif-
ferent application domains.

Machine learning is used in the centralized cloud, where resource-
intensive infrastructure is located, enabling it to constantly have as
much processing, storage, and power as it requires to process data.
However, there may be additional waiting time due to network delays
from the device to the cloud and vice versa, as well the amount of data
in applications with high traffic. This adds additional cost in terms of
financial cost and delay [25–27].
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Fundamental modifications are needed in AI techniques and cloud-
to-device design in order to deliver acceptable, efficient, and sustain-
able solutions for the anticipated future demands. So, there is a need
to handle the escalating demand for processing, minimizing delays, and
traffic. Cloud service providers began to offer edge solutions, such as
Microsoft Azure IoT Edge, which extend their cloud capabilities and
place the edge close to the sources of creating data [27].

At the IoT edge, resources are limited, and the applications that run
AI systems demand more of these resources, which constrained the AI
at the edge. The key issue preventing edge devices from performing
to their full potential is the resource gap between those limited edge
devices, and the resources required by AI applications. Edge devices
typically have very small physical dimensions, processing capability,
and power capacity [2,28].

When using cloud environments, HAR system must pass through
various steps from smartphones to the cloud server through the internet
connection, the prediction process on the server, and then back to
the local environment. The proposed solution in this research suggests
reducing the amount of data transferred by using fewer features, re-
ducing the amount of overhead traffic processing using the IoT edge,
and continuing with periodic server updates using sample values of
prediction frequently.

HAR features reduction can be used to improve the efficiency and
accuracy of activity recognition models by reducing the number of
features used to represent the data. This can help to address issues
such as overfitting, improve model performance, and reduce compu-
tational requirements [29]. Principal Component Analysis (PCA) is
one of the most commonly used feature reduction methods in HAR.
This is because PCA is a simple and effective method that can reduce
the dimensionality of the data while retaining most of the relevant
information [30,31]. PCA provides different strategies for reducing the
dimensionality of feature space and preserves the maximum amount of
variance of the original data [28]. In this proposed solution, reducing
number of features helped in facilitating the prediction processing on
the IoT edge where limited resources are used.

In this article, the following sections talk about related literature
review, then datasets extraction, the methodology and experiments
will be explained, results will be analyzed and compared, and lastly
conclusions and future research will be discussed.

2. Literature review

Smart devices are being used in different applications; smartphones
were used in [32] to detect human body’s motion, the authors pro-
posed HAR using deep learning and smartphone sensor data. The study
used deep belief networks to train over the features extracted from
smartphone inertial sensors to recognize multiple activities, including
running, sitting, sleeping, etc., with transitional activities from one
activity to another. The reported outcomes indicate reliable recognition
of human activities. In [15], a dedicated cloud-based approach for fall
detection and large scale monitoring of older adults. Fall detection
deployed on smartphones based on accelerometer and gyroscope mea-
surements collected and processed locally, and the data was transmitted
to the cloud for classification purposes and for building a profile of the
monitored person, Microsoft Azure was used as a cloud service.

Authors in [33] processed wearable sensors separately at the begin-
ning, learning their features and performing the classification before
fusing with the other sensors. They used an approach to extract patterns
in multiple temporal scales of the data, using an ensemble of Deep
Convolution Neural Networks (DCNN). Author in [22] used unsuper-
vised learning to features from a given dataset remains and using data
augmentation techniques, in order to increase the amount of available
data for better performance. Wearable systems are designed using
intelligent sensors, artificial intelligence, IoT, and big data, in such a
way that it is possible to obtain information of interest from the human
body as proposed in [23]. Microcontrollers, accelerometer sensors, and
smart watches were used to detect human motion signals.
2

A proposed design and implementation of Convolution Neural Net-
works (CNN) at the IoT edge is provided in [34]. Authors suggested
feature-less activity recognition system, with multi-channel 1-D con-
volutional neural network architecture, and substituted the manually
designed feature extraction procedure in HAR by an automated feature-
learning engine. Inference stage was enabled on four layer CNN model
using pre-trained and optimized deep learning models on mobile de-
vices using the Tensor-Flow lite. In [35], a two-level approach was pro-
posed; at the first level, four primary physical activities are recognized.
At the second level, the corresponding contexts are recognized for each
primary activity. The proposed method is based on the accelerometer
data and consists of four steps: data acquisition and pre-processing,
feature extraction, activity recognition, and context recognition, like
talking, in a meeting, shopping, etc.

In internet of healthcare field, authors in [36] proposed a three-
dimensional inertia signals of thirteen timestamped human activities
such as walking, walking upstairs, walking downstairs, writing, smok-
ing, and others are registered. Here, HAR model is presented based
on efficient handcrafted features and Random Forest as a classifier.
In [31], researchers proposes an advanced machine learning (ML)
approach to HAR systems that includes data collection, data cleaning,
feature extraction, feature engineering, and modeling with classifi-
cation algorithms for predicting human activities. They compare the
performance of tree-based boosting algorithms with other traditional
ML techniques for identifying human activities using motion sensors
from smart devices.

In order to keep up with the needs of applications, AI at the edge
is needed to transition from being processed in the cloud to being
processed closer to end user devices at the edge [1,27]. IoT edge
devices are used in smart systems through offloading tasks from the
cloud to the IoT edge, where task processing will be processed locally.
AI applications requires a lot of processing capability and consumes
energy; and these requirements are normally beyond the capacity of a
standalone IoT devices such as smartphones and microcontrollers. In
this case, tasks are often offloaded to nearby devices residing between
the IoT devices and the cloud [37].

Distributed Machine Learning (ML) at the edge gives computers
and smart devices the ability to learn without being explicitly pro-
grammed, extracts patterns and dependencies from data, and use them
either to gain an understanding of a phenomenon or to predict future
outcomes [3,25,38].

The early mentioned publications showed that embedded sensors in
smartphones are widely used in machine learning, they were used to
recognize different categories of daily life activities. In recent research
works, most of the articles focused mainly on enhancing inference
accuracy, update algorithms to speed up processing [22,33–36] without
real-time testing. In article [15], authors focused on fall detection,
and used smartphone app to detect falls without considering real-time
performance parameters, like processing time and delay. Accelerom-
eters and other built-in sensors were used in these articles to detect
daily activities, movements, falls, and other human monitoring sys-
tems. Additional sensors were used from smartphones, or wearable
sensors [16,19,39–42] to assure the predicted results.

Table 1 compares between different articles that used smartphones
to recognize different activities, the majority of the articles relied on
signal analysis on various sensors, with the primary objective being
to improve accuracy or accelerate prediction. In this article, the ac-
celerometer coordinates from three smartphones were employed, and
the accuracy reached 99.6%. The prediction time was greatly improved
without significantly reducing accuracy level (98.8%) by reducing the
amount of features and utilizing the IoT edge.

This article used Microsoft Azure cloud systems, smartphones, and
an edge device to enhance the performance of human activity recogni-
tion using different models. Three smartphones were employed to rec-
ognize human activities using built-in accelerometers; the accelerom-

eter values were used as features, and different datasets of features
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Table 1
A list of related articles using smartphones in activity recognition.

Reference, year Sensing method Activities Learning method Accuracy

[15], 2020 Accelerometer and
gyroscope

Fall detection Boosted Decisions
Trees

Cloud: 99.2%
Edge: 98.2%

[31], 2021 Accelerometer, gyroscope,
and magnetometer

Walking, sitting sleeping,
standing, exercising

XGBoost, AdaBoost,
Boosted C5.0

Sleeping:
96%

[43], 2023 Smartwatch wrist-worn
accelerometer

Smoking recognition CNN, LSTM, BiLSTM 98.6%

[44], 2023 Accelerometer and
gyroscope

Walking, driving, inactive,
active

Random Forest,
XGboost

92.9%

[34], 2019 Accelerometer and
gyroscope

Walking, sleeping, standing CNN Edge: 96.4%
were used according the importance of each feature. The datasets were
extracted from a larger dataset using different sensors to recognize
activities. Different experiments were implemented and tested on the
IoT edge near the smartphones, in addition to the cloud. Processing
time, network delay, and traffic were measured for different models on
the edge and the cloud. It was found that the majority of the time was
consumed in transmission through the internet connection, compared
with the prediction process itself.

3. Methodology and experiments

In this section, the dataset is described, the methodology is ex-
plained step by step, and the results of the experiments are analyzed.

3.1. Dataset

Different datasets are available online for HAR systems using smart-
phones; these datasets were collected by recording activities using
different sensors for different people. The dataset in our experiments is
based on a dataset generated by Data and Web Science group (DWS) in
university of Manheim in Germany [45]; they recorded human activi-
ties using smartphones for different people, and using different sensors,
like accelerometer, magnetometer, gyroscope, and others. The activities
are climbing stairs down and up, jumping, lying, and standing, sitting,
running, and walking. They used seven smartphones distributed on
chest, forearm, head, shin, thigh, upper arm, and waist.

To simplify this large dataset, we extracted a subset using only three
smartphones, and four activities, for one sensor (the accelerometer)
that generates three values (x, y, z) from each smartphone. Table 2
present 9 features and one predicted activity, three features from each
sensor. The first three columns arm_x, arm_y, and arm_z came from the
first smartphone on the arm; the rest six columns from the waist and
the shin.

The selected activities are walking, running, standing, and sitting.
The positions of the smartphones are shown in Fig. 1; three smart-
phones are fixed on the arm, the waist, and the shin respectively. Note
that the smartphone on the waist is in the horizontal state, which swap
the effect of 𝑥 and 𝑦 parameters for this accelerometer.

The three positions were chosen upon the nature of categories we
are predicting. The chosen categories were not affected clearly by chest
or head movements, the forearm movement is already covered by the
upper arm movement, and thigh is covered by the shin as well. The
three selected smartphones detected clearly the needed activities, and
the number of smartphones were reduced to three instead of seven.
Regarding sensors, gyroscope and magnetic field sensors, for example,
have less impact on detecting walking than the accelerometer sensor,
which was chosen in accordance with the four categories. Rotation is
detected by a gyroscope, which is not common for walking, running,
standing, and sitting.

The dataset contains 120 000 entries, 25% for each recorded cate-
gory. In the training process at the cloud, 80% of the entries were used

for training and the rest were used for validation and testing.

3

Fig. 1. Three smartphones are placed on the body: the arm, the waist, and the
shin [33].

3.2. Methodology

This section outlines the process step-by-step, covering the method-
ology from extracting datasets to cloud-based training and real-time
testing. The experiment were accomplished in three phases: training the
models, real time testing for the edge, and real time testing to compare
the edge and the cloud to compute the accuracy and the delay. The
steps in sequence are:

1. The dataset for three smartphones (Table 2) was extracted from
the original dataset [45].

2. The dataset was uploaded on Microsoft azure ML cloud for train-
ing and features analysis. Here, Azure tools was used to compute
the importance of each feature based on Principal Component
Analysis (PCA).

3. Six separate models were created using machine learning in
Azure Auto ML to categorize activities; each model has its own
subset of the dataset.

4. The IoT edge collect data from smartphones for the real-time
tests, and then begin the prediction process after extracting the
accelerometer values.

5. The category is predicted in real-time by a trained model, which
add the predicted value and accelerometer readings to a JSON
message before sending it to the cloud.

6. Telemetry values are provided to the cloud via Azure IoT hub,
Azure Stream Analytics (ASA), and Azure machine learning, as
shown in Fig. 2.

7. The outcomes of the prediction procedure and the telemetry
data are kept in storage containers. Accuracy performance was
compared and analyzed at this stage.

8. A web-service is activated to receive requests without going into
other services in the cloud; the telemetry data is received by the
web-service with machine learning model, which then generates

predictions.
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Table 2
A sample of the dataset of accelerometers’ coordinates for 3 smartphones after features reduction.

arm_x arm_y arm_z waist_x waist_y waist_z shin_x shin_y shin_z Category

−0.02753 9.977836 1.795053 9.941324 −0.42078 0.716465 −0.1227 10.04667 −0.48363 Running
−0.16101 10.0341 1.704672 9.877279 −0.44412 0.846949 −0.13827 10.04128 −0.42018 Running
−0.34058 10.10054 1.669357 9.985018 −0.3711 0.888249 −0.21189 10.05984 −0.48662 Running
−4.66391 8.535928 2.562394 9.944317 0.134075 0.64404 6.265626 7.480683 −2.74615 Sitting
−4.75189 8.607155 2.583942 9.943718 0.155623 0.637456 6.244078 7.475296 −2.73777 Sitting
−4.7495 8.542512 2.61387 9.944916 0.129885 0.612916 6.21834 7.484274 −2.71921 Sitting
−0.39085 10.13765 1.237802 9.932944 0.126294 0.387262 0.013168 10.11431 −0.38666 Standing
−0.37828 10.06463 1.238401 9.971252 0.240019 0.358532 −0.10714 10.06642 −0.44173 Standing
−0.42976 10.00118 1.182736 9.941922 0.172981 0.319626 −0.0808 10.13525 −0.36332 Standing
0.637456 12.07815 1.475427 8.647857 −0.35973 −1.59454 1.092355 7.026383 −4.89135 Walking
1.231218 10.5692 1.936909 6.501455 −1.49219 −0.26875 0.815226 7.100604 −5.06553 Walking
0.994791 8.868123 2.03148 5.975927 0.104148 0.696713 0.764349 7.782352 −4.12521 walking
Fig. 2. HAR architecture from the environment to Microsoft Azure Cloud.
9. The results including telemetry, delay measurements, and pre-
dictions are sent to the cloud for storage and analysis. Network
delay and prediction on the server delay are computed at this
stage.

3.3. Experiments and results

Experiments are implemented in three phases training, real-time
implementation, and web-service. The three phases are:

• The first phase is training and analysis in Microsoft Azure ML cloud
to compute the accuracy, analyze the importance of the features, train
the new models with different number of features, and generate the
trained models. The generated models are stored to be used later.

• In the second phase, a real-time implementation using three smart-
phones connected with IoT edge using UDP protocol. This edge receive
the values from smartphones’ accelerometers, run the hosted prediction
model to predict the category, and send the values and the predicted
category at the edge to the cloud using MQTT protocol as shown in
Fig. 2.

The IoT hub in the cloud receive the telemetry values, and forward
those to the stream analytics service (ASA). The machine learning
model is implemented on the telemetry data in real time, and store
the result in Azure storage containers. Here, the prediction accuracy
for different models is measured and compared.

• The third phase was building a web service in Azure cloud to
host the prediction model; where a server hosted the machine learning
model. Here the messages are sent directly from the edge to the web-
service in the cloud, without passing through other cloud services. This
reduce the time consumed in the cloud.

3.3.1. HAR model training
The data from the three smartphones’ accelerometers was first used

with the nine values model (HAR9), then PCA algorithm was used
to analyze the features, and find the most related ones that affect
the predicted category. Fig. 3 demonstrates how the significance of

the features varies. It was noticed that five features were the most

4

important among other features. Two models with top four features
(Top4of9), and with top five features (Top5of9) were extracted and
analyzed, and three models with one smartphone that create three
features datasets, and three models with a combination of features from
the three smartphones were among the six models that were employed,
each with a different number of feature datasets.

It is clear from Fig. 3 that the (z) components are less important
since the direction of the smartphones either in vertical or horizontal
states, and none of the observed activities we are predicting depend on
the (z) component significantly. Also, the (x) component on the waist
(waist_x) is the most important feature, where different categories will
affect the behavior of this feature, and the direction of the smartphone
is horizontal that swaps the effect of 𝑥 and 𝑦 components on the waist.

The six models are:

1. HAR9: all values (9) from three smartphones
2. ARM: (arm_x, arm_y, arm_z) from one smart phone placed on the

top of the arm
3. WAIST: (waist_x, waist_y, waist_z) from one smart phone placed

on the waist horizontally
4. SHIN: (shin_x, shin_y, shin_z) from one smart phone placed on

the shin
5. Top4of9: (waist_x, shin_y, arm_y, shin_x) from three smart

phones
6. Top5of9: (waist_x, shin_y, arm_y, shin_x, arm_x) from three smart

phones

The outcomes for six models are represented in Fig. 4, then after the
least significant features from new datasets were eliminated, accuracy
was measured for the different models. We noted from Fig. 4 that
prediction accuracy levels for Top4of9 and Top5of9 are close to HAR9
accuracy level, with around half number of features, while using three
features from a single smartphone have less accuracy.

Using Azure Auto ML, Azure cloud produced different trained mod-
els using different algorithms as shown in Table 3. Some of these
algorithms are Light gradient-boosting machine (Light GBM), Extreme
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Fig. 3. Feature importance for three smartphones.
Fig. 4. Accuracy using Light GBM algorithm for six models.

Table 3
Prediction accuracy for HAR9 using different algorithms.

Algorithm Accuracy

Light GBM 0.99657
XGBoost Classifier 0.98972
Random Forest 0.97741
Extreme Random Tree 0.98519
Logistic Regression 0.75741

Gradient Boosting (XGBoost) Classifier, Random Forest, Gradient Boost-
ing, Extreme Random Trees, and Logistic Regression. Light GBM ma-
chine learning algorithm was chosen among these algorithms, because
it produced the highest accuracy on the same dataset, then the light
GBM model was employed with different number of features.

We selected the most popular machine learning metrics to compare
between the different models in HAR training. The metrics are:

• Accuracy: It is defined as total correctly classified requests divided
by the total number of classified request.

• AUC accuracy Area Under the Curve ROC (Receiver Operating
Characteristics), It tells how much the model is capable of dis-
tinguishing between classes. The higher the AUC, the better the
model is at distinguishing between categories in the training
process.

• Precision: the actual correct prediction divided by total prediction
made by a model.

• Recall (Sensitivity): It is a measure of how many of the positive
cases the classifier correctly predicted, over all the positive cases
in the data.

• F1 score: measure combining both precision and recall, it is
generally described as the harmonic mean of the two.

able 4 shows five metrics for the six experiments using Light GBM
lgorithm. The table demonstrates that whereas a single smartphone is
sed, the accuracy ranged between 0.899 and 0.934, HAR9’s accuracy
hen considering all features approached 0.996. The accuracy of the

ast two models were 0.988 for the Top4of9 model, and 0.991 for the
op5of9 model, these two models utilized the most crucial features.

ere, it is noticed that increasing the number of features from 4 to

5

Table 4
HAR models accuracy.

Metric HAR9 ARM WAIST SHIN Top4of9 Top5of9

Accuracy 0.996 0.934 0.902 0.899 0.988 0.991
AUC accuracy 0.999 0.991 0.985 0.980 0.999 0.999
Precision 0.996 0.935 0.903 0.899 0.988 0.991
Recall 0.996 0.934 0.902 0.899 0.988 0.991
F1 score 0.996 0.934 0.901 0.899 0.988 0.991

5 will not significantly affect accuracy, as the difference in accuracy
between them was less than 0.003. Therefore, it is noted that removing
one feature will decrease the amount of data that need to be sent and
processed, while maintaining acceptable accuracy.

It is also noted from Table 4 that using a single smartphone pro-
duced less accurate models, since movements will affect different parts
of the body. Because moving the arm during activities is more common,
the arm model performed better than the waist and shin models,
with an accuracy of 0.93, whereas the accuracy of the other two
single smartphone models was about 0.90 for either the waist alone
or the shin alone. We used the top three models, HAR9, Top4of9, and
Top5of9, in the remaining experiments because of their high accuracy
since one sensor will not be able to detect the proper category with the
same level of accuracy if two or three sensors are used.

Another parameter to employ in comparing the top three models
is the confusion matrix, which measures how frequently the system
was confused to determine the correct category. While there is nearly
no confusion between sitting and standing in comparison to other
activities, there is very little confusion between walking and running,
and this confusion decreases as additional features are added as when
nine features were used, as seen in Fig. 5.

In Fig. 5 (a and b), it is noticed that the percentage of confusion
between predicted labels does not change significantly. For instance,
top4of9 had 0.0074 confusion between walking and running, while
top5of9 had 0.0067 confusion, where both are near each other. In the
sitting and standing categories, there was absolutely little confusion
in the three figures, even for 4 and 5 features, since these categories
normally do not have frequent movements that affect the accelerometer
values. Fig. 5(c) shows that this confusion is getting lesser, and there
was almost no confusion in HAR9.

3.3.2. Edge real-time testing
The three models HAR9, Top4of9, and Top5of9 were used in differ-

ent experiments to measure the performance on the edge, and compare
the edge results with the cloud using three smartphones with nine
features as a reference. Here, we chose the model with the best accuracy
as the standard for all other models. The first experiment used nine
values on both the edge and the cloud, followed by the top four values
on the edge, and finally the top five values on the edge. The model on
the cloud is the same for the three cases which is HAR9. For the three
models, light GBM was employed, and the edge was on a PC with Intel
i5-powered virtual machine.
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Fig. 5. Confusion matrix percentage for (a) top 4 0f 9 model, (b) top 5 of 9 model,
and (c) HAR9 model.

Table 5 shows the results of three experiments, it shows the number
of samples generated from the environment, the accuracy where the
predicted category at the edge is the same as the category predicted
on the cloud model. We noticed that 100% of the sample produced
the same results in HAR9, here the same model was deployed on both
on the cloud and the edge. Then comparing HAR9 in the cloud with
4 or 5 selected features, the accuracy was about 94.82% in the case
of 4 features were sent to the edge, and 94.92% for the case of 5
features. It is clear that the accuracy in practice produced less accurate
results compared with results during training, where the type of the
smartphone and the accuracy of accelerometer change from one brand
to another, and the number of movements captured affected results as
well. In our case, we used different brands of smartphones and different
rates of telemetry values.

On the otherhand, for the average processing time at the edge for
the three models, Table 4 shows that HAR9 has the highest average
prediction time with 38.612 ms per request, but conserve the highest
accuracy at the edge. Top4of9 is the lowest in prediction time with
20.359 ms with accuracy over 94.8% accuracy. And top5of9 with
24.817 ms per request, this adds 4.5 ms difference, and the average
increment in accuracy is only 0.1% in top5of9 as an advantage over
top4of9. The trained models were packaged in pickeled (PKL) files and
deployed on the local machine on the IoT edge, Table 5 shows that the
prediction models are small in file size, and the difference in file size
is about 20 kb.

3.3.3. Cloud and edge real-time testing
In this experiment, HAR9 was deployed at the edge, and the same

model was deployed at the cloud using a webservice to compare
processing time and delay in both cases. Here, The cloud server process
requests using a container with a 1 GHz CPU and 1 GB of RAM.
Faster processor containers with larger memory will produce faster
processing time at the cloud, but the price per hour will increase as
6

well. Table 6 demonstrates that the majority of the delay was consumed
inside the cloud and in the network between the edge and the cloud.
While processing a request in the cloud depends on the container’s
configuration. In this configuration, only 2% of the time was consumed
in prediction process on the cloud; the remainder is spent in queuing,
transmitting inside the cloud, and transmitting between the edge device
and the cloud. While in the local environment, the average processing
time at the edge was about 0.0386 s.

Here, we noticed that it took more than 5.83 s to process one
request on the cloud. In that time, with processing speed of 0.0386 s per
request, the system was able to handle 150 requests at the edge, instead
of serving one request at the cloud with the same degree of accuracy
using HAR9 on both the edge and cloud. When utilizing top4of9 at the
edge with an average processing speed of 0.0203 per request, the edge
could serve 286 requests with 94.82% accuracy compared to the cloud
accuracy with HAR9.

For HAR9, the payload for sending one message in a JSON object
with 9 values and one predicted category is 134 bytes. Sending 4220
samples at 25 requests per second will result in sending about 565
Kbytes excluding headers. Sending one request per second to the cloud
instead of 25 requests will save 96% of the traffic. In this case, the edge
will serve requests locally and one sample per second will be sent for
analysis and storage at the cloud.

4. Conclusions

IoT devices produce telemetry data that is used in a variety of
real-time applications. Machine learning is used to analyze and fore-
cast results, and cloud computing is used to store data for various
applications. Smart systems use these methods to provide services
to their customers. IoT systems generate a lot of sensor data from
smartphones and other devices, which require intensive computations.
High-capability servers are used by cloud systems to process data in
real-time, but because the servers are far from the location where the
data is generated, it takes time for the data to travel across the internet
lines and the servers. Using machine learning models close to the
environment at the edge will reduce the amount of traffic transferred
to the cloud, resulting in less latency and cost.

HAR systems are used in a variety of scenarios, such as healthcare
and rehabilitation, where it is essential to continuously monitor indi-
viduals and where HAR systems should be able to act quickly when
necessary. As a result, HAR must be quick and accurate, and it must
use machine learning at the edge. With its vast capabilities, cloud
computing can provide models with a high degree of accuracy, but
the traffic and delay between the cloud and the end systems are high.
In this work, we suggested adopting IoT edge computing with fewer
features in order to speed up processing and reduce the amount of
traffic that needs to be sent to the cloud.

By conserving accuracy, saving time, and lowering traffic to and
from the cloud, IoT edge computing improves performance. It also
helps when the right features and the suitable deployment locations
are chosen. The following findings were drawn from this article:

• Using 4 out of 9 features resulted in training accuracy of more
than 98 percent, and real-time testing accuracy of more than 94
percent.

• Using more features may add processing time with little or no
benefit, as the case of moving from 4 features to 5 features. The
time consumed in network transmission and inside the cloud is
dominant compared with processing time at the edge or predic-
tion process in the cloud.

• Cloud computing with machine learning may occasionally be
utilized as a support to ensure edge processing, as well as to save
results for later processing.

• At the edge, upgrading all the capabilities will enhance the per-
formance, some edge devices might have more RAM and CPU
power than some cloud-based containers, and then the accuracy
and processing time would be better in this case.
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Table 5
Real-time edge models performance for 9, 4, and 5 features.

Edge model Number of samples Accuracy (%) Average processing
time per request (ms)

PKL File size
(kilo bytes)

HAR9 4220 4220/4220 (100%) 38.612 1374
Top4of9 4615 4376/4615 (94.82%) 20.359 1353
Top5of9 4095 3888/4095 (94.92%) 24.817 1359
Table 6
Processing time and network delay at edge and the cloud.

Edge Cloud

Local processing
time at the edge
per request
using HAR9 on
the edge

Total time from
request to
response using
the cloud per
request (100%)

Network delay
from device to
cloud and back
per request
(98%)

Processing time
in the container
at the cloud per
request (2%)

0.0386 s 5.8347 s 5.7279 s 0.1068 s

• Feature reduction is application dependent, this technique may
result in loss of information, which can negatively impact the
accuracy of the model. The reduced feature set may not fully
capture the complexity of the original data, which may lead to
decreased performance. If this is the case, the edge might be used
to speed up processing without sending all queries towards the
cloud, edge devices can handle predictions and keep the cloud
informed.

By comparing the results with the articles in the literature review,
his work produced high accuracy models using one type of sensors, the
ccuracy approached 99.6% using light GBM if nine features utilized
t the edge or the cloud, while the accuracy approached 99.2% at the
loud and 98.2% at the edge in article [15] for fall detection, and 96.4%
t the edge in [34] for HAR. In article [31], the accuracy was 96% for
leeping category, and even lesser for the other categories using three
ype of sensors. In this work, utilizing lighter and faster models clearly
ncreased response time with 94.82% accuracy using less than half the
umber of features.

There are several restrictions and reasons that led to the accuracy
hanging from training to real-time, including differences in sensor
ccuracy between different brands of smartphones, the nature of the
ody motions, and the number of samples produced over time. The
rientations of smartphones on the human body also affect accuracy;
mproper arrangement will lead to incorrect results.

This research can be extended and deploy AI models on the smart-
hones, this will enable the smartphones to send less traffic, save time
n the edge and the cloud, and run predictions locally. Local predictions
ight be used in different ways at the edge and the cloud, and facilitate

ntegration of this distributed intelligence between the different parties
f the system.
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