
Palestine Polytechnic University

College of Engineering and Technology

Department of Electrical Engineering

Class Notes for The Course

Microcontroller

Prepared by

Dr. Saleh Al-Takrouri

Based on the devices

PIC18F4550 and Arduino

Spring 2018



Course Outline

Course Name: Microcontroller
Course Number: 5591
Credits: 3 Credit Hours
Semester: Second Semester 2017\2018

Times and Locations: Mon \Wed 09:30 to 10:45 B416

Instructor: Dr. Saleh ALTAKROURI
Office: B508

Office Hours:
(provisional)

Sun 10:00 − 12:00
Mon 11:00 − 12:30
Tue 10:00 − 12:00
Wed 11:00 − 12:30
Thu 10:00 − 12:00

Textbook: • PIC18F2455/2550/4455/4550 Data Sheet,
Microchip Technology Inc, 2009.

Additional Materials: • PIC Microcontroller and Embedded Systems Using
Assembly and C for PIC18. M.A. Mazidi et al. 2008.
• PIC Microcontroller: An Introduction to Software and
Hardware Interfacing. H.W. Huang. 2005.
• Arduino in Action, M. Evans, J. Noble and J.
Hochenbaum, 2013.
•Arduino: A Quick-Start Guide, Maik Schmidt, 2011.

Prerequisites: 4694 Digital System Design
5587 Digital Systems

Course Description:
This course introduces the student to the hardware and software of microcontrollers.
The microcontrollers used in this course are the PIC18 and the Arduino Uno. The C
language is used for programming. The student will study and learn how to utilize
the various components included in each of these devices.

i



Course Outline ii

Course Topics:

Topic Hours
Computer Architecture (Overview) 3
The PIC18 Microcontroller 3
Digital I/O, Delay function 7
ADC 4
Oscillator 3
Timer 0, Timer 2 5
CCP Module (PWM) 4
Interrupts 5
Arduino Microcontroller 8

Grading System:

First Exam: 25%
Second Exam: 25%
Final Exam: 40%
Quizes and Classwork: 10%



Contents

Course Outline i

Contents iii

1 Introduction to Microcontrollers 1
1.1 Computer Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 PIC18F4550 Microcontroller . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 PIC18F4550 Memory Organization . . . . . . . . . . . . . . . . . . . 5
1.4 PIC18F4550 Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Digital Input/Output 10
2.1 Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 First Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 The Delay Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Addressing I/O Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Masking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6 Electrical Control Circuits . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Analog-to-Digital Converter Module 25
3.1 ADC Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Oscillator Configuration 32
4.1 Clock Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Oscillator Configuration and Control . . . . . . . . . . . . . . . . . . 35

5 Timers 40
5.1 Timers in PIC18F4550 . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2 Timer 0 Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3 Timer 2 Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.4 Application: The On-Delay Timer . . . . . . . . . . . . . . . . . . . . 47

6 Pulse Width Modulation 49
6.1 The CCP Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2 CCP2 Module in PWM Mode . . . . . . . . . . . . . . . . . . . . . . . 50

iii



CONTENTS iv

7 Interrupts 55
7.1 Interrupt Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.2 General Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.3 INTx Pin Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.4 Timers, CCP2, AD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.5 Port B Interrupt-on-Change . . . . . . . . . . . . . . . . . . . . . . . 57
7.6 Interrupt Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

8 Arduino 60
8.1 Arduino Uno . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
8.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62



Chapter 1

Introduction to Microcontrollers

References:

Datasheet : 1.0 Device Overview.
5.0 Memory Organization.

Mazidi et al. : Chapter 0 Introduction to Computing.
Chapter 1 The PIC Microcontrollers History and Features.

Huang : Chapter 1 Introduction to the PIC18 Microcontroller.

1.1 Computer Architecture

• Digital Computer: a programmable machine (made up of hardware and
software) that process binary data. The hardware of the computer consists of:
CPU, memory, inputs, outputs.

• Central Processing Unit (CPU): the group of circuits that processes data
and provides control signals and timing. The CPU consists of at least: ALU,
CU, registers.

– Arithmetic/Logic Unit (ALU): the group of circuits that performs
arithmetic and logic operations.

– Control Unit (CU): the group of circuits that decodes the instructions,
provides timing and control signals to all operations in the computer, and
controls data flow.

– Register: A storage location inside the CPU used to hold data and/or
a memory address during the execution of an instruction.

• Memory: a medium that stores binary information. It consists of a group of
registers arranged in sequence to store data.

– Read Only Memory (ROM): a memory that stores binary information
permanently.

1



1.1 Computer Architecture 2

– Random Access Memory (RAM): a memory that stores binary informa-
tion during the operation of the computer.

• Input: a device that transfers information from outside world to the computer.

• Output: a device that transfers information from the computer to outside
world.

Microprocessor:
a semiconductor device that includes the ALU, CU, and register arrays on a single
chip.

Microcontroller:
a device that includes a microprocessor, memory, and I/O signal lines on a single
chip. It may also contain:

• Analog to Digital converters.

• Digital to Analog converters.

• Timers.

• Pulse Width Modulator (PWM).

Binary Numbers:

• Bit: a binary digit, 0 or 1.

• Byte: a group of eight bits.

• Word: a group of bits the computer recognizes and processes at a time.

Example: A 16-bit microprocessor has a word length of 2 bytes.

Bus:
a group of lines used to transfer bits between the microprocessor and other compo-
nents of the computer system.

• Address Bus: a unidirectional bus used to send a memory address or a device
address from the microprocessor to the memory or the peripheral.

• Data Bas: a bidirectional bus used to transfer data between the micropro-
cessor and peripheral or memory.



1.1 Computer Architecture 3

• Control Bus: signal lines that are generated by the microprocessor to provide
timing for various operations.

Microprocessor-based system Microprocessing Unit (MPU) buses
with bus architecture

Example: Interfacing a 4-byte memory.



1.2 PIC18F4550 Microcontroller 4

Software:

• Instruction: a command in binary that is recognized and executed by the
computer to accomplish a task. It can be designed with one or multiple words.

• Machine Language: the binary medium of communication with a computer
through a designed set of instructions specific to each computer.

• Mnemonic: a combination of letters to suggest the operation of an instruc-
tion.

• Assembly Language: a medium of communication with a computer in which
programs are written in mnemonics, specific to a given computer.

Example (8085 MPU):
Machine Language: 0 0 1 1 1 1 0 0 (3CH) 1 0 0 0 0 0 0 0 (80H)
Assembly Language: INR A ADD B

Instruction: increment the contents of add the contents of register B
register A by 1 to the contents of register A

• Machine language and assembly language are low-level languages.

• Assembler: a computer program that translate an assembly language pro-
gram from mnemonics to the binary machine code of a computer.

• High-Level Language: programs are written in English-like words and can
be executed using a compiler or interpreter.

• Compiler: a program that reads a given program written in English-like
words (source code) in its entirety and then translates the program into ma-
chine language (object code).

• Interpreter: a program that translates and executes one statement at a time
from a source code.

1.2 PIC18F4550 Microcontroller

• PIC: Peripheral Interface Controller.

• Made by Microchip Technology Inc.

• 8-bit device.



1.3 PIC18F4550 Memory Organization 5

PIC18F4550 Main Features:

• C Compiler Optimized Architecture.

• Pin count: 40 pins.

• I/O ports: 34 pins (A, B, C, D, E).

• Operating frequency: up to 48 MHz.

• Program memory: 32 kB (16348 Instructions).

• Data memory: 2 kB.

• Interrupts: 20 sources, 2 priority levels.

• Instructions: 83.

• Modules: ADC, timers, CCP, serial and parallel ports, USB, comparators.

1.3 PIC18F4550 Memory Organization

• PIC18 assigns data and program to different memory spaces and provides
separate buses to them so that both are available for access at the same time.

• Data memory: 12-bit register address, 8-bit data.
Note: 212 = 4096 = 4 kB not all used.
Note: PIC18 is 8-bit microcontroller.

• Program memory: 21-bit program address, 16-bit instruction.
Note: 221 = 2 MB not all included.
Note: 1 instruction = 2 bytes.

• Data EEPROM (not used in this course).

The PIC18 Memory Spaces



1.3 PIC18F4550 Memory Organization 6

Data Memory:

• Each location is referred to as ”register” or ”file register”.

• 12-bit register address ⇒ up to 212 = 4096 bytes (000H − FFFH).

• Data memory space is divided into 16 banks (0 to 15), each bank contains 256
bytes.

• Bank 8 to bank 14 are not used.

• Data memory contains:

– General Purpose Registers (GPR): a group of RAM locations in the
data memory used to store data. Addressing starts at 000H and increases
until 7FFH .

– Special Function Registers (SFR): a group of RAM locations in the
data memory dedicated to specific functions such as ALU status, timers,
I/O ports, etc. Addressing starts at FFFH and decreases until F60H (160
registers).



1.3 PIC18F4550 Memory Organization 7

Note: To access specific bits in a SFR register, write ”register name” then ”bits.”
then ”bit name” (e.g. PORTAbits.RA2, ADCON0bits.GO).



1.4 PIC18F4550 Pins 8

1.4 PIC18F4550 Pins

• Pins 11 and 32 (VDD) are connected to the power supply (+5 V DC).

• Pins 12 and 31 (VSS) are connected to the ground (0 V DC).

• Pin 1 (MCLR) is connected to +5 V using pull-up resistor.



1.4 PIC18F4550 Pins 9

Pull-up and pull-down resistors:

• PIC18F4550 has five I/O ports (34 pins).

• Pin name format RX# where X = A − E, # = 0 − 7.

• Each I/O pin is multiplexed with up to six functions.

• Example: Pin 35:

1. RB2: Digital output port B bit 2.

2. RB2: Digital input port B bit 2.

3. AN8: A/D input channel 8.

4. INT2: External Interrupt 2 input.

5. VMO: External USB transceiver VMO data output.

• In general, when a peripheral is enabled, the associated pins may not be used
as general purpose I/O pins.



Chapter 2

Digital Input/Output

References:

Datasheet : 10.0 I/O Ports.

Mazidi et al. : Chapter 7 PIC Programing in C.

Huang : Chapter 7 Parallel Ports.

2.1 Ports

• The PIC18F4550 has 5 digital input/output ports:

1. Port A (7 pins): , 14, 7, 6, 5, 4, 3 , 2.

2. Port B (8 pins): 40, 39, 38, 37, 36, 35, 34, 33.

3. Port C (7 pins): 26, 25, 24, 23, , 17, 16, 15.

4. Port D (8 pins): 30, 29, 28, 27, 22, 21, 20, 19.

5. Port E (4 pins): , , , , 1, 10, 9, 8.

• Each port has three registers for its operation:

1. TRIS register: data direction register (0=output, 1=input).

2. PORT register: reads the levels on the pins of the device (preferred for
input).

3. LAT register: output latch (preferred for output).

• Unimplemented bits are read as 0.

10



2.1 Ports 11

Port A

Register PORTA
Bit: bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

Name: − RA6 RA5 RA4 RA3 RA2 RA1 RA0

• To use RA0, RA1, RA2, RA3, RA5 the analog inputs should be disabled
(ADCON1 = 0x0F).

• To use RA2, RA4, RA5 the comparator module should be disabled
(CMCON = 0x07).

• To use RA6 the oscillator should be configured properly.

• On a Power-on Reset, RA5 and RA3:RA0 are configured as analog inputs;
RA4 is configured as a digital input; comparator disabled.

Register TRISA
Bit: bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

Name: − TRISA6 TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0

Register LATA
Bit: bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

Name: − LATA6 LATA5 LATA4 LATA3 LATA2 LATA1 LATA0

Port B

Register PORTB
Bit: bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

Name: RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0

• To use RB0, RB1, RB2, RB3, RB4 the analog inputs should be disabled
(ADCON1 = 0x0F).

• On a Power-on Reset, RB4:RB0 are configured as analog inputs; RB7:RB5 are
configured as digital inputs.

Register TRISB
Bit: bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

Name: TRISB7 TRISB6 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0

Register LATB
Bit: bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

Name: LATB7 LATB6 LATB5 LATB4 LATB3 LATB2 LATB1 LATB0



2.2 First Program 12

Port C

Register PORTC
Bit: bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

Name: RC7 RC6 RC5 RC4 − RC2 RC1 RC0

• RC4, RC5 can be used as digital inputs only (not outputs).

Register TRISC
Bit: bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

Name: TRISC7 TRISC6 − − − TRISC2 TRISC1 TRISC0

RegisterLATC
Bit: bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

Name: LATC7 LATC6 − − − LATC2 LATC1 LATC0

Port D

Register PORTD
Bit: bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

Name: RD7 RD6 RD5 RD4 RD3 RD2 RD1 RD0

Register TRISD
Bit: bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

Name: TRISD7 TRISD6 TRISD5 TRISD4 TRISD3 TRISD2 TRISD1 TRISD0

Register LATD
Bit: bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

Name: LATD7 LATD6 LATD5 LATD4 LATD3 LATD2 LATD1 LATD0

2.2 First Program

Example: Write a program to read the value on port B and display this value on
port D.

#include <xc.h>

void main() {

TRISB = 0xFF;

TRISD = 0x00;

ADCON1 = 0x0F;

while(1) {

LATD = PORTB;

}

}



2.3 The Delay Function 13

• Eight switches are connected to the pins associated with Port B.

• Eight LEDs are connected to the pins associated with Port D.

• xc.h is the header file for the MPLAB XC8 compiler.

• main() function has two parts: setup and loop.

• The setup section:

– All the pins of port B are defined as inputs.

– All the pins of port D are defined as outputs.

– The analog inputs on port B are turned off.

• The infinite loop section:

– The binary value on port B is read.

– The binary value is written to port D.

– The The read/write process continues infinitely.

Review of Logic Operations:
x = 0x0F 0 0 0 0 1 1 1 1

y = 0xAA 1 0 1 0 1 0 1 0

AND x && y = 1 0 0 0 0 0 0 0 1

Bitwise AND x & y = 0x0A 0 0 0 0 1 0 1 0

OR x || y = 1 0 0 0 0 0 0 0 1

Bitwise OR x | y = 0xAF 1 0 1 0 1 1 1 1

NOT !x = 0 0 0 0 0 0 0 0 0

Bitwise NOT ∼x = 0xF0 1 1 1 1 0 0 0 0

Bitwise XOR xˆy = 0xA5 1 0 1 0 0 1 0 1

Rotate Right x >> 3 = 0x01 0 0 0 0 0 0 0 1

Rotate Left x << 3 = 0x78 0 1 1 1 1 0 0 0

2.3 The Delay Function

Example: Write a program to continuously count from 0x00 to 0xFF and display
the output on port D. Wait 3 seconds between counts.
(Assume the oscillator frequency FOSC = 20 MHz)

#include <xc.h>

#define _XTAL_FREQ 20000000

void main() {

TRISD = 0x00;

LATD = 0x00;



2.3 The Delay Function 14

while(1) {

LATD = PORTD + 1;

__delay_ms(3000);

}

}

Note: The time delay that can be provided by the function delay ms() is limited
by the value of the microcontroller clock frequency FOSC.
(Examples: 48 MHz → 4205 ms, 20 MHz → 10092 ms, 1 MHz → 201852 ms)

Example: Write a program to send the ASCII codes for the characters 0, 1, 2, A,
B and C to port D. Wait 6 seconds between counts. (Assume FOSC = 48 MHz)

#include <xc.h>

#define _XTAL_FREQ 48000000

void main() {

unsigned char mycode[] = "012ABC";

unsigned char k,x;

TRISD = 0x00;

while(1) {

for(k=0; k<6; k++) {

LATD = mycode[k];

for(x=0; x<3; x++) __delay_ms(2000);

}

}

}

Example: Find the output of the following program.

#include <xc.h>

#define _XTAL_FREQ 20000000

void main() {

unsigned char x;

TRISC = 0;

TRISD = 0;

LATC = 0;

LATD = 0;

for(;;) {

LATC = PORTC + 1;

LATD = PORTD + 1;

for(x=0; x<5; x++) __delay_ms(3000);

}

}



2.4 Addressing I/O Bits 15

• The count on port D will be from 0 to 255.

• The count on port C will be from 0 to 7 (RC3 is not implemented).

• The time delay between counts is 15 seconds.

Problem: Write a program to toggle all the bits of port B continuously. Wait 15
seconds between toggles and assume the oscillator frequency is 24 MHz.
(01010101 ⇐⇒ 10101010)

Problem: Write an XC8 program to perform the following tasks:

• The program continuously counts from 1 to 7 and displays the number on
Port A.

• Each number is blinked according to its value (001 is blinked once, 010 is
blinked twice, 011 is blinked three times, ...).

• A blink is 1 second on then 1 second off.

• Assume the oscillator frequency FOSC = 1 MHz.

2.4 Addressing I/O Bits

Example: A push-button and a LED are connected to pins 20 and 22 respectively.
Write a program such that the LED is on only when the push-button is pressed
down.

#include <xc.h>

void main() {

TRISDbits.TRISD1 = 1; // pin 20 = RD1 input

TRISDbits.TRISD3 = 0; // pin 22 = RD3 output

while(1)

LATDbits.LATD3 = PORTDbits.RD1;

}

Example: Write a program to read the value on Port D. If the value is zero, then
turn on the LED on pin RA2. Otherwise, turn on the LED on pin RA5.

#include <xc.h>

void main() {

TRISD = 0xFF;

TRISAbits.TRISA2 = 0;

TRISAbits.TRISD5 = 0;

ADCON1 = 0x0F;

COMCON = 0x07;



2.5 Masking 16

while(1) {

if(PORTD==0) {

LATAbits.LATA2 = 1;

LATAbits.LATA5 = 0;

}

else {

LATAbits.LATA2 = 0;

LATAbits.LATA5 = 1;

}

}

}

Problem: Write a program to continuously read the value on Port B. If the value
is less than or equal to 100, then turn on 2 LEDs on Port C. If the value is more
than 100 and less than 200, then turn on 4 LEDs on Port C. Otherwise, turn on 5
LEDs on Port C.

2.5 Masking

Masking is used to change the values of specific bits in a register or variable without
affecting the other bits.
To reset a bit value to 0, use the bitwise AND operation.
To set a bit value to 1, use the bitwise OR operation.

Example: Let the value of port B to be 0x57. Reset the bits RB2 and RB4.
Bit number 7 6 5 4 3 2 1 0

PORTB 0 1 0 1 0 1 1 1 0x57

Mask 1 1 1 0 1 0 1 1 0xEB

LATB = PORTB & 0xEB 0 1 0 0 0 0 1 1 0x43

Example: Let the value of port D to be 0xC1. Set the bits RD3 and RD5.
Bit number 7 6 5 4 3 2 1 0

PORTD 1 1 0 0 0 0 0 1 0xC1

Mask 0 0 1 0 1 0 0 0 0x28

LATD = PORTD | 0x28 1 1 1 0 1 0 0 1 0xE9

Example: Write a program to add or multiply two four-bit hexadecimal digits. Use
port B for input, port D for output and RC0 for selecting the operation (0: add, 1:
multiply).

#include <xc.h>

#define OP PORTCbits.RC0

void main() {

unsigned char N1, N2;



2.5 Masking 17

TRISB = 0xFF;

TRISD = 0;

TRISC = 1;

ADCON1 = 0x0F;

while(1) {

N1 = PORTB & 0x0F;

N2 = PORTB & 0xF0;

N2 = N2 >> 4;

if (OP==0)

LATD = N1 + N2;

else

LATD = N1 * N2;

}

}

Problem: Write a program to continuously read three 4-bit numbers and write a
3-bit result. If any input number is larger than 8, then the output is 0. Otherwise
the output is the maximum input number. Only use ports B and D.

Problem: Write a program to generate the following signal on RB1.

Where t is a 4-bit number entered by the user using pins RB2 (least significant) to
RB5 (most significant).



2.6 Electrical Control Circuits 18

2.6 Electrical Control Circuits
Logic gates and equivalent electrical switching circuits:

Example: Write a program to operate a motor using start/stop push-buttons.
The traditional control circuit for the motor using relays is as shown in the figure
below.

Inputs/Outputs:

• Stop push-button (S0) connected to pin RD0 (input).

• Start push-button (S1) connected to pin RD1 (input).

• Relay operating the motor (M) connected to pin RD7 (output).

#include <xc.h>

#define S0 PORTDbits.RD0



2.6 Electrical Control Circuits 19

#define S1 PORTDbits.RD1

#define M LATDbits.LATD7

void main() {

TRISD = 0x03;

M = 0;

while(1)

M = !S0 && (S1 || M);

}

Problem: A machine has three motors and three push-buttons. The machine
operates as follows:

• Two push-buttons (S1, S0) are used to start/stop the motor (M1).

• Motor (M2) is on only when the motor (M1) is on and the push-button (S2)
is pressed down.

• Motor (M3) is on only when the motor (M1) is on and the motor (M2) is off.

Draw the relay control circuit to control this machine, then write the XC8 program
for this machine.

Example: A PIC18 based machine has two motors and operated as follows:

• Each motor has a start push-button.

• One stop push-button turns off the motors.

• The second motor can be turned on only when the first motor is on.

• When the second motor is turned on, the first motor is turned off.

Write a program to control the machine. Use K-maps in your solution.
S0 M2 S1 M1 M1

0 0 0 0 0

0 0 0 1 1

0 0 1 0 1

0 0 1 1 1

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 X X X 0

S0 S2 M1 M2 M2

0 0 0 0 0

0 0 0 1 1

0 0 1 0 0

0 0 1 1 1

0 1 0 0 0

0 1 0 1 1

0 1 1 0 1

0 1 1 1 1

1 X X X 0



2.6 Electrical Control Circuits 20

S0M2\S1M1
0 1 1 1

0 0 0 0

0 0 0 0

0 0 0 0

S0S2\M1M2
0 1 1 0

0 1 1 1

0 0 0 0

0 0 0 0

M1 = S̄0 M̄1 (S1 + M1) M2 = S̄0 (S2 M1 + M2)

#include <xc.h>

#define S0 PORTDbits.RD0

#define S1 PORTDbits.RD1

#define S2 PORTDbits.RD2

#define M1 LATDbits.LATD6

#define M2 LATDbits.LATD7

void main() {

TRISD = 0b00000111;

M1 = 0;

M2 = 0;

while(1) {

M1 = (!S0) && (!M2) && (S1 || M1);

M2 = (!S0) && ((S2 && M1) || M2);

}

}

Problem: A machine has two motors that operate as follows:

• Each motor has a start push-button and a stop push-button.

• Motor 2 can be turned on only while Motor 1 is running.

• If Motor 1 is off, Motor 2 turns off too.

Write an XC8 code to operate the machine. You must use a K-maps in your solution.

Edge Detection

Example: Write a program to use one push-button to turn on/off a LED. Use edge
detection in your solution.

#include <xc.h>



2.6 Electrical Control Circuits 21

#define S PORTDbits.RD0

#define L PORTDbits.RD1

void main() {

unsigned char S_old;

TRISDbits.TRISD0 = 1;

TRISDbits.TRISD1 = 0;

S_old = 0;

while(1) {

if(!S_old && S) L = !L;

S_old = S;

}

}

Program Blocking
In some cases, the execution of the program is temporarily blocked while a specific
condition is satisfied. Once the blocking condition is no longer valid, the execution
of the program continues.

Example: Write a program to use one push-button to turn on/off a LED. Use
program blocking in your solution.

#include <xc.h>

#define S PORTDbits.RD0

#define L PORTDbits.RD1

void main() {

TRISDbits.TRISD0 = 1;

TRISDbits.TRISD1 = 0;

while(1) {

if (S) {

L = !L;

while(S); // Program is blocked until S is released.

}

}

}

SET / RESET Programming

Priority for Reset:

if (Reset condition) var = 0;

else if (Set condition) var = 1;

Priority for Set:

if (Set condition) var = 1;

else if (Reset condition) var = 0;



2.6 Electrical Control Circuits 22

Example: A machine consists of two double-acting cylinders, four limit switches
and one push-button. The machine is operated as follows:

• The machine is turned on/off using the push-button (S).

• Each cycle begins with the cylinders at L1 and L3.

• Yo1 is turned on until the first cylinder reaches L2 then it stops.

• Yo2 is turned on until the second cylinder reaches L4 then it stops.

• Yi2 is turned on until the second cylinder returns to L3 then it stops.

• Yi1 is turned on until the first cylinder returns to L1 then it stops, then a new
cycle begins.

• When the machine is turned off, both cylinders are returned to L1 and L3.

SET/ON RESET/OFF

Yo1 M · L1 · L3 L2 + M̄

Yo2 M · L2 · L3 · x L4 + M̄

Yi2 M · L2 · L4 L3 + M̄

Yi1 M · L2 · L3 · x̄ L1 + M̄

x Yo2 Yi1

#include <xc.h>

#define Yo1 LATDbits.LATD0

#define Yo2 LATDbits.LATD1

#define Yi1 LATDbits.LATD2

#define Yi2 LATDbits.LATD3

#define L1 PORTDbits.RD4

#define L2 PORTDbits.RD5



2.6 Electrical Control Circuits 23

#define L3 PORTDbits.RD6

#define L4 PORTDbits.RD7

#define S PORTCbits.RC0

void main() {

unsigned char M, x, S_old;

TRISD = 0xF0;

TRISCbits.TRISC0 = 1;

LATD = 0;

M = 0;

x = 0;

S_old = 0;

while(1) {

if(!S_old && S) M=!M;

if (L2 || !M) Yo1 = 0;

else if(M && L1 && L3) Yo1 = 1;

if (L4 || !M) Yo2 = 0;

else if(M && L2 && L3 && !x) Yo2 = 1;

if (L3 || !M) Yi2 = 0;

else if(M && L2 && L4) Yi2 = 1;

if (L1 || !M) Yi1 = 0;

else if(M && L2 && L3 && x) Yi1 = 1;

if (Yi1) x = 0;

else if(Yo2) x = 1;

if (!M && (!L1 || !L3)) {

while(!L1) Yi1=1; Yi1=0;

while(!L3) Yi2=1; Yi2=0;

}

S_old = S;

}

}



2.6 Electrical Control Circuits 24

Problem: A security system consists of a smoke detector (SS), a motion sensor
(MS), one speaker and a control panel. The control panel has one light and six
push-buttons.

• The light (H) is on while the system is on.

• The speaker (A) is on while there is an alarm.

• A push-button (S1) turns on the system and a push-button (S0) turns off the
system.

• A push-button (M1) is used to enable motion sensing, a push-button (M0) is
used to disable motion sensing, and a push-button (MR) is used to reset the
alarm after motion is detected.

• The smoke detector turns on the alarm when there is smoke and stops the
alarm when the smoke is removed or the system is turned off.

• A push-button (T) is used to test the speaker.

Write an XC8 code for this system.

Problem: A traffic detection machine consists of two sensors and two arrow-shaped
lights. If a car passes from right to left, the left-arrow light is on until the car is
away from the sensors. If a car passes from left to right, the right-arrow light is on
until the car is away from the sensors. Write the XC8 code for this machine.
(a) Use the Set/Reset method with Edge Detection in the conditions.
(b) Use the Program Blocking method.



Chapter 3

Analog-to-Digital Converter
Module

References:

Datasheet : 21.0 10-Bit Analog-to-Digital Converter (A/D) Module.

Mazidi et al. : Chapter 13 ADC, DAC and Sensor Interfacing.

Huang : Chapter 12 Analog-to-Digital Converter.

3.1 ADC Module

• ADC module has 13 inputs to convert analog input signals to a 10-bit digital
number.

• 10-bit → 210 values = 1024 values.

• Input range: VREF(−) to VREF(+).

– VREF(−) ≡ 0x000 = 0

– VREF(+) ≡ 0x3FF = 210 − 1 = 1023

• V : input voltage in volts ≡ N : digital number

N = 1023
V − VREF(−)

VREF(+) − VREF(−)

V = N
VREF(+) − VREF(−)

1023
+ VREF(−)

• Resolution =
VREF(+) − VREF(−)

1023

25



3.1 ADC Module 26

Example: Let VREF(−) = 1 V and VREF(+) = 4 V.

N = 0 ≡ V = 1.00 V
N = 25 ≡ V = 1.07 V
N = 500 ≡ V = 2.47 V
N = 900 ≡ V = 3.64 V
N = 1023 ≡ V = 4.00 V

The ADC module has five registers:

• ADRESH: A/D Result High Register.

• ADRESL: A/D Result Low Register.

• ADCON0: A/D Control Register 0.

• ADCON1: A/D Control Register 1.

• ADCON2: A/D Control Register 2.

Acquisition Time and Conversion Time:

• The analog to digital conversion is performed in two steps: sampling and
conversion.

• Acquisition Time (TACQ): is the time needed to sample the analog input.
For simplicity assume TACQ ≥ 2.5µs.

• A/D Conversion Time (TAD): is the conversion time for each bit.
For simplicity assume TAD ≥ 0.8µs.

• TACQ is defined as multiples of TAD (how many TAD values to exceed 2.5µs).

• TAD is defined as multiples of TOSC (how many TOSC values to exceed 0.8µs).

• TOSC =
1

FOSC

is the oscillator period.

ADCON0 Register
bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
− − CHS3 CHS2 CHS1 CHS0 GO ADON

Channel Select
Reset Value: 00000000

• Channel Select: Select the analog channel input.
0000 = AN0 0101 = AN5 1001 = AN9
0001 = AN1 0110 = AN6 1010 = AN10
0010 = AN2 0111 = AN7 1011 = AN11
0011 = AN3 1000 = AN8 1100 = AN12
0100 = AN4



3.1 ADC Module 27

• GO: A/D conversion start/status bit.
0 : idle / conversion finished.
1 : start conversion / conversion in progress.

• ADON: ADC module on/off bit.
0 : module is disabled.
1 : module is enabled.

ADCON1 Register
bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
− − VCFG1 VCFG0 PCFG3 PCFG2 PCFG1 PCFG0

VREF(−) VREF(+) Analog/Digital Ports
Reset Value: 00000000

• VREF(−): Minimum analog input value.

0 : VREF(−) = VSS = 0V .
1 : VREF(−) = voltage on AN2 [pin 4, RA2].

• VREF(+): Maximum analog input value.

0 : VREF(+) = VDD = 5V .
1 : VREF(+) = voltage on AN3 [pin 5, RA3].

• Analog/Digital Ports: Configure I/O ports to be analog inputs or digital I/O.

A
N

12

A
N

11

A
N

10

A
N

9

A
N

8

A
N

7

A
N

6

A
N

5

A
N

4

A
N

3

A
N

2

A
N

1

A
N

0

0000 A A A A A A A A A A A A A
0001 A A A A A A A A A A A A A
0010 A A A A A A A A A A A A A
0011 D A A A A A A A A A A A A
0100 D D A A A A A A A A A A A
0101 D D D A A A A A A A A A A
0110 D D D D A A A A A A A A A
0111 D D D D D A A A A A A A A
1000 D D D D D D A A A A A A A
1001 D D D D D D D A A A A A A
1010 D D D D D D D D A A A A A
1011 D D D D D D D D D A A A A
1100 D D D D D D D D D D A A A
1101 D D D D D D D D D D D A A
1110 D D D D D D D D D D D D A
1111 D D D D D D D D D D D D D



3.1 ADC Module 28

ADCON2 Register
bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
ADFM − ACQT2 ACDT1 ACQT0 ADCS2 ADCS1 ADCS0

Result TACQ TAD

Reset Value: 00000000

• Result: How to store the 10-bit result in the 16-bit ADRES register pair.
0 : Left justification: |#|#|#|#|#|#|#|#| |#|#|0|0|0|0|0|0|

1 : Right justification: |0|0|0|0|0|0|#|#| |#|#|#|#|#|#|#|#|

• TACQ:
000 = 0 TAD 100 = 8 TAD

001 = 2 TAD 101 = 12 TAD

010 = 4 TAD 110 = 16 TAD

011 = 6 TAD 111 = 20 TAD

• TAD:
000 = 2 TOSC 100 = 4 TOSC

001 = 8 TOSC 101 = 16 TOSC

010 = 32 TOSC 110 = 64 TOSC

011 = internal 111 = internal

Example: A machine that fills cups with hot coffee and milk operates as follows:

• When the push-button (S) is pressed one cycle is executed to fill one cup.

1. The motor (M) is on until the cup is under the coffee tank at sensor (LC).

2. The motor (M) is off and the valve (VC) is opened for 3 seconds.

3. The motor (M) is on until the cup is under the milk tank at sensor (LM).

4. The motor (M) is off and the valve (VM) is opened for 5 seconds.

5. The motor (M) is on until the cup reaches sensor (LS) and the cycle ends.

• The heaters (HC) and (HM) are used to heat the coffee and milk respectively.

• The sensors (TC) and (TM) are used to measure the temperatures of the coffee
and milk respectively.



3.1 ADC Module 29

• The coffee temperature should be 70◦C ± 2◦C. The milk temperature should
be 60◦C ± 2◦C.

• The input range for the temperature sensors is 0− 5 V, and the output range
is 0− 100◦C.

• Assume FOSC = 20 MHz.

Inputs Outputs

S RD0 M RC0

LC RD1 VC RC1

LM RD2 VM RC2

LS RD3 HC RC6

TC AN8 [RB2] HM RC7

TM AN9 [RB3]

ADC Setup:

TOSC =
1

20 MHz
= 0.05 µs.

0.8 µs

0.05 µs
= 16 ⇒ TAD = 16 TOSC

2.5 µs

16× 0.05 µs
= 3.125 ⇒ TACQ = 4 TAD

ADCON0 (AN8)=
0 0 1 0 0 0 0 1
−− AN8 idle on

= 0x21

ADCON0 (AN9)=
0 0 1 0 0 1 0 1
−− AN9 idle on

= 0x25

ADCON1 =
0 0 0 0 0 1 0 1
−− VREF AN9 analog

= 0x05

ADCON2 =
1 0 0 1 0 1 0 1

right − TACQ TAD
= 0x95

0◦C − 100◦C ≡ 0 − 1023
58◦C ≡ 593 68◦C ≡ 696
62◦C ≡ 634 72◦C ≡ 737

#include <xc.h>

#define _XTAL_FREQ 20000000

#define S PORTDbits.RD0

#define LC PORTDbits.RD1

#define LM PORTDbits.RD2

#define LS PORTDbits.RD3

#define M LATCbits.LATC0

#define VC LATCbits.LATC1

#define VM LATCbits.LATC2



3.1 ADC Module 30

#define HC LATCbits.LATC6

#define HM LATCbits.LATC7

void main() {

unsigned char x,S_old;

int TC, TM;

TRISB = 0xFF;

TRISC = 0;

TRISD = 0xFF;

ADCON1 = 0x05;

ADCON2 = 0x95;

M = 0; VC = 0; VM = 0; HC = 0; HM = 0;

S_old = 0;

while(1) {

ADCON0 = 0x21;

ADCON0bits.GO = 1;

while(ADCON0bits.GO);

TC = ADRESH;

TC = (TC << 8) + ADRESL;

if (TC < 696) HC = 1;

if (TC > 737) HC = 0;

ADCON0 = 0x25;

ADCON0bits.GO = 1;

while(ADCON0bits.GO);

TM = ADRESH;

TM = (TM << 8) + ADRESL;

if (TM < 593) HM = 1;

if (TM > 634) HM = 0;

if(!S_old && S) {

M = 1;

while(!LC);

M = 0; VC = 1;

__delay_ms(3000);

VC = 0; M = 1;

while(!LM);

M = 0; VM = 1;

__delay_ms(5000);

VM = 0; M = 1;

while(!LS);

M = 0;

}



3.1 ADC Module 31

S_old = S;

}

}

Problem: A water tank is filled using three pumps (P1, P2 and P3) as follows:

• The water level is measured using a sensor with input range of 0m to 3m, and
output range of 0.4V to 4.0V.

• If the water level is less than 75cm, the three pumps are turned on.

• If If the water level is more than 1.25m and less than 1.75m, P1 and P2 are
turned on and P3 is turned off.

• If If the water level is more than 2.25m and less than 1.75m, P1 and P2 are
turned off and P3 is turned on.

• The water level should not exceed 3m.

FOSC = 13.33MHz. Write the program.

Problem: Complete the following code for an Analog-Input Digital-Output cal-
culator. The calculator has three analog inputs (AN1, AN2, and AN3) connected to
potentiometers (range = 0V to 5V). The analog inputs represent integer numbers
between 0 and +85. The total of the three numbers is displayed on Port B and the
maximum number is displayed on Port D.
#include <xc.h>

#pragma config PLLDIV = 6

#pragma config CPUDIV = OSC3 PLL4

#pragma config FOSC = ECPLL EC

void main() {
int N[3], x;



Chapter 4

Oscillator Configuration

References:

Datasheet : 2.0 Oscillator Configurations.

Mazidi et al. : Chapter 8 PIC18F Hardware Connection and ROM Loaders.

4.1 Clock Sources

There are three clock sources for the PIC18F4550:

• Primary oscillators:

– Can be: crystal, ceramic resonator, or external clock input.

– Maximum FOSC = 48 Mhz.

– Can be with or without Phase Locked Loop (PLL).

– For the PLL block, the input frequency is 4 Mhz and the output frequency
is 96 Mhz.

• Secondary oscillators: Will not be covered in this course.

• Internal oscillators:

– Maximum FOSC = 8 Mhz.

– No external connections needed.

Oscillator modes: 12 modes.

Configuration bits: PLLDIV, CPUDIV, FOSC.

Control registers: OSCCON, OSCTUNE.

USB frequency: 48 MHz or 6 MHz.

32



4.1 Clock Sources 33

XT

{
No PLL
With PLL

EC


No PLL

{
CLKO
RA6

With PLL

{
CLKO
RA6

HS

{
No PLL
With PLL

INT


USB-EC

{
CLKO
RA6

USB-XT
USB-HS

Primary

with PLL 4MHz 96MHz

OSC1---+---+-----------PLLDIV------PLL-------CPUDIV---FOSC

| |

OSC2/CLKO/RA6---+ +---------------------------------CPUDIV---FOSC

without PLL

Secondary

Internal

8MHz -----IRCF----------------------------------------FOSC

|

RC 31kHz ------+

Crystal Oscillator

External Clock



4.1 Clock Sources 34

PIC18F4550 Clock Diagram



4.2 Oscillator Configuration and Control 35

4.2 Oscillator Configuration and Control

PLLDIV: PLL Prescaler Selection bits:
PLLDIV = 1 No prescale [4 MHz input]
PLLDIV = 2 Divide by 2 [8 MHz input]
PLLDIV = 3 Divide by 3 [12 MHz input]
PLLDIV = 4 Divide by 4 [16 MHz input]
PLLDIV = 5 Divide by 5 [20 MHz input]
PLLDIV = 6 Divide by 6 [24 MHz input]
PLLDIV = 10 Divide by 10 [40 MHz input]
PLLDIV = 12 Divide by 12 [48 MHz input]

Default value: PLLDIV = 1

CPUDIV: System Clock Postscaler Selection bits:

CPUDIV = OSC1 PLL2 Divide primary by 1 96÷ 2 = 48
CPUDIV = OSC2 PLL3 Divide primary by 2 96÷ 3 = 32
CPUDIV = OSC3 PLL4 Divide primary by 3 96÷ 4 = 24
CPUDIV = OSC4 PLL6 Divide primary by 4 96÷ 6 = 16

Default value: CPUDIV = OSC1 PLL2

FOSC: Oscillator Selection bits:
FOSC = XT XT 4 MHz Crystal
FOSC = XTPLL XT 4 MHz Crystal with PLL
FOSC = HS Crystal
FOSC = HSPLL XT Crystal with PLL
FOSC = EC EC External clock, CLKO
FOSC = ECIO EC External clock, RA6
FOSC = ECPLL EC External clock with PLL, CLKO
FOSC = ECPLLIO EC External clock with PLL, RA6
FOSC = INTOSC EC Internal clock, CLKO, EC for USB
FOSC = INTOSCIO EC Internal clock, RA6, EC for USB
FOSC = INTOSC XT Internal clock, 4 MHz Crystal for USB
FOSC = INTOSC HS Internal clock, Crystal for USB

Default value: FOSC = EC EC

Note: Configuration bits do not change with a Reset.

OSCCON Register
bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
IDLEN IRCF2 IRCF1 IRCF0 OSTS IOFS SCS1 SCS0

Internal Clock Read only Clock Source
Reset Value: 0100x000

• IDLEN: Used in power management, not used in this course.



4.2 Oscillator Configuration and Control 36

• Internal Clock: Select the frequency of the internal oscillator.
000 = 31 kHz 100 = 1 MHz
001 = 125 kHz 101 = 2 MHz
010 = 250 kHz 110 = 4 MHz
011 = 500 kHz 111 = 8 MHz

• The read only bits are not used in this course.

• Clock source: Select the system clock source.
00 Primary
01 Secondary
1x Internal

OSCTUNEbits.INTSRC: Select the source for the 31 kHz internal frequency.
0 31.25 kHz derived from the 8 MHz oscillator (8 MHz ÷ 256)
1 31 kHz derived from the internal RC oscillator.

Reset value: 0



4.2 Oscillator Configuration and Control 37

Example: Write a program to generate the following signal on RD0. Select a crystal
and configure the PIC such that FOSC = 10 MHz.

10 MHz options: 40 MHz ÷ 4 without PLL, 20 MHz ÷ 2 without PLL.



4.2 Oscillator Configuration and Control 38

Crystal cannot be 40 MHz ⇒ use 20 MHz crystal.

OSCCON =
0 0 0 0 0 0 0 0
X X X Primary

= 0x00

#include <xc.h>

#define _XTAL_FREQ 10000000

#pragma config CPUDIV = OSC2_PLL3

#pragma config FOSC = HS

void main() {

TRISD = 0;

OSCCON = 0;

while(1) {

LATDbits.LATD0 = !PORTDbits.RD0;

__delay_ms(10000);

}

}

Example: Write a program to continuously read a voltage value at AN0. The volt-
age range is 0 to 3 V. If the input voltage is less than 1 V, a red light at RA6 is
turned on. Configure the PIC such that FOSC = 32 MHz using an input oscillator
frequency of 16 MHz.
16 MHz ÷ 4 = 4 MHz, with PLL 96 MHz ÷ 3 = 32 MHz.
Available modes: HSPLL HS, ECPLL EC, ECPLLIO EC.
RA6 is digital output ⇒ use ECPLLIO EC.

Inputs Outputs

Voltage AN0 [RA0] Red light RA6

VREF(+) AN3 [RA3]

TOSC =
1

32 MHz
= 0.03125 µs.

0.8 µs

0.03125 µs
= 25.6 ⇒ TAD = 32 TOSC

2.5 µs

32× 0.03125 µs
= 2.4 ⇒ TACQ = 4 TAD

ADCON0 =
0 0 0 0 0 0 0 1
−− AN0 idle on

= 0x01

ADCON1 =
0 0 0 1 1 0 1 1
−− VREF AN3 analog

= 0x1B

ADCON2 =
1 0 0 1 0 0 1 0

right − TACQ TAD
= 0x92

0 − 3 V ≡ 0 − 1023 1 V ≡ 341

#include <xc.h>

#pragma config PLLDIV = 4

#pragma config CPUDIV = OSC2_PLL3



4.2 Oscillator Configuration and Control 39

#pragma config FOSC = ECPLLIO_EC

void main() {

int V;

TRISA = 0b00001001;

CMCON = 7;

OSCCON = 0;

ADCON0 = 0x01;

ADCON1 = 0x1B;

ADCON2 = 0x92;

while(1) {

ADCON0bits.GO = 1;

while(ADCON0bits.GO);

V = ADRESH;

V = (V << 8) + ADRESL;

LATAbits.LATA6 = (V < 341);

}

}

Problem: Write an XC8 program to control eight LEDs using one push-button as
follows:

• Initially, all the LEDs are off.

• If the push-button is pressed and released, the right-most LED is turned on.

• The on LED is moved one step to the left every three seconds. (Only one LED
is on at a time)

• After the left-most LED is on for three seconds, all the LEDs are off again.

Configure the PIC such that FOSC = 2 MHz derived from the internal oscillator.



Chapter 5

Timers

References:

Datasheet : 11.0 Timer0 Module.
13.0 Timer2 Module.

Mazidi et al. : Chapter 9 PIC18 Timer Programming in Assembly and C.

Huang : Chapter 8 Timers and CCP Modules.

5.1 Timers in PIC18F4550

The PIC18F4550 has four timers/counters.

Timer 0 Timer 1 Timer 2 Timer 3
Counter size 8-bit/16-bit 16-bit 8-bit 16-bit
Function timer/counter timer/counter timer timer/counter
Read/write registers TMR0H, TMR0L TMR1H, TMR1L TMR2, PR2 TMR3H, TMR3L

Clock source FOSC/T0CKI FOSC/T13CKI FOSC FOSC/T13CKI
Prescaler 8 options 4 options 3 options 4 options
Postscaler − − 16 options −

5.2 Timer 0 Module

• Internal clock source =
FOSC

4
.

• 8-bit or 16-bit timer/counter [TMR0H:TMR0L], readable and writable.

• For counter: connect signal source to pin 6 (RA4/T0CKI/C1OUT/RCV).

• Write TMR0H then TMR0L. Read TMR0L then TMR0H.

– The value of TMR0H is written to the timer only when TMR0L is updated.

– The value of TMR0H is updated from the timer only when TMR0L is read.

40



5.2 Timer 0 Module 41

T0CON Register
bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

TMR0ON T08BIT T0CS T0SE PSA T0PS2 T0PS1 T0PS0

Prescaler value
Reset Value: 11111111

• TMR0ON: Run or stop Timer 0.
0 Stop Timer 0.
1 Enable Timer 0.

• T08BIT: 8-bit or 16-bit timer/counter.
0 16-bit [TMR0H:TMR0L].
1 8-bit [TMR0L].

• T0CS: Timer 0 clock source.
0 FOSC/4 (timer).
1 T0CKI (timer/counter).

• T0SE: Timer 0 source edge in counter mode.
0 Count at rising edge on T0CKI.
1 Count at falling edge on T0CKI.

• PSA: Enable/disable prescaler.
0 Prescaler enabled.
1 prescaler disabled.

• Prescaler value: Timer 0 prescaler value.
000 = 1 : 2 100 = 1 : 32
001 = 1 : 4 101 = 1 : 64
010 = 1 : 8 110 = 1 : 128
011 = 1 : 16 111 = 1 : 256



5.2 Timer 0 Module 42

INTCONbits.TMR0IF: Timer 0 interrupt flag.
When Timer 0 timer/counter value is 0xFFFF for 16-bit (or 0xFF for 8-bit), the
next count resets the count to 0x0000 (or 0x00) and sets the bit INTCONbits.TMR0IF
to 1 automatically. The programmer should reset the bit INTCONbits.TMR0IF to 0

in the code.

Example: Write a program to toggle RB4 continuously every 100 ms. Use Timer 0
in 16-bit mode. Assume FOSC = 10 MHz is readily configured.

Tcy =
4

FOSC

= 0.4µs

Total time = 100 ms

count =
100ms

0.4µs
= 250000 > 65535

250000÷ 65535 = 3.815 ⇒ 1 : 4 prescaler

count =
100ms

4× 0.4µs
= 62500 = F424H

10000H − F424H = 0BDCH

T0CON =
1 0 0 0 0 0 0 1

run 16-bit timer X use prescaler 1:4
= 0x81

#include <xc.h>

void main() {

TRISBbits.TRISB4 = 0;

ADCON1 = 0x0F;

T0CON = 0x81;

while(1) {

LATBbits.LATB4 = !PORTBbits.RB4;

TMR0H = 0x0B;

TMR0L = 0xDC;

while(INTCONbits.TMR0IF == 0);

INTCONbits.TMR0IF = 0;

}

}

Example: A simple function generator based on PIC18F4550 operates as follows:
a switch is connected to pin RB7. If the switch is on, a 5 Hz square wave is generated
on pin RB0,if the switch is off, a 1.5 Hz square wave is generated on pin RB0. Use
Timer 0 to write the program and configure the oscillator to provide a 32 MHz clock
in XT mode.
XT mode: 4 MHz crystal ÷ 1 = 4 MHz with PLL 96 MHz ÷ 3 = 32 MHz.

Tcy =
4

FOSC

= 0.125µs

For 5 Hz: half a period = 0.5 ÷ 5 Hz = 0.1 s

count =
0.1s

0.125µs
= 800000 > 65535

800000÷ 65535 = 12.207 ⇒ 1 : 16 prescaler
For 1.5 Hz: half a period = 0.5 ÷ 1.5 Hz = 0.333 s



5.2 Timer 0 Module 43

count =
0.333s

0.125µs
= 2666667 > 65535

2666667÷ 65535 = 40.69 ⇒ 1 : 64 prescaler
We can use 1:64 prescaler for both frequencies.
For 5 Hz:

count =
0.1s

64× 0.125µs
= 12500 = 30D4H

10000H − 30D4H = CF2CH

For 1.55 Hz:

count =
0.333s

64× 0.125µs
= 41667 = A2C2H

10000H − A2C2H = 5D3EH

T0CON =
1 0 0 0 0 1 0 1

run 16-bit timer X use prescaler 1:64
= 0x85

#include <xc.h>

#pragma config PLLDIV = 1

#pragma config CPUDIV = OSC2_PLL3

#pragma config FOSC = XTPLL_XT

#define SW PORTBbits.RB7

#define FG LATBbits.LATB0

void func(void);

void main() {

TRISB = 0x80;

ADCON1 = 0x0F;

OSCCON = 0;

T0CON = 0x85;

FG = 1;

func();

while(1) {

if(INTCONbits.TMR0IF) {

func();

INTCONbits.TMR0IF = 0;

}

}

}

void func() {

FG = !FG;

if(SW) {

TMR0H = 0xCF;

TMR0L = 0x2C;

}

else {



5.3 Timer 2 Module 44

TMR0H = 0x5D;

TMR0L = 0x3E;

}

}

Problem: The door of an industrial oven is operated using two push-buttons as
follows:

• The door of the oven is driven by a single-acting cylinder (0: close, 1: open).

• The door of the oven is opened if the OPEN push-button is pressed and the
temperature is below 250◦C. (If the temperature is above 250◦C the door does
not open)

• The door is closed manually by pressing the CLOSE push-button, or automat-
ically after 3 seconds.

• The temperature of the oven is measured using a sensor with input range of
20◦C to 1000◦C, and output range of 0.1V to 5.0V.

• FOSC = 1 MHz is readily configured.

5.3 Timer 2 Module

• Internal clock source =
FOSC

4
.

• 8-bit timer [TMR2], readable and writable.

• 8-bit period register [PR2], readable and writable.

• When TMR2 = PR2, the value of TMR2 is reset to 0x00.

• Used for CCP (in PWM mode) and for MSSP.
(CCP: capture/compare/pwm, MSSP: master synchronous serial port)

• Has a prescaler and a postscaler.

• Postscaler is used for timer only (not for CCP or MSSP).



5.3 Timer 2 Module 45

T2CON Register
bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
− T2OUTPS3 T2OUTPS2 T2OUTPS1 T2OUTPS0 TMR2ON T2CKPS1 T2CKPS0

Postscaler value Prescaler value
Reset Value: 00000000

• Postscaler value: Timer 2 postscaler value (not used in CCP or MSSP).
0000 = 1:1 0100 = 1:5 1000 = 1:9 1100 = 1:13
0001 = 1:2 0101 = 1:6 1001 = 1:10 1101 = 1:14
0010 = 1:3 0110 = 1:7 1010 = 1:11 1110 = 1:15
0011 = 1:4 0111 = 1:8 1011 = 1:12 1111 = 1:16

• TMR2ON: Run or stop Timer 2.
0 Stop Timer 2.
1 Enable Timer 2.

• Prescaler value: Timer 2 prescaler value.
00 = 1 : 1
01 = 1 : 4
1x = 1 : 16

PIR1bits.TMR2IF: Timer 2 interrupt flag.
When Timer 2 timer value TMR2 equals the period value PR2, the next count resets
TMR2 to 0x00 and sets the bit PIR1bits.TMR2IF to 1 automatically. The program-
mer should reset the bit PIR1bits.TMR2IF to 0 in the code.

Example: Write a program for a digital clock based on Timer 2. The clock should
count in 10 ms. The minutes are displayed on port B and the hours are displayed
on port D. Configure the oscillator to provide a 8 MHz derived from the internal
oscillator.
8 MHz internal, USB and RA6 are not used ⇒ any INTOSC mode can be used .

OSCCON =
0 1 1 1 0 0 1 0
X 8 MHz X Internal

= 0x72

Tcy =
4

FOSC

= 0.5µs

counting time = 0.01 s

count =
0.01s

0.5µs
= 20000 > 255

20000÷ 255 = 78.4 ⇒ 1:16 prescaler, 1:5 postscaler

count =
0.01s

5× 16× 0.5µs
= 250

T2CON =
0 0 1 0 0 1 1 0
X 1:5 post run 1:16 pre

= 0x46

#include <xc.h>



5.3 Timer 2 Module 46

#pragma config FOSC = INTOSC_HS

#define M LATB

#define H LATD

void main() {

unsigned char ten_ms, s;

TRISB = 0;

TRISD = 0;

ADCON1 = 0x0F;

OSCCON = 0x72;

PR2 = 250;

T2CON = 0x46;

M = 0; H = 0; s = 0; ten_ms = 0;

while(1) {

if(PIR1bits.TMR2IF) {

PIR1bits.TMR2IF = 0;

ten_ms++;

if(ten_ms == 100) {

ten_ms = 0;

s++;

if(s == 60) {

s = 0;

M++;

if(M == 60) {

M = 0;

H++;

if(H == 24) H = 0;

}

}

}

}

}

}

Problem: Write a program to operate a motor using one push-button as follows:
When the push-button is pressed and released the motor turns on and runs until a
specified time is over or when the push-button is pressed and released again. The
running time is between 1 second and 5 seconds (in 25 ms increments) and is selected
using a potentiometer with voltage input range of 0.8 V to 4 V. Configure the PIC
such that FOSC = 8 MHz is derived from a 8 MHz crystal.



5.4 Application: The On-Delay Timer 47

Problem: A machine that has two motors and one push-button operates as follows:

• If the push-button is pressed for the first time, the first motor turns on.

• While the first motor is on, the second motor turns on after 3 seconds OR if
the push-button is pressed again.

• The motors turn off if the push-button is pressed again.

• FOSC = 500 kHz is readily configured.

Write an XC8 code to operate the machine and use Timer 2 in your solution.

5.4 Application: The On-Delay Timer

S = 0

RN DN

0 0
0 1 · · ·

· · ·
· · ·


RN = 0
DN = 0
Q = 0

1 0
1 1

S = 1

RN DN

0 0 RN = 1
0 1
1 0
1 1 · · ·

{
RN = 0
Q = 1

Assume:
Delay time = 1.5 seconds.
FOSC = 500 kHz is readily configured.

Tcy =
4

FOSC

= 8µs

Delay time = 1.5 s

count =
1.5s

8µs
= 187500 > 65535

187500÷ 65535 = 2.86 ⇒ 1 : 4 prescaler



5.4 Application: The On-Delay Timer 48

count =
1.5s

4× 8µs
= 46875 = B71BH

10000H − B71BH = 48E5H

T0CON =
0 0 0 0 0 0 0 1

stop 16-bit timer X use prescaler 1:4
= 0x01

#include <xc.h>

#define S PORTDbits.RD0

#define Q LATDbits.LATD1

#define RN T0CONbits.TMR0ON

#define DN INTCONbits.TMR0IF

void main() {

TRISD = 1;

T0CON = 0x01;

Q = 0;

while(1) {

if(S) {

if(!RN && !DN) {

TMR0H = 0x48;

TMR0L = 0xE5;

RN = 1;

}

else if(RN && DN) {

RN = 0;

Q = 1;

}

}

else

if(RN || DN) {

RN = 0;

DN = 0;

Q = 0;

}

}

}



Chapter 6

Pulse Width Modulation

References:

Datasheet : 15.0 Capture/Compare/PWM (CCP) Modules.

Mazidi et al. : Chapter 15 CCP and ECCP Programming.

Huang : Chapter 8 Timers and CCP Modules.

6.1 The CCP Module

• Capture: save the value of the timer (Timer 1 or Timer 3) in the CCP
registers when an event occures on the input pin (RC1 or RB3).

• Compare: when the value of the timer (Timer 1 or Timer 3) equals the CCP
registers, do an action on the output pin (RC1 or RB3).

• PWM: up to 10-bit resolution Pulse Width Modulation (Timer 2) on output
pin (RC1 or RB3).

The PIC18F4550 has one CCP module (CCP2) and one Enhanced CCP module
(CCP1).

49



6.2 CCP2 Module in PWM Mode 50

6.2 CCP2 Module in PWM Mode

• The CCP2 module in PWM mode produces a 10-bit resolution PWM output
on bit RC1 or RB3.

• The appropriate TRIS bit must be 0 to make the CCP2 pin an output.

• The PWM period is specified by the PR2 register.
Period = (PR2+1) × 4 × TOSC × Prescaler

• The PWM duty cycle is specified by the CCPR2L register (whole number) and
bits <5:4> in the CCP2CON register (binary fraction).
On Time = (CCPR2L.CCP2CON<5:4>) × 4 × TOSC × Prescaler

• Timer 2 postscaler is not used in PWM.

CCP2CON Register
bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
− − DC2B1 DC2B0 CCP2M3 CCP2M2 CCP2M1 CCP2M0

DC bits 1 and 0 CCP2 Mode
Reset Value: 00000000

• DC bits 1 and 0: The two binary fraction bits of the PWM duty cycle.
00 ≡ 0.00 10 ≡ 0.50
01 ≡ 0.25 11 ≡ 0.75

• CCP2 Mode: Select the mode of operation for the CCP2 module.
0000 : CCP2 is disabled
11xx : PWM mode.

CCP2MX: CCP2 Multiplexed bit:

CCP2MX = OFF CCP2 input/output is multiplexed with RB3

CCP2MX = ON CCP2 input/output is multiplexed with RC1

Default value: CCP2MUX = ON



6.2 CCP2 Module in PWM Mode 51

Example: Find the values of PR2, CCP2RL and CCP2CON for 75% duty cycle PWM
with a frequency of 1 kHz. FOSC = 10 MHz.
Prescaler 1:16

PR2 =
FOSC

4× FPWM × Prescaler
− 1 =

10MHz

4× 1kHz× 16
− 1 = 156− 1 = 155

CCPR2L.CCP2CON<5:4> = (On Time)
FOSC

4× Prescaler

=
0.75

1kHz

10MHz

4× 16
= 117.1875 ≈ 117.25

CCPR2L = 117

CCP2CON =
0 0 0 1 1 1 0 0

X 0.25 PWM
= 0x1C

Example: Given that PR2 = 20, CCP2RL = 10, CCP2CON = 0x2C, and T2CON =

0x01, find the frequency and duty cycle for the PWM. FOSC = 40 MHz.
T2CON = 0x01 = 0b00000001 ⇒ 1:4 prescaler.

Period =
(PR2 + 1)× 4× Prescaler

FOSC

=
(20 + 1)× 4× 4

40MHz
= 8.4µs

PWM frequency =
1

Period
= 119 kHz

CCP2CON = 0x2C = 0x00101100 ⇒ Binary fraction = 0.50

On Time =
(CCPR2L.CCP2CON<5:4>)× 4× Prescaler

FOSC

=
(10.50)× 4× 4

40MHz
= 4.2µs

Duty cycle =
On Time

Period
× 100% =

4.2µs

8.4µs
× 100% = 50%

Example: A PIC18 based air-conditioning system operates as follows:

• The temperature is measured ten times every second. [AN8]

• For the temperature sensor: Input range: −20◦C to 60◦C
Output range: 0 V to 5 V

• The average of the last 15 measurements is calculated. [Tavg]

•
Set points: -20◦C < Tavg < 8◦C Heater at 100%

12◦C < Tavg < 23◦C Heater at 50%
27◦C < Tavg < 60◦C Heater at 0%

• Configure the internal oscillator for FOSC= 4 MHz.

• For 50% Heater operation, use a 600 Hz signal.

Hint: Use Timer 0 for timing temperature readings, and CCP2 as PWM for 50%
Heater operation.
Oscillator Setup:
4 MHz internal, USB and RA6 are not used ⇒ any INTOSC mode can be used .



6.2 CCP2 Module in PWM Mode 52

OSCCON =
0 1 1 0 0 0 1 0
X 4 MHz X Internal

= 0x62

ADC Setup:

TOSC =
1

4 MHz
= 0.25 µs.

0.8 µs

0.25 µs
= 3.2 ⇒ TAD = 4 TOSC

2.5 µs

4× 0.25 µs
= 2.5 ⇒ TACQ = 4 TAD

ADCON0 =
0 0 1 0 0 0 0 1
−− AN8 idle on

= 0x21

ADCON1 =
0 0 0 0 0 1 1 0
−− VREF AN8 analog

= 0x06

ADCON2 =
1 0 0 1 0 1 0 0

right − TACQ TAD
= 0x94

N = 12.7875 T + 255.75
T −20 8 12 23 27 60
N 0 358 409 550 601 1023

Timer 0 Setup:

Tcy =
4

FOSC

= 1µs

Sampling time = 100 ms

count =
100ms

1µs
= 100000 > 65535

100000÷ 65535 = 1.526 ⇒ 1 : 2 prescaler

count =
100ms

2× 1µs
= 50000 = C350H

10000H − C350H = 3CB0H

T0CON =
1 0 0 0 0 0 0 0

run 16-bit timer X use prescaler 1:2
= 0x80

CCP2 Setup:
Prescaler 1:16

PR2 =
FOSC

4× FPWM × Prescaler
− 1 =

4MHz

4× 600Hz× 16
− 1 = 104.17− 1 = 103.17

CCPR2L.CCP2CON<5:4> = (On Time)
FOSC

4× Prescaler

=
0.50

600Hz

4MHz

4× 16
= 52.08 ≈ 52.00

CCPR2L = 52

CCP2CON =
0 0 0 0 1 1 0 0

X 0.00 PWM
= 0x0C

T2CON =
0 0 0 0 0 0 1 0
X unused stop 1:16 pre

= 0x02



6.2 CCP2 Module in PWM Mode 53

#include <xc.h>

#pragma config FOSC = INTOSC_HS

#pragma config CPP2MX = ON

#define H LATCbits.LATC1

void main() {

int Tadc, Tavg, x;

int T[15] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}

TRISBbits.TRISB2 = 1; //AN8

TRISCbits.TRISC1 = 0; //PWM

OSCCON = 0x62;

ADCON0 = 0x21;

ADCON1 = 0x06;

ADCON2 = 0x94;

TMR0H = 0x3C;

TMR0L = 0xB0;

T0CON = 0x80;

PR2 = 103;

CCPR2L = 52;

CCP2CON = 0x00; // start off

T2CON = 0x02;

H = 0;

while(1) {

if (INTCONbits.TMR0IF) {

TMR0H = 0x3C;

TMR0L = 0xB0;

INTCONbits.TMR0IF = 0;

ADCON0bits.GO = 1;

while(ADCON0bits.GO);

Tadc = ADRESH;

Tadc = (Tadc << 8) + ADRESL;

Tavg = 0;

for(x=0; x<14; x++) {

T[x] = T[x+1];

Tavg = Tavg + T[x];

}

T[14] = Tadc;

Tavg = (Tavg + T[14]) / 15;

if (Tavg < 358) {

T2CONbits.TMR2ON = 0;

CCP2CON = 0x00;

H = 1;

}



6.2 CCP2 Module in PWM Mode 54

else if(!T2CONbits.TMR2ON && (Tavg>409) && (Tavg<550)){

CCP2CON = 0x0C;

T2CONbits.TMR2ON = 1;

}

else if (Tavg > 601) {

T2CONbits.TMR2ON = 0;

CCP2CON = 0x00;

H = 0;

}

}

}

}

Problem: A toy car is controlled by a PIC18 microcontroller as follows:

• The motor of the car is controlled by the CCP2 module.

• Two switches are connected to the PIC18 to select the speed of the car:

– 0x : the car is stopped.

– 10 : the car moves forward at half the maximum speed.

– 11 : the car moves forward at maximum speed.

• The frequency of the CCP is set to 2kHz.

Configure the PIC such that FOSC = 2 MHz internally, and write the XC8 program
to control the car.



Chapter 7

Interrupts

References:

Datasheet : 9.0 Interrupts.

Mazidi et al. : Chapter 11 Interrupt Programming in Assembly and C.

Huang : Chapter 6 Interrupts, Resets and Configuration.

7.1 Interrupt Registers

• PIC18F4550 has multiple interrupt sources.

• Interrupt may be high-priority or low-priority.

• High-priority interrupts low-priority.

• High-priority / No priority function: void interrupt high isr(void){ }

• Low-priority function: void interrupt low priority low isr(void){ }

• Ten registers: 80 bits total, 75 bits implemented, 30 bits in this course.

Registers:

• RCON: enable priority system, reset bits.

• INTCON, INTCON2, INTCON3: general enable, Timer 0, pin interrupts, RB.

• PIR1, PIR2: peripheral interrupt flags (IF).

• PIE1, PIE2: peripheral interrupt enable (IE).

• IPR1, IPR2: peripheral interrupt priority (IP).

55



7.2 General Bits 56

Peripherals:

SPP AD RC TX SSP CCP1 TMR2 TMR1

OSC CM USB EE BCL HLVD TMR3 CCP2

7.2 General Bits

RCONbits.IPEN:
0: disable priority levels.
1: enable priority levels.

INTCONbits.GIE / INTCONbits.GIEH:
without priority → enable/disable all interrupts.
with priority → enable/disable high priority interrupts.

INTCONbits.PEIE / INTCONbits.GIEL:
without priority → enable/disable peripheral interrupts.
with priority → enable/disable low priority interrupts (GIE/GIEH must be
enabled).

Note: (IF) flags are set at interrupt condition regardless of (IE) state and must be
reset by software.

7.3 INTx Pin Interrupt

• INTEDGx: 1 = rising edge, 0 = falling edge.

• INT0 is always high priority.

• Configure related pins in port B as digital inputs (TRISB and ADCON1).

INT0 INT1 INT2

Pin RB0 RB1 RB2

Priority − INTCON3bits.INT1IP INTCON3bits.INT2IP

Enable INTCONbits.INT0IE INTCON3bits.INT1IE INTCON3bits.INT2IE

Flag INTCONbits.INT0IF INTCON3bits.INT1IF INTCON3bits.INT2IF

Edge INTCON2bits.INTEDG0 INTCON2bits.INTEDG1 INTCON2bits.INTEDG2



7.4 Timers, CCP2, AD 57

7.4 Timers, CCP2, AD

TMR0 TMR2 CCP2 AD

IF INTCON PIR1 PIR2 PIR1

IE INTCON PIE1 PIE2 PIE1

IP INTCON2 IPR1 IPR2 IPR1

e.g. INTCONbits.TMR0IF IPR2bits.CCP2IP

7.5 Port B Interrupt-on-Change

• Pins RB7, RB6, RB5, RB4.

• Interrupt on any change in one or more pins.

• Configure related pins in port B as digital inputs (TRISB and ADCON1).

• INTCONbits.RBIE INTCONbits.RBIF INTCON2bits.RBIP

• After interrupt:
1. read port B 2. wait 1 Tcy 3. reset RBIF = 0

INTCON2bits.RBUP (not needed for this course)
0: Pull-up resistors enabled.
1: disconnect pull-up resistors.
Disabled if output or reset.

7.6 Interrupt Example

Example: A PIC18 based frequency measurement system operates as follows:

• The frequency is measured two times every minute.

• The first rising edge starts the measurement, and the second rising edge ends
the measurement.

• The input frequency range is 250 Hz to 500 Hz.

• If the input frequency is more than or equal to 390 Hz, a LED on RA6 is turned
on.

Configure the primary oscillator such that FOSC = 1 MHz.
Oscillator Setup:
1 MHz primary, RA6 is used ⇒ 4 MHz crystal.



7.6 Interrupt Example 58

4 MHz ÷ 4 = 1 Mhz without PLL ⇒ use ECIO EC mode.

Timer 0 Setup:

Tcy =
4

FOSC

= 4µs

Measurement every 30 second

count =
30s

4µs
= 7500000 > 65535

7500000÷ 65535 = 114.4 ⇒ 1 : 128 prescaler

count =
30s

128× 4µs
= 58594 = E4E2H

10000H − E4E2H = 1B1EH

T0CON =
1 0 0 0 0 1 1 0

run 16-bit timer X use prescaler 1:128
= 0x86

Timer 2 Setup:

Tcy =
4

FOSC

= 4µs

max period =
1

Fmin

= 4 ms

max count =
4ms

4µs
= 1000 > 255

1000÷ 255 = 3.92 ⇒ 1 : 4 prescaler

min period =
1

Fmax

= 2 ms

min count =
2ms

4× 4µs
= 125 (acceptable)

T2CON =
0 0 0 0 0 0 0 1
X post not used stop 1:4 pre

= 0x01

F = 390 Hz → T = 2.564 ms → count =
2564ms

4× 4µs
= 160

Use INT0 (RB) for signal input, and RB1 for LED output.

#include <xc.h>

#pragma config CPUDIV = OSC4_PLL6

#pragma config FOSC = ECIO_EC

unsigned char measure;

void main() {

TRISB = 0x01;

ADCON1 = 0x0F;

OSCCON = 0x00;

TMR0H = 0x1B;

TMR0L = 0x1E;

T0CON = 0x86;

T2CON = 0x01;



7.6 Interrupt Example 59

measure = 0;

LATAbits.LATA6 = 0;

RCONbits.IPEN = 0;

INTCONbits.GIE = 1;

INTCONbits.TMR0IE = 1;

INTCONbits.INT0IE = 0;

INTCON2bits.INTEDG0 = 1;

while(1);

}

void interrupt ISR(void){

if (INTCONbits.TMR0IF && INTCONbits.TMR0IE) {

TMR0H = 0x1B;

TMR0L = 0x1E;

INTCONbits.TMR0IF = 0;

INTCONbits.INT0IE = 1;

INTCONbits.INT0IF = 0;

}

if (INTCONbits.INT0IF && INTCONbits.INT0IE) {

INTCONbits.INT0IF = 0;

if (!measure) {

TMR2 = 0;

T2CONbits.TMR2ON = 1;

measure = 1;

}

else {

LATAbits.LATA6 = (TMR2 <= 160);

INTCONbits.INT0IE = 0;

T2CONbits.TMR2ON = 0;

measure = 0;

}

}

}

Problem: Write a program for a stop-watch using a PIC18 microcontroller. The
stop-watch has two buttons:

• Start/Stop button: start or stop time counting.

• Reset button: reset the time count to zero.

The stop-watch counts in tenths of a second, and the count is displayed in minutes
and seconds (up to 255 minutes and 59 seconds). You must use interrupts for the
buttons and timing.
(FOSC = 8 MHz readily configured).



Chapter 8

Arduino

8.1 Arduino Uno

Structure:

void setup()

{

// preparation

}

void loop()

{

// read, process, write

}

60



8.1 Arduino Uno 61

Digital I/O:
pinMode(pin, mode);

• pin: 2 to 13 (pin 0 and pin 1 are used for serial I/O)

• mode: INPUT, OUTPUT, or INPUT PULLUP

digitalWrite(pin, value);
value = digitalRead(pin);

• pin: the pin number

• value: HIGH or LOW

Pin 13 has LED connected.

Analog Input:
analogReference(type);

• type: DEFAULT (5V), INTERNAL (1.1V), or EXTERNAL (0 to 5V on AREF pin)

value = analogRead(pin);

• pin: 0 to 5

• value: int (0 to 1023)

toValue = map(fromValue, fromLow, fromHigh, toLow, toHigh);

signed int toValue =
toHigh− toLow

fromHigh− fromLow
(fromValue− fromLow) + toLow

PWM:
analogWrite(pin, value);

• pin: digital pins 3, 5, 6, 9, 10, 11

• value: the duty cycle between 0 (always off) and 255 (always on)

pinMode() is not needed
Pins 3, 9, 10, 11 PWM frequency of 490 Hz.
Pins 5, 6 PWM frequency of 980 Hz. higher-than-expected duty cycles due to time
functions.

Time:
delay(ms);
ms = millis();

• ms: milliseconds (unsigned long 0 to 4,294,967,295 )



8.2 Examples 62

millis() returns the number of milliseconds since the Arduino board began running
the current program. This number will overflow (go back to zero), after approxi-
mately 50 days.

Interrupts:
attachInterrupt(interrupt, ISR, mode);

• interrupt: 0 ≡ pin 2 1 ≡ pin 3

• ISR: the function name to call when an interrupt occurs

• mode: interrupt condition LOW, CHANGE, RISING, FALLING.

Global variables modified by ISR should be volatile.
When one interrupt is running, the other is ignored.
Inside ISR function, delay() will not work and millis() will not increment.

8.2 Examples

Example: Eight LEDs are controlled by one push-button. When the push-button
is pressed down, all LEDs are turned on, then one LED is turned off every 3 seconds.
If the push-button is released before 7 seconds all the LEDs are turned off, otherwise
the push-button is ignored until all LEDs are off.

Input: push-button at pin 2

Outputs: LEDs at pins 3 to 13

int pb, pb_old, ON, LED;

unsigned long TLED, TPB;

void setup() {

pinMode(2, INPUT);

for(int x=3; x<14; x++)

pinMode(x, OUTPUT);

pb_old = 0;

ON = 0;

}

void loop() {

pb = digitalRead(2);



8.2 Examples 63

if(!pb_old && pb && !ON) { // Rising edge

for(int x=3; x<14; x++)

digitalWrite(x,HIGH);

LED = 3;

ON = 1;

TLED = millis();

TPB = millis();

}

if(pb_old && !pb && ((millis()-TPB)<7000)) { // Falling edge

for(int x=3; x<14; x++)

digitalWrite(x,LOW);

ON = 0;

}

if(ON && ((millis()-TLED)>3000)) {

TLED = millis();

digitalWrite(L, LOW);

L++;

if(L>13) ON = 0;

}

pb_old = pb;

}

Example: A temperature measurement system reads the temperature once every
10 minutes. The sensor input range is −10◦C to 70◦C, and the output range is
0V to 4V. Three LEDs are used to indicate the measured temperature as follows:

Temperature Range LEDs On
−10◦C to 10◦C None

11◦C to 30◦C Dark
31◦C to 50◦C Dark and medium
51◦C to 70◦C Dark, medium and bright

Input: temperature sensor at pin A0.
Outputs: LEDs at pins 10 (dark), 11 (medium), 12 (bright).

int L1 = 10; // PWM dark

int L2 = 11; // PWM medium

int L3 = 12; // Digital bright

unsigned long T;

void setup() {

pinMode(12, OUTPUT);

T = millis();



8.2 Examples 64

analogReference(EXTERNAL);

}

void loop() {

if(millis() > 600000) {

T = millis();

int Temp = analogRead(0);

Temp = map(Temp, 0, 1023, -10, 70);

if(Temp < 10) {

analogWrite(L1, 0);

analogWrite(L2, 0);

digitalWrite(L3, LOW);

}

else if(Temp < 30) {

analogWrite(L1, 85); // 255x1/3=85

analogWrite(L2, 0);

digitalWrite(L3, LOW);

}

else if(Temp < 50) {

analogWrite(L1, 85);

analogWrite(L2, 170); //255x2/3=170

digitalWrite(L3, LOW);

}

else {

analogWrite(L1, 85);

analogWrite(L2, 170);

digitalWrite(L3, HIGH);

}

}

}

Example: A LED is is controller by a push-button and a potentiometer. When the
push-button is pressed and released, the LED is on for 7 seconds. The LED light
intensity is selected by the potentiometer (0 to 5V). Write the Arduino program.
Inputs: push-button S at pin 8, potentiometer P at pin A2.
Output: LED L at pin 9.
Variable: time T.

int S, P, L, S_old;

unsigned long T;

void setup() {

pinMode(8, INPUT);

S_old = 0;

}



8.2 Examples 65

void loop() {

S = digitalRead(8);

if(S_old && !S) { // falling edge

T = millis();

while((millis()-T)<=7000) {

P = analogRead(2);

L = map(P, 0, 1023, 0, 255);

analogWrite(9, L);

}

analogWrite(9, 0);

}

S_old = S;

}

Example: A medical tablets filling machine operates as follows:

• The switch S turns the machine on/off.

• The motor M is on until a box is under the tablet container detected by the
limit switch LBOX.

• The motor is off and the valve Y opens to drop 5 tablets in the box. The
tablets are detected by the proximity sensor LT.

• The motor moves the full box away from the container and a new cycle begins.

• The machine does not turn off until the box being filled is full and moved
away.

Inputs: switch S at pin 2, proximity sensor LT at pin 3, limit switch LBOX at pin 4.
Output: motor M at pin 5, valve Y at pin 6.
Variables: ON, count.

int LBOX;

volatile int ON, count;

void setup() {



8.2 Examples 66

pinMode(4, INPUT);

pinMode(5, OUTPUT);

pinMode(6, OUTPUT);

attachInterrupt(0, onOff, RISING);

attachInterrupt(1, addOne, RISING);

M = 0;

Y = 0;

ON = 0;

count = 0;

}

void loop() {

while(!ON);

digitalWrite(5, HIGH); // Motor on

while(!LBOX) LBOX = digitalRead(4);

digitalWrite(5, HIGH); // Motor off

digitalWrite(6, HIGH); // Valve on

while(count <= 5);

digitalWrite(6, HIGH); // Valve off

digitalWrite(5, HIGH); // Motor on

while(LBOX) LBOX = digitalRead(4);

count = 0;

}

void onOff() {

ON = !ON;

}

void addOne() {

count++;

}

Problem: Write an Arduino program to control eight LEDs ar-
ranged in a circle using one push-button as follows:

• Initially, all the LEDs are off.

• If the push-button is pressed and held down, only one LED
is on at a time and the on LED moves one step clockwise
every 1.5 seconds.

• If the push-button is released, the on LED stops moving
and turns off immediately.



8.2 Examples 67

Problem: A LED is operated using two push-buttons as follows:

• When the ON push-button is pressed for the first time, the LED turns on after
2 seconds with full brightness.

• If the ON push-button is pressed for the second time during the 2 seconds, the
brightness will be 50%.

• If the ON push-button is pressed for the third time during the 2 seconds, the
brightness will be 25%.

• The OFF push-button turns the LED off (or cancels the ON push-button effect
during the 2-second period).

Write the Arduino program for this controller:
(a) by polling the two push-buttons (without interrupts).
(b) using interrupts for both push-buttons.


