

Design a photovoltaic solar system for Hebron Governmental Hospital "Alia Hospital"

By

Student name:

Ibrahim Amlah

Supervisor: Name(s):

Prof. Dr. Sameer Khader

Submitted to the Collage of Engineering

In partial fulfillment of the requirements for the degree of bachelor degree in Engineering -Electric Power Technology

May 2022

الاهداء:

الى معلمنا و قدوتنا و حبيبنا و شفيعنا محمد صلى الله عليه وسلم.

الی من رسموا بدمائهم خارطة الوطن وطریق المستقبل و هندسوا.

بأجسادهم معاقل العز و الكرامة الى من هم اكرم منا جميعا الى شهداء الوطن الحبيب.

الى الذين عشقوا الحرية التي تفوح منها رائحة الياسمين وتواروا خلف القضبان ليفسحوا لنا النور الى اسرانا الابطال.

إلى أبي و أمي فلولاهما لما وُجِدتُ في هذه الحياة ، ومنهما تعلَّمت الصمود و حب الحياة ، مهما كانت الصعوبات .

الى خطيبتي...... رفيقة الكفاح و الظروف الصعبة التي لم تبخل بوقت أو جهد لمساعدتي و دعمي.

إلى جميع أخوتي و أهلي و الأقارب و الأصدقاء

إلى أسـاتذتي الأفاضل، فمنهم اسـتقيتُ الحروف ، وتعلَّمت كيف أنطق الكلمات، وأصوغ العبارات، وأحتكم إلى القواعد في مجال.....

إلى الزملاء والزميلات، الذين كان لهم الفضل في دعمهم لي و لم يتوانوا للحظة في مدي بالبيانات و المعلومات اللازمة لإعداد رسـالتي .

أهدي إليكم مشروعي.

داعيًا المولى -سبحانه وتعالى- أن تُكلَّل بالنجاح والقبول من جانب أعضاء لجنة المناقشة المُبجَّلين.

<u>Abstract</u>

Alternative energy is one of the most important fields of future energy, which helps reduce dependence on the public electricity network, and from here the idea of the project came, which is to design a solar energy system that works to cover the consumption of Hebron Governmental Hospital "Alia Hospital" as the weakness of the public electricity network that has proven Its shortcomings are in the continuous cut off of the electric current, which is the largest and controlled source of the electric current in Palestine. Therefore, it has been relied on electric generators to cover this deficit in the network, and one of its most important defects is the pollution resulting from the process of burning fuel in order to produce energy, which is promising It is not desirable in health care places, hence the idea of the project to design a solar energy system that reduces dependence on generators and works to cover the deficit in the network.

الملخص

تعد الطاقة البديلة هي احد اهم مجالات الطاقة المستقبلة و التي تساعد في تقليل الاعتماد على شبكة الكهرباء العامة و من هنا جاءت فكرة المشروع و هي تصميم نظام طاقة شمسية يعمل على تغطية استهلاك مستشفى الخليل الحكومي" مستشفى عالية" حيث ان ضعف شبكة الكهرباء العامة التي اثبتت عيوبها في القطع المستمر للتيار الكهربائي الذي يعد الاحتلال المرائيلي هو المصدر الاكبر له في فلسطين و المتحكم فيه ولذلك تم الاعتماد على مولدات الكهربائية في تغطية في القطع المستمر للتيار الكهربائي الذي يعد الاحتلال المرائيلي هو المصدر الاكبر له في فلسطين و المتحكم فيه ولذلك تم الاعتماد على مولدات الكهربائية في تغطية هذا العجز في الشبكة و التي من اهم عيوبها التلوث الناتج عن عملية الكهربائية في تغطية هذا العجز في الشبكة و التي من اهم عيوبها التلوث الناتج عن عملية الكهربائية في تغطية هذا العجز في الشبكة و التي من اهم عيوبها التلوث الداتي الكهربائية المحية و التي تعد بالأمر غير المحبذ في اماكن الرعاية الصحية فمن هن هن هن ها علية العربية العامة و التي تعلية من الم علية علية الكهربائية في تغطية من الم علية و التي من اهم عيوبها التلوث الناتج عن عملية الكهربائية في تغطية هذا العجز في الشبكة و التي من اهم عيوبها التلوث الناتج عن عملية الكهربائية في تغطية هذا العجز في الشبكة و التي من اهم عيوبها التلوث الناتج عن عملية الحراق الوقود من اجل انتاج الطاقة و التي تعد بالأمر غير المحبذ في اماكن الرعاية الصحية فمن هنا جاءت فكرة المشروع في تصميم نظام طاقة شمسية يقال من الاعتماد على المولدات و يعمل على تغطية العجز الموجود في الشبكة.

List of Figure

Fig.1.1: Grid connected PV system	٨
Fig.1.2: off grid system	٩
Fig.1.3: Hybrid system	۱.
Fig.2.1: Peak Sun Hour Map	١٣
Fig.2.2: Aerial view of Alai Governmental Hospital "Google Maps"	١٤
Fig.2.3: sun path of the sun's movement "suncalc"	١٤
Fig.2.4: Average Temperatures	17
Fig.2.5: sunny days	17
Fig.2.6: Temperature distribution throughout the year	1 Y
Fig.2.7: Wind speed throughout the year	14
Fig.2.8:shows us that January	١٨
Fig.2.9: temperature effect	18
Fig.3.1. Hospital departments	20
Fig.3.2: The consumption chart of hospital sections	26
Figure 4.1: history Monthly global solar insolation at Hebron using PV syst.	38
Figure 4.2: The area of the roof Hebron Governmental Hospital building.	39
Figure 4.3 The area marked in yellow is the actual area that can be used.	40
Figures 4.4: A satellite picture for roof of Hebron Governmental Hospital.	41
Figure 4.5: The inclination of the PV panels.	43

Figure 4.6: Distribution of the roofs on which the PV system will be	45
installed.	
Figure 4.7: Effect of heat on the solar panel used	46
Figure 4.8: single line diagram (Multi string inverter)	
Figure 4.9: single line diagram (Central inverter)	55
Figure 4.10: Effect of heat on the solar panel used	57
Figure 4.11: single line diagram	62
Figure 4.12: Effect of heat on the solar panel used	64
Fig4.13:Rated capacity and battery temperature curve	67
Fig. 4.14: cumulative net cash flow.	73
Fig. 5.1: four main parts of the PV syst program.	75
Fig. 5.2: project's location dashboard.	76
Fig. 5.3 system Specification dashboard	77
Fig. 5.6 Data sheet of PV panel	78
Fig. 5.7 Data sheet of inverter	79
Fig. 5.8 system design of the PV syst	80
Fig. 5.9 summary of the calculation version.	81
Fig. 5.10 Proposed Schematic diagram of the system from PV syst.	82
Fig. 5.11 Expected output result for the system in every month.	83
Fig. 5.12 Data sheet of PV panel	84
Fig. 5.13 Data sheet of inverter	85
Fig. 5.14 system design of the PV syst.	86
Fig. 5.15 summary of the calculation version.	87
Fig. 5.16 Proposed Schematic diagram of the system from PV syst.	88
Fig. 5.17 Data sheet of PV panel	89

Fig. 5.18 Data sheet of inverter	90
Fig. 5.19 system design of the PV syst	91
Fig. 5.20 summary of the calculation version.	92
Fig. 5.21 Proposed Schematic diagram of the system from PV syst.	93

List of Table

Table (1.1): First semester	11
Table 2.1: the data I collected from the "Suncalc" program during the months of the year	15
Table 3.1 ICU Section consumption	21
Table 3.2 Department of General Surgery Section consumption	21
Table 3.3 Department of Physical Therapy Section consumption	22
Table 3.4 Outpatient Department Section consumption	23
Table 3.5 Outpatient Department Section consumption	23
Table 3.6 Shows the consumption of hospital departments	25
Table 3.7: " Monthly consumption for 2017"	29
Table 3.8: It shows the amount of monthly consumption of the hospital during the year2018	30
Table 3.9: It shows the amount of monthly consumption of the hospital during the year2019	31
Table 3.10: It shows the amount of monthly consumption of the hospital during the year2020	32
Table 3.11: It shows the amount of monthly consumption of the hospital during the year2021	33
Table 3.12: It shows the amount of hospital consumption in the first three months of 2022	34

Table 3.13: Shows the annual consumption of the hospital	35
Table 4.1 : Monthly global solar insolation at Hebron using PV syst[23]	38
Table 4.2: Price list of each component in the system from ULTRA SUN company	51
Table 4.3: Price list of each component in the system from ULTRA SUN company	56
Table 4.4: Price list of each component in the system from ULTRA SUN company	63
Table 4.4: Price list of each component in the system from ULTRA SUN company	70
Table 4.5: cumulative net cash flow calaculation.	72

<u>Contents</u>

الاهداء	2
Abstract	3
الملخص	4
List of Figure	5
List of Table	6
Chapter one: Introduction to Solar energy	7
Overview	9
1.1 Photovoltaic system type	9
1.2 Electricity in Palestine (Challenges and difficulties)	11
1.3 Research problems	11
1.4 Project motivation	11
1.5 Project Objectives	11
1.6 Time Schedule	12
Chapter 2: Study the Site of Alia Governmental Hospital	13
2.1 Introduction	14
2.2 General study	15
2.3 detail study hospital location	15
2.4 Study the climatic nature of the site	19
2.5 Samaritan	20
Chapter 3: Study of electrical loads and consumption in the Alia hospital	21
3.1 Introduction	22
3.2 Electric load consumption data	22
3.3 The measured consumed energy	29

3.4 Calculation	35
Chapter 4: Photovoltaic system design	38
4.1 Overview	39
4.2 PV system design	42
4.3 Economic feasibility study	71
Chapter 5: PV System Design using PV-syst	75
5.1 Overview	76
5.2 PV-syst introduction	76
5.3 PV system design by PV-syst	77
Appendix	94
References	

1

Chapter one: Introduction to Solar energy.

Overview. Electricity in Palestine (Challenges and difficulties). Research problems. Project motivation. Project Objectives. Time Schedule.

Overview

Photovoltaic offer consumers the ability to generate electricity in a clean, quiet and reliable way. Photovoltaic systems are comprised of photovoltaic cells, devices that convert light energy directly into electricity. Because the source of light is usually the sun, they are often called solar cells. The word photovoltaic comes from "photo," meaning light, and "voltaic," which refers to producing electricity. Therefore, the photovoltaic process is "producing electricity directly from sunlight." Photovoltaic are often referred to as PV, PV systems are often cost justified even when grid electricity is not very far away. When applications require larger amounts of electricity and are located away from existing power lines. photovoltaic systems can in many cases offer the least expensive.

1.1 Photovoltaic system type [1].

Photovoltaic system can generally be classified according to connection between PV system and grid:

1. On grid system

They are also called on-grid or utility interactive. Grid-tied systems are designed to operate in parallel with and interconnected with the electric utility grid.

2. off grid system

They are most common in remote locations without utility grid service, off-grid solarelectric systems can work anywhere. They are generally designed and sized to supply DC and/or AC electrical load.

1. Hybrid system

A Hybrid Solar Photovoltaic (PV) System is a combination of both the On-Grid and Off-Grid Solar PV Systems. Thus, it is connected to the grid while having localised power storage in the form of batteries as well.

Fig.1.3: Hybrid system

1.2. Electricity in Palestine (Challenges and difficulties)

The energy sector acts as a key enabler across all industries. Access to a stable and reasonably priced energy supply is an important driver of economic growth: wastewater treatment plants, manufacturing sites, high tech-hubs, hotels, and many other facilities require reliable power in order to operate effectively. In addition, households require electricity for families to lead a comfortable life, schools need it to create a functional learning environment, and hospitals depend on it to provide a consistent quality of care for patients. [2]

1.3 Research problems

- 1) High electrical loads in public buildings and the hospital building in particular, which increases the electrical burden on the public network.
- 2) Constant and frequent power outages.
- 3) Constant need for electricity in operating rooms and intensive care units.

1.4 **Project motivation**

The importance of the project lies in promoting the use of alternative energy systems in public centers with high electrical consumption, reducing the use of traditional electrical generators, and providing a clean environment in health care centers.

1.5 **Project Objectives**

The main objectives of the project are to overcome the above-mentioned problems as follows:

- > Study electrical loads and determine which loads have the highest energy consumption.
- Designing a solar energy system that covers the largest amount of electrical load consumption in the Alia Governmental Hospital building.
- Reducing dependence on traditional electricity generators, including reducing pollution resulting from these generators.

1.6 Time Schedule.

Illustrates the tasks that we did and how long it takes weekly for each task.

Table (1.1): First semester:

Weeks Tasks	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Finding Project Idea															
Proposal															
Collecting data															
Documentation															
Preparing for presentation															
Print documentation															

Chapter 2: Study the Site of Alia Governmental Hospital

Introduction General study. detail study hospital location. Study the climatic nature of the site Samaritan

2.1 Introduction

It is necessary to study the general site in which the solar energy system will be installed, as this study provides a clear vision of the nature of the general site and shows whether the installation of solar energy systems is effective or not.

Fig.2.1: Peak Sun Hour Map [3]

Figure 2.1, The West Bank is among the countries that come in the second category in terms of peak hours.

2.2. General study.

In order to obtain an effective solar energy system design, it is necessary to study the general site in which the system will be installed. Through this chapter, we shed light on the study of all the conditions surrounding the solar system, the study of the site, and the study of the climatic nature of the site. figure two shows the hospital location in Hebron.

Fig.2.2: Aerial view of Alai Governmental Hospital "Google Maps"

2.3. detail study hospital location.

The mountainous nature of Hebron has given Alia Governmental Hospital an advantage, as the hospital building is located in a rising mountainous area, which helped it not to form any shadows from the neighboring buildings on the roof of the hospital building, as the roof of the hospital building is the best place to invest solar energy on it.

Fig.2.3: Sun path of the sun's movement "suncalc".

Figure 2.3 shows us the path of the sun's movement and the orientation of the buildings. The obtained data from the mentioned sun bath.

Table 2.1: the data I collected from the "Suncalc" program during the months of the year.

month	Sun tilt angle	Peak sun radiation at: hour
January	32.42	11:44
February	42.31	11:53
March	54.05	11:50
April	63.49	12:41
May	76.54	12:36
June	75.19	12:38
July	70.38	12:44
August	61.38	12:45
September	51.62	12:36
October	41.38	12:27
November	41.38	11:23
December	35.63	11:30

From table 2.1 it can be noted that the loges day is 21 June and at the shortest 21 the September.

2.4 Study the climatic nature of the site

Fig.2.4: Average Temperatures

Figure 2.5 shows the sunny days, cloudy days, partly cloudy days, and rainy days over the course of the year.

Fig.2.6: Temperature distribution throughout the year

From Figure 2.6, we notice that the highest temperature was recorded in the month of 6 and the lowest temperature was recorded in the month of 1.

Fig.2.7: Wind speed throughout the year.

Figure 2.7 shows us that January, December and March are the months with the highest speed of holidays throughout the year.

Fig.2.8. Temperature effect

It is necessary to know the effect of temperature on solar energy systems, as it becomes clear from Figure 2.8 that the increase or decrease in temperature directly affects the electrical voltage and to a small extent on the electrical current. 2.4 It shows us that the highest temperature is less than 40 degrees, but for a few days, while the rest of the days of the year have moderate temperatures below 30 degrees.

The study of the site is important because it helps us determine the procedures for installing the system and determine several requirements in order to choose the metal structure and determine if the site is suitable for installing the system.

Chapter 3: Study of electrical loads and consumption in the Alia hospital.

Introduction Electric load consumption data. The measured consumed energy Calculation

3.1 Introduction:

In many countries of the world, Hospitals are major consumers of energy. In order to assess the potential for energy savings in such facilities, a study of electrical loads Is conducted on the campus of Hebron Governmental ALIA. The aim of this study Is to analyze the energy consumption of the different loads and sections in the hospital and identify the loads and sections with a maximum consumption rate of the existing loads and identify their operation regime and characters and sections that consume the most electrical energy among all hospital facilities. The ever-increasing energy costs and environmental concerns make rational use of energy and energy conservation efforts (mission) of great importance. Governmental and state-owned buildings in general, especially old ones, are good for conducting energy audits and suggesting solutions to conserve energy and promote efforts toward enhancing the environment in the region. Therefore, it is necessary to know the reasons responsible for the high energy consumption.

Through this chapter, a brief analysis and discussions should be conducted about the electrical consumption in the various hospital facilities and departments.

Initially, Studying the electrical loads in each department separately, as a result of this survey, the following data illustrates the consumption rates of electrical loads in the hospital.

Fig.3.1. Hospital departments.

3.2. Electric load consumption data.

Intensive care unit (ICU):

It is the most important department in the hospital, as patients in this department need special care, so it is imperative that there be an electrical system in the hospital that is commensurate with this importance. The current equipment is equipped with an internal UPS system. Table 3.1 shows the consumption of the section.

Table 5.1 ICU Sec	consumption.	
	average consumption of the section (kWhr)	Consumption of luminaires (kWhr)
Consumption value	21.200	1.8

Table 3.1 ICU Section consumption

Department of General Surgery:

The department's consumption is concentrated in the air conditioning units distributed over 12 rooms, where each room contains an air conditioner with a volume of 2 tons.

Note that 2 tons = 7.0337 kilowatts. [4]

Total capacity of air conditioning units = Number of air conditioning units \times single unit capacity (3.1)

Total capacity of air conditioning unit = $12 \times 7,0337 = 84,4044 kWhr$

	Consumption of units (kWhr)	Consumption of luminaires (kWhr)	Total consumption
Consumption value	84.4044	1.6	90.0044

 Table 3.2 Department of General Surgery Section consumption.

Operations department:

It can be noticed that the energy consumption is only during the operations time, and from, which means it is impossible to determine the exact consumption of the section. It is necessary to mention the devices that consume energy and represented in the sterilization devices that work for two hours a day and that consume energy of 11 kilowatts per day the one. It is necessary to calculate the consumption value of the lighting units in the corridors of the section, which consume the energy of the 1kw/hr. The operating rooms contain several devices that work during the operation, which are anesthesia devices, an X-ray device, a planning device, a lighting unit, and an operating bed.

Department of Physical Therapy:

The department works for seven hours a day, as the consumption in this department is not considered large compared to the other departments. Table 3.3 The total consumption of the department is placed.

 Table 3.3 Department of Physical Therapy Section consumption

	Section consumption (kWhr)
Consumption value	8.020

Emergency department:

By studying the consumption of this section, we noticed that this section does not have a high electrical consumption, as the consumption is concentrated in lighting units, two blood pressure testers, three electrocardiographs, and lighting units distributed over the section, such as the total consumption of 1 kw/hr. The department operates throughout the day

Outpatient Department:

In this department, there is no high electrical consumption, as this department works to conduct an examination of the patient. In this section, there is no high electrical consumption, as this section works to conduct an examination of the patient. Table 3.4 shows the amount of consumption of the section. Table 3.4 Outpatient Department Section consumption

	Section consumption (kWhr)
Consumption value	2

finance department:

We worked on studying the loads in the section, as the loads in this section consist of computers, printers and lighting units. Table 3.5 shows the depreciation value in the section.

Table 3.5 Outpatient Department Section consumption

	Section consumption (kWhr)
Consumption value	2.5

pharmacy:

Consumption in the pharmacy is represented in lighting units in addition to a refrigerator for storing medicines, as the total consumption is equal to 840 watts hour from 8 to 3 hours. As for the rest of the day, consumption is limited to the refrigerator for storing medicines, which operates with an electrical capacity of 400 watts hour and works for a period of time. 16 hours.

maternity section:

The total consumption of this section is estimated at 1-kilowatt hour, in which consumption is focused on lighting units in addition to the nursery and the natural delivery room.

Department of Radiology and MRI:

This section is the most energy-consuming in the hospital building through the operation of tomography scanners, as the consumption in this section is from 0.5 to 50 kWhr. The radiology department consists of three X-ray devices with a capacity of 21 kilowatts, as the number of devices operating in this department is two, in addition to the tomography device, the power it

consumes is 11.1 kilowatts, as it works for h hours per day because it is The only device in the department as this device is connected to a 12 kW UPS.

Magnetic resonance device This device needs high electrical energy as it consumes electrical energy of 20 kWhr and the department works for 7 hours a day as the magnetic resonance department is connected to the UBS system with an electrical capacity of 30 kilowatts and the UBS room contains three air-conditioning units The volume of one ton per unit, which means an electrical capacity of 10.5 kWhr.

We note from the information we collected from the department that the total consumption is 52.1 kWhr.

Lighting in the corridors:

The hospital corridors contain 187 lighting units with an average electrical capacity of 30 watts per unit, which means that the total consumption is 61.5 kWhr.

Sterilization devices in the hospital There are three sterilization devices in the hospital that operate over ten hours per day, with an electrical capacity of 35.56 kW for each sterilization unit, meaning that the total capacity in the event of all devices working reaches 178 kWhr, knowing that one unit is in operation.

Air conditioning units:

There are four air-conditioning units in the building. Only two units operate, and the other two units are standby units, with a total consumption of 13 kWhr.

electric lifts:

The building contains five old electric elevators, as there are two elevators with an electrical capacity of 11 kWhr and the other two elevators operate with an electrical capacity of 7 kWhr, and the fifth elevator operates with an electrical capacity of 5 kWhr, meaning that it needs a total energy equal to 41 A kWhr multiplied by a demand factor of 0.6 means that it needs 24.6 kWhr of energy. From the results we obtained previously, the following table shows the total consumption of the hospital.

blood bank:

There are many devices in this section that consume electrical energy and have a high consumption, and when we studied the existing loads, we found that most of the devices were connected directly with UPS systems, and we found that the average consumption of the section reaches 40 kWhr.

After studying the consumption of all electrical loads and devices in each section and determining the value of the total consumption for each section, since the values were taken in

the month of 2 we converted these values into the monthly consumption and by specifying in the month of 2 as Table 3.1 shows the consumption values during the month of 2.

Section	Consumption amount (kW month)
ICU	16560
GENERAL SURGERY	38563.2
Operations	360
PHYSICAL THERAPY	1684.2
EMERGENCY	720
OUTPATIENT	420
FINANCE	525
PHARMACY	380.4
MATERNITY	720
RADIOLOGY & MRI	37512
LIGHTING	44280
AIR CONDITION	9360
ELECTRIC LIFTS	17712
blood bank	16800
TOTAL	185596.8

Table 3.6 Shows the consumption of hospital departments.

Suppliers can also reduce overall power consumption by choosing low power CPUs and screens in their more advanced devices. High power equipment such as autoclaves should have automatic monitoring at the plug level, so that technical staff can receive warnings when such equipment has exceeded a predetermined run time and can investigate. All of these strategies can be complemented with staff energy awareness programmers and good routines at the end of shifts for shutting off unnecessary equipment [5].

Fig.3.2: The consumption chart of hospital sections.

From Figure 3.2, we note the division of electrical loads, and we note that the highest consumption was recorded in the corridors lighting, and then the most consumption comes from the General Surgery Department, as the two departments constitute 64.5% of the total hospital consumption value. Hence, we will work on giving suggestions to reduce consumption.

Lighting in the corridors:

The lighting in the hospital is the most energy consuming, as it constitutes 28.8% of the hospital consumption, and this is due to several reasons, which is the distribution of lighting inside the hospital in an unbalanced and inappropriate manner. Therefore, solutions must be proposed to treat this high consumption.

In the beginning, the lighting units must be distributed in a manner compatible with the neighborhood and the place, and after that it is necessary to use the visible lighting units and not to use the lighting units covered with the net, because it neglects to limit the amount of lighting reaching the place and reduce the amount of lighting that is used, and also it is necessary to use LED lighting units are considered the best currently and the least energy consuming.

GENERAL SURGERY:

The Department of General Surgery is one of the second highest departments in energy consumption, so it is necessary to determine the reason for the high energy consumption, as we find the reason for the high energy is the use of air conditioning units distributed over the rooms of the department. Therefore, a solution to this high consumption "must be followed through the use of air conditioning units Motor speed in non-inverter type air conditioners remains constant and temperature is adjusted by turning the motor ON and OFF, which consumes more energy. In inverter type air conditioners, temperature is adjusted by changing motor speed without turning the motor ON and OFF. Compared to non-inverter type air conditioners, air conditioners with inverters have less power loss and can save in energy" [6].

Department of Radiology and MRI:

medical imaging equipment is a class of high-energy consuming products widely used today in hospitals, imaging centers and radiological practices. Energy-efficient medical devices play a key role in reducing environmental impacts, but achieving higher rates of energy efficiency also requires better management of devices when they are not in use. MRIs are also used in imaging centers and radiological practices. There the contribution of the energy consumption of imaging equipment is much larger than 19%. [6]

Cylindrical MRI scanners generate a powerful magnetic field through a cryo-cooled superconductive magnet which has to operate 24h/d and cannot be turned off (only for emergency reasons). Therefore MRI scanners consume energy even when switched to off-mode to maintain the liquid helium at the temperature of 4 Kelvin. Nonetheless good

environmental use behavior, such as switching the MRI scanner to off mode during night hours, can significantly reduce the yearly energy consumption by up to 21,8%, as determined by the COCIR study on MRI (www.cocir. org). The graph represents daily energy consumption and savings of a MRI scanner compared to a situation where the scanner is left in ready-to-scan mode for all 24 hours.

In order to reduce the consumption of X-ray devices, it is preferable to replace these devices, as their feet give them a low energy utilization factor, so it is better for suppliers to use new devices with a high energy benefit factor and low energy consumption.

General tips to reduce energy consumption in hospitals:

how changing energy delivery systems to an "on-demand" model could dramatically reduce energy consumption in hospitals. This design applies mainly to ventilation energies (electrical and thermal), but our results suggest that it has theoretical potential also in the area of hospital equipment. Putting this into practice, however, will require suppliers to build in functions which allow their equipment to safely enter a low-power standby mode and to power up quickly when needed. Automatic power-down functions need to be equipment specific; for example, if a piece of lab equipment has no sample loaded, then it should go into standby after some minutes. Many of these power saving functions are now incorporated into other portable IT devices such as smartphones. Most hospital equipment with display screens should at least have functions which turn off the screen after 10-20 minutes without user input. For equipment types such as patient monitors this may not be desirable; in such cases the screen should at least have backlighting and go into low light mode.[7]

Suppliers can also reduce overall power consumption by choosing low power CPUs and screens in their more advanced devices. High power equipment such as autoclaves should have automatic monitoring at the plug level, so that technical staff can receive warnings when such equipment has exceeded a predetermined run time and can investigate. All of these strategies can be complemented with staff energy awareness programmes and good routines at the end of shifts for shutting off unnecessary equipment.

3.3 The measured consumed energy

The following is a study of the hospital consumption for the past five years. according to the records of referring to the records of the Hebron Electricity Company, where table2- table 5 illustrate the annual consumption of the energy for the mentioned period.

Table 3.7: Monthly consumption for 2013

Consumption in 2013	
Month	Consumption (kW month)
January	25128
February	25402
March	25592
April	25847
Мау	26148
June	26783
July	27122
August	27488
September	27750
October	27997
November	28209
December	285580
Total	322024

Table 3.8 " Monthly consumption for 2014"

Consumption in 2014	
Consumption (kW month)	
28747	
29007	
29238	
29483	
29688	
29950	
30419	
30943	
31572	
32038	
32317	
32593	
365995	
	Consumption in 2014 Consumption (kW month) 28747 29007 29238 29483 29688 29950 30419 30943 31572 32038 32317 32593 365995

Table 3.9: Monthly consumption for 2015

Consumption in 2015	
Month	Consumption (kW month)
January	32881
February	33157
March	33407
April	33663
Мау	33875
June	34275
July	34683
August	35233
September	35658
October	36396
November	36536
December	36771
Total	452931

Table 3.10: Monthly consumption for 2016

Consumption in 2016	
Month	Consumption (kW month)
January	37028
February	37293
March	37553
April	37802
Мау	38068
June	38667
July	39219
August	39922
September	40464
October	41047
November	41461
December	41779
Total	470303

Table 3.11: Monthly consumption for 2017

Consumption in 2017	
Month	Consumption (kW month)
January	42036
February	42398
March	42696
April	42988
Мау	43776
June	43956
July	43956
August	45444
September	63101
October	46719
November	47140
December	47429
Total	508683

Table 3.12: Monthly consumption for 2018

Consumption in 2018	
Month	Consumption (kW month)
January	47777
February	48129
March	48438
April	48767
Мау	49131
June	49736
July	50332
August	50994
September	51747
October	52441
November	53018
December	53301
Total	603811

Table 3.13: Monthly consumption for 2019

Consumption in 2019	
Month	Consumption (kW month)
January	34800
February	35300
March	34500
April	32100
Мау	36300
June	51600
July	63800
August	74100
September	68600
October	66600
November	51900
December	28800
Total	578400

Table 3.14: Monthly consumption for 2020

Consumption in 2020	
Month	Consumption (kW month)
January	34300
February	38300
March	33700
April	32900
Мау	28000
June	43400
July	52300
August	83900
September	73200
October	73600
November	56700
December	27300
Total	577600
Table 3.15: Monthly consumption for 2021

Consumption in 2021				
Month	Consumption (kW month)			
January	27500			
February	41500			
March	33500			
April	29000			
Мау	33900			
June	47100			
July	49200			
August	70000			
September	77100			
October	55400			
November	43700			
December	34500			
Total	542400			

Table 3.16: Monthly consumption for 2022

Consumption in 2022			
Month	Consumption (kW month)		
January	11500		
February	21800		
March	30120		
April	39320		
Мау	46440		
June	56760		
July	71680		

Table 3.17: Annual consumption of the hospital.

Annual consumption				
Consumption amount (kW/years)	Year			
322024	2013			
365995	2014			
452931	2015			
470303	2016			
508683	2017			
603811	2018			
578400	2019			
577600	2020			
542400	2021			

3.4 Calculation

Referring to table 8, the average energy consumption

$$average \ consumption = \frac{Total \ consumption \ over \ the \ past \ nine \ years}{The \ number \ of \ years} \ . \tag{2}$$
$$= \frac{3266147}{8} = 362905,2222Kw/years$$

Avoid we the rate of increase in hospital consumption is equal to:

$$Consumption\ increase = \frac{current\ year\ consumption}{Previous\ year's\ consumption}.$$
(3)

$$=\frac{542400}{362905,2222}=1,494 \text{ increase},$$

=

Energy by calculating the rate of increase $542400 * 1, \xi 9 \xi = A 1 \cdot 673, 8123 \text{ Kw/years}$

4

Chapter 4: Photovoltaic system design

Overview PV system design Economic feasibility study

4.1 Overview

This chapter mainly revolves around the design of the PV system for the buildings of Hebron Governmental Hospital based on the average annual loads and then depending on the available space according to the conventional equations.

4.2 PV system design

4.2.1 Introduction

Palestine is located between $(29^{\circ} 15'' - 33.15'')$ north latitude and (34.15'' - 35'' 14'') which is the ideal location for using solar energy. Hebron is located at 31.4 latitude and 35.1 longitude. The daily average solar radiation ranges between (2.83 to 7.5) kWh per square meter Maximum radiation available in June and July and minimum in December and January The design scheme for Hebron Governmental Hospital Building has been proposed.

Monthly global solar insolation and daily average bright sunshine hour in Hebron city are presented in the table 4.1 these values are a 22-year ago Average solar insolation from the PVsyst software.

Month	Solar insolation (KWh/m2)
January	3.097
February	3.607
March	4.735
April	5.322
Мау	7.052
June	7.48
July	7.65
August	7.19
September	6.44
October	5.35

Table 4.1 : Monthly global solar insolation at Hebron using PV syst[23]

November	4.1
December	2.835
Total PSH/Year	64.808
Average insolation	5.401 (KWh/m2)

Figure 4.1: history Monthly global solar insolation at Hebron using PV syst.

4.2.2 PV System Design for Hebron Governmental Hospital

The total area of the roof in Figure 4.1 for the buildings is 3200 m^2 of architectural level, but there are three areas that cannot be used for photovoltaic panels, and these areas are stairs of the building and places of air conditioning units and places resulting in shade, and therefore the exceptional areas of the design are (1755) square meters and so the actual usable area is only 1,444 square metres, the PV system is designed for rooftop installation.

Figure 4.2: The area of the roof Hebron Governmental Hospital building.

Figure 4.3 The area marked in yellow is the actual area that can be used.

Since the sun does not shine perpendicularly on every point of the earth, for maximum efficiency the PV modules are tilted with an angle which depends on the location of the installation. In the northern hemisphere, solar panels should be tilted to face south and vice versa. An easy way to determine the tilt angle is the latitude of the location. If a place has a latitude X north, then panels should be tilted with X° angle from the horizontal base to face south [24].

4.2.3 Module Accommodations on Roof Area and Load Analysis.

To calculate module accommodations on the roof of C-Building, a satellite picture of the roof with dimensions is taken, as shown below. Aerial photography lab in Palestine polytechnic university. The Hebron Governmental Hospital building is not parallel to the north-south pole in either side. The facing angle is calculated from the same lap and was found to be 32°, but the collectors must be south facing which means the azimuth angle is zero, since the building is in the northern half of the world and to achieve the maximum beam insolation on a collector [25].

Figures 4.4: A satellite picture for roof of Hebron Governmental Hospital.

For the PV-system sizing the total consumption Measured for the building is 810.67 MWh/year that is obtained in chapter 3. And all calculation depend on this value even though this value is the maximum of all load estimated methods, because the loads in the Hebron Governmental Hospital building may growth in the future, and as mentioned in the very beginning in this chapter The number of hours at peak sun daily for Hebron city is 5.4 hour/day.

The modules that proposed to uses for a high efficiency that maximizes the output power. Poly crystalline type, with an efficiency of about (21.4%. The PV cells generate low voltage direct current that is coupled to the building's electricity supply via an inverter with efficiency of 98.2%, and the efficiency for conversion will calculated.

Power loss at $\%(\frac{\Delta P}{\circ C}) = 0.0 \cdot 4\%$ per degree above 25 C° from data sheet in AppendixA.1

$$T_{CELL} = T_{amp} + \frac{NOCT - 20}{0.8} * 1 \text{ SUN.}$$
(4.1)

 $T_{CELL} = 20 + \frac{45 - 20}{0.8} * 1 \text{ SUN} = 54.125 \ ^{\circ}C.$

$$P_{dc, PTC} = 1KW * (1 - \% (\frac{\Delta P}{C}) * (T_{CELL} - 25^{\circ}C) = 0.985 \text{ kW}.$$

 $\eta_{temp} = \frac{Pdc \ PTC}{1KW} = \frac{0,885KW}{1KW} = 0,985$

(Which mean the losses by the temprtture will be 11,5%).

 $\eta_{\text{inverter}} = 98,7\%$ from datasheet in Appendix A.3.

(Which wean the losses by the inverter will be 1,4%).

 $\eta_{\text{mismatching}} = 96\%$ in PV modules datasheet

(Which wean the losses by the mismatching between collectors will be 4%).

 $\eta_{dust collectors}$ = 96% [2] (Which wean the losses by the inverter will be 4 %).

 $\eta_{\text{conversion}} = \eta_{\text{temp}} * \eta_{\text{inverter}} * \eta_{\text{mismatching}} * \eta_{\text{dust collectors}}$ (4.2)

 $\eta_{\text{conversion}} = 0.885 * 0.987 * 0.96 * 0.96 = 86.8\%$

Energy (KW/year) =
$$Pac(KW) * (h/day at peak sun) * 365 day/year$$
 (4.3)

$$P_{ac} = \frac{energy\left(\frac{KWhr}{year}\right)}{\frac{h}{day}at \ peak \ sun \ * \ 365 \ day_{/year}} = \frac{810673812,3}{5,401 \ * \ 365} = 411,224 \ KW_{AC},$$

$$P_{DC} = \frac{P_{ac}}{\eta_{\text{conversion}}} = \frac{411,224K}{86,8\%} = 473355KW_{peak (DC)}$$

$$\eta_{PV} = 21,46\% \text{ from datasheet in [Appendix A, 1]}$$

number of PV panel = $\frac{P_{DC(PV)}}{P_{panel}} = \frac{473355K}{550} = 860,06 \text{ panel},$

$$P_{dc,stc} = \frac{1kW}{m^2} \text{ at } 1 \text{ sun } \times \text{ Area } \times \eta_{PV} \to \text{ Area } = \frac{473355 KW}{\frac{1 KW}{m^2} \times 0,2146} = 2205,66 m^2$$

The latitude of Hebron id 31.4° north; the tilt angle for the PV modules at site is 31°. The width of the PV module selected for installation is 2m, and if the total shade length of the module is X as shown in Figure 4.4.

Figure 4.5: The inclination of the PV panels.

$$d = \frac{h}{\tan(alpha)} = \frac{L \sin(thita)}{\tan(alpha)} = \frac{2 \times \sin(31)}{\tan(31)} = 1,71 \text{ m},$$
$$X = d \cos(Azimuth) = 1,71 \times \cos(25) = 1,55 \text{ m},$$

@ thita =
$$27^{\circ}$$

$$d = \frac{h}{\tan(alpha)} = \frac{L \sin(thita)}{\tan(alpha)} = \frac{2 \times \sin(27)}{\tan(31)} = 1,51 \text{ m},$$
$$X = d \cos(Azimuth) = 1,51 \times \cos(25) = 1,36 \text{ m},$$

The change in the inclination value of the solar panel from 31° to 27° does not significantly affect the production of panels, as the inclination angle is set at 31° for the winter months, because the angle of inclination of the sun is low, and making the inclination angle of the photovoltaic modules to 27° does not significantly affect because most of the production It is in the summer months and the hours of the day are longer and the angle of inclination of the sun is greater, i.e. closer to 90°.than the winter months which are close to 30 degrees

We have three areas where the split PV panels can be installed on the roof of the old building, the roof of the kidney building and the roof of the emergency building.

Figure 4.6: Distribution of the roofs on which the PV system will be installed.

4.2.4.1 Emergency building

In the beginning, we take the emergency building, which constitutes an area of $625m^2$, where the actual area for installing the panels is $233m^2$, and this is done after removing the shadows and the spacing between the panels.

First case: (Multi string inverter)

 $A_{\text{Net}} = P_{\text{dc}} / (1 \text{kW/m}^2) \times \mathbf{\eta}_{\text{PV}} \rightarrow P_{\text{dc}} = 50 \text{ kw}$ (4.4)

Where:

 $\mathbf{\eta}_{\text{PV}}$: efficiency of PV [Appendix A]

 $\# \text{ of } PV = P_{dc} / P_{PV}$ (4.5)

$$=\frac{50000}{550}=91$$
 panel

Where:

of PV: Number of PV.

P_{PV}: PV module peak rated output Power. [Appendix A]

Maximum voltage produced by the photovoltaic panels at a temperature of -5 $^\circ$ C.

Fig. 4.7: Effect of heat on the solar panel used

Note that the increase in the open circuit voltage is 10%.

→ V_{0C} , $-5 = V_{0C} * 110\% = 59.16 * 110\% = 65.076$ V.

Where:

 V_{0C} : open circuit voltage at 25° C.

 $V_{0C,\ -5}$: open circuit voltage at $-5\,^\circ$ C.

Note that the decrease in the open circuit voltage is 5%.

→ $V_{0C, 40} = V_{0C} * 95\% = 59.16 * 95\% = 56.202V.$

of module on each string per inverter = $V_{dcinv, max}$ / Vdc PV (4.6)

= $\frac{800}{65,076}$ = 12,29 \approx 12 module/MPPT.

of module on each string per inverter = V_{dcinv}, min / V_{dcPV}, min. (4.7)

$$=\frac{390}{56,202}=7$$
 module/mppt.

Where:

Vdcinv, max: maximum voltage at input side in inverter [Appendix B]
Vdcinv, min: minimum voltage at input side in inverter. [Appendix B]
Maximum current produced by the photovoltaic panels at a temperature of 40° C.

Note that the increase in the short circuit current is $\pm 2\%$.

 \rightarrow Isc, 40 = Isc * 102% A (10)

= 11.45 * 102% = 11.679 A.

Where :

 I_{SC} : short circuit current at 25° C. [Appendix A]

 $\mathrm{I}_{\text{SC},\ 40}\text{:}$ oshort circuit current at 40° C.

→ $I_{SC_{min, -5}} = I_{SC} * 98\% = 11.45*98\% = 11.221$ A.

Where :

 $I_{SC}:$ short circuit current at 25° C. [Appendix A]

Isc, $_{40}$: short circuit current at -5° C.

of string for each inverter $=\frac{\text{Isc,inv}}{\text{Isc,40}} = \frac{33}{11,679} = 2,8 = 2 \text{ string/mppt}$ (4.8)

Where:

Isc, inv: short circuit current in pv side inverter [Appendix B]

Number of module in array = $2 \times 12 = 24 \mod MPPT$.

Number of module in array = $2 \times 8 \times \# of MPPT = 2 \times 12 \times 2 = 48 module$.

Number of array = $\frac{91}{48}$ = 1,9 \approx 2 array.

Number of inverter $|_{25KW} = 2$ inverter.

 $P_{ac} = P_{DC} \times \eta_{conversion} = 50000 \times 86,8\% = 43,4 KW,$

Energy ($\frac{KWhr}{year}$) = P_{ac} × 5,401 $\frac{h}{day}$ at peak sun × 365 $\frac{day}{year}$

= 43,4 KW × 5,401 × 365 = 85557,241 $\frac{\text{KWhr}}{\text{year}}$ = 85,557 $\frac{\text{MWhr}}{\text{year}}$,

% of Energy coverd = $\frac{85,557}{510,8}$ = 16,75%

[دكتور ماهر] 4. 2. 4. 2 Cables

For the DC side the cable should have a minimum current rating of:

 $I_{DC \ Cable} = n \times I_{sc} \times 1.25 = 2 \times 11.45 \times 1.25 = 28.6 \text{ A}$

• where n is the number of similar voltage strings connected in parallel and ISC is the PV module short circuit current.

• For high system voltages, such as in grid connected PV, double insulated cable should be used for safety reasons.

• For the PV the cable should have a minimum voltage rating of:

$$V_{DC Cable} = m \times V_{OC} \times 1.15$$

 $= 12 \times 59.16 \times 1.15 = 816.4$ V

• where m is the number of similar current modules connected in series and VOC is the module open circuit voltage.

AC cable with $2*16 \text{ mm}^2$ is selected for the connected between the inverter and grid.

4.2.4.3 Fuses / Miniature Circuit breakers (MCB)

• Fuses, Miniature Circuit Breakers (MCBs DC/AC) and switches serve similar functions in PV systems because both are used to isolate sections of the system for maintenance or in the event of emergency or malfunction.

• string DC fuse:

 $I_{DC Fuse}$ = $I_{sc} \times 1.25$ = 11.45 $\times 1.25$ =14.3A but rating standard is 20A

 $V_{\rm rating}$ = 1.2 \times $V_{\rm oc}$ \times $N_{\rm PV}$ = 1.2 $\times59.16$ \times 12 = 851.904 V but rating standard is 1000 V.

• String DC circuit breaker:

 V_{rating} = 1.2× V_{oc} × N_{PV} = 1.2×59.16×12= 851.904 V but rating standard is 1000 V.

 $I_{DC CB} = I_{sc} \times 1.25 = 11.45 \times 1.25 = 14.3A$ but rating standard is 20A

• Array DC circuit breaker:

 $V_{rating} = 1.2 \times V_{oc} \times N_{PV} = 1.2 \times 59.16 \times 12 = 851.904$ V but rating standard is 1000 V.

 $I_{DC CB} = I_{sc} \times 1.25 \times N_{string} = 11.45 \times 1.25 \times 4 = 57.25$ A but rating standard is 60A

4.2.4.4 DC surge arrester and lightening arrester:

SMA inverter has implementation of a surge arrester inside the inverter (internal protection inside the inverter), also based on the IEC the selection of the addition surge to ensure is needed the over voltage protection with 1000 V and 15 KA and lightening arrester is needed to protect the system from any Lightning may occur and it will solidly connected to the earth.

4.2.4.5 Inverter AC circuit breaker:

The maximum output current from inverter is 36.2 A and the stander rating is 40 A with 400 V.

4.2.4.6 Economic Feasibility study

This section shows the calculation of the cost of generated energy by the Grid The PV System The feasibility study evaluates the project's potential for success; therefore, perceived objectivity is an important factor in the credibility of the study for potential investors and lending institutions. The purpose of the economic feasibility is to determine the positive economic benefits to the organization that the proposed system will provide. It includes quantification and identification of all the benefits expected. This assessment typically involves a cost benefits analysis.

In order to get a complete design for solar system the economic study is essential to identify the costs of installation of project in detail to study if the project is profitable or not.

The prices of all components are got from the local market of Hebron to get the most accurate.

Component	specification	quantity	Price (\$)	Total Price (\$)
Photovoltaic panel	550 watt	91	260	23660
Inverter	25 kW SMA	2	7120	14240
String Fuse	20 A , 1000 V	8	8.5	68
DC circuit breaker (for string)	20 A, 1000 V	8	63.5	508
DC circuit breaker (for Array)	60 A, 1000 V	2	67	134
DC surge arrester	15KA, 1000 V	2	122	244
AC circuit breaker (after each inverter)	40 A, 1000V	2	17	34
Min circuit breaker (for the system)	80 A, 1000 V	1	34	34
DC cable	6 mm^2	(R&M) (depends on	500	500

Table 4.2: Price list of each component in the system from ULTRA SUN company

		connection & shape of the building)		
AC cable	$21~{ m mm}^2$	200	750	750
Grounding grid establishing	-	-		135
System Installation & operation Grid connection	_	-		8570
Electrical company fee	_	-		150
Maintenance	_	-		300
	Total			49327

Figure 4.8: single line diagram (Multi string inverter)

Second case:(Central Inverter)

We use a central inverter where we connect all the system to this inverter, as we have chosen an inverter of the type "PVI-CENTRAL50-US-480".

of module on each string per inverter = $V_{dc\,inv,\mbox{max}}$ / V_{dc} PV

$$=\frac{600}{65,076}=9,2\approx9$$
 module.

of module on each string per inverter = V_{dcinv}, min / V_{dcPV}, min.

$$=\frac{330}{56,202}=5,87\approx 5$$
 module.

Where :

V_{dcinv, max} : maximum voltage at input side in inverter. [Appendix D]

V_{dcinv, min}: minimum voltage at input side in inverter. [Appendix D]

Maximum current produced by the photovoltaic panels at a temperature of 40° C.

of string for each inverter
$$=\frac{\text{Isc inv}}{\text{Isc 40}} = \frac{170}{11,679} = 14,5 = 14 \text{ string}$$

Where:

Isc, inv: short circuit current in pv side inverter [Appendix D]

Number of PV = # of string * # of module on each string per inverter

= 14 * 9 = 126 module.

This type of inverter bears 126 PV panels, but our system consists of 91 panels, so we will use 9 PV panels in a row and we will use 10 string on parallel, which will give us a current of 110 amps less than the maximum current that the inverter can withstand.

Energy (
$$\frac{\text{KWhr}}{\text{year}}$$
) = P_{ac} × 5,401 $\frac{\text{h}}{\text{day}}$ at peak sun × 365 $\frac{\text{day}}{\text{year}}$

= 43,4 KW × 5,401 × 365 = 85557,241
$$\frac{\text{KWhr}}{\text{year}}$$
 = 85,557 $\frac{\text{MWhr}}{\text{year}}$,

% of Energy coverd = $\frac{85,557}{510,8}$ = 16,75%

[دكتور ماهر] 4. 2. 4. 2 Cables

For the DC side the cable should have a minimum current rating of:

 $I_{DC \ Cable} = n \times I_{sc} \times 1.25 = 2 \times 11.45 \times 1.25 = 28.6 \text{ A}$

• where n is the number of similar voltage strings connected in parallel and ISC is the PV module short circuit current.

• For high system voltages, such as in grid connected PV, double insulated cable should be used for safety reasons.

• For the PV the cable should have a minimum voltage rating of:

 $V_{DC \ Cable} = m \times V_{OC} \times 1.15 = 9 \times 59.16 \times 1.15 = 612.3 V$

• where m is the number of similar current modules connected in series and VOC is the module open circuit voltage.

AC cable with $4*25 \text{ mm}^2$ is selected for the connected between the inverter and grid.

4.2.4.3 Fuses / Miniature Circuit breakers (MCB)

• Fuses, Miniature Circuit Breakers (MCBs DC/AC) and switches serve similar functions in PV systems because both are used to isolate sections of the system for maintenance or in the event of emergency or malfunction.

• string DC fuse:

 $I_{\text{DC Fuse}}$ = I_{sc} \times 1.25 = 11.45 \times 1.25 =14.3A but rating standard is 20A

 $V_{\rm rating}$ = 1.2 \times $V_{\rm oc}$ \times N_{PV} = 1.2 $\times59.16$ \times 9 = 638.9 V but rating standard is 1000 V.

• String DC circuit breaker:

 $V_{rating} = 1.2 \times V_{oc} \times N_{PV} = 1.2 \times 59.16 \times 9 = 638.9$ V but rating standard is 1000 V.

 $I_{DC CB}$ = $I_{sc} \times 1.25$ = 11.45 $\times 1.25$ =14.3A but rating standard is 20A

• Array DC circuit breaker:

 $V_{\rm rating}$ = 1.2 \times $V_{\rm oc}$ \times $N_{\rm PV}$ = 1.2 $\times59.16$ \times = 638.9 V but rating standard is 1000 V.

 $I_{\text{DC CB}}$ = $~I_{\text{sc}}$ \times 1.25 \times N_{string} = 11.45 \times 1.25 \times 10 = 143.125 A but rating standard is 160A

4.2.4.4 DC surge arrester and lightening arrester:

SMA inverter has implementation of a surge arrester inside the inverter (internal protection inside the inverter), also based on the IEC the selection of the addition surge to ensure is needed the over voltage protection with 1000 V and 15 KA and lightening arrester is needed to protect the system from any Lightning may occur and it will solidly connected to the earth.

4.2.4.5 Inverter AC circuit breaker:

The maximum output current from inverter is 72.5 A and the stander rating is 75 A with 400 V.

4.2.4.6 Economic Feasibility study

This section shows the calculation of the cost of generated energy by the Grid The PV System The feasibility study evaluates the project's potential for success; therefore, perceived objectivity is an important factor in the credibility of the study for potential investors and lending institutions. The purpose of the economic feasibility is to determine the positive economic benefits to the organization that the proposed system will provide. It includes quantification and identification of all the benefits expected. This assessment typically involves a cost benefits analysis.

In order to get a complete design for solar system the economic study is essential to identify the costs of installation of project in detail to study if the project is profitable or not.

The prices of all components are got from the local market of Hebron to get the most accurate.

Component	specification	quantity	Price (\$)	Total Price (\$)
Photovoltaic panel	550 watt	90	260	23660
Inverter	50 kW SMA	1	15000	15000
String Fuse	20 A , 1000 V	9	8.5	76.5
DC circuit breaker (for string)	20 A, 1000 V	9	63.5	571.5
DC circuit breaker (for Array)	160 A, 1000 V	1	200	200
DC surge arrester	15KA, 1000 V	1	122	122
AC circuit breaker (after each inverter)	75 A, 1000V	1	55	55
DC cable	6 mm^2	(R&M) (depends on connection & shape of the building)	500	500
AC cable	25 mm^2	200	800	8000
Grounding grid establishing	_	-		135
System Installation & operation Grid connection	_	-		8570
Electrical company fee	_	-		150
maintenance	-	_		400
Total				57440

Table 4.3: Price list of each component in the system from ULTRA SUN company(2)

Figure 4.9: single line diagram (Central inverter)

We use the multi string system because it gives me more flexibility and less cost.

In the beginning, we take the emergency building, which constitutes an area of 273m2, where the actual area for installing the panels is 120.5m2, and this is done after removing the shadows and the spacing between the panels.

First case: (Multi string inverter)

 $A_{\text{Net}} = P_{\text{dc}} / (1 \text{kW/m}^2) \times \mathbf{\eta}_{\text{PV}} \longrightarrow P_{\text{dc}} = 25.86 \text{ kW}$ (4.4)

Where:

```
\mathbf{\eta}_{\text{PV}}: efficiency of PV [Appendix A]
```

of PV = P_{dc} / P_{PV}

$$=\frac{25840}{550}=46$$
 panel

Where:

of PV : Number of PV.

P_{PV} : PV module peak rated output Power. [Appendix A]

Maximum voltage produced by the photovoltaic panels at a temperature of -5 $^\circ$ C.

Fig. 4.10:Effect of heat on the solar panel used

Note that the increase in the open circuit voltage is 10%.

→ $V_{0C, -5} = V_{0C} * 110\% = 59.16 * 110\% = 65.076$ V.

Where :

 V_{0C} : open circuit voltage at $25\,^\circ$ C.

 $V_{0C,\ -5}$: open circuit voltage at $-5\,^\circ$ C.

Note that the decrease in the open circuit voltage is 5%.

 \rightarrow V_{0C, 40} = V_{0C} * 95% = 59.16 * 95% = 56.202V.

of module on each string per inverter = $V_{dcinv, max}$ / Vdc PV (4.6)

 $=\frac{600}{65,076} = 9,22 \approx 9 \text{ module/MPPT}.$

of module on each string per inverter = V_{dcinv}, min / V_{dcPV}, min. (4.7)

$$=\frac{180}{56,202}=3$$
 module/mppt.

Where :

 $V_{dcinv, max}$: maximum voltage at input side in inverter. [Appendix E] $V_{dcinv, min}$: minimum voltage at input side in inverter. [Appendix E] Maximum current produced by the photovoltaic panels at a temperature of 40° C. Note that the increase in the short circuit current is $\pm 2\%$.

→ Isc,
$$_{40} = I_{SC} * 102\%$$
 (10)
= 11.45 * 102% = 11.679 A.

Where :

 $\mathrm{I}_{SC}:$ short circuit current at 25° C. [Appendix A]

 $I_{sc, 40}$: oshort circuit current at 40° C.

→ $I_{SC_{min, -5}} = I_{SC} * 98\% = 11.45*98\% = 11.221$ A.

Where :

 $I_{SC}:$ short circuit current at 25° C. [Appendix A]

Isc, $_{40}$: oshort circuit current at -5° C.

of string for each inverter $=\frac{Isc,inv}{Isc,40} = \frac{33}{11,679} = 2,8 = 2 \ string/mppt$ (4.8)

Where:

Isc, inv: short circuit current in pv side inverter [Appendix B]

Number of module in array = $2 \times 12 = 24 \mod MPPT$.

Number of module in array = $2 \times 8 \times \# of MPPT = 2 \times 12 \times 2 = 48 module$.

Number of array = $\frac{46}{48}$ = 0,953 \approx 1 array.

Number of inverter $|_{25KW} = 1$ inverter.

$$P_{ac} = P_{DC} \times \eta_{conversion} = 25860 \times 86,5\% = 22,4 KW,$$

Energy $\left(\frac{\text{KWhr}}{\text{year}}\right) = P_{ac} \times 5,401 \frac{\text{h}}{\text{day}}$ at peak sun $\times 365 \frac{\text{day}}{\text{year}}$

= 22,4 KW × 5,401 × 365 = 44158,576 $\frac{\text{KWhr}}{\text{year}}$ = 44,158 $\frac{\text{MWhr}}{\text{year}}$,

% of Energy coverd = $\frac{44,158}{510,8}$ = 8,6%

[دكتور ماهر] 4. 2. 4. 2 Cables]

For the DC side the cable should have a minimum current rating of: $I_{DC Cable} = n \times I_{sc} \times 1.25 = 2 \times 11.45 \times 1.25 = 28.6 \text{ A}$ • where n is the number of similar voltage strings connected in parallel and ISC is the PV module short circuit current.

• For high system voltages, such as in grid connected PV, double insulated cable should be used for safety reasons.

• For the PV the cable should have a minimum voltage rating of:

 $V_{DC \ Cable} = m \times V_{OC} \times 1.15 = 12 \times 59.16 \times 1.15 = 816.4 V$

• where m is the number of similar current modules connected in series and VOC is the module open circuit voltage.

AC cable with $2*16 \text{ mm}^2$ is selected for the connected between the inverter and grid.

4.2.4.3 Fuses / Miniature Circuit breakers (MCB)

• Fuses, Miniature Circuit Breakers (MCBs DC/AC) and switches serve similar functions in PV systems because both are used to isolate sections of the system for maintenance or in the event of emergency or malfunction.

• string DC fuse:

 $I_{DC Fuse} = I_{sc} \times 1.25 = 11.45 \times 1.25 = 14.3A$ but rating standard is 20A

 $V_{rating} = 1.2 \times V_{oc} \times N_{PV} = 1.2 \times 59.16 \times 12 = 851.904$ V but rating standard is 1000 V.

• String DC circuit breaker:

 $V_{rating} = 1.2 \times V_{oc} \times N_{PV} = 1.2 \times 59.16 \times 12 = 851.904$ V but rating standard is 1000 V.

 $I_{DC CB}$ = $I_{sc} \times 1.25$ = 11.45 $\times 1.25$ =14.3A but rating standard is 20A

• Array DC circuit breaker:

 $V_{\rm rating}$ = 1.2 \times $V_{\rm oc}$ \times N_{PV} = 1.2 $\times59.16$ \times 12 = 851.904 V but rating standard is 1000 V.

 $I_{DC CB} = I_{sc} \times 1.25 \times N_{string} = 11.45 \times 1.25 \times 4 = 57.25$ A but rating standard is 60A

4.2.4.4 DC surge arrester and lightening arrester:

SMA inverter has implementation of a surge arrester inside the inverter (internal protection inside the inverter), also based on the IEC the selection of the addition surge to ensure is needed the over voltage protection with 1000 V and 15 KA and lightening arrester is needed to protect the system from any Lightning may occur and it will solidly connected to the earth.

4.2.4.5 Inverter AC circuit breaker:

The maximum output current from inverter is 36.2 A and the stander rating is 40 A with 400 V.

4.2.4.6 Economic Feasibility study

This section shows the calculation of the cost of generated energy by the Grid The PV System The feasibility study evaluates the project's potential for success; therefore, perceived objectivity is an important factor in the credibility of the study for potential investors and lending institutions. The purpose of the economic feasibility is to determine the positive economic benefits to the organization that the proposed system will provide. It includes quantification and identification of all the benefits expected. This assessment typically involves a cost benefits analysis.

In order to get a complete design for solar system the economic study is essential to identify the costs of installation of project in detail to study if the project is profitable or not.

The prices of all components are got from the local market of Hebron to get the most accurate.

Component	specification	quantity	Price (\$)	Total Price (\$)
Photovoltaic panel	550 watt	46	260	11960
Inverter	25 kW SMA	1	7120	7120
String Fuse	20 A , 1000 V	4	8.5	34
DC circuit breaker	20 A, 1000 V	4	63.5	254

Table 4.4: Price list of each component in the system from ULTRA SUN company(3)

(for string)				
DC circuit breaker (for Array)	60 A, 1000 V	2	67	134
DC surge arrester	15KA, 1000 V	1	122	122
AC circuit breaker (after each inverter)	40 A, 1000V	1	17	17
Min circuit breaker (for the system)	80 A, 1000 V	1	34	34
DC cable	6 mm^2	(R&M) (depends on connection & shape of the building)	500	500
AC cable	21 mm^2	200	750	750
Grounding grid establishing	_	-		135
System Installation & operation Grid connection	_	-		4285
Electrical company fee	_	-		150
maintenance	-	-		300
Total				25795

Figure 4.11: single line diagram (Multi string inverter)

Now we take the Kala building, which has an area of 400 square meters, where the actual area for installing the panels is 180 square meters, and this is done after removing the shadows and the spacing between the panels.

 $A_{\text{Net}} = P_{\text{dc}} / (1 \text{kW/m}^2) \times \mathbf{\eta}_{\text{PV}} \longrightarrow P_{\text{dc}} = 38.63 \text{ kW}$ (4.4)

Where:

 $\mathbf{\eta}_{\text{PV}}$: efficiency of PV [Appendix A]

of $PV = P_{dc} / P_{PV}$ (4.5) = $\frac{38630}{550} = 70 \ panel$

Where:

of PV : Number of PV.

P_{PV} : PV module peak rated output Power. [Appendix A]

Maximum voltage produced by the photovoltaic panels at a temperature of -5 $^\circ$ C.

Fig. 4.12:Effect of heat on the solar panel used

Note that the increase in the open circuit voltage is 10%.

→ $V_{0C, -5} = V_{0C} * 110\% = 59.16 * 110\% = 65.076$ V.

Where :

 V_{0C} : open circuit voltage at $25\,^\circ$ C.

Voc, -5 : open circuit voltage at -5° C.

Note that the decrease in the open circuit voltage is 5%.

 \rightarrow V_{0C, 40} = V_{0C} * 95% = 59.16 * 95% = 56.202V.

of module on each string per inverter = $V_{dcinv, max}$ / Vdc PV (4.6)

$$=\frac{600}{65,076}=$$
 9,22 \approx 9 module/MPPT.

of module on each string per inverter = $V_{dcinv, min} / V_{dcPV, min}$. (4.7)

$$=\frac{180}{56,202}=3$$
 module/mppt.

Where :

V_{dcinv, max} : maximum voltage at input side in inverter. [Appendix E]

V_{dcinv, min}: minimum voltage at input side in inverter. [Appendix E]

Maximum current produced by the photovoltaic panels at a temperature of 40° C.

Note that the increase in the short circuit current is $\pm 2\%$.

→ Isc,
$$_{40} = I_{SC} * 102\% = 11.45 * 102\% = 11.679$$
 A. (10)

Where :

 I_{SC} : short circuit current at 25° C. [Appendix A]

 $I_{\text{sc, 40}}$: oshort circuit current at $40\,^\circ$ C.

→ $I_{SCmin, -5} = I_{SC} * 98\% = 11.45*98\% = 11.221$ A.

Where :

 $I_{SC}:$ short circuit current at 25° C. [Appendix A]

Isc, $_{40}\text{:}$ oshort circuit current at $-5\,^\circ$ C.

 $P_{\mbox{\tiny AC}}$ = $P_{\mbox{\tiny dc}}$ * conversion efficiency = 38.63 * 0.865 = 33.4 kW.

 $E_{\rm ac}$ = G * $P_{\rm AC}$ = 5.4 * 33.4 = 180.44 kWh/d

Battery capacity (CB)

Select a 48 V voltage for the system

DC Energy (E_{dc}) = $\frac{Eac}{inverter\ efficiency} = \frac{180,44}{0,97} = 186\ kWh$

Ah to load :

CB = $\frac{\text{Edc}}{v} = \frac{186}{48} = 3875 \, Ah$ Ah for PV = $\frac{3875}{0,96 \, dirt} = 4036 \, Ah$

Storage days

S. d = 3 day.

Discharge time =3*24=72 hours

Actual battery capacity

Total storage= Ah to load*storage days= 4036 * 3 = 12108 Ah @ 48V

Minimum temperature=-5 C

From curve at (T=-5 C) from the curve C/72

Capacity derating = 100%

MDOD% = 100%

CB =12108 Ah

Batteries connection

#of string =
$$\frac{Total Ah}{Ah per battery} = \frac{12108}{400} = 30$$

#of batteries =
$$\frac{system \ voltage}{battery \ voltage} = \frac{48}{24} = 2 \ baterries$$
,

#of batteries = 2 * 30 = 60 baterries,

Ah/string = IR * G *derating efficiency=11.44 * 5.4*1=61.7 Ah/string.day.

#of string = $\frac{Ah \ per \ day}{Ah \ per \ day \ string} = \frac{3875}{61,7} = 62 \ string,$

#of PV/string =
$$\frac{system \, voltage}{pv \, voltage} = \frac{48}{59} = 0,813 = 1 \, PV$$

 $P_{ac} = P_{DC} \times \eta_{conversion} = 38630 \times 86,5\% = 33,4 \, KW,$

Energy $(\frac{KWhr}{year}) = P_{ac} \times 5,401 \frac{h}{day}$ at peak sun $\times 365 \frac{day}{year}$

= 33,4 KW × 5,401 × 365 = 65873 $\frac{\text{KWhr}}{\text{year}}$ = 65,873 $\frac{\text{MWhr}}{\text{year}}$,

% of Energy coverd = $\frac{65,873}{510,8}$ = 12,8%

[دكتور ماهر] 4. 2. 4. 2 Cables]

For the DC side the cable should have a minimum current rating of:

 $I_{DC \ Cable} = n \times I_{sc} \times 1.25 = 10 \times 11.45 \times 1.25 = 114.5 \text{ A}$

• where n is the number of similar voltage strings connected in parallel and ISC is the PV module short circuit current.

• For high system voltages, such as in grid connected PV, double insulated cable should be used for safety reasons.

• For the PV the cable should have a minimum voltage rating of:

 $V_{DC Cable} = m \times V_{OC} \times 1.15 = 2 \times 59.16 \times 1.15 = 136.7 V$

• where m is the number of similar current modules connected in series and VOC is the module open circuit voltage.

AC cable with $2*16 \text{ mm}^2$ is selected for the connected between the inverter and grid.

4.2.4.3 Fuses / Miniature Circuit breakers (MCB)

• Fuses, Miniature Circuit Breakers (MCBs DC/AC) and switches serve similar functions in PV systems because both are used to isolate sections of the system for maintenance or in the event of emergency or malfunction.

• string DC fuse:

 $I_{\text{DC Fuse}}$ = I_{sc} \times 1.25 = 11.45 \times 1.25 =14.3A but rating standard is 20A

 $V_{\rm rating}$ = 1.2 \times $V_{\rm oc}$ \times N_{PV} = 1.2 $\times59.16$ \times 2 = 136.7 V but rating standard is 500 V.

• String DC circuit breaker:

 V_{rating} = 1.2× V_{oc} × N_{PV} = 1.2×59.16×12= 136.7 V but rating standard is 500 V.

 $I_{\text{DC CB}}$ = $~I_{\text{sc}}$ \times 1.25 = 11.45 \times 1.25 =14.3A but rating standard is 20A

• Array DC circuit breaker:

 $V_{\rm rating}$ = 1.2 \times $V_{\rm oc}$ \times N_{PV} = 1.2 $\times59.16$ \times 2 = 136.7 V but rating standard is 500 V.

 $I_{DC CB} = I_{sc} \times 1.25 \times N_{string} = 11.45 \times 1.25 \times 10 = 143$ but rating standard is 160A

4.2.4.4 DC surge arrester and lightening arrester:

SMA inverter has implementation of a surge arrester inside the inverter (internal protection inside the inverter), also based on the IEC the selection of the addition surge to ensure is needed the over voltage protection with 1000 V and 15 KA and lightening arrester is needed to protect the system from any Lightning may occur and it will solidly connected to the earth.

4.2.4.5 Inverter AC circuit breaker:

The maximum output current from inverter is 36.2 A and the stander rating is 40 A with 400 V.

4.2.4.6 Economic Feasibility study

This section shows the calculation of the cost of generated energy by the Grid The PV System The feasibility study evaluates the project's potential for success; therefore, perceived objectivity is an important factor in the credibility of the study for potential investors and lending institutions. The purpose of the economic feasibility is to determine the positive economic benefits to the organization that the proposed system will provide. It includes quantification and identification of all the benefits expected. This assessment typically involves a cost benefits analysis.

In order to get a complete design for solar system the economic study is essential to identify the costs of installation of project in detail to study if the project is profitable or not.

The prices of all components are got from the local market of Hebron to get the most accurate.

Component	specification	quantity	Price (\$)	Total Price (\$)
Photovoltaic panel	550 watt	46	260	11960
Inverter	40 kW	1	17000	7120
String Fuse	20 A , 500 V	4	8.5	34
DC circuit breaker (for string)	20 A, 500 V	4	63.5	254
DC circuit breaker (for Array)	160 A, 500 V	2	200	134
DC surge arrester	15KA, 1000 V	1	122	122
AC circuit breaker (after each inverter)	40 A, 1000V	1	17	17
Min circuit breaker (for the system)	40 A, 1000 V	1	17	34
DC cable	25 mm^2	(R&M) (depends on connection & shape of the building)		2000
AC cable	$21 \ \mathrm{mm}^2$	200	750	750
Grounding grid establishing	-	-		135
System Installation & operation Grid connection	_	_		4285
Electrical company fee	-	-		150

Table 4.5: Price list of each component in the system from ULTRA SUN company(4)
batteries	Batteries 24V	60	300	18000
maintenance	_	-		300
	Total			55224

4.3 Economic feasibility study

Total cost = 49327+ 25795 + 55224 = 130.346\$

By assume that every 3.5 NIS is equal 1\$, so that total cost is 456000 NIS. The annual generated energy from the system that is 195.58MWh/year Saving money = annual energy * (price of kW) = 195.85*0.45=88.132 NIS The payback period is:

payback period = $\frac{saving\ mony}{total\ cost} = \frac{456000}{88,132} = 5,12\ year,$

The payback period is 5 years, and after that period the project will generate a profit for the hospital.

Year	Cost	In come	Cumulative Net cash Flow
0	-456000	0	-456000
1	0	88132	-367868
2	0	88132	-279736
3	0	88132	-191604
4	0	88132	-103472
5	0	88132	-15340
6	0	88132	72792
7	0	88132	160924
8	0	88132	289056
9	0	88132	337188
10	0	88132	425320
11	0	88132	813452
12	0	88132	601584
13	0	88132	689716
14	0	88132	777848
15	0	88132	865980
16	0	88132	954112
17	0	88132	1042244
1	0	88132	1130376
18	0	88132	1218508
19	0	88132	1306640
20	0	88132	1394772
21	0	88132	1482904
22	0	88132	1571036
23	0	88132	1659168
24	0	88132	1747300
25	0	88132	1835432

Table 4.6: cumulative net cash flow calaculation.

Fig. 4.14: cumulative net cash flow.

5

Chapter 5: PV System Design using PV-syst

Overview PV-syst introduction PV system design by PV-syst

5.1 Overview

This chapter is mainly about designing a photovoltaic system for Hebron Governmental Hospital buildings using PVsyst software depending on the available space.

5.2 PV-syst introduction

Is a PC software package for the study, sizing, simulation and data analysis of complete PV systems, presents results in the form of a full report, specific graphs and tables, and data can be exported for use in other software [26].

This gives access to the four main part of the program fig. 5.1

Prysyst 7:2 - TRIAL (Downloading Prysist 7:3.1 100%)	– 6 X
File Preliminary design Project Settings Language License Help	
G Welcome to PVsyst 7.2	
Project design and simulation	
代 Girld Connected Stand alone Pumping	
Utilities	
Databases Tools Co.	
Recent projects	Documentation
奏 ela 奏 ala central 奏 DMD Residential system at Geneva 奉 tatilite and	Open PVsyst Help (F1)
名 INGNI on grid	
	C F.A.Q.
	The contextual Help is available within the whole software by typing [F1]. There are also many questionmark buttons for more specific information.
Playst user workspace	
تنشيط Mulindows تنشيط	⅍ Manage ↑↓ Switch
التقال إلى الإعدادت لتنشيط Windows.	-Exit

Fig. 5.1: four main parts of the PV syst program.

• **Preliminary design**: provides a quick evaluation of the potentials and possible constraints of a project in a given situation. This is very useful for the pre-sizing of

Stand-alone and Pumping systems. For grid connected systems. it is just an instrument for architects to get a quick evaluation of the PV potential of a building. The accuracy of this tool is limited and not intended to be used in reports for your customers.

- **Project design**: is the main part of the software and is used for the complete study of a project. It involves the choice of meteorological data, system design, shading studies, losses determination, and economic evaluation. The simulation is performed over a fill year in hourly steps and provides a complete report and many additional results.
- **Databases**: includes the climatic data management which consists of monthly and hourly data synthetic generation of hourly values and importing external data. The databases contain also the definitions of all the components involved in the PV installations like modules, inverters, batteries, etc.,
- **Tools**: provides some additional tools to quickly estimate and visualize the behavior of a solar installation. It also contains a dedicated set of tools that allows measured dits existing solar installations to be imported for a close comparison to the simulation.

5.3 PV system design by PV-syst

To the start design on the PV syst software first of all the location of the site should be determine by using this dashboard (project's location) fig. 5.2

Then from the available choices in the software the active area will chosen and best tilt and azimuth angle of the panels will be determined system Specification dashboard Fig.5.3

Fig. 5.3 system Specification dashboard

5.3.1 Emergency building

Then determining the Data sheet of the PV panel Fig. 5.4 and inverter Fig. 5.5 that decided to be used:

	Inverter - Sunn	Tripower 25000TL-JP-30	
Manufacturer	Generic		
Model	Sunny Tripower 25000TL-JP-30		
Commercial data			
Availability :	Prod. Since 2015	Data source : M	anufacturer 2015
Remarks		Sizes	
Technology: TL, 16 kH	z, SG, IGBT	Width	661 mm
Protection: -25 - +60*0	0, IP 65: outdoor installation possible	Height	682 mm
Control: Graphic		Depth	264 mm
for japanese market		Weight	61.00 kg
Input characteristic	cs (PV array side)		
Operating mode	MPPT	Manipal D/ Drugs (Dram DC)	75 1487
Minimum MPP Voltage	e (vmin) 390 v	Nominal PV Power (Phom DC)	25 KW
Absolute max. PV Volt	age (Vmax array) 1000 V	Power Threshold (Pthresh.)	84 W
Min. Voltage for PNom	(Vmin@Pnom) 390 V		
Multi MPPT capability		Behaviour at Vmin/Vmax	Limitation
Number of MPPT inpu	ts 2	Behaviour at Pnom	Limitation
Output characteris	tics (AC grid side)		
Grid voltage (Imax)	Triphased 420 V	Nominal AC Power (Pnom AC)	25 kWac
Grid frequency	50/60 Hz	Maximum AC Power (Pmax AC)	25 kWac
		Nominal AC current (Inom AC)	34 A
	Efficiency	defined for 3 voltages	30 A
	,	Maximum efficiency	uranaan maraaa afficianay
	v	%	%
Low voltage	390	97.4	97.1
Medium voltage	625	98.7	98.4
High voltage	800	98.0	97.7
Remarks and Tech Array isolation monitor Internal DC switch Output Voltage discon ENS protection	nical features ing nect adjustement	Efficiency profile	VS Input power
26/12/22	S PVs	yst Evaluation mode	Page 1/1
	Fig. 5.7 Da	ata sheet of inverter	

The proposed system design from the PV syst program Fig.5.8

Sub-array	
-Sub-array name and Orientation Vame PV Array Drient. Fixed Tilted Plane Azimuth	27° 0° 0° ✓ Resize Enter planned power ○ 49.0 kWp or available area(modules) ④ 233 m²
Select the PV module	
Available Now 🗸 Filter 🛛 All PV modules 🗸	Maximum nb. of modules 89
Trina Solar V 550 Wp 27V Si-mono T:	TSM-DE19-550Wp Since 2022 Datasheets 2022 🗸 🖸 Ope
Select the inverter Available Now V Output voltage 420 V Tri 50Hz	☑ 50 Hz ☑ 60 Hz
SMA V 25 kW 390 - 800 V TI 50	0/60 Hz Sunny Trinower 25000TI -1P-30 Since 2015
🛿 🖞 🖞 🕹 🕹 🕹 🕹 🕹 🕹 🕹 🕹 🕹	voltage: 390-800 V Inverter power used 50.0 kWac
Ib of MPPT inputs 4 0 Operating v Use multi-MPPT feature Input maximum v ?	voltage: 390-800 V Inverter power used 50.0 kWac voltage: 1000 V inverter with 2 MPPT
Vb of MPPT inputs 4 2 Operating v Use multi-MPPT feature Input maximum v Operating Input maximum v Input maximum v Input maximum v Input maximum v<	voltage: 390-800 V Inverter power used 50.0 kWac voltage: 1000 V inverter with 2 MPPT Operating conditions The inverter power is slightly oversized.
Nb of MPPT inputs 4 2 Operating v Use multi-MPPT feature Input maximum v Image: Second string second	voltage: 390-800 V Inverter power used 50.0 kWac voltage: 1000 V inverter with 2 MPPT Operating conditions The inverter power is slightly oversized. Vmpp (60°C) 605 V Vmpp (20°C) 701 V Voc (-10°C) 913 V
Ib of MPPT inputs 4 2 Operating v Vise multi-MPPT feature Input maximum v Input maximum v 2 Input maximum v Design the array -Number of modules and strings Nod. in series 22 Vestween 15 and 24 Ib, strings 4 Vestween 15 and 24	voltage: 390-800 V Inverter power used 50.0 kWac voltage: 1000 V inverter with 2 MPPT Operating conditions The inverter power is slightly oversized. Vmpp (60°C) 605 V Vmpp (20°C) 701 V Voc (-10°C) 913 V Plane irradiance 1000 W/m²
Vb of MPPT inputs 4 2 Operating v Use multi-MPPT feature Input maximum v Input maximum v Input maximum v Design the array Number of modules and strings Number of modules and string	voltage: 390-800 V Inverter power used 50.0 kWac voltage: 1000 V inverter with 2 MPPT Operating conditions The inverter power is slightly oversized. Vmpp (60°C) 605 V Vmpp (20°C) 701 V Voc (-10°C) 913 V Plane irradiance 1000 W/m² O Max. in data STC Impp (STC) 70.3 A Isc (STC) 74.1 A (at 1000 W/m² and 50°C)

Summary of the software system design Fig. 5.9.

루 System overview		—		х
Calculation version				
	lew simulation variant			
Orientation paramet Field type: Plane tilt/azimuth =	Fixed Tilted Plane 27°/0°			^
Compatibility between Full system orientation 1 sub-array No shading field defined	en System definitons tilt/azim = 27° / 0° PNom = 48 kWp, modules are in the 3D scene !	ea = 230	m²	
System parameters Sub-array #1 PV modules: Pnom = 550 Wp Inverters (25.0 kWac)	PV Array 4 strings of 22 modules in ser Pnom array = 48 kWp, Area 4 MPPT inputs, Total 50 kWa	ies, 88 to = 230 m²	otal	
3D shadings parame No shading scene defined	ter			~
Copy to d	ipboard	-E C	ose	

Fig. 5.9 summary of the calculation version.

Fig. 5.10 Proposed Schematic diagram of the system from PV syst.

The PV-syst software also provide the expected output result for the system in every month Fig. 5.11.

Fig. 5.11 Expected output result for the system in every month.

5.3.2 Emergency building (central inverter)

Then determining the Data sheet of the PV panel Fig. 5.12 and inverter Fig. 5.13 that decided to be used:

Fig. 5.12 Data sheet of PV panel

Inverter - SG50-CX Manufacturer Generic Model SG50-CX Commercial data Prod. Since 2022 Availability : Data source Datasheet 2022 Remarks Sizes Technology: Transformeriess Width 645 mm Protection: Protection: IP65 (outdoor) 782 mm Height Control: Control: LCD Depth 310 mm Weight 62.00 kg Input characteristics (PV array side) Operating mode MPPT Minimum MPP Voitage (Vmin) 200 V Power Threshold (Pthresh.) 272 W Maximum MPP Voltage (Vmax) 850 V Absolute max. PV Voltage (Vmax array) 1000 V Min. Voltage for PNom (Vmin@Pnom) 550 V "String" inverter with input protections Multi MPPT capability Number of string inputs 10 Number of MPPT inputs 5 Behaviour at Vmin/Vmax Limitation Behaviour at Pnom Limitation Output characteristics (AC grid side) Grid voltage (Imax) Triphased 400 V Nominal AC Power (Pnom AC) 55 kWac Grid frequency 50/60 Hz Maximum AC Power (Pmax AC) 55 kWac Nominal AC current (Inom AC) 79 A Maximum AC current (Imax AC) 84 A Maximum efficiency 98.6 % 98.2 % European average efficiency **Remarks and Technical features** Efficiency profile vs Input power Array isolation monitoring 120 Internal DC switch Output Voltage disconnect adjustement 100 ENS protection 80 Efficiency [%] 60 40 20 20 P In (D)() [kW] 40 10 50

26/12/22 PVsyst Evaluation mode Page 1/1

Sub-array name and Orientation Name PV Array Orient. Fixed Tilted Plane	Pre-sizing Help O No sizing	Enter planned power	
Orient. Fixed Tilted Plane Azimu	O NO Sizing		40 0
Orient. Fixed Tilted Plane Azimu	lt 27°	enter planned power (15.0
	th 0°	or available area(modules)	233
Select the PV module			
Available Now V Filter All PV modules V]	Maximum nb. of modules 8	9
Trina Solar V 550 Wp 27V Si-mono	TSM-DE19-550Wp Since	2022 Datasheets 2022	√ Q
Ciring unlanger + Ve	100 (600C) 37 E V		
Sizing voitages : Vi	pp (ourc) 21.5 V		
Va	c (-10°C) 41.5 V		
Select the inverter			50
Available Now V Output voltage 400 V Tri 50Hz			60
Sungrow V 55 kW 200 - 850 V TL	50/60 Hz SG50-CX	Since 2022	⊇ [ā
Design the array —Number of modules and strings	Operating conditions		
_	Vmpp (60°C) 605 V		
Mad in series 22 ^ Detween 9 and 24	Vmpp (20°C) 701 V		
	Voc (-10°C) 913 V		
Nb. strings 4 🖓 V only possibility 4	Plane irradiance 1000 W/m ²	O Max. in data	● STC
Overload loss 0.0 % Show sizing	Impp (STC) 70.3 A	Max. operating power	44.3 kW
Pnom ratio 1.10	ISC (STC) 74.1 A	(at 1000 W/III* and 50°C)	
Nb. modules 88 Area 230 m ²	Isc (at STC) 74.1 A	Array nom. Power (STC)	48.4 kW

Summary of the software system design Fig. 5.15.

🕋 System overview		-		x	
Calculation version					
New simulation variant					
Orientation paramet	ers			~	
Field type: Plane tilt/azimuth =	Fixed Tilted Plane 27°/0°				
Compatibility betwee	en System defintions				
Full system orientation 1 sub-array No shading field defined	tilt/azim = 27° / 0° PNom = 48 kWp, modules are in the 3D scene !	ea = 230 r	m²		
System parameters					
Sub-array #1 PV modules: Pnom = 550 Wp Inverters (55.0 kWac)	PV Array 4 strings of 22 modules in ser Pnom array = 48 kWp, Area 4 MPPT inputs, Total 44 kWa	ies, 88 to = 230 m²	otal		
3D shadings parame No shading scene defined	ter				
				~	
Copy to cli	oboard	-E ck	ose		

Fig. 5.15 summary of the calculation version.

Fig. 5.16 Proposed Schematic diagram of the system from PV syst.

5.3.3 old building

Then determining the Data sheet of the PV panel Fig. 5.17 and inverter Fig. 5.18 that decided to be used:

		OW-DE ID-DOVID	
Manufacturer	Generic	Commercial data	
Model	TSM-DE19-550Wp	Availability : Pro	d. Since 2022
		Data source : Dat	asheets 2022
Pnom STC power (manufacturer)	550 Wp	Technology	Si-mono
Module size (W x L) 1.096	i x 2.384 m*	Rough module area (Amodule)	2.61 m ^a
Number of cells	2 x 55		
Specifications for the model (manuf	acturer or measureme	nt data)	
Reference temperature (TRef)	25 °C	Reference irradiance (GRef)	1000 W/m*
Open circuit voltage (Voc)	37.9 V	Short-circuit current (Isc)	18.52 A
Max. power point voltage (Vmpp)	31.6 V	Max. power point current (Impp)	17.40 A
=> maximum power (Pmpp)	549.8 W	lsc temperature coefficient (mulsc)	7.4 mA/°C
One-diode model parameters			
Shunt resistance (Rshunt)	200 Ω	Diode saturation current (loRef)	0.040 nA
Serie resistance (Rserie)	0.12 D	Voc temp. coefficient (MuVoc)	-105 mV/°C
Specified Pmax temper. coeff. (muPMaxR)	-0.34 %/°C	Diode quality factor (Gamma)	1.00
		Diode factor temper. coeff. (muGamm	a) 0.000 1/°C
Reverse Bias Parameters, for use in	behaviour of PV array	s under partial shadings or mismate	h
Reverse characteristics (dark) (BRev)	3.20 mA/V*	(guadratic factor (per cell))	
	3	Direct voltage of by-pass diodes	-0.7 V
Number of by-pass diodes per module			
Number of by-pass diodes per module	* (STC: T=25 °C C=	1000 W/m2 AM=1 5)	
Number of by-pass diodes per module Model results for standard condition Max, power point voltace (Vmpp)	ns (STC: T=25 °C, G= 31.3 V	1000 W/m ² , AM=1.5) Max. power point current (Impo)	17.58 A
Number of by-pass diodes per module Model results for standard condition Max. power point voltage (Vmpp) Maximum power (Pmop)	ns (STC: T=25 °C, G= 31.3 V 550.1 Wp	1000 W/m ² , AM=1.5) Max. power point current (Impp) Power temper, coefficient (muPmop)	17.58 A -0.34 %/"C
Number of by-pass diodes per module Model results for standard condition Max.power point voltage (Vmpp) Maximum power (Pmpp) Efficiency(/ Module area) (Eff_mod) 25 Cells temp. = 25°C	ns (STC: T=25 °C, G= 31.3 V 550.1 Wp 21.1 %	1000 W/m ² , AM=1.5) Max. power point current (Impp) Power temper. coefficient (muPmpp) Fill factor (FF) olar, 'TSM-DE19-550Wp	17.58 A -0.34 %/°C 0.784
Number of by-pass diodes per module Model results for standard condition Max. power point voltage (Vmpp) Maximum power (Pmpp) Efficiency(/ Module area) (Eff_mod) 25 Cells temp. = 25°C 20 Line	ns (STC: T=25 °C, G= 31.3 V 550.1 Wp 21.1 % * "PV module:" Trina S	1000 W/m ² , AM=1.5) Max. power point current (Impp) Power temper. coefficient (muPmpp) Fill factor (FF) olar,'TSM-DE19-550Wp	17.58 A -0.34 %/°C 0.784
Number of by-pass diodes per module Model results for standard condition Max. power point voltage (Vmpp) Maximum power (Pmpp) Efficiency(/ Module area) (Eff_mod) 25 Cells temp. = 25°C 20 	ns (STC: T=25 °C, G= 31.3 V 550.1 Wp 21.1 % * "PV module:" Trina S	1000 W/m², AM=1.5) Max. power point current (Impp) Power temper. coefficient (muPmpp) Fill factor (FF) Iolar,'TSM-DE19-550Wp	17.58 A -0.34 %/°C 0.784
Number of by-pass diodes per module Model results for standard condition Max. power point voltage (Vmpp) Maximum power (Pmpp) Efficiency(/ Module area) (Eff_mod) 25 Cells temp. = 25°C 20 	ns (STC: T=25 °C, G= 31.3 V 550.1 Wp 21.1 % * "PV module:" Trina S	1000 W/m², AM=1.5) Max. power point current (Impp) Power temper. coefficient (muPmpp) Fill factor (FF) Iolar,'TSM-DE19-550Wp	17.58 A -0.34 %/°C 0.784
Number of by-pass diodes per module Model results for standard condition Max. power point voltage (Vmpp) Maximum power (Pmpp) Efficiency(/ Module area) (Eff_mod) 25 Cells temp. = 25°C 15 15 16 16 16 16 16 16 16 16 16 16	ns (STC: T=25 °C, G= 31.3 V 550.1 Wp 21.1 % * "PV module:" Trina S ident Imad. = 1000 Wim ²	1000 W/m², AM=1.5) Max. power point current (Impp) Power temper. coefficient (muPmpp) Fill factor (FF) olar,'TSM-DE19-550Wp	17.58 A -0.34 %/°C 0.784
Number of by-pass diodes per module Model results for standard condition Max. power point voltage (Vmpp) Maximum power (Pmpp) Efficiency(/ Module area) (Eff_mod) 25 Cells temp. = 25°C 15 15 16 16	ns (STC: T=25 °C, G= 31.3 V 550.1 Wp 21.1 % * "PV module:" Trina S ident Imad. = 1000 W/m ²	1000 W/m², AM=1.5) Max. power point current (Impp) Power temper. coefficient (muPmpp) Fill factor (FF) olar,'TSM-DE19-550Wp	17.58 A -0.34 %/°C 0.784
Number of by-pass diodes per module Model results for standard condition Max.power point voltage (Vmpp) Maximum power (Pmpp) Efficiency(/ Module area) (Eff_mod) 25 Cells temp. = 25°C 15 15 15 15	ns (STC: T=25 °C, G= 31.3 V 550.1 Wp 21.1 % * "PV module:" Trina S ident Imad. = 1000 W/m ²	1000 W/m², AM=1.5) Max. power point current (Impp) Power temper. coefficient (muPmpp) Fill factor (FF) colar,'TSM-DE19-550Wp ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	17.58 A -0.34 %/°C 0.784
Number of by-pass diodes per module Model results for standard condition Max. power point voltage (Vmpp) Maximum power (Pmpp) Efficiency(/ Module area) (Eff_mod) 25 Cells temp. = 25°C 15 15 16 16 16 16 16 16 16 16 16 16	ns (STC: T=25 °C, G= 31.3 V 550.1 Wp 21.1 % * "PV module:" Trina S ident Irrad. = 1000 Wim ² ident Irrad. = 600 Wim ²	1000 W/m², AM=1.5) Max. power point current (Impp) Power temper. coefficient (muPmpp) Fill factor (FF) iolar,'TSM-DE19-550Wp ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	17.58 A -0.34 %/°C 0.784
Number of by-pass diodes per module Model results for standard condition Max. power point voltage (Vmpp) Maximum power (Pmpp) Efficiency(/ Module area) (Eff_mod) 25 Cells temp. = 25°C 16 16 16 16 16 16 16 16 16 16	ns (STC: T=25 °C, G= 31.3 V 550.1 Wp 21.1 % * "PV module:" Trina S ident Irrad. = 1000 Wim ² ident Irrad. = 600 Wim ²	1000 W/m², AM=1.5) Max. power point current (Impp) Power temper. coefficient (muPmpp) Fill factor (FF) iolar,'TSM-DE19-550Wp ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	17.58 A -0.34 %/°C 0.784
Number of by-pass diodes per module Model results for standard condition Max power point voltage (Vmpp) Maximum power (Pmpp) Efficiency(/ Module area) (Eff_mod) 25 Cells temp. = 25°C 10 10 10 10 10 10 10 10 10 10	ns (STC: T=25 °C, G= 31.3 V 550.1 Wp 21.1 % ' "PV module:" Trina S ident Irrad. = 1000 Wim ² ident Irrad. = 600 Wim ²	1000 W/m², AM=1.5) Max. power point current (Impp) Power temper. coefficient (muPmpp) Fill factor (FF) iolar,'TSM-DE19-550Wp ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	17.58 A -0.34 %/°C 0.784
Number of by-pass diodes per module Model results for standard condition Maximum power point voltage (Vmpp) Maximum power (Pmpp) Efficiency(/ Module area) (Eff_mod) 25 Cells temp. = 25°C 10 10 10 10 10 10 10 10 10 10	ns (STC: T=25 °C, G= 31.3 V 550.1 Wp 21.1 % ' "PV module:" Trina S ident Irrad. = 1000 Wim ² ident Irrad. = 600 Wim ² ident Irrad. = 600 Wim ²	1000 W/m², AM=1.5) Max. power point current (Impp) Power temper. coefficient (muPmpp) Fill factor (FF) colar,'TSM-DE19-550Wp	17.58 A -0.34 %/°C 0.784
Number of by-pass diodes per module Model results for standard condition Maximum power point voltage (Vmpp) Maximum power (Pmpp) Efficiency(/ Module area) (Eff_mod) 25 Cells temp. = 25°C 10 10 10 10 10 10 10 10 10 10	ns (STC: T=25 °C, G= 31.3 V 550.1 Wp 21.1 % ' "PV module:" Trina S ident Irrad. = 1000 Wim ² ident Irrad. = 600 Wim ² ident Irrad. = 600 Wim ²	1000 W/m², AM=1.5) Max. power point current (Impp) Power temper. coefficient (muPmpp) Fill factor (FF) colar,'TSM-DE19-550Wp ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	17.58 A -0.34 %/°C 0.784
Number of by-pass diodes per module Model results for standard condition Maximum power point voltage (Vmpp) Maximum power (Pmpp) Efficiency(/ Module area) (Eff_mod) 25 Cells temp. = 25°C 10 10 10 10 10 10 10 10 10 10	ns (STC: T=25 °C, G= 31.3 V 550.1 Wp 21.1 % ' 'PV module:' Trina S ident Imad. = 1000 Wim ² ident Imad. = 600 Wim ² ident Imad. = 600 Wim ² ident Imad. = 400 Wim ²	1000 W/m², AM=1.5) Max. power point current (Impp) Power temper. coefficient (muPmpp) Fill factor (FF) iolar,'TSM-DE19-550Wp ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	17.58 A -0.34 %/°C 0.784
Number of by-pass diodes per module Model results for standard condition Maximum power point voltage (Vmpp) Maximum power (Pmpp) Efficiency(/ Module area) (Eff_mod) 25 Cells temp. = 25°C 10 10 10 10 10 10 10 10 10 10	ns (STC: T=25 °C, G= 31.3 V 550.1 Wp 21.1 % ' "PV module:" Trina S ident Imad. = 1000 W/m ² ident Imad. = 600 W/m ² ident Imad. = 600 W/m ² ident Imad. = 600 W/m ²	1000 W/m³, AM=1.5) Max. power point current (Impp) Power temper. coefficient (muPmpp) Fill factor (FF) iolar, 'TSM-DE19-550Wp 500.1 V 445.9 V 215.4 W 106.7 W	17.58 A -0.34 %/°C 0.784
Number of by-pass diodes per module Model results for standard condition Maximum power point voltage (Vmpp) Maximum power (Pmpp) Efficiency(/ Module area) (Eff_mod) 25 Cells temp. = 25°C 10 10 10 10 10 10 10 10 10 10	ns (STC: T=25 °C, G= 31.3 V 550.1 Wp 21.1 % ' "PV module:" Trina S ident Irrad. = 1000 Wim ² ident Irrad. = 600 Wim ² ident Irrad. = 600 Wim ² ident Irrad. = 600 Wim ²	1000 W/m³, AM=1.5) Max. power point current (Impp) Power temper. coefficient (muPmpp) Fill factor (FF) Iolar, TSM-DE19-550Wp 500.1 V 445.9 V 215.4 W 215.4 W	17.58 A -0.34 %/°C 0.784
Number of by-pass diodes per module Model results for standard condition Maximum power point voltage (Vmpp) Maximum power (Pmpp) Efficiency(/ Module area) (Eff_mod) 25 Cells temp. = 25°C 10 10 10 10 10 10 10 10 10 10	ns (STC: T=25 °C, G= 31.3 V 550.1 Wp 21.1 % ' 'PV module:' Trina S ident Irrad. = 1000 W/m ² ident Irrad. = 600 W/m ² ident Irrad. = 600 W/m ² ident Irrad. = 600 W/m ²	1000 W/m³, AM=1.5) Max. power point current (Impp) Power temper. coefficient (muPmpp) Fill factor (FF) Iolar, TSM-DE19-550Wp 500.1 V 440.9 V 218.4 W 218.4 W	17.58 A -0.34 %/°C 0.784
Number of by-pass diodes per module Model results for standard condition Maximum power point voltage (Vmpp) Maximum power (Pmpp) Efficiency(/ Module area) (Eff_mod) 25 Cells temp. = 25°C 10 10 10 10 10 10 10 10 10 10	ns (STC: T=25 °C, G= 31.3 V 550.1 Wp 21.1 % ' 'PV module:' Trina S ident Imad. = 1000 W/m ² ident Imad. = 600 W/m ² ident Imad. = 600 W/m ² ident Imad. = 600 W/m ² ident Imad. = 200 W/m ² ident Imad. = 1000 W/m ²	1000 W/m³, AM=1.5) Max. power point current (impp) Power temper. coefficient (muPmpp) Fill factor (FF) Iolar, 'TSM-DE19-550Wp 500.1 V 440.9 V 215.4 W 106.7 W Votegep (V) 25 30	17.58 A -0.34 %/°C 0.784

Fig. 5.17 Data sheet of PV panel

		Inverter - Sunny Tr	ipower 25000TL-JP-30 -	
Manufacturer		Generic		
Model	Sunny Trip	ower 25000TL-JP-30		
Commercial data				
Availability :	Prod. Sir	ce 2015	Data source :	Manufacturer 2015
Remarks			Sizes	
Technology: TL, 16 kHz	, SG, IGBT		Width	661 mm
Protection: -25 - +60°C,	IP 65: outdoor insi	taliation possible	Height	682 mm
Control: Graphic			Depth	264 mm
for japanese market			Weight	61.00 kg
Input characteristics	s (PV array side)			
Operating mode		MPPT		
Minimum MPP Voltage	(Vmin)	390 V	Nominal PV Power (Pnom DC)	25 kW
Maximum MPP Voltage	(Vmax)	800 V	Maximum PV Power (Pmax DC)	25 kW
Absolute max. PV Volta	ge (Vmax array)	1000 V	Power Threshold (Pthresh.)	84 W
Min. Voltage for PNom	(Vmin@Pnom)	390 V		
Multi MPPT capability			Behaviour at Vmin/Vmax	Limitation
Number of MPPT inputs		2	Behaviour at Pnom	Limitation
Output characterist	ics (AC grid side	0		
Grid voltage (Imax)	Tripha	ased 420 V	Nominal AC Power (Pnom AC)	25 kWac
Grid frequency		50/60 Hz	Maximum AC Power (Pmax AC)	25 kWac
			Nominal AC current (Inom AC)	34 A
			Maximum AC current (Imax AC)	38 A
		Efficiency defi	ned for 3 voltages	
			Maximum efficiency	European average efficiency
	V	1	%	%
Low voltage	39	0	97.4	97.1
Medium voltage	62	5	98.7	98.4
High voltage	80	0	0.89	97.7
Array isolation monitorir Internal DC switch	9		100	
Output Voltage disconn	ect adjustement			
ENS protection				
ENS protection			95	
ENS protection			95	
ENS protection			95	
ENS protection			95	
ENS protection			95 [%] (Supple	
ENS protection			Efficiency [94]	
ENS protection			Elficience [10]	
ENS protection			95 95 90 90 90 90 90 90 90 90 90 90	
ENS protection			95 [%] Sreese 90 85 Eff. for U = 80 Eff. for U = 65 Eff. for U = 65	10 V 15 V
ENS protection			95 [10] 90 85 85 85 85 85 85 85 85 85 85	10 V 15 V
ENS protection			95 95 90 85 Eff. for U = 86 Eff. for U = 32 80 80	
ENS protection			95 95 96 96 97 90 90 90 90 90 90 90 90 90 90	0 V 5 V 0 V 1 m (Q\$) [kW] 20 25 3
ENS protection	/s	ysi	95 95 90 85 85 85 85 85 85 85 85 85 85	10 V 15 V 10 V 1 In (146) [kW] 20 25 3
PS protection	/s	ysi	95 90 85 85 85 85 85 85 85 85 85 85	10 V 15 V 10 V 1 In (146) [kW] 20 25 3
PS protection	/s	ysi	95 90 85 85 85 85 85 85 85 85 85 85	10 V 15 V 10 V 10 (QG) [WW] 20 25 3
PIS protection	/s	ysi	95 90 85 85 85 85 85 85 85 85 85 85	00 V 15 V 10 V 1 in (Q\$) [kW] 20 25 3
P P	/s	ysi	95 90 85 85 85 85 85 85 85 85 85 85	0 V 5 V 10 V
Para Para Para Para Para Para Para Para	/s	ysi	95 90 90 85 90 90 90 90 90 90 90 90 90 90	0 V 5 V 6 V 9
P P		ysi	95 90 85 90 90 90 90 90 90 90 90 90 90	0 V 5 V 10 V
In Sprotection		PVsyst Ev	alvation mode	0 V 5 V 0 V In (B(G) (kW) 20 25 3
In Sprotection	/s	PVsyst Ev	aluation mode	0 V 5 V 0 V In (B©) (kW) 20 25 3
	/s	PVsyst Ev	aluation mode	0 V 5 V 0 V 1 n (B@) [kW] 20 25 3

Fig. 5.18 Data sheet of inverter

Grid system definition, Variant VCO: "New simulation variant"

Sub-array name and Orientation		Dre-cizing Holo		
Name PV Array		No sizing	Enter planned power O 25.3	kWp 🕻
Orient Fived Tilted Plane	Tilt 27°	A Decize	or available area(modules)	m2
A A A A A A A A A A A A A A A A A A A	Azimuth 0 °	✓ Resize		
Select the PV module				
Available Now V Filter All PV modules	\vee		Maximum nb. of modules 46	
Trina Solar V 550 Wp 27V Si-mono	TSM-DE1	9-550Wp S	ince 2022 Datasheets 2022 💙	Q, Open
Use optimizer			-	
Gizing voltages	· Vmnn (60°C)	27 5 V		
Sizing Voltages	Vec (1000)	27.5 4		
	VOC (-10°C)	41.5 V		
Select the inverter				🗸 50 Hz
Available Now V Output voltage 420 V Tri 5	50Hz			🗸 60 Hz
SMA V 25 kW 390 - 800 V T	TL 50/60 Hz	Sunny Tripower 2500	0TL-JP-30 Since 2015 🗹	Q Open
SMA 25 kW 390 - 800 V T Nb of MPPT inputs 2 0 Pe	TL 50/60 Hz erating voltage:	Sunny Tripower 2500	DTL-JP-30 Since 2015 V ter power used 25.0 kWac	Q Open
SMA 25 kW 390 - 800 V T Nb of MPPT inputs 2 2 Q Use multi-MPPT feature Input ma	TL 50/60 Hz erating voltage: aximum voltage:	Sunny Tripower 25000 390-800 V Invert 1000 V invert	DTL-JP-30 Since 2015 ter power used 25.0 kWac rter with 2 MPPT	Q Open
SMA <u>25 kW 390 - 800 V T</u> Nb of MPPT inputs <u>2</u> Cpe Vse multi-MPPT feature Input ma ?	TL 50/60 Hz erating voltage: aximum voltage:	Sunny Tripower 25000 390-800 V Invert 1000 V inver	DTL-JP-30 Since 2015 ter power used 25.0 kWac rter with 2 MPPT	Q, Open
SMA <u>25 kW 390 - 800 V T</u> Nb of MPPT inputs 2 Vse multi-MPPT feature Input ma C Design the array	TL 50/60 Hz erating voltage: aximum voltage:	Sunny Tripower 2500 390-800 V Invert 1000 V inver	DTL-JP-30 Since 2015 ter power used 25.0 kWac rter with 2 MPPT	Q Open
SMA 25 kW 390 - 800 V T Nb of MPPT inputs 2 2 Ope Use multi-MPPT feature Input ma Image: State of the array Number of modules and strings	TL 50/60 Hz erating voltage: aximum voltage: Ope	Sunny Tripower 2500 390-800 V Invert 1000 V invert rating conditions	DTL-JP-30 Since 2015 ter power used 25.0 kWac rter with 2 MPPT The array Isc value is greater the inverter maximum input current ().	Q Open
SMA 25 kW 390 - 800 V T Nb of MPPT inputs 2 2 Ope Vuse multi-MPPT feature Input ma Impute Impute Impute Impute Imp	TL 50/60 Hz erating voltage: aximum voltage: Ope Vmp	Sunny Tripower 25000 390-800 V Invert 1000 V invert rating conditions 60°C) 632 V p (60°C) 632 V 733 V	DTL-JP-30 Since 2015 ter power used 25.0 kWac rter with 2 MPPT The array Isc value is greater the inverter maximum input current (i. 16.5 A/input)).	Q Open an the e. (i.e.
SMA 25 kW 390 - 800 V T Nb of MPPT inputs 2 2 Ope Vuse multi-MPPT feature Input ma Impute Input ma Impute Impute Impute	TL 50/60 Hz erating voltage: aximum voltage: Ope Vmp Vmp Voc	Sunny Tripower 25000 390-800 V Invert 1000 V invert rating conditions p (60°C) 632 V p (20°C) 733 V (-10°C) 954 V	DTL-JP-30 Since 2015 ter power used 25.0 kWac rter with 2 MPPT The array Isc value is greater the inverter maximum input current (i. 16.5 A/input)). (Info, not significant)	Q Open an the e. (i.e.
SMA 25 kW 390 - 800 V T Nb of MPPT inputs 2 Q Ope Vuse multi-MPPT feature Input ma Imput ma Input ma Imput ma Imput ma	TL 50/60 Hz erating voltage: aximum voltage: Ope Vmp Voc	Sunny Tripower 25000 390-800 V Invert 1000 V invert rating conditions p (60°C) 632 V p (20°C) 733 V (-10°C) 954 V	DTL-JP-30 Since 2015 ter power used 25.0 kWac rter with 2 MPPT The array Isc value is greater the inverter maximum input current (i. 16.5 A/input)). (Info, not significant)	Q Open an the e. (i.e.
SMA 25 kW 390 - 800 V T Nb of MPPT inputs 2 2 Ope Vuse multi-MPPT feature Input ma Obsign the array Input ma Number of modules and strings Mod. in series 23 0 between 15 and 24 Nb. strings 2 0 Volume 0 0 Ope 0 0 No. strings 0 0	TL 50/60 Hz erating voltage: aximum voltage: Vmp Vmp Vmp Voc Plane Impo	Sunny Tripower 25000 390-800 V Invert 1000 V invert rating conditions p (60°C) 632 V p (20°C) 733 V (-10°C) 954 V irradiance 1000 W (STC) 35 1 A	DTL-JP-30 Since 2015 ter power used 25.0 kWac rter with 2 MPPT The array Isc value is greater the inverter maximum input current (i. 16.5 A/input)). (Info, not significant) /m² O Max. in data Image: STCC Max. in data /m² O Max. in data Image: STCC Max. in data	Q Open an the e. (i.e.
SMA 25 kW 390 - 800 V T Nb of MPPT inputs 2 2 Ope Vuse multi-MPPT feature Input ma Obsign the array Input ma Number of modules and strings Mod. in series 23 0 Vb. strings 2 0 0 Overload loss 0.0 % Show sizing Pnom ratio 1.01 Show sizing	TL 50/60 Hz erating voltage: aximum voltage: Q Ope Vmp Voc Plane Impp Isc (S	Sunny Tripower 25000 390-800 V Invert 1000 V invert rating conditions p (60°C) 632 V p (20°C) 733 V (-10°C) 954 V irradiance 1000 W, (STC) 35.1 A TC) 37.0 A	DTL-JP-30 Since 2015 ter power used 25.0 kWac rter with 2 MPPT The array Isc value is greater the inverter maximum input current (i. 16.5 A/input)). (Info, not significant) /m² O Max. in data Image: Structure of the structu	Q Open an the e. (i.e.
SMA 25 kW 390 - 800 V T Nb of MPPT inputs 2 2 Ope Use multi-MPPT feature Input ma Obesign the array Input ma Number of modules and strings Mod. in series 23 0 between 15 and 24 Vb. strings 2 0 Overload loss 0.0 % Show sizing Onom ratio 1.01 Show sizing	TL 50/60 Hz erating voltage: aximum voltage: Q Ope Vmp Voc Plane Impp Isc (S	Sunny Tripower 25000 390-800 V Invert 1000 V invert rating conditions p p (60°C) 632 V p (20°C) 733 V (-10°C) 954 V irradiance 1000 W (STC) 35.1 A TC) 37.0 A	DTL-JP-30 Since 2015 ter power used 25.0 kWac rter with 2 MPPT The array Isc value is greater the inverter maximum input current (i. 16.5 A/input)). (Info, not significant) /m² O Max. in data Image: STCC Max. operating power 23.1 (at 1000 W/m² and 50°C)	Q Open an the e. (i.e.
SMA 25 kW 390 - 800 V T Nb of MPPT inputs 2 2 Ope Vuse multi-MPPT feature Input ma Impute Input ma Impute Impute Impute Impute Impute Impute Impute	TL 50/60 Hz erating voltage: aximum voltage: Qpe Vmp Voc Plane Impp Isc (S n ² Isc (a	Sunny Tripower 25000 390-800 V Inverter 1000 V inverter rating conditions p (60°C) 632 V p (20°C) 733 V (-10°C) 954 V irradiance 1000 W (STC) 35.1 A TC) 37.0 A t STC) 37.0 A	DTL-JP-30 Since 2015 ter power used 25.0 kWac rter with 2 MPPT The array Isc value is greater the inverter maximum input current (i. 16.5 A/input)). (Info, not significant) /m² O Max. in data Image: Stress of the s	Q Open an the e. (i.e. L kW
SMA 25 kW 390 - 800 V T Nb of MPPT inputs 2 Q Ope Vuse multi-MPPT feature Input ma Image: Comparison of modules and strings Input ma Posign the array Image: Comparison of modules and strings Number of modules and strings Image: Comparison of the array Number of modules and strings Image: Comparison of the array Number of modules and strings Image: Comparison of the array Number of modules and strings Image: Comparison of the array Voerload loss 0.0 % Prioring and the array Image: Comparison of the array Image: Comparison of the array Image: Comparison of the array Number of modules 0.0 % Image: Comparison of the array Image: Comparison of the array Image: Comparison of the array Image: Comparison of the array Image: Comparison of the array Image: Comparison of the array Image: Comparison of the array Image: Comparison of the array Image: Comparison of the array Image: Comparison of the array Image: Comparison of the array Image: Comparison of the array Image: Compare array Image: Comparison of	TL 50/60 Hz erating voltage: aximum voltage: Vmp Voc Plane Impp Isc (S n ² Isc (a	Sunny Tripower 25000 390-800 V Inverter 1000 V inverter rating conditions	DTL-JP-30 Since 2015 ter power used 25.0 kWac rter with 2 MPPT The array Isc value is greater the inverter maximum input current (i. 16.5 A/input)). (Info, not significant) /m² O Max. in data Image: Stress of the s	Q Open an the e. (i.e. L kW 3 kWp

Summary of the software system design Fig. 5.20.

루 System overview	—	– x
Calculation version		
	lew simulation variant	
Orientation paramet	ters	~
Field type: Plane tilt/azimuth =	Fixed Tilted Plane 27°/0°	
Compatibility betwe	en System defintions	
Full system orientation 1 sub-array No shading field defined	tilt/azim = 27° / 0° PNom = 25 kWp, modules area = 120 in the 3D scene !	m²
System parameters		
Sub-array #1 PV modules: Pnom = 550 Wp Inverters (25.0 kWac)	PV Array 2 strings of 23 modules in series, 46 t Pnom array = 25 kWp, Area = 120 m 2 MPPT inputs, Total 25 kWa	total 2
3D shadings parame No shading scene defined	ter	~
Copy to d	ipboard 🕂 C	lose

Fig. 5.20 summary of the calculation version.

Fig. 5.21 Proposed Schematic diagram of the system from PV syst.

5.4 Recommendations.

1. Maintaining the cleanliness of the solar panels constantly to obtain the highest efficiency

2. Avoid building or placing high equipment in front of the panels to avoid any shadows on them

3. Building a room for electrical equipment such as inverters and batteries, and providing the necessary cooling for them.

4. Taking into account the mechanism of arranging the solar panels so that the largest possible amounts of cables connecting them are shortened.

References:

Florida's Premier Energy Research Center at the University of Central Florida" Types of PV Systems "<u>http://www.fsec.ucf.edu/en/consumer/solar_Electricity/basics/types_of_pv.htm [1]</u>

PALESTINERENWABLEENERGYPROJECT"2017",https://pdf.usaid.gov/pdf_docs/PA00TM16.pdf [2]

Renewable Energy Powered Water Treatment Systems "2009" <u>https://www.researchgate.net/figure/World-solar-irradiance-plotted-as-the-number-the-daily-number-of-peak-sunshine-hours_fig2_244478324</u> [3]

ConvertLIVE

<u>https://convertlive.com/ar/u/%D8%AA%D8%AD%D9%88%D9%8A%D9%84/%D8%B7%D9%86-%D9%85%D9%84%D8%AA%D8%A8%D8%B1%D9%8A%D8%AF/%D8%A5%D9%84%D9%88%D9%88%D8%A7%D8%AA [4]</u>

Monitoring Equipment to Reduce Energy Consumption in Hospitals "2014" <u>https://healthmanagement.org/c/hospital/issuearticle/monitoring-equipment-to-reduce-energy-consumption-in-hospitals [5]</u>

file:///C:/Users/ASD/Downloads/energies-14-05541.pdf [6]

M.Rashid, "power electronics devices, circuit and applications", pearson, 2014 [7]

S.Sharma,C.P.Kurian,andL.S.Paragond,"SolarPVSystemDesign Using PVsyst: A Case Study of an Academic Institute," in 2018 [8]

S. hanna " PV Solar Systems Part I DESIGNED" in 2021 [9]

M. Maghalseh " PV SYSTEM DESIGN PRINCIPLES 2" in 2022 [10]

Appendix

[A]

Preliminary

PRODUCT: 194-ICS PRODUCT RANCE NR-920W

mano maki tolations.

555W+

0~+5W POSITIVE POWER TOLERANCE

21.2%

High customer value

 Lower LCOE (Level level Destroy Energy), reduced 805 (Balance of SystemCost), sharter paybook time

- Lowest guarantized first-year and annual degradation;
 Besigned for compatibility with existing maintinean system companys.
- · Higher return on Investment

High power up to 555M

 Lip to 21.2% module efficiency with high density interconnect technology

 Multi-buildur technology for botter light trapping effect lower teriosmetistance and improved current objection

High reliability

 Minimized micro-cracks with innovative nam-destructive catting technology

 Ensured PIB resistance through cell precess and module material central

 Mechanical performance up to \$480 Pa positive load and \$408 Pa regative load

High energy yield

- Excellent MPI (incident Angle Haddler) and law incidiation

performance, validated by 3nd party or 67kations.

 The unique decign provides optimized energy production under inter-root studing conditions

. - Laser temperature caefficient (-0.00%) and specifing temperature

Trina Solar's Backsheet Performance Warranty

Comprehensive Products and System Certificates

Alter and a second design of the second design

IMPENSIONS OF PVM IND MUSICIPANO

Front Manar

1.1

184

1011

10.1

1917

Righ Margar

4.0

-

11.78

10.0

2010 2010

1.7

124

0.04

10.7

FV CERMES OF PV HOBULEEHS NO.

1-140-05 P-V EXPRESSOF PV1408VALQS-KNg

NUTRIA INFRATO

DOTABLE MADE

Nation Associate (Ma

Name and Address of Address of Table

and the second second

Specifical Yorkspectra (K)

(i) and the set of the other

People and a second sec	De:	110	04		211	11
Asso Meetro Asso(8)						
Nation Providence (Colory, New York, Ne			18.2	11.4	-	**
The local data in the local data (b)	23	0.00	219	2.8°	29	214
Spectrum Chap (1995)	81.	17.0	**	$\{0,1\}$	8.9	81.
Devilling Larget Intil	100	10.00	***	18.67	101.1	-
10000 Televine (10)	2.5	.141	24	.118	\mathbb{R}^{j_1}	8.1
A. 1999 (1999) (1999) (1999) (1999) (1999) (1999)		-				

-

1004

1.0.15

1000

148-

100

12-1

100

10.0

19.1

14.05

100.0

2428 2488

econolis anti-			
Territor Datify	Sine-replative		
the at table	32-wh		
Hobbilleration	2004-0-00-01an-0400-0-012-030-0-00		
Things I	2848208320		
Cert.	XI-m (- (X-limit na na second mountain such as as		
throughout the second	run Hull		
Balalad	1875		
(Replace)	Stand Stanlag Invited Apartmenting		
, mar.	1718-1641		
OPER	Herewise During State Assemption (State Assemption) Preside 28 (1997) employed as a State as Landaugue de monte assign activitations		
Owned and a second seco	H04 800/10#1		

In the same

No. 1	 -	(mage-sheet)	ALC: NO
	 	and have	1000
1.45	 	1000	1000

- Date Maker Balance & Balance
- First Description in ending and imposition 101 Address Transporter and a

THE PARTY NAMES	
Specificate Surgerithme	40.001
Rectant Color States	21143030
	ALC: NOTE: N

1.4

Reduction Responses

Period and in the Relation Robins for the ordered Millipson

Trinasolar

ONITION READ AND Y MORE THE ATTOM FOR NOT THE REPORT OF A PROPERTY. EXPORTMENTAL ALIGN SALES (STREET) (SCREET) (SCREET) IN ADDARD STREET) AND STREET

Vestmenter 104.06.300.4 seems in the second second

98 | Page

SUNNY TRIPOWER 15000TL / 20000TL / 25000TL

SUNNY TRIPOWER 15000TL / 20000TL / 25000TL

The versatile specialist for large-scale commercial plants and solar power plants

The Sump Tripower is the ideal inverter for large-scale commercial and industrial plants. Not only does it deliver extraordinary high piolals with an all-starcey of PELPS, but it also affers another an another and sampatifality with many PV modules thanks to its multituding capabilities and wide input voltage range.

The folce is name the 3cmp Veparer comes with collegestigs gold management functions such as integrated Plast Control, which offices the invaries to regulate maritus power at the path of common coupling. Separate contellers one no larger needed, lowering system costs. Another new feature-reactive power provision on demond (2 on Demand 24/7).

SMA SMART CONNECTED

The integrated service for ease and comfort

SMA Smart Connected* is the free monitoring of the inverter via the SMA Survey Partal. If there is an inverter last, SMA proactively informative PV system operator and the installer. This scores volvable working time and costs.

With SMA Smart Connected, the installer benefits from rapid diagnoses by SMA. They can thus quickly restly the loait and score points with the outcomer thanks to the otherction of additional antices.

ACTINATION OF SMA SMART CONNECTED

During registration of the system in the Surry Partial, the installar autorates MAA.Texast Converted and Sanadh. from the outemptic investor manipulary SMA.

AUTOMATIC INVERTER MONITORING

SMA tokes on the jub of inverter monitoring with SMA Smort Connected. SMA outomotically checks the individual inverters for anomolies orsum@the-clock.cluring operation. Every customer thus benefits from SMA's lang years of experience.

0	
m	- C
()=	ey -
~	-

PROACTIVE COMMUNICATION IN THE EVENT OF FAULTS

After a fault has been diagonant and analyzed, SMA islams the initialize and and automat invasibility by a wall. Energone is thus optimally prepared for the traditionation, This minimizes the description and same time and money. The regular power reports also provide vehicible information about the sweet system.

REPLACEMENT SERVICE

If a replacement desire is successry, MAR automatically supplies a new investor-within one to three days of the fault diagnosis. The installar can content the PV system operator of their own accord and replaces the investor.

PERFORMANCE SERVICE

The PV spines sparsite can oldin comparisation from SAA. If the replacement invaries connot be definered within three slops.

* Details use electronet "Description of Services - SMA MART CONFECTED"

Billiolenay Carve

Index being I Types being - Toront

Kulturiad Inste	150001	30000.	190005
kgar (ini)			
Kiga, generator power	3700 We	360076	43000766
EC similarer	1000/W	2010/00/19/	20880197
Kins, input willings	1000 1	DOM: Y	1000 1
KRP-schape surge / raind input schape	ARC 114, 800 1 (100 P.	100 You MONY / MINY	100 mm 800 m / 400 m
Nik ispar ultiga / minispinultiga	10011/1001	1401/1007	10010/10010
Nac. Input-carrent Input II. (Toport)	114/118	318/338	13 H / 33 h
Nau (6) Burninghrung aya B/rgark	414/414	414/414	411/411
Nonlar of subpendet MIT type ("sting-per URT type)	D/ADBP	D/#0.85	1/4582
Europus (ME)			
Rotad power (or 2001), 60 Maj	1880/W	19900 W	2000046
Nuc X appent part	10000 10	20000-08	24000 18
All and alongs		1/11/18,2001/2001 1/11/18,2001/2001 1/11/18,2001/2001	
hi' u kupa maga		140 You 280 Y	
AC philisepoints ("range		ning / As not then ning / is not the	
Rated power temperaty / rated gold voltage		100 Ma / 200 W	
Nas. soğut sorreri / Natrol soğut sorreri	211/2014	218/218	263 8 / 362 A
Rame Testori et Introlycomer / Adjoritable displacement promo Testori	10	computer/or Codem	ايستان
198		1.0%	
Rate proc./ sociation/time.		1/1	
Nos allowry / Language History	26.05 / 26.05	10.05/10.05	105.255 (108.215
Paladim darias			
Kodu Reitshaftar Batta			
Broard light worklying / grid worklying			
DC soprometer Piper & can be empored			
the same party process (as includes a set opening / generating second		1.1	
An part of the state of the sta		1.145 10 10 1	
Energia de la companya de la compa		115,115,1	
Education (FL/FL/E)	81/80	(366mm D8/0/34.8)	10.4 (4)
Phile State	- 14	ALL PROPERTY.	
Spectra states and	- 49	NAME OF TAXABLE	
And an and a part of the state		2.464	
National program		the second second	
house also particular to an IV also be		and a second second	
Planti schend bereder b Brittert		10.00	
Kinging and a la shi a hardin hardining		1000	
Restored (Restored / Burgarated			
bi annumen i all'annumen		NOT A MARKED AND	
Bala			-
Interface Ridd, Ignation/Heldurent		100	
Nata Madana, Delli Hadhar, J Sardana, Hindhar			
Multi-artist site / Areas Control Multi-		1/1	
Study management (MA Studiels / Magnitud FlantControl.) (Star Denoved SA/T			
DFD/shappilis (18/6/Art Jaco Cartally sequelity			
Research (H) H) H) H pass		 I = f = f = 	
Cardinana and participan and the analysis	 M. STELEDOW (Mill Column (NO. 1992) In Strate-Linear Internet (Science Science). 	G.G.C. GIGLOW	Contract of the second
	Sarry Dill genetic (B	other state of the	stant, manually
Law Awards at	OP LEGENCE	KTP-200005130	17-20405-10

SUNNY TRIPOWER CORE1

Stonds on its own

The Survey Digenere CORT is the world's feel beautioning string investor for desertables and survey bigness productions. The CORT is the fitted generation in the survey higher productional particle generation in the survey higher production family and is environmental investors with its investories design with on investories installation method to significantly network installation time and provide of target groups with a maximum start on investment.

From delivery and installation to operation, the Savey Tejerane CCHI I generates withogrand savings in logistics, labor, materials and arvices. Communical PV installations are new opilitar and analyrics complete thes over inform. **BLOCK DIAGRAM**

_		
N0.	Item	Specification
1	Charge cut-off voltage	DC 29.2V
2	Nominal voltage	24V
3	Nominal capacity	400Ah
4	Continuous discharger current	100A/200A /300A/(can be customize)
5	Charge current	Standard charge: 10 Approx 10 Hour Rapid charge: 20 Approx 5 Hour
6	Standard Charging method	0.2 CC(constant current) charge to 73V, then CV(constant voltage 58.4V) charge till charge current decline to less than 0.02C
7	Max. charge current	100A
8	Max. discharge current2	300A
9	Max Pulse Current	200A/400A/600A(2S)
10	Discharge cut-off voltage	20V
11	Cell	3.2v lithium
12	Operating temperature	Charging: 0°C - 45°C Discharging: -10°C- 60°C
13	Storage temperature	-10°C to + 45°C
14	Battery Weight	Approx. 56 kg
15	Battery Dimension	250*320*420mm
16	Battery outgoing voltage	17.5V-29.2V
17	BMS built in	Yes
_		