
Palestine Polytechnic University

Deanship of Graduate Studies and Scientific Research

Master of Informatics

Machine Learning Based Disambiguation
of Author’s Names in ORCID Citations

Submitted by:

Jumah Y. Sleeman

Supervisor:

Dr. Hashem Tamimi

Thesis submitted in partial fulfillment of requirements of the degree

Master of Science in Informatics

June, 2018

The undersigned hereby certify that they have read, examined and recommended to the
Deanship of Graduate Studies and Scientific Research at Palestine Polytechnic University the
approval of a thesis entitled: Machine Learning Based Disambiguation of Author’s Names
in ORCID Citations, submitted by Jumah Y. Sleeman in partial fulfillment of the requirements
for the degree of Master in Informatics.

Graduate Advisory Committee:
Dr. Hashem Tamimi (Supervisor), Palestine Polytechnic University.

Signature: Date:

Dr. Sami Snaineh (Internal committee member), Palestine Polytechnic University.

Signature: Date:

Dr. Mohanad Jaabari (External committee member), Hebron University.

Signature: Date:

Thesis Approved

Dr. Murad Abusubaih
Dean of Graduate Studies and Scientific Research

Palestine Polytechnic University

Signature: Date:

i

Declaration

I declare that the Master Thesis entitled "Machine Learning Based Disambiguation of Au-
thor’s Names in ORCID Citations" is my original work, and hereby certify that unless stated,
all work contained within this thesis is my own independent research and has not been submitted
for the award of any other degree at any institution, except where due acknowledgement is made
in the text.

Jumah Y. Sleeman

Signature: Date:

ii

Statement of Permission to use

I, the undersigned, hereby agree that the library of Palestine Polytechnic University may
make this M.A thesis entitled Machine Learning Based Disambiguation of Author’s Names
in ORCID Citations available to borrowers under the library rules.

Brief quotations from this thesis are allowable without special permission, provided that
accurate acknowledgement of the source is made. Any coping or use of the material in this thesis
for financial gain shall not be allowed without my written permission.

Jumah Y. Sleeman

Signature: Date:

iii

Dedication

I dedicate this dissertation to my family and to all those who aspire to add new ideas and
knowledge to serve humanity worldwide.

iv

Acknowledgement

I would like to take this opportunity to acknowledge all those who helped me during this
thesis work. I would like to thank my supervisor Dr. Hashem Tamimi for introducing me to the
world of machine learning, his valuable suggestions, outstanding and insightful guidance during
the course of this thesis work which facilitated my achievement of this dissertation.

I would also like to thank all the faculty and staff at the Computer Science Department at the
University of Palestine Polytechnic for their assistance during my master’s course-work.

I would also like to thank Alquds Open University for the opportunity that they gave to me to
do my master.

I would like to thank my friend Ibrahim M.Qdemat for his endless support and encouraging
me to do my best.

Finally, I would like to thank my family for their continuous support, encouragement and
patience without which this thesis could not have been concluded.

v

�
	

jÊÖÏ @

úÎ« Aê
�
®J
J.¢

�
� Õ

�
æK
 ú

�
æË @

�
éJ
�AJ

�
®Ë @

�
HA£AJ.

�
KPB@ 	áÓ A

�
«ñ

	
K

	
Ë

ñÖÏ @ Z AÖÞ�

@ 	á«

	
�ñÒ

	
ªË@

�
éË @ 	P @

Q�.

�
Jª

�
K

	áÓ Q�
�»

@ éË ø

	
YË@

	
Ë

ñÖÏ @ É

�
JÓ

�
é

	
®Ê

�
J
	
m× ÉÓ@ñ« I. �. ��.

	
�ñÒ

	
ªË@

�
HYm�'

 AÓ A
�
J. Ë A

	
« .

�
éJ
ÒÊªË@

�
H@Y

	
J
�
��ÖÏ @

Z AÖÞ�

B@ ð

@ ZAÖÞ�

B@

�
H@PA�

�
J

	
k@ ð

@ é�

	
®

	
K Õæ�B@ ú

	
¯

	
àñ»Q�

�
�

��

	áK

	
YË @

	á�

	
®Ë

ñÖÏ @ 	áÓ

�
é«ñÒm.

× ð

@ Yg@ð Õæ�@

ù

	
®Ë

ñÓ

	á�
K.
	Q�
J
Ò

�
JË @ I. ª�Ë@ 	áÓ ½Ë

	
YË .(ZAÖÞ�

B@ è

	
Yë

�
éK. A

�
J» ú

	
¯ ZA¢

	
k

@)

�
éJ

KCÓB

@ ZA¢

	
k

B@ð

�
èPAª

�
J�ÖÏ @

�
éJ

	
J
�
®
�
K

	
à@

.

	á�

	
®Ë

ñÖÏ @ ÉJ.

�
¯ 	áÓ

�
éJ
ÒÊªË@

�
�

KA

�
KñË@ ©J
Òm.

�
�
' I. ª�Ë@ 	áÓ

	
àñºJ
� ð

@

�
éJ
ÒÊªË@

�
H@Y

	
J
�
��ÖÏ @

	
J

	
��

�
JË @ 	áÓ

	
¬YêË@ É

�
JÒ

�
JK

�
IJ
k ø

Yj

�
JË @ @

	
Yë ©Ó ÉÓAª

�
JÊË ÈñÊmÌ'@ É

	
�

	
¯

@ 	áÓ

�
èYg@ð ù

ë

	
J

	
��

�
JË @

	á�
ªÓ
	

Ë

ñÓ úÍ@

ù

Ò
�
J
	
�
�
K ú

�
æË @

�
H@Y

	
J
�
��ÖÏ @ ©J
Ô

g
.

YK
Ym�
�
' ÈC

	
g 	áÓ

	
Ë

ñÖÏ @

�
éK
ñë YK
Ym�

�
' �

ém.
Ì'AªÓ ú

	
¯

½Ë
	
X ©Óð . Õæ�B@ �

	
®

	
K ú

	
¯

	
àñ»PA

�
�

�
�K

	áK

	
YË @ 	áK
Q

	
k

�
B@

	á�

	
®Ë

ñÒÊË

�
H@Pñ

�
�

	
�ÖÏ @ ð

@

�
HA

	
®

	
J�ÖÏ @ 	á« Aë

	Q�
J
Ö
�
ßð

h.
	
XAÖ

	
ß �

Ij�. �

@ , ½Ë

	
YË .P@QÒ

�
J�AK. YK
 @

	Q�
�ÖÏ @

�
éJ
Ô

�
Q̄Ë @

�
HAJ.

�
JºÖÏ @ Ñj. mÌ @Q

	
¢

	
� @Q�
J.» AK
Ym�

�
' É

�
JÖß
 È@ 	QK
 B é

	
KA

	
¯ ,

Q�

	
¯ñ

�
K úÍ@

	
¬Yî

�
E

�
é�@PYË@ è

	
Yë

	
à@

.
�
èZA

	
®ºË@ ú

ÍA« ù

KA

�
®Ê

�
K Ég Q�

	
¯ñ

�
JË

�
éK
A

	
ªÊË

�
éÖÞ�Ag

�
èPñ¢

�
JÖÏ @

	
J

	
��

�
JË @

Y»Pð

@

�
HA

	
KAJ
K. Y«@ñ

�
¯

�
H@XAîD

�
�
�
J�@ úÍ@

�
èPA

�
�B

@ ©Ó

	á�

	
®Ë

ñÖÏ @ Z AÖÞ�

@ ú

	
¯

	
�ñÒ

	
ªË@

�
éÊ¾

�
�ÖÏ Ég É

	
�

	
¯

@

ÈC
	

g 	áÓ Qå
�
�
	
JË @

�
é
	
J�ð

�
IjJ. Ë @

	
à@ñ

	
J«ð

�
IjJ. Ë @

�
éÊm.

× 	
à@ñ

	
J«ð

	á�
»PA
�

�ÖÏ @
	á�

	
®Ë

ñÖÏ @ Z AÖÞ�

@ 	áÓ

	
Ë

A
�
J
�
K ú

�
æË @

�
é�@PX Z@Qk. @

Õç

�
' , ½Ë

	
X 	áÓ Ñë

B@ð . A

�
ªÓ ÑêªJ
Òm.

�
�
'ð

	
Ë

ñÖÏ @ �

	
®

	
JK.

�
é
�
®Êª

�
JÖÏ @ ¡�. @ðQË@ ©J
Ô

g
.

XAm.
�'

 @

�
HA¾J.

�
�Ë@

�
éJ
j. î

	
DÓð ù

KA

	
J
�
JË @

�
IjJ. Ë @

�
éJ
Ó

	PP@ñ
	

k : É
�
JÓ , ú

Í
�
B@ ÕÎª

�
JË @ i. ëA

	
JÓ 	áÓ

�
é«ñÒm.

× 	á�
K.
�
é
	
KPA

�
®Ó

�
HAK. A

	
ªË @

	
J

	
��

�
�

	
à

@

�
éK. Qj.

�
JË @ l .

�

'A

�
J
	
K

�
I

�
J�.

�
K

@ Y

�
®Ë .

�
éJ

K @ñ

�
�ªË@

�
HAK. A

	
ªË @

�
éJ
Ó

	PP@ñ
	

kð 	QK
AK.
	

	
J�Óð

�
éJ
�. �ªË@

	
Ë

ñÖÏ @ úÍ@

ù

Ò
�
J
	
�
�
K �AJ.

�
J
�
¯B@ h. @ð 	P

@

�
I

	
KA¿ @

	
X @

AÜØ
�

�
�
®j

�
JË @ ú

	
¯ A

�
J. K
Q

�
®
�
K

�
é

JÖÏ AK. 95

�
éJ.�

	
�K.

�
�J

�
¯X

�
éJ

K @ñ

�
�ªË@

�
HBAmÌ'AK.

�
é
	
KPA

�
®Ó

�
éJ
Òë

@ Q�

�»

B@

	á�
»PA
�

�ÖÏ @
	á�

	
®Ë

ñÖÏ @ Z AÖÞ�

@

�
è
	Q�
Ó

�
I

	
KA¿ , ½Ë

	
X úÍ@

�
é
	
¯A

	
�B

AK. . B Ð

@ é�

	
®

	
K

.
	á�

	
®Ë

ñÖÏ @ Z AÖÞ�

@ 	á«

	
�ñÒ

	
ªË@

�
éË @ 	P @

ú

	
¯

�
é

JÖÏ AK
 12.9

�
éJ.�

	
�K.

Q�

�
K

A
�
K AêË ú

�
æË @ øQ

	
k

B@

vi

Abstract

Author’s Names Disambiguation (AD) is a type of record linkage which is applied to
scholarly documents. The ambiguity often occurs due to different factors such as authors who
have more than one name version, or group of authors who share the same name. Therein, it is
difficult to distinguish between scholarly document authors or to group scholarly documents by
authors. Machine learning techniques provide a solution to deal with this challenge by training
the machine to classify all the documents belonging to a certain author and distinguish them
from works of other authors sharing the same name. However, AD is still a great challenge due
to the ever-increasing size of digital libraries and the lack of training examples that represent the
whole domain. This study aims at providing a solution by using ORCID citations as a large and
reliable source of training data. A comparison study has been made among a group of machine
learning approaches including j48, DNN, Naive Bayesian and Random forest. The results from
the experiment have proven that Random forest classifier is the best among them with almost
95% accuracy. In addition, coauthors feature was the most important instance compared to the
other instances which has an impact of 12.9% in eliminating ambiguity in author’s names.

vii

Contents
List of Tables x

List of Figures xi

1 Introduction 1
1.1 Problem Statement and Motivation . 1
1.2 Definitions . 3
1.3 Thesis Structure . 4

2 Background 5
2.1 ORCID Structure . 5
2.2 Introduction to Weka . 10

2.2.1 Using Weka . 11
2.3 Random Forest Classification . 12

2.3.1 RF Parameters . 13
2.4 Machine Learning Performance Evaluation . 13

2.4.1 Information Gain (InfoGain) . 14
2.4.2 Cross Validation for Classification Problems 14
2.4.3 Model Evaluation Metrics . 14

2.4.3.1 Metrics Computed from a Confusion Matrix 15
2.4.3.2 Receiver Operating Characteristic Curve (ROC) 17
2.4.3.3 Area Under the Curve (AUC) 17

2.5 Semantic and Distance Matrices . 18
2.5.1 Semantics . 18
2.5.2 Levenshtein Distance . 20
2.5.3 Damerau Levenshtein Distance . 21
2.5.4 Jaro Similarity . 21
2.5.5 Jaccard Similarity . 21
2.5.6 Cosine Similarity . 22
2.5.7 N-Grams Similarity . 23
2.5.8 Optimal String Alignment . 23

3 Literature Review 25
3.1 Type of Approach . 25

viii

3.1.1 Author Grouping Methods . 25
3.1.2 Unsupervised Techniques . 26
3.1.3 Supervised Techniques . 26

3.2 Database . 26
3.3 Features Information . 26
3.4 Experiments Evaluation . 28

3.4.1 The Mean and Standard Deviation . 28
3.4.2 Experiments Design and Evaluation 28

3.5 Related works . 28

4 Methodology and Data Analyses 31
4.1 ORCID Database . 31

4.1.1 Datasets Selection . 31
4.1.2 Database and Labeling . 32

4.2 Methodology . 33
4.2.1 Design Rules . 33

4.2.1.1 Notes on ORCID Profile . 33
4.2.1.2 Citation Representation . 34

4.2.2 Coauthor Methodology . 38
4.2.3 Publishing Year Methodology . 41
4.2.4 Journal Title Methodology . 41
4.2.5 Work Title Methodology . 42
4.2.6 Machine Learning . 44

4.3 Chapter Summary . 45

5 Experiments and Results 47
5.1 Experiments Setup . 47
5.2 Random Forest Classifier . 48

5.2.1 RF statistic Result . 49
5.3 Random forest versus other machine learning approaches 50
5.4 Features Ranking and Distance Matrices . 51
5.5 Execution Time . 54

6 Conclusion and Future Work 57
6.1 Conclusion . 57
6.2 Future Work . 58

A Web-Application 59

Bibliography 75

ix

List of Tables

2.1 Confusion matrix (C.M) . 15

3.1 Outline of Disambiguation Procedures . 27
3.2 Outline of Disambiguation Performance . 30

4.1 Orcid Datasets Samples . 32
4.2 Training and Testing samples . 33

5.1 RF tuned parameters using 10-folds cross validation 48
5.2 The statistics results in the testing phase . 49
5.3 RF detailed accuracy results in testing phase . 49
5.4 Analysis of algorithm on Knowledge level ORCID Data set 50
5.5 Detailed Accuracy by Class . 51
5.6 Features Ranking and Distance Matrices . 52
5.7 Features Ranking and Distance Matrices by excluding the two smallest InfoGain

values . 53
5.8 The statistics results in the testing phase . 54
5.9 RF detailed accuracy results in testing phase . 54
5.10 Pre-processing time performance . 55

x

List of Figures

1.1 Name Disambiguation . 2

2.1 Author profile [1] . 5
2.2 ORCID record structure . 7
2.3 ORCID-work activities . 8
2.4 Public ORCID ID . 9
2.5 Weka GUI Chooser . 11
2.6 Weka Explorer . 12
2.7 ROC Curve and AUC . 17
2.8 Similarity Measures, bold are the ones that we used 18
2.9 Levenshtein distance . 20
2.10 Cosine distance . 22
2.11 N-Grams overlapping . 23

4.1 Citation Architecture . 34
4.2 Positive pairs for separated citations from an author’s profile 35
4.3 Positive pairs for one author profile (Chain of citations) 35
4.4 Negative pairs (First Method) . 36
4.5 Negative pairs (Second Method) . 37
4.6 Coauthor’s Names Structure . 39
4.7 Journal Similarity . 42
4.8 Sentence similarity computation diagram . 44
4.9 Machine Learning Phases . 45
4.10 Weka Classification . 45
4.11 The Methodology Phases . 46

5.1 ROC curve for predicting the author’s citation pairs. 50
5.2 Comparison between machine learning approaches (ROC Curve) 51
5.3 Accuracy value by excluding one feature periodically 53
5.4 Accuracy value by excluding one feature periodically according to InfoGain ranking

results . 54
5.5 Time performance in pre-processing phase . 55

xi

List of Figures

5.6 Time performance prediction using RF classifier 56

A.1 Matching and not matching web-application process 59
A.2 ML Based Disambiguation of Author’s Names in ORCID Citations Application . . 74

xii

Glossary

A.C.C Author’s Citation. 3

AC Author’s Contribution. 3

AD Author’s Names Disambiguation. vii, 1, 3, 25, 26, 31, 33, 44, 55

AM Author’s Match. 4

AN Author’s no-match. 4

AUC Area Under Curve. 47

C.M Confusion matrix. 14

CA Classification Accuracy. 15

CE Classification Error. 15

CM Citation Matching. 3

DL digital library. 2

DM Distance Matrices. 51, 52

DNN Deep Neural Networks. 47

Fnum The number of features to consider when splitting each node. 13

FPR False Positive Rate. 50

J48 Decision Tree. 47

LNFI Last-name First-intial. 4

MC Mixed Citation. 4

Orcid ID Author’s Identifiers. 3

xiii

GLOSSARY

RF Random Forest. 12, 13, 47

ROC Receiver Operating Characteristic. 17

SC Split Citation. 4

Tdepth The tree depth. 13

Tnum total number of trees. 13

TPR True Positive Rate. 50

Weka Waikato Environment for Knowledge Analysis. 10

xiv

Chapter 1

Introduction

The quantity of scholarly documents is growing rapidly. Different authors may share the
same name and may also publish under various names. This may lead to inconsistency in
publications data where publications of some authors be placed under different authors. For the
researchers in their fields, it is important to find all working activities of the same author and
cluster them together. Our objective in this thesis is to introduce a solution to disambiguate the
authors’ names.

1.1 Problem Statement and Motivation

Author’s Names Disambiguation (AD) is a very important and complex research topic.
During search and retrieval of information there is a shortage in results because of the great
potential of authors who share the same name which negatively influence the scientific research
life cycle. Therefore, it is necessary to find a reasonable and effective way to distinguish the
different authors who share the same name and thereby, identify the identity of each author.

Disambiguation of author’s names can enhance the scientific discovery process and improve
the efficiency of research funding and collaboration within the research community. It is
important to clarify the ambiguity in the authors’ names as a mean of gathering their research
work, make their research known, increase the chance of citation, ensure that the research is
counted in research assessment and to increase the chance of new collaboration. AD helps
authors to have complete profiles containing all their work which increases the accuracy and
reliability to distinguish and cluster their works.

AD is a challenging problem that is caused by multiple reasons. Among which, authors may
publish under multiple names for variety of reasons including different spelling, misspelling,
name change due to marriage, or the use of the family names and initials. Figure1.1 illustrates a
case of AD problem. In the upper half of the figure, four different authors’ share the same name
"Mohammad Imran" while, in the lower half, the same author has four different names: The first
name then the family name, the first initial of the first name then the family name, the family
name followed by the first initial of the given name and finally, the family name followed by the

1

Chapter 1. Introduction

first name.

Figure 1.1: Name Disambiguation

Typical approaches for AD rely on information about the authors such as their affiliations,
email addresses, year of publication, co-authors and other topic information to distinguish authors.
Data that comes from individuals and organizations seems to be a hybrid system where all who
participate in research, scholarship, and collaborations are uniquely identified and connected
to their contributions and affiliations. In short, with a hybrid system designed to accommodate
records from multiple sources, how do we determine that citation X record from Y different
sources are likely to be referring to the desired researcher. These information can be used in
machine learning approaches to decide whether two papers refer to the same author or not.

In recent years, the collection of bibliographic information relevant to a particular article has
become a major challenge [2]. Users often need to exploit the relationships between citations to
determine the impact of a particular article digital library (DL) [3]. In order to keep the citations
of stored documents in DLs, consistent and up-to-date, we must keep in mind the excellent
description of the four main challenges that impact name disambiguation that have been offered
by (Smalheiser & Torvik, 2009) [4]

1. The name abbreviations that consist of the initial letter or parts of the first name, middle
name and family name, are included in the articles database instead of the full-name.

2. Identical names in which multiple authors may share the same name label.

3. The same individual might write more than one name due to:

• Spelling errors.

• Name changes (for marriage, religious conversion, etc.).

• Spelling variants.

• The use of pen names.

4. Pseudonyms or alias that someone such as an author uses instead of his or her real name.

2

Chapter 1. Introduction

The Open Researcher and Contributor ID (ORCID) registry presents a unique opportunity
to solve the problem of author names ambiguity [9]. From ORCID organization perspective,
creating identifiers for individual researchers means creating a system where there is a one-to-one
relationship between the identifier and the researcher. But every researcher could apply for
ORCID identifier several times, this may mean many identifiers for the same author, uncompleted
profile and that the author might write his name in different forms. Therefore, ORCID is not
enough to solve the ambiguity of authors’ names. ORCID mission statement implies that its
system has the ability to generate a unique identifier for each author registered in the system.
The questions about how each author profile records are created, how they are managed and
corrected and who owns them are of a very importance and need to be resolved well before any
public ORCID system is built and launched.

In this work we propose a new method to solve the AD problem using supervised machine
learning. Like some existing literature, we re-define the AD problem as a binary classification
problem. The classification system in our case reads the meta data of two authors and maps them
to the similar class or to the notsimilar class. Also, we construct a web-application to predict
wither two citations belong to same class or not as illustrated in appendix A.

Researchers who follow this approach has the challenge of collecting and labeling data for
training the classifier. Our approach in this thesis is to make use of ORCID data for training
since it represents a pre-labeled and representative dataset. This enabling us to build an accurate
and reliable machine learning model that can produce a solution for the ambiguity problem in
the names of authors without the effort needed to collect and label new data. ORCID contains
citation data, each citation consists of the basic attributes namely, "coauthors names, journal title,
work title and the publishing years".

1.2 Definitions

Below are the definitions and the acronyms that have been used through the thesis:

1. Author’s Identifiers (Orcid ID): ORCID system provides a unique 16 digit identifier to
authors’.

2. Orcid-profile : Each author has one profile with only one ORCID ID.

3. Author’s Contribution (AC): The author’s work information consist of Author’s Affiliation
(AF) and Author’s Citation (A.C.C). AF or the name of the institution where the author
work, consists of the organization name and the department name; while A.C.C contains
the citation information.

4. Citation Matching (CM): Given two sets of publications X and Y , in order to find for each
xεX a set of y1, y2, y3, ..yn, εY such that both x and yi (1 ≤ i ≤ n) belong to the same

3

Chapter 1. Introduction

author. Because of the lack of fixed format for citations, various names may be attributed
to a single author.

5. Mixed Citation (MC): Given a collection of publications X , by an author A1, our goal is
to identify publications by another author A2 in X , when A1 and A2 share the same name
string [5].

6. Split Citation (SC): Given two sets X and Y of author’s names and associated publi-
cations, the challenge is to find each author’s name xεX in a set of author’s names,
y1, y2, y3, ..yn, εY such that both x and yi (1 ≤ i ≤ n) are names variants of the same
author. [6].

7. Last-name First-intial (LNFI): The author’s string name established from the first initial of
the given name and the family name (e.g. Wang, Y).

8. LNFI Cluster: In which a group of authors share the same last-name first-initial, e.g., there
are 829 Zhang,Y authors share LNFI.

9. Author’s Match (AM): Two or more ACs that refer to the same individual.

10. Author’s no-match (AN): Two ACs that refer to different individuals.

1.3 Thesis Structure

The remaining parts of this thesis are organized as follows: Chapter 2 presents the background
for this thesis with a detailed description of the ORCID data structure, machine learning,
performance evaluation techniques and the distance matrices. Chapter 3 discusses research
related of this work. Chapter 4 contains the methodology and data analyses. It presents the
process of selecting the ORCID data-sets, feature representations used by machine learning
algorithms, and the general methodology used by the machine learning methods in predicting
new citations records. Chapter 5 shows the experiments done to predict new citation pairs,
random forest versus other machine learning approaches, and the results obtained from these
experiments. Chapter 6 contains conclusion and future work. It summarizes the work done in
this thesis.

4

Chapter 2

Background

2.1 ORCID Structure

ORCID is a non-profit organization, whose aim is to solve the author’s name ambiguity
problem in scholarly communications by creating unique identifiers (ORCID ID) for individual
researchers and supports linkages between each author and his professional activities as illustrated
in Figure 2.1. By using ORCID ID, ORCID ensures that all researchers activities and outputs
are easily discoverable [7]. ORCID membership is opened to any organization interested in

Figure 2.1: Author profile [1]

integrating ORCID identifiers [8]. ORCID database records are created by individuals to whom
the records refers, in which we can share information for both public and registered members to
support open access to information for the research community. Figure 2.2 illustrates ORCID
records structure which consists of:

1. Root element: The content of the researcher data is added within the root element.

2. ORCID identifiers (ORCID ID): ORCID system provides a unique sixteen digit identifier
to each person, e.g. 0000-0002-4210-6896.

3. Language preference: English is the default language, but it can be changed into the user’s
preference.

5

Chapter 2. Background

4. History details: This part shows how the ORCID record was created. It can be either
"website" or "direct". When the record was created through the ORCID registry directly,
"member-referred", when a member sent a user to the Registry and the sign up was done as
part of an author’s connection and "API" when it was created with a batch create process
on behalf of the user.

5. Biographical information: Both personal and biographical information are included under
ORCID-bio, available under ORCID-profile. It contains: Personal-details, biography,
external website links, contact-details, keywords and external identifiers.

6. ORCID Activities: It comes after the biographical information. It includes the affiliations,
works and/or funding items. The affiliation section of an ORCID record is recorded under
ORCID-activities. This area is separated from the ORCID-bio fields. Affiliation includes
many fields as described in Figure 2.2. Works information which includes the author’s
activity work as illustrated in Figure 2.3

7. Source: Contains information about how and when the elements were added to the
record. The elements are: ORCID-history, external-identifier, affiliation, ORCID-work
and funding.

8. Create-Date: The date and time when the element was created.

9. Last modified date: The date and time when the record was last modified.

6

C
hapter

2.B
ackground

Figure 2.2: ORCID record structure

7

C
hapter

2.B
ackground

Figure 2.3: ORCID-work activities

8

Chapter 2. Background

In order to effectively identify and achieve this mission, ORCID needs to be a part of several
publisher work-flows:

Firstly, manuscript submission system where ORCID identifier can be collected when an
author submitting the basic information such as publication title, author’s name, affiliation,
abstract, cover letter, etc, then journals could ask coauthors to enter their ORCID identifiers.

Secondly, searching for prior work by linking author’s name with ORCID identifier as
illustrated in Figure 2.4. This will be used as a public ORCID ID to eliminate the ambiguity of
searching taking into account the strategies of ORCID registration process as follows:

1. Non-active researchers could apply for ORCID identifiers several times.

2. The system would depend on a third-parties to provide organizationally-asserted records.

3. Control over profile information will determine that citation X from Y different sources
refers to the desired researcher.

Figure 2.4: Public ORCID ID

Name ambiguity can exists clearly when the author’s name is introduced by first-name initial
and last-name. For example, different names Sung Jin Kim and Seon-Kyu Kim are simplified
to the same name label S Kim [9]. In ORCID database, the string name "Wang Y" has various
name variations, e.g, "Wang Ying", "Wang Ying Yang" and "Wang Lee Yung". As well in the
web DBLP [10], the author page of "Yu Chen" contains citations from three different people
with the same name: "Yu Chen" from University of California Los Angeles, "Yu Chen" from
Microsoft at Beijing branch, and "Yu Chen" as the senior professor from Renmin University of
China. This problem is identified as a situation where multi authors’ share the same name label.

According to Smalheiser and Torvik, in ORCID files authors can be identified by the first
initials only, by the middle name included with the family name, or by the family name only
instead of the full name. Because of the growing orientation of different science approaches, it
has become more difficult to tell whether John Smith publishing about linguistics is different
from John Smith publishing in biochemistry, whereas in the past, two identities could be safely
assumed. [4].

Therefore, it is not practical to manually create a profile for each author due to the presence
of huge digital libraries. In other words, automatic name disambiguation project should consider
all different cases to help others using data in term of performance, accuracy and availability.

9

Chapter 2. Background

2.2 Introduction to Weka

Weka is a collection of machine learning algorithms and data pre-processing tools. It is
designed in a flexible ways so that you can try out existing methods on new and unseen datasets.
It provides large-scale support for the whole process of experiments, including preparing the
input data, evaluating learning schemes statistically, and visualizing the input data and the
result of learning. As well as a wide variety of learning algorithms, it includes a wide range of
pre-processing tools. This diverse and comprehensive toolkit is accessed through a common
interface so that its users can compare different methods and identify those that are the most
appropriate for the problem at hand.

Waikato Environment for Knowledge Analysis (Weka), is a Java based open-source data
mining tool developed by the University of Waikato. In recent years, Weka has also been
implemented in Big Data technologies such as Hadoop [11]. The system is written in Java and
distributed under the terms of the GNU General Public License. It runs on almost any platform
and has been tested under Linux, Windows, and Macintosh operating systems. It provides a
uniform interface to many different learning algorithms, along with methods for pre-processing,
post-processing and for evaluating the result of learning schemes on any given dataset.

Weka provides implementations of learning algorithms that you can easily apply to your
dataset. You can pre-process a dataset, feed it into a learning scheme, and analyze the resulting
classifier and its performance without writing any program code at all. The workbench includes
methods for all the standard data mining problems: regression, classification, clustering, associa-
tion rule mining, and attribute selection. Getting to know the data is an integral part of the work,
and many data visualization facilities and data pre-processing tools are provided. All algorithms
take their input in the form of a single relational table in the ARFF format, which can be read
from a file or generated by a database query.

One way of using Weka is to apply a learning method to a dataset and analyze its output
to learn more about the data. Another one is to use learned models to generate predictions on
new instances. A third one is to apply several different learners and compare their performance
in order to choose one for prediction. The learning methods are called classifiers, and in the
interactive Weka interface you select the one you want from a menu. Many classifiers have
tunable parameters, which you access through a property sheet or object editor. A common
evaluation module is used to measure the performance of all classifiers. Implementations of
actual learning schemes are the most valuable resource that Weka provides. But tools for pre-
processing the data, called filters, come a close second. Like classifiers, you select filters from a
menu and tailor them to your requirements. Weka also includes implementations of algorithms
for learning association rules, clustering data for which no class value is specified, and selecting
relevant attributes in the data [12].

10

Chapter 2. Background

2.2.1 Using Weka

When you start up Weka you have to choose among four different user interfaces: the
Explorer, the Knowledge Flow, the Experimenter, and the command-line interface as shown in
Figure 2.5.

Figure 2.5: Weka GUI Chooser

The easiest way to use Weka is through a graphical user interface called the Explorer as
illustrated in Figure 2.6. This gives access to all of its facilities using menu selection and form
filling. The Explorer interface presents choices as menus, buttons, text-boxes, presenting options
as forms to be filled out. Helpful tool tips pop up as the mouse passes over items on the screen to
explain what they do.

There are two other graphical user interfaces supported by Weka. The Knowledge Flow

interface allows you to design configurations for streamed data processing. The Knowledge Flow

interface lets you drag boxes representing learning algorithms and data sources around the screen
and join them together into the configuration you want. It enables you to specify a data stream
by connecting components representing data sources, pre-processing tools, learning algorithms,
evaluation methods, and visualization modules. Weka’s third interface, the Experimenter, is
designed to help you answer a basic practical question when applying classification and regression
techniques. Behind these interactive interfaces lies the basic functionality of Weka. This can be
accessed in raw form by entering textual commands, which gives access to all features of the
system [12].

11

Chapter 2. Background

Figure 2.6: Weka Explorer

2.3 Random Forest Classification

Random Forest (RF) classification is one type of machine learning approaches. It belongs
to the ensemble learning algorithm which received increasing interest because they are more
accurate and robust to noise than single classifiers [13]. Ensemble algorithms are those which
combine more than one algorithm of the same or different kinds for classifying objects.

RF was proposed by Breiman and presents many advantages. RF algorithm is a supervised
machine learning algorithm which is capable of performing both regression and classification
tasks. It also handles the missing values and maintains accuracy for missing data. Besides, it
has the power to handle large data set with higher dimensionality. Moreover, it does not allow
overfit the model and runs efficiently on large database. It estimates the important variables
in the classification and generates an internal unbiased estimate of the generalization error
(Out-of-bag error). Finally, it computes proximities between pairs of cases used in locating
outliers and is relatively robust to outliers and noise. On the other hand, Breiman underlined
some disadvantages of the RF. First of all, it does good job at regression but not as good as for
classification. Secondly, the control the user has is very minimized on the model and it is like a
black box approach for statistical models [13].

In RF, we create multiple decision trees h(X,Θk), where h(Θk) are the random vectors
which are distributed identically and X is the variable to be classified. For constructing the k
trees, RF first generates k random vectors h(Θ1,Θ2, ..,Θk) which are independent of each other
and of the same distribution. Each tree provides a classification based on the given training
samples and random vectors Θi where iε[1, k] . RF saves the tree votes for specific class and
it chooses the classification based on the majority of votes over all the other trees in the forest.

12

Chapter 2. Background

Equation 2.1 calculates the voting model of RF [14].

HR(X) = max

k∑
i=1

I(h(X,Θk)) (2.1)

Where, HR(X) denotes the combination classification model and I(h(X,Θk) is the classification
result of the decision tree on the input variables X . But in regression, it calculates the average of
the outputs by different trees.
Supposed training set is given as : [I1, I2, I3, I4] with corresponding labels as [L1, L2, L3, L4],
RF may create three decision trees taking input of subset for example

1. [I1, I2, I3]

2. [I1, I2, I4]

3. [I2, I3, I4]

Finally, RF predictions are based on the majority of votes from each of the decision trees. A
single decision tree may be prone to a noise, but many decision trees reduce the effect of noise
which gives more accurate results. Alternatively, the random forest can apply weight concept for
considering the impact of result from any decision tree. Tree with high error rate is given low
weight value and vice-versa. This would increase the decision impact of trees with low error rate.

2.3.1 RF Parameters

RF has number of parameters: The total number of trees (Tnum) to be generated. The
number of features to consider when splitting each node (Fnum). The tree depth (Tdepth) [15, 16].
Developing the correlation increases the forest error rate. Increasing the strength of the individual
trees decreases the forest error rate inasmuch as a tree with a low error rate is a strong classifier.

In order to provide optimal balance between the correlation and the strength of the individual
trees we must reduce the number of random attributes. For each decision tree on the random
forests, the pruning is not necessary [14]. High accuracy and lower error rate are achieved from
strong individual tree. According to Breiman [17] the default value for m is m = blog2(M) + 1c
or m =

√
M , where M is the total number of features and the default value of the tree depth is

Tdepth = 0.

2.4 Machine Learning Performance Evaluation

The metrics that we choose to evaluate the machine learning approaches are very important.
Choice of metrics influences how the performance of machine learning approaches is measured
and compared. Next sections will illustrate how to select and use different machine learning
performance metrics.

13

Chapter 2. Background

2.4.1 Information Gain (InfoGain)

We evaluated the worth of an attribute by measuring the information gain with respect to the
class. InfoGain is used to measure the dependence between features and labels and calculates
the information gain between the ith feature fi and the class labels C [18]. Equation 2.2 is used
to calculate the InfoGain.

InfoGain(fi, C) = H(fi)−H(fi|C) (2.2)

where H(fi) is the entropy of fi and H(fi|C) is the entropy of fi after observing C as illustrate
in Equations 2.3 and 2.4

H(fi) = −
∑
j

p(xj)log2(p(xj)) (2.3)

H(fi|C) = −
∑
k

p(ck)
∑
j

p(xj|ck)log2(p(xj|ck)) (2.4)

In information gain, a feature is relevant if it has a high information gain. Features are selected
in a univariate way, therefore, information gain cannot handle redundant features [19].

2.4.2 Cross Validation for Classification Problems

Cross validation is a technique to evaluate predictive models by partitioning the original
sample into a training set to train the model, and a test set to evaluate it [20]. In k-fold cross-
validation, the original data is randomly partitioned into k equal size subsamples. From k

subsamples, a single subsample is retained as the validation data for testing the model, and the
remaining k − 1 subsamples are used as training data. The cross-validation process is then
repeated k times (the folds), with each of the k subsamples used exactly once as the validation
data. The k results from the folds can then be averaged (or otherwise combined) to produce a
single estimation. The advantage of this method is that all observations are used for both training
and validation, and each observation is used for validation exactly once [21, 22].

2.4.3 Model Evaluation Metrics

An evaluation metric is always needed to go along with cross validation which depends on
the type of the problem we are addressing [23]. Confusion matrix (C.M): Is defined as a table
that describes the performance of a classification model. We can think of C.M as a table of the
two types of correct predictions that the classifier can make as well as a table of the two types of
incorrect predictions. Every observation in the testing set is represented exactly in one box of
the C.M. Sometimes, the C.M will be explicitly labeled with the total number of represented
observations.

The size of C.M depends on the classifier problem, e.g, two by two C.M size represents the
binary classification, therefore, if there were five possible response classes, this would be a five

14

Chapter 2. Background

Table 2.1: Confusion matrix (C.M)

Actual result/Classification
Yes No

Predictive
result/Classification

Yes
TP(True Positive)

47,070
FP(False Positive)

8,210

No
FN(False Negative)

6,421
TN(True Negative)

139,075

by five matrix. When a C.M is used for a binary problem as illustrated in Table 2.1 each of the
four boxes has a specific name that is useful to memorize where:

1. True Positive (TP): The number of cases the classifier correctly predicted (the predicted
value is yes and the actual value is yes)

2. False Positive (FP): The number of cases the classifier incorrectly predicted (the predicted
value is yes but the actual value is no)

3. True Negative (TN): The number of cases the classifier correctly predicted (the predicted
value is no and the actual value is no)

4. False Negative (FN): The number of cases the classifier incorrectly predicted (the predicted
value is no but the actual value is yes)

2.4.3.1 Metrics Computed from a Confusion Matrix

Text in bold are the evaluation metrics that we can compute from C.M which tell easily
whether the classifier is really appropriate or not.
Classification Accuracy (CA): Equation 2.5 overall, how often the classifier is correct.

CA =
TP + TN

TP + TN + FP + FN
(2.5)

Classification Error (CE): Also known as miss classification rate. We use Equation 2.6 to
calculate CE

CE =
FP + FN

TP + TN + FP + FN
(2.6)

Also we can calculate CE from Equation 2.7

CE = 1− CA (2.7)

Sensitivity: when the actual value is positive, how often the prediction is correct? How sensitive
is the classifier capable of detecting positive instance?
Sensitivity is also known as "True Positive Rate (TPR)" or "Recall" and we can calculate it from
a C.M as shown in Equation 2.8

TPR or Recall =
TP

TP + FN
(2.8)

15

Chapter 2. Background

Specificity: When the actual value is negative, how often the prediction is correct? How specific
or selective is the classifier in predicting positive instances? Specificity is something we want to
maximize. Equation 2.9 is used to calculate it.

Specificity =
TN

TN + FP
(2.9)

False Positive Rate (FPR): When the actual value is negative, how often the prediction is
incorrect? The value of FPR is 1− specificity and we can calculate it from Equation 2.10

FPR =
FP

TN + FP
(2.10)

Precision: It answers the question, when a positive value is predicted, how often the prediction
is correct? Precision describes how precise the classifier is when predicting a positive instance.
We used Equation 2.11 to calculate it.

Precision =
TP

FP + TP
(2.11)

F-Measure (F): Is defined as an harmonic mean of precision and recall. The standard F-measure
is F1, which gives equal importance to recall and precision [24]. Equation 2.12 is used to
calculate it.

F =
2× precision× recall
precision+ recall

(2.12)

Kappa Statistic: It is used to measure the agreement between two sets of categorizations of a
dataset while looking for chance agreements between the categories. It uses both the overall
accuracy of the model and the accuracies within each category. Both terms use the predictive
model and the actual sample points to look for chance agreement between categories [25]. The
Kappa statistic varies from 0 to 1, where (see Equation 2.13)

Agreement is

No if kappa = 0

Slight if 0.1 ≤ kappa < 0.2

Fair if 0.21 ≤ kappa < 0.40

Moderate if 0.41 ≤ kappa < 0.60

Substantial if 0.61 ≤ kappa < 0.80

Near perfect if 0.81 ≤ kappa < 0.99

Perfect if kappa = 1

(2.13)

Equation 2.14 is used to calculate Kappa statistic value

Kappa =
Total Accuracy −Random Accuracy

1−Random Accuracy
(2.14)

Where, Random Accuracy is calculated from Equation 2.15

Random Accuracy =
(TN + FP)(TN + FN + (FN + TP)(FP + TP))

(Total number of instances)2
(2.15)

16

Chapter 2. Background

We can conclude the evaluation metrics section in the following two points: First, C.M gives
us a complete picture of how the classifier performs. Second, allows us to compute various
classification metrics and how can these metrics guide our model selection process.

2.4.3.2 Receiver Operating Characteristic Curve (ROC)

The last steps we should care about, in the model building process, are adjusting the threshold
taking into account [22]: First, threshold of 0.5 is used by default (for binary classifier) to
convert predicted probabilities into class predictions. Second, threshold can be adjusted to
increase sensitivity (reduced threshold) or specificity (increased threshold). Finally, sensitivity
and specificity have an inverse relationship so, increasing one will decrease the other.

It seems incredibly inefficient to search for an optimal threshold by trying different threshold
values to detect how sensitivity and specificity are affected by various thresholds. ROC curve
gives us the ability to see how sensitivity and specificity are affected by various threshold without
actually changing the threshold.

The ROC curve is a plot of the true positive rate on the y-axis against the false positive rate
on the x-axis for all possible classification threshold as illustrated in Figure 2.7. It shows the
trade-off between sensitivity and specificity. When the curve is closer to the upper left corner
(0,1), the more accurate the classifier is. Otherwise, when the curve is closer to the random
classifier of the ROC space, the less accurate the classifier is.

Figure 2.7: ROC Curve and AUC

2.4.3.3 Area Under the Curve (AUC)

AUC is another measure of classification accuracy. AUC is the area under the ROC curve
(see Figure 2.7), meaning the percentage of the area that is located under the ROC curve. The
closer the AUC to 1 the more accurate the classification is. AUC is a useful evaluation metric
because it serves as a single number summary of classifier performance. If we randomly choose

17

Chapter 2. Background

one positive and one negative observation, AUC represents the likelihood that our classifier will
assign a higher predicted probability to the positive observation. AUC is useful even when there
is a high class imbalance (unlike classification accuracy) [26].

2.5 Semantic and Distance Matrices

There are many methods to calculate the similarity between two entities such as strings,
numbers, rows of data, images and others [27]. Similarity is the measure of how much alike two
data objects are [28]. Similarity measure in data mining context is a distance with dimensions
representing features of the object [20]. High degree of similarity measure means small distance,
while large distance will represent low degree of similarity. The degree of similarity is measured
in the range of 0 to 1, Equation 2.16 explains the two main consideration measures.

Similarity =

{
1, ifX = Y

0, ifX 6= Y
(2.16)

Where X and Y are two objects.
Huynh,et al. [29] affirmed that popular string matching measures present the similarity of

meta-data strings (author name, coauthors, affiliation, keywords) taking into account the author
names based on family name and given name. These measures are: Edit Distance which is the
distance between strings X and Y is the cost of the best sequence of edit operations that converts
X to Y . Token-Based Measures convert the strings X and Y to token multi-sets and considers
similarity metrics on these multi-sets. Hybrid Measures compare two long strings X and Y .

Naumann [28] summarized various similarity measures as illustrated in Figure 2.8. In the
next subsections, we will introduce the characteristics of some popular similarity measures.

Figure 2.8: Similarity Measures, bold are the ones that we used

2.5.1 Semantics

Semantics is the discipline of deriving meaning from a collection of words or symbols [30].
In computing, it also has something to do with finding meaning in data and refers to a flexible
way of modeling it. Computing sentence similarity is not a trivial task, due to the variability

18

Chapter 2. Background

of natural language expressions [31]. The method for finding the similarity between long text
(documents) is counting the shared words between the text pair, but for the short text we should
find the co-occurrence if founded. This is why finding the text similarity using the known
algorithms is unfair such as, Jaccard, JaroWinkler, Levenshtein and others, especially with long
text documents.

Before computing the semantic similarity, there are some basic preprocessing techniques
including the following [31]:

1. Document preprocessing phase: It is important to normalize the documents and adjust
them for our needs. We must obtain tokens from the text, especially if it was written by
different authors from different backgrounds. This phase will transform the documents
into a common form through the following steps:

(a) Tokenization: Is the task of eliminating punctuation and other unwanted characters
[32].

(b) Stop words: Words that have a small impact in the matching process such as, (a, and,
but, how, etc).

(c) Stemming and lemmatization: Is the grammar and structure that documents use
differently such as, organize, organizes and organized. Stemming is used to reduce all
words to a common form such as three letters length, whereas, lemmatization removes
the ending of the words and return the dictionary form, which helps to distinguish
whether the word is used as a verb or as a noun. Both of them play an important
roles in finding the semantic meaning behind the words which positively influence the
semantic matching [33].

2. Dictionary-based measures: In order to capture the semantic similarity between two
sentences, we need a dictionary-based measures such as:

(a) WordNet: Is a large lexical database of English words, where nouns, verbs, adverbs
and adjectives are organized by semantic relation to represent one concept [34].

(b) DISCO: Is a java application with a multi languages database of distributional similar
words called word space. It also gives us the ability to create our own database of
similar words [35]. The word space of DISCO consists of two types:

i. Col word space, which contains the word vector that represent the semantic
meaning only (exclude the most similar words).
e.g Col(house, home)=0.652

ii. Sim word space, which represents the word vector and the most similar words for
each
e.g Sim(house,home)=0.7
but Sim(gasoline, lemonada)=0.159

19

Chapter 2. Background

(c) Europarl Corpus: Is a collection of about thirty million words for eleven languages of
European Union [36].

3. Transform Text to Vector: Transforming raw text into vector is a mandatory step for
semantic algorithms [37]. Each vector has a length of vocabulary and each value in the
vector is the number of co-occurrences of word to its index.

4. Once we formed the semantic vectors for the work titles pair, we computed the similarity
between them using a mathematical model such as cosine similarity.

2.5.2 Levenshtein Distance

The notation of string changing operations is the fundamental of the Levenshtein distance
idea in order to determine the degree in which two strings differ from each other. To transform
string s1 into string s2 we need a minimum number of character insertions, deletions, and
replacements [38]. For example Figure 2.9 describes the steps for finding the minimum edit
distance between two strings (man and moon) which is lev(man,moon) = 2.

Figure 2.9: Levenshtein distance

Assume there are two strings, S1 and S2, the logic to calculate the Levenshtein distance
LS1,S2(i, j) is shown in Equation 2.17 and 2.18 [39].
If min(i, j) = 0

LS1,S2(i, j) = max(i, j) (2.17)

Otherwise,

min

LevS1,S2(i− 1, j) + 1

LevS1,S2(i, j − 1) + 1

LevS1,S2(i− 1, j − 1) + 1(S1i 6= S2j)

(2.18)

Where, LS1,S2(i, j) is the distance between the first i characters of S1 and the first j characters of
S2.

20

Chapter 2. Background

2.5.3 Damerau Levenshtein Distance

Damerau Levenshtein distance is calculated in the same way as the Levenshtein distance
is, except that transposition of two adjacent characters is also allowed as an edit operation [40].
For example, the Levenshtein distance between the words ppu and pup would be 2, but the
Damerau Levenshtein distance would only be 1 since the transposition of p and u is considered a
single operation. Damerau Levenshtein distance was mostly used for spelling checks as the four
edit operations covers over 80% of human misspellings [41]. Damerau Levenshtein equation is
similar to Levenshtein distance with one addition recursion for the transposition operations as
illustrated in Equation 2.19

min

LevS1,S2(i− 1, j) + 1

LevS1,S2(i, j − 1) + 1 if i, j > 1 and ai = bj−1 and ai−1 = bj

LevS1,S2(i− 1, j − 1) + 1(S1i 6= S2j)

LevS1,S2(i− 2, j − 2) + 1

(2.19)

2.5.4 Jaro Similarity

"Jaro is based on the number and order of the common characters between two strings; it takes
into account typical spelling deviations and mainly used in the area of record linkage" [28, 42].
Jaro Winkler is an extension of Jaro distance which gives the first few letters more favorable
rating and is used with longer string records [42]. If m is the number of matching characters
and t is the number of transpositions then Equation 2.20 will determine the search range for
matching characters and Equation 2.21 will calculate Jaro similarity between two strings x and y
of length |x| and |y| respectively.

m =
max(|x| , |y|)

2
− 1 (2.20)

simjaro =
1

3

(
m

|x|
+
m

|y|
+
m− t
|m|

)
(2.21)

2.5.5 Jaccard Similarity

Jaccard similarity (j) is computed as the number of shared terms over the number of all unique
terms in both strings [42]. It can be used to represent the similarity between two documents
where value is between 0 and 1. The value 0 means the documents are completely dissimilar
while value 1 means the documents are full matched.

The Equation 2.22 is used to calculate the Jaccard Index in steps: First, it counts the number of
unique words(union) in both sets. Second, it counts the total number of shared words(intersection)

21

Chapter 2. Background

in both sets. Finally, it divides the intersection number over the union number.

j(A,B) =
|A ∩B|
|A ∪B|

=
|A ∩B|

|A|+ |B| − |A ∩B|
0 6 j(A,B) 6 1 (2.22)

Where, A and B are two sample sets of length |A| and |B| respectively.

2.5.6 Cosine Similarity

Cosine similarity is a measure of similarity between two vectors of an inner product space
that measures the cosine of the angle between them [42]. This technique makes sense in space
that has multi dimensions with points represented as vectors with integers or boolean. The cosine
distance between two points is the angle that the vectors to those points make. This distance is
based on the relative frequency of words in a document.

The range of the angle is between 0 and 2π. 0◦ represents full similarity documents and
above 90◦ represents dissimilar documents. Two vectors with the same orientation have a cosine
similarity of 1, two vectors at 90◦ have a similarity of 0, and two vectors diametrically opposed
have a similarity of -1 independent of their magnitude [43, 44].

Figure 2.10 shows how to calculate cosine similarity between the words man and moon in
the documents Doc1 and Doc2. For each document in the Cartesian coordinate system, there is
a point that represents the count number of each of the words man and moon in each of the two
documents. Doc1, has 12 man words, and 14 moon words , a point at (12, 14). With regards to
Doc1, the two words in Doc2 are represented with point (5, 11). Doc1 document would be an
arrow going from the origin to point (12, 14) and Doc2 document would be an arrow from the
origin to the point (5, 11) and θ is the angle between the two vectors. Equation 2.23 is used to
calculate the cosine similarity.

Similarity = cos(θ) =
A.B

‖A‖ ‖B‖
(2.23)

Where A and B are two vectors with length ‖A‖, ‖B‖ respectively.

Figure 2.10: Cosine distance

22

Chapter 2. Background

2.5.7 N-Grams Similarity

N-grams are simply all combinations of contiguous words or letters of length n that can be
find in the source text. Unigram refers to n-gram of size 1, Bigram refers to n-gram of size 2,
Trigram refers to n-gram of size 3. Higher n-gram refers to four-gram, five-gram, and so on [45].
Figure 2.11 illustrates a typical example of a sentence may be considered as "This computer is
a good one". Its unigram is considered a single word where its bigram considered as a pair of
words and its trigram consists of three words.

Figure 2.11: N-Grams overlapping

Equation 2.24 is used to calculate the distance between two strings a cording to the N-grams
technique for each string.

|G(s1)|+ |G(s2)| − 2 |G(s1) ∩G(s2)| (2.24)

Where, |G(s1)| and |G(s2)| are the combinations G of contiguous letters of length n for strings
s1 and s2 respectively. The following steps are used to find the similarity based N-grams of size
3 between the two words honorable and honest:

1. G(honorable)={hon, ono, nor, ora, rab, abl, ble}=7

2. G(honest)={hon, one, nes, est}=4

3. G(honorable) ∩G(honest)={hon}=1

4. distance(honorable, honest)=7+4-2*1=9

2.5.8 Optimal String Alignment

Optimal String Alignment Distance algorithm (OSA) edits the distance by changing charac-
ters if there are sentences that look like the other text. Then, according to OSA the "similarity" is

23

Chapter 2. Background

found and added to its total [46]. OSA is useful to fix spelling mistakes, editing mistakes and
regular and irregular verbs. OSA works basically like Damerau Levenshtein algorithm (DL), the
only difference is in how they transpose characters. DL algorithm can handle edits where the
word has been misspelled twice while the OSA algorithm accepts one transposition and then
moves on to the next substring.
For example, if we have two string: ot and two, then
DL(ot, two) = ot→ to→ two = 2

OSA(ot, two) = ot→ t→ tw → two = 3

24

Chapter 3

Literature Review

Digital libraries and various meta-data schemes have rapidly grown. The internet and meta-
data encoding in general move towards exchanges between a range of researchers, or similar
research areas from several different authors, or even between different versions of the same
scientific field [47]. This sheds light on the problem of name disambiguation. Databases and
search options must be able to answer whether two articles were written by the same author or
not. On the other hand, a researcher needs to know who exactly wrote this article for a purpose
of future research collaboration or asking some questions about the data.

Many researchers have presented several definitions to illustrate the concept of AD. The
author’s name ambiguity decreases the performance, quality and reliability of information from
digital libraries [9, 10, 48]. While [3, 49] defines AD as an author information that negatively
influence the retrieval of bibliographic query results. In [29,50] AD integrates the bibliographical
data of publications from heterogeneous sources into unified database.

During our review we will explain many procedures that have been used to introduce a
solution for the problem of AD. Next sections will explain the most representative automatic AD
methods found in the literature.

3.1 Type of Approach

The way to organize the author’s names disambiguation methods is according to the type of
approach they trade on. We will explain this in the following discussion [51]

3.1.1 Author Grouping Methods

This method uses clustering technique to find the similarity between the attributes from a
group or references, or extracts the relationships among authors and coauthors from citations
[10]. Different similarity functions such as, Edit Distance, Token-Based Measures and Hybrid
Measures achieve the goal of finding the similarities between references for the same authors [29].
Also, there are many different ways to measure the similarity between all attributes of two

25

Chapter 3. Literature Review

publications such as, Jaccard, Levenshtein, Jaro, etc [48]. Graph-based similarity method can
create a co-authorship graph for ambiguous groups [51]. Each element of author’s name and
coauthor’s name attribute is represented by a vector [10, 49, 50].

3.1.2 Unsupervised Techniques

Unsupervised learning clustering is the process of grouping a set of objects into classes of
similar objects. In these approaches, ambiguous citations are clustered into groups of distinct
authors by measuring the similarities between the attributes in the citations [3]. In this research,
the most used techniques are [51]:

First, spectral clustering, clusters data that are connected but not necessarily clustered. It is
mainly computed through eigenvalues and eigenvectors. The name disambiguation problem for
author’s citations is represented as a partition of the graph. This means that similar citations are
tied to the same cluster.

Second, partitioning clustering, which constructs a partition of N documents into a set of K
clusters. The final technique is the hierarchical clustering which groups the references of authors
by building a tree-based Hierarchical taxonomy [3, 10].

3.1.3 Supervised Techniques

These approaches try to model all authors’ patterns from a set of training data. In general,
data provide insights in how to capture the implicit knowledge of a domain, and this method can
be accurate and reliable when the data are represented well. Table 3.1 illustrates this.
Examples of supervised approaches are: Naive Bayes model [9], Support Vector Machine (SVM)
[9, 29], Grouping algorithm [3], Deep Neural Network (DNN) [48, 52] and other approaches
such as Random Forest, K-Nearest Neighbors (kNN) and Decision Tree (C4.5) [29].

3.2 Database

Various types of data with different format have been used in literature such as publication
lists collected from the trusted and official web-sites e.g Microsoft Academic Search, ACM
Digital Library, IEEE Digital Library, DBLP, PubMed, etc. Preparing and understanding the data
is the first step to disambiguate the authors’ names problem. Most of the proposed algorithms
use the last-name and first-initial to refer to the same author [3, 9, 29, 48, 52] .

3.3 Features Information

Choosing the right features set is the most and the highest important step in the prepossessing
phase in AD. Good features are those that can improve the accuracy and have the capability

26

Chapter 3. Literature Review

to work with any new database. Here are some descriptions of some terms that are linked to
features in this literature.

To disambiguate author’s names, different features and methods have been used. Table 3.1
shows the information of the feature attributes in the literature. These kinds of evidences fall
into three categories [51]:

The first category is Citation Information. It refers to the attributes that have been extracted
from the citations such as coauthors’ names, work title, journal title, year of publishing, etc.
This citation information is commonly founded in all citations [3, 9, 10, 29, 47–50, 52, 53]. The
category contains also some additional features such as emails, addresses, paper headers which
are not always available. They usually help us to disambiguate names.

The second category is Web Information: It represents data from web used as additional
information to improve the disambiguation task [50, 53]. On the other hand, there is one
problem which is the additional cost of extracting all the needed information from the Web
documents [51]. Web Information involves some steps for obtaining information [54]. It extracts
a citation attributes, then it submits the attributes as a query to a search engine to find pages
containing publications of the authors e.g. Query: "author’s names" + "publications" + work title
"Author’s Names Disambiguation" and finally it collects the answer of each query.

The third category is Implicit Evidence which is divided into: First, author-related features
such as email and author’s name. Second, article-related features such as, article title, publication
title, keywords, abstract , etc. which help a lot to estimate and calculate the similarities among
references of authors.

Table 3.1: Outline of Disambiguation Procedures

Ref. Type of
Approach

Used
approaches

Used
database

Evaluation
The experiment

Used
Features

[9] Supervised
Naive Bayes probability model
Support Vector Machines

Publication from homepages
DBLP citation databases. Accuracy.

Co-author names
The title of the paper
The title of the journal

[3] Supervised
Grouping Algorithm
C-SVC binary classifier
Cluster Filter

DBLP citation databases
Precision rate
Recall rate
Accuracy

Co-author
The attribute title
Venue

[10] Unsupervised K-way spectral clustering
DBLP citation databases
Publication lists

Pair-Wise Similarity Metrics(
CSM
MSF)
Similarity Metrics for Topic Correlation(
TSM)
Similarity Metrics for Web Correlation(
MNDF)

Co-author
Paper title
Venue title

[48] Supervised

Deep neural network
string-matching measures(Jaccard
Levenshtein, Jaro
Jaro-Winkler, Smith-Waterman and
Mogne-Elkan)

Vietnamese author dataset
k-fold cross-validation
Accuracy

Author name
Affliations
Co-authors
Paper keyword

[52] Supervised (pairwise classification)
Deep neural network(DNN)
DNN symmetry DBLP databases

Precision (P), Recall (R)
AUC and
Accuracy

Co-authors names
Paper title
Publication venues

[49]
Unsupervised
(name string only) Author Co-citation Analysis (ACA) PubMed

Factor analysis
ACA mapping between
lastname first initial and
SPSS Oblimin

Chinese and Korean authors
Last name, first initial

[29] Supervised

Random Forest
Support Vector Machine (SVM)
Nearest Neighbors (kNN)
C4.5 (Decision Tree) and Bayes

Microsoft Academic Search
ACM Digital Library
IEEE Digital Library

String Matching Measures(Edit Distance
Token-Based Measures
Hybrid Measures)
Average accuracy

Author name
Co-authors
Affiliation
Keywords in publications

[53]
Supervised
(name string only)

Characteristic Scores and
Scales (CSS)

Researcher-ID data of
4.271 registered researchers

A Spearman rank correlation
Mean Normalized
citation Rate (NMCR)
Relative Citation
rate (RCR)

Researcher ID
At least 20 registered publication
Year
Chosen reference standard

[50] Unsupervised graph-based approach
Citeseer
Digital Libraries

By-hand checking
accuracy

Self-citation
Co-authorship and
Document source analysis

27

Chapter 3. Literature Review

3.4 Experiments Evaluation

One of the most important point is to understand the evaluation of the experiments that have
been used in the literature, to walk-through the various techniques used by the researchers to
disambiguate authors’ names problem. We should pinpoint on the following points:

3.4.1 The Mean and Standard Deviation

In [9, 10], the Mean and Standard Deviation statistical analysis were used to examine the
accuracy ("according to ISO 5725-1 the general term accuracy is used to describe the closeness
of a measurement to the true value") of experiments that have been used by some machine
learning approaches to disambiguate authors’ names in the paper title, journal title and the
probability in which two citations belong to the same author. Therefore, using these statistical
measurements show that changing the training data size will change the performance of the name
disambiguation algorithm.

3.4.2 Experiments Design and Evaluation

Experiment design is a careful balancing of several features including, author name pattern,
dataset, samples size, attributes and citations records. Every aspect in the designing phase plays
an important role to construct a reliable model that can be obtained and correctly interpreted.
Evaluating the experiment methods after they have been carried out is one of the core stages in
the data process. Table 3.2 illustrates the setup and the evaluations techniques that have been
used by different studies.

3.5 Related works

Unlike supervised machine learning approaches, Ibrahim M.Qdemat [55] proposed a heuris-
tic based system in which all publications of a given author can be aggregated in the same
profile.Qdemat also designed an algorithm that uses the publication meta-data and mainly he
used email, name string similarity, affiliation and co-authors features.We will proposed a super-
vised machine learning approach that uses the features of ORCID citation attributes, to train the
system to disambiguate author names.Particularly, to built classifier based on those attributes is a
significant challenge.

In Shahd’s Zeiad Ewawi [56] thesis, a comparison between different types of clustering
algorithms was held to solve the ambiguity of author’s names. Various features are involved in
the clustering process: last name, author’s other names, affiliation, title, abstract, keywords and
co-authors. The aim of Shahd’s study is controlling the behavior of the clustering algorithm in
order to reduce the effect of the data uncertainty by applying a set of rules. Term Frequency

28

Chapter 3. Literature Review

Inverse Document Frequency (TF-IDF) algorithm was used for extracting distinctive terms from
features values.

29

C
hapter

3.Literature
R

eview

Table 3.2: Outline of Disambiguation Performance

Ref.
Author name
pattern

Data set
Data set
size

Citation
size

Citation
based Attributes

Experiment
evaluation Accuracy

Most useful
Information

[3]
First name initial and
Last name DBLP website 476 individual authors 8,441 Yes

Coauthors
Title
Venue

Precision rate
Recall rate 75%

Coauthors the most useful
Title better than venue

[10]
First name initial and
Last name DBLP website 14 DBLP name data sets 400,000 Yes

Coauthors
Title
Venue

Standard
Deviation

61.5% to 64.7%
average accuracy

Coauthors the most useful
Title better than venue

[53] Author profile
Researcher-ID
data from 8 selected
countries

20 different authors 4,271 No
Publication year
Researcher ID
Field of study

Relative Citation Rate (RCR)
Mean Normalized Citation Rate (NMCR) 69.80%

Field of study
Publication year

[9]
First name initial and
Last name DBLP website 9 individual authors 300,000 Yes

Author names
Paper title
Journal title

The mean and
The standard deviation (StdDev)

Two data sets achieved 90% by SVM
Average=73.3% by Naive Bayes approach
Average=65.4%,by SVM

Journal title

[48] Author instance names

Online digital libraries:
IEEE Xplore
ACM
MAS

10 data sets 30,537 No

Author name
Co-author
Affiliation
keyword

Prediction error rate
F-measure 91.31%

Features
not ranked

[29]
Family name and
given name

Online digital Libraries:
Microsoft Academic Search
ACM Digital Library
IEEE Digital Library

10 data sets 4,350 No

Coauthor names
Paper title
keywords
Journal title keywords

Non 98.33%
Features
not ranked

[50] Family name Citeseer 8 data sets 4,799 Yes
Co-authorship and
Source URL meta-data

Precision
Recall
F-measure

Achieving precision of 0.997
Recall of 0.818

Features
not ranked

[5]
Author instance
names Scopus and WoS Undefined 1,518 Yes

Coauthors
Paper title
URLs of the papers
The name of the scholar

Precision
Recall
F-measure

Precision=95.38%
Recall=96.24%
F-measure=94.54%

Features
not ranked

30

Chapter 4

Methodology and Data Analyses

In this chapter we provide the comprehensive and detailed analysis of data sets for AD.
The main result of existing data sets is created, represented, and used. In order to present a
solution for AD, we must use a representative database that covers various names from different
nationalities. In this section we will describe the technique and the process to build the data for
validation stage.

4.1 ORCID Database

Once per year, ORCID releases a downloadable data file that contains a copy of all public
data in its registry. This file contains the public information associated with each ORCID user in
both JOSN and XML format. In this thesis, we used Orcid Public-Data-File-2015 which contains
over 1.6 million records.

4.1.1 Datasets Selection

Selecting the datasets from ORCID database is the most important phase. Our criterion is to
have variety samples that would represent as much cases as possible in the entire database. The
selection methods are based on the following steps:

1. We determined the first name and last name from ORCID profile files for each author.

2. LNFI is used as a primary key to filter the authorship records of ORCID datasets. We
retrieved from ORCID database all author strings of the selected LNFI . Then, all citations
which consist of coauthors name strings, journal title, work title and the year of publishing
that contains one of these author names are retrieved from ORCID database.

3. We calculate the frequency of the distinct LNFI then we retrieve all documents based on
these names from ORCID database. Calculating the frequency for each LNFI helps us in
choosing different sizes of representative authors’ clusters. This is a good indication for
evaluating the disambiguation of names.

31

Chapter 4. Methodology and Data Analyses

4. We select different LNFI from various backgrounds to have better representations of all
authors.

4.1.2 Database and Labeling

This section describes the data sets that we use for the experimental and evaluation phases.
Table 4.1 lists a sample data sets that we choose randomly in our experiments. These data sets
are labeled from ORCID engine through the registration process.

Table 4.1: Orcid Datasets Samples

Dataset Criteria (LNFI) Size of documents ACC Records
1 Wang Wang,Y 916 86,462
2 Zhang Zhang,Y 829 293,472
3 Lee Lee,J 717 176,820
4 Li Li,J 563 46,010
5 Kim Kim,J 678 332,070
6 Ahmad Ahmad,K 16 9,702
7 Liu Liu,Y 672 78,462
8 Chen Chen,Y 545 9,120
9 Park Park,J 350 52,670
10 Kumar Kumar,A 297 118,680
11 Wu Wu,J 252 141,000
12 Silva Silva,A 160 266,772
13 Brown Brown,D 41 177,662
14 Islam Islam,M 127 12,240
15 Sun Sun,X 121 2,450
16 Ali Ali,M 106 756
17 Carvalho Carvlho,A 71 16,256
18 Fernandes Fernandes,A 48 54,522
19 Nguyen Nguyen,T 169 96,087
20 Santos Santos,R 72 3,306
21 Smith Smith,J 122 1,640
22 Wang Wang,X 637 77,588
23 Zhang Zhang,X 566 2,250
24 Baker Baker,M 16 56
25 George George,J 18 1,560
26 Liu Liu,C 303 237,656
27 Oliveira Oliveira,A 87 10,2080
28 Sharma Sharma,S 167 2,162

We will use cross validation technique to assess the performance of machine learning
model which enables us to know how the machine learning model would be generalized to an
independent data set and to estimate how accurate the predictions will be in practice. Table 4.2
represents the total number of citation records that were chosen randomly to represent all data
sets in Table 4.1.

We split these citation records into two types of data sets, the known data (Cross validation
set) and the unknown data (Final test set). By using cross validation, we would be "testing" our
machine learning model in the "training" phase to check for overfitting and to generalize the
model we will use for an independent data, which is the testing data. For cross validation rounds,

32

Chapter 4. Methodology and Data Analyses

we divided our original training data set into two parts, cross validation training set and cross
validation testing set or validation set.

Table 4.2: Training and Testing samples

Test Purpose Quantity Total number of
citations pairs

1 Cross validation set 1606214 803107
2 Final test set 401552 200776

4.2 Methodology

4.2.1 Design Rules

Our aim is to provide a sequence of different cases to guide us during the design process
strategy in order to reach the goal of solving the names ambiguity depending on ORCID citations.
ORCID represents authors from various backgrounds and cultures; this variety leads to different
labels which are reported to be ambiguous in author’s names. Towards the end of the following
subsections, we explain the main keys of our design principles.

4.2.1.1 Notes on ORCID Profile

The following are some points that we should be aware of through the design phase process

1. ORCID-profile: Each author has one profile with only one ORCID-ID.

2. There are some blank elements in author’s profiles in ORCID database.

3. Some elements have all the fields while others do not.

4. The main source of author’s details is ORCID-activities which consist of affiliations and
ORCID-work.

5. Affiliations include the department’s name and the organization’s name. However, affilia-
tions are not included in some parts of ORCID profiles. At least one of them is listed for
the author who has creative works.

6. ORCID-activities do not exist for an author who asks for an ORCID-ID also, ORCID-work
does not exist for someone who is involved in a scholarly work.

7. Keywords are not always available.

In the next subsections we propose a method using ORCID open database to solve the AD
problem based on citations records.

33

Chapter 4. Methodology and Data Analyses

4.2.1.2 Citation Representation

In ORCID database, each profile that belongs to an active author has at least one citation
record which consists of various information such as, co-authors, journal title, work title,
publishing year,..etc. As shown in Figure 4.1, citations records have two different types, Bibtex
formatting style and None-formatted style.

Figure 4.1: Citation Architecture

Our citation criteria will be based on the following points:

1. In the query result we will exclude the none-formatted citation type from the data sets.

2. The citation features based on co-authors, journal title, work title and publishing year.

3. Random number of citation records was represented in each data set sample.

4. In order to establish positive and negative pairs, number of citations in any profile must be
more than 2.

5. Positive pair Ppair is the representation of any two different citations from the same author’s
profile, e.g

0000-0002-3562-2323;16051195;Zhang,Y
0000-0002-3562-2323;14022797;Zhang,Y

The bold number in the ORCID ID is a primary key for citation records.

To collect these pairs we used two methods:

First, compiling pairs of citations from the same profile, so that these pairs are separated
and not repeated in any record of the other pairs. Figure 4.2 illustrates this criteria. The
number of positive pairs n from each dataset could be calculated according to Equation
4.1.

34

Chapter 4. Methodology and Data Analyses

Figure 4.2: Positive pairs for separated citations from an author’s profile

n =

Lastp∑
Firstp

⌊m
2

⌋
(4.1)

Where, Firstp, Lastp are the authors’ profiles range in each dataset, and m is number of
citations in author’s profile. We use this method to generate more positive pairs. Algorithm
(1) used to collect a random number of positive citation pairs from separated citations
belongs to the same author’s profile.

Algorithm 1 Positive Citation Pairs Algorithm from separated citations

1: Function Ppair(Profile p)
2: for p in Dataset LNFI
3: {
4: let i=1
5: let j=2
6: for citation m in p (1 to random)
7: {
8: pair=(m[i],m[j]);
9: return pair

10: i=j+1
11: j=i+1
12: }
13: }
14: Endfunction

Second, compiling chain of positive pairs of citations from the same profile. The first
pair consists of the first two citations then the second citation is linked to the third one to
construct the second pair and so on. Figure 4.3 illustrates this criteria. The number of pairs
n from each dataset can be calculated according to Equation 4.2.

Figure 4.3: Positive pairs for one author profile (Chain of citations)

35

Chapter 4. Methodology and Data Analyses

n =

Lastp∑
Firstp

m− 1 (4.2)

Algorithm (2) is used to collect a random number of positive pairs from chain of citations
that belong to the same author’s profile.

Algorithm 2 Positive Citation Pairs Algorithm

1: Function Ppair(Profile p)
2: for p in Dataset LNFI
3: {
4: let i=1
5: let j=2
6: for citation m in p (1 to random)
7: {
8: pair=(m[i],m[j]);
9: return pair

10: i++
11: j++
12: }
13: }
14: Endfunction

6. Negative pairs are the representation of any two citations from different authors’ profiles,
e.g.

0000-0001-7636-7368;14180633;Zhang,Y
0000-0001-8286-300X;15159439;Zhang,Y

To collect these pairs we used two methods:

First, compiling pairs of data from different profiles so that each record from author’s
profile P1 is linked to one record from a different author’s profile P2 without duplication.
Figure 4.4 illustrates this criteria.

Figure 4.4: Negative pairs (First Method)

The number of pairs n from each dataset could be calculated according to Equation 4.3.

n =

profiles∑
i=1

min(#citationpi ,#citationpi+1
) (4.3)

36

Chapter 4. Methodology and Data Analyses

Where, #citationpi and #citationpi+1
are the minimum number of citations in both

profiles. Algorithm (3) is used to collect a random number of negative pairs form two
different authors’ profiles taking into account the one-to-one relationship between the
citations in each profile.

Algorithm 3 Negative Citation Pairs Algorithm(one-to-one relationship)
1: //P1,P2 are two different profiles
2: let x=count(citation in P1)
3: let y=count(citation in P2)
4: let z=min(x,y)
5: Function GetCitation(Profile p, int i)
6: {
7: for citation c in p
8: if c[i]==True //is found
9: return c

10: else()
11: endif
12: }
13: Endfunction
14: for i=1 to z
15: {
16: First=GetCitation(P1,i)
17: Second=GetCitation(P2,i)
18: return pair(First, Second)
19: }

Second, compiling pairs of data from different profiles so that each record from profile P1

is linked to all records in profile P2 without duplication. Figure 4.5 illustrates this criteria.

Figure 4.5: Negative pairs (Second Method)

The number of pairs n from each dataset could be calculated according to Equation 4.4

n =

profiles∑
i=1

#citationpi × (#citationpi+1
− 1)

2
(4.4)

Algorithm (4) is used to collect a random number of negative pairs from two different
authors’ profiles taking into account the one-to-many relationship between the citations in
each profile.

37

Chapter 4. Methodology and Data Analyses

Algorithm 4 Negative Citation Pairs Algorithm(one-to-many relationship)
1: //P1,P2 are two different profiles
2: let x=count(citation in P1)
3: let y=count(citation in P2)
4: Function GetCitation(Profile p, int i)
5: {
6: for citation c in p
7: if c[i]==true //is found
8: return c
9: else()

10: endif
11: }
12: Endfunction
13: for i=1 to x
14: {
15: First=GetCitation(P1,i)
16: for j=1 to y
17: {
18: Second=GetCitation(P2,j)
19: return pair(First, Second)
20: }
21: }

The next subsection describes the citation methodology based on Co-authors, Journal title, Work
title and Publishing year features.

4.2.2 Coauthor Methodology

Since ORCID contains records from different backgrounds, we found various format of the
author’s names inside each citation block. We summarized them as follows:

1. One part string name. The family name or the first name.
e.g

kumar,

2. Two parts string name. The full first name followed by the full family name or the full
family name followed by the full first name. The same for names with abbreviations.

e.g
kumar, akhilesh

kumar, A.

3. Three parts string name which represents the first name, middle name and the family name.
In some cases one or two of the names parts with their first initials

e.g
Alexander, Swathy A

38

Chapter 4. Methodology and Data Analyses

Alexander Swathy Ann

Alexander, S. A.

4. Four parts string name which represents the first name, two middle names and the family
name. In some cases from one to three names written with their first initials

e.g
Permana A D C

Permana, Antonius Dimas Chandra

ORCID File Structure subsection clarifies the personal information for each author. The arrange-
ments of the main authors’ names are a sequence of the given-name (first name) then the family
name. Figure 4.6 describes the representation of the coauthors in the bibtex citations format
which comes in two types, last name then first name (or the abbreviation LNFI) or first name
then family name (or the abbreviation FNLI).

Figure 4.6: Coauthor’s Names Structure

We implemented Jaccard, JaroWinkler, Cosine, Levenshtein and NGram string similarity
technique to represent the similarity between two pairs of coauthors lists. In order to be more
accurate, we believed that we had to take into account the ambiguity of coauthor’s names, so we
calculated the similarities in two ways:
Firstly, Full Matching(FM) names when the two coauthors are completely identical. For example,
when the similarity score is 50% that means one coauthor’s name is shared in two citations
records. When the similarity score is 75% that means two coauthor’s names are shared in two
citations records. When the similarity score is 100% that means three or more coauthor’s names
are shared in two citations records.
Secondly, When the number of shared coauthor’s names in two citation records is less than or
equal to two. Then the algorithm will calculate the Partial Similarity(PS) match as the same
technique of the full string match. The weight of the PS will be 25% and this will ensure that the
partial match will not exceed 25% of the Total Similarity(TS) of any pair. Equation 4.5 is used
to calculate the coauthor’s pairs score.

TS = FM + (PS ∗ 0.25) (4.5)

Algorithm (5) introduces the way of calculating the TS between each positive or negative pair in
coauthors’ list.

39

Chapter 4. Methodology and Data Analyses

Algorithm 5 Coauthors Score Algorithm
1: initialize i,j,Counter1,Counter2 to zero
2: Function GetScore(Algorithm A,Coauthors c1, c2)
3: {
4: score=A(c1,c2)
5: return score
6: Endfunction
7: }
8: Function GetSimilarity(Counter C)
9: {

10: Match =

0.5 if C = 1

0.75 if C = 2

1 if C >= 3
11: return Match
12: }
13: Endfunction
14: for Coauthors c1 in citation1
15: {
16: i++
17: For Coauthors c2 in citation2
18: {
19: j++
20: score = GetScore(Gname, c1[i], c2[j])

21: where, Gname =

Jaccard
JaroWinkler
Cosine
Levenshtein
NGram

22: If score==1 then
23: Counter1++
24: else
25: Counter2++
26: }
27: if Counter1>=3
28: {
29: FM=GetSimilarity(Counter1)
30: else
31: FM=GetSimilarity(Counter1)
32: PS=GetSimilarity(Counter2)
33: }
34: TS=FM+(PS*.25)
35: }
36: return TS

This technique is designed to ensure that two similar items generate hashes that are themselves
similar. In fact, the similarity of the hashes has a direct relationship to the similarity of the

40

Chapter 4. Methodology and Data Analyses

citations they were generated from. The final step is to use a machine learning technique to
choose the promising similarity method that helps us to predict whether each pair of coauthors
belongs to the same author or not.

4.2.3 Publishing Year Methodology

We believe that publishing year plays an important role as the other used features. It could
give some indications about authors, especially when they submit everything new in their field of
research. We found a lot of researchers publishing in the same year or within a period of two or
three years. The criteria of calculating the score of publishing year based on the following: First,
The publication year score (Ys) is equal to one if two publications were published in the same
year. Second, If the publications were published in different years, then the Ys will calculated as
shown in Equation 4.6.

Ys =
1

|y2 − y1|
(4.6)

Where |y2 − y1| is the absolute value of the difference between the publication years from the
citation pair.
Algorithm (6) describes the criteria of calculating the score of any publication years.

Algorithm 6 Publishing year Score Algorithm

1: Function year(pair y2, y1)
2: {
3: D = |y2 − y1|
4: if D==0 then
5: Ys=1
6: else
7: Ys=1/D
8: return Ys
9: }

10: EndFunction

4.2.4 Journal Title Methodology

Authors publishing their researches in the same journal or in different journals are highly
concerned about the correct journal to submit their papers. The question regarding journal
choice is : should they submit their work to the same journal or not? Technically, it is perfectly
acceptable to submit two or more papers to the same journal. This way ensures that the author’s
readers will get a clear idea about his work, making the formatting much easier and the author
more familiar with the style of his work. Some authors believe that publishing in different
journals shows that their work has been accepted by a wide range of academics and becomes

41

Chapter 4. Methodology and Data Analyses

widely known [57]. Equation 4.7 calculates the similarity value between Journals.

Js =

1 if ja = jb

0 if ja 6= jb

> 0 and < 1 if PS(ja, jb)

(4.7)

Where Ja, Jb are the Journal titles that belongs to a pair of negative or positive citation and Js is
the Journal similarity score. The technique we followed to compute the similarity between each
pair of journals consists of the following steps:
Step1: Extract the Journal feature from the citations records for each LNFI data set in ORCID
database. In this step, we removed the stop words and clean the journal names from unwanted
symbols.
Step2: In order to find the score of the similarity between any pair of journals, we implemented
seven string algorithms: Jaccard, Jaro, Cosine, Levenshtein, NGram, Soren distance and Damerau
Levenshtein Distance.
Step3: The final step is to use a machine learning technique to choose the promising similarity
method that helps us to predict whether each pair of Journals belongs to the same author or not.
Figure 4.7 describes the process of calculating journal similarity using each string algorithm.

Figure 4.7: Journal Similarity

4.2.5 Work Title Methodology

Computing string similarity is not a trivial task, because of the different of natural language
expressions [31]. The technique of finding similarity between long texts focuses on the shared
words in both, but in short text it focuses on word co-occurrence. Computing authors’ work
titles using the traditional similarity measures is useless because these measures are based on the
syntactic features and other based measures.

Figure 4.8 shows the functionality of finding the similarity between two work titles. In
step 1 and 2, different techniques were used to find the semantic similarity between positive
and negative work title pairs. We must obtain tokens from the work title and apply various
normalization to adjust them for our needs. This will reduce the influence of grammatical
reasons in addition to how words are formed, and their relationship to other words in the same
language. We achieve that by: (1)Title tokenization; (2)Removing stop words; (3)Stemming and

42

Chapter 4. Methodology and Data Analyses

lemmatization. Step 3 represents the total number of items in each title. Our methodology is
able to find the semantic meaning of any title which consists of one word or more as clarified in
step 4. Each title is treated as a bag of words or terms and is represented in a high dimensional
space as a vector.

The dimension of the space depends on indexing terms which are chosen to be relevant for
the collection dictionaries database. A collection of n documents can be represented in two
vectors: Category vector represents the terms of the first sentence in the title pairs and the input
vector represents the terms of the second sentence as shown in step 5. Each item in the vectors
represents a dimension and all dimensions establish the space model. In step 6 we formed
the semantic vector for each work title by processing each title sentence using a collection
of dictionaries (En-Wikipedia, En-PubMedOA, En-BNC and WordNet) to help us extract the
concepts related to the terms in each sentence. In step 7 the category vector consists of the terms
and the occurrence of each term in the documents which has been retrieved from the dictionaries
as illustrated in matrix Category in Equation 4.8

Category =

Term Frequency

t21 f22

. .

. .

tm fmn

 (4.8)

Where, m is the number of unique terms in all documents, each row represents the term and the
occurrence in all documents.

The input vector in Equation 4.9 is the same as the category vector but it ignores the terms
that are not related to the synonyms in the category vector.

Input =

Term Frequency

t21 f22

. .

. .

tm fmn

 (4.9)

Once we formed the semantic vectors for the work titles pair in the space model, we computed
the cosine similarity between them as shown is step 8 and finally step 9 represents the final result.

43

Chapter 4. Methodology and Data Analyses

Figure 4.8: Sentence similarity computation diagram

4.2.6 Machine Learning

In this section, we will use the dataset that we derived in Table 4.2. The dataset is comprised
of 1003,883 citation pairs. Our goal is to build a machine learning algorithm capable of detecting
the correct citation (match or not match) in new unseen citation. In machine learning, this type
of problems is called classification. Figure 4.9 illustrates the machine Learning phases. Training
phase: In this phase, we train a machine learning algorithm using a dataset comprised of the
citations and their corresponding labels. Prediction phase: In this phase, we utilized the trained
model to predict labels of unseen citations.

The training phase for Author’s Names Disambiguation (AD) classification problem has two
main steps: First, Feature Extraction: In this phase, we utilized domain knowledge to extract
new features that will be used by the machine learning algorithm. Coauthors’ names, journal
title, work title and publishing year are the features used in AD classification. Second, Model
Training: In this phase, we utilized a clean dataset composed of the citations features and the
corresponding labels to train the machine learning model. In the prediction phase, we applied
the same feature extraction process to the new citation and we passed the features to the trained
machine learning algorithm to predict the label.

In the ORCID dataset, we classify each record into one of two classes: First, class Y es
means the citation pairs are matched and belongs to the same author. Second, class No means
the citation pairs are mismatched and belongs to two different authors. Figure 4.10 illustrates the

44

Chapter 4. Methodology and Data Analyses

Figure 4.9: Machine Learning Phases

classification process which uses the training set to train the model to predict the unseen data
(Testing set) using various models (Decision Tree (C4.5), Random Forest, Deep Learning and
Naive Bayes).

Figure 4.10: Weka Classification

In order to build a promising model that can achieve a high accuracy and a precise prediction
on a set of unseen data we used various classifiers. Decision Tree, since the dataset contains
continuous attributes, we utilized C4.5 as the primary algorithm which represented as J48 in
Weka. In Random Forest there are only a few hyper-parameters we need to tune in Weka: The
trees to build in Random Forest, the tree depth and the number of features which should be
used for each tree. Using Naive Bayes, we assumed that the value of features are independent
from others and that features have equal importance. Deep Learning which is represented as
deeplearning4j in Weka. It is possible in Deep Learning to load predefined architectures as
neural network and train it on a new dataset. In order to get additional performance we tweaked
some parameters such as number of layers, learning rates, convolutional filters and processing
parameters.

4.3 Chapter Summary

In this chapter as illustrated in Figure 4.5, we presented the methods we used for extracting
the features of the database, as well as the methodology that have been used to calculate the

45

Chapter 4. Methodology and Data Analyses

similarity between the negative and positive citation pairs. A matrix of real numbers has been
obtained from records scores that represent the similarity of each citation pairs in the data-sets
consists of coauthors, journal title, work title and publishing year. Different machine learning
classification approaches used to build a promising model that can achieve a high accuracy and a
precise prediction for unseen citation records.

Figure 4.11: The Methodology Phases

46

Chapter 5

Experiments and Results

In this chapter, different experiments are conducted in order to evaluate the improvement
brought out by our methodology approach. The first section will describe the experiments
setup. The evaluation approach of the classification result will be described in section 2. The
comparison between Random Forest (RF) versus Naive Bayes Classifier, Deep Neural Networks
(DNN) and Decision Tree (J48) will be described in section 3. The last section will illustrate
and analyze the experiment results, ranking the features, ranking the distance matrices and the
execution time of predicting new instances.

5.1 Experiments Setup

The classification methods were tested by using 10-fold cross validation technique to compare
the performance of the machine learning approaches that we used. In each round of cross
validation we partitioned the original data sets into training set and testing set. We trained our
machine learning model using the cross validation training set and test it against the testing
set. The training set contains 803,107 instances and the testing set contains 200,776 instances.
We calculated the Area Under Curve (AUC) of the machine learning models by validating the
predicted results against the test set. Averaging the accuracies derived in all the 10-folds cases of
cross validation to estimate the accuracy of our model.

We implemented four machine learning approaches, namely RF, Naive Bayes Classifier,
DNN and J48 which were intensively tested in a comparative approach. RF has different
parameters to be tuned, Fnum, Tnum and Tdepth. Increasing Fnum parameter shows how many
attributes are selected to build one of those trees in RF. In general it improves the performance
of the model. Tnum refers to how many trees the forest is composed of, higher number of trees
gives strong predictions. Tdepth indicates the depth of each generated tree.

Table 5.1 summarizes the accuracy results according to RF tuned parameters. The accuracy
value is directly proportional to the number of trees Tnum = 300 in RF with the default value of
Tdepth = 0 and Fnum = 4. After 300 trees there is no significant improvement. There is no need
to go for pruning since the data samples expanded into each individual tree have already gone

47

Chapter 5. Experiments and Results

through bagging.

Table 5.1: RF tuned parameters using 10-folds cross validation

#Experiment Tdepth Fnum Tnum Accuracy
1 3 4 10 84.05
2 3 4 20 84.90
3 3 5 20 85.03
4 4 15 20 85.40
5 4 5 20 85.70
6 4 6 20 85.70
7 4 8 20 85.70
8 4 9 20 85.80
9 4 10 20 85.80

10 4 8 40 85.81
11 4 9 300 85.88
12 4 10 30 85.90
13 6 8 40 86.80
14 10 8 40 89.64
15 12 4 144 90.10
16 12 15 65 90.50
17 12 8 65 90.65
18 14 4 400 91.12
19 15 4 144 91.51
20 18 5 50 93.17
21 20 7 10 94.05
22 30 4 300 94.40
23 25 4 60 95.62
24 2 4 1,000 83.84
25 4 4 300 85.88
26 0 4 10 94.02
27 0 4 20 94.36
28 0 4 50 94.63
29 0 4 100 94.71
30 0 4 300 94.77

Next, we evaluated the effects of feature selection on classification performance using
group of performance measures: Classifiers Accuracy (ACC), Precision, Recall, F-measure,
ROC graphs and AUC. Performance evaluations were compared against each other in terms of
classification results.

5.2 Random Forest Classifier

In order to validate the performance of RF classifier, we should be certain that the classifier
has been well trained thereafter it can be evaluated using the testing set to figure out its accuracy.
The following subsections explain the validation process.

48

Chapter 5. Experiments and Results

5.2.1 RF statistic Result

We calculated the accuracy of RF Classifier model by validating the predicted results against
the testing set. Table 5.2 summarizes the evaluation result considering the parameters Fnum = 4,
Tnum = 300 and Tdepth = 0. Kappa statistic measurement is equal to 0.87 which signifies
near perfect agreement to predict the positive citation (class yes). Table 5.3 shows the detailed
accuracy result by class in the testing phase. 93% of the citation pairs belong to the same authors
and 96% of citation pairs belong to different authors and were correctly classified according to
precision measurement.

Whereas a recall of 88% citation pairs is labeled as belonging to same authors and 97%
citation pairs are labeled as belonging to different authors. Usually, precision and recall scores
are not discussed in isolation. F-Measure makes the balance between precision and recall of 90%
and 96% for class "yes" and "no" respectively. The Precision-Recall (PRC) area of 97% gives us
a strong estimation that RF was successful to predict the citations that belong to the same author.

Table 5.2: The statistics results in the testing phase

Test Result
1 Correctly Classified Instances 94.78%
2 Incorrectly Classified Instances 5.22%
3 Kappa statistic 0.87
4 Mean absolute error 0.09
5 Root mean squared error 0.20
6 Total Number of Instances 200,776

Table 5.3: RF detailed accuracy results in testing phase

Class TP Rate FP Rate Precision Recall F-Measure ROC Area PRC Area
no 0.97 0.12 0.96 0.97 0.96 0.98 0.99
yes 0.88 0.03 0.93 0.88 0.90 0.98 0.97

ROC curves represent excellent, good, and worthless test plotted on the same graph. The
accuracy of the test depends on how well the test separates the group being tested into those with
and without the matching question (whether two citations belong to the same author or not). In
Figure 5.1 ROC curve reflects the appropriate accuracy of RF classifier in predicting negative
and positive author’s citation pairs.

49

Chapter 5. Experiments and Results

Figure 5.1: ROC curve for predicting the author’s citation pairs.

5.3 Random forest versus other machine learning

approaches

Out of four algorithms RF shows the highest accuracy i.e. 94.78% than the other three. It
depicts that RF performs better and gives good prediction results than the others. From the Table
5.4 the algorithms namely J48, DNN and Nive Bayes have 92.32%, 87.63% and 85.01% accuracy
respectively. The 94.78% accuracy means our algorithm will give high results. The remaining
5.22% incorrect results will be displayed. Despite this incorrect results RF is much better than
the other algorithms which show 7.68%, 12.37% and 14.99% incorrect results respectively.

Table 5.4: Analysis of algorithm on Knowledge level ORCID Data set

Classification
Techniques

Total Number
of Instances

Correctly
Classified
Instance

Incorrectly
Classified
instance

Kappa
Statistic

Mean
absolute

error

Root mean
squared

error
Accuracy

RF 200,777 190,291 10,486 0.87 0.09 0.20 94.78%
J48 200,777 185,616 15,161 0.80 0.12 0.26 92.32%
DNN 200,777 175,949 24,828 0.69 0.18 0.31 87.63%
Naive Bayes Classifier 200,777 170,735 30,042 0.63 0.15 0.37 85.01%

The results that have been obtained from these comparative studies show that RF has the
highest accuracy. Kappa is near to perfect which renders it as the most capable classifier that can
be recommended. Another characteristic of RF is that it has the lowest squared error relative to
the other three algorithms and has the least number of incorrect results.

Table 5.5 shows the detailed accuracy results that have been obtained from the comparison
between RF, J48, DNN and Nive Bayes. All measurements proved that RF is performing better
than others. True Positive Rate (TPR) or sensitivity in RF is equal to 0.97 for class "No" and the
False Positive Rate (FPR) or the specificity is equal to 0.03 for class "Yes". That means 0.03 of
negative citation records are incorrectly classified as positive pairs. Accordingly, 0.12 of positive
citation pairs are classified as negative citation pairs while they are positive pairs. Precision

50

Chapter 5. Experiments and Results

shows that RF succeeded to classify 0.96 of negative citation pairs that belong to different authors
and 0.93 as positive citation pairs that belongs to the same authors.

ROC curves show that RF performs better than others for both negative and positive citation
records. According to PRC area RF succeeded to predict the citations that belong to the same
author while PRC area value in J48 , DNN and Nive Bayes are 0.87, 0.83 and 0.81 respectively
show that these approaches are overfitting to predict positive citation records.

Table 5.5: Detailed Accuracy by Class

Classification
Techniques TP Rate FP Rate Precision Recall F-Measure ROC Area PRC Area Class

RF 0.97 0.12 0.96 0.97 0.96 0.98 0.99 No
0.88 0.03 0.93 0.88 0.90 0.98 0.97 Yes

J48 0.96 0.17 0.94 0.96 0.95 0.94 0.96 No
0.84 0.04 0.87 0.84 0.86 0.94 0.87 Yes

DNN 0.92 0.25 0.91 0.92 0.92 0.90 0.94 No
0.75 0.08 0.80 0.75 0.77 0.90 0.83 Yes

Naive Bayes Classifier 0.90 0.27 0.90 0.90 0.90 0.90 0.95 No
0.73 0.10 0.73 0.73 0.73 0.90 0.81 Yes

The ROC curve in Figure 5.2 shows that RF achieves the highest area under curve value
equal to 0.98 comparing with J48 , DNN and Nive Bayes which were recorded 0.94, 0.90 and
0.90 respectively.

Figure 5.2: Comparison between machine learning approaches (ROC Curve)

5.4 Features Ranking and Distance Matrices

The results in Table 5.6 show the ranking of Distance Matrices (DM). The InfoGain values
of DM that we used to find the similarity of coauthors pairs have the highest values between
0.278 and 0.238 excluding NGram algorithm. The InfoGain gives us an indication that coauthors
are the most important feature among others in the citation records. Using semantic technique to
find the similarity between work title pairs ranked them as the second important feature after

51

Chapter 5. Experiments and Results

coauthors. Journal title is the third and publishing year is the least important with InfoGain value
equal to 0.033. Ranking table also shows that using Jaro Winkler and Levenshtein algorithms to
find the similarity of coauthors pairs is worth more than using them with journal title but using
Cosine and Jaccard algorithms to find the similarity of journal title pairs is more accurate than
using them with coauthors.

Table 5.6: Features Ranking and Distance Matrices

Attributes DM Ranked DM Rank InfoGain

Coauthoers

Jaro Winkler 2 1 0.278
Levenshtein 4 2 0.256
Cosine 3 3 0.252
Jaccard 1 4 0.238
NGram 5 14 0.024

Work Title
Title2 using collection of dictionaries
(En-Wikipedia, En-PubMedOA, En-BNC) 14 5 0.118

Title1 using WordNet dictionary 13 6 0.104

Journal Title

Sorensen-Dice 11 7 0.060
Cosine 8 8 0.059
Jaccard 6 9 0.059
Normalized Levenstein 12 10 0.045
Jaro Winkler 7 11 0.039
NGram 10 12 0.035
Levenshtein 9 13 0.033

Year Year 15 15 0.002

In order to evaluate the importance of each feature, we implemented different experiments
using RF with respect to the parameters Fnum = 4, Tnum = 300 and Tdepth = 0. Figure 5.3
shows the accuracy that RF achieved by excluding one feature periodically. Removing coauthors
will decrease the accuracy to 82.10% which has an impact of 12.9% in eliminating ambiguity
in author’s names while removing journal title, work title and publishing year will decrease the
accuracy to 89%, 91.44% and 91.80% respectively.

These experiments showed that, coauthors are the most important feature among others in
citation records in solving author names disambiguation problem. Journal title is the second
feature that has an important impact then work title and finally the publishing year. All of
these features have a strong and a promising estimation when they work together in solving the
ambiguity of author names.

52

Chapter 5. Experiments and Results

Figure 5.3: Accuracy value by excluding one feature periodically

We excluded the least two values (Year and Levenshtein which used with journal title)
according to InfoGain results in Table 5.6 then we ranked the features again using InfoGain
measurement. The results in Table 5.7 show that coauthors are the most important feature among
others, work title is the second and journal title is the third.

Table 5.7 also shows that using Levenshtein algorithm to find the similarity of coauthors
pairs is worth more than using it with journal title but using Cosine and Jaccard algorithms to
find the similarity of journal title and coauthors pairs has the same importance.

Table 5.7: Features Ranking and Distance Matrices by excluding the two smallest InfoGain
values

Attributes DM Ranked DM Rank InfoGain
Coauthoers cLeven 4 1 0.10074

Work Title
Title2 using collection of dictionaries
(En-Wikipedia, En-PubMedOA, En-BNC) 13 2 0.09042

Coauthoers
cJaccard 1 3 0.08972
cCosine 3 4 0.08615
cJaro 2 5 0.05791

Journal Title
jJaccard 5 6 0.03345
jCosine 7 7 0.03161

Work Title Title1 using WordNet dictionary 12 8 0.02601

Journal Title

jSorensenDice 10 9 0.02524
jNormlizedLev 11 10 0.01083
jJaro 6 11 0.00991
jNGram 9 12 0.00817
jLeven 8 13 0.00682

We evaluate the importance of the features based on the InfoGain ranking results in Table 5.7.
For this purpose we implemented different experiments using RF with respect to the parameters
Fnum = 4, Tnum = 300 and Tdepth = 0. We calculated the accuracy of RF classifier model by
validating the predicted results against the testing set using all the distance matrices in Table
5.7 that has been ranked by InfoGain measurement for each attribute. Table 5.8 and 5.9 show

53

Chapter 5. Experiments and Results

that we can distinguish whether two citations belong to the same author or not even without the
publishing of the year with high accuracy.

Table 5.8: The statistics results in the testing phase

Test Result
1 Correctly Classified Instances 92.64%
2 Incorrectly Classified Instances 7.36%
3 Kappa statistic 0.81
4 Mean absolute error 0.11
5 Root mean squared error 0.24
6 Total Number of Instances 200,776

Table 5.9: RF detailed accuracy results in testing phase

Class TP Rate FP Rate Precision Recall F-Measure ROC Area PRC Area
no 0.96 0.15 0.94 0.96 0.95 0.97 0.98
yes 0.85 0.04 0.88 0.85 0.87 0.97 0.93

Figure 5.4 shows the accuracy that RF achieved by excluding one feature periodically. These
experiments showed that coauthors are the most important feature among others in citation
records in solving author’s names disambiguation problem. Work title is the second important
feature and finally journal title.

Figure 5.4: Accuracy value by excluding one feature periodically according to InfoGain ranking
results

5.5 Execution Time

Table 5.10 represents various data-sets that have been chosen randomly from ORCID database.
We extract all citation combinations from each dataset that share LNFI name strings. The
execution time that we needed before constructing the machine learning model is divided into

54

Chapter 5. Experiments and Results

two parts. The former is the time that we need for extracting the features from ORCID database
and the latter is the time we need to find the similarity between negative and positive citation
pairs.

Table 5.10: Pre-processing time performance

LNFI
Positive
citations

Execution time
per second

Negative
citations

Execution time
per second

Similarity calculation
time per minute

Total execution
time per minute

Total
citations

wang, y 4584 225.83 1090 192.83 0.13 7.11 5674
Ali, M 4052 210.30 12804 235.59 0.42 7.86 16856
Park, J 5886 210.32 43572 336.02 1.06 10.17 49458

Chen, Y 42660 311.49 208328 832.87 5.19 24.26 250988
Liu, Y 35650 305.87 267500 1001.61 5.87 27.66 303150

Zhang, Y 120166 626.08 546518 2025.93 12.71 56.91 666684
Li, J 456362 1675.95 355850 1670.76 16.29 72.06 812212

Kim, J 330364 1159.75 850450 2603.62 22.15 84.88 1180814
Lee, J 764264 2394.13 646306 3210.76 28.09 121.50 1410570

The quadratic curve in Figure 5.5 represents the relationship between the total number of
extracted citations and the total time that consists of the execution time and the similarity time.

Figure 5.5: Time performance in pre-processing phase

It is also necessary to take into account the time required by the RF learned model to predict
unseen samples. For this purpose different testing data sets have been used for evaluating the
classification model. For each new test set we calculated the accuracy and the time that RF
spent to predict these new citations records. Figure 5.6 illustrates the time performance of RF
classifier for each data set. It describes the execution time required to predict new citation records.
We found a non-linear direct proportion between the citation pairs and the execution time and
that means more accurate prediction requires more trees, which results in a slower model. We
conclude that RF algorithm is fast enough in solving the AD problem based on ORCID citations.

55

Chapter 5. Experiments and Results

Figure 5.6: Time performance prediction using RF classifier

56

Chapter 6

Conclusion and Future Work

6.1 Conclusion

We have addressed the problem of author’s names disambiguation for different authors with
the same name on ORCID database citations. In order to solve the problem, we introduced a
set of methodological steps to exploit the relationships between citations. We have discovered
the implied topic-based relationships in citations to influence author names ambiguity and that
the accuracy of disambiguation can be significantly improved by looking at citations in ORCID
databases or other publications in different databases.

More than one million citation pairs were extracted from ORCID database to construct the
negative and positive citation pairs to be used in our experiments. Positive pairs mean that these
citations belong to the same author while negative pairs belong to different authors’.

The methodology of solving the problem of author’s names was based on citations that
consists of coauthors names, journal title, work title and publishing year. Different distance
matrices were used to find the similarity between coauthors and journal title. Semantic knowledge
based on collective English language dictionaries was used to find how much two work titles are
similar or not. Author who publishes two publications in the same year gives a strong indication
that these publications belong to the same author.

We believe that machine learning approaches are the key for solving this problem. Different
machine learning algorithms were used to classify the citations record. Our experiment results
show that the disambiguation accuracy improved to 94.78% by using RF classifier while Nive
Bayes, J48 and DNN have 85.01%,92.32% and 87.63% accuracy respectively.

Of the four basic attributes, the coauthor attribute provides the most useful information for
disambiguation, and journal title is slightly better than work title and the year of publishing. In
addition, disambiguation information derived by Jaro Winkler, Levenshtein, Cosine and Jaccard
metric contains less noise in finding the similarity of coauthors than NGram. Sorensen-Dice,
Cosine, Jaccard and Normalized Levenstein metric have less noise in finding the similarity of
journal titles.

Also, we conclude that removing the year of publishing will not negatively affect the result

57

Conclusion and Future Work

of disambiguation accuracy. Almost, Rf achieved 93% accuracy and the ROC curve reflects the
appropriate accuracy of 97% in predicting negative and positive author’s citation pairs.

The Web application, which was designed based on our vision to solve the problem of
ambiguity in authors’ names, is a sure indication of the usefulness of the methodology of our
study that has the ability to classify new citations outside the boundaries of ORCID databases.

In summary, our contribution in grouping citation pairs of the same author into the correct
class is more accurate and proposes a useful solution for name disambiguation improvements.

6.2 Future Work

Different experiments have been left for the future due to lack of time i.e. the experiment
requiring even months to finish. Future work concerns deeper analysis of particular mechanisms,
new proposals to try different methods. There are some ideas that I would have liked to try
during the description and the development of the functionality of solving author’s names
disambiguation problem.

This thesis has been mainly focused on the use of ORCID citations for author’s names
matching, and most of the mechanisms used are focused on answering the question whether two
citations belong to the same author or not. The following points among the points that we have
been achieved are left outside the scope of this thesis

• Filtration ORCID identifiers in which each author must have a unique and distinct ORCID
ID. This assumption will help ORCID to:

– Achieve the one-to-one relationship between ORCDI ID and author name.

– Save more space by removing the duplication records.

– Solve the problem of name disambiguation and achieve more accuracy.

• Updating the work activity records for each author will help ORCID to:

– Add a new external citation to the appropriate author records.

– Control over profile information from third-party profiles.

• Trying other existent larger databases, such as DBLP, ACM Digital Library and Citeseer.

• Author citation information, the key input to our system, is still imperfect due to some
information loss. Considering the variety of cultural backgrounds of ORCID citation
authors, a better system is necessary to recover information lost during the data collection
stages such as email and affiliation.

58

Appendix A

Web-Application

Figure A.1 illustrates the matching and not matching process for any citation pairs. It starts
by checking whether two authors belong to the LNFI criteria or not. If they are different then
the results will not match. If they belong to the LNFI criteria then the process will continue to
calculate the similarity of the coauthors, journal title, work title and the year of publications. The
application will pass the similarity vector to the trained RF learning model which gives us an
indication whether the two citations records are related to the same author or not. Different java
classes have been used in the application as follow:

Figure A.1: Matching and not matching web-application process

59

Chapter A. Web-Application

The processRequest method is used to declare the desired variables and the required methods
that we use to perform the calculation process.

protected void processRequest(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

response.setContentType("text/html;charset=UTF-8");

DecimalFormat formatter = new DecimalFormat("#.##");

double j[] = {0, 0, 0, 0, 0, 0, 0};

double c[] = {0, 0, 0, 0, 0};

String finalscore[] = {""};

String prediction = "";

PrintWriter out = response.getWriter();

String auhtor1firstname =

request.getParameter("authoronefirstname").toString();

String author1lastname =

request.getParameter("authoronelastname").toString();

String author2firstname =

request.getParameter("authortwofirstname").toString();

String author2lastname =

request.getParameter("authortwolastname").toString();

String fullname = "[" + auhtor1firstname + " " +

author1lastname + "]<==>[" + author2firstname + " " +

author2lastname + "] is :";

int y1 =

Integer.parseInt(request.getParameter("firstyear").toString());

int y2 =

Integer.parseInt(request.getParameter("secondyear").toString());

String c1 = request.getParameter("co1").toString();

String c2 = request.getParameter("co2").toString();

String title1 =

request.getParameter("authoronetitle").toString();

String title2 =

request.getParameter("authortwotitle").toString();

String journal1 =

request.getParameter("authoronejournal").toString();

String journal2 =

request.getParameter("authortwojournal").toString();

double yearvalue = 0;

double worktitle = 0;

double worktitle2 = 0;

if (author1lastname.equals(author2lastname) &&

60

Chapter A. Web-Application

auhtor1firstname.substring(0,

1).equals(author2firstname.substring(0, 1))) {

yearvalue = years(y1, y2);

worktitle = maintitle(title1, title2);

worktitle2 = smain(title1, title2);

j = journal.journalmatch(journal1, journal2);

c = finalmatch.comatch(c1, c2);

finalscore[0] = formatter.format(c[0]) + "," +

formatter.format(c[1]) + "," + formatter.format(c[2]) +

","

+ formatter.format(c[3]) + "," +

formatter.format(c[4]) + ","

+ formatter.format(j[0]) + "," +

formatter.format(j[1]) + "," +

formatter.format(j[2]) + ","

+ formatter.format(j[3]) + "," +

formatter.format(j[4]) + "," +

formatter.format(j[5]) + ","

+ formatter.format(j[6]) + ","

+ formatter.format(worktitle) + "," +

formatter.format(worktitle2) + ","

+ formatter.format(yearvalue) + "," + "?";

} else {

finalscore[0] = 0 + "," + 0 + "," + 0 + ","

+ 0 + "," + 0 + ","

+ 0 + "," + 0 + "," + 0 + ","

+ 0 + "," + 0 + "," + 0 + ","

+ 0 + ","

+ 0 + "," + 0 + ","

+ 0 + "," + "?";

}

writeCsvFile(finalscore[0]);

unlabel(fullname);

out.println("<html>");

out.println("<head>");

out.println("<title>Servlet GreetingServlet</title>");

out.println("</head>");

out.println("<body>");

out.println("<p>Welcome " + formatter.format(c[0]) + "," +

formatter.format(c[1]) + "," + formatter.format(c[2]) + ","

+ formatter.format(c[3]) + "," + formatter.format(c[4])

+ ","

61

Chapter A. Web-Application

+ formatter.format(j[0]) + "," + formatter.format(j[1])

+ "," + formatter.format(j[2]) + ","

+ formatter.format(j[3]) + "," + formatter.format(j[4])

+ "," + formatter.format(j[5]) + ","

+ formatter.format(j[6]) + ","

+ formatter.format(worktitle) + "," +

formatter.format(worktitle2) + ","

+ formatter.format(yearvalue) + "," + "?" + "</p>
");

out.println(readfile() + "</body>");

out.println("</html>");

out.close();

}

The following finalmatch class is used to calculate the coauthors similarity scores

public class finalmatch {

public static Jaccard j;

public static JaroWinkler jw;

public static OptimalStringAlignment OP;

public static Levenshtein we;

public static SorensenDice so;

public static NGram ng;

public static Cosine co;

public static Damerau dam;

public static NormalizedLevenshtein Norl;

public static String normlizetext(String w) {

w = w.replaceAll("\\s+$", "");//rightRemoved

w = w.replaceAll("^\\s+", "");//leftRemoved

w = w.replace(",", " ");

w = w.toLowerCase();

// System.out.print(w);

return w;

}

public static double jaccardcomp(String w1, String w2) {

double r = 0;

r = (double) (j.similarity(w1, w2));

return r;

}

public static double jarocomp(String w1, String w2) {

double r = 0;

r = (double) (jw.similarity(w1, w2));

62

Chapter A. Web-Application

return r;

}

public static double Cosinecomp(String w1, String w2) {

double r = 0;

r = (double) (co.similarity(w1, w2));

return r;

}

public static double Levencomp(String w1, String w2) {

double r = 0;

r = (double) (Norl.similarity(w1, w2));

return r;

}

public static double Dameraucomp(String w1, String w2) {

double r = 0;

r = (double) (ng.distance(w1, w2));

return r;

}

public static double printgridarray(double a[][], int xlen, int

ylen, String str) {

int fullmatchcount = 0;

int partialcount = 0;

double partialsum = 0;

double result = 0;

double partialweight = 0;

double fullmatchweight = 0;

double f1 = 0, f2 = 0;

int print = 0;// 1 to desplay the details and 0 the final

results

double pweight = .75;

if (print == 1) {

System.out.printf("\n=========\n");

System.out.printf("\t\t%s\t\t", str);

System.out.printf("\n-----------\n");

}

for (int x = 0; x <= xlen; x++) {

for (int y = 0; y <= ylen; y++) {

if (print == 1) {

System.out.printf("%.2f ", a[x][y]);

}

if (a[x][y] == 1) {

fullmatchcount++;

63

Chapter A. Web-Application

}

if (a[x][y] != 1 && a[x][y] > pweight) {

partialsum = partialsum + (a[x][y] - pweight);

partialcount++;

}

}

if (print == 1) {

System.out.printf("\n");

}

}

if (fullmatchcount == 0 && partialcount == 0) {

f1 = 0;

f2 = 0;

fullmatchweight = f1;

partialweight = f2;

} else if (fullmatchcount == 0 && partialcount > 0) {

f1 = 0;

f2 = 0.5;

fullmatchweight = f1;

partialweight = ((partialsum / partialcount));

} else if (fullmatchcount == 1 && partialcount > 0) {

f1 = 0.5;

f2 = 0.5;

fullmatchweight = f1;

partialweight = ((partialsum / partialcount));

} else if (fullmatchcount == 1 && partialcount == 0) {

f1 = 0.5;

f2 = 0;

fullmatchweight = f1;

partialweight = f2;

} else if (fullmatchcount == 2 && partialcount > 0) {

f1 = 0.75;

f2 = 0.25;

fullmatchweight = f1;

partialweight = ((partialsum / partialcount));

} else if (fullmatchcount == 2 && partialcount == 0) {

f1 = 0.75;

f2 = 0;

fullmatchweight = f1;

64

Chapter A. Web-Application

partialweight = f2;

} else if (fullmatchcount > 2) {

f1 = 1;

f2 = 0;

fullmatchweight = f1;

partialweight = f2;

}

result = fullmatchweight + partialweight;

if (print == 1) {

System.out.printf("\n---------------\n");

System.out.printf("f1:(%.2f)\tFullmatch count:(%d)

,\t\tFullmatch weight:%.2f", f1, fullmatchcount,

fullmatchweight);

System.out.printf("\nf2:(%.2f)\tPartial sum(%.2f),partial

count:(%d), Partial Weight:%.2f", f2, partialsum,

partialcount, partialweight);

System.out.printf("\n\t\t\t\t\t\t Result:\t%.2f\t", result);

System.out.printf("\n=================\n");

}

return result;

}

public static double[] comatch(String s1, String s2) {

int i;

jw = new JaroWinkler();

j = new Jaccard(1);

OP = new OptimalStringAlignment();

co = new Cosine();

ng = new NGram();

we = new Levenshtein();

so = new SorensenDice();

Norl = new NormalizedLevenshtein();

dam = new Damerau();

double co[] = {0, 0, 0, 0, 0};

String beforew1 = "";

String afterw1 = "";

String beforew2 = "";

String afterw2 = "";

String secondS = "";

String firstS = "";

double c1 = 0.0;

double c2 = 0.0;

double c3 = 0;

65

Chapter A. Web-Application

double c4 = 0;

double c5 = 0;

String[] s1arry = s1.split(";");

String[] s2arry = s2.split(";");

double outgrid[][] = new double[s1arry.length][s2arry.length];

double outgrid1[][] = new double[s1arry.length][s2arry.length];

double outgrid2[][] = new double[s1arry.length][s2arry.length];

double outgrid3[][] = new double[s1arry.length][s2arry.length];

double outgrid4[][] = new double[s1arry.length][s2arry.length];

int x = 0;

int y = 0;

if (s1.isEmpty() || s2.isEmpty()) {

} else {

for (String w1 : s1arry) {

y = 0;

w1 = normlizetext(w1);

if (w1.contains(",")) {

beforew1 = w1.split(",")[0];

afterw1 = w1.split(",")[w1.split(",").length - 1];

firstS = beforew1.concat(" ").concat(afterw1);

} else {

firstS = w1;

}

for (String w2 : s2arry) {

w2 = normlizetext(w2);

if (w2.contains(",")) {

beforew2 = w2.split(",")[0];

afterw2 = w2.split(",")[w2.split(",").length - 1];

secondS = beforew2.concat(" ").concat(afterw2);

} else {

secondS = w2;

}

c1 = jaccardcomp(w1, w2);

c2 = jarocomp(w1, w2);

c3 = Cosinecomp(w1, w2);

c4 = Levencomp(w1, w2);

c5 = Dameraucomp(w1, w2);

outgrid[x][y] = c1;

outgrid1[x][y] = c2;

outgrid2[x][y] = c3;

outgrid3[x][y] = c4;

outgrid4[x][y] = c5;

66

Chapter A. Web-Application

y++;

}

x++;

}

co[0] = printgridarray(outgrid, x - 1, y - 1, "Jacard");

co[1] = printgridarray(outgrid1, x - 1, y - 1, "Jaro");

co[2] = printgridarray(outgrid2, x - 1, y - 1, "Cosine");

co[3] = printgridarray(outgrid3, x - 1, y - 1, "Leven");

co[4] = printgridarray(outgrid4, x - 1, y - 1, "Damerau");

}

return co;

}

}

The following journal class is used to calculate the journal titles similarity scores

public class journal {

public static Jaccard j;

public static JaroWinkler jw;

public static OptimalStringAlignment OP;

public static Levenshtein we;

public static SorensenDice so;

public static NGram ng;

public static Cosine co;

public static Damerau dam;

public static NormalizedLevenshtein Norl;

public static WeightedLevenshtein wlv;

public static double jaccardcomp(String w1, String w2) {

double r = 0;

r = (double) (j.similarity(w1, w2));

return r;

}

public static double jarocomp(String w1, String w2) {

double r = 0;

r = (double) (jw.similarity(w1, w2));

return r;

}

public static double Cosinecomp(String w1, String w2) {

double r = 0;

r = (double) (co.similarity(w1, w2));

return r;

}

67

Chapter A. Web-Application

public static double Levencomp(String w1, String w2) {

double r = 0;

r = (double) (we.distance(w1, w2));

return r;

}

public static double Dameraucomp(String w1, String w2) {

double r = 0;

r = (double) (dam.distance(w1, w2));

return r;

}

public static double OPcomp(String w1, String w2) {

double r = 0;

r = (double) (OP.distance(w1, w2));

return r;

}

public static double Ngramcomp(String w1, String w2) {

double r = 0;

r = (double) (ng.distance(w1, w2));

return r;

}

public static double SorensenDicecomp(String w1, String w2) {

double r = 0;

r = (double) (so.distance(w1, w2));

return r;

}

public static double Normalcomp(String w1, String w2) {

double r = 0;

r = (double) (Norl.distance(w1, w2));

return r;

}

public static double wlvcomp(String w1, String w2) {

double r = 0;

r = (double) (wlv.distance(w1, w2));

return r;

}

public static double[] journalmatch(String string1, String

string2) {

j = new Jaccard(4);

jw = new JaroWinkler(4);

co = new Cosine(4);

we = new Levenshtein();

dam = new Damerau();

68

Chapter A. Web-Application

OP = new OptimalStringAlignment();

ng = new NGram(4);

so = new SorensenDice();

Norl = new NormalizedLevenshtein();

double j[] = {0, 0, 0, 0, 0, 0, 0};

int i = 0;

double s1, s2, s3, s4, s5, s6, s7, s8, s9 = 0;

DecimalFormat decimalFormat = new DecimalFormat("#.00");

s1 = jaccardcomp(string1, string2);//jaccrd

s2 = jarocomp(string1, string2);//jaro

s3 = Cosinecomp(string1, string2);//Cosinecomp

s4 = Levencomp(string1, string2);//Levencomp

s5 = Dameraucomp(string1, string2);//Dameraucomp

s6 = OPcomp(string1, string2);//OptimalStringAlignment

s7 = Ngramcomp(string1, string2);//NGram

s8 = SorensenDicecomp(string1, string2);//SorensenDice

s9 = Normalcomp(string1, string2);//NormalizedLevenshtein

j[0] = s1;

j[1] = s2;

j[2] = s3;

j[3] = s4;

j[4] = s7;

j[5] = s8;

j[6] = s9;

return j;

}

}

The following title class is used to calculate the work titles similarity score using collection of
dictionaries.

public class title {

String a = "";

String b = "";

public Compare(String a, String b) {

this.a = a.toLowerCase();

this.b = b.toLowerCase();

}

public double getResult() {

StringTokenizer ta = new StringTokenizer(a,

"~!@#$%^&*()_-=+‘[]{}:\"\\|;’<>?,./ ");

StringTokenizer tb = new StringTokenizer(b,

69

Chapter A. Web-Application

"~!@#$%^&*()_-=+‘[]{}:\"\\|;’<>?,./ ");

if (ta.countTokens() == 1) {

File f = new

File("C:\\MyFirstServlet1\\semantics\\src\\collocation_dict\\"

+ Character.toString(a.charAt(0)) + "\\" +

Character.toString(a.charAt(1)) + "\\" + a + ".txt");

if (!f.exists()) {

return -1;

}

}

if (tb.countTokens() == 1) {

File f = new

File("C:\\MyFirstServlet1\\semantics\\src\\collocation_dict\\"

+ Character.toString(b.charAt(0)) + "\\" +

Character.toString(b.charAt(1)) + "\\" + b + ".txt");

if (!f.exists()) {

return -1;

}

}

String aa = "";

String bb = "";

while (ta.hasMoreTokens()) {

String g = ta.nextToken();

String add = read(g);

if (add.equals("")) {

aa = aa + " " + g;

//Jumah

//System.out.print(aa);

} else {

aa = aa + " " + read(g);

}

}

while (tb.hasMoreTokens()) {

String g = tb.nextToken();

String add = read(g);

if (add.equals("")) {

bb = bb + " " + g;

//Jumah

// System.out.print(bb);

} else {

bb = bb + " " + read(g);

70

Chapter A. Web-Application

}

}

try {

TermVectorStorage storage = new HashMapTermVectorStorage();

VectorClassifier vc = new VectorClassifier(storage);

vc.teachMatch("category", aa);

double result = vc.classify("category", bb);

return result;

} catch (Exception e) {

return -1;

}

}

private String read(String g) {

try {

String filename =

("C:\\MyFirstServlet1\\semantics\\src\\collocation_dict\\"

+ Character.toString(g.charAt(0)) + "\\" +

Character.toString(g.charAt(1)) + "\\" + g + ".txt");

File f = new File(filename);

if (f.exists()) {

BufferedReader bread = new BufferedReader(new

FileReader(filename));

String rt = bread.readLine();

bread.close();

return rt;

} else {

return "";

}

} catch (Exception e) {

return "";

}

}

}

The following years method is used to calculate the year of publications similarity score.

public static double years(int year1, int year2) {

int result = 0;

double finalresult = 0;

result = Math.abs(year2 - year1);

if (result == 0) {

finalresult = 1;

71

Chapter A. Web-Application

} else {

finalresult = (double) 1 / result;

}

return finalresult;

}

The following loadModel method is used to load RF trained method.

public static RandomForest loadModel(String fileName) {

try {

int bufferSize = 16 * 1024;

ObjectInputStream in = new ObjectInputStream(new

BufferedInputStream(new FileInputStream(fileName),

bufferSize));

Object tmp = in.readObject();

RandomForest classifier = (RandomForest) tmp;

in.close();

loadfile = "===== Loaded model: " + fileName + " =====";

return classifier;

}

catch (Exception e) {

loadfile = "Problem found when reading: " + fileName;

}

return null;

}

The following unlabel method is used to predict the unseen citation pairs.

public void unlabel(String name) {

unlabeledtest = "C:\\MyFirstServlet1\\test\\test.arff";

String unclasses = "";

String MoM = "";

String y = "yes";

String n = "no";

String score = "";

try {

Instances unlabeled = new Instances(new BufferedReader(new

FileReader(unlabeledtest)));

unlabeled.setClassIndex(unlabeled.numAttributes() - 1);

Instances labeled = new Instances(unlabeled);

for (int i = 0; i < unlabeled.numInstances(); i++) {

double clsLabel =

randomForest.classifyInstance(unlabeled.instance(i));

72

Chapter A. Web-Application

double[] prediction =

randomForest.distributionForInstance(unlabeled.instance(i));

labeled.instance(i).setClassValue(clsLabel);

String ClassLabel;

ClassLabel = unlabeled.classAttribute().value((int)

clsLabel);

unclasses = "\n" + unclasses + (i + 1) + "\t" +

ClassLabel;

if (ClassLabel.equals(y)) {

MoM = "Mach";

} else if (ClassLabel.equals(n)) {

MoM = "Not Match";

}

score = Arrays.toString(prediction);

}

writeoutput(name, MoM, score);

BufferedWriter writer = new BufferedWriter(

new

FileWriter("C:\\MyFirstServlet1\\unlabel\\labeled.arff"));

writer.write(labeled.toString());

writer.newLine();

writer.flush();

writer.close();

} catch (Exception e) {

System.out.println("Problem found when writting: " +

unlabeledtest);

}

}

Figure A.2 is a graphical user interface web-application used to check whether two authors’
share the same family name and the first initial of the given name. The application window is
split into two sub-windows one on the right and one on the left. Each one represents an author
meta-data that consist of author LNFI, coauthors, journal title and work title. All records are
required during data entry. The Submit button at the top left corner is used to printout the results
of the application and the About button is used to printout the instructions about how to use the
application. The results are displayed at the bottom of the browser screen.

73

Chapter A. Web-Application

Figure A.2: ML Based Disambiguation of Author’s Names in ORCID Citations Application

74

Bibliography

[1] Orcid organization. Researcher profile.

[2] Dongwon Lee, Jaewoo Kang, Prasenjit Mitra, C Lee Giles, and Byung-Won On. Are your
citations clean. Communications of the ACM, 50(12):33–38, 2007.

[3] Kai-Hsiang Yang, Hsin-Tsung Peng, Jian-Yi Jiang, Hahn-Ming Lee, and Jan-Ming Ho.
Author name disambiguation for citations using topic and web correlation. Research and

advanced technology for digital libraries, pages 185–196, 2008.

[4] Neil R Smalheiser and Vetle I Torvik. Author name disambiguation. Annual Review of

Information Science and Technology, pages 5–34, 2009.

[5] George Papadakis and Georgios Paliouras. Mycites: An intelligent information system for
maintaining citations. Artificial Intelligence: Theories, Models and Applications, pages
371–376, 2008.

[6] Prasenjit Mitra, Jaewoo Kang, Dongwon Lee, and Byung-won On. Comparative study
of name disambiguation problem using a scalable blocking-based framework. In Digital

Libraries, 2005. JCDL’05. Proceedings of the 5th ACM/IEEE-CS Joint Conference on,
pages 344–353. IEEE, 2005.

[7] Jan Youtie, Stephen Carley, Alan L Porter, and Philip Shapira. Tracking researchers and
their outputs: new insights from orcids. Scientometrics, 113(1):437–453, 2017.

[8] Laurel L Haak, Martin Fenner, Laura Paglione, Ed Pentz, and Howard Ratner. Orcid: a
system to uniquely identify researchers. Learned Publishing, 25(4):259–264, 2012.

[9] Hui Han, Lee Giles, Hongyuan Zha, Cheng Li, and Kostas Tsioutsiouliklis. Two supervised
learning approaches for name disambiguation in author citations. In Digital Libraries, 2004.

Proceedings of the 2004 joint ACM/IEEE conference on, pages 296–305. IEEE, 2004.

[10] Hui Han, Hongyuan Zha, and C Lee Giles. Name disambiguation in author citations using
a k-way spectral clustering method. 2005.

[11] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and
Ian H Witten. The weka data mining software: an update. ACM SIGKDD explorations

newsletter, 11(1):10–18, 2009.

75

Chapter A. Web-Application

[12] Ian H Witten, Eibe Frank, Mark A Hall, and Christopher J Pal. Data Mining: Practical

machine learning tools and techniques. Morgan Kaufmann, 2016.

[13] Victor Francisco Rodriguez-Galiano, Bardan Ghimire, John Rogan, Mario Chica-Olmo,
and Juan Pedro Rigol-Sanchez. An assessment of the effectiveness of a random forest
classifier for land-cover classification. ISPRS Journal of Photogrammetry and Remote

Sensing, 67:93–104, 2012.

[14] Yan-Min Luo, De-Tian Huang, Pei-Zhong Liu, and Hsuan-Ming Feng. An novel ran-
dom forests and its application to the classification of mangroves remote sensing image.
Multimedia Tools and Applications, 75(16):9707–9722, 2016.

[15] Pucktada Treeratpituk and C Lee Giles. Disambiguating authors in academic publications
using random forests. In Proceedings of the 9th ACM/IEEE-CS joint conference on Digital

libraries, pages 39–48. ACM, 2009.

[16] Thais Mayumi Oshiro, Pedro Santoro Perez, and Jose Augusto Baranauskas. How many
trees in a random forest? In International Workshop on Machine Learning and Data

Mining in Pattern Recognition, pages 154–168. Springer, 2012.

[17] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[18] Jiliang Tang, Salem Alelyani, and Huan Liu. Feature selection for classification: A review.
Data Classification: Algorithms and Applications, page 37, 2014.

[19] Lei Yu and Huan Liu. Feature selection for high-dimensional data: A fast correlation-based
filter solution. In Proceedings of the 20th international conference on machine learning

(ICML-03), pages 856–863, 2003.

[20] Payam Refaeilzadeh, Lei Tang, and Huan Liu. Cross-validation. In Encyclopedia of

database systems, pages 532–538. Springer, 2009.

[21] Jose G Moreno-Torres, Josea Saez, and Francisco Herrera. Study on the impact of partition-
induced dataset shift on k-fold cross-validation. IEEE Transactions on Neural Networks

and Learning Systems, 23(8):1304–1312, 2012.

[22] Tom Fawcett. An introduction to roc analysis. Pattern recognition letters, 27(8):861–874,
2006.

[23] Kevin Markham. Simple guide to confusion matrix terminology. Data School [online],
2014.

[24] Yutaka Sasaki et al. The truth of the f-measure. Teach Tutor mater, 1(5), 2007.

76

Chapter A. Web-Application

[25] Jeff Jenness and J Judson Wynne. Cohens kappa and classification table metrics 2.0: An
arcview 3. x extension for accuracy assessment of spatially explicit models. Open-File

Report OF 2005-1363. Flagstaff, AZ: US Geological Survey, Southwest Biological Science

Center. 86 p, 2005.

[26] Javad Zahiri, Joseph Hannon Bozorgmehr, and Ali Masoudi-Nejad. Computational predic-
tion of protein–protein interaction networks: algorithms and resources. Current genomics,
14(6):397–414, 2013.

[27] Jerome Euzenat and Pavel Shvaiko. Basic similarity measures. In Ontology Matching,
pages 85–120. Springer, 2013.

[28] Felix Naumann. Similarity measures. Information Systems, 2013.

[29] Tin Huynh, Kiem Hoang, Tien Do, and Duc Huynh. Vietnamese author name disam-
biguation for integrating publications from heterogeneous sources. In ACIIDS (1), pages
226–235, 2013.

[30] Allen Taylor. Semantics For Dummies. John Wiley & Sons, Inc, 111 River St, 2015.

[31] Tomas Ptacek. Master Thesis Advanced Methods for Sentence Semantic Similarity. Pilsen,
2012.

[32] Christopher D Manning, Prabhakar Raghavan, and Hinrich Schutze. Introduction to
information retrieval cambridge university press, 2008. Ch, 20:405–416.

[33] Vimala Balakrishnan and Ethel Lloyd-Yemoh. Stemming and lemmatization: a comparison
of retrieval performances. Lecture Notes on Software Engineering, 2(3):262, 2014.

[34] Pantulkar Sravanthi and DRB Srinivasu. Semantic similarity between sentences. 2017.

[35] Peter Kolb. Experiments on the difference between semantic similarity and relatedness.
pages 81–88, 2009.

[36] Philipp Koehn. Europarl: A parallel corpus for statistical machine translation. In MT

summit, volume 5, pages 79–86, 2005.

[37] Agazi Mekonnen and Shamsi Abdullayev. Topic modeling and clustering for analysis
of road traffic accidents. Department of Applied Mechanics, Chalmers University of

Technology, pages 4–64, 2017.

[38] Wilbert Jan Heeringa. Measuring dialect pronunciation differences using Levenshtein

distance. PhD thesis, University Library Groningen][Host], 2004.

[39] Vladimir I Levenshtein. Binary codes capable of correcting deletions, insertions, and
reversals. In Soviet physics doklady, volume 10, pages 707–710, 1966.

77

Chapter A. Web-Application

[40] Jennifer Daniels, Doug Nye, and Gongzhu Hu. Cluster analysis for commonalities between
words of different languages. In Applied Computing and Information Technology, pages
71–84. Springer, 2016.

[41] Manop Phankokkruad. Efficient similarity measurement by the combination of distance
algorithms to identify the duplication relativity. In International Conference on Computer

and Information Science, pages 219–232. Springer, 2017.

[42] Wael H Gomaa and Aly A Fahmy. A survey of text similarity approaches. International

Journal of Computer Applications, 68(13), 2013.

[43] Jure Leskovec, Anand Rajaraman, and Jeffrey D Ullman. Mining of massive datasets,
2014.

[44] Baoli Li and Liping Han. Distance weighted cosine similarity measure for text classification.
In International Conference on Intelligent Data Engineering and Automated Learning,
pages 611–618. Springer, 2013.

[45] Abinash Tripathy, Ankit Agrawal, and Santanu Kumar Rath. Classification of sentiment
reviews using n-gram machine learning approach. Expert Systems with Applications,
57:117–126, 2016.

[46] Abdulla Ali. Textual similarity. Technical University of Denmark, 2011.

[47] S Elliott. Survey of author name disambiguation: 2004 to 2010 [j/ol]. Library Philosophy

& Practice. http://digitalcommons. unl. edu/cgi/viewcontent. cgi, 2015.

[48] Hung Nghiep Tran, Tin Huynh, and Tien Do. Author name disambiguation by using deep
neural network. In Asian Conference on Intelligent Information and Database Systems,
pages 123–132. Springer, 2014.

[49] Andreas Strotmann and Dangzhi Zhao. Author name disambiguation: What difference
does it make in author-based citation analysis? Journal of the Association for Information

Science and Technology, 63(9):1820–1833, 2012.

[50] Duncan M McRae-Spencer and Nigel R Shadbolt. Also by the same author: Aktiveauthor, a
citation graph approach to name disambiguation. In Proceedings of the 6th ACM/IEEE-CS

joint conference on Digital libraries, pages 53–54. ACM, 2006.

[51] Anderson A Ferreira, Marcos André Gonçalves, and Alberto HF Laender. A brief survey
of automatic methods for author name disambiguation. SIGMOD Record, 41(2):15, 2012.

[52] Kyohei Atarashi, Satoshi Oyama, Masahito Kurihara, and Kazune Furudo. A deep neural
network for pairwise classification: Enabling feature conjunctions and ensuring symmetry.
In Pacific-Asia Conference on Knowledge Discovery and Data Mining, pages 83–95.
Springer, 2017.

78

Chapter A. Web-Application

[53] Bart Thijs, Koenraad Debackere, and Wolfgang Glänzel. Improved author profiling through
the use of citation classes. Scientometrics, 111(2):829–839, 2017.

[54] Denilson Alves Pereira, Berthier Ribeiro-Neto, Nivio Ziviani, Alberto HF Laender, Mar-
cos André Gonçalves, and Anderson A Ferreira. Using web information for author name
disambiguation. In Proceedings of the 9th ACM/IEEE-CS joint conference on Digital

libraries, pages 49–58. ACM, 2009.

[55] Ibrahim M. Qdemat. A heuristic-based approach for author name disambiguation. pages
2–19, 2017.

[56] Shahd Zeiad Ewawi. A rule-based clustering method for author name disambiguation in
the domain of publications. pages 2–25, January, 2017.

[57] Jerome P Kassirer and Marcia Angell. Redundant publication: A reminder, 1995.

79

	List of Tables
	List of Figures
	Introduction
	Problem Statement and Motivation
	Definitions
	Thesis Structure

	Background
	ORCID Structure
	Introduction to Weka
	Using Weka

	Random Forest Classification
	RF Parameters

	Machine Learning Performance Evaluation
	Information Gain (InfoGain)
	Cross Validation for Classification Problems
	Model Evaluation Metrics
	Metrics Computed from a Confusion Matrix
	Receiver Operating Characteristic Curve (ROC)
	Area Under the Curve (AUC)

	Semantic and Distance Matrices
	Semantics
	Levenshtein Distance
	Damerau Levenshtein Distance
	Jaro Similarity
	Jaccard Similarity
	Cosine Similarity
	N-Grams Similarity
	Optimal String Alignment

	Literature Review
	Type of Approach
	Author Grouping Methods
	Unsupervised Techniques
	Supervised Techniques

	Database
	Features Information
	Experiments Evaluation
	The Mean and Standard Deviation
	Experiments Design and Evaluation

	Related works

	Methodology and Data Analyses
	ORCID Database
	Datasets Selection
	Database and Labeling

	Methodology
	Design Rules
	Notes on ORCID Profile
	Citation Representation

	Coauthor Methodology
	Publishing Year Methodology
	Journal Title Methodology
	Work Title Methodology
	Machine Learning

	Chapter Summary

	Experiments and Results
	Experiments Setup
	Random Forest Classifier
	RF statistic Result

	Random forest versus other machine learning approaches
	Features Ranking and Distance Matrices
	Execution Time

	Conclusion and Future Work
	Conclusion
	Future Work

	Web-Application
	Bibliography

