
A Classification Model for Software Bug Prediction Based on
Ensemble Deep Learning Approach Boosted with SMOTE

Technique

ThaerThahera, Faisal Khamayseha

aDepartment of Computer Science and Engineering, Palestine Polytechnic University, Hebron, Palestine
thaer.thaher@gmail.com, faisal@ppu.edu

Abstract

In the software development process, the testing phase plays a vital role in assessing software
quality. Limited resources pose a challenge in achieving this purpose efficiently. Therefore, early-
stage procedures such as Software Fault Prediction (SFP) are utilized to facilitate the testing process
in an optimal way. SFP aims to predict fault-prone components early based on some software
metrics (features). Machine Learning (ML) techniques have proven superior performance in tackling
this problem. However, there is no best classifier to handle all possible classification problems.Thus,
building a reliable SFP model is still a challenge and open for research. The primary purpose
of this paper is to introduce an efficient classification framework to improve the performance of
the SFP. For this purpose, an ensemble of Multi-layer Perceptron (MLP) deep learning algorithm
boosted with Synthetic Minority Oversampling Technique (SMOTE) is proposed. The proposed
model is benchmarked and assessed using sixteen real-world software projects selected from the
PROMISE software engineering repository. The comparative study revealed that ensemble MLP
achieved promising prediction quality on the majority of datasets compared to other traditional
classifiers as well as those in preceding works.

Keywords: Software Fault Prediction, deep learning, neural networks, Multi-layer perceptron,
ensemble learning, SMOTE, imbalanced data

1. Introduction

Software Engineering (SE) is not limited to programming and systems development. It is in itself
a set of systematic engineering procedures implemented to develop a reliable and bugs-free software
[1]. The methodology with clearly defined phases for designing and producing high-quality software
is called Software Development Life Cycle (SDLC) [2]. SDL process involves several successive stages
that take software from the ideation phase to delivery. It encompasses the detailed steps for planning,
designing, testing, and deploying a software product that ensures customer’s expectations. Various
SDLC models have been proposed to guide professionals during the software development process.
The most common models are waterfall, iterative, spiral, V-shaped, and Agile models [2].

During the SDLC process, the testing stage plays a significant role in evaluating software qual-
ity [3]. In this stage, developers investigate whether the code and programming work according to
customer requirements. Various types of testing including Quality Assurance (QA) testing, System
Integration Testing (SIT) and User Acceptance Testing (UAT) are involved with the aim of minimiz-
ing the number of errors within the software [2]. QA testing concerns with standardized procedures
that ensure delivering the desired product quality before it is released for the public. However,
limited resources constitute a significant challenge to provide the rapid test results required by the

Preprint submitted to Journal Name May 25, 2020



development team. For this purpose, early-stage procedures such as Software Fault Prediction (SFP)
are utilized to facilitate the testing process in an optimal way [4].

SFP is the process of predicting fault-prone software modules based on some characteristics (met-
rics) of the software project [4]. It is an early step that is conducted before the actual start of the
testing phase to obtain a high-quality product with minimum cost and effort [5]. Some faulty-modules
may be passed during design and development without being detected and fixed, which will adversely
affect the later produced versions of the software. Therefore employing SFP early in the software
development process has attracted considerable attention to conduct the SDLC healthily [6]. The
application of SFP techniques can primarily contribute to reducing the number of potential defects,
and hence improve the overall quality of produced software. Besides, the early prediction of faults
will reduce time, effort, and cost should be spent during the development process [7]. The develop-
ment of SFP models depends on either design features (metrics) gathered during the design stage
or historical fault datasets accumulated during the implementation of previous versions of similar
projects [8]. These models are especially useful when dealing with limited resources projects or those
that are complex and difficult to test [5].

The analysis of gathered software metrics, as well as historical data of projects, have found its
wide application in enhancing the SDLC processes [5]. However, analyzing the complicated and vast
amounts of data poses a significant challenge. For this purpose, Machine Learning (ML) techniques
have been introduced to serve as potential computational methods for solving data mining related
problems such as SFP. These techniques have proven superior performance in building efficient SFP
models [9]. The researchers have exploited various ML algorithms to detect the software whether
it is defected or normal based on datasets that include information about the previous versions of
software. Some of these algorithms include Support Vector Machine (SVM), Decision Trees (DT),
Artificial Neural Networks (ANN), and Navie Bayes (NB) [4].The effectiveness of the SFP model
depends on several factors, including the exploited ML algorithm and the quality of the dataset [10].
One of the main challenges in this domain is the lack of high-quality datasets. That’s to say, the
available datasets may have irrelevant features and imbalanced distribution of ordinary and defected
instances. These two common aspects significantly impact the performance of ML techniques [11]
[12]. For this reason, pre-processing methods, such as Feature Selection (FS) and sampling methods
such as Synthetic Minority Oversampling Technique (SMOTE), are highly required.

The main aim of this study is to introduce an efficient SFP model based on ensemble deep learning
algorithm incorporated with SMOTE technique to enhance the overall prediction quality. The major
contributions are summarized as follows:

• The SMOTE is utilized as a pre-processing technique for the sake of re-balancing datasets.

• A filter-based feature selection technique is employed to present the essential object-oriented
metrics in predicting defected software.

• An ensemble classification model is constructed based on a Multi-Layer Perceptron (MLP)
neural network to enhance the performance of the traditional MLP classifier.

• Sixteen real datasets are used to assess the performance of the proposed model.

• In comparison to the traditional classifiers as well as the state-of-the-art approaches, the pro-
posed model showed a clear superiority.

The structure of this paper is organized as follows: The related works are reviewed in Section
2, including ML-based and FS based approaches. Section 3 introduces the theoretical concepts
applied in this research, including Imbalanced data problem, feature subset selection methods, and

2



classification paradigms. The proposed methodology is presented in Section 5. Section 6 presents
the experimental design, results, and analysis. Finally, Section 7 concludes the overall results as well
as future work directions.

2. Review of Related works

The development SE has led to the proposing of several algorithms to predict software faults. ML
techniques have attracted considerable interest from the research community to serve as potential
computational methods for extracting knowledge from the software projects [4]. Moreover, various
SFP datasets available as benchmarks are employed to assess the performance of proposed models.
The most frequently used benchmarks in this domain are PROMISE repository, NASA datasets, and
Qualitas corpus [4] [13]. This section presents a review of ML techniques for bugs detection in SE
projects as well as about the deployment of sampling and feature selection methods in this area.

2.1. ML based techniques
The literature is rich with various traditional ML techniques to handle SFP problem including

statistical classification techniques, supervised, and unsupervised techniques. Examples of these tech-
niques including Support Vector Machine (SVM) [14], Decision Trees (DT) [15], Bayesian Networks
(BN) [16], Naive Bayes (NB) [17], K-Nearest Neighbours (KNN) [18], Multi-layer Perceptron (MLP)
[19], Artificial Neural Networks (ANN) [7] [20], Logistic Regression (LR) [21], and Multi-nomial Lo-
gistic Regression (MLR) [19]. For instance, Caglayan et. al employed BN, NB and LR methods to
predic faults for an industrial software. Experimental results revealed that the proposed methods pro-
vide higher accuracy in predicting the overall defect proneness. Singh and Malhotra [22] conducted an
empiric study to evaluate the performance of SVM classifier in determining the relationship between
some software Object-Oriented (OO) design matrices and fault proneness. A dataset from NASA
repository (KC1) and Receiver Operating Characteristic (ROC) were used to evaluate the proposed
model. The study shows that SVM classifier is feasible and helpful in predicting faulty classes in OO
based systems.

Some of the commonly used algorithms, such as DT, NB, and Neural Networks (NN) has provided
improvements to prediction accuracy. However, it still has some limitations; on the one hand, expert
knowledge is required for processing data. On the other hand, a massive amount of data is necessary
for training operations, which becomes a significant challenge, especially in a dynamic environment
[23]. To overcome these limitations and achieve better performance, researchers moved to take
advantage of deep learning-based and ensemble techniques to tackle the SFP problem. For instance,
Al Qasem and Akour [6] examined the performance of two deep learning algorithms to handle the
SFP problem. They investigated the MLP and Convolutional Neural Network (CNN) on four NASA
benchmarks from the PROMISE repository. The experimental results revealed the superiority of
deep learning algorithms for the SFP problem.

Rathore and Kumar [24] introduced A model based on the principle of ensemble learning meth-
ods to predict the number of software faults. In this research, linear regression based combination
rule (LRCR) and gradient boosting regression based combination rule (GBRCR) approaches were
employed to ensemble the output of Genetic Programming (GP), MLP, and linear regression (LR)
algorithms. Moreover, eleven datasets belong to six software projects were accumulated from the
PROMISE data repository to assess the performance of the proposed ensemble models. Results
of different performance evaluation measures including Average Absolute Error (AAE) and Average
Relative Error (ARE) provided evidence that ensemble techniques are able to produce better results
for the prediction of software faults compared to individual fault prediction techniques.

3



2.2. Feature Selection based approaches for SFP
In general, Feature Selection (FS) is an essential pre-processing step utilized to eliminate the ir-

relevant and/or redundant attributes that may adversely influence the performance of ML techniques
[25]. Recently, various filter-based and wrapper-based FS methods are increasingly utilized to en-
hance the prediction quality of SFP models. Few studies have been conducted on the filter-based FS
approach for the SFP problem. For instance, Balogun et al. [26] investigated the influence of apply-
ing eighteen filter FS methods comprising four feature ranking and fourteen feature subset selection
methods on the performance of SFP models. Considering various machine learning classifiers and
five datasets from NASA repository, the experimental results show that FS methods can improve the
prediction rate of ML-based SFP models. It was observed that Information gain (IG) is the best fea-
ture ranking method. In contrast, Consistency Feature Subset Selection based on Best First Search
(BFS) recorded the best effect on SFP models compared with other similar strategies. Catal and
Diri [27] applied a correlation-based feature selection approach to capture highly relevant matrices
for the SFP problem. The authors found that the Random Forest classifier (RF) outperforms other
classifiers such as DT, NB, and Artificial Immune Recognition Systems (AIRS) when using this FS
approach.

Besides, many wrapper FS methods based on evolutionary and swarm intelligence algorithms have
been conducted for the SFP problem. For instance, Thaher and Arman [10] adopted a multi-swarm
Harris Hawks Optimization algorithm (HHO) as a search strategy to capture the highly informative
metrics for fifteen datasets from the PROMISE repository. They investigated three basic classi-
fiers, namely, DT, KNN, and Linear Discriminant Analysis (LDA), incorporated with the Adaptive
Synthetic Oversampling Technique (ADASYN). The empirical results revealed that the proposed ap-
proach with the LDA classifier improved the prediction quality for the most tested datasets. Turabieh
et al. [5] introduced a wrapper feature selection method to improve the performance of a layered
recurrent neural network (L-RNN) classifier for predicting faults in software modules. Three opti-
mization algorithms comprising each of Binary Genetic Algorithm (BGA), Binary Particle Swarm
Optimization (BPSO), and Binary Ant Colony Optimization (BACO) were applied in iterative man-
ner to eliminate features (matrices) that are not correlated with the software defects. Considering a
set of challenging software fault projects belongs to PROMISE data repository, the results confirmed
that the proposed wrapper approach is better compared to other approaches.

2.3. Motivation of the study
Mostly, it is clear from the reviewed studies that most of them were dedicated to traditional clas-

sification paradigms. Few of them deployed neural networks and deep learning algorithms. Besides,
the Non-Free-Lunch (NFL) theorem for optimization [28] can also be derived for ML and classifi-
cation [29]. That is to say; there is no best classifier to handle all possible classification problems.
Therefore, how to build a reliable SFP model is still a challenge and open for research. To the best of
our knowledge, the ensemble of deep learning MLP classifier has not been utilized for tacking the SFP
problem yet. The MLP ensembles will be a promising strategy to overcome the drawbacks of a single
MLP network. These facts motivated the author of this work to propose an efficient classification
framework for the early prediction of software fault-prone by employing ensemble MLP classification
technique augmented with filter-based FS and SMOTE oversampling techniques.

3. Theoretical Background

This section introduces the main theoretical concepts used in this research, including feature
subset selection, the problem of imbalanced data as well as SMOTE oversampling technique, and
supervised classification paradigms such as ensemble methods and MLP.

4



3.1. Imbalanced data and SMOTE technique
The quality of data is considered as a significant factor that has a profound impact on the

performance of ML techniques. imbalanced datasets are distinguished as a challenging aspect that
may degrade the prediction quality of classification methods [12]. This issue emerges in most real-
world problems in which the target classes are not represented equally. In other words, in binary
class datasets, most of the instances are labeled with the first class (called majority class), while few
of them are labeled with the other one (called minority class). In such a case, the classifier is trained
on highly imbalanced data and thus has a tendency to pick up the patterns in the dominant classes,
which leads to inaccurately prediction of the minority class [30].

Class imbalance problem poses as a major challenge in the filed of software defect prediction since
the available datasets are highly imbalanced. that is to say, the occurrences of defected cases is very
low compared to normal cases (see Figure 5). Therefore, dealing with this problem is becoming highly
required. Various strategies can be employed to handle this problem, such as Cost-Sensitive, kernel-
based, and sampling methods [30]. Sampling methods are distinguished into two types; oversampling,
which increases the rate of the minority class, and under-sampling, which reduces the frequency of
the minority class. The latter causes information to be lost, which leads to poor prediction quality
[31]. In this research, we utilized an oversampling technique called SMOTE to rebalance the used
SFP datasets.

The SMOTE is a promising oversampling method that proved its superiority in dealing with
imbalanced data. It is originally introduced by Chawla et al. [32]. This technology is distinguished
in that it preserves the original data without losing information, and it also increases the rate of
the minority class without duplication. New synthetic samples labeled with the minority class are
generated using the k-nearest neighbors method [12].

3.2. Feature Selection (FS)
One of the most common questions when applying ML algorithms is whether all features (factors)

are relevant for classification rule. As a response to this question, a problem called FS emerged. FS
is defined as the process of reducing the dimension of data by eliminating the irrelevant, noisy, and
redundant features. In other words, it is the task of searching the most informative subset of features.
It is an essential pre-processing technique that aims to enhance the performance of ML tasks [25].

FS approaches are classified into wrapper and filter based on the evaluation function used to mea-
sure the selected subset of features [33]. In wrapper-based methods, a search algorithm (deterministic
or heuristic) is employed to generate subsets of features for examination. Then the effectiveness of
each suggested subset of features is evaluated by a given classifier (learning algorithm). The evalu-
ation is conducted in terms of several measures such as accuracy, area under the ROC, etc. FS is
treated as a binary optimization problem in which the search algorithm is guided using the reported
error by a classifier [34].

In the filter-based approach, the learning algorithm is not involved in the evaluation function.
The effectiveness of a subset of features can be evaluated based on the intrinsic properties of the data.
Statistical measures are used to score the dependency or correlation between features, which can be
filtered to select the most informative features. Several ranking techniques have been introduced for
feature evaluations, such as gain ration and information gain [35]. The filter-based approach is more
effective compared to a wrapper-based approach in terms of the required computational time. In
this study, we employed the filter-based FS approach using information gain measure to identify the
most important metrics for building the SFP model.

5



3.3. Classification paradigms
In the SFP problem, we aim to predict fault-prone software modules early before the actual errors

occur based on the designed metrics of the software project. Prediction of software modules, whether
it is faulty or non-faulty, is a binary classification problem. several supervised classification paradigms
can be used to tackle this kind of problems. In this study, we proposed a deep learning model using
a multi-layer perceptron based ensemble technique. The following subsections we introduce the main
characteristics of MLP and ensemble methods.

3.3.1. Multilayer Perceptrons (MLP) neural networks
MLP is a type of Feedforward Artificial Neural Network (FANN). It is basically a mathematical

model inspired by the functioning of biological neural networks (NNs) that forms the human brain
[36]. In this kind of NNs, the neurons are organized in parallel fully interconnected layers such that the
connection between neurons is one-directional and one-way, as illustrated in Figure 1 . MLP consists
of three levels of layers; the first layer represents the input layer, the last layer represents the output
layer, and the other layers between them are called hidden layers. The MLP that consists of multiple
hidden layers is called deep NNs, which have become popular due to the promising performance in
dealing with complex ML tasks.

Figure 1: Simple MLP with one hidden layer

In MLP, the vector of features (input variables) is submitted to the input layer. For the other
layers, each neuron has a summation function and an activation function. The summation function
is employed to calculate the weighted sum of inputs (i.e., the sum of products of inputs and weights).
The resultant summation is submitted to the activation function. The process of assigning proper
values of weights to find the mathematical relation linking inputs to outputs is called the training
process [37].

3.3.2. Ensemble learning methods
Ensemble learning combines several traditional ML models to enhance the predictive performance,

generalizability, and robustness over a single classifier. It is not creating a new algorithm, but instead
assembling together several ML models to create an ensemble learner, as demonstrated in Figure 2.

6



Ensemble learners often have lower error than every individual classifiers by themselves. Besides,
they offer less overfitting as well as less biases caused by traditional learners [38].

Figure 2: Ensemble Learning (bagging method)

Ensemble methods can be distinguished into three families, namely, bagging, boosting, and stack-
ing methods. In the bagging method (also called bootstrap aggregation), for each model, a random
sample of the original training dataset is provided by applying a bootstrap re-sampling technique.
In other words, the considered classifiers are independently trained in parallel to create models for
each one. The main idea of bagging is to aggregate multiple fitted models using several methods,
such as averaging for regression problems and hard-voting for classification problems. The boosting
process is similar to bagging being aimed to build a robust model by aggregating several models.
However, the combined models in boosting are fitted sequentially. Models are iteratively fitted such
that the training of the model at a specific step depends on the model trained in the previous steps.
The main goal is to emphasize the observations that were misclassified by the previous models [38].
The stacking ensemble is usually used to combine heterogeneous classifiers based on training a meta-
model (combiner). The main idea of stacking is to train the heterogeneous classifiers based on the
available dataset, and then the combiner is fitted used the outputs (predictions) of these classifiers
as additional inputs for training.

4. Investigated Software Projects

In this research, we used open research datasets in software engineering. They are gathered from
PROMISE (PRedictOr Models In Software Engineering) repository, which is created to encourage
the SE community to build verifiable, repeatable, refutable, and improvable predictive models [39].
The PROMISE is the most common repository for the SFP problem-related research [40]. It contains
datasets of about 65 different software projects. Sixteen releases fall into six different projects (Ant,
Camel, jEdit, Log4j, Lucene, and Xalan) have been selected for the experimental work in this study.
They are of OO defect projects. Table 1 shows the characteristics of the selected datasets. As
presented in the table, we selected 1 version of Ant and Lucene projects, four versions of Camel,
five versions of jEdit, two versions of Log4j, whereas three versions of Xalan. These were selected
because they are highly imbalanced. The main description of the investigated projects is summarized
as follows [40] [41]:

• Apache Ant: An open-source java-based library and command-line tool used to build java appli-
cations. It provides several built-in tasks to compile, assemble, run, and test Java applications.

7



• Apache Camel: An efficient open-source integration framework. It based on Enterprise Inte-
gration Patterns (EIP) that can be utilized to integrate several systems providing or consuming
data easily.

• jEdit: A free text editor software is written in java. It is open-source and has several features
that make it outperform the most expensive development tools.

• Apache Log4j: A powerful java-based, and open-source logging package (APIs) written in java
by the Apache Software Foundation.

• Apache Lucene: An open-source, java-based search software. It provides efficient indexing
and search mechanisms, as well as hit highlighting, spellchecking, and advanced tokenization
capabilities.

• Xalan: An open-source software library implements the XSLT transformation language to
convert XML documents into HTML or other XML document types.

Table 1: Details of the 16 software projects (datasets) from PROMISE repository

Dataset version No. metrics No. instances No. normal instances No. defective instances Rate of defective instances
ant 1.7 20 745 579 166 0.223

camel

1.0 20 339 326 13 0.038
1.2 20 608 392 216 0.355
1.4 20 872 727 145 0.166
1.6 20 965 777 188 0.195

jedit

3.2 20 272 182 90 0.331
4.0 20 306 231 75 0.245
4.1 20 312 233 79 0.253
4.2 20 367 319 48 0.131
4.3 20 492 481 11 0.022

log4j
1.0 20 135 101 34 0.252
1.1 20 109 72 37 0.339

lucene 2.0 20 195 104 91 0.467

xalan
2.4 20 723 613 110 0.152
2.5 20 803 416 387 0.482
2.6 20 885 474 411 0.464

Software metrics (factors) are usually introduced to analyze and evaluate the quality of the soft-
ware project. They generally classified into various categories, including traditional, Object-oriented
(OO), and dynamic metrics [4]. OO metrics are calculated from software created utilizing the OO
development strategy. Various software design metrics can be used in fault prediction models. The
datasets utilized in this study are mainly OO defect projects. That is to say, a set of OO metrics used
to judge whether the system is faulty or non-faulty. All investigated datasets consist of 20 metrics
belong to different suites. The metrics are CK suite proposed by Chidamber and Kemerer [42] which
includes Weighted Method Count (WMC), Number of Children (NOC), Coupling between Object
class (CBO), Depth of Inheritance Tree (DIT), Lack of Cohesion in Methods (LCOM), and Response
for a Class (RFC). Martin [43] suggested to metrics called Afferent couplings (CA) and Efferent
couplings (CE). One metric introduced by Henderson-seller [44] called Lack of cohesion in meth-
ods (LCOM3). The suite suggested by Bansiy and Davis including [45] Number of Public Methods
(NPM), Data Access Metric (DAM), Measure of Aggregation (MOA), Measure of Functional Ab-
straction (MFA), Cohesion Among Methods of Class (CAM). The quality-oriented suite suggested
by Tang et al. [46]: Inheritance Coupling (IC), Coupling Between Methods (CBM), Average Method

8



Complexity (AMC). Maximum cyclomatic complexity (MAX_CC) and average cyclomatic complex-
ity (AVG_CC) metrics introduced by McCabe [47]. The description of these metrics are summarized
in Table 2.

Table 2: Description of object-oriented metrics

Metrics Descriotion
WMC Number of methods defined in a class.
DIT provides a measure of the inheritance levels from the object hierarchy top for each class .
NOC Number of immediate descendants of a class.
CBO Count the number of classes coupled to a given class.
RFC Count the number of distinct methods invoked by a class in response to a received message.
LCOM Count the number of methods that do not share a field to the method pairs that do.
CA Count the number of dependent classes for a given class.
CE Count the number of classes on which a class depends.
NPM Number of public methods defined in a class.
LCOM3 Count the number of connected components in a method graph.
LOC Count the total number of lines of code of a class.
DAM Computes the ratio of private attributes in a class.
MOA Count the number of data members declared as class type.
MFA Shows the fraction of the methods inherited by a class to the methods accessible by the functions defined in the

class.
CAM Computes the cohesion among methods of a class based on the parameters list.
IC Count the number of coupled ancestor classes of a class.
CBM Count the number of new or redefined methods that are coupled with the inherited methods.
AMC Measures the average method size for each class.
MAX_CC Maximum counts of the number of logically independent paths in a method.
AVG_CC Average counts of the number of logically independent paths in a method.

5. The proposed methodology

This study aims to create an efficient classification model for the early prediction of faults in
software modules. Four major components are employed for this purpose: SFP datasets, preprocess-
ing techniques, learning algorithms (classification technique), and performance evaluation measures.
Sixteen versions of different OO based projects are used to assess the proposed model. The list of
the investigated datasets, as well as the OO metrics, are presented in Section 4. The proposed SFP
methodology is illustrated in Figure 3.

Figure 3: Software Fault Prediction process

5.1. preprocessing techniques
After exploring the datasets, we have noticed that they are highly imbalanced. The rate of

defective instances is very low compared to normal ones. Thus, it is essential to resolve this problem

9



by balancing the datasets classes before training the model. To deal with data imbalance propblem,
we applied SMOTE oversampling technique. Another essential aspect investigated in this stage is
checking the most informative OO metrics for building the SFP model. In this study, we applied the
Filter-based FS method using the information gain ranking technique.

5.1.1. proposed ensemble MLP for learning
Deep learning neural networks, including MLPs, provide promising performance in tacking various

complex problems compared to other traditional techniques. They also provide enough flexibility for
non-linearly separable problems. However, there are some limitations with MLPs such as premature
convergence (local minima) and likely of over-fitting problems [48]. Therefore, utilizing ensemble
learning will solve these problems. In this study, An ensemble classification model based on MLP
as a base classifier is introduced to handle the SFP problem. We applied the bagging method to
build the ensemble classifier such that each individual MLP classifier is trained on a random subset
of the original training data generated using the bootstrap technique. Then, the predictions of the
fitted models are aggregated using a voting method to form the final prediction. figure 4 shows the
architecture of the ensemble MLP model.

Figure 4: Ensemble MLP learner architecture

5.1.2. Evaluation measures
Various evaluation metrics can be used to measure the performance of the classification problems

such as accuracy, Area Under the ROC (AUC), True Positive Rate (TPR), True Negative rate (TNR),
precision, and F-measure. Accuracy is the most widely used metric to evaluate classic models [31].
However, it can be profoundly misleading of judging a model when dealing with imbalanced training
data [12] [25]. For this purpose, we relied on AUC, TPR, and TNR to measure the performance of
the proposed model. These measures are popular in the case of imbalanced data [5]. The confusion
matrix of binary classification used to calculate the evaluation measures is demonstrated in Table 3.
Formuals of calculating TPR, TNR, nad AUC are shown in Eqs. (1), (2), and (3), respectively.

Table 3: Confusion matrix for binary classification.

Predicted positive Predicted negative
Actual positive True Positive (TP) False Negative (FN)
Actual negative False Positive (FP) True Negative (TN)

10



• TPR: The proportion of positive cases that are correctly predicted as positive.

TPR = TP/(TP + FN) (1)

• TNR: The proportion of negative cases that are correctly predicted as negative.

TNR = TN/(TN + FP ) (2)

• AUC: a measure of how well a model can distinguish between defected and normal groups.

AUC = (TPR + TNR)/2 (3)

refer to paper 116 for methodology

6. Evaluation results and discussion

In this part, we intensely performed a set of experiments to investigate the efficiency of the
proposed model. The experimental work was carried out in four stages. In the first stage, we
explored, analyzed, and prepared the data to be compatible with ML techniques. Then we applied
the resampling method and performed a comparison to assess the performance of MLP classifier
on the original data and the balanced data in terms of AUC, TPR, and TNR. In the second phase,
extensive experiments were conducted to modify the main parameters of the MLP classifier and choose
those provided better prediction quality. Also, different classification techniques were implemented
and compared to the MLP classifier. In the third phase, we investigated the impact of the ensemble
learning approach on the performance of MLP as well as other implemented classification methods.
Finally, the proposed ensemble MLP model was confirmed by comparing it with different approaches
from the literature that used the same datasets employed in this research.

In all experiments, we used the validation set approach to estimate the prediction quality. All
datasets are randomly split into 66% for training the model and 34% for testing the fitted model.
Hence, the models are fitted and tested on completely separated samples. To reduce the impact of
random components, we reported the average results for total runs of methods. Hence, we repeated
the experiments 30 times for each algorithm. In reported results, the best values are highlighted with
boldface. In order to record all results based on fair conditions, we employed a single computing
system. Details of the utilized system are exposed in Table 4. We used the Python programming
language to implement the classification framework. Various libraries were used to facilitate the
implementation of ML algorithms such as Panda, Numpy, Matplotlib, and SKlearn (Scikit-learn).

6.1. Data Analysis and pre-processing
After inspecting the employed datasets, we found that they are free of noise and missing values.

They are structured well to be mined. All features are numeric with different scales. Therefore, the
Min-max normalization method was applied to standardize the range in the interval [0, 1] as given
in Eq. (4) . Normalization is a highly recommended pre-processing step and useful to avoid bias
towards some dominant features.

xn =
x−min

max−min
(4)

where xn is the normalized value of x within the interval [min,max].

11



Table 4: The system properties

Name Setting
Hardware
CPU Intel Core(TM) i7-8550U
Frequency 2.2 GHz
RAM 8 GB
Hard drive 1 TB
Software
Operating system Windows 10 64bit
Language Python 3.8.3

6.1.1. Data visualization
The 2D visualization for selected datasets using Principle Component Analysis (PCA) are shown

in Figure 5. It is clear that the data are highly imbalanced. Moreover, the data are not linearly
separable. Therefore, more complex learning algorithms are required to provide better performance.

(a) camel1.0 (b) camel-1.4 (c) jedit-3.2

(d) jedit-4.3 (e) camel-1.6 (f) jedit-4.0

Figure 5: Visualization of target class distribution based on the first 2 principal components of the dataset features.

6.1.2. Feature Selection (FS)
Figure 6 demonstrates the average ranks for the OO metrics after applying filter FS approach using

information gain measure. In other words, it shows the most relevant metrics among all datasets. It
can be observed that rfc metric achieved the best rank, followed by wmc, loc, lcom, nbm, lcom3, ce,
cam, cbo, max-cc, respectively [top 10 ranks]. rfc metric represents the number of methods including
the inherited methods per class, wmc is the sum of complexities for all methods per class which
represents the development and maintenance cost of the class, loc indicates the number of code lines
in a class. This confirms that these three metrics are relevant and should not be ignored for SFP
data.

12



Figure 6: Average rank of features for all datasets using filter-based FS method

6.2. Evaluation of MLP classifier
In this part, the feed-forward MLP neural network that uses back-propagation learning is applied

to solve the SFP problem. Besides, various classification models, namely K-Nearest Neighbors (KNN),
Naive Bayes (NB), Linear Discriminant Analysis (LDA), Linear Regression, Decision Tree (DT), and
Support Vector Machine (SVM) are also examined. A deep comparison in terms of AUC rates is
presented.

6.2.1. Assessing the impact of SMOTE technique
In the current subsection, the efficiency of the SMOTE technique is appraised. Table 5 reveals the

prediction performance of MLP classifier before and after applying SMOTE by inspecting the average
AUC, TPR, and TNR on all datasets. By assaying the reported results, it can be observed that the
integration between MLP classifier and SMOTE method achieves better performance in almost 94%
of the datasets (15 out of 16). Additionally, it can be seen significant improvements in the quality of
predicting the faulty instances (i.e., TNR). These results prove the importance of balanced data to
enhance the overall performance of the model. Therefore, the subsequent experiments are performed
on the balanced datasets.

6.2.2. Hyper-parameters tuning
One of the major challenges when dealing with MLP is a large number of free parameters such

as the number of epochs, hidden layers, activation function, the optimizer, and learning rates. The
performance of the MPL is influenced strongly by the chosen parameters. Therefore, this part exhibits
a comprehensive experimental design in which fourteen experiments with different combinations of
the main parameters (optimizer, epochs, hidden layers, and activation function) were conducted. 6
presents the considered parameters as well as their values. Table A.10 in the Appendix Appendix
A reports the average AUC rates achieved by MLP using different configurations. by inspecting
the table, it can be easily concluded that the MLP model can provide better performance on most
datasets when the parameters epochs, hidden layers, activation function, and optimizer is set to
(1000, 3, ReLU, adam) respectively. The learning rate in this study is set to be adaptive. Therefore,
these settings are fixed for the subsequent experimental work.

13



Table 5: Assessing the impact of SMOTE method in terms of TPR, TNR, and AUC measures [Averaged over 30
independent runs]

Dataset
original SMOTE

TPR TNR AUC TPR TNR AUC
ant-1.7 0.9387 0.4053 0.6720 0.7555 0.7674 0.7614
camel-1.0 0.9899 0.0540 0.5220 0.8728 0.9908 0.9318
camel-1.2 0.9666 0.0906 0.5286 0.6597 0.6032 0.6314
camel-1.4 0.9655 0.1508 0.5581 0.7521 0.7296 0.7409
camel-1.6 0.9696 0.1473 0.5584 0.6956 0.7709 0.7333
jedit-3.2 0.8499 0.6263 0.7381 0.7916 0.7919 0.7917
jedit-4.0 0.9665 0.2200 0.5933 0.7592 0.8007 0.7799
jedit-4.1 0.9229 0.4813 0.7021 0.8142 0.7851 0.7996
jedit-4.2 0.9623 0.3388 0.6505 0.7844 0.8341 0.8092
jedit-4.3 0.9930 0.0111 0.5020 0.9119 0.9996 0.9557
log4j-1.0 0.8481 0.5869 0.7175 0.7558 0.8311 0.7934
log4j-1.1 0.8424 0.6205 0.7314 0.7676 0.8096 0.7886
lucene-2.0 0.7148 0.6298 0.6723 0.6688 0.6990 0.6839
xalan-2.4 0.9636 0.2210 0.5923 0.7360 0.8257 0.7809
xalan-2.5 0.6933 0.5853 0.6393 0.6720 0.6105 0.6413
xalan-2.6 0.8207 0.6447 0.7327 0.7846 0.6738 0.7292

Table 6: The fourteen experimental scenarios conducted to tune the main parameters of MLP classifier

scenario optimizer Epochs hidden Layers activation function best
Sen1 adam 1000 2 tanh

adamSen2 SGD
Sen3 adam 1000 2

1000
Sen4 2000
Sen5 3000
Sen6 5000
Sen7 adam 1000 2 tanh

3
Sen8 adam 3
Sen9 4
Sen10 5
Sen11 adam 1000 3 tanh

ReLU
Sen12 ReLU
Sen13 logistic
Sen14 identity

14



6.2.3. Comparison with traditional classification techniques
For an intense investigation about the performance of the MLP classifier, it is compared to

six traditional classifiers KNN, NB, LDA, LR, SVM, and DT in terms of test AUC rates. The
obtained results are reported in Table 7. Further, the over-fitting problem of models is considered.
For providing a fair comparison between these classifiers and finding the overall rank, the average
ranking values of the Friedman test (F-Test) are also discussed. The results in Table 7 reveals that
MLP outperforms the other competitors in achieving higher AUC on 63% of the utilized dataset.
Regarding DT performance, there is clear evidence of the over-fitting problem. According to the
overall rank and F-test, MLP is in the first rank, followed by KNN, LDA, SVM, LR, and NB,
respectively. These results confirm the superiority of MLP classifier to handle the SFP problem.

Table 7: Comparison of MLP neural network against other traditional classifiers in terms of test AUC rates

Dataset
MLP KNN NB LDA LR SVM DT
test test test test test test train test

ant-1.7 0.7896 0.8137 0.7026 0.7589 0.7281 0.7291 1.0000 0.7964
camel-1.0 0.9638 0.9008 0.8135 0.8344 0.8005 0.8254 1.0000 0.9225
camel-1.2 0.6649 0.6724 0.5554 0.6142 0.5898 0.5812 0.9898 0.6755
camel-1.4 0.7834 0.7663 0.5920 0.6996 0.6612 0.6818 1.0000 0.8108
camel-1.6 0.7577 0.7743 0.5833 0.6706 0.6495 0.6392 0.9987 0.7936
jedit-3.2 0.8039 0.7942 0.7359 0.7890 0.7822 0.7907 1.0000 0.7751
jedit-4.0 0.8226 0.8221 0.6699 0.7406 0.7136 0.7119 0.9979 0.7926
jedit-4.1 0.8444 0.8144 0.7043 0.7976 0.7579 0.7601 1.0000 0.7861
jedit-4.2 0.8648 0.8531 0.7410 0.8203 0.7772 0.7925 1.0000 0.8615
jedit-4.3 0.9708 0.9422 0.7178 0.8695 0.7694 0.7844 0.9915 0.9546
log4j-1.0 0.8316 0.7879 0.7522 0.7685 0.7681 0.7794 1.0000 0.7864
log4j-1.1 0.7980 0.8150 0.7597 0.7602 0.7769 0.7818 1.0000 0.7603
lucene-2.0 0.6682 0.6513 0.6468 0.6848 0.6928 0.7109 0.9976 0.6295
xalan-2.4 0.8275 0.8258 0.6462 0.7386 0.7331 0.7323 1.0000 0.8296
xalan-2.5 0.6486 0.6292 0.5576 0.6002 0.5927 0.5901 0.9983 0.6415
xalan-2.6 0.7332 0.7362 0.6909 0.7195 0.7236 0.7096 0.9955 0.7200
Rank (F-Test) 1.2 1.88 5.94 3.31 4.38 4 Overfitting

6.3. Evaluation results using ensemble methods
Extensive experiments were conducted to investigate whether ensemble learning exceeds indi-

viduals classifiers in dealing with the SFP problem. A paired comparison between each individual
classifier and the corresponding ensemble bagging method is presented in Table 8. The resultant
table clarifies that, in most cases, ensemble methods exceed the traditional classifiers in achieving
higher AUC values. Regarding the MLP classifier, it can be seen that ensemble MLP outperforms
the basic MLP in 15 out of 16 datasets (94%). Regarding the overall rank of all methods in the
table, the top 5 methods are ensemble MLP, RF, ensemble DT, MLP, ensemble KNN. Overall, the
proposed ensemble MLP resents the best performance compared with the other approaches. This
confirms that ensemble MLP makes a powerful model that provides superior performance compared
to other classifiers when dealing with the utilized datasets. For an intense investigation about the
performance of the MLP classifier, it is compared to six traditional classifiers KNN, NB, LDA, LR,
SVM, and DT in terms of test AUC rates and the F-test ranking for all coded algorithms.

6.4. Comparing with state-of-the art methods
In the current section, we validate the AUC results of the proposed ensemble MLP by comparing

it with those reported in preceding works. For this purpose, we compared the proposed method with

15



Table 8: Evaluation results using bagging (ensemble) methods

Dataset
MLP KNN NB LDA LR SVM DT

RFbasic ensemble basic ensemble basic ensemble basic ensemble basic ensemble basic ensemble basic ensemble
ant-1.7 0.790 0.821 0.814 0.812 0.703 0.703 0.759 0.756 0.728 0.726 0.729 0.734 0.796 0.849 0.853
camel-1.0 0.964 0.961 0.901 0.901 0.814 0.819 0.834 0.851 0.801 0.802 0.825 0.824 0.922 0.944 0.954
camel-1.2 0.665 0.699 0.672 0.665 0.555 0.558 0.614 0.610 0.590 0.582 0.581 0.588 0.676 0.687 0.694
camel-1.4 0.783 0.829 0.766 0.775 0.592 0.598 0.700 0.699 0.661 0.662 0.682 0.671 0.811 0.860 0.860
camel-1.6 0.758 0.783 0.774 0.783 0.583 0.588 0.671 0.674 0.649 0.647 0.639 0.644 0.794 0.836 0.848
jedit-3.2 0.804 0.814 0.794 0.787 0.736 0.725 0.789 0.800 0.782 0.775 0.791 0.776 0.775 0.804 0.797
jedit-4.0 0.823 0.850 0.822 0.823 0.670 0.699 0.741 0.729 0.714 0.714 0.712 0.723 0.793 0.813 0.829
jedit-4.1 0.844 0.862 0.814 0.817 0.704 0.706 0.798 0.797 0.758 0.764 0.760 0.759 0.786 0.845 0.838
jedit-4.2 0.865 0.881 0.853 0.852 0.741 0.735 0.820 0.817 0.777 0.786 0.793 0.803 0.861 0.878 0.880
jedit-4.3 0.971 0.973 0.942 0.941 0.718 0.704 0.869 0.878 0.769 0.776 0.784 0.784 0.955 0.968 0.972
log4j-1.0 0.832 0.862 0.788 0.799 0.752 0.752 0.768 0.770 0.768 0.775 0.779 0.771 0.786 0.818 0.839
log4j-1.1 0.798 0.812 0.815 0.790 0.760 0.780 0.760 0.787 0.777 0.781 0.782 0.769 0.760 0.781 0.807
lucene-2.0 0.668 0.681 0.651 0.658 0.647 0.675 0.685 0.681 0.693 0.690 0.711 0.688 0.630 0.656 0.693
xalan-2.4 0.828 0.855 0.826 0.828 0.646 0.654 0.739 0.740 0.733 0.739 0.732 0.735 0.830 0.847 0.854
xalan-2.5 0.649 0.668 0.629 0.633 0.558 0.547 0.600 0.602 0.593 0.595 0.590 0.581 0.641 0.657 0.660
xalan-2.6 0.733 0.750 0.736 0.738 0.691 0.693 0.719 0.721 0.724 0.721 0.710 0.711 0.720 0.763 0.755
F-Test 4.81 2.13 6.06 5.94 14.5 13.63 9 8.06 11.13 10.63 10.19 10.75 7.13 3.81 2.25
Rank 4 1 6 5 15 14 9 8 13 11 10 12 7 3 2

VEBHHO [25], EBMFOV3 [5], (LR, NB, 5NN, C4.5) [49], Bayesian networks [50], and (L-RNN, NB)
[7]. Based on Table 9 results, it can be recognized that the proposed model outperforms the other
competitors in most cases. Additionally, ensemble MLP displays a superiority in the classification of
around 85 % of the datasets over the recently published VEBHHO [25] approach and 100 % of the
datasets over the recently published EBMFOV3 [5] . In this way, our proposed approach proves its
efficiency and accuracy in classifying the majority of the datasets over the works in literature.

Table 9: Comparison between the proposed approach and the state-of-the-art methods in terms of AUC rates

Dataset
Our results Thaher and Arman [25] Tumar et. al [5] Shatnawi [49] Okutan and Yildiz [50] Turabieh and Mafarja [7]

ensemble MLP RF VEBHHO EBMFOV3 LR NB 5NN C4.5 Bayesian networks L-RNN without CV NB
ant-1.7 0.821 0.853 0.7727 0.7615 0.830 0.790 0.760 0.740 0.820 0.523 0.7261
camel-1.0 0.961 0.954 0.8107 0.7552 - - - - - 0.607 0.8881
camel-1.2 0.699 0.694 0.6467 0.6215 0.570 0.560 0.640 0.520 - 0.443 0.5531
camel-1.4 0.829 0.860 0.7029 0.6918 0.700 0.670 0.670 0.600 - 0.521 0.6603
camel-1.6 0.783 0.848 0.6762 0.6580 0.650 0.590 0.660 0.540 - 0.505 0.6878
jedit-3.2 0.814 0.797 0.8270 0.8053 - - - - - 0.518 0.6777
jedit-4.0 0.850 0.829 0.7661 0.7161 0.770 0.700 0.810 0.720 - 0.549 0.7055
jedit-4.1 0.862 0.838 0.8133 0.7868 0.820 0.750 0.800 0.690 - -
jedit-4.2 0.881 0.880 0.8290 0.7973 0.840 0.750 0.770 0.640 - 0.519 0.8352
jedit-4.3 0.973 0.972 0.8081 0.7499 - - - - 0.658 0.684 0.8273
log4j-1.0 0.862 0.839 0.8297 0.7937 - - - - - 0.535 0.8455
log4j-1.1 0.812 0.807 0.8395 0.7986 - - - - - 0.522 0.897

lucene-2.0 0.681 0.693 - - 0.770 0.750 0.700 0.670 - 0.553 0.8136

xalan-2.4 0.855 0.854 0.7521 0.7495 - - - - - 0.536 0.7621
xalan-2.5 0.668 0.660 - - - - - - 0.624 0.510 0.6575
xalan-2.6 0.750 0.755 - - - - - - - 0.506 0.64

7. Conclusion and future works

In this paper, a classification framework based on the aggregation of multiple MLP classifiers
(ensemble MLP) and SMOTE technique was proposed with the aim of enhancing the prediction
performance for the SFP problem. Ensemble learner was employed as a classification model, while
SMOTE was utilized to handle the problem of imbalanced data. Sixteen real-world object-oriented

16



projects from the PROMISE repository were utilized to evaluate the proposed model. The exper-
imental results demonstrated that the MLP classifier is significantly sensitive to its parameters. It
was also noted that the ensemble methods have a more significant influence on the performance of
the SFP model than individual classifiers used in comparisons. Comparison results revealed that our
proposed approach is efficient in handling the SFP problem compared to well-known classifiers such
as KNN, LDA, LR, DT, and SVM as well as previous works. ALL in all, the proposed ensemble
learner using MLP as a base classifier combined with SMOTE is recommended for the SFP problem
in terms of prediction quality.

The future work will investigate swarm intelligence meta-heuristics to train MLP. We will also
exploit other ensemble methods such as boosting and stacking. Another exciting challenge we will
plan to check is the adoption of SFP for the rapidly changing environment of Agile-based models
such as extreme programming where enough data to train the model is not available at the early
stages of the SDLC.

References

[1] P. Ralph, Software engineering process theory: A multi-method comparison of sensemaking-
coevoiution-implementation theory and function-behavior-structure theory, Information and
Software Technology 70 (2016) 232–250.

[2] I. Sommerville, Software Engineering, Pearson, 10th edition, 2015.

[3] N. Honest, Role of testing in software development life cycle, International Journal of Computer
Sciences and Engineering 7 (2019) 886–889.

[4] S. Rathore, S. Kumar, A study on software fault prediction techniques, Artificial Intelligence
Review (2017) 1–73.

[5] I. Tumar, Y. Hassouneh, H. Turabieh, T. Thaher, Enhanced binary moth flame optimization
as a feature selection algorithm to predict software fault prediction, IEEE Access 8 (2020)
8041–8055.

[6] O. Qasem, M. Akour, Software fault prediction using deep learning algorithms, International
Journal of Open Source Software and Processes 10 (2019) 1–19.

[7] H. Turabieh, M. Mafarja, X. Li, Iterated feature selection algorithms with layered recurrent
neural network for software fault prediction, Expert Systems with Applications 122 (2018).

[8] D. Gupta, K. Saxena, Software bug prediction using object-oriented metrics, Sadhana - Academy
Proceedings in Engineering Sciences 42 (2017) 655–669.

[9] P. Deep Singh, A. Chug, Software defect prediction analysis using machine learning algorithms,
in: 2017 7th International Conference on Cloud Computing, Data Science Engineering - Conflu-
ence, pp. 775–781.

[10] T. Thaher, N. Arman, Efficient multi-swarm binary harris hawks optimization as a feature
selection approach for software fault prediction, in: 2020 11th International Conference on
Information and Communication Systems (ICICS), pp. 249–254.

[11] T. Khoshgoftaar, J. Van Hulse, A. Napolitano, Comparing boosting and bagging techniques
with noisy and imbalanced data, IEEE Transactions on Systems, Man, and Cybernetics, Part
A 41 (2011) 552–568.

17



[12] T. Thaher, M. Mafarja, B. Abdalhaq, H. Chantar, Wrapper-based feature selection for imbal-
anced data using binary queuing search algorithm, in: 2019 2nd International Conference on
new Trends in Computing Sciences (ICTCS), pp. 1–6.

[13] A. Singh, R. Bhatia, A. Singhrova, Taxonomy of machine learning algorithms in software fault
prediction using object oriented metrics, Procedia computer science 132 (2018) 993–1001.

[14] F. Xing, P. Guo, M. Lyu, A novel method for early software quality prediction based on support
vector machine, volume 2005, pp. 10 pp.–.

[15] T. M. Khoshgoftaar, N. Seliya, Software quality classification modeling using the sprint decision
tree algorithm, International Journal on Artificial Intelligence Tools 12 (2003) 207–225.

[16] X. Yuan, T. M. Khoshgoftaar, E. B. Allen, K. Ganesan, An application of fuzzy clustering to
software quality prediction, in: Application-Specific Systems and Software Engineering Tech-
nology, 2000. Proceedings. 3rd IEEE Symposium on, IEEE, pp. 85–90.

[17] T. Menzies, J. Greenwald, A. Frank, Data mining static code attributes to learn defect predictors,
IEEE transactions on software engineering 33 (2007) 2–13.

[18] V. kumar Dwivedi, M. K. Singh, Software defect prediction using data mining classification
approach, International Journal of Technical Research and Applications 4 (2016) 31–35.

[19] G. Carrozza, D. Cotroneo, R. Natella, R. Pietrantuono, S. Russo, Analysis and prediction of
mandelbugs in an industrial software system, in: Software Testing, Verification and Validation
(ICST), 2013 IEEE Sixth International Conference on, IEEE, pp. 262–271.

[20] M. Bisi, N. Goyal, Early prediction of software fault-prone module using artificial neural network,
International Journal of Performability Engineering 11 (2015) 43–52.

[21] B. Caglayan, A. Tosun, A. Bener, A. Miranskyy, Predicting defective modules in different test
phases, Software Quality Journal 23 (2014).

[22] S. Yogesh, K. Arvinder, R. Malhotra, Software fault proneness prediction using support vector
machines, Lecture Notes in Engineering and Computer Science 2176 (2009).

[23] R. Zhao, R. Yan, Z. Chen, K. Mao, P. Wang, R. X. Gao, Deep learning and its applications to
machine health monitoring, Mechanical Systems and Signal Processing 115 (2019) 213 – 237.

[24] S. Rathore, S. Kumar, Towards an ensemble based system for predicting the number of software
faults, Expert Systems with Applications 82 (2017).

[25] T. Thaher, A. A. Heidari, M. Mafarja, J. S. Dong, S. Mirjalili, Binary Harris Hawks Optimizer
for High-Dimensional, Low Sample Size Feature Selection, Springer Singapore, Singapore, pp.
251–272.

[26] A. O. Balogun, S. Basri, S. J. Abdulkadir, A. S. Hashim, Performance analysis of feature
selection methods in software defect prediction: A search method approach, Applied Sciences 9
(2019) 2764.

[27] C. Catal, B. Diri, Investigating the effect of dataset size, metrics sets, and feature selection
techniques on software fault prediction problem, Information Sciences 179 (2009) 1040–1058.

18



[28] D. Wolpert, W. Macready, No free lunch theorems for optimization, Evolutionary Computation,
IEEE 1 (1997) 67–82.

[29] P. Larranaga, B. Calvo, R. Santana, C. Bielza, J. Galdiano, I. Inza, J. Lozano, R. Armañanzas,
G. Santafé, A. Pérez, V. Robles, Machine learning in bioinformatics, Briefings in bioinformatics
7 (2006) 86–112.

[30] H. He, E. Garcia, Learning from imbalanced data, Knowledge and Data Engineering, IEEE
Transactions on 21 (2009) 1263 – 1284.

[31] R. Mohammed, J. Rawashdeh, M. Abdullah, Machine learning with oversampling and under-
sampling techniques: Overview study and experimental results, in: 2020 11th International
Conference on Information and Communication Systems (ICICS), pp. 243–248.

[32] N. Chawla, K. Bowyer, L. O. Hall, W. P. Kegelmeyer, Smote: Synthetic minority over-sampling
technique, J. Artif. Intell. Res. (JAIR) 16 (2002) 321–357.

[33] V. Kumar, S. Minz, Feature selection: A literature review, Smart Computing Review 4 (2014)
211–229.

[34] M. M. Mafarja, S. Mirjalili, Hybrid whale optimization algorithm with simulated annealing for
feature selection, Neurocomputing 260 (2017) 302 – 312.

[35] E. Amrieh, T. Hamtini, I. Aljarah, Mining educational data to predict student’s academic
performance using ensemble methods, International Journal of Database Theory and Application
9 (2016) 119–136.

[36] L. Fausett, Fundamental of Neural Networks: Architectures, Algorithms, and Applications, 1993.

[37] H. Faris, I. Aljarah, S. Mirjalili, Training feedforward neural networks using multi-verse optimizer
for binary classification problems, Applied Intelligence 45 (2016) 322–332.

[38] I. Franc, N. Macek, M. Bogdanoski, D. Ðokić, Detecting malicious anomalies in iot: Ensemble
learners and incomplete datasets, in: The Eight International Conference on Business Informa-
tion Security (BISEC).

[39] J. Sayyad Shirabad, T. Menzies, The PROMISE Repository of Software Engineering Databases.,
School of Information Technology and Engineering, University of Ottawa, Canada, 2005.

[40] E. Erturk, E. A. Sezer], Iterative software fault prediction with a hybrid approach, Applied Soft
Computing 49 (2016) 1020 – 1033.

[41] M. Jureczko, L. Madeyski, Towards identifying software project clusters with regard to defect
prediction, volume 9, p. 9.

[42] S. R. Chidamber, C. F. Kemerer, A metrics suite for object oriented design, IEEE Transactions
on Software Engineering 20 (1994) 476–493.

[43] R. D. Martin, Object oriented design quality metrics: an analysis of dependencies.

[44] B. Henderson-seller, Object-oriented metrics: Measures of complexity (1996).

[45] J. Bansiya, C. G. Davis, A hierarchical model for object-oriented design quality assessment,
IEEE Transactions on Software Engineering 28 (2002) 4–17.

19



[46] Mei-Huei Tang, Ming-Hung Kao, Mei-Hwa Chen, An empirical study on object-oriented metrics,
in: Proceedings Sixth International Software Metrics Symposium (Cat. No.PR00403), pp. 242–
249.

[47] T. J. McCabe, A complexity measure, IEEE Transactions on Software Engineering SE-2 (1976)
308–320.

[48] T. Windeatt, Ensemble MLP Classifier Design, Springer Berlin Heidelberg, Berlin, Heidelberg,
pp. 133–147.

[49] R. Shatnawi, The application of roc analysis in threshold identification, data imbalance and
metrics selection for software fault prediction, Innovations in Systems and Software Engineering
13 (2017) 201–217.

[50] A. Okutan, O. Yildiz, Software defect prediction using bayesian networks, Empirical Software
Engineering 19 (2014).

Appendix A.

20



T
ab

le
A
.1
0:

A
ve
ra
ge

A
U
C

re
su
lt
s
fo
r
M
LP

cl
as
si
fie
r
us
in
g
di
ffe

re
nt

va
lu
es

of
m
ai
n
pa

ra
m
et
er
s

pa
ra
m
et
er

O
pt
im

iz
or

N
o.

hi
dd

en
la
ye
rs

A
ct
iv
at
io
n
fu
nc
ti
on

D
at
as
et

SG
D

ad
am

2
3

4
5

ta
nh

R
eL

U
lo
gi
st
ic

id
en
ti
ty

an
t-
1.
7

0.
72
81

0.
76

14
0.
76
14

0.
77
08

0.
77
90

0.
78

02
0.
77
08

0.
78

96
0.
75
97

0.
76
43

ca
m
el
-1
.0

0.
81
58

0.
93

18
0.
93
18

0.
95

34
0.
94
75

0.
93
47

0.
95
34

0.
96

38
0.
79
47

0.
86
53

ca
m
el
-1
.2

0.
54
37

0.
63

14
0.
63
14

0.
64

56
0.
63
56

0.
64
22

0.
64
56

0.
66

49
0.
58
27

0.
59
86

ca
m
el
-1
.4

0.
65
41

0.
74

09
0.
74
09

0.
76

12
0.
76
09

0.
74
93

0.
76
12

0.
78

34
0.
69
19

0.
68
41

ca
m
el
-1
.6

0.
63
02

0.
73

33
0.
73
33

0.
73

50
0.
72
50

0.
73
35

0.
73
50

0.
75

77
0.
66
83

0.
65
46

je
di
t-
3.
2

0.
74
67

0.
79

17
0.
79
17

0.
79
12

0.
80
09

0.
80

09
0.
79
12

0.
80

39
0.
70
41

0.
77
99

je
di
t-
4.
0

0.
69
99

0.
77

99
0.
77
99

0.
80
12

0.
80
23

0.
82

17
0.
80
12

0.
82

26
0.
73
45

0.
74
30

je
di
t-
4.
1

0.
75
84

0.
79

96
0.
79
96

0.
82

10
0.
80
11

0.
80
68

0.
82
10

0.
84

44
0.
76
98

0.
79
90

je
di
t-
4.
2

0.
79
71

0.
80

92
0.
80
92

0.
81
36

0.
83

67
0.
83
01

0.
81
36

0.
86

48
0.
75
85

0.
80
60

je
di
t-
4.
3

0.
79
24

0.
95

57
0.
95
57

0.
96

08
0.
95
60

0.
95
48

0.
96
08

0.
97

08
0.
87
85

0.
88
90

lo
g4
j-1

.0
0.
75
58

0.
79

34
0.
79
34

0.
80
54

0.
84

35
0.
81
98

0.
80
54

0.
83

16
0.
75
70

0.
77
13

lo
g4
j-1

.1
0.

79
01

0.
78
86

0.
78
86

0.
80

26
0.
76
51

0.
79
99

0.
80

26
0.
79
80

0.
78
65

0.
77
30

lu
ce
ne
-2
.0

0.
67
96

0.
68

39
0.

68
39

0.
67
28

0.
66
33

0.
66
36

0.
67
28

0.
66
82

0.
66
19

0.
67

90
xa

la
n-
2.
4

0.
73
59

0.
78

09
0.
78
09

0.
79
17

0.
79
21

0.
79

22
0.
79
17

0.
82

75
0.
74
14

0.
73
23

xa
la
n-
2.
5

0.
56
02

0.
64

13
0.
64
13

0.
63
22

0.
64

65
0.
64
09

0.
63
22

0.
64

86
0.
60
57

0.
61
64

xa
la
n-
2.
6

0.
72
29

0.
72

92
0.

72
92

0.
72
03

0.
72
42

0.
71
94

0.
72
03

0.
73

32
0.
68
62

0.
72
57

R
an

k
(F

-T
es
t)

1.
94

1.
06

3.
25

2.
19

2.
31

2.
25

2
1.

19
3.
75

3.
06

21


	Introduction
	Review of Related works
	ML based techniques
	Feature Selection based approaches for SFP
	Motivation of the study

	Theoretical Background
	Imbalanced data and SMOTE technique
	Feature Selection (FS)
	Classification paradigms
	Multilayer Perceptrons (MLP) neural networks
	Ensemble learning methods


	Investigated Software Projects
	The proposed methodology
	preprocessing techniques
	proposed ensemble MLP for learning
	Evaluation measures


	Evaluation results and discussion
	Data Analysis and pre-processing
	Data visualization
	Feature Selection (FS)

	Evaluation of MLP classifier
	Assessing the impact of SMOTE technique
	Hyper-parameters tuning
	Comparison with traditional classification techniques

	Evaluation results using ensemble methods
	Comparing with state-of-the art methods

	Conclusion and future works
	

