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Abstract— Temporal difference (TD) prediction error signal 
models are instrumental in simulating brain function during 
reinforcement learning (RL). Recent evidence suggests a 
significant role of TD prediction error signals in the action-
selection and action-execution brain networks. We introduce a 
neurocomputational model that explores TD prediction error 
signal variations for action-selection and action-execution. The 
TD prediction error signal represents the dopamine 
neurotransmitter the basal ganglia and prefrontal cortex brain 
regions. The model incorporates dopamine genetic parameters 
in the two networks (COMT gene for action-selection; DAT1 
gene for action-execution) to generate four different parameter 
combinations. The model simulation showed that TD signaling 
in both networks plays a significant role in RL under optimal 
conditions of medium, not high, TD signals. Moreover, each 
parameter combination showed a unique pattern of RL, 
corresponding with experimental data obtained using a 
computer-based RL task. 

Keywords— reinforcement learning, computational modeling, 
dopamine, feedback-based learning  

I. INTRODUCTION  

A. The Neuroscience Background 
The catecholamine dopamine is a neurotransmitter, which is 
simulated as a temporal difference (TD), or prediction error, 
training signal in model modules that correspond to specific 
brain areas. Dopamine is an integral neural substrate for 
mediating reinforcement learning (RL) [1], which refers to 
learning from positive, negative, and even salient stimuli in 
humans and animals [2]. 

RL models that are based on a reward TD signal, or 
prediction error, which encodes the difference in dopamine 
neuron firing rates in response to expected vs. received 
(actual) rewards [3]. Various direct and indirect approaches 
were used to measure dopamine prediction signal levels in 
animals and humans [4]. In human experiments, one of the 
main measurement techniques is the influence of naturally 
occurring genetic polymorphisms in genes that code for 
dopamine signal degradation and clearance proteins, such as 
the dopamine transporter gene (DAT1) and catechol-O-
methyl transferase (COMT) gene [5]. DAT1 plays an 
important role in clearing dopamine from synapses in the 
basal ganglia (BG). Studies have shown that carriers of the 9-

tandem repeat DAT1 parameter express lower levels of the 
dopamine transporter protein and thus exhibit higher levels of 
BG dopamine, while carriers of the 10-repeat parameter 
express higher levels of the dopamine transporter, and lower 
levels of BG dopamine.  

On the other hand, the COMT gene has a Val158Met 
polymorphism that affects the clearance of dopamine from 
synapses in the prefrontal cortex (PFC). Val parameter 
carriers express a higher activity COMT and therefore have 
relatively lower concentrations of PFC dopamine. Met 
carriers; on the other hand, have lower activity COMT, and 
higher concentrations of PFC dopamine. 

Several neuro-computational and RL models have 
examined BG- as well as PFC-dopamine and its contribution 
to different cognitive functions. Although many experimental 
studies have examined the role of dopamine in both the BG 
and PFC separately, most computational models simulate 
dopamine effects on the function of the BG, considering the 
BG and the PFC as one component. For example, Gurney et 
al. introduce a quantitative model for BG functional anatomy. 
The model addresses how the BG operates based on the 
computational hypothesis that the BG is the neurobiological 
substrate for action selection. This model is built by 
examining a comparison between action selection neural 
networks and the anatomy of the BG. It is based on the idea 
that the BG exerts, primarily, action selection [6]. Another 
BG model is the one introduced by Balaraman et al., The 
authors developed an RL model of the BG to understand 
impulse control disorder (ICD) in Parkinson’s disease (PD) 
patients. This model assumed that the dysfunction in both 
dopamine and serotonin systems accounts for ICD symptoms 
in PD patients, in which dopamine controls reward prediction 
and serotonin controls punishment prediction [7]. Another 
model that belongs to the actor-critic family is the one by 
Mandali, A. et al. The authors introduced a spiking network 
model of the BG to relate the subthalamic nucleus-globus 
pallidus externus synchrony levels to exploration in PD 
patients. This model provides a new understanding of the role 
of the BG in explorative behavior, as well as the occurrence 
of synchrony levels in PD conditions [8]. 

The BG consists of different anatomical modules; 
striatum, sub-thalamic nucleus (STN), and globus pallidum 



externa and interna (GPe and GPi) [9]. The striatum receives 
input from the PFC. It also receives dopamine projections that 
control values associated with sampled rewards [8]. Striatal 
projections project to GPe, GPi, and STN via direct and 
indirect pathways, which are important for action selection 
dynamics [10]. The striatum has two types of a receptor 
expressing neurons: D1 receptor (D1R) and D2 receptor 
(D2R). The neurons expressed by D1 and D2 receptors are 
medium-spiny neurons. D1R medium spiny neurons project 
through the direct pathway to GPi, while D2R medium spiny 
neurons project via the indirect pathway to GPe [11]. Two 
mechanisms regulate dopamine levels in the BG-PFC 
interactions: (1) phasic dopamine release in the BG and the 
PFC caused by dopamine neuron firing, and (2) tonic 
dopamine release, a background dopamine release regulated 
in the PFC. Tonic dopamine is thought to regulate phasic 
dopamine levels [12,13].  

B. Paper Contribution 
The BG is the brain area that represents the action-execution 
network, while the PFC is the brain area that represents the 
action-selection network.  

In this paper, we introduce a new neurocomputational 
model of RL that addresses the effect of TD signal variations 
(dopamine variations). Our model simulates the interaction 
between the two networks of action selection and action 
execution signaling systems. We hypothesize that the TD 
signals in the action selection brain network are critical for 
the action selection process, while the temporal difference 
error signals in the action execution network are critical for 
executing actions in learning. We also hypothesize that the 
interacted TD signal in both the action-execution and the 
action-selection networks is the signal that mediates positive 
learning performance. We tested 99 healthy undergraduate 
subjects using a computer-based RL classification task to 
study feedback-based learning. We simulated TD signals 
using parameters that represent genetic polymorphisms of 
dopamine clearance systems in the action selection module 
(COMT gene) and the action execution module (dopamine 
transporter gene (DAT1)). The COMT gene parameters are 
(1) the Met parameter which is associated with a lower 
temporal difference signal and (2) the Val parameter which is 
associated with a higher temporal difference signal. The 
DAT1 gene parameters are (1) the 9R parameter with the 
higher TD signal and (2) the 10R parameter with the lower 
TD signal. Each run of the model has one of the parameters 
in the action selection network and one of the parameters in 
the action execution network. Thus, the model simulates four 
different parameter combinations: (1) 9R-Met, (2) 10R-Met, 
(3) 9R-Val, and (4) 10R-Val. 

To our knowledge, this is the first study to simulate 
learning from positive and negative feedback according to the 
function of action-execution and action-selection network 
parameters. 

II. MODEL AND METHODS 

A. Overview 
We propose a new computational network model of 

action selection network and execution network to identify 
the effects of specific prediction error signal parameters on 
feedback learning. We merge various algorithms to form an 

innovative model architecture. The basic structure of the 
model uses the actor-critic architecture. The artificial 
intelligence algorithm that we use for training the model is 
TD, which is a prediction algorithm used to simulate various 
characteristics of dopamine firing [14] and to solve RL 
problems that are suitable for representing reward prediction 
errors. 

In line with the TD algorithm for the execution network 
and action selection network; which simulates the dopamine 
signal as a reward prediction error, we borrow some model 
elements from a recent model that studies the relationship 
between two neurotransmitters in the execution network [15]. 
Testing the results of the model will be through (1) fitting 
them to experimental data results from human subjects and 
(2) applying the model to different learning tasks. 

B. Participants 
We recruited ninety-nine healthy undergraduates from Al-
Quds University in the West Bank, Palestine. The age of 
participants ranged between 18 and 24 years. Subjects were 
excluded if they had psychotropic drug exposure, psychiatric 
disorders, current pregnancy, or breastfeeding. This study 
was carried out at the Palestinian Neuroscience Initiative 
following the approvals of the Al-Quds University Research 
Ethics Committee with written informed consent from all 
subjects. 

C. The Computer-Based RL Task  
We used a computer-based cognitive task that tests for 
category learning where subjects learn from either positive or 
negative feedback [16]. Category learning refers to learning 
which category a specific card (stimulus) belongs to sun or 
rain. Thus, subjects were asked whether a card predicts sun 
or rain (Fig.1). Subjects were asked to choose whether the 
stimulus predicts rainy weather (Rain) or sunny weather 
(Sun) (Fig.1-A) in which on each trial, the participant saw 
one of four stimuli and was asked whether this stimulus 
predicts rain or sun. The critical manipulation that 
differentiates this task from many previous studies of 
probabilistic category learning is that half the four presented 
stimuli (S1-S4) were trained using only positive feedback for 
correct answers (S1-S2, (Fig.1-C) and no feedback for 
incorrect answers (Fig.1-B) while the other half were trained 
using only negative feedback for incorrect answers (S3-S4, 
Fig.1-D) but no feedback for correct answers (Fig.1-B). Thus, 
across all stimuli, the no-feedback trials are ambiguous and 
can occur following correct responses for negative feedback 

FIGURE 1. THE PROBABILISTIC RL CLASSIFICATION TASK. 

 



stimuli or incorrect responses for positive feedback stimuli. 
This made it difficult for subjects to infer the implicit 
meaning of the no-feedback trials and encouraged them to 
focus, instead, on learning from the positive and negative 
feedback trials.  

Across four blocks of 40 trials (160 trials total), subjects 
learned to categorize stimuli into the two outcome categories, 
Rain and Sun. This experimental design allows us to measure 
and compare individuals' sensitivity to learning from positive 
feedback versus negative feedback. Half of the four stimuli 
were trained using only positive feedback for correct answers 
(S1-S2) and no feedback for incorrect answers in 90% of the 
trials, while the other 10% received the opposite feedback 
(either positive feedback or no feedback). The same applies 
to stimuli that were trained using negative feedback for 
incorrect answers (S3-S4) and no feedback for correct 
answers. Table 1 summarizes the category and feedback 
structure of the probabilistic classification task according to 
9:1 probability. A very similar table was reported in [3]. 
This probabilistic RL task has been validated and used 
extensively in the literature [17, 18, 19]. Imaging and animal 
studies have suggested that different brain structures, 
including both the BG and the medial temporal area, are 
involved in category learning; thus, this task can be used to 
examine the brain substrates of learning [17, 18, 19, 20].  
 

Table 1 TASK CATEGORY AND FEEDBACK STRUCTURE  

 

D. Genotyping 
Subjects were asked to provide a 3-5 mL blood sample for 
genetic analysis. After working on these samples under 
suitable situations, genomic DNA was extracted using a 
specific Genomic DNA Purification Kit. Then after different 
operations, DNA polymerase was produced from the DNA. 
A DNA ladder was then used to identify the various 
parameters: 9-repeat and 10-repeat for the DAT1 genotype, 
and Val, Met parameters for the COMT genotype. For each 
subject, four variants of interacted parameters were obtained: 
(1) 9R-Met, (2) 9R-Val, (3) 10R-Met, and (4) 10R-Val. There 
was a significant difference between the four groups in 
positive feedback learning performance while all groups 
showed very similar rates of negative feedback learning 
performance (Fig.2). 

E. The proposed Computational Network Model 
Model architecture follows the actor-critic architecture where 
the actor represents action selection and the critic represents 
feedback learning (Fig.3). The critic sends the signals to the 
actor and the actor strengthens or weakens action selection. 
The critic is informed whether the output of the action 
selected by the actor is rewarding, while it is not informed 
about the action itself. This model is trained using the 
temporal difference algorithm.  

The model has four modules: PFC/cognitive, BG/motor 
response, dopamine, and input. The PFC/cognitive layer is 

fully connected to the BG/motor response layer. The Input 
and PFC modules have the same number of nodes. Each unit 
in the Input module represents a cue/stimulus presented to the 
network. Input patterns presented to the network activate 
their corresponding units in the Input module. The Input 
module sends projections to the PFC layer. We use a winner-
take-all network to simulate connectivity among PFC 
neurons. The BG module in the model learns to map input 
stimuli to responses [21]. Like the PFC module, we use a 
winner-take-all network to simulate connectivity among 
simulated BG neurons. At the cognitive level, the winning 
node represents the selected motor response. Unlike most 
existing models of the BG module, this module in our model 
learns to map representations of selected stimuli to motor 
responses. 

In this model, the BG network is important for learning 
responses, whereas the PFC network is essential for action 
selection. This model assumes that D1 receptors in the BG 
network play a key role in positive feedback learning, 
whereas D2 receptors in the BG network have a critical role 
in negative feedback learning [20]. The model has several 
parameters that are manipulated depending on the simulated 
subject’s dopaminergic system. We simulated the effects of 
phasic signals by manipulating the learning rate parameters 
in both the PFC and the BG modules. We also simulated the 
effects of tonic prediction error signals by manipulating the 
effects of gain parameters in sigmoidal activation in the 
simulated networks [22]. We simulated the implication of 
feedback-based learning via a cue category-learning task 
described in the previous section. 

Stimulus Probability Sun 
(%) 

Probability Rain 
(%) Feedback 

S1 90 10 If correct: +25 
If incorrect: null S2 10 90 

S3 90 10 If correct: null 
If incorrect: -25 S4 10 90 

FIGURE 2. EXPERIMENTAL RESULTS FOR DAT1-COMT INTERACTION 
INTERACTION 

F 

FIGURE 3. ACTOR-CRITIC ARCHITECTURE 

F 



As mentioned above, the model has four modules 
interacting with each other under TD learning rules. TD 
algorithm implies having pairs of state-action (s, a) estimated 
by the value function Q(s, a), where s in our model represents 
the stimulus of the positive/negative feedback-based learning 
task which is the input to the system, a represents the selected 
category and Q(s, a) represents the expected reward. The 
expected reward is represented by the value function of the 
TD algorithm below [23]: 

Q(st,at)=yD1(st,at)                              (1) 
The output of different types of medium spiny neurons (D1R 
and D2R) are represented by the variables yD1 and yD2 as 
follows:  
                          yD1(st,at)=wD1(st,at)x(st)                             (2) 

           yD2(st,at)=wD2(st,at)x(st)                             (3) 
The output of PFC nodes is represented in (4) below: 
                           yPFC(st,at)=wPFC(st,at)x(st)                         (4) 
Where x is modeled for the current state to be equal to 1 as in 
[21], and t denotes the trial. 
Each stimulus has its weight for each category of the two 
categories A and B. This weight is updated once the system 
gets the feedback, where this feedback comes after the action 
is selected. The equation of weight update for a given pair 
(state, action) of different kinds of nodes (D1, D2, or PFC) 
can be computed as follows in (5) [14, 24]: 
                    Δwnode= ηnode λnode(δ (t))x(st)                          (5) 

Where η is the learning rate for each neuron type and λ is the 
gain function (activation function) for different types of 
medium spiny neurons D1R, D2R, and PFC nodes. The 
values are calculated respectively as follows in (6):   
                 λnode(δ)= (2c1/(1+exp(c2(δ+c3))))-1                    (6) 
The δ’s in weight update equations represent the classical TD 
error, which simulates the immediate reward for activity 
update. It is calculated according to (7) [14, 24]. 
                                δ(t)= r-Q(st,at)                                     (7) 
Another form of TD used in the value function for action 
selection purpose is described in (8) [23].  
                      δQ(t)= Qt(st,at)- Qt-1(st-1,at-1)                          (8) 

Based on experimental findings, we simulated the 9R 
gene by increasing the weight of the D1 receptor for the 
positive feedback learning case and decreasing the D2 
receptor weight for the negative feedback learning case. 
Accordingly, we simulated the 10R gene by decreasing the 
D1 weight for the positive feedback learning case, while 
increasing the D2 receptor weight for the negative feedback 
learning case. 

1) Dopamine Module 
Two types of dopamine signals are involved in the 

learning process; the immediate firing phasic signal and the 
running on the background tonic signal. We simulated the 
phasic signal using the TD algorithm prediction error 
equation (7) and (8). We simulated tonic dopamine using a 
gain function as proposed in the models of Moustafa et al. 
[23].  
                        f(δ)=1/(1+exp(Gtonic(δ)))-1                          (9) 
We simulated a rise in tonic TD prediction error signals by 
increasing the gain parameter Gtonic. We hypothesized that 
an increase in tonic TD prediction error signals firing 
decreases the magnitude of phasic TD prediction error signals 
firing as mentioned before in Taverna et al. [13]. Similarly, 
we simulated a reduction in tonic TD prediction error signal 

levels in a brain structure by decreasing the Gtonic parameter; 
thus, decreasing tonic signaling will increase phasic signaling 
magnitude [13, 22]. We simulated COMT parameters 
according to this gain function parameter. We simulated the 
Met parameter by increasing the value of the gain tonic 
parameter; more tonic and less phasic signals, and we 
simulated the Val parameter by decreasing the value of the 
gain tonic parameter which gives less tonic and more phasic 
TD prediction error signal. 

2) Basal Ganglia Module 
a) The direct pathway and indirect pathway 

projections to GPi. 
The BG module is responsible for the motor 

response in the selection process; it includes different parts 
where the projections of the signals go through direct and 
indirect pathways. We borrowed the model of Balaraman et 
al. to manipulate our BG module and the calculations for the 
transition between STN and GPe, the transition of D1R 
neurons output via the direct pathway and the transition of 
D2R nodes output via the indirect pathway can be found in 
[10,11,15]. 

b) Response Selection at GPi 
In GPi, the computations from direct and indirect pathways 
are combined in order to implement action selection and get 
the output as follows:  
                        xGPi=xDP+wSTN-GPiySTN                               (10) 

 wSTN-GPiySTN simulates the relative weightage of projections 
from STN to GPi. It is set to 1 for all nodes in the simulation. 

3) PFC Module 
We suggest a specific simulation for the PFC 

module layer. We suppose that the PFC module is similar to 
the BG module but with only one direct connection to the 
striatum. Further, it is mainly responsible for the action 
selection process. The dynamics of node projections from the 
PFC network to the BG network are calculated according to 
the equations below: 

     τs dxiPFC/dt = -xiPFC+wPFCyiPFC-xistriatum           (11) 
                 yPFC=tanh (λPFC xiPFC )                        

(12) 
We set the slope of λPFC = 5. The action selection process in 
the PFC that determines which action to follow is represented 
in (13): 
                  xiPFC= xiPFC+wiPFC-striatumyiPFC                         (13) 
Where wiPFC-striatum simulates the relative weightage of 
projections from the PFC module to the BG module. It is set 
to 1 for all nodes in the simulation. It is important to notice 
that λ’s used in action selection purposes have different 
parameters from those used in λ’s for weight update purposes. 
This model was conducted on a Macintosh MacBook Pro 
with OS X version 10.9.5, and processor 2.4 GHz Intel Core 
i5. Modeling was done using the MatlabR2013a 
environment. 

III. RESULTS 
Simulation results for DAT1 gene effects on RL 

gene show that the model learned from both reward and 
punishment trials with a percentage of 75%-90%, and gives 
good learning TD error. Moreover, runs with the 9R 
parameter learned better than those with the 10R parameter 
from reward trials. However, both 9R and 10R learned 
similarly from punishment trials. 



For the simulation of COMT gene effects on RL, 
results show that the model learns from both reward and 
punishment trials with a percentage of 75%-90%, with a good 
TD error signal. In reward learning trials, subjects with the 
Val parameter showed enhanced learning compared to those 
with the Met parameter. Both groups show the same average 
of learning from punishment trials. 

The effect of DAT1-COMT interaction on RL 
according to our model, subjects learned well from both 
reward and punishment trials. Fig. 4 illustrates the curves of 
reward and punishment learning for both. Results showed 
that the interaction between the two parameters of DAT1 and 
COMT affects learning. In reward learning, the interaction 
between the 10R parameter and the Val parameter gives 
enhanced reward learning (about (80%)) as compared to the 
other interaction parameters, similar to behavioral results. 
The other three variants have almost the same performance 
rate (about (75%)). However, in a punishment-based 
learning, the model performed similarly in the four 
interactions.  

In addition, the optimal reward responses were 
plotted against the dopamine signal on the second block (as 
the best measure of phasic dopamine); the four interacted 
parameters produced an inverted U-shaped function where 
reward accuracy and TD prediction error signal for each of 
the interactions was as follows: (1) 10R-Val showed the 
highest reward accuracy and an average value of TD 
prediction error signal, (2) 9R-Val showed an average reward 
accuracy and the highest TD prediction error signal, (3) 10R-
Met showed an average reward accuracy and the lowest TD 
prediction error signal, and (4) 9R-Met showed an average 
reward accuracy and a low TD prediction error signal. These 

results are the same on the second, third, and fourth blocks of 
the model trials (Fig.5).  

IV. DISCUSSION 
Our neuro-computational RL model simulates the differential 
effects of DAT1- COMT parameters interaction on cognition. 
We assume that DAT1 only exists in the execution module, 
while COMT only exists in the action selection module. 
Action execution and motor function are rooted in the basal 
ganglia, while higher cognitive functions are rooted in the 
PFC. 
The proposed model provides an account of how DAT1 and 
COMT produce an optimal learning performance according 
to their parameter interactions in the two modules. 

In an experimental study of genetic imagining; Scott et 
al. explain that 9-repeat carriers have relatively higher 
activation of the prediction error signals and more brain 
activity compared to 10R subjects [27]. Further, Yacubian et 
al. found that 9R carriers have lower levels of DAT1 
expression compared to 10R parameter carriers. Thus, 9R 
carriers have less TD prediction error signal clearance; thus, 
higher levels of phasic TD prediction error signal availability 
and activity [30]. The data from our model simulation for the 
effects of 9R-10R parameters on RL are consistent with these 
experiments. 

In addition, our results of COMT simulation imply that 
Val parameter carriers have higher TD prediction error signal 
activity compared to Met parameter carriers. These findings 
are in line with previous findings which suggest that the 
COMT Met parameter is associated with low COMT activity; 
thus, an increased level of tonic TD prediction error signal 
and a decreased level of phasic TD prediction error signal, in 
the specified modules [25, 26, 27]. 

Further, the current proposed model of 9R-10R /Met-Val 
parameters interaction addresses crucial findings that are 
replicated theoretically and experimentally in different prior 
models. For example, Moustafa et al. proposed that action 
selection nodes underlie the action selection process, while 
execution nodes underlie the motor execution process. Also, 
it reports that the increased levels of TD prediction error 
signal in the simulated action selection module results in 
enhancing learning performance [23]. These assumptions are 
consistent with the results of our model. 

Moreover, our model's outcomes of parameter 
interactions are following several experimental data. For 

FIGURE 5. INVERTED U-SHAPED FUNCTION 

FIGURE 4. RESUTS FOR DAT1-COMT 
INTERACTION 

Positive Learning 

Negative Learning 



example, both Yacubian et al. and Frank et al. suggested that 
reward can be modulated by the interaction between TD 
prediction error signal parameters [26]. Further, Dreher et al. 
demonstrated that the interaction between DAT1 and COMT 
can control reward system activation, in which, the 
combination of COMT-Val and Met and DAT1-10R and 9R 
can reflect differences in signal levels [28]. The highest 
phasic TD prediction error signal obtained from our model is 
the one representing the 9R-Val variant. This result comes in 
agreement with strong evidence in the literature that suggests 
that the 9R parameter expresses a relatively higher activation 
of TD prediction error signal compared to the 10R parameter. 
On the other hand, individuals with the Val parameter have 
higher levels of TD prediction error signal activity compared 
to individuals with the Met parameter. Therefore, the 
interaction between 9R and Val parameters would result in 
the highest signal as compared to other interactions among 
DAT1 and COMT genes [25, 26, 27, 30]. More and above, 
like our model, several studies have shown that the 
relationship between prediction error signal parameter 
variations and learning performance in RL is nonlinear, 
rather, it followed an inverted U-shaped function. Modulation 
of an inverted U-shaped theory has been reported previously 
in [29, 30, 31]. 

Our computational hypotheses about the different 
functions of DAT1 and COMT variation interactions are 
based on findings of a previous experimental study conducted 
in the Palestinian Neuroscience Initiative at Al-Quds 
University on 131 healthy subjects. This experimental study 
aims to understand the underlying mechanism for RL by 
finding the effects of different genetic variants of naturally 
occurring polymorphisms. 

Results showed specific learning patterns for each 
parameter interaction in reward and punishment feedback-
based trials. On one hand, 10R-Val interaction has the best 
learning performance in reward, while other interacted 
parameters imply the same percentage of reward learning that 
is also less than that of the 10R-Val combination. On the other 
hand, the four interactions (10R-Val, 9R-Val, 10R-Met, and 
9R-Met) attain the same percentage of punishment learning. 
Our model simulates these functional contributions of DAT1 
and COMT in both the execution network and action selection 
network and accounts for all the results obtained from the 
experimental study. 

The proposed model has several limitations, although it 
can account for different RL problems tasks. For example, 
our model can only account for RL. It cannot model other 
kinds of learning. Further, this model was tested on a group 
of healthy subjects. Thus, it might not account for other 
subjects learning if they have cognitive deficits. 

The model can account for TD prediction error signal 
function in reward and punishment trials. This might be an 
issue because several studies have shown that the signaling 
system is responsible for reward, but not punishment whereas 
other systems are involved in punishment learning [36]. 
Moreover, the model, in its current form, can only learn from 
one stimulus at a time. This is a very simple assumption as 
compared to animal and human learning which is much more 
complicated and might include multi-stimuli systems to learn 
from and adapt to environmental changes, for example, 
during the learning process. Some tasks in the literature 
included several stimuli, to pay attention to, during learning 

[33, 34]. However, our model cannot account for such tasks 
in its current form. Some studies have shown that other 
networks, such as the hippocampus, contribute to learning 
when having several configurations. Execution networks and 
action selection networks cannot do such configural learning 
without the contribution of other networks [35]. 

In addition, our model uses 160 trials for the tested task 
to learn properly. Although the learning becomes steady after 
160 trials, it cannot learn when trials are less than 40. 
Furthermore, although the model gives a good fit for 
experimental data, the values assigned for model parameters 
such as learning rates and gain parameters are not the only 
parameters that can replicate experimental results, some other 
values of the parameters may give the same performance of 
the model. Moreover, they have not been used according to 
biological data and features. In addition to this, since the aim 
of the model is capturing experimental data in several 
variants, and more than one case; the results of the model and 
the performance of learning obtained from it do not fully 
resemble the results and performance of experimental data. 
However, the model was able to simulate them successfully. 
These limitations that we present here are reported too in 
similar models in the literature [23, 36, 37, 38,39]. 

V. CONCLUSION  

 Our model provides a RL framework to study the effect 
of the interaction of two TD prediction error signal 
parameters on learning from positive and negative feedback. 
Many previous studies have examined the effects of only one 
type of gene parameter on this type of learning. However, 
several experimental studies have shown that other 
parameters are involved in such a type of learning. Our model 
takes into consideration more than one parameter, including 
action selection COMT parameters in addition to DAT1 
execution selection parameters. We simulated the effect of 
the interaction of different parameters on RL. The two 
parameters of DAT1 are (1) the 9R parameter and (2) the 10R 
parameter. These two variants have a key role in RL, 
specifically, in the action execution network and its BG 
module. On the other hand, the parameters of COMT are (1) 
Met and (2) Val. These parameters have a significant role in 
RL as well, but they are mostly implicated in action selection. 
The interaction between these four parameters gives the result 
for four variants among subjects: (1) 10R-Val, (2) 10R-Met, 
(3) 9R-Val, and (4) 9R-Met. 

 The results of running our model show that these 
variations can lead to differences in RL among subjects 
according to their parameter interaction, where the learning 
performance of the 10R-Val variant shows the best 
performance among other variants in reward learning, while 
the performance of punishment learning is the same for the 
four variants. The level of the TD signal as well as reward 
learning accuracy both depends on subjects’ parameter 
variability, in which 9R-Val obtains the higher signal while 
10R-Met obtains the lower signal, and the other two variants 
have a medium signal. These results promote experimental 
evidence that suggests that learning can be modulated by 
normal parameter variations in subjects. 
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