
Enhanced Capuchin Search Algorithm Using
Cooperative Island Model with Application of

Evolutionary Feedforward Neural Networks
Thaer Thaher∗, Mohammed Awad∗, Alaa Sheta†, Mohammed Aldasht‡,

∗Department of Computer Systems Engineering, Arab American University, Jenin, Palestine
Email: thaer.thaher@aaup.edu; mohammed.awad@aaup.edu

†Computer Science Department, Southern Connecticut State University, CT 06515, USA
Email: shetaa1@southernct.edu

‡Department of Computer Engineering, Palestine Polytechnic University, Hebron, Palestine
Email: Mohammed@ppu.edu

Abstract—This paper introduces an enhanced version of the
Capuchin Search Algorithm (CapSA) called ECapSA. CapSA
draws inspiration from the collective intelligence of Capuchin
monkeys and has shown success in solving real-world problems.
However, it may encounter challenges handling complex opti-
mization tasks, such as premature convergence or being trapped
in local optima. ECapSA employs a local escaping mechanism
operating the abandonment limit concept to exploit potential
solutions and introduce diversification trends. Additionally, the
ECapSA algorithm is improved by integrating the principles of
the cooperative island model, resulting in the iECapSA. This
modification enables better management of population diversity
and a more optimal balance between exploration and exploita-
tion. The efficiency of iECapSA is validated through a series of
experiments, including the IEEE-CEC2014 benchmark functions
and training the feedforward neural network (FNN) on seven
biomedical datasets. The performance of iECapSA is compared
to other metaheuristic techniques, namely differential evolution
(DE), sine cosine algorithm (SCA), and whale optimization algo-
rithm (WOA). The results of the comparative study demonstrate
that iECapSA is a strong contender and surpasses other training
algorithms in most datasets, particularly in terms of its ability
to avoid local optima and its improved convergence speed.

Index Terms—Capuchin search algorithm, island model, pop-
ulation diversity, training neural networks.

I. INTRODUCTION

The optimization field deals with determining the best
possible values for a group of decision variables that either
maximize or minimize an objective function [1]. To discover
the best possible solution for the optimization problem, a
robust optimization algorithm is necessary to explore unvisited
regions and take advantage of previously explored areas of
the search space [2]. Evolutionary Algorithms (EAs) are
commonly used optimization algorithms that can solve various
optimization problems [3]. EAs start with a population of
individuals and improve their fitness over generations using
intelligent operators and problem-specific knowledge until
an optimal solution is achieved. EAs can be classified into
different categories based on their natural inspirations, such as
swarm-based, evolutionary-based, physical-based, chemical-
based, human-based, and mathematical-based [4].

Swarm-based EAs draw inspiration from animal behavior,
particularly in the areas of prey hunting, collaborative food-
finding, living style, and swarm leadership. These algorithms
typically consist of two groups: leaders and followers. The
followers are attracted to the leader’s group to improve their
search directions. Particle swarm optimization (PSO) [5] and
ant colony optimization (ACO) [6] are examples of base
swarm intelligence algorithms, but numerous other algorithms
have been proposed recently, including the Grey Wolf Opti-
mizer (GWO), Moth-Flame Optimization Algorithm (MFO),
Flower Pollination Algorithm (FPA), Krill Herd Algorithm
(KHA), Squirrel Search Algorithm (SSA), and Crow Search
Algorithm (CSA) [7].

The Capuchin search algorithm (CapSA) is a recent SI
optimization technique proposed by Braik et al. in 2021. It is
inspired by the foraging behavior of capuchin monkeys, who
efficiently search for food by moving between different trees
and branches [8]. CapSA has shown promising results in solv-
ing a variety of optimization problems, including photovoltaic
parameter extraction [9], prediction of wind power [10], fea-
ture selection [10], task scheduling in the cloud computing
[11], economic load dispatch problem [12], data aggregation
routing protocol in the IoT [13], image segmentation [14], and
parameters optimization of plastic injection molding [15]. This
can be attributed to CapSA’s impressive characteristics, such
as simplicity, flexibility, and soundness. CapSA has a good
balance between exploration and exploitation by combining
local and global search strategies, which allows it to converge
to high-quality solutions efficiently. Moreover, the algorithm
has a simple and intuitive design, making it easy to implement
and understand. Additionally, the algorithm incorporates a
dynamic balance factor that helps to maintain the diversity
of the solutions during the search process. while CapSA has
shown competitive performance on some challenging prob-
lems, it has limitations like any other optimization algorithm.
The performance of the CapSA is significantly influenced
by its parameter setup, and identifying suitable parameter
values for each problem can be challenging. Furthermore,

the CapSA may require greater diversity in its population
to prevent premature convergence and suboptimal outcomes.
Specifically, the CapSA’s propensity for getting stuck in local
optima presents a potential limitation that necessitates further
investigation and testing, especially when confronted with
more complex real-world problems [12], [16].

In the past, metaheuristic search algorithms have demon-
strated their usefulness in training neural networks due to
their capability to handle complex, non-convex optimization
problems, which traditional optimization methods find difficult
to address. When training neural networks, the objective is to
determine the optimal values for numerous weights and biases,
resulting in a high-dimensional and non-convex optimization
problem. Metaheuristic search algorithms such as genetic
algorithm (GA), PSO, and simulated annealing (SA) have
successfully identified acceptable solutions for such problems,
even without explicit knowledge of the problem’s landscape.
These algorithms can explore the search space effectively and
locate favorable regions to concentrate on, resulting in faster
convergence and improved performance for the neural net-
work. Therefore, employing ECapSA can enhance the neural
network training process and facilitate better accuracy and
generalization ability [17].

The strength and power of the learning mechanism play a
critical role in the performance of FNN. Several previous stud-
ies have employed gradient-based backpropagation methods.
However, this algorithm is associated with two primary issues,
namely, slow convergence rate and local minima trap [18]. As
a result, metaheuristic-based approaches are being developed
to address these concerns associated with the gradient-based
algorithm. Many swarm intelligence algorithms are utilized in
the literature to handle the training of FNNs, for example,
artificial bee colony (ABC), PSO, teaching-learning-based op-
timization (TLBO), whale optimization algorithm (WOA), salp
swarm algorithm (SSA), and others. A review of metaheuristic
design for FNN can be found in [19], while a thorough
analysis comparing the effectiveness of various metaheuristic
algorithms for training FNN can be found in [20].

A. Motivations and contributions

While training-based metaheuristic algorithms are effective
in accelerating the convergence rate and avoiding local min-
ima, which is a problem with gradient-descent algorithms, they
cannot guarantee an exact solution in the optimization domain.
Additionally, the No Free Lunch theorem (NFL) suggests no
universal optimization technique can outperform all others
for all optimization problems. Effective metaheuristic-based
methodologies are still being researched, with this paper focus-
ing on overcoming the main drawbacks of the primary CapSA
algorithm by proposing a modified version and adapting the
cooperative island model concept as a training algorithm to
enhance the performance of FNNs. The main contributions of
this paper are summarized as follows:

• We introduce a local escaping mechanism based on the
abandonment limit concept to enhance CapSA, resulting

in a new and improved version called ECapSA. By in-
corporating this strategy, the algorithm can better exploit
potential solutions and introduce diversification trends,
ultimately leading to improved convergence performance.

• The fundamentals of the island model are incorporated
into the structure of ECapSA, referred to as iECapSA, to
manage diversity in the population, and prevent premature
convergence.

• iECapSA introduces a novel FNN trainer for use in the
biomedical field. When compared to other state-of-the-art
algorithms, iECapSA produces high-quality results.

The article is structured as follows: Section II provides
an overview of CapSA and FNNs, highlighting their key
features. Section III-B provides an in-depth explanation of the
proposed iECapSA algorithm. The experiments conducted and
the results obtained are described in Section IV. Lastly, Section
V summarizes the study’s findings.

II. RESEARCH BACKGROUND

This section provides an overview of the methods used to
develop the proposed optimization model to create a self-
exploratory paper. It begins by explaining the basic CapSA in
Section II-A, and then delves into the principles of feedforward
neural network in Section II-B.

A. Overview of Capuchin Search Algorithm (CapSA)

A novel metaheuristic called CapSA was developed by
studying the natural behavior and daily routines of capuchin
monkeys as they foraged for food in the wild. According
to Braik et al., [8], the most fascinating fact regarding the
social behavior of capuchin monkeys is essential that they
employ three excellent maneuvers to move about when for-
aging on trees, riverbanks, and ground, namely jumping,
swinging, and climbing. These facts form the basis of CSA’s
fundamental assumptions. The CapSA algorithm, like other
swarm intelligence-based algorithms, may be thought of as a
population-based algorithm that starts by randomly initializing
a preset number of individuals (i.e., capuchins). Each capuchin
represents a possible solution to the problem being addressed.
The mathematical representation of CapSA’s evolutionary pro-
cess is as follows: Several N capuchins are assumed to be
distributed over a d-dimensional search space. N is often
referred to as population size. A possible solution to the
problem of interest may be determined by the location of each
capuchin individual i at a specific moment (t), which can be
described as a vector:

Xi(t) =
[
x1
i , x

2
i , x

3
i . . . x

d
i

]
Each individual is also characterized by its velocity:

Vi(t) =
[
v1i , v

2
i , v

3
i . . . v

d
i

]
where (i = 1, 2, , ..., N), (t = 1, 2, ...T), T is the maximum

number of iterations, d is the number of variables of a
test problem, and xi

d denotes the dth dimension of the ith
capuchin. The whole population of capuchins X and the

corresponding velocities V are initially positioned randomly
in the d-dimensional search space.

Capuchin swarms often consist of two categories of individ-
uals: (1) leaders, also known as alphas, who are responsible
for finding new food sources, and (2) followers, who are in
charge of updating their positions by following the group’s
leaders.

1) Leaders updating rules: The community’s leaders em-
ploy five distinct mobility strategies to locate food during the
evolutionary process. A random number named ϵ is generated
to determine operation selection as follows:

• Jumping on trees (i < N/2; 0.1 < ϵ ≤ 0.15): In this
situation, alpha capuchins can be positioned using the
following updating rule:

Xi(t+ 1) = gbest+
(Pbf (vi)

2sin(2θ)

g

)
(1)

where the variable gbest denotes the current optimal
position of the food source, while ϵ refers to a randomly
generated number in the range of 0 to 1. Pbf represents
the probability of the capuchin monkey’s tail providing
balance during the jumping process. The velocity of the
ith capuchin, denoted as vi, is computed using Equation
(2), with g being the gravitational acceleration constant
set to 9.81. The jumping angle, denoted as θ, is calculated
as 1.5timesr, where r is a uniformly distributed random
number between 0 and 1.

Vi(t+ 1) = ρvi(t) + a1

(
pbesti − xi(t)

)
r1

+ a2

(
gbest− xi(t)

)
r2 (2)

where pbest refers to the best position so far of the ith
capuchin. The factors a1 and a2 govern the influence of
the individual best position (pbest) and the global best
position (gbest) on the capuchin’s velocity. The random
variables r1 and r2 are uniformly distributed in the
interval [0, 1]. The inertia coefficient ρ determines how
much the previous velocity affects the current motion,
and in this study, it is decreased during iterations using
Equation (3) to regulate the search for either local or
global solutions.

ρ = wmax − (wmax − wmin)(
t

T
)2 (3)

where wmax and wmin take values of 0.8 and 0.1,
respectively.

• Jumping on the ground (i < N/2; 0.15 < ϵ ≤ 0.3):
Capuchins employ this behavior to travel long distances,
especially when food is hard to come by on the trees.
The new position of the leader and following capuchins
in this instance may be determined as follows:

Xi(t+ 1) = gbest+
(PefPbf (vi)

2sin(2θ)

g

)
(4)

where Pef stands for the elasticity probability of the
capuchin movement on the ground.

• Normal walking on the ground (i < N/2; 0.3 < ϵ ≤
0.9): In this case, the leaders’ position can be updated as
follows:

Xi(t+ 1) = xi(t) + vi(t+ 1) (5)

• Swinging on the trees (i < N/2; 0.9 < ϵ ≤ 0.95): While
looking for food on tree branches, certain alpha capuchins
and other accompanying capuchins may employ local
search. The following rule was used to simulate this
behavior:

Xi(t+ 1) = gbest+ Pbf × sin(2θ) (6)

• Climbing trees (i < N/2; 0.95 < ϵ ≤ 1.0): Certain alpha
capuchins and other following capuchins may repeatedly
ascend and descend trees and their branches in a manner
akin to local search. Specifically, the following rule can
be used to update the capuchins’ location:

Xi(t+ 1) = gbest+ Pbf

(
vi(t+ 1)− vi(t)

)
(7)

• Random migration of the capuchines (i < N/2; ϵ <
0.1): Capuchin monkeys engage in random migration dur-
ing food foraging, wherein they search for food in various
directions to more efficiently explore their surroundings
in search of better food sources. The process of random
migration is modeled using Eq. (8)

Xi(t+ 1) = τ ×
[
LB + r × (UB − LB)

]
(8)

where LB and UB represent the lower and upper bounds
of the decision variables. Capuchin monkeys have a
0.1 probability of engaging in a random search. This
strategy enhances CapSA’s capacity to explore globally
and reduces the likelihood of getting stuck in local
optima. In CapSA, an exponential function with a lifetime
parameter (τ) was introduced to balance exploration and
exploitation during global and local search processes.
This function is represented by Eq.

τ = 2e−11(t
T)2 (9)

In summary, according to Eqs. (1) through (9), the
capuchin monkeys adjust their positions based on the
presence of food. This behavior is especially noticeable
when r > 0.1. However, if r ≤ 0.1, the capuchin mon-
keys tend to change their positions randomly to explore
different areas for food. In such instances, the parameter
τ can expand the exploration space for searching.
2) Followers updating rule: The positions of the follow-
ers (i.e. N/2 ≤ i ≤ N) are updated according to the
following formula:

xi(t+ 1) =
1

2

(
xi(t) + xi−1(t)

)
(10)

where xi(t) and xi−1(t) are the positions of the i-th
follower and the (i − 1)-th follower in in the previous

generation. The original paper describes the comprehen-
sive steps and the complete mathematical model utilized
to derive this formula.

B. Feedforward Neural Networks

A feedforward neural network, known as FNN, is an ar-
tificial neural network where data flows in a unidirectional
manner, moving from the input layer through the hidden layers
to the output layer, without any feedback connections [21]. In
this architecture, the input layer accepts the input data, the
hidden layer(s) process the input data using a set of weights
and activation functions, and the output layer generates the
final output. Figure 1 provides an example of an FNN that has
three input features, one hidden layer, and one output layer.

 x1

 x2
 y

Input layer

Hidden layer

Output layer

 xN

 h1

 h2

 h3

 hm

 w11

 w12

B1

 Bm

Bh

Fig. 1: Simple FNN architecture with one hidden layer

The mathematical model of the FNN relies on three primary
components: input features, biases, and weights. The input
layer receives a vector of features (i.e., input variables), while
each neuron in the other layers performs a summation function
and an activation function. The summation function calculates
the weighted sum of inputs by multiplying them with their
corresponding weights, adding a bias term, and applying an
activation function, as shown in Equation (11).

Sj =

n∑
i=1

wij ×Xi +Bj j = 1, 2,m (11)

where m represents the total number of hidden nodes. Mean-
while, n stands for the total number of input nodes. Each
connection between the ith input node Xi and the jth hidden
node has a connection weight wij , and each hidden neuron j
has a bias term βj .

Once the aggregation function defined in Equation (11) is
computed, an activation function is applied to activate the
neurons’ output. FNN networks can utilize several types of
activation functions. In this research, the sigmoid function is
used, which has been frequently applied in previous studies
involving FNN networks [17], [22]. This function is used
to propagate the weighted output of the hidden layer to the
subsequent layer. Equation (12) is used to determine the output
of node j in the hidden layer.

hj =
1

1 + e−Sj
j = 1, 2,m (12)

where hj represents the sigmoid activation function that is
applied to the jth node in the middle layer, while Sj refers to
the summation obtained from Equation (11). Once the output
for each neuron in the middle layer is computed, the next step
is to determine the output of the FNN network. This can be
done by applying Equation (13).

ŷ = sigmoid

 m∑
j=1

wj × hj + β

 (13)

After constructing the neural network, the weights linked with
the network are adapted to approximate the desired outcomes.
To accomplish this, a training algorithm is utilized to modify
the weights in an iterative manner until a certain error criterion
is met.

III. THE PROPOSED ECAPSA ALGORITHM

Since its inception, the CapSA algorithm has been widely
applied in various research areas and is highly effective. How-
ever, despite its numerous positive aspects, the algorithm still
faces various issues [16]. Like most metaheuristics, CapSA is
susceptible to the lack of diversity in its population. To be spe-
cific, CapSA has a tendency to become trapped in local optima,
which could limit its effectiveness. Consequently, to improve
the performance of CapSA, it is necessary to incorporate
additional operators that emphasize exploitation and provide
a better balance between diversification and intensification. In
the subsequent sections, we present proposed enhancements
to the CapSA algorithm that aim to achieve these goals.

A. Boosting CapSA with local escaping mechanism (ECapSA)

The basic CapSA mathematical model indicates that during
the evolution process, information from the local best (pbest)
of each individual in the population is utilized in exploration
procedures. This article proposes an improved version of
the CapSA algorithm called ECapSA, which leverages the
benefits of the local best optimum. ECapSA integrates two
distinct update processes for each individual in the population,
depending on whether an abandonment limit criterion is met.

• If the ith best local optimum (pbesti) experiences an
improvement, the first update process follows the original
CapSA. However, if no improvement is observed in the
best local position (pbesti) after K iterations, the update
process for the corresponding individual xi is discarded.

• Instead, a second update process is employed, which
applies a perturbation to the local optimum using Eq.
(14).

Xi(t+ 1) = pbesti + r
(
xrand − xi(t)

)
(14)

where pbesti denotes the local best position of the ith
individual, xrand indicates a randomly chosen position
from a set of N solutions, and r signifies a random
number uniformly generated within [0, 1].

Algorithm 1 outlines the various steps involved in the
proposed ECapSA. This process ensures that if there is no
progress in the local best solution after a set number of
iterations, the leaders/followers update mechanism is replaced
by another mechanism that is based on a differential evo-
lution perturbation of the ith best local optimum [23]. This
mechanism allows the corresponding capuchin to explore the
neighborhood of its local best so far. This is achieved by
introducing a step size that is determined by the difference
between the randomly selected position and the capuchin’s
current position to detect a better solution. This process
enables a better exploitation process around the existing best
local optima and thus improves the quality of the population.

Algorithm 1 Pseudo-code of the enhanced CapSA (ECapSA)

1: Initialize the adjustable parameters of the basic CapSA
2: Define the parameter for the abandonment limit (k)
3: define counti = 0 (i=1,2,. . . ,N)
4: Generate the initial positions of the capuchines xi(i =

1, 2, . . . , N) randomly.
5: Calculate the fitness of each individual capuchin
6: Initialize the velocity vi and memory pbesti of capuchins
7: gbest = the optimal solution so far
8: while (t < T) do
9: Update τ using Eq. (9)

10: for i = 1 to N do
11: if (counti ≤ K) then

Update xi following the rules of the original
CapSA through Eqs. (1) to (10).

12: else
13: Update xi using Eq. (14)
14: counti = 0
15: end if

Adjust Xi through the limits set for the variable’s
upper and lower boundaries.

16: end for
17: Evaluate the fitness of each new position f(xi)
18: for i = 1 to N do
19: if f(xi) < f(pbesti) then
20: pbesti = xi

21: f(pbesti) = f(xi)
22: else
23: counti = counti + 1
24: end if
25: if f(xi) < f(gbest) then
26: gbest = xi

27: f(gbest) = f(xi)
28: end if
29: end for
30: t = t+ 1
31: end while
32: Return gbest

B. island-based enhanced CapSA (iECapSA)

Metaheuristic algorithms like CapSA and ECapSA use a
population-based approach to find optimal or near-optimal
solutions. They generate a set of solutions, evaluate their
quality, and create a new population for the next iteration.
However, this approach can lead to premature convergence,
where the algorithm gets stuck in a local optimum and doesn’t
explore the entire search space. To avoid this, the island model
can be used to introduce diversity in the population.

An island model is a popular approach in distributed com-
puting, where the population of candidate solutions is parti-
tioned into multiple subpopulations or ”islands.” that evolve
independently [24]. Each island has its instance of algorithm,
which can use different parameters or operators. The islands
cooperate by exchanging solutions periodically to propagate
good solutions and promote diversity. Consequently, the island
model is motivated by the need to balance exploration and
exploitation in metaheuristic optimization [25].

The island model typically involves the periodic exchange
of candidate solutions between the islands, which is called
migration. The migration parameters refer to the settings
that control the transfer of solutions between subpopulations
during the optimization process. These parameters include the
frequency of migration (Mf), the number of individuals to be
migrated (Mr), the selection method for choosing individuals
for migration (Ms), and the topology of the islands (Mt) [26].
The frequency of migration is the number of iterations after
which migration occurs. It can be fixed or adaptive based on
the progress of the search process. The number of individuals
to be migrated can be a fixed number or a percentage of the
island population size. The selection method for choosing in-
dividuals for migration can be based on different criteria, such
as the fitness value, the diversity of the candidate solutions,
or a combination of both. The topology of the islands can
be defined as a ring, a fully connected graph, or any other
graph structure that allows the exchange of candidate solutions
between the islands. The migration process can be done in
different ways, such as the sending of the best individuals or
randomly selected individuals, or by using crossover operators
to create new candidate solutions in the destination island.

In this study, the island model is incorporated into the
structure of ECapSA, referred to as iECapSA, to manage
diversity and enhance the efficiency of searching the domain.
Specifically, the proposed iECapSA follows the steps outlined
below:

• Step 1: Initialize Problem and Adjustable Parameters
In this stage, the necessary parameters are initialized,
including the problem parameters, ECapSA parameters,
and migration parameters.

• Step 2: Generate the Initial Population
In this step, the initial population of capuchins, repre-
sented as X = (x1, x2, x3, xN), is randomly positioned
in the d-dimensional search space as potential solutions.
Each candidate solution is generated using Eq. (15).

X⃗i = X⃗L + r(X⃗U − X⃗L) (15)

where X⃗L and X⃗U are the lower and upper bound for the
problem dimensions, r is a random number inside [0,1].

• Step 3: Splitting the initial population into islands
As Step 3 of the algorithm, the initial population is
partitioned into a specified number of islands denoted as
s, with each island comprising of Is = N/s solutions,
where N is the total population size.

• Step 4: Running the Optimization Process

In this step, the optimization process is initiated by
running the cooperative algorithms concurrently. Each
island has its own population and search mechanism
utilizing ECapSA. It’s important to note that the same
search algorithm with the same settings is embedded in
each island, creating a homogeneous island model. The
evolution process occurs asynchronously, based on the
generalized island model [27].

• Step 5: Migration Process
After a certain number of iterations are determined by the
migration frequency parameter (Mf), a migration process
is initiated. This involves generating a random communi-
cation topology, such as a bidirectional ring, to connect
the islands. A percentage of the individuals from each
island, determined by the migration rate parameter (Mr),
is then transferred to the connected islands. The best-
worst policy is used for the swapping process between
every two neighboring islands.

• Step 6: Stop criterion:
The optimization process continues by repeating steps 4-6
until the stopping criterion is met.

• Step 7: Return the best solution:
Once the stop condition is met, the algorithm returns the
best solution found among all the islands.

C. Proposed iECapSA-FNN model

To adapt SI algorithms for optimization problems, two
key steps are necessary: defining the problem representa-
tion and formulating the objective function. In this study,
the primary aim is to find the optimal values for weights
and biases of a single hidden layer FNN that would yield
the lowest prediction error. As such, a vector of real
values was employed to encode the solution, as described
by Eq. (16).

X⃗ = {W⃗ , β⃗} (16)

where the weights and biases are denoted as W⃗ and β⃗
respectively, and their values are assumed to be within the
range of [-1, 1] [22]. Although there is no established
method in the literature for determining the optimal
number of neurons in the hidden layer, in this study, the
approach proposed in [17], [22] is utilized. This technique
sets the number of hidden neurons (H) as (2 × F + 1),
where F represents the number of features in the dataset.
Consequently, the dimension of each solution (i.e., D) is
calculated as shown in Eq. (17).

D = (F ×H) + (2×H) + 1 (17)

Once the solution representation in FNN has been estab-
lished, the subsequent step is to formulate an objective
function to assess the quality of the produced solutions. In
this study, we employed the Mean Squared Error (MSE)
as our chosen metric for evaluating FNNs, as it is a widely
used technique for this purpose [22]. The assessment of
solutions involved inputting the generated weights and

biases into the FNN and then computing the MSE, which
is represented in equation (18).

MSE =
1

n

n∑
i=1

(y − ŷ)2 (18)

where y and ŷ represent the actual and estimated values,
respectively. n is the number of training samples.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Within this section, we evaluate the capacity of the de-
veloped iECapSA to address a range of diverse optimization
problems, such as CEC2014, and training of FNNs. As a
result, the paper features three primary experiments: (1) a
comparison experiment that seeks to determine whether the
proposed strategy has a positive impact on CapSA, (2) a
performance validation experiment for the proposed iECapSA
variant, and (3) an experiment on Training FNN based on
iECapSA. The first two experiments were conducted during 5
selected mathematical functions from the IEEE CEC2014 test
suit, while the training of the FNN experiment relied on seven
biomedical datasets.

A. Test problems

1) Mathematical benchmark functions CEC2014: The lit-
erature offers various mathematical optimization problems to
assess the effectiveness of optimization algorithms, including
their robustness, convergence rate, and overall performance. To
evaluate the proposed methods, five problems with different
characteristics were selected from the IEEE CEC2014 suit.
These functions are classified into four categories: unimodal
function (F1), multimodal function (F10 and F14), hybrid
function (F22), and composition function (F26). Table I sum-
marizes the main characteristics of these functions.

TABLE I: The characteristics of CEC2014 benchmark func-
tions (U: Unimodal, M: Multimodal, H: Hybrid, C: Composi-
tion)

Function Description Category Fmin

F1 Rotated High Conditioned Elliptic Function U 100
F10 Shifted Schwefel’s Function M 1000
F14 Shifted and Rotated HGBat Function M 1400
F22 Hybrid Function 6 (N=5) H 2200
F26 Composition Function 4 (N=5) C 2600

D = 30 & Range [−100, 100]D

2) Binary classification datasets: To evaluate and compare
the effectiveness of the proposed iECapSA approach for
training FNNs, seven real biomedical datasets were chosen
from the UCI Machine Learning Repository [28], all of which
involve binary classification. Table II provides a detailed
description of these datasets.

B. Experimental setup and settings

All experiments were conducted on the same computing
environment, using a machine equipped with an Intel(R)
Core(TM) i7-1165G7 CPU running at 2.80 GHz (with 8
CPUs) and 16 GB of RAM, operating on Ubuntu 20.04 LTS.

TABLE II: A summary of each binary classification dataset
and its corresponding FNN structure

Dataset #Features #samples Hidden Layer FNN structure

Blood 4 748 9 4-9-2
BreastCancer 8 699 17 8-17-2
Diabetes 8 768 17 8-17-2
diagnosis II 6 120 13 6-13-2
Liver 6 345 13 6-13-2
Parkinsons 22 195 45 22-45-2
Vertebral 6 310 13 6-13-2

In the FNN training experiment, the datasets were divided
into training and testing sets, with 66% of the data used for
training and 34% for testing. To ensure reliable results, each
experiment was repeated 30 times, with each run consisting of
250 iterations. The standard parameter settings for iECapSA,
DE, WOA, and SCA as recommended in the literature, are
summarized in Table III and were utilized in our experiments.

TABLE III: Parameter settings of iECapSA and other algo-
rithms

Common parameters

Population size N 50
Maximum No. of iterations 1000 (CEC2014), 250 (FNN)
No. of runs 30
significance level α (Friedman test) 0.05

Internal parameters
Algorithm parameter value

iECapSA a1, a2 1.25, 1.5
Pef , Pbf 11 , 0.7
wmin , wmax 0.1, 0.8
abandonment limit K 10
Number of islands 4
Migration frequency Mf 0.2 × T
Migration rate Mr 0.3 ×N
Migration policy best-worst
Communication topology random ring

WOA convergence constant a decreased linearly [2 0]
Spiral factor b 1

DE Mutation, Crossover 0.5 , 0.7
SCA r1 decreased linearly [2 0]

r2 random values inside [0 2π]
r3 random values inside [0 2]
r4 random values inside [0 1]

C. Evaluation measures

The effectiveness of the proposed method is evaluated using
various performance measures, including the mean of fitness
values over 30 independent runs. In addition, the accuracy
measure is used for the FNN. Moreover, population diversity is
an essential performance measure for metaheuristics. A diverse
population indicates that the algorithm is effectively exploring
the search space and discovering different regions of good
solutions, while a low diversity population indicates that the
algorithm may be stuck in a local optimum. In this study, an
effective measure based on the idea of the moment of inertia
[29] is utilized to quantify population diversity.

D. Experimental series 1: CEC2014

The first scenario involves conducting experiments on five
challenging CEC2014 benchmark test functions to analyze
the effects of the proposed search strategies on the primary
CapSA. To this end, we evaluated two developed variants,
namely ECapSA and iECapSA, in terms of their solution qual-
ity, convergence trends, and diversity curves. The results of 30

independent runs are presented in Table IV, where the best-
performing solution is highlighted in bold. The findings show
that the proposed ECapSA method outperforms the standard
CapSA in 80% of the test functions (F1-F4). Furthermore,
the island-based ECapSA (iECapSA) consistently outperforms
all other methods in all test cases. These results suggest that
integrating the new search strategy into CapSA and combining
it with the principles of the island model can enhance its
exploitation potential and improve its exploration capacity to
search the entire solution space.

TABLE IV: Comparison of CapSA variants on 30-dimensional
IEEE CEC2014

Function CapSA ECapSA iECapSA

F1 1.41E+08 8.86E+07 2.51E+07
F10 5.46E+03 5.02E+03 3.78E+03
F14 1.43E+03 1.42E+03 1.40E+03
F22 3.14E+03 2.86E+03 2.61E+03
F26 2.72E+03 2.73E+03 2.70E+03

Mean Rank 2.80 2.20 1.00

In the visualization presented in Figure 2, the convergence
and population diversity curves of CapSA, ECapSA, and
iECapSA are depicted side by side for selected test func-
tions. These figures enable the assessment of the impact of
population diversity on the optimization process. In specific,
the convergence curve illustrates how the fitness value evolves
over the course of iterations. The diversity curve shows the
variation or diversity of solutions within the population over
the course of iterations. The convergence curves clearly depict
the significant improvements in the convergence rate of the
proposed methods. These results offer additional evidence
that the suggested techniques perform exceptionally well in
accelerating the convergence rate.

Upon examining Figure 2 with regard to diversity analysis,
it is evident that all CapSA variants exhibit a significant level
of diversity at the start of the optimization process, indicating
an extensive exploration of the search space. However, as
the number of iterations increases, the population’s diver-
sity gradually decreases. The figure shows that CapSA and
ECapSA have smoother diversity responses, suggesting more
exploitative behavior for the proposed ECapSA algorithm. In
contrast, the iECapSA algorithm displays highly oscillating
behavior, which reflects its superior exploration-exploitation
capabilities. These results confirm that the migration policy in
the iECapSA model, which involves exchanging information
among different populations, can introduce additional variation
in the diversity of candidate solutions and result in more
oscillations in the diversity curves.

E. Experimental series 2: Training of FNN

In this section, the performance of the proposed algorithms,
ECapSA and iECapSA, is evaluated on the training of FNN by
conducting experiments and comparing them with the original
CapSA and other well-established algorithms namely DE,
WOA, and SCA. The reason for selecting these algorithms
is that they encompass a variety of classes of metaheuristics,

0 200 400 600 800 1000
Iterations

108

109

Fit
ne

ss
CapSA
ECapSA
iECapSA

(a) F1-convergence behaviour

0 200 400 600 800 1000
Iterations

106di
ve

rs
ity

CapSA
ECapSA
iECapSA

(b) F1-diversity behaviour

0 200 400 600 800 1000
Iterations

104

4 × 103

6 × 103

Fit
ne

ss

CapSA
ECapSA
iECapSA

(c) F10-convergence behaviour

0 200 400 600 800 1000
Iterations

106di
ve

rs
ity

CapSA
ECapSA
iECapSA

(d) F10-diversity behaviour

0 200 400 600 800 1000
Iterations

2.7 × 103

2.72 × 103

2.74 × 103

2.76 × 103

2.78 × 103

2.8 × 103

2.82 × 103

2.84 × 103

Fit
ne

ss

CapSA
ECapSA
iECapSA

(e) F26-convergence behaviour

0 200 400 600 800 1000
Iterations

106

di
ve

rs
ity

CapSA
ECapSA
iECapSA

(f) F26-diversity behaviour

Fig. 2: The convergence and diversity plots of CapSA variants
on selected CEC2014 functions

in terms of both inspiration and mathematical formulation. Ad-
ditionally, these algorithms include a mix of novel techniques
such as WOA and SCA, as well as some of the most popular
optimizers used in this field, such as DE. The effectiveness of
the proposed algorithm is measured using a fitness function
(MSE) and classification quality metric (accuracy).

TABLE V: Testing accuracy results

Dataset CapSA ECapSA iECapSA DE WOA SCA

Blood 0.7525 0.7510 0.7522 0.7533 0.7553 0.7561
BreastCancer 0.9689 0.9693 0.9723 0.9571 0.9702 0.9643
Diabetes 0.7294 0.7389 0.7519 0.7183 0.7179 0.7385
diagnosis II 1.0000 1.0000 1.0000 0.9976 0.9951 1.0000
Liver 0.6788 0.6966 0.7415 0.6983 0.6542 0.6958
Parkinsons 0.8343 0.8299 0.8328 0.7478 0.7776 0.7716
Vertebral 0.8236 0.8387 0.8575 0.8057 0.8075 0.8104

Mean Rank 3.36 3.07 1.93 4.71 4.43 3.50

Table V presents a summary of the mean classification
accuracy results. The proposed iECapSA algorithm surpasses
all other optimizers on four datasets (BreastCancer, Dia-
betes, Liver, and Vertebral), with average accuracy values of
0.9723, 0.7519, 0.7415, and 0.8575, respectively. Additionally,
iECapSA exhibits an average accuracy of 1.00 for Diagnosis-
II, which is consistent with the results of CapSA, ECapSA,
and SCA. These results highlight the algorithm’s ability to
outperform other comparative techniques in navigating the
problem search space, while also being capable of escaping
from local optima due to its diversification ability.

Table VI summarizes the average MSE obtained by the
comparative methods for all datasets. The results demonstrate
that the iECapSA provides extremely competitive results and
reaches the best outcomes for all cases. iECapSA ranks first,
followed by ECapSA, CapSA, SCA, DE, and WOA. In

TABLE VI: MSE Results

Dataset CapSA ECapSA iECapSA DE WOA SCA

Blood 1.56E-01 1.56E-01 1.54E-01 1.57E-01 1.57E-01 1.57E-01
BreastCancer 4.16E-02 4.14E-02 4.00E-02 5.21E-02 4.45E-02 4.63E-02
Diabetes 1.68E-01 1.63E-01 1.56E-01 1.71E-01 1.70E-01 1.68E-01
diagnosis II 8.82E-03 6.03E-03 5.74E-03 2.80E-02 2.19E-02 3.27E-02
Liver 2.16E-01 2.11E-01 2.04E-01 2.14E-01 2.19E-01 2.16E-01
Parkinsons 1.27E-01 1.20E-01 1.15E-01 2.10E-01 1.63E-01 1.59E-01
Vertebral 1.48E-01 1.48E-01 1.38E-01 1.50E-01 1.51E-01 1.51E-01

Mean Rank 3.00 2.14 1.00 5.00 5.14 4.71

summary, iEcapSA shows remarkable optimization results for
the optimization of FNN. The algorithm’s capacity to balance
between exploitation and exploration, allows it to explore
new areas of the search space and provide superior solutions.
Figure 3 illustrates the convergence patterns of the comparative
algorithms. The figure makes it evident that the iECapSA
algorithm exhibits notably faster convergence rates than the
conventional CapSA and other techniques.

0 50 100 150 200 250
Iterations

4 × 10 2

6 × 10 2M
SE

CapSA
ECapSA
iECapSA
DE
WOA
SCA

(a) F10-convergence behaviour

0 50 100 150 200 250
Iterations

10 1

100

101

102

103

di
ve

rs
ity

CapSA
ECapSA
iECapSA
DE
WOA
SCA

(b) F10-diversity behaviour

0 50 100 150 200 250
Iterations

1.6 × 10 1

1.7 × 10 1

1.8 × 10 1

1.9 × 10 1

2 × 10 1

2.1 × 10 1

2.2 × 10 1

2.3 × 10 1

M
SE

CapSA
ECapSA
iECapSA
DE
WOA
SCA

(c) F14-convergence behaviour

0 50 100 150 200 250
Iterations

10 1

100

101

102

103

di
ve

rs
ity

CapSA
ECapSA
iECapSA
DE
WOA
SCA

(d) F14-diversity behaviour

0 50 100 150 200 250
Iterations

10 2

10 1

M
SE

CapSA
ECapSA
iECapSA
DE
WOA
SCA

(e) F26-convergence behaviour

0 50 100 150 200 250
Iterations

10 1

100

101

102

103
di

ve
rs

ity
CapSA
ECapSA
iECapSA
DE
WOA
SCA

(f) F26-diversity behaviour

Fig. 3: The convergence and diversity plots of the proposed
CapSA variants against DE, WOA, and SCA on different
classification datasets

By examining the diversity curves depicted in Figure 3, it
can be observed that the iECapSA, which displays an oscil-
latory behavior between high and medium levels of diversity,
yields better solution quality in most cases. This behavior
indicates that iECapSA effectively balances exploration and
exploitation by maintaining a moderate level of diversity
during the optimization process. In contrast, algorithms like
DE and WOA, with either very high or very low diversity
levels, do not yield the best solution quality. These results
suggest that achieving an optimal balance between exploration
and exploitation through an appropriate level of diversity is
necessary for obtaining the best solutions.

V. CONCLUSION AND FUTURE WORKS

This paper presented an enhanced version of the Capuchin
search algorithm (CapSA) named iECapSA. Our algorithm
addresses the limitations of the standard CapSA by utilizing
various strategies, such as the local escaping operator and
the cooperative island model’s structure. The local escap-
ing mechanism leverages the abandonment limit concept to
enhance exploitation ability, while the island model helps
control population diversity. We evaluate the performance of
iECapSA through experiments that include the CEC2014
benchmark and FNN training mechanism. Our evaluation met-
rics, such as fitness value, accuracy, convergence performance,
and diversity, show the distinct advantages of iECapSA over
the original CapSA and other competitive methods.

Future research will focus on improving computation time
and exploring practical applications of iECapSA, such as
software reliability optimization, image segmentation, and
feature selection.

REFERENCES

[1] I. Osman and G. Laporte, “Metaheuristics: A bibliography,” Annals of
Operational Research, vol. 63, pp. 513–628, 10 1996.

[2] W. Li, G.-G. Wang, and A. Gandomi, “A survey of learning-based
intelligent optimization algorithms,” Archives of Computational Methods
in Engineering, vol. 28, p. 3781–3799, 02 2021.

[3] T. Bäck and H.-P. Schwefel, “An overview of evolutionary algorithms
for parameter optimization,” Evolutionary Computation, vol. 1, no. 1,
pp. 1–23, 1993.

[4] F. Fausto, A. Reyna Orta, E. Cuevas, A. Andrade, and M. Cisneros,
“From ants to whales: metaheuristics for all tastes,” Artificial Intelligence
Review, vol. 53, p. 753–810, 01 2020.

[5] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceed-
ings of ICNN’95-international conference on neural networks, vol. 4.
IEEE, 1995, pp. 1942–1948.

[6] M. Dorigo and G. Di Caro, “Ant colony optimization: a new meta-
heuristic,” in Proceedings of the 1999 Congress on Evolutionary
Computation-CEC99 (Cat. No. 99TH8406), vol. 2, 1999, pp. 1470–1477.

[7] R. R. Mostafa, M. A. Gaheen, M. Abd ElAziz, M. A. Al-Betar,
and A. A. Ewees, “An improved gorilla troops optimizer for
global optimization problems and feature selection,” Knowledge-
Based Systems, vol. 269, p. 110462, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950705123002125

[8] M. Braik, A. Sheta, and H. Al-Hiary, “A novel meta-heuristic search al-
gorithm for solving optimization problems: capuchin search algorithm,”
Neural Computing and Applications, vol. 33, no. 7, p. 2515–2547, 09
2021.

[9] H. H. Ali, A. Fathy, M. Al-Dhaifallah, A. Y. Abdelaziz, and M. Ebeed,
“An efficient capuchin search algorithm for extracting the parameters of
different pv cells/modules,” Frontiers in Energy Research, vol. 10, 2022.

[10] M. A. Al-qaness, A. A. Ewees, H. Fan, L. Abualigah, A. H. Elsheikh,
and M. Abd Elaziz, “Wind power prediction using random vector
functional link network with capuchin search algorithm,” Ain Shams
Engineering Journal, vol. 14, no. 9, p. 102095, 2022.

[11] S. Ramu, R. Ranganathan, and R. Ramamoorthy, “Capuchin search
algorithm based task scheduling in cloud computing environment,”
Yanbu Journal of Engineering and Science, vol. 19, no. 1, pp. 18–29, 3
2022.

[12] M. S. Braik, M. Awadallah, M. A. Al-Betar, and A. Hammouri,
“A hybrid capuchin search algorithm with gradient search
algorithm for economic dispatch problem,” 2022. [Online]. Available:
https://doi.org/10.21203/rs.3.rs-1761466/v1

[13] M. Mohseni, F. Amirghafouri, and B. Pourghebleh, “Cedar: A cluster-
based energy-aware data aggregation routing protocol in the internet of
things using capuchin search algorithm and fuzzy logic,” Peer-to-Peer
Networking and Applications, vol. 16, p. 189–209, 10 2022.

[14] S. Li, Z. Li, Q. Li, M. Zhang, and L. Li, “Hybrid improved capuchin
search algorithm for plant image thresholding,” Frontiers in plant
science, vol. 14, p. 1122788, 2023.

[15] S. Jeet, A. Barua, D. K. Bagal, S. Pradhan, S. N. Panda, and S. S.
Mahapatra, “Parametric investigation of injection moulding for ldpe
using capuchin search algorithm and honey badger algorithm,” in
Advances in Functional and Smart Materials, C. Prakash, S. Singh,
and G. Krolczyk, Eds. Singapore: Springer Nature Singapore, 2023,
pp. 481–497.

[16] M. Elsayed Abd Elaziz, S. Salima, and R. Ibrahim, “Boosting capuchin
search with stochastic learning strategy for feature selection,” Neural
Computing and Applications, pp. 1–20, 03 2023.

[17] M. A. Awadallah, I. Abu-Doush, M. A. Al-Betar, and M. S. Braik,
“Chapter 19 - metaheuristics for optimizing weights in neural networks,”
in Comprehensive Metaheuristics, S. Mirjalili and A. H. Gandomi, Eds.
Academic Press, 2023, pp. 359–377.

[18] M. Kaveh and S. Mesgari, “Application of meta-heuristic algorithms for
training neural networks and deep learning architectures: A comprehen-
sive review,” Neural Processing Letters, pp. 1–104, 10 2022.

[19] V. K. Ojha, A. Abraham, and V. Snášel, “Metaheuristic design of
feedforward neural networks: A review of two decades of research,”
Engineering Applications of Artificial Intelligence, vol. 60, pp. 97–116,
2017.

[20] E. Kaya, “A comprehensive comparison of the performance of meta-
heuristic algorithms in neural network training for nonlinear system
identification,” Mathematics, vol. 10, no. 9, 2022.

[21] K. Hornik, M. Stinchcombe, and H. White, “Multilayer
feedforward networks are universal approximators,” Neural Networks,
vol. 2, no. 5, pp. 359–366, 1989. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/0893608089900208

[22] H. Faris, I. Aljarah, and S. Mirjalili, “Training feedforward neural
networks using multi-verse optimizer for binary classification problems,”
Applied Intelligence, vol. 45, p. 322–332, 09 2016.

[23] H. Wang, S. Rahnamayan, H. Sun, and M. G. H. Omran, “Gaussian
bare-bones differential evolution,” IEEE Transactions on Cybernetics,
vol. 43, no. 2, pp. 634–647, 2013.

[24] T. Y. Lim, “Structured population genetic algorithms: A literature
survey,” Artificial Intelligence Review, vol. 41, p. 385–399, 03 2014.

[25] M. Al-Betar, M. Awadallah, I. Doush, A. Hammouri, M. Mafarja, and
Z. Alyasseri, “Island flower pollination algorithm for global optimiza-
tion,” The Journal of Supercomputing, vol. 75, p. 5280–5323, 08 2019.

[26] T. Thaher and B. Sartawi, “An experimental design approach to analyse
the performance of island-based parallel artificial bee colony algorithm,”
in 2020 IEEE 14th International Conference on Application of Informa-
tion and Communication Technologies (AICT), 2020, pp. 1–7.

[27] D. Izzo, M. Ruciński, and F. Biscani, The Generalized Island Model.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 151–169.

[28] D. Dua and C. Graff, “UCI machine learning repository,” 2017.
[Online]. Available: http://archive.ics.uci.edu/ml

[29] R. Morrison and K. De Jong, “Measurement of population diversity,”
vol. 2310, 10 2001, pp. 31–41.

