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Abstract: A new family of second-order iterative algorithms for computing
the Moore-Penrose inverse is developed. The construction of this algorithm is
based on the usage of Penrose Equations (1) and (2). Convergence properties
are considered. Numerical results are also presented and a comparison with
Newton’s method is made. It is observed that the new methods require less
number of iterations than that of Newton’s method. In addition, numerical
experiments show that these methods are more effective than Newton’s method
when the number of columns increases than the number of rows.
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1. Introduction

The Moore-Penrose inverse finds many applications in engineering and applied
problems such as signal and image processing, control of robot manipulators
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and statistical regression analysis, see [9, 8, 6].
The Moore-Penrose inverse of an m× n complex matrix A, denoted by A†,

is a unique n×m matrix X satisfying the following four Penrose equations:

(1) AXA = A, (2) XAX = X,

(3) (AX)∗ = AX, (4) (XA)∗ = XA.

The direct methods such as singular value decomposition (SVD) is the most
commonly used to compute A†. For A ∈ C

m×n, the SVD method is a factor-
ization of the form

A = UDV ∗,

where, U is an m × m complex unitary matrix, D is an m × n rectangular
diagonal matrix with non-negative real numbers on the diagonal and V is an
n × n complex unitary matrix. The diagonal entries of D are known as the
singular values of A. Then, the matrix A† can be written as

A† = V D†U∗,

where, D† obtained by replacing every nonzero diagonal entry in D by its
reciprocal and then transposing the resulting matrix, for more details, see e.g.
[3].

This method is very accurate but time intensive since it requires a large
amount of computational resources, especially in large matrices. Hence, various
numerical methods have been developed to compute Moore-Penrose inverse.

Iterative methods have attracted more attention in recent years, see [2, 4, 12,
13, 7] and the references cited therein. According to the order of convergence,
Petkovic and Stanimirovic in [7] developed a first-order iterative algorithm to
find Moore-Penrose inverse based on Penrose equations (2) and (4).

The most frequently used iterative method for approximating the inverse of
a matrix is the famous Newton’s method [10]

Xk+1 = Xk(2I −AXk), k = 0, 1, 2, . . . .

This method is a second-order iterative methods. Shultz in [10] found that
the eigenvalues of I − AX0 must have magnitude less than 1 to ensure the
convergence.

Li et al. in [4] investigated the following third-order method, known as the
Chebyshev method,

Xk+1 = Xk(3I −AXk(3I −AXk)), k = 0, 1, 2, . . . .
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Toutounian and Soleymani [14] introduced the following fourth-order method
that involves 5 matrix multiplications

Xk+1 =
1

2
Xk[9I −AXk(16I −AXk(14I −AXk(6I −AXk)))],

k = 0, 1, 2, . . . .

Esmaeili et al. in [2] proposed new fourth-order method to compute the
Moore-Penrose inverse as follows

Xk+1 = Xk[9I − 26AXk + 34(AXk)
2 − 21(AXk)

3 + 5(AXk)
4],

k = 0, 1, 2, . . . .

Srivastava and Gupta in [12] introduced a class of higher-order iterative
methods using only the Penrose equation (2) by extending the iterative method
described in [7]. It is clear that the class of higher order iterative methods [12]
coincide with Newton’s method if the order is reduced to 2.

In addition, various iterative methods have been developed based on the
matrix equation f(X) = X−1 −A = 0, see e.g. [4, 11].

In this paper we establish a new family of second order iterative methods
to compute the Moore-Penrose inverse by using Penrose Equations (1) and (2).
These methods are written in terms of p-th root of a square matrix AXk. Then
approximations for the p-th root of a square matrix is used in computation.
A wide set of numerical tests show that these methods require less number
of iterations than Newton’s method. In addition, numerical experiments show
that these methods are more efficient than Newton’s method when the number
of columns increases than the number of rows. In this case the CPU time of
our methods is also less than Newton’s method.

This paper is organized as follows. Section 1 is the introduction. In Section
2, our new family of second-order iterative methods for computing the Moore-
Penrose inverse is introduced. Some lemmas and convergence analysis of the
methods are also established. In Section 3, several numerical examples are
given.

2. The iterative method

Let A ∈ C
m×n and X = A† ∈ C

n×m. We use Equations (1) and (2) to obtain

X = XAX = X(AXAX)
1

2 = X(AX)
1

2 .
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Hence, we have

X = X − 2(X(AX)
1

2 −X).

From the last equation we get the following iterative method

Xk+1 = Xk − 2Xk((AXk)
1

2 − I). (1)

Assume the starting value for the iterative method (1) is

X0 = αA∗, (2)

for an appropriate real number α.
Continuing in a similar manner, this can further be extended to a family of

second-order iterative methods, given by

Xk+1 = Xk − pXk((AXk)
1

p − I), p ∈ {2, 3, 4, . . . }. (3)

Lemma 1. The iterative schemes (1) and (3) satisfy the following rela-

tions:

XAXk = Xk, (4a)

XkAX = Xk, (4b)

where k ≥ 0.

Proof. We use mathematical induction. For k = 0 we have X0 = αA∗ and
all statements in (4) hold. Assume the statements are true for some integer k.
Now we prove the statements for k + 1. For (4a), we have

XAXk+1 = XA(Xk − 2Xk((AXk)
1

2 − I))

= XAXk − 2XAXk((AXk)
1

2 − I)

= Xk − 2Xk((AXk)
1

2 − I)

= Xk+1.

We prove (4b) in a similar way

Xk+1AX = (Xk − 2Xk((AXk)
1

2 − I))AX

= XkAX − 2(Xk(AXk)
1

2AX −XkAX)

= Xk − 2(Xk(AXk)
1

2 (AX)
1

2 −Xk)
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= Xk − 2(Xk(AXkAX)
1

2 −Xk)

= Xk − 2(Xk(AXk)
1

2 −Xk)

= Xk+1.

Proceeding in a similar manner, (4) can easily be proved for (3). This
completes the proof of the lemma.

Next, we follow the idea of [2] to prove that the matrix sequence Xk defined
by the iterative method (1) and the starting value (2), converges to the Moore-
Penrose inverse X = A†. The following well-known results are used.

Lemma 2. ([3]) Let M ∈ C
n×n and ǫ > 0 be given. There is at least one

matrix norm ‖.‖ such that

ρ(M) ≤ ‖M‖ ≤ ρ(M) + ǫ,

where ρ(M) = max{|λ1(M)|, ..., |λn(M)|} denotes the spectral radius of M.

Lemma 3. ([13]) If P ∈ C
n×n and Q ∈ C

n×n are such that P = P 2 and

PQ = QP , then

ρ(PQ) ≤ ρ(Q).

Let us consider the following singular value decomposition of the matrix A

of rank(A) = r ≤ min{m,n}:

A = U

[

S 0
0 0

]

V ∗, S = diag(σ1, ..., σr), σ1 ≥ ... ≥ σr > 0,

where σi are the singular values of A.
It is well known that

A† = V

[

S−1 0
0 0

]

U∗,

where U and V are unitary matrices. Using X0 = αA∗, in which α is a con-
stant, we can deduce that each iterate of the method (1) has a singular value
decomposition of the form

Xk = V SkU
∗, Sk = diag(s

(k)
1 , ..., s(k)r ),

where S0 = αS, we have

V Sk+1U
∗ = V SkU

∗ − 2V SkU
∗((USSkU

∗)
1

2 − I)
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= 3V SkU
∗ − 2V SkU

∗(USSkU
∗)

1

2

= 3V SkU
∗ − 2V SkU

∗U(SSk)
1

2U∗.

Hence,

Sk+1 = 3Sk − 2Sk(SSk)
1

2 .

Therefore, the diagonal matrices Rk = SSk = diag(r
(k)
1 , ..., r

(k)
r ) satisfy

Rk+1 = g(Rk) = 3Rk − 2Rk(Rk)
1

2 ,

that means

r
(k+1)
i = g(r

(k)
i ) = 3r

(k)
i − 2r

(k)
i

3

2
. (5)

In general, for (3) we have

Sk+1 = (p+ 1)Sk − pSk(SSk)
1

p .

Therefore, the diagonal matrices Rk = SSk = diag(r
(k)
1 , ..., r

(k)
r ) satisfy

Rk+1 = g(Rk) = (p + 1)Rk − pRk(Rk)
1

p ,

hence

r
(k+1)
i = g(r

(k)
i ) = (p+ 1)r

(k)
i − pr

(k)
i

p+1

p

. (6)

Theorem 4. For any initial point r(0) ∈

(

0,
16

9

)

, the sequence r(k+1) =

g(r(k)) is second order convergent to r = 1, in which the function g(r) is defined
by (5).

Proof. The fixed points and the critical points of g(r) are:

g(r) = r ⇒ r = 0, 1,

g′(r) = 0 ⇒ r = 1.

We can find that 1 is local maximizer of g(r). It is easy to see that the interval
(

4

9
,
16

9

)

is mapped into itself.

Moreover, g(r) is a continuous function on the interval

(

4

9
,
16

9

)

, and |g′(r)| <

1 on this interval.
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We conclude that the sequence r(k+1) = g(r(k)) is convergent to r = 1,

see [1, Page 62]. For the interval

(

0,
4

9

]

the sequence r(k+1) = g(r(k)) > r(k),

increasing and bounded above, see Figure 1. Hence we obtain convergent for

any r(0) ∈

(

0,
16

9

)

. On the other hand,

g(1) = 1 g′(1) = 0,

implies that the convergence is second order, see [1, Page 81]1.
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Figure 1: Graph of the function y = g(x) and the line y = x.

Considering Theorem 4, we conclude that if ασ2
1 = r

(0)
1 ∈

(

0,
16

9

)

, where

σ2
1 denotes the largest singular value of A, then ασ2

i = r
(0)
i ∈

(

0,
16

9

)

, for all

i, and

lim
k→∞

Rk = I.

Hence,

lim
k→∞

Sk = S−1,

so

lim
k→∞

Xk = V

[

S−1 0
0 0

]

U∗ = A†.

Hence, the following theorem is proved.
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Theorem 5. Let A be an m × n nonzero complex matrix. If the initial

approximation X0 is defined by:

X0 = αA∗, with 0 < α <
16
9

σ2
1

, (7)

then the iterative method (1) converges to A† with second order.

In addition, we have the following theorem.

Theorem 6. Let A be an m × n nonzero complex matrix. If the initial

approximation X0 is defined by:

X0 = αA∗, with 0 < α <
16
9

σ2
1

, (8)

then

‖A(X −X0)‖ < 1.

Proof. Take P = AX and Q = I −AX0. Since P 2 = P and

PQ = AX −AXAX0 = AX −AX0

= AX −AX0AX

= (I −AX0)AX

= QP,

from Lemma 3 we can conclude that

ρ(A(X −X0)) ≤ ρ(I −AX0) = ρ(I − αAA∗)

= max1≤i≤r|1− αλi(AA
∗)|

= max1≤i≤r|1− ασ2
i |.

By using (7), we conclude that

ρ(A(X − αA∗)) ≤ max1≤i≤r|1− ασ2
i | < 1.

Then from Lemma 2, we have

‖A(X −X0)‖ < 1.
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The results of Theorem 4 are extended in the next theorem.

Theorem 7. For any initial point r(0) ∈

((

0,

(

p+ 2

p+ 1

)p)

, the sequence

r(k+1) = g(r(k)) is second order convergent to r = 1, in which the function g(r)
is defined by (6).

Proof. The proof is similar to that of Theorem 4. The general behaviour of
g(r) defined in (6) is similar to the case when p = 2. See Figure 2 which is the
graph of (6) when p = 3, p = 6 and p = 12.
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Figure 2: Graphs of the function y = g(x) with different
values of p and the line y = x.

Our method uses the p-th root of a square matrix AXk. One can find
several algorithms to compute this. In this work, we replace the p-th root by

finite terms from power series expansion for a matrix of form (I + B)
1

p which
is given in the next remark.

Remark 8. Let p ≥ 2 be an integer and ‖B‖ < 1, the power series
expansion can be applied to define the matrix p-th root of the matrix (I +B)
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as

(I +B)
1

p =

∞
∑

n=0

1
p

(

1
p
− 1

)

. . .

(

1
p
− n+ 1

)

n!
Bn, (9)

see e.g. [5].

By approximating (AXk)
1

2 or (I + (AXk − I))
1

2 with n terms of (9) we
obtain the following iterative method

Xk+1 = Xk − 2Xk

(

1

2
(AXk − I)−

1

8
(AXk − I)2

+ · · ·+
1

n!

1

2

(

1

2
− 1

)

. . .

(

1

2
− n+ 1

)

(AXk − I)n
)

. (10)

With the starting value X0 = αA∗, where 0 < α <
16

9

σ2
1

, then ρ(I−AX0) < 1.

In the following section, several examples are given to show the efficient of
our method. We use (10) up to n = 2. We find that if we use more terms in
(10) the number of iteration decreases. But, after n = 4 the number of iteration
is fixed.

3. Numerical results

In this section, numerical examples are worked out to demonstrate the efficacy of
our second-order method by using MATLAB program, we use Matlab (R2013b).

We used the maximal residual norm criterion as in [12], for a tolerance
ǫ = 10−8,

res(X) = max{‖AXkA−A‖F , ‖XkAXk −Xk‖F ,

‖(AXk)
∗ −AXk‖F , ‖(XkA)

∗ −XkA‖F } ≤ ǫ,

where ‖.‖F the Frobenius norm of a matrix.

Example 1. Consider the ill-conditional Hilbert matrix A of order (5×5)
given by
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A =
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.

The choice α = 0.8 satisfies the convergence criteria given by

max
1≤i≤3

|1− αλi(A
∗A)| = 0.9999 < 1,

since the eigenvalues of the matrix A∗A are

(λ1, λ2, λ3) = (2.4556, 0.0435, 0.0001).

The iterative method (1) generates a sequence of iterates {Xk} after 39
steps converging to the Moore-Penrose inverse A† given by

A† =













25 −300 1050 −1400 630
−300 4800 −18900 26880 −12600
1050 −18900 79380 −117600 56700
−1400 26880 −117600 179200 −88200
630 −12600 56700 −88200 44100













.

While the Newton method needs 42 iterations to have the same result.

Example 2. For the ill-conditional Hilbert matrix A of order (5 × 5)
the iterative methods (3) are used for different values of p. The comparison
of number of iterations are plotted in Figure 6. We note that for p ≥ 10 the
number of required iteration still fixed.

Example 3. We compute the inverse random square matrix A, where A

are randomly generated as follows

A = 20r and (600 + n, 600 + n)− 10r and (600 + n, 600 + n),
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Figure 3: The results of comparisons in terms of computa-
tional time, Example 3.

and the value of n is n = 0, 100, 200, 300, 400, . . . , 3000.
The number of iterations and the CPU time required for convergence are

compared in Figures 7 and 3, respectively.
We see that the required number of iterations for the current method is less

than that of Newton’s method. But the computational time is almost the same
when p = 10.

We noted that for the matrices Am×n with m < n the current methods also
require less time. Next example illustrates this idea.

Example 4. We compute the inverse random square matrix A, where A

are randomly generated as follows

A = 20r and (500, 1000 + n)− 10r and (500, 1000 + n),

and the value of n is n = 0, 100, 200, 300, 400, . . . , 3000.
The number of iterations and the CPU time required for convergence are

compared in Figures 4 and 5, respectively.
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Figure 4: Comparison number of iteration, Example 4.

Figure 5 shows that as the number of columns become larger than the
number of rows, the required computational times for current methods become
smaller than that of the Newton method.

4. Conclusion

A family of second-order iterative methods were developed based on Penrose
equations (1) and (2) and written interms of p− th root of matrix AXk. Con-
vergence properties were considered and numerical tests were made. Numerical
results show that the number of iterations of current methods always less than
that of Newton’s method. Also, it is observed that the CPU time compared
with Newton’s method decreases when the number of columns is larger than the
number of rows, this makes the current methods more efficient for such cases.
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Figure 5: The results of comparisons in terms of computa-
tional time, Example 4.
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