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Abstract: 
The present report provides information on the use of cohesive elements for the 
simulation of crack extension in specimens and structures with special focus on 
exploiting symmetry conditions. Applications of a user defined interface element 
based on traction-separation laws, are given. The report is meant to assist students 
starting to gain experience by passing know-how of a previous generation. The 
examples given at the end may serve as benchmarks. 
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1. Symmetry conditions in FE models 

Considering symmetries of structures helps reducing computation time and memory in FE 
simulations. Particularly, cracks and crack-like defects require a fine discretisation to resolve 
the high stress and strain gradients resulting in a large number of elements and degrees of 
freedom.  

A 3D structure can have up to three symmetry planes4, Fig. 1.1.   

 

Figure 1.1:  Brick with three symmetry planes (left), {3,1}, {2,3}, {1,2}, normal vectors 
n2 = -e2, n1 = -e1, n3 = -e3, and (1/8) model (right). 

Accounting for these symmetries in the FE model will reduce the number of elements up to 
one eighth and nearly likewise the number of degrees of freedom. The symmetry is 
implemented by inhibiting the displacements, ui, perpendicular to the symmetry plane of all 
element nodes in the respective plane by boundary conditions, i.e. 
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Applied symmetry conditions affect calculated elongations, namely  
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and hence the volume change, 

 1 2 38 ( 2) ( 2) ( 2)V W H B u W u H u B∆ ∆ ∆ ∆= =  (3) 

as well as all quantities related to a volume, like deformation energy, 

 ( ) 8 ( 8)U V U V=  , (4) 

or to an area, like forces. An external force, Fmodel, applied in e2 direction at the upper surface 
of the 1/8 brick model in Fig. 1.1 corresponds to a total force, Ftotal, acting on the structure, 

                                                           
4 Symmetry must also hold for the loading configuration, of course. 
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 ( )
total model 24 4 n

n

F F RF= = ∑  (5) 

where Σn is the sum over all nodes in the {3,1}-plane and ���

��� are the respective reaction 
forces. 

Symmetry conditions do not affect stresses (force per area) according to NEWTON’s 3rd 
principle or CAUCHY`s section principle. 

Fig. 1.2 shows two fracture specimens under mode I loading, namely a compact specimen (a) 
and a centre-cracked panel (b). The C(T) has one symmetry with respect to the horizontal (1) 
axis and can be modelled as a half model in 2D and a quarter model in 3D (additional 
symmetry with respect to the {1,2} plane in thickness direction). The M(T) has a twofold 
symmetry with respect to the horizontal (1) and the vertical (2) axis. It can be modelled as a 
quarter model in 2D and an eighth model in 3D.  

(a)  

(b)  

Figure 1.2:  Fracture mechanics specimens; (a) compact specimen C(T), (b) centre-cracked 
panel M(T). 

Models of structures containing a crack in a symmetry line (or plane) must allow for opening 
of the crack faces, and the boundary conditions of eq. (1) are hence restricted to the ligament 
nodes, i.e. 

 ( )2 1 2 1 2, 0 , , 0u x x x a x= ≥ =  (6) 

Typical 2D FE meshes in the vicinity of the crack tip in fracture mechanics specimens under 
mode I are displayed in Fig. 1.3.  

As loading and geometry are symmetric, just the upper half is modelled and normal 
displacements are constrained in the ligament. Collapsed elements centred to the crack tip are 
commonly applied for the analysis of stationary cracks (a) and an equidistant element 
arrangement for the analysis of extending cracks (b), respectively. The boundary conditions 
are given by eq. (6) with the exception that some node release technique or cohesive elements 
(see below) have to be applied for the analysis of crack extension, i.e. in the range of �� 	


� 	 �� � ∆���� and boundary conditions ���|���� � 0 for 
� � �� � ∆����. 
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(a) 
 

(b) 

Figure 1.3:  Typical FE meshes at the crack tip and in the ligament: (a) Collapsed elements 
centred to the crack tip for a stationary crack, (b) equidistant arrangement of 
elements for simulations of crack extension. 

The symmetry conditions affect displacement values like load-point or load-line 
displacement, VLL, measured between points L in Fig.1.2, crack mouth opening displacement, 
CMOD, measured between points D in Fig 1.2 (b), crack tip opening displacement (CTOD), 
δ, and the crack-tip opening angle (CTOA), see Fig. 1.4, which have to be doubled as in 
eq. (2). 

  

(a) (b) 

Figure 1.4:  Deformed FE meshes at the crack tip showing (a) blunting of a stationary crack 
and (b) crack opening due to crack extension.  

Also the J-integral value is affected by the symmetry with respect to the x1-axis, Fig. 1.5. 

 ( )2 ,1ij j iJ wdx n u ds
Γ

σ= −∫�  (7) 

  
0

t

ij ijw d
τ

σ ε τ
=

= ∫ ɺ  

 total half2J J=   (8) 

Figure 1.5:  Definition of J as contour integral 
around the crack tip 
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An additional symmetry with respect to the x2-axis as for M(T) specimens is irrelevant 
because it concerns a second crack tip. In 3D models, J is varying along the crack front and 
calculated in planes x3 = const for straight cracks or generally perpendicular to the crack front 
for curved cracks.  

 

 

2. Cohesive elements - general 

The cohesive model is a phenomenological model of material separation based on ideas of 
BARENBLATT and DUGDALE. ABAQUS [1] offers a library of cohesive elements to model the 
behaviour of adhesive joints, interfaces in composites, and other situations where the integrity 
and strength of interfaces may be of interest. It can likewise be used for the simulation of 
crack extension in homogeneous materials where there is no specific interface but just a 
“process zone”, where material degradation (nucleation, growth and coalescence of micro-
cracks, micro-voids or micro-cavities) and final separation occur. 

Cohesive elements can be used for all problems where cracks develop and extend. However, 
the model does not need any initial, pre-existing crack. The locations (among all areas 
modelled with cohesive elements) where cracks initiate, as well as the evolution 
characteristics of such cracks, are determined as part of the solution. The cracks are restricted 
to propagate along the pre-defined layer of cohesive elements, however, and will not deflect 
into the surrounding material. 

The nature of the mechanical constitutive response may broadly be classified [1] to be based 
on  

• a continuum (C) description of the material,  

• a traction-separation (TS) description of the interface. 

2.1 Continuum-based modelling 

A continuum-based modelling of an adhesive connecting two bodies is appropriate when the 
glue has a finite thickness. The macroscopic properties, such as stiffness and strength, of the 
adhesive material can be measured experimentally, if the connected bodies are linear elastic, 
and used directly for modelling purposes [2]. The adhesive material is generally more 
compliant than the surrounding material. The cohesive elements model the initial 
deformation, the initiation and the propagation of damage leading to eventual failure in the 
material. For further information see the ABAQUS manual [1], section 32.5.5. 

As the respective elements are continuum elements, symmetry conditions can be applied as 
described above. The first layer of elements in the crack ligament as shown in Fig 1.3 (b), 
may represent an adhesive of half thickness modelled by C-based elements. 

2.2 Traction-separation-based modelling 

The intermediate “glue material” of bonded interfaces can be very thin and for all practical 
purposes may be considered to be of zero thickness. In this case, its deformation behaviour is 
not relevant, and GRIFFITH’s concept of fracture mechanics applies [3], considering the 
amount of energy required to create new surfaces. The TS-based model has hence also found 
wide application to fracture mechanics problems, where the “interface” is fictitious and does 
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not represent any “glue material” but a process zone of zero thickness, where material 
degradation and separation is localised, see e.g. overview in [4]. 

The behaviour of the material is actually split in two parts, the damage-free continuum with 
an arbitrary constitutive law, and the cohesive interfaces between the continuum elements, 
which capture the damage of the material. The interface elements open during loading and 
finally lose their stiffness if a critical separation, δc, is reached, such that the continuum 
elements are disconnected. The separation of the cohesive interfaces is calculated from the 
displacement jump, i.e. the difference of the displacements of the adjacent continuum 
elements, 

 [ ]n 2 2 2u u uδ + −= = −  (9) 

As the focus of the present report is on symmetry conditions, the considerations are restricted 
to mode I problems and normal separation, �n, only. 

The normal stresses or tractions, σn, follow a traction-separation law (TSL), σn(δn), also 
denoted as cohesive law or decohesion law, which depends on two parameters,  

• a maximum stress or cohesive strength, σc, and 

• a critical separation, δc. 

Various authors have suggested a number of cohesive laws for different applications and 
mechanisms of fracture, see Fig. 2.1 and an overview in [4]. 

The area under the σn(δn) curve represents the energy necessary to create new surfaces, i.e. the 
GRIFFITH or separation energy 

 
c

c n n n

0

( )d
δ

Γ σ δ δ= ∫  (10) 

Beside the TS-based cohesive element provided by ABAQUS [1]5, section 32.5.6, a user 
defined interface element of zero thickness has been developed by SCHEIDER [5] 
incorporating traction-separation laws of NEEDLEMAN [6],  

 ( )
2

n n
n n c

c c

16e 16e
exp

9 9

δ δσ δ σ
δ δ

 
= − 

 
 , e = exp(1) ;  (11a) 

TVERGAARD &  HUTCHINSON [7]  

 ( )

n
n 1

1

n n c 1 n 2

c n
2 n c

c 2

1

δ δ δ
δ

σ δ σ δ δ δ
δ δ δ δ δ
δ δ

  
≤  

 
= ≤ ≤

 − ≤ ≤  − 

 , (11b) 

and SCHEIDER [8], 

                                                           
5 In addition to the TS based cohesive element, cohesive behaviour can also be defined and modelled 

as a surface interaction property ( *SURFACE INTERACTION) in ABAQUS. 
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 , (11c) 

see Fig. 2.1, and some special features like mixed-mode loading and dependence of cohesive 
parameters on external state variables. The following considerations will mostly refer to this 
user element. 

   

(a) (b) (c) 

Figure 2.1:  Traction-separation laws, σ(δ), of (a) NEEDLEMAN [6], (b) TVERGAARD &  

HUTCHINSON [7] and (c) SCHEIDER [8]. 

The TSLs of TVERGAARD &  HUTCHINSON and SCHEIDER contain two additional shape 
parameters, δ1 and δ2, defining the initial slope of the curve and the starting point of softening, 
respectively. In order to endow the cohesive element with a high initial stiffness, see ELICES 
et al. [9], δ1 should be chosen as small as (numerically) possible. The initial stiffness of the 
cohesive element, 

 

c

2
coh

0 c

2

VERGAARD

CHEIDER

T

2
S

d
K

d δ

σ
δσ
σδ
δ

=



 = =  

  


 , (12a) 

should at least be greater than the elastic stiffness of the adjacent continuum element, 

 coh

E
K

h
>  , (12b) 

where h is the height of the continuum element, which yields a condition for δ1. The second 
shape parameter, δ2, will depend on the fracture process and hence be material dependent. 

In NEEDLEMAN’s model [6], Fig. 2.1 (a), the initial stiffness is uniquely determined by σc and 
δc and cannot be defined separately, 

 
2

c c
coh

0 c c

EEDLEMAN
16e

13 N
9

d
K

d δ

σ σσ
δ δ δ=

 = = ≈ 
 

 , (12c) 
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3. Embedding of cohesive elements in FE models 

3.1. 2D and 3D models 

TS-type cohesive elements have been developed in [5] for 2D and 3D models as well as for 
shell structures. They have one dimension less than the adjacent continuum elements, but 
have an upper and a lower surface, nevertheless, denoted with (+) and (-) in the following, 
which are attached to continuum elements and open during loading. Even though a cohesive 
element has no volume in the unloaded and undamaged state, it will be called 2D or 3D 
cohesive element in the following, if the neighbouring structure consists of 2D or 3D 
continuum elements, respectively. 

(a)             (b)         

*USER ELEMENT, TYPE=U2, NODES=4 *USER ELEMENT, TYPE=U5, NODES=8 

Figure 3.1:  2D and 3D TS-type cohesive elements [5] 

(a)                    (b)                 

*ELEMENT,TYPE=CPE4  

  1,  1,  2,  3,  4, 

  2,  5,  6,  7,  8, 

*ELEMENT, TYPE=U2  

3,  2,  1,  7,  8, 

*ELEMENT,TYPE=C3D8 

  1,  1,  2,  3,  4,  5,  6,  7,  8, 

  2,  9, 10, 11, 12, 13, 14, 15, 16, 

*ELEMENT, TYPE=U5 

3,  8,  5,  1,  4, 15, 14, 10, 11, 

Figure 3.2:  Connecting cohesive and continuum elements 

2D cohesive elements have four nodes with a linear displacement formulation and two 
integration points, see Fig. 3.1 (a). Elements are implemented for plane strain, plane stress and 
for axisymmetric problems. 3D elements can have a linear displacement formulation using 
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eight nodes, see Fig. 3.1 (b), or quadratic shape functions with 16 or 18 nodes. Stresses are 
calculated at the integration points according to the TSL.  

Introducing a cohesive element at the boundary of two adjacent continuum elements means 
connecting the nodes at its upper and lower surface with the respective nodes of the 
continuum elements. This is straightforward in a 2D structure, see Fig. 3.2 (a). In a 3D 
structure one has to observe differing local coordinate systems and consider a correct 
mathematically positive, i.e. counter-clockwise, numbering of nodes at the upper surface of 
the cohesive element, see Fig. 3.2 (b). Note that the opening direction of the cohesive element 
is e3 in the local coordinate system, see Fig. 3.1 (b).  

The local coordinate system of the cohesive element is fixed to the mid-plane and, depending 
on the specification by the user, will move according to the deformation of the continuum 
elements.  

 

Figure 3.3:  Definition and motion with time of the local coordinate system ofa cohesive 
element, ξ ↔ e1, η ↔ e2 in Fig. 3.1 (a). 

The respective parameter coord_flag can have the values “0” and “1”, where coord_flag=0 
keeps the local coordinate system fixed at the reference plane, whereas for coord_flag=1 the 
actual configuration is used, see Fig. 3.3. 

In general, mode II shear deformation will occur if the cohesive element is subject to any 
global rotation. For pure mode I separation, geometry and loading have to be symmetric to the 
separation plane and hence symmetry conditions can be exploited. 

3.2. Cohesive elements at symmetry planes 

The following figures display 2D models, only, but can easily be generalised to 3D situations. 

If a cohesive element is placed at a line (plane) of symmetry, it will undergo an unsymmetric 

deformation if, following eq. (1), simply the displacements ��
��� of the lower surface are 

constrained, see Fig 10 (a). The midplane will rotate and the displacements ��
��� and ��

���will 

be different from ��
��� and ��

��� resulting in respective displacement jumps and shear 
separation, ��� �  ��! � ��

� " ��
� , ��� �  ��! � ��

� " ��
�. This can be prevented by choosing 

coord_flag=0, which keeps the local coordinate system fixed at the reference plane, and 

additional constraint equations ��
���

� ��
��� and ��

���
� ��

���, see Fig. 3.4(b). According to 
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eq. (2), the critical displacement has to be taken as �# 2⁄ , and the resulting separation energy 
will be &# 2⁄ . 

 
 

 

��
���

� 0 

coord_flag = 1 

��
���

� 0 

��
���

� ��
��� 

coord_flag= 0 

��
���

� "��
��� 

��
���

� ��
��� 

coord_flag= 0 or 1 

no symmetry, 

mixed mode! 
delta_N=δc/2, 

traction_N=σc 

delta_N=δc, 

traction_N=σc/2 

(a) (b) (c) 

Figure 3.4:  Cohesive elements at symmetry lines: Boundary conditions, constraint equations 
and input variables.  

A second possibility of realising symmetry is to establish constraint conditions ��
���

� "��
���, 

which guarantee a symmetric opening of the cohesive element, �� � ��
���

" ��
���

� 2��
���, 

and thus keeping the entire δc, see Fig. 3.4 (c). There is some unexpected consequence of 
applying constraint equations in ABAQUS [9], however. They induce extra nodal forces6, 
which reduce the stresses in the respective element to one half, so that the cohesive strength 
has to be taken as '# 2⁄ . This will be discussed in more detail in the following paragraph.  

Since ABAQUS has no access to the stress and strain state in User Elements, only the 
continuum elements contribute to the calculation of J. As the cohesive elements have no 
volume (or a negligibly small one if 1 n cδ δ δ≤ ≤ ), however, the tractions σn will not affect J 

for any contour or domain in some finite distance to the crack tip. Just for a contour directly at 
the crack tip, 

 tip n nJ dσ δ= ∫  . (13) 

3.3. Constraint forces and global equilibrium 

“Linear constraint equations introduce constraint forces at all degrees of freedom appearing in 
the equations. These forces are considered external, but they are not included in reaction force 
output. Therefore, the totals provided at the end of the reaction force output tables may reflect 
an incomplete measure of global equilibrium.” [10] 

                                                           
6 “Linear constraint equations introduce constraint forces at all degrees of freedom appearing in the 

equations. These forces are considered external, but they are not included in reaction force output. 
Therefore, the totals provided at the end of the reaction force output tables may reflect an 
incomplete measure of global equilibrium.” [10] 
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The ABAQUS Manual provides the following example of a spring-supported beam subjected to 
a concentrated load, see Fig. 3.5 (a). The static reaction forces are �( � � 3⁄  and �* � 2� 3⁄ . 
In Fig. 3.5 (b), the same structure is subjected to the additional linear constraint equation 
�+

, " �+
- � 0, which constrains the beam to remain horizontal. This introduces constraint 

forces �, � "�- � � 6⁄  and the new reaction forces are �( � �* � � 2⁄ . These reaction 
forces produce a global force balance in the y-direction, but since the constraint forces are not 
included in the reaction force output, the global moment balance about point A cannot be 
verified. 

(a)   (b)   

Figure 3.5:  Spring-supported beam subjected to a concentrated load [10], effect of constraint 
equations.  

Whereas this example appears rather plausible, since additional forces are required to keep the 
beam horizontal, the following one shows a rather unexpected result. 

(a) 

 

(b) 

 

(b1)   (b2)  

(c) 

 

Figure 3.6:  Model of a tensile bar, effects of constraint equations.  

Consider a simple model of a tensile bar with quadratic cross section, A0, as an assembly of 
three elastic continuum elements of length L0 subjected to a total uniform elongation of ∆L 
which is symmetrically applied as displacements, 

 upper lower 2

L
u u

∆= − =  (14a) 

at the upper and the lower surface, respectively, see Fig. 3.6 (a). Stresses are uniform and 
identical for all elements, 
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 (1) (2) (3)
0

0

1

3

L
E EA

L

∆σ σ σ σ ε= = = = =  , (15a) 

and the reactions forces at the four nodes at the top and the bottom surface are 

 top bottom
0 0

0

1 1

4 12i i

L
F F A EA

L

∆σ= = =  . (16a) 

Now, one might expect that the same result can be obtained by considering just two elements 
and inserting a symmetry plane in the centre of element (2), introducing a constraint equation, 

 bottom midu u= −  , (14b) 

and applying top 2u L∆=  as before, see Fig. 3.6 (b). The corresponding kinematics supposed 

to be realised is shown in Fig. 3.6 (b1), and the results for the stresses to be the same as 
above.  

However, the FE analysis yields stresses in the two elements that are not equal anymore, 

 (1) (2)
0

0

2
2

5

L
EA

L

∆σ σ= =  , (15b) 

and nodal forces at the top and the bottom are different, apparently violating overall 
equilibrium, 

 top bottom (1)
0 0

0

1 1
2

4 10i i

L
F F A EA

L

∆σ= = =  . (16b) 

The kinematics of the structure is not the expected one of Fig. 3.6 (b1) but that of (b2) with 

 mid top 1 2 top

1 4
, 2

5 5
u u L L u∆ ∆= = =  (14c) 

and constraint forces are applied as external forces,  

 mid top bottom1

2i i iF F F= =  , (16c) 

see Fig. 3.6 (c), which “are not included in reaction force output” [10].  

This finally explains why the cohesive tractions in the symmetry model according to 
Fig. 3.4 (c) are only half of the “real” ones (apparently violating CAUCHY’s section principle), 
and hence σc/2 has to be provided as input. 
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4. Simulation examples  

4.1. Ductile crack extension in a centre-cracked panel (plane stress and 3D analysis) 

Geometry:  width  2W = 300 mm 
 initial crack length  2a = 60 mm 
 thickness  B = 2.9 mm 
 length  2L = 1.5·2 W = 450 mm 
 
Material: Al 5083 
 YOUNG’s modulus  E = 70300 MPa 
 Poisson’s ratio  ν = 0.3 
 0.2% proof stress  Rp0.2 = 242 MPa 
 
Respective tests have been performed at GKSS Research Centre, 
Geesthacht, Germany, see SCHEIDER et al. [11]. 

 

The true stress-strain curve, σ(εp), required as input for ABAQUS has been determined from 
tensile test data of a flat bar with rectangular cross section, width W0 = 8.01 mm, thickness 
B0 = 2.9 mm, measuring length L0 = 30 mm. As the test data end at a plastic strain value of 
εp = 0.12 and much higher values are to be expected at the crack tip of the M(T) specimen, the 
stress strain curve has been fitted and extrapolated by a power law, see Fig. 4.1.1. Note that 
Rp0.2 = 242 MPa whereas a yield limit of R0 = σ(εp=0) = 200 MPa is used as input for ABAQUS. 

(a)  (b)   

(c)   (d)    

Figure 4.1.1:  Deriving a uniaxial stress-strain curve as input for ABAQUS from test data:  
 (a) Force vs. elongation of tensile test, (b) nominal and true stresses vs. linear 

and logarithmic strain, respectively, (c) fitting of σ(εp) by a power law, (d) 
ABAQUS input.  
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The User-Element and the cohesive law of SCHEIDER [5, 8] are employed, see Fig. 4.1.2. 

cohesive strength  σc = 2.31 Rp0.2 = 560 MPa (2D),  

   σc = 2.64 Rp0.2 = 640 MPa (3D) 

critical separation δc = 0.024mm 

separation energy  Γc = 9.86 kJ/m2 (2D), 11.26 kJ/m2 (3D) 

shape parameters δ1 = 0.05 δc , δ2 = 0.5 δc 

Figure 4.1.2:  Cohesive law 
 

Whereas the uniaxial stress-strain curve can be directly deduced from tensile test data, the 
identification of cohesive parameters is an inverse process of fitting simulations to the data of 
fracture tests like load vs. displacement records or R-curves [12]. The cohesive parameters 
applied in 2D have been determined by SCHEIDER et al. [11]. The shape parameters may be 
taken more or less identical for all ductile metals. Whereas δ1 should be as small as 
(numerically) possible in order to endow the cohesive element with a high initial stiffness, 
δ2 = 0.5 δc proved successful for aluminium alloys as well as for steels. 

A quarter model exploiting the twofold symmetry of the M(T) specimen is used in 2D and 1/8 
model (threefold symmetry) in 3D. Respective boundary conditions are applied along the x-
and y-axis in 2D and in the {zx}-, { yz}- and {xy}-plane in 3D as described by eqs. (1), (6). 
The 2D mesh design is shown in Fig 4.1.3. Cohesive elements are placed along the symmetry 
line as in Fig. 1.3 (a). Both models (b) and (c) of Fig. 3.4 have been used for establishing 
symmetry conditions in 2D. 

For the2D plane stress analysis, the option  

*THICKNESS DEPENDENCE  

has to be used [5]. This keyword assigns the plane cohesive elements to be thickness 
dependent. Since the thickness is determined from the adjacent continuum elements, the 
keyword  

*ELEMENT MAP  

is required to define the connection between the cohesive elements and the respective adjacent 
continuum elements.  

 

Figure 4.1.3:  FE mesh of the M(T) showing mesh refinement at the crack ligament, element 
size 0.125 mm. 
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The simulation is run displacement controlled, i.e. a uniform displacement, u2, is applied at 
the upper surface and the total force, F, is calculated from the respective reaction forces, RF2, 

 

( )
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( )
2

2 2

4 3

n

n

n

n

RF D

F
RF D


= 



∑

∑
 . (17) 

Fig. 4.1.4 shows comparisons between test and 2D simulation results in terms of force vs. 
load-point displacement, VLL, and CTOD, δ5, [13] vs. crack extension. Test results are well 
matched by the simulations. Both realisations of symmetry according to Fig. 3.4 (b), based on 
boundary conditions with delta_N = δc/2, and Fig. 3.4 (c), based on constraint equations 
with traction_N = σc/2, yield practically identical results, demonstrating that they are 
equivalent. 

The force vs. load-point displacement curves differ for the two tests, whereas no significant 
difference exists for the respective R-curves. The former is due to the buckling behaviour of 
the two specimens: M(T) 2.1.8 was equipped with an anti-buckling device whereas 
M(T) 1.1.3 was not, which affects the global but not the local behaviour in terms of δ5(∆a). 
The onset of mechanical instability at maximum force is a process, which is sensitive to 
imperfections in real testing as well as in the simulations (see also the results of tensile tests in 
Fig. 4.2.1 (a), below). Parameter identification should hence preferably be based on test 
records of local quantities, particularly R-curves of crack extension. 

  

(a) (b) 

Figure 4.1.4:  Comparison between results of tests and simulations (2D plane stress): (a) load, 
F, vs. load-point displacement, VLL; (b) R-curve: crack tip opening 
displacement (CTOD), δ5, vs. crack extension, ∆a; blue curve: symmetry 
conditions according to Fig. 3.4 (b), red curve: Fig. 3.4 (c). 

  
(a) (b) 

Figure 4.1.5:  Comparison between results of tests and simulations (2D plane stress and 3D):  
 (a) load, F, vs. load-point displacement, VLL; (b) R-curve: crack tip opening 

displacement (CTOD), δ5, vs. crack extension, ∆a; 2D: red curve, 3D: blue 
curve. 
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The cohesive parameters obtained for a 2D plane
parameters suited for a 3D model [14]. Even if the 
by the assumption of a plane stress state, the 
triaxiality is higher in the centre than at the surface. In the present example, a cohesive 
strength of σc = 2.64 Rp0.2 = 640 MPa yielded a perfect coincidence between the 2D and the 
3D (1/8) model, Fig. 4.1.5. 

Fig. 4.1.6 shows the “tunnelling” or “thumb
with respect to the {x,y} plane, the depicted zoom of 
crack plane. The colours indicate

Figure 4.1.6:  3D FE model of the M(T) specimen with 

 

4.2. Ductile crack extension in a compact specimen (plane strain analysis) 

Geometry:  width  
 initial crack length 
 net thickness  
  (20% side grooved)
 
Material: 26NiCrMoV115
 YOUNG’s modulus 
 Poisson’s ratio 
 0.2% proof stress 

The true stress-strain curve, σ(
a round bar of diameter d0 =
beyond uniform elongation has 
yield limit of R0 = σ(εp=0) = 650 

The User-Element and the cohesive law of 
employed again. The cohesive parameters have been varied in order to fit the experimental 
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The cohesive parameters obtained for a 2D plane-stress model will in general differ from the 
parameters suited for a 3D model [14]. Even if the global response of the structure is well met 
by the assumption of a plane stress state, the local stress state varies over the thickness and 
triaxiality is higher in the centre than at the surface. In the present example, a cohesive 

640 MPa yielded a perfect coincidence between the 2D and the 

shows the “tunnelling” or “thumb-nail” shape of the crack front. Due to symmetry 
} plane, the depicted zoom of the FE mesh represents one half of the 

The colours indicate maximum principle stress. 

3D FE model of the M(T) specimen with zoomed view of the {

uctile crack extension in a compact specimen (plane strain analysis) 

W =  50 mm  
initial crack length  a =  33.2 mm 

 Bn =  20 mm 
(20% side grooved) 

26NiCrMoV115 
’s modulus  E = 204400 MPa 

Poisson’s ratio  ν = 0.3 
0.2% proof stress  Rp0.2 =  709 MPa 

(εp),has been determined from data of a standard tensile test with 
= 6 mm, measuring length L0 = 30 mm. The stress
has been extrapolated based on a power law fit, see Fig.
650 MPa is used as input for ABAQUS. 

Element and the cohesive law of SCHEIDER [5, 8] as shown in 
employed again. The cohesive parameters have been varied in order to fit the experimental 
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stress model will in general differ from the 
response of the structure is well met 

stress state varies over the thickness and 
triaxiality is higher in the centre than at the surface. In the present example, a cohesive 

640 MPa yielded a perfect coincidence between the 2D and the 

nail” shape of the crack front. Due to symmetry 
represents one half of the 

 

view of the {x,z} plane. 

uctile crack extension in a compact specimen (plane strain analysis)  

 

standard tensile test with 
The stress-strain curve 

fit, see Fig. 4.2.1. A 

[5, 8] as shown in Fig. 4.1.2 are 
employed again. The cohesive parameters have been varied in order to fit the experimental 



 
Report_CM_PoliMi_v3, wbrocks, 23.11.2013 - 18 - 

 

F(VLL) and VLL(∆a) data7. Simulations for three selected parameter sets as shown in the 
following Table are presented and discussed below. 

(a)  (b)  

(c)  (d)  

Figure 4.2.1:  Deriving a uniaxial stress-strain curve as input for ABAQUS from test data:  
 (a) Nominal stress, F/A0, vs. linear strain, ∆L/L0, of tensile tests, (b) nominal 

and true stresses vs. linear and logarithmic strain, respectively, up to uniform 
elongation, (c) fitting of σ(εp) by a power law, (d) ABAQUS input.  

  A B C 

cohesive strength σc  MPa 2127 2836 3049 

critical separation δc  mm 0.0948 0.00974 0.00974 

separation energy Γc  kJ/m2 130 23.3 22.1 

shape parameter δ1/ δc - 0.02 0.02 0.02 

shape parameter δ2/ δc - 0.3 0.7 0.5 

Note that the cohesive strength in the plane-strain simulations, 3 	 '/ �0�.�⁄ 	 4.3, is 
significantly higher than in the plane-stress case above. 

A half model of the C(T) specimen is used, and respective boundary conditions are applied 
along the x-axis. The mesh design is shown in Fig 4.2.2. The simulation is run displacement 
controlled, i.e. a displacement u2 is applied to the node in the centre of the load transmission 
and the respective reaction force represents the applied external force, F. In order to avoid 

                                                           
7 According to ASTM 1820 [15], the data can be easily converted into a JR curve showing the same 

qualitative behaviour as the VL(∆a) curve, which has been chosen here as it represents 
directly measured data. 
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localisation of plastic deformations in this point, the surrounding domain is assumed as 
elastic. 

 
 

Figure 4.2.2:  FE mesh of the C(T) with zoom of the crack ligament, element size 0.125 mm.  

An apparently “perfect” coincidence between experimental and numerical data of the F(VLL) 
curve is achieved for parameter set A, see Fig. 4.2.3 (a). The respective initial resistance to 
crack extension, which is dominated by δc or Γc

8, is significantly overestimated, however, as 
shown in Fig. 4.2.3 (b). The lesson to be learned is that any coincidence with experimental 
data of the global load vs. displacement is not a unique indicator that the cohesive parameters 
have been identified correctly. One has to make sure that crack extension is predicted 
adequately, e.g. based on a J or CTOD R-curve. 

  

(a) (b) 

Figure 4.2.3:  Comparison between test results and simulations for parameter set A:  
 (a) load, F, vs. load-line (crack opening) displacement, VLL;  
 (b) load-line displacement, VLL, vs. crack extension, ∆a. 

Reducing the separation energy, Γc, requires increase of the cohesive strength σc. Two 
parameter sets, B and C, with σc = 4 Rp0.2 and 4.3 Rp0.2, respectively, have been found with 
approximately the same effect on the macroscopic behaviour, see Figs. 4.2.4 and 4.2.5. Both 
yield some underestimation of the maximum load by approximately 7%. Apparently, 
initiation and subsequent crack extension cannot be met simultaneously. Whether this is an 
effect of the 2D model has to be studied on a 3D model. Applied to a component, the 
parameter sets B and C are expected to yield conservative predictions of the ultimate strength. 

 

                                                           
8 Note that  &/ 	 34, where Ji denotes the initiation of crack extension, not to be mistaken with JIC 

according to ASTM 1820 [15]. 
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(a) (b) 

Figure 4.2.4:  Comparison between test results and simulations for parameter set B:  
 (a) load, F, vs. load-line displacement, VLL; (b) load-line displacement, VLL, vs. 

crack extension, ∆a. 

  

(a) (b) 

Figure 4.2.5:  Comparison between test results and simulations for parameter set C:  
 (a) load, F, vs. load-line displacement, VLL; (b) load-line displacement, VLL, vs. 

crack extension, ∆a. 
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