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Abstract: This paper investigates two real-time vision-based control 
algorithms for delta robots. The first one aims to enable the robot to track 
different objects based on their colours and shapes. This algorithm does not 
need any initial calibration. Instead, it depends on the least squares algorithm 
(LSA) to generate the required transformation matrixes. Also, it is implemented 
on a standalone controller with no additional time complexity added to the 
main controller. The second one is a self-calibrating human hand gesture 
tracking algorithm, which can perform automatic calibration and generates 
transformation matrixes automatically based on the initial measurements of the 
user’s body. The algorithms are designed, implemented, and scheduled in a 
real-time manner. The results show that these algorithms can track fast-moving 
objects effectively regardless of the initial configuration of the robot. They 
provide important solutions for common problems related to visual servoing 
such as field of view and calibration. 

Keywords: vision-based control; real-time control; delta robot; visual servoing; 
hand gestures tracking. 
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1 Introduction 

Delta robot is a three degree of freedom (DOF) parallel robot, it consists of three closed 
kinematic chains, each chain is composed of one active link and one passive link, the 
former is connected to the fixed plate while the latter is connected to the active link. The 
moving platform is attached to the end of the passive links as shown in Figure1.a. The 
hardware prototype is shown in Figure 1(b). 

This mechanical structure provides multiple advantages for delta robots to be used in 
industrial applications which need speed, accuracy, repeatability, and force distribution 
(Li et al., 2019). For these properties, delta robots are widely used in high-speed 
applications such as picking and placing (Brinker et al., 2017), high accuracy applications 
(McClintock et al., 2018), assembly tasks (Bulej et al., 2018), CNC machines (Correa  
et al., 2016), 3D printing (Rehman et al., 2019), haptic controllers (Mitsantisuk et al., 
2015) and multiple other applications (Singh et al., 2013). 

Vision-based control (visual servoing) has been widely spread in industrial 
applications such as picking and placing (López-Nicolás et al., 2019) to increase 
production efficiency. It is a technique that depends on the data acquired from a visual 
sensor (for example a camera) to track a specific object and to control the motion of a 
robot accordingly. 

Figure 1 (a) Robot kinematic diagram (b) Robot hardware prototype (see online version for 
colours) 

  
(a)     (b) 

Vision-based control techniques attracted many researchers for better interaction between 
robots and the surroundings to increase the efficiency, accuracy, and speed of the robots. 
Some of the researchers developed algorithms of visual servoing to estimate the position, 
speed, and orientation of the end effector as in Sahu et al. (2019), Fang (2011) and 
Ficocelli and Janabi-Sharifi (2001), they depend on visual feedback closed-loop control 
to perform direct vision-based control. This method is very efficient for slow robots. 
However, their efficiency is decreased dramatically as the speed of the robot is increased 
due to the constraints of the camera frame speed and the high computational time 
required to process each frame. 
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Others used the visual servoing to track specific objects in industrial applications 
especially for picking and placing as Gridseth et al. (2016), Rouhollahi et al. (2018), Li  
et al. (2017) and Hu et al. (2016), while other applications employed it to perform 
contour tracking for drilling, printing and welding functions as in Chang et al. (2017) and 
Li et al. (2018). However, these studies have a major drawback as they require an initial 
calibration, which requires a high knowledge and experience of the calibration process. A 
small error during calibration may cause an incremental error during operating the 
system. 

Visual servoing is also used frequently in obstacles detection and avoidance as Asadi 
et al. (2019), Hafez et al. (2017) and Shi et al. (2018), the researchers depend on a visual 
method to detect the obstacles located on the robot’s way and the robot should avoid 
them. The major disadvantage of this method is that it cannot guarantee that the target 
object is in the field of view all the time. 

This paper overcomes the aforementioned drawbacks. The camera is located at the 
centre of the robot frame, so the task space is completely located in the field of view all 
the time. More, the initial calibration is not required, since the algorithms depend on least 
squares algorithm (LSA) and human body measurements to generate the required 
transformation matrixes regardless of the initial position or configuration of the robot. To 
overcome the computational time related to image processing and its effects on sampling 
time, all tasks related to recognition and tracking were implemented on a stand-alone 
device, which means that no additional computational time will be added to the 
computation of the control law on the main controller. 

The main contribution of this paper is developing two real-time vision-based control 
algorithms. Both of them guarantee efficient tracking of fast-moving objects, overcome 
the problem of the field of view and the initial calibration and finally they guarantee a 
minimised computational time. The proposed algorithms depend mainly on a stand-alone 
controller to minimise computational time and a distributed control network to achieve 
the control tasks in a real-time manner. 

The rest of the paper is organised as follows, the problem statement is introduced in 
Section 2. Section 3 presents the description of the system. Object recognition and 
tracking are described in Section 4. Hand gestures recognition and tracking are 
introduced in Section 5. The trajectory is designed in Section 6. The real-time scheduling 
is shown in Section 7, and the overall system is discussed in Section 8. Results are shown 
in Section 9. Finally, the paper is concluded in Section 10. 

2 Problem statement 

Industrial processes require effective and interactive feedback about the position and the 
speed of the objects in the workspace. This feedback increases the efficiency, speed, and 
accuracy of the industrial process. Vision-based control is used for this purpose, where 
visual feedback can be obtained by utilising a visual sensor. 

The visual sensor acquires data about the configuration of the robot (direct visual 
servoing) or the tracked objects (indirect visual servoing). The acquired data is then 
supplied to the controller as a reference signal or feedback. However, the known 
algorithms – that are used for visual servoing – contain difficulties such as the field of 
view, the time complexity, the necessity of calibration, and the effects of the surrounding 
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environment on the efficiency of recognition and tracking. Moreover, in practical 
applications timing constraints are very critical and may deteriorate the response of the 
robot. 

These problems should be solved in a real-time manner to obtain a minimised 
sampling time which ensures the stability of the robot and the accuracy of performing its 
functions. 

This paper investigates two vision feedback algorithms (VFA) to provide the control 
law with the required variables related to the position and the velocity of the tracked 
objects, to provide a visual reference signal. The proposed algorithms can track the 
objects based on their shapes or colours without the need for calibration knowledge. All 
required transformation matrixes are generated automatically using LSA. More, an 
additional application was proposed to perform self-calibration hand gesture tracking 
using Kinect, which can be used in multiple applications such as manual picking and 
placing and surgery. 

3 System description 

This paper is based on previous work Sharida and Hashlamon (2020, 2019) where a  
real-time distributed controller was designed to control the delta robot. The real-time 
network is designed based on controller area network (CAN) bus protocol. It uses four 
microcontroller units (MCU), each one consists of a microcontroller and a CAN bus 
receiver-transmitter. One MCU is used to compute the control law while the other three 
MCU’s are connected to the actuated joints through an electronic interfacing module. 
Each one of the three MCU’s along with the actuator and sensory system forms an 
intelligent sensor-actuator-system (ISAS). 

Each ISAS can communicate with other ISAS’s and the controller MCU through 
CAN bus communication protocol. The ISAS reads the actuator position through an 
encoder, forms the necessary signal processing and prepares the ready measured data in a 
massage then broadcasts it to the CAN bus. This message will be received by the 
beneficiary MCU, and in the same way for all ISASs. 

The controller MCU computes the required control law and broadcasts it on the CAN 
bus. Each ISAS will receive its massage and skip the others. Then each ISAS analyses 
the message and applies the required signal to the actuator. This approach enhances 
flexibility to the system for changing the control approach and adding other jobs in 
addition to distributing the computational load among four MCUs. To apply the  
vision-based controller, an additional node will be added to the system to provide the 
reference signal to the controller. All recognition and tracking tasks will be implemented 
on this node using an Android smart device where no additional load will be added to the 
main controller. 

The results of this node are shared with the main controller as packets of data using 
Wi-Fi depending on user datagram protocol (UDP) using an Android smartphone. This 
provides multiple advantages over other image processing devices. On one hand, it is 
supplied with a built-in camera, this feature reduces the processing time as there is no 
need to use any hardware connections to transmit the image to a standalone processor. On 
the other hand, modern smartphones have high-resolution cameras and high-speed 
processors. A standalone camera with high resolution cannot be used without a computer 
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and requires additional installations and drivers to become compatible with industrial 
projects. 

The device will capture frames of images to track the specified object continuously. 
As a frame becomes ready, the tracking cycle is triggered. Frame capturing rate is 
adjusted on the maximum frame rate supported by the device which is 60 frames per 
second (FPS). This means that the tracking algorithm’s frequency (TF) is 60 Hz. 

4 Object recognition and tracking 

Object recognition is responsible to extract data from input images. It consists of four 
steps: 

1 Receiving an input frame and analysing it to obtain the position of the tracked object 
(object recognition). 

2 Transforming the position from the camera frame to the robot frame. 

3 Computing the linear velocity of the tracked object by taking the time derivative of 
its position. 

4 Sending the position and the velocity of the object continuously to the main 
controller as a reference signal which should be tracked by the controller (object 
tracking). In this paper, the recognition and tracking algorithm aims to recognise 
objects based on their shapes or colours. Then, it should extract the position of the 
target object in the camera frame (pixel units). This algorithm was implemented 
using OpenCV library (Bradski and Kaehler, 2008) for image processing for Android 
operating systems (OS). The selection of such a library provides multiple advantages 
as Android OS is open-source and its application can be easily implemented. 
Furthermore, smartphones have internal cameras and internal communication 
methods such as Wi-Fi and Bluetooth, so data can be shared easily after processing. 
Accordingly, objects will be detected and tracked using the developed Android 
application. 

The obtained position of the object is transformed using the robot’s inverse kinematics 
into the joint space to provide the reference signal. Finally, the reference signal is 
transmitted to the main hardware controller using Wi-Fi by the mean of UDP protocol. 

4.1 Object recognition 

4.1.1 Object recognition for circular objects 
This option enables the robot to track only circular objects neglecting their colours. This 
algorithm depends on Hough circle transform (HCT) (Supriyanti et al., 2012) which finds 
circles in a greyscale image. It defines the circle with a centre point (consists of X and Y 
locations) and a radius. The central location can be used to get the position of the object 
in X and Y-axes, while the radius will be used to compute the position on Z-axis. 

At the first step, the camera is initialised and started to obtain images continuously, 
these images are converted from RGB to the greyscale. As the algorithm is responsible to 
track the circular objects regarding their colours, the greyscale is entirely sufficient for 
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this task, so there is no need to use a complicated process for coloured images which 
requires more computational time. The greyed images are then blurred to remove the 
outlier pixels that represent noise in the image. The data relating to the position of the 
tracked object can be obtained by applying the HCT algorithm to the blurred images. If 
the algorithm finds multiple circles, the circle with the largest radius will be selected for 
tracking, and its parameters will be printed and stored for the next processes and control. 
As shown in Figure 2, the steps of this algorithm can be summarised as, 

1 Initialising the camera by setting the frame size (800 × 600) and the capturing speed 
(60 FPS). 

2 Receiving the new frame. 

3 Converting the frame to greyscale. 

4 The frame is blurred to reduce the noise. 

5 Applying the HCT algorithm on the blurred image to obtain the circles. 

6 If the number of the found circles is larger than 0, the algorithm will print the 
parameters of the largest circle, in other words, the circle that has the largest radius. 

Figures 3 and 4 show the results of this algorithm, where the frame (image) contains three 
objects: large red circle, small red circle, and blue rectangular object. In Figure 3, the 
algorithm detected the large circle as was expected, and it neglects the small one. The 
large one was removed in Figure 4, so the algorithm detects the small one. 

Figure 2 Circular objects recognition algorithm 

 

4.1.2 Object recognition for coloured objects 
This option enables the robot to recognise the objects depending on their colours. The 
algorithm is started by selecting the desired colour by the user and initialising the camera. 
When a new image is received, each pixel of the image is converted to its equivalent 
RGB value to obtain the values of red, green, and blue ratios. These ratios are used to 
compare if this pixel matches the desired colour specified by the user. If the obtained 
ratios are in the range of the target colour, the algorithm stores the position of the 
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matched pixel. When all pixels are analysed, the algorithm computes the centre point of 
the object by computing the average location of the matching pixels. The average 
location is then used to obtain the position of the tracked object in the XY plane, while 
the number of the matching pixels is used to determine the position of the tracked object 
in the Z-axis. 

Figure 3 Large circle detection (see online version for colours) 

 

Figure 4 Small circle detection (see online version for colours) 

 

As shown in Figure 5, the steps of this algorithm can be summarised as, 

1 Initialising the camera by setting the frame size (800 × 600) and the capturing speed 
(60 FPS). 

2 Receiving the new frame. 

3 It checks the colour of each point in the image. 

4 If the colour of this point matches the target colour, the point location will be stored 
in a list until the end of the cycle. 

5 All matched points are used to compute the average (centre) location of the object on 
the XY plane using the following relation: 
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0 0,

p p

i i
i i

x y
x y

p p
= == =
 

 (1) 

where x, y are the central location of the detected object in the camera frame and xi, 
yi are the location of the ith pixel, p is the number of the matched points. 

6 The number of the matched points is then used to compute the position of the target 
object on the Z- axis. 

Figure 5 Object recognition for coloured objects 

 

Figure 6 shows the detection resulted from this algorithm for selecting blue objects. The 
image shows a frame with multiple objects, one of them is blue (Arduino Mega at the 
left) and the algorithm detects it. 

Figure 6 Colour detection (see online version for colours) 
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4.2 Position transformation from camera frame to robot frame 

Usually, the transformation from the camera frame to the robot frame is carried out using 
two steps (Andhare and Rawat, 2016): 

1 Transformation of pixels to cm in the camera frame. 

2 Transformation of cm in the camera frame to the robot frame. 

These steps require a relation between the position obtained in pixels and the real position 
related to the camera frame. The results obtained from this relation are then transformed 
to the robot frame using a transformation matrix. Figure 7 shows the relation between the 
camera frame and the robot frame. 

Figure 7 Position transformations 

 

The offset between the camera frame and the robot frame can be represented by a linear 
distance D and rotational offset δ ([D δ]) with small constant values (Agudo et al., 2016). 
However, underestimating them will cause tracking errors. This error occurs due to 
imperfect matching between the camera frame and robot frame during camera setup. To 
eliminate this error, both (D) and (δ) should be estimated. 

This paper proposes an empirical method to estimate and derive a transformation 
matrix that transforms local camera frame (pixel) to global robot frame (cm) with 
eliminating the effect of the offset among frames. This method provides the advantage of 
reducing computational time and compensates the errors resulted from the imperfect 
positioning of the camera at the origin of the robot frame. The main challenge after object 
recognition is how to transform the local position (pixel) to the global position (cm). 
Converting pixels to cm is a linear process (Agudo et al., 2016), which depends on two 
variables, pixels on X-axis (Xc) and pixels on Y-axis (Yc). This can be estimated using the 
LSA depending on training data. From practical observation, it was noticed that the 
function of the real position on X-axis (Xr) and Y-axis (Yr) is linear of two independent 
variables (Xc and Yc) measured by pixels in the camera frame, while the real position on 
Z-axis (Zr) is a function of a single variable (Zc) in the camera frame. These relations are 
described in equation (2) and will be proven experimentally in this section. 
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where ax, bx, cx, ay, by, cy, zz and bz are constants to be estimated, Xc, Yc and Zc are the 
position of the tracked object in camera frame measured in pixels. Then, the global 
transformation matrix can be written depending on equation (2) as follows, 

0
0

0 0

r x x c x

r y y c y

r z c z

X b c X a
Y b c Y a
Z b Z a

       
       = +       
              

 

where all parameters are scalars. Each sub-equation in equation (2) will be analysed 
separately to obtain the unknown parameters. For the training data, the first part of 
equation (2) is rewritten into matrix form as a function of the measured and unknown 
parameters as: 

x

r x

x

a
X A b

c

 
 =  
  

 (3) 

where 

1 2 3

1 2 3

1 1 1 . . 1
. .
. .

i

T

c c c c

c c c i

A X X X X
Y Y Y c

 
 =  
  

 (4) 

[ ]1 2 3 ,i
T

r r r r rX X X X X=   (5) 

And i is the number of experiments. The previous equation can be solved using the 
following formula of the LSA (Haddad et al., 2019): 

x
T

x r

x

a
Q b A X

c

 
  = 
  

 (6) 

where 
TQ A A=  (7) 

2

2

ci ci

ci ci cici

ci ci ci ci

N X Y
A X X X Y

Y X Y Y

Σ Σ 
 = Σ Σ Σ 
 Σ Σ Σ 

 (8) 

[ ]TT
r r r ci r ciA X X X X X Y= Σ Σ Σ  (9) 

Finally, the vector of unknown parameters can be written as follows, 
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 (10) 

This LSA is solved automatically at the starting of the software using practical training 
data. In the beginning, equation (10) was solved to find the relation of Xr as a function of 
Xc and Yc obtained from the camera, then the same procedure is applied to obtain a 
relation of Yr and Zr. The results were obtained as three vectors as follows: 

4.2233 24.6718
12.26
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0.0325
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x x y y z
z

x y

a a
a

b b
b
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          Φ = = Φ = = − Φ = =           −          − −      

 

The resulted fitting curves between the real position (Xr) and the estimated position (Xe) 
are shown in Figures 8 and 9 for X and Y-axes respectively. The mean square error was 
computed for each curve as 0.3 cm and 0.27 cm respectively. They confirm the 
assumption that the relation between the camera frame and the robot frame is linear as 
was assumed in equation (2). 

4.3 Linear velocity extraction 

In vision-based control, it is important to determine the position and the velocity of the 
moving object. Both of them will be used as reference signals for the controller. The 
position of the moving object represents the destination of the robot’s endpoint, while the 
velocity of the moving object represents the desired velocity of the endpoint. To extract 
the velocity of the tracked object, the time derivative of the object’s position is 
considered, this value represents the instant velocity of the object and can be computed as 
follows: 

2 1e e

s

X XV
t
−=  (11) 

where V is the velocity of the tracked object, 2eX  and 1eX  are the estimated positions 
obtained from two sequential frames, and ts is sampling time for frames capturing. 

Figure 8 X-axis curve fitting (see online version for colours) 
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Figure 9 Y-axis curve fitting (see online version for colours) 

 

4.4 Object tracking 

Object tracking is performed by transmitting the packets that contain the position and 
velocity of the tracked object continuously. If any value of the position or velocity is 
changed, the smartphone will create a packet of tracking data and send it to the main 
controller, which will, in turn, generates the control signal that is required to track the 
received reference signal. 

This operation is continuously repeated as the object is moving. When its velocity 
becomes 0, the tracking algorithm will transmit a packet to the controller to inform it that 
the speed of the object is zero, so the controller creates a new trajectory such that the final 
position of the trajectory equals the reference position (position of the tracked object) and 
the final velocity is zero. 

5 Hand gestures recognition and tracking 

Gestures recognition and tracking are very useful in robotics applications such as manual 
picking and placing, medical applications (Wachs et al., 2011; Becker et al., 2013), and 
body motion simulation (Gans et al., 2009; Mills et al., 2011). It aims to provide the robot 
with the ability to track the user’s hand through two dimensions (X, Z) as the user faces 
the XZ plane of the camera. 

The Kinect camera was used to achieve this goal due to its main advantage of the 
internal software development kit (SDK) supported by MICROSOFT’s programming 
languages. This SDK provides the programmer with the advantage of obtaining the 
position of the joints in the XZ plan easily. While the depth (Y) can be obtained by the 
attached infrared sensor. So, the programmer does not need to recognise the joints of the 
human body, instead, he should deal with the obtained coordinates of each human joint. 
When the Kinect recognises a human body, it computes the depth distance of this body 
using the attached infrared sensor. Then, its SDK provides details about the position of 
each joint in that body. In fact, not all joints are important for hand tracking tasks. 
Therefore, for simplicity, only the important joints will be imported from the SDK as 
shown in Figure 10. 

At the first step, the algorithm creates a local (xzl) and a global coordinate (XZg) in the 
camera frame. The global coordinates lay on the top right corner of the computer screen, 
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while the local coordinate was selected to be located at the centrw point of the right 
shoulder as shown in Figure 11. The SDK provides the programmer all joints coordinates 
with respect to the global coordinate. 

Accordingly, transformation procedures will be done at each program cycle. In this 
application, the transformation process between these coordinates is linear, as the local 
coordinate is linearly transformed by a distance D from the global coordinate, this 
distance can be computed using the global coordinate of the right shoulder (Xs, Zs) by the 
following relation, 

2 2
s sD X Z= +  (12) 

At each program cycle, the algorithm focuses on the local coordinate, where its origin is 
the global coordinates of the right shoulder. So, all other joints will be transformed from 
the global coordinates to the local coordinates, hence, the location of each joint should be 
known with respect to the right shoulder (Xs, Zs). 

Figure 10 Human joints (see online version for colours) 

 

Figure 11 Global and local camera coordinates (see online version for colours) 

 

Any transformation is executed by subtracting the global position of the right shoulder 
from the global position of the desired human joint as the following, 
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j j s

j j s

x X X
z Z Z

= −
= −

 (13) 

where xj and zj represent the local coordinate of the joint, Xj, Zj are the global coordinate 
of the joint. As the position of the right shoulder is the centre of the local coordinate (xzl), 
its local coordinate is always (0, 0). And using equation (13), the local coordinates of 
other joints can be computed. 

The next step is to transform the local coordinates to the robot coordinates. This is 
accomplished by creating a transformation matrix, which has constant elements and can 
be obtained using the equation of the straight line. This process represents a linear 
transformation as the user can move the endpoint of the robot by his hand gestures, for 
example, as the user raises his hand upward, the endpoint of the robot goes up for a 
distance linearly dependent on the user arm displacement, and vice versa. 

To apply this, the local coordinate should be calibrated and the length of the right arm 
should be measured. The proposed hand gesture tracking algorithm provides the user the 
ability to calibrate all parameters by standing on location facing the camera, then by 
raising the left hand to a level above the left shoulder as shown in Figure 12, the system 
will auto-calibrate all required parameters. As the user performs this action, the position 
of the right shoulder will be recorded for future transformations. The length of the right 
arm (L) can be computed by the following relation, 

2 2
rh rhL x z= +  (14) 

where (xrh, zrh) is the local coordinate of the right hand. 
The human hand can be rotated in a circular motion to control the position of the 

robot’s endpoint, with a radius of the arm length (L). Moving the hand from the 
maximum local x position max( )Hx  to the minimum local x position min( )Hx  will move the 
robot from maximum x robot position max( )Rx  to the minimum x robot position min( ).Rx  
And the same is for the motion on the z-axis. 

To obtain the equivalent position required for the moving plate, the equation of the 
straight line y − y1 = S(x − x1) will be employed as follows, 

( )max maxR R H Hx x S x x− = −  (15) 

where S is the slope of the line, max min

max min

.R R

H H

x xS
x x

−=
−

 

From Figure 12, maxHx  is (+L) and minHx  is (–L), so the equation (15) becomes, 

( )max min
max max2

R R
R H H R

x xx x x x
L
−= − +  (16) 

and the same procedures can be done to obtain transformation for the robot z coordinate. 

( )max min
max max2

R R
R H H R

z zz z z z
L
−= − +  (17) 

Finally, the obtained data is transformed from task space to joint space and sent as a 
socket reference signal to the control MCU using a USB serial port. These steps are 
described in the following pseudo-code and the flow chart in Figure 13. 
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Figure 12 Start calibration gesture (see online version for colours) 

 

Figure 13 Hand gesture tracking algorithm 

 

Pseudo code: 

• Open the serial port. 

• Run the camera. 

• Create the global and local coordinates. 

• Wait until the user raises his left arm above the level of his left shoulder to calibrate, 
then: 
a Record the global position of the right shoulder. 
b Compute the right arm length. 
c Start transforming joint’s positions from the global to the local coordinates. 
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• Wait until the user lowers his left hand. 

• Get the local position of the right hand. 

• Transform the right hand’s local position to the robot coordinates. 

• Transform to joints space using inverse kinematics. 

• Create and send the reference signal as a socket. 

• End the tracking if the user raises his left hand above the head’s level, as shown in 
Figure 14. 

Figure 14 End gesture tracking (see online version for colours) 

 

6 Trajectory design 

Trajectory planning is used to provide a smooth reference signal depending on the 
estimated position of the tracked object, this signal will ensure that the moving platform 
will move in the desired manner with a soft start and stop. The trajectory should provide 
the signal that translates the moving platform from the initial position X0 to the final 
position X1 during a period (t). Furthermore, to ensure a smooth motion, the velocity of 
the end effector at the initial time (t0) and final time (t1) should be 0: 

( ) ( )
( ) ( )

0 0 1 1

0 1

,
0, 0

X t X X t X
X t X t

= =
= =   (18) 

In equation (18) there are four constraints that the trajectory should satisfy, therefore, the 
equation of the moving platform’s position with respect to time must be a cubic 
polynomial as 

3 2
0 1 2 3( )TX t a t a t a t a= + + +  (19) 

Using the constraints provided in equation (18), a system of four equations can be 
created, this system was solved with the following results: 
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 (20) 

7 Real-time scheduling and schedulability test 

To ensure real-time tracking, tasks scheduling and schedulability tests should be 
analysed. 

Capturing frame rate was adjusted to 60 Hz, which means a frame will be ready each 
160 ms. In the previous project (Sharida and Hashlamon, 2020), the control sampling 
time was selected to be 8.5 ms. As control sampling frequency is more than ten times 
larger than tracking frequency, the system is stable from the sampling time point of view. 

Detection and tracking consist of multiple tasks, computing the position of the object 
relative to the camera frame, transforming the position to the robot frame, inverse 
kinematics, and transmitting data as a reference signal using Wi-Fi. Table 1 summarises 
these tasks and their specifications. 

The first task is to receive a new frame from the camera, it was defined as a sporadic 
task because all next processes will depend on the results obtained from this frame. So, 
when a new frame is ready, the processor will terminate any under execution task and 
will not complete the uncompleted job, further, the processor will reset all periodic tasks 
and execute them again. Therefore, these tasks should be executed before receiving a new 
frame which represents a deadline for the remaining tasks. 
Table 1 Tasks specifications 

Task Name Type Execution time (ms) 
1 Receive new frame Sporadic 5.2 
2 Object detection (circular) periodic 4 
3 Object detection (colour) Periodic 5.8 
4 Position transformation Periodic 0.1 
5 Inverse kinematics Periodic 0.2 
6 Send data over Wi-Fi Periodic 1.2 

The next task is to detect the tracked object, which can be done using two user-defined 
methods. The user can select one of them at the beginning of the software without 
considering the selection time in the total computational time. For shape-based detection, 
it requires 4 ms in the worst case, where no circles are found. So, the worst-case 
execution time will be assumed as 4 ms. For colour-based tracking, it needs a fixed time 
of 5.8 ms to test all points and extract their colours to get the canter of the object. 

The next one is to extract position data from the obtained pixels position, in other 
words, this task represents the transformation from camera frame to robot frame. This 
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task can be done in either the Android application or in the main controller. However, the 
Android processor has more idle time than the main controller. Therefore, it’s preferred 
to execute it with the next task in the Android processor instead of executing them on the 
main controller. 

The obtained real position represents an input for the next step, where inverse 
kinematics is used to transform the position from workspace to joints space. In this task, 
the angular position is obtained to form the reference signal in the control algorithm. This 
task requires 0.2 ms to be executed using the developed application. Finally, transmitting 
data over Wi-Fi requires 1.2 ms to be executed, this task contains multiple jobs including 
network communications and authentications, and this time is required in the worst case 
when a new Wi-Fi connection is required. 

When the camera frame is ready to be executed, all other tasks are triggered. 
Receiving a frame from the camera is a sporadic task. After receiving this frame, the 
application will find the position of the target object using one of the aforementioned 
algorithms. When this task is finished, it triggers the next task to transform the position 
from camera frame to robot frame. 

The estimated position in the task space is transformed to joint space using the robot’s 
inverse kinematic. Finally, the joint angular position is sent over Wi-Fi using the UDP 
protocol. To ensure that all packets had been received successfully, the transmitter will 
get a replay from the receiver which contains the reference angular position. If the replay 
contains disturbing data, the transmitter will send the packet again and will skip it if the 
data is correct. Furthermore, if the packet is lost, the receiver will not replay before the 
deadline of replaying timeout (1 ms), so that, the transmitter will send the same packet 
again. 

From this description, it can be realised that all tasks are dependent and none of them 
can be pre-empted by another periodic task. However, receiving a new frame which is a 
sporadic task can pre-empt any periodic task at any time when it is released. 

Worst-case execution time (WCET) occurs when the user selects to track an object 
based on its colour and a new image frame is released. This case requires executing all 
tasks described in Table 1. So, the processor needs 12.5 ms to achieve all required tasks. 
All specifications were measured experimentally by getting operating system time 
(Android) after each task. 

Since the required tracking sampling time is larger than the WCET, the system is 
schedulable logically. The rate monotonic (RM) utilisation test ensures that the system is 
schedulable too, as the utilisation factor is less than 10%which keeps it idle for more than 
90% of its cycle time as shown in Figure 15. 

Figure 15 Tracking tasks scheduling (see online version for colours) 
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8 Overall vision-based controller 

The overall setup for this project is shown in Figure 16. The Android device is fixed at 
the origin of the robot axes. However, it has some deflection in the orientation, as it is 
very difficult to match the position and orientation between the two spaces. As a frame is 
ready, the Android application will analyse this frame to get the estimated position of the 
tracked object. The estimated position is then transmitted to the main controller which in 
turn computes the control law and shares its value over the CAN bus real-time network. 
Each ISAS receives the control law and applies it to the actuator through the electrical 
driver. Finally, each ISAS sends the states of the attached actuator to the main controller 
to find the error and perform a closed-loop control. 

9 Results 

The proposed algorithms were implemented and tested experimentally on the delta robot 
shown in Figure 1 which is a lab-made robot that was designed and developed in the PPU 
university. For the objects tracking algorithm, a sample ball was tracked. Figure 17 shows 
the ball before starting the tracking process. When the ball is in the reachable task space, 
the tracking process starts automatically, and the moving platform of the robot will keep 
tracking it until the ball is at the centre of the moving platform as shown in Figures 18 
and 19. For continuous object motion, the robot will keep tracking the object until its 
velocity is zero, Figures 20 and 21, show the results of continuous tracking of the ball 
with random motion on the x- and y-axis respectively. In industrial applications 
especially in picking and placing, the objects had a constant z location as they are usually 
moved by a conveyer belt or located at the ground, for this reason, the z-axis for the 
object was neglected in this experiment. 

Figure 16 Overall system block diagram 

 

The hand gesture tracking algorithm was also tested for random hand motion. At the 
start-up of the algorithm, it searches for a human body, once it is found, the algorithm 
locates the global and local coordinates as shown in Figure 22. When the user raises his 
left hand, the calibration and transformation matrix will be generated automatically and 
the tracking process is triggered. Then the moving platform will continuously move 
proportionally to the motion of the hand as shown in Figures 23, 24, and 25. 
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Figure 17 Object detection at the boundaries of task space (see online version for colours) 

 

Figure 18 Object tracking first example (see online version for colours) 

 

Figure 19 Object tracking, the second example (see online version for colours) 

 

Figure 20 Object motion tracking on the x-axis (see online version for colours) 
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Figure 21 Object motion tracking on the y-axis (see online version for colours) 

 

Figure 22 Detection of the human body (see online version for colours) 

 

Figure 23 Upward hand gesture (see online version for colours) 

 

Figure 24 Left-hand gesture (see online version for colours) 
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Figure 25 Right-hand gesture (see online version for colours) 

 

And the results for continuous random motion on the XZ plane are shown in Figures 26 
and 27 respectively. 

Figure 26 Hand gesture tracking on the x-axis (see online version for colours) 

 

Figure 27 Hand gesture tracking on the z-axis (see online version for colours) 

 

The results shown in Figures 20, 21, 26, and 27 ensure that the robot can track high-speed 
reference signals efficiently and in a real-time manner. It can be noticed that the response 
of the robot is smooth, fast, and has about no overshoot. 
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10 Conclusions 

In this paper, two algorithms for real-time visual servoing had been implemented. The 
first one is used for tracking objects based on their colours and shapes which was 
implemented on a smartphone to avoid additional computational load on the main 
controller. This algorithm provides a solution for the field of view problem. The camera 
frame was located at the centre of the robot frame, while the offset between these frames 
was compensated using the LSA to generate transformation matrixes. More, this method 
does not require calibration. 

The other algorithm was designed for hand gesture tracking using Kinect. This 
method provides the advantage of automatic calibration and generating transformation 
matrixes whenever the user requests. 

Both methods were implemented experimentally and tested on the hardware 
prototype of the delta robot shown in Figure 1(b). 
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