
  

  

Abstract— This paper presents original concepts to represent 
and deal with kinematic constraints imposed on mobile robots. 
This is based on formulations derived originally for the 
dynamics of multibody systems and applied to robotic 
manipulator arms. This representation has several advantages 
such as its ability to deal with kinematically excited modes, 
derive a physically meaningful state-space representation, and 
find corresponding constraining forces. The paper shows how to 
apply these concepts to different types of mobile robots such as 
those modelled as unicycle or bicycle.  

I. INTRODUCTION 

Most of the time, robotic manipulator arms are free to 
move without constraints except when their end effectors 
come in contact with external objects or surfaces. This is the 
case when such robots are employed to assemble objects, 
machine certain surfaces, or cut pieces. On the other side, 
mobile robots which move on the ground are always subject to 
motion constraints. These constraints are of different types 
depending on the locomotion method used. Wheeled mobile 
robots are subject to constraints making it possible for the 
wheel-ground contact point to move along the direction of the 
wheel only and not having any motion component orthogonal 
to it.  Such constraints are classified mainly as holonomic and 
nonholonomic. Most mobile robots are subject to 
nonholonomic constraints limiting their motion at the velocity 
level, while leaving them capable of reaching any desired 
posture.  This requires usually some sort of maneuvering 
similar to car parallel parking.  

The mainstream approach for modeling the kinematics of 
mobile robots and specifically the representation of constraints 
has origins in differential geometry. Lie algebra is often used 
to check the maneuverability and controllability of those 
robots. This approach derives kinematic models with easy to 
interpret variables most of the time. However, this is not 
always the case. This becomes more profound when looking 
at constraining forces and even reduced dynamic models. 
Sometimes, the variables used in those reduced models do not 
have physical meanings. 

Kinematics with motion constraints is well studied within 
classical mechanics. For example, multibody dynamics offer 
nice formulations and tools to deal neatly and systematically 
with various types of constraints including holonomic, 
nonholonomic, kinematically excited motions, and others. In 
this paper, we will show how to apply such formulations to 
mobile robots. 

The paper is organized as follows. In section 2, the so 
called “modes of motion” formulation is presented. It is shown 
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how different types of constraints are dealt with. Further, it is 
shown how to derive the kinematic model and how to find the 
constraining forces. This will be applied to mobile robots in 
Section 2. Two examples will be done in detail. These are the 
popular unicycle- and bicycle-like mobile robots.   

II. MODES OF MOTION 

The analysis presented here is based on the mathematical 
tools and notations of Roberson and Schwertassek [1] and 
developed for constrained robots by Tahboub [2]. Most of the 
notations will be adopted, however some formulas and results 
will be rewritten to make the derivation more docile and aim 
oriented.  The aim of tackling the issue of constraints in the 
case of robotic arms is to control contact forces within the 
framework of force control or what is classically known as 
hybrid position-force control. However, for the case of mobile 
robots, the aim is different and is usually limited to motion 
planning and control in addition to obtaining reduced state-
space models without any explicit force control. Still, the 
presented modeling methodology is applicable as will be 
shown. 

First, the general kinematic constraint equation on the 
motion of the end effector in the task frame can be given by  

𝑊! "𝑉𝛀% = 𝛇(𝑡),                                                               (1) 

where 𝑽and 𝛀 denote the linear and angular velocities 
respectively,  𝑾 ∈ 𝑅"×$, 𝛇 ∈ 𝑅$, and 𝑚 denotes the number 
of constraints. The general solution of (1) in terms of a fewer 
number of velocity state variables 𝑷̇ is 

"𝑽𝛀% = 𝚽𝑷̇ + 𝛏,                                                               (2) 

with 𝚽 ∈ 𝑅"×("&$), 𝑷̇ ∈ 𝑅"&$, and 𝛏 ∈ 𝑅". The 
interpretation of (1) and (2) depends strongly on the method 
used for the reduction of the dynamical equations. Here, the 
interpretation is given in terms of modes of motion which keep 
geometrical characteristics of the constrained motion clearly 
in view. 

The velocity variables [𝑽! 𝛀!]! form an element of the 
six-dimensional vector space 𝑅". A set of spanning vectors for 
this space is collected as columns of a matrix  

𝚽8 = [𝚽8 (]				𝑖 = 1,2, . . . ,6.                                              (3) 

This set of vectors is chosen according to the imposed 
constraints and types of motions allowed. This will be 
demonstrated by two examples. Any vector in the space can be 
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