
Palestine Polytechnic University
Deanship of Graduate Studies and Scientific Research

Master of Informatics

Semi-Automated Classification of
Arabic User Requirements into
Functional and Non-Functional
Requirements using NLP Tools

Submitted by:

Karmel Fathi Shehadeh

Supervised by:

Prof. Nabil Arman

Dr. Faisal Khamayseh

Thesis submitted in partial fulfillment of requirements of the
degree of Master of Science in Informatics

August, 2022

The undersigned hereby certify that they have read, examined, and rec-

ommended to the Deanship of Graduate Studies and Scientific Research at

Palestine Polytechnic University the approval of a thesis entitled: Semi-

Automated Classification of Arabic User Requirements into Func-

tional and Non-Functional Requirements using NLP Tools, submit-

ted by Karmel F. Shehadeh in partial fulfillment of the requirements for

the degree of Master in Informatics.

Graduate Advisory Committee:

Prof. Nabil Arman (Supervisor), Palestine Polytechnic University.

Signature: Date:

Dr. Faisal Khamayseh (Co-Supervisor), Palestine Polytechnic University.

Signature: Date:

Dr. Mahmoud Al-Saheb (Internal committee member), Palestine Polytech-

nic University.

Signature: Date:

Dr.Rashid Jayousi (External committee member)

Signature: Date:

Thesis Approved
Dr. Nafez Naser Aldeen

Dean of Graduate Studies and Scientific Research
Palestine Polytechnic University

Signature: Date:

i

DECLARATION

I declare that the Master Thesis entitled ”Semi-Automated Classifica-

tion of Arabic User Requirements into Functional and Non-Functional

Requirements using NLP Tools” is my original work, and hereby certify

that unless stated, all work contained within this thesis is my own indepen-

dent research and has not been submitted for the award of any other degree

at any institution, except where due acknowledgement is made in the text.

Karmel F. Shehadeh

Signature: Date:

ii

STATEMENT OF

PERMISSION TO USE

In presenting this thesis in partial fulfillment of the requirements for the

master’s degree in Informatics at Palestine Polytechnic University, I agree

that the library shall make it available to borrowers under rules of the library.

Brief quotations from this thesis are allowable without special permission,

provided that accurate acknowledgment of the source is made.

Permission for extensive quotation from, reproduction, or publication of

this thesis may be granted by my main supervisor, or in his absence, by the

Dean of Graduate Studies and Scientific Research when, in the opinion of

either, the proposed use of the material is for scholarly purposes.

Any copying or use of the material in this thesis for financial gain shall

not be allowed without my written permission.

Karmel F. Shehadeh

Signature: Date:

iii

�
	
jÊÖÏ @

�
IJ
k ,

�
HA

�
J
m.
×Q�. Ë @ QK
ñ¢

�
�
�
èAJ
k

�
èPðX ú

	
¯

�
éK
A

	
ªÊË

�
AÒêÓ

�
@PðX

�
HAJ. Ê¢

�
JÖÏ @

�
é�Y

	
Jë I. ªÊ

�
K

.
�
HAJ. Ê¢

�
JÖÏ @

�
é�Y

	
Jë

�
éÊgQÓ úÎ«

	P
�
PAK. É

�
¾
�
��.

�
HA

�
J
m.
×Q�. Ë @ ©K
PA

�
�Ó É

�
�
	
¯ ð

@ hAm.

�
	
' YÒ

�
JªK

ù

ë AÒë@Yg

@ ,

�
HAJ. Ê¢

�
JÖÏ @ 	áÓ

	á�
«ñ
	
K úÎ«

�
HAJ. Ê¢

�
JÖÏ @

�
H@Y

	
J
�
��Ó ø

ñ
�
Jm�
�
' AÓ

�
AJ. Ë A

	
«

,
�
é
�
J

	
®J

	
£ñË@ Q�

	
«

�
HAJ. Ê¢

�
JÖÏ @ ù

ë øQ

	
k

B@ð , ÐA

	
¢
	
JË @

�
H@

	Q�
Ó XYm�
�
' ú

�
æË @ð ,

�
é
�
J

	
®J

	
£ñË@

�
HAJ. Ê¢

�
JÖÏ @

�
é
	
ªÊK. I. ËA

	
ªË @ ú

	
¯ AÒê

�
®J

�
Kñ
�
K �Õ

�
æK
 . QK
ñ¢

�
JË @

�
é

J�
K. ð ÐA

	
¢
	
JË @

�
H@

	Q�
ÖÏ
�
èXñm.

Ì'@
�
HAÖÞ� XYm�

�
' ú

�
æË @ð

ù

ëð ,ø

Qå
�
�J. Ë @ Yêm.

Ì'@ 	áÓ Q�

�
JºË@

�
HAJ. Ê¢

�
JÒÊË �ø

ðYJ
Ë @

	
­J

	
��

�
JË @ I. Ê¢

�
JK
 AÓ

��
èXA« .

�
éJ
ªJ
J.£

	áÓ
�
èQ�

	
g

B@

�
H@ñ

	
J�Ë@ ú

	
¯

�
HAJ. Ê¢

�
JÖÏ @

	
­J

	
��

�
�

�
éJ
ÊÔ

« 	á�
�m�
�
' Õç

�
' .

�
é�A

�
�kð

�
éJ.ª�

�
é
��
Òê
�
Ó

�
	
®
	
JË

�
IÓY

	
j
�
J�@ ú

�
æË @ð

�
éJ
Ë
�
B@ éJ.

�
� ð

@

�
éJ
Ë
�
B@ I. J
ËA�

B@ Ð@Y

	
j
�
J�AK.

	
­J

	
��

�
JË @ ÈC

	
g

�
éJ
ËA« l .

×@QK. Õç'
Y
�
®
�
K úÎ«

	áK
P
�
ñ¢ÖÏ @ Y«A�

�
�

�
IJ
k

�
éJ
Ë
�
B@

�
HA

�
J
m.
×Q�. Ë @

�
é�Y

	
Jë 	áÓ

	
�Q

	
ªË@

.
�
é
	
®Ê¾

�
Kð

�
I

�
¯ð É

�
¯

AK.

	á�
ÓY
	
j
�
J�ÖÏ @

�
HAª

��
¯ñ
�
K �ú

æ
.
Ê
�
K
�
èXñm.

Ì'@

Q�

	
«ð

�
é
�
J

	
®J

	
£ñË@

�
HAJ. Ê¢

�
JÒÊË YK
Yg. ú

Í
�
@ éJ.

�
�

	
­J

	
��

�
� i. î

	
E ÐY

�
®
	
K ,

�
éËA�QË@ è

	
Yë ú

	
¯

�
H@ðX

@ ùÒ�ÖÏ @

�
éJ
ªJ
J.¢Ë@

�
é
	
ªÊË @

�
ém.
Ì'AªÓ

�
H@ðX

@ Ð@Y

	
j
�
J�AK.

�
é
�
J
K. QªË@

�
é
	
ª
�
ÊËAK.

�
é
�
J

	
®J

	
£ñË@

�
é
�
J
K. QªË@ ÉÒj. ÊË

�
éJ
�A�

B@

�
HAJ. J
»

Q��Ë @ úÍ@

Y
	
J
�
��

�
� Y«@ñ

�
®Ë@ 	áÓ

�
é«ñÒm.

× A
	
JkQ

�
�
�
¯@. CAMeL

	
­J

	
��

�
JË

�
é
�
J
K. QªË@

�
é
	
ªÊËAK.

�
éK. ñ

�
JºÖÏ @

�
HA

�
J
m.
×Q�. Ë @

�
HAJ. Ê¢

�
JÓ 	áÓ

�
HAÓñÊªÖÏ @ h. @Q

	
j
�
J�@ Ég.

@ 	áÓ

ZA
�
�
	
�B

CAMeL �
H@ðX

@ ÐY

	
j
�
J�

��
� .

�
é
�
J

	
®J

	
£ð Q�

	
«ð

�
é
�
J

	
®J

	
£ð

�
HAJ. Ê¢

�
JÓ úÍ@

�
HAJ. Ê¢

�
JÖÏ @

�Õç
�
' , AêÊJ
Êm

�
�
' Õç

�
' ú

�
æË @ ÐY

	
j
�
J�ÖÏ @

�
HAJ. Ê¢

�
JÖÏ lemmas ð PoS �

HAÓC«ð
�
è
	Q�
ÒÖÏ @

	PñÓQË@

H. Q
�
¯

@ YK
Yj

�
JË CAMeL �

HAg. Q
	
m× úÎ«

�
ékQ

�
�
�
®ÖÏ @

�
éK
XA

�
�PB

@ Y«@ñ

�
®Ë@ 	áÓ

�
é«ñÒm.

× �
�J.¢

�
�

iv

, python
�
é
	
ªÊK.

�ú

m
.
×QK. �

	
�

�
éK. A
�
JºK. hQ��

�
®ÖÏ @ i. î

	
DË @

	
YJ

	
®
	
J
�
�K. A

	
JÔ
�
¯ Y

�
®Ë .

�
èPAJ.« É¾Ë

�
é

J
	
¯

. Ubuntu 20.04 LTS ÉJ

	
ª
�
�
�
� ÐA

	
¢
	
�ð , CAMeL 1.3.1 �

H@ðX

@ð

	áÒ
	
�
�
J
�
K ú

�
æË @ H. PAj.

�
JË @ 	áÓ

�
é«ñÒm.

× Ð@Y
	
j
�
J�AK. hQ��

�
®ÖÏ @ i. î

	
DË @

�
ém�� 	áÓ

�
�
�
®j

�
JË @ �Õç

�
'

�
HA

�
J
m.
×Q�. Ë @

�
é�Y

	
Jë Z@Q�.

	
g 	áÓ

�
é«ñÒm.

× ÉJ.
�
¯ 	áÓ AêÒJ
J

�
®
�
K �Õç

�
' ,

�
éJ

�
®J

�
®mÌ'@ h.

	
XAÒ

	
JË @ 	áÓ

�
é«ñÒm.

×

�
éK
 @PX úÎ« Ñë 	áK

	
YË@ �ñK
PñËA¾J. Ë @ H. C£ð AJ
ÊªË@

�
HA�@PYË@

�
éJ. Ê£

	áÓ
�
é«ñÒm.

×ð

	
­J

	
��

�
� ú

	
¯ É

	
�
	
¯

@ l .
�

'A
�
J
	
K

�
�
�
®m�'
 hQ��

�
®ÖÏ @ i. î

	
DÖÏ @

	
à

@ l .
�

'A
�
J
	
JË @

�
HQê

	
£

@ .

�
HA

�
J
m.
×Q�. Ë @

�
HAJ. Ê¢

�
JÖß.

H. C£ð AJ
ÊªË@
�
HA�@PYË@ H. C¢�.

�
é
	
KPA

�
®Ó

�
é
�
J
K. QªË@

�
é
	
ª
�
ÊËAK.

�
éK. ñ

�
JºÖÏ @

�
HA

�
J
m.
×Q�. Ë @

�
HAJ. Ê¢

�
JÓ

.�ñK
PñËA¾J. Ë @

v

Abstract

Requirement engineering plays a very important role in the software devel-

opment life cycle. The success or failure of a software project depends promi-

nently on the requirement engineering phase. Requirement documents com-

monly have two types of requirements, one is Functional Requirements, which

defines the features of the system-to-be, and the other is Non-Functional Re-

quirements, which defines the quality attributes of the system features and

development environment. They are predominantly documented in natural

language. A lot of human effort is required for manual classification, which

is a challenging and delicate task. Software requirements classification pro-

cess has been improved in recent years by classification requirements using

automated or semi-automated methods for the same purpose of Automated

Software Engineering which helps developers to deliver quality software that

meets users’ expectations completely with saving time and cost.

In this thesis, we presented a new Semi-Automated classification approach of

Arabic functional and non-functional requirements using a natural language

processing tools, namely CAMeL Tools. We proposed a set of heuristics

based on basic constructs of Arabic sentences in order to extract information

from software requirements written in Arabic to classify the requirements

vi

into functional and non-functional requirements. CAMeL tools are used to

generate tokens, PoS tags, and lemmas of the parsed user requirements, then

a set of proposed heuristic rules are applied to CAMeL outputs to determine

the closest class for each statement. We implemented the proposed approach

using Python code using CAMeL Tools 1.3.1, under Ubuntu 20.04 LTS.

The proposed approach is validated using a set of experiments involving a set

of real cases evaluated by a group of software engineering experts, graduate,

and undergraduate students who are familiar with software requirements.

The results showed that the proposed approach achieves better results in the

classification of Arabic software requirements than graduate, and undergrad-

uate students.

vii

DEDICATION

To my family,

I could never have done this without your faith, support, and constant

encouragement.

viii

ACKNOWLEDGEMENT

Many people have directly or indirectly contributed to the successful comple-

tion of this thesis. They will all be remembered in my heart. First, I would

like to take this opportunity to highly appreciate my thesis supervisors Prof.

Nabil Arman and Dr. Faisal Khamayseh, for their support, motivation, pa-

tience, useful comments, and immense knowledge.

Besides, I would like to thank, my former colleague in the master’s program

Eng. Ibrahim Nassar, my teachers: Eng. Ezdehar Jawabreh, Dr. Mahmoud

Al-Saheb, and Dr. Ghassan Shahin for all their help, support, and useful

notes.

I would like to express my deep sense of reverence and gratitude to all of my

respected teachers for the invaluable knowledge they imparted to me.

ix

Table of Contents

1 Introduction 1

1.1 Motivation . 3

1.2 Problem Statement . 3

1.3 Proposed Solution . 5

1.4 Research Steps . 5

1.5 Research Objective . 5

1.6 Contributions . 6

1.7 Research Importance . 6

1.8 Thesis Organization . 7

2 Background 8

2.1 Requirements Engineering (RE) 8

2.1.1 Software Requirements Specification (SRS) 9

2.1.2 Types of Requirements 10

2.1.3 Benefits of Good User Requirements 11

2.1.4 User Requirements Written in Arabic 12

2.2 Natural Language Processing Tools 13

2.2.1 CAMeL Tools . 14

3 Literature Review 20

3.1 Software Requirements Classification Rule-Based Approaches . 21

x

Table of Contents

3.2 Software Requirements Classification Machine Learning Ap-

proaches . 23

3.2.1 Software Requirements Classification of English Spec-

ifications . 23

3.2.2 Software Requirements Classification of German Spec-

ifications . 25

3.3 Automated Generation of UML Diagrams 27

3.3.1 Automated Generation of UML Diagrams from Arabic

User Requirements . 27

3.3.2 Automated Generation of UML Diagrams from English

User Requirements . 28

4 Research Approach 31

4.1 Arabic Sentence Syntax . 31

4.2 Arabic User Requirements Classification Approach 32

4.2.1 Non-Functional Requirement Linguistic Features 32

4.2.2 Functional Requirement Linguistic Features 33

4.3 Proposed Heuristics . 36

4.4 The Novel Approach for Classification of Arabic User Require-

ments . 54

4.5 Case Study . 56

5 Evaluation 70

5.1 Evaluation Methodology . 70

5.2 Experiments . 72

5.3 Evaluation Results . 73

6 Conclusion and Future Work 77

6.1 Conclusion . 77

xi

Table of Contents

6.2 Future work . 78

A CAMeL Installation 84

xii

List of Figures

3.1 Three-phase system design. 21

3.2 Proposed Method Overview. 24

4.1 Empirical Methodology. 35

xiii

List of Tables

2.1 Comparison of the Performance of CAMeL Tools Multitask

Learning to MADAMIRA. 18

2.2 PoS Tags of CAMeL Tools. 19

3.1 Existing Techniques . 27

4.1 Expert Evaluations for Proposed Heuristics. 34

4.2 Functional Main Verb Keywords. 49

4.3 Functional Requirements Keywords. 50

4.6 Case Study . 56

4.7 Case Study Classification Results Based on the Proposed Ap-

proach. 67

4.4 NFR Keywords (1) . 68

4.5 NFR Keywords (2) . 69

5.1 Confusion Matrix . 71

5.2 Percentage of Correct Classified Requirements 73

5.3 Percentage of Incorrect classified requirements 74

5.4 Percentage of Unclassified classified requirements 74

5.5 Measure Metrics Results . 75

5.6 Evaluation Result . 76

xiv

List of Abbreviations

API Application Programming Interfaces

ASE Automated Software Engineering

Acc Accuracy

CF Certainty Factor

CLIs Command-Line Interfaces

FN False Negative

FP False Positive

FR Functional requirements

NFR Non-functional requirements

NLP Natural Language Processing

P Precision

PoS Part of Speech

R Recall

RE Requirements Engineering

SDLC Software Development Life Cycle

SRS Software Requirements Specification

TN True Negative

TP True Positive

xv

Chapter 1

Introduction

Automated Requirements Classification is one of the most important research

problems in software engineering. Software engineering has shown to be a

suitable and effective field for automation whereas several approaches and

techniques specific to the Automated Software Engineering (ASE) area are

increasingly being implemented into various processes in the software life

cycle [1]. Particularly, the Requirements Engineering (RE) subdisciplines

activities (elicitation, analysis, specification, and validation) [2] have become

the focus of several tools and frameworks aimed at assisting them automati-

cally [1]. ASE is used to automate the software systems activities to improve

the quality and productivity of the software. Also, it lowers the cost and

time of analysis of user requirements [3].

RE is split into requirements development and requirements management.

Requirements development subdivide into elicitation, analysis, specification,

and validation. These subdisciplines encompass all the activities focused

on understanding the customer’s needs regarding the software to be devel-

oped. While requirements management activities include: defining the re-

quirements baseline, evaluating the impact of proposed requirements changes,

1

and keeping project plan current with the requirements as they evolve [2].

In the requirement elicitation, customers’ specifications and needs are well

understood. In the analysis task, those needs are checked and redefined.

Then at the requirement specification task, all user specification require-

ments are documents in a clear and correct form. Finally, schedules and

prioritizes the requirements on requirement management tasks. After the

requirement engineering phase, customer specifications are written in a Soft-

ware Requirements Specification (SRS) document [4]. However, this activity

is usually time-consuming and error-prone, so using an automated approach

helps speed up the process of building systems and can reduce the number

of possible errors.

System requirements are divided into functional requirements (FR) and Non-

Functional Requirements (NFR). FRs of a system describe what the system

should do, and NFRs show how the system behaves with respect to some

observable attributes like reliability, reusability, maintainability, etc. Both

FR and NFR are organized and specified in a Software Requirements Speci-

fication (SRS) document [5].

There is a clear and unanimous definition of the FRs and NFRs. FRs are

statements about what services the system should provide, how it should act

in specific situations, and how it should respond to specific inputs. The sys-

tem’s FRs may also state what it should not do. On the other hand, NFRs

are constraints and limitations on the system’s services and functions. They

include timing constraints, constraints imposed by standards, and constraints

on the development process. NFR often applies to the whole system rather

than particular system services or features. In a nutshell, FRs describe the

functionality of a system, whereas NFRs describe the system’s constraints

2

1.1. Motivation

and properties [6].

Since there is no direct automation procedure from Arabic requirements to

classification, we propose an approach to classify user requirements written

in Arabic with the least interventions using an Arabic natural language pro-

cessing tools namely CAMeL. This tool is used to parse different statements

of the user requirements written in Arabic language to obtain the differ-

ence between FRs and NFs. A set of steps that describe our approach for

classifying user requirements is presented in this thesis.

1.1 Motivation

Manual Software requirements classification is time-consuming and costly.

In addition, it is an error-prone process, especially for large and complex re-

quirements of systems. The main motivation is developing a semi-automated

approach that can classify software requirements instead of the traditional/-

manual methods, which saves time and cost. In addition, there is no research,

to the best of our knowledge, about the classification of Arabic requirements

into FR and NFR.

1.2 Problem Statement

FRs and NFRs are equally important in software engineering where both

of them are organized in a Software Requirements Specification document

using natural languages. Manual classification for FRs and NFRs is a very

exhaustive and time-consuming task for software engineers. Usually, they

face problems in the analysis of user requirements phase. In addition, any

error in the classification process may lead to misunderstanding or ambiguity

3

1.2. Problem Statement

in the requirements by the software developers.

There are several techniques for software requirements classification. Ac-

cording to the review of the literature, one of the techniques for software

requirements classification is using machine learning. However, the learning

approach needs to train the model. If the training data are not available,

then the researchers have to prepare training data manually. This drawback

of machine learning methods in software requirements classification is related

to the amount of pre-categorized requirements required to achieve good levels

of precision in the classification process.

In our research, we attempt to solve this drawback by providing a Semi-

Automated classification of software requirements using an NLP tool. In this

thesis, we will classify requirements written in Arabic language. However,

Arabic language is not an easy task to parse because of the following reasons:

First, the particularities of the Arabic language make it more ambiguous than

other natural languages. This is due to its morphological, syntactic, and se-

mantic characteristics. Second, is the significant lack of digital resources

in the Arabic language, especially concerning the grammar and corpora [7].

The main problem is how to find the approach that can automatically clas-

sify Arabic user requirements into FR and NFR using NLP tools.

The main objective of this research is to propose a novel approach to clas-

sifying FRs and NFRs written in Arabic using a semi-automated method

based on NLP tools in order to make Arabic requirement classification tasks

perform faster, easier, and more accurately.

4

1.3. Proposed Solution

1.3 Proposed Solution

We propose a high-level approach to illustrate the detailed steps of classifying

Arabic user requirements using CAMeL tools. We also developed a system

for classifying Arabic user requirements using python language [8].

1.4 Research Steps

We followed the following steps for our research:

1. Review previous researches on software requirements classification and

automated software engineering methods.

2. Review the Arabic user requirements and how they must be written.

3. Review the difference between FR and NFR.

4. Review the Arabic Natural Language Processing tools and how to use

the appropriate Arabic NLP tool.

5. Study students and developers’ SRSs to extract the set of heuristics

that distinguish FRs from NFRs.

6. Propose an approach to classify Arabic user requirements.

7. Request from software engineering experts to evaluate our approach.

8. Implement the proposed approach using Python and CAMeL Tools.

9. Finally, evaluate our approach.

1.5 Research Objective

The main objective of this thesis is to develop a novel approach to the clas-

sification of user requirements written in Arabic into FRs and NFRs using a

natural language processing tool to analyze the sentences of the Arabic user

requirements.

5

1.6. Contributions

1.6 Contributions

In this thesis, we proposed a novel approach for the classification of Arabic

user requirements into FRs and NFRs. In this approach, a natural language

processing tool is used to analyze the sentences of the Arabic user require-

ments. Based on the outcome of the analysis, a set of heuristics are presented

to guide the classification process. These heuristics use the tokens produced

by the chosen NLP tool. We also developed a system for classifying Arabic

user requirements using Python language. This research aims to help soft-

ware engineers in the analysis phase to reduce the cost and the time required

in performing manual classification.

1.7 Research Importance

The benefits of categorizing requirements include helping in discovering com-

monalities and unexpected relationships between requirements, improving

the traceability of the requirements document, and it may help in finding

missing requirements [6].

Several attempts have worked on finding an approach to classify the require-

ments written in English, but there is no one that has worked on classifying

the requirements written in Arabic due to the specificity of the Arabic lan-

guage and the complexity of its grammar. This research aims to help software

engineers in the analysis phase to reduce the cost and the time required in

performing these manual processes and activities. Since there is a lack of

research serving Arabic requirements, we are towards working on taking re-

quirements written in the Arabic language as input and classifying them.

6

1.8. Thesis Organization

1.8 Thesis Organization

The remaining parts of the thesis are organized as follows: Chapter 2 con-

tains a summary of some previous works related to our thesis. Chapter 3

describes the system’s theoretical background related to the main concepts

that are needed to understand the rest of the thesis. Chapter 4 covers the

methodology used in this thesis. Chapter 5 demonstrates the experiment,

evaluation, and results achieved by the work and the discussion of the re-

sults. Chapter 6 concludes the work and proposes some new directions for

future work.

7

Chapter 2

Background

This chapter gives a theoretical background needed for understanding the

rest of the thesis. The first section explains the requirements engineering

and how to write user requirements in Arabic. The second section talks

about natural language processing tools and focuses on CAMel tools.

2.1 Requirements Engineering (RE)

RE is the most important area of the software engineering phase and the

whole software development life cycle (SDLC). RE phase is used to translate

the inaccurate, incomplete needs of the software users into formal complete,

and precise specifications. The specifications are considered as a contract

between the software users and the developers. Therefore, the importance of

RE is huge at the early stage of the development of software in developing

effective software and in minimizing software problems at the early stage of

the development of software [9].

RE is split into requirements management and requirements development.

The requirements management activities include: defining the requirements

8

2.1. Requirements Engineering (RE)

baseline, evaluating the impact of proposed requirements changes, and keep-

ing project plans current with the requirements as they evolve. Requirements

development subdivided into [2]:

• Elicitation includes all of the activities involved with discovering re-

quirements, like interviews, document analysis, workshops, prototyp-

ing, and others.

• Analyzing requirements encompasses achieving a richer and more pre-

cise understanding of each requirement also representing requirements

in multiple ways.

• Requirements specification includes representing and storing the re-

quirements knowledge in a well-organized fashion.

• Requirements validation confirms that you have the correct set of re-

quirements information that helps developers to build software that

satisfies the business objectives.

2.1.1 Software Requirements Specification (SRS)

SRS also known as the software requirements document, is a formal descrip-

tion of what system developers should implement. It includes both the user

and system requirements. Both of them can be included in a single descrip-

tion. In some cases, the user requirements are defined in the introduction of

the system requirements specification. Also, if there are a large number of

requirements, the detailed system requirements may be presented in a sepa-

rate document [6].

The level of details in the requirements document is determined by the type

of system and the development process employed. A detailed requirement

document is needed when the system is critical because safety and security

9

2.1. Requirements Engineering (RE)

need accurate analysis and when a separate company will develop the sys-

tem. But, if the development process is done within the same organization,

the system specifications can be much less detailed and any ambiguities can

be resolved during the development process [6].

2.1.2 Types of Requirements

There are two types of requirements: user requirements and system require-

ments [10]:

• User Requirements:

User requirements are statements written in natural language and di-

agrams. They specify the expected system services and system con-

straints. User requirements readers don’t concern about how the sys-

tem will be implemented and the detailed facilities of the system.

• System Requirements:

System requirements are detailed descriptions of the services and con-

straints of the system. They are derived from analysis of user require-

ments and they should be structured and precise. System requirements

readers need to know more about what the system will do because they

are participatory in the system implementation or they are concerned

with how system requirements will support the business processes.

Another taxonomy for requirements focuses on the type of requirement.

It categorized them into FRs and NFRs [6]:

• Functional Requirements: These are statements of what the system

should do, what services the system should provide, how it should act

in specific situations, and how it should respond to specific inputs. FRs

may also state what it should not do.

10

2.1. Requirements Engineering (RE)

• Non-Functional Requirements: These are statements of constraints and

limitations on the system’s services and functions. They include tim-

ing constraints, constraints imposed by standards, and constraints on

the development process. Also, it shows how the system behaves with

respect to some observable attributes like reliability, reusability, main-

tainability, etc. NFR often applies to the whole system rather than

particular system services or features.

NFRs may be derived from the desired characteristics of the software

(product requirements), the organization that developing the software

(organizational requirements), or from external sources.

2.1.3 Benefits of Good User Requirements

Natural language has been used to write software requirements since the

beginning of software engineering. Because it is intuitive, expressive, and

universal. It also could be ambiguous, and vague and its meaning depends

on the background of the reader [6].

Good requirements provide many benefits. These benefits affect develop-

ment, productivity, testing, quality, and the organization. These benefits

help developers during the development of new systems and during the main-

tenance of existing systems. User requirements written in Arabic must be

written in a good way based on the grammar structure in Arabic language

to avoid problems and errors in the analysis phase.

The IEEE standard for SRS identifies a good requirement as complete, con-

sistent, correct, verifiable, unambiguous, and traceable [11]. Completeness

means the requirement is complete and does not need further amplification

and it will provide sufficient capability. Constancy means the requirement

11

2.1. Requirements Engineering (RE)

does not contradict other requirements. There are no duplicate requirements

[12]. Each requirement must be correct, it is correct if it accurately states

a function that the system must provide [11]. Verifiability means the re-

quirement is not vague or general but is quantified in a manner that can be

verified. That if we can test the requirements, testers will base their test on

the requirements set as well. Unambiguous means each requirement must

have only one interpretation. The requirements statement must not leave

doubt in the reader’s mind. Traceability helps the developers and testers to

maintain the system. At any time we require changing or removing a re-

quirement, we will be able quickly to determine the parts of the design and

implementation that support the requirement [12].

2.1.4 User Requirements Written in Arabic

Arabic language is a prominent member of the Semitic language family. It

consists of 28 letters and it is written from right to left. Grammar in Arabic

language is a collection of rules that describes informed sentences well.

User and system requirements are usually written in natural languages sup-

plemented by relevant diagrams and tables. Effective and correct written

format of Arabic user requirements is a critical skill because of Arabic com-

plex linguistic structure. In this section, we present the general guidelines

for writing Arabic user requirements. A set of guidelines has been defined

for writing Arabic user requirements to reduce the ambiguity of Arabic sen-

tences and prevent errors in later analysis phases, to increase the probability

of having correct and good statements that can quickly and easily be pro-

cessed.

The following general guidelines should be followed during the writing of

12

2.2. Natural Language Processing Tools

Arabic user requirements [13]:

1. Write in modern standard Arabic.

2. Use English technical words within Arabic sentences.

3. Write short sentences as much as possible.

4. Write complete sentences with correct grammar and spelling.

5. Write only active-voice sentences.

6. Write sentences of form subject-verb-object or verb-subject-object only.

7. Write sentences in a consistent fashion.

8. Sentences should have clear boundaries.

9. Avoid abbreviations unless defined in the glossary.

10. Avoid using pronouns, possessive pronouns, and possessive adjectives.

11. You should put a full stop at the end of each sentence.

2.2 Natural Language Processing Tools

There are many tools for Arabic morphological analysis. Each has different

characteristics. This is based on how these tools are developed and what

database is used. There are several tools that are freely available and very

suitable for tokenizing Arabic text:

• Stanford CoreNLP is a multilingual Java library, CLI, and server pro-

viding multiple NLP components with varying support for different

languages. Arabic support is provided for parsing, tokenization, PoS

tagging, and sentence splitting [14].

• MADA+TOKAN is a versatile and freely available system that can

derive extensive morphological and contextual information from raw

Arabic text, and then use this information for a multitude of crucial

13

2.2. Natural Language Processing Tools

NLP tasks. Applications include high-accuracy part-of-speech tagging,

discretization, lemmatization, disambiguation, stemming, and glossing.

MADA operates by examining a list of all possible analyses for each

word and then selecting the analysis that matches the current context

best by means of support vector machine models classification for 19

distinct, weighted morphological features. All disambiguation decisions

are made in one step because the selected analysis contains complete

diacritic, lexemic, glossary, and morphological information. TOKEN

takes the information provided by MADA to generate tokenized output

in a wide variety of customizable formats [15].

• MADAMIRA Tools are a system for morphological analysis and dis-

ambiguation of Arabic. It enabled features such as part-of-speech

tagging, segmentation, lemmatization, tokenization, NER, and base-

phrase chunking. It supports both MSA and Egyptian and primarily

provides a CLI, a server mode, and a Java API [16].

• CAMeL Tools are a Python-based collection of open-source tools for

Arabic natural language processing. These tools currently provide util-

ities for pre-processing, morphological modeling, dialect identification,

named entity recognition and sentiment analysis [17].

2.2.1 CAMeL Tools

CAMeL Tools is one of New York University Abu Dhabi’s inventions. Nizar

Habash, Ossama Obeid, Nasser Zalmout, and others developed this tool. It

has many versions, the first one, V0.4.dev2 released on 12 Sep 2019, and the

last one, V1.3.1 was released on 31 April 2022 [18].

CAMeL Tools is a collection of open-source tools for Arabic natural lan-

14

2.2. Natural Language Processing Tools

guage processing in Python. They chose Python due to its ease of use and

its pervasiveness in NLP and Machine Learning along with libraries. CAMeL

tools provides utilities for pre-processing, dialect identification, morphologi-

cal modeling, named entity recognition, and sentiment analysis [17].

CAMeL Tools is implemented in Python 3. It could be installed on Linux,

macOS, and Windows. They provide Command-Line Interfaces (CLIs) and

Application Programming Interfaces (APIs).

CAMeL Tools provides many utilities for Arabic NLP tasks, such as the

following:

1. Preprocessing

CAMeL Tools provides a set of preprocessing utilities for preparing

and cleaning Arabic text. Before passing text to other CAMeL Tools

components, some of these preprocessing utilities may need to be used.

1.1 Simple Transliteration:

Simple transliteration is the process of translating each Arabic

character to/from a single non-Arabic character encoding.

1.2 Unicode Normalization:

In the Arabic language there ate variants and composed forms

usually used for display purposes but they are problematic in text

processing tasks. These variants and composed forms are generally

used for display purposes and are problematic in text processing

tasks.

1.3 Orthographic Normalization

When typing Arabic text, Arabic speakers frequently use short-

cuts. For example, the different variants of the letter alef (’ @

’,

’

@’,’
�
@’,’ @’) may be typed as just ’ @’. Some of these substitutions can

15

2.2. Natural Language Processing Tools

be the result of typos. So, CAMeL tools provide orthographic

normalization which is the process of converting letter variants or

visually similar letters into a single form.

1.4 Dediacritization

Dediacritization is the process of eliminating Arabic diacritical

marks. Arabic diacritical marks. Diacritics usually increase data

sparsity and so most Arabic NLP techniques ignore them.

1.5 Word Tokenization

CAMel tools provide the utility function to split sentences by

whitespace and separate punctuation, whereas some CAMeL Tools

components expect input text to be pretokenized by whitespace

and punctuation.

2. Morphology

CAMeL Tools provides an effective morphological analysis, reinflection,

and generation system.

2.1 Analysis

Morphological analysis is the process of generating all possible

readings of a given word out of context. Each of these analyses is

defined by a set of morphological and lexical features.

2.2 Generation

Generation is the process of inflecting a lemma for a set of mor-

phological features.

2.3 Reinflection

Reinflection is the process of converting the input word in any

form to a different form like tense, gender, etc. Rreinflector works

similarly to the generator except that the word doesn’t have to be

16

2.2. Natural Language Processing Tools

a lemma and it does not have to be restricted to a specific ’PoS’.

3. Disambiguation

Disambiguation is the process of determining what is the most likely

analysis of a word in a given context. In CAMeL Tools, disambigua-

tion is the backbone for many Arabic NLP tasks such as PoS tagging,

diacritization, and morphological tokenization.

4. Tagging

CAMel tools provide tagging utilities to generate PoS tags for all words

in a given sentence. It uses a set of tags to describe the Arabic words

in the statements. Each word has a tag, and every tag has a special

meaning. Table 2.2 shows all tags for CAMel tools with examples.

5. Morphological Tokenization

CAMel tools provide another type of tokenization than Word Tokeniza-

tion which is morphological tokenization whereby Arabic words are split

into component prefixes, stems, and suffixes.

6. Dialect Identification

CAMel tools provide a dialect identification system that can distinguish

between 25 city dialects as well as Modern Standard Arabic.

7. Sentiment Analysis

CAMel tools provide a pre-trained sentiment analysis system that has

been trained using a combination of multiple data sets. The output of

this system is one of three sentiment tags for each sentence: ’positive’,

’negative’, and ’neutral’.

8. Named Entity Recognition

CAMeL Tools comes with an easy-to-use named entity recognition

17

2.2. Natural Language Processing Tools

(NER) system. For each token in input sentences. NERecognizer out-

puts a label that indicates the type of named entity. For each token,

the system outputs one of the following labels: ’B-LOC’, ’B-ORG’, ’B-

PERS’, ’B-MISC’, ’I-LOC’, ’I-ORG’, ’I-PERS’, ’I-MISC’, ’O’. Named

entities can either be a LOC (location), ORG (organization), PERS

(person), or MISC (miscellaneous).

We’ve used CAMeL Tools because it’s one of the best free NLP tools to

date. The table 2.1 [17] below shows the extent of its superiority over the

MADAMIRA tool. As for MADA, MADAMIRA, TOKAN, now is called

MADAMIRA which supersedes MADA. They no longer distribute MADA,

MADAMIRA is better and faster [19].

Table 2.1: Comparison of the Performance of CAMeL Tools Multitask Learn-
ing to MADAMIRA.

Utilities MADAMIRA CAMeL Tools Multitask
DIAC 87.7% 90.9%
LEX 96.4% 95.4%
PoS 97.1% 97.2%
FULL 85.6% 89.0%
ATB TOK 99.0% 99.4%

The systems are evaluated on their accuracy to correctly predict diacrit-

ics (DIAC), lemmas (LEX), Part of Speech (PoS), the full set of predicted

features (FULL), and the ATB tokenization.

18

2.2. Natural Language Processing Tools

Table 2.2: PoS Tags of CAMeL Tools.

Arabic PoS CAMEL PoS Tags Examples
	

­K
Qª
�
K
�
è @X

@ PART DET È@

	
­¢«

	
¬Qk CONJ ð

@ ,ð

Qk.
	

¬Qk PREP 	áÓ , úÍ@

ù

	
®
	
K
�
è @X

@ PART NEG 	áË , B

ÈAJ.
�
®
�
J�@

�
è @X

@ PART FUT

	
¬ñ� ,�

¡�. P
�
è @X

@ CONJ SUB ð+

�
èPA

�
�@ Q�
ÖÞ

	
� PRON DEM @

	
Yë

ÐAê
	
®
�
J�@ Q�
ÖÞ

	
� PART EMPHATIC

	
­J
» , @

	
XAÓ

YJ
»ñ
�
K
�
è @X

@ PART EMPHATIC 	

à@

 Qå
�
� H. @ñk. PART RC

	
¬+

Z@Y
	
K
�
è @X

@ PART VOC AK

Õæ� @ NOUN ÕÎ
�
¯ ,H. A

�
J»

XY« Õæ�@ NOUN NUM
�
é

JÓ ,

�
èQå
�
�«

ÕÎ« Õæ�@ NOUN PROP AJ
�ðP ,
�
HAÓ@Që

B@ , Y

	
Jë

Õ» Õæ�@ NOUN QUANT
	

­ª
	
� ,©

	
��. ,Qå

�
�
�
«

�
é
	
®� ADJ ©K
Qå� ,

Q�
J.»

XY«
�
é
	
®� ADJ NUM Èð

B@ , ©K. @QË @

�
é
	
KPA

�
®Ó

�
é
	
®� ADJ COMP Èñ£

@ , ÉÔg

.

@

Éª
	
¯ VERB É�QK
 , ÈA

�
¯

Q�
ÖÞ
	
� PRON 	ám�

	
'

�
èPA

�
�@

Q�
ÖÞ

	
� PRON DEM @

	
Yë

ÐAê
	
®
�
J�@ Q�
ÖÞ

	
� PRON INTERROG 	áÓ

Èñ�ñÓ Q�
ÖÞ
	
� PRON REL AÓ

ÐAê
	
®
�
J�@

�
è @X

@ PART INTERROG @

	
XAÖÏ , Éë

ZA
	
J
�
J
�
��@

�
è @X

@ PART RESTRICT B@

Õ
�
P̄ DIGIT 5.0 ,100

ú

æ
.

	
Jk.

@ FORIEGN Hello

Õæ

�
Q̄
�
K
�
éÓC« PUNC . , %

19

Chapter 3

Literature Review

Manual classification for software requirements is a very exhaustive, time-

consuming, and error-prone task for software engineers. Any error that oc-

curs in the classification process may lead to misunderstanding or ambiguity

in the requirements by the software developers. There are several methods

for software requirements classification. One of the most important of these

methods is to apply automated software engineering.

Automated software engineering methods have been applied in several areas

in the software engineering field. In the last years, several efforts and research

papers contributed to proposing methods for classification software require-

ments and generating UML models from user requirements. These methods

can further be classified as machine learning approaches and rule-based ap-

proaches. Some researchers are interested in classifying non-functional re-

quirements into different categories. Others are interested in classifying soft-

ware requirements into functional and non-functional. This section presents

some set of related research work in this area.

20

3.1. Software Requirements Classification Rule-Based Approaches

3.1 Software Requirements Classification Rule-

Based Approaches

Singh. et al [20] combined automated software requirement identification and

classification into NFR sub-classes with a rule-based classification technique

based on thematic roles and determining the priority of extracted NFR based

on their occurrence in multiple NFR classes.

As shown in Figure 3.1 [20], the proposed design consists of three phases: in-

put SRS or a corpus of multiple documents to the first phase of the design for

document pre-processing, thematic roles annotation using General Architec-

ture for Text Learning (GATE) in the next phase, and finally, classification

of annotated sentences into various NFR classes. They used PROMISE cor-

pus for creating Java rules, testing these rules, and then prioritizing these

extracted NFRs based on their occurrence in different NFR classes again us-

ing Java rules. They used Concordia RE corpus to verify that their classifier

works on unstructured documents or documents other than SRS documents.

Figure 3.1: Three-phase system design.

Hussain et al [21] presented a methodology for automatic requirement

classification using a text classifier with a part-of-speech (PoS) tagger. Re-

searchers demonstrated that linguistic knowledge can assist in performing

well in this classification task.

21

3.1. Software Requirements Classification Rule-Based Approaches

Some categories of words can be an indication to classify the sentence as NFR

by their occurrences in the sentences. For example, NFR sentences often de-

scribe the quality attributes of the components or the system as a whole,

and such sentences are likely to include adjectives and adverbs. Following

these characteristics of NFR the authors chose a list of syntactic features as

candidates and tested their probabilities of occurrence in the collection of

NFR sentences, and thus, validated them to the most representative list of

syntactic features. To classify the sentences, they developed a Java-based

feature extraction program that parses the sentences from the corpora, ex-

tracts the values of all the features chosen by the authors, and uses Weka to

train C4.5 decision tree learning algorithms.

Sharma et al [22] present a pattern-based rule approach to automatically

parsing and classifying non-functional requirements based on NLP. They de-

pend on identifying NFRs on extracting multiple features by analysis of nat-

ural language requirements where there is a certain combination of words

and their relationship are unique for each category of NFR. These features

are specialized as pattern-based rules that may be specialized in a human-

readable language using a domain-specific language that they have defined.

This work’s contribution is confined to a small set of complex rules. In ad-

dition to the evaluation results where recall percentage was between 60 and

85% for five categories of NFR. They have been implemented their approach

as a prototype tool.

Cleland-Huang et al [23] present an information retrieval approach to iden-

tify and classify Non-Functional Requirements automatically. This approach

assumes that different categories of NFR are characterized by a set of dis-

tinct keywords ‘indicator terms’. Those indicator terms are learned for a

certain NFR category, they can be used to detect requirements, phrases, or

22

3.2. Software Requirements Classification Machine Learning Approaches

sentences, that are related to that category. The proposed approach includes

three phases as the following: mining, classification, and application. Indi-

cator terms are mined from pre-categorized NFR requirements during the

training phase. Then detect and classify other requirements during the re-

trieval phase using the indicator terms. Finally, the classified requirements

are used to support more advanced software engineering activities during the

application phase.

3.2 Software Requirements Classification Ma-

chine Learning Approaches

Several studies worked on requirements classification based on the machine

classification approach. We divide them into researches that classified the

requirements written in English and others classified the requirements written

in German.

3.2.1 Software Requirements Classification of English

Specifications

Kurtanovi´c and Maalej [24] studied how accurately can automatically clas-

sify requirements as functional (FR) and non-functional (NFR) in the dataset

with supervised machine learning. They used a second RE17 data challenge

dataset. They also looked at how accurately they could identify different

types of NFRs, such as usability, security, operational, and performance re-

quirements. They developed and evaluated a supervised machine learning

approach using meta-data, syntactical, and lexical features.

Haque et al [25] proposed an automatic NFR classification approach for qual-

23

3.2. Software Requirements Classification Machine Learning Approaches

ity software development by combining machine learning feature extraction

and classification techniques. PROMISE software requirement dataset has

been used. To find out the best pair of machine learning algorithms and

selection approaches they applied an empirical study to automatically clas-

sify NFR with seven machine learning algorithms and four feature selection

approaches.

The seven machine learning algorithms include MNB, GNB, BNB, KNN,

SVM, SGD, and DTree. In addition to using Bow, TF-IDF (character level),

TF-IDF (word level), and TF-IDF (n-gram) for feature extraction techniques

which act as the input of machine learning algorithms. The whole process of

this framework is divided into four steps as shown in Figure 3.2 [25] which

include: Data Preprocessing, Feature Extraction, Train Classifier, and Clas-

sification requirements. As a result, this paper recommended TF-IDF (char-

acter level) for feature extraction with SGD SVM algorithm to predict the

best results in NFR classification.

Figure 3.2: Proposed Method Overview.

24

3.2. Software Requirements Classification Machine Learning Approaches

Younas et al [26] proposed approach manipulates the textual semantic

of functional requirements to identify the non-functional requirements. The

semantic similarity is determined by the co-occurrence of patterns in large

human knowledge repositories of Wikipedia. The similarity distance between

popular indicator keywords and requirement statements is found in this study

to determine the type of non-functional requirement. The proposed approach

is applied to PROMISE NFR dataset.

In this paper, they used a semi-supervised machine learning method; there is

no need for a training dataset. However, it can be supervised to some extent

that the authors train their model with the Wikipedia dump of data. The

proposed approach is described in the multistep procedure.

Abdur-Rahman et al [27] suggested deep learning approach using Recurrent

Neural Network (RNN). This approach is performed in three steps: data pre-

processing includes removing special characters, stop words, lemmatization,

and tokenization. Step 2: word vectorization: they convert each word to

vector using Word2Vec model. Then they trained three different classifiers:

RNN, GRU, and LSTM models. They achieved a high precision rate equal

0.961, 0.967 recall, and 0.966 f1-score. In a conclusion, they found that

RNN is a more effective approach to classifying NFR than CNN and GRU

approaches.

3.2.2 Software Requirements Classification of German

Specifications

Ott [28] evaluates several classifiers that classify requirements that written

German into topics. Each topic is manually defined as a group of keywords.

The best classifier is accustomed enable inspectors to reduce requirements’

25

3.2. Software Requirements Classification Machine Learning Approaches

defects in parallel. In this research, the author focused on the multinomial

naive Bayes (MNB) and therefore the support vector machine (SVM) algo-

rithms. The major problem that the research study points out is the difficulty

of getting sufficient training examples so on improve the present recall of 0.8

and precision of 0.6.

The previous research enhanced by Knauss & Ott [29] they comparing three

classification approaches: manual, semi-automatic, and automatic. The

manual classification approach is where the user has to give one or several

categories to every requirement. The semi-automatic method automatically

classifies a given requirement but it requires modification or confirmation

from the user. Finally, the automatic classifier does not require a manual con-

firmation or modification. Their research results show that a semi-automatic

approach is the most promising, as provides the best ratio of quality and

effort also the best learning performance.

Winkler et al [30] in this paper, the authors present an approach to auto-

matically classify content elements of a natural language requirements spec-

ification as “requirement” or “information”. This approach depends on con-

volutional neural networks. The authors used a set of 10,000 content ele-

ments extracted from 89 requirements specifications of our industry partner

to train the neural network. In the evaluation of a real-world automotive

requirements specification which writing in German, this approach was able

to detect requirements with a precision of 0.73 and a recall of 0.89.

Table 3.1 illustrates the classification techniques used in each previous study

that was reviewed. The first column shows the existing technique/s, and the

second column shows research papers that used those techniques.

26

3.3. Automated Generation of UML Diagrams

Table 3.1: Existing Techniques

Existing Technique/s Research Papers
SVM Classifier [24]
MNB, GNB, BNB, KNN, SVM, SGD, & DTree [25]
Word2Vec [26]
RNN, CNN & GRU [27]
Rule-Based [20] [29]
NLP Tool, DTree [28] [30]
MNB, SVM [21] [22]
CNN Classifier [23]

3.3 Automated Generation of UML Diagrams

Several studies suggested approaches to automated generation of UML di-

agrams. We reviewed some research that generates UML diagrams from

Arabic requirements and others from English User Requirements.

3.3.1 Automated Generation of UML Diagrams from

Arabic User Requirements

Jabbarin and Arman [31][32] proposed a semi-automated approach to gener-

ating use case models from Arabic user requirements using natural language

processing. A set of heuristics are presented to obtain use cases. These

heuristics use the tokens produced by a natural language processing tool,

namely Stanford parser.

Arman [33] proposed an approach to generate the use case diagrams by an-

alyzing the Arabic user requirements. Using MADA+TOKAN for parsing

different statements of the user requirements written in Arabic to obtain dif-

ferent components of sentences. A set of steps are presented to construct a

use case model from Arabic user requirements.

Nassar and Khamayseh [34] proposed a semi-automated approach for con-

27

3.3. Automated Generation of UML Diagrams

structing the activity diagrams from Arabic user requirements. They split

and tokenize the Arabic user requirements using MADA+TOKAN parser.

They present a set of heuristics based on basic constructs of Arabic sentences

in order to extract information from Arabic user requirements to generate the

activity diagrams. This study aims to assist software engineers in reducing

the cost and time required to perform manual processes and activities during

the analysis phase.

Alami et al [35][36] proposed a Semi-automated Approach for generating se-

quence diagrams from Arabic user requirements. They generated part of

speech tags by parsing user Arabic requirements with a natural language

processing tool. They proposed a set of heuristics for obtaining sequence

diagram components such as objects, messages, and workflow transitions

(messages). They generated sequence diagrams to be represented using XMI

to be drawn using sequence diagram drawing tools.

3.3.2 Automated Generation of UML Diagrams from

English User Requirements

Seresht and Ormandjieva [37] proposed an approach to generate automati-

cally a high-level contextual view of the software system’s actors and services

(Context Use-Case Model - CUCM) from the textual user requirements. This

approach depends on Recursive Object Model (ROM) and Expert Compa-

rable Contextual (ECC) Models. This method can generate Context Use

Case Model (CUCM) by applying the knowledge included in ECC model to

specify actors and entailment rules for extracting CUCM elements.

Thakur and Gupta [38] proposed an Auto Sequence Diagram Generator (Au-

toSDG) for generating sequence diagram from Use Case Specification (UCS)

28

3.3. Automated Generation of UML Diagrams

was written in natural language (English). The approach uses Stanford

parser to generate POS tags and type dependencies (TDs). It then applies

the proposed sentence structure rules and transformation rules on POS tags

and TDs to identify elements to generate sequence diagram. The results

show the quality of sequence diagrams obtained by AutoSDG is better than

those obtained by existing automated approaches.

Gutiérrez et al. [39] proposed an automated method to auto-generate activity

diagram of each use case written in a specific format. The generation is per-

formed by model transformation, taking use case textual scenario as an input

and producing the corresponding activity sub-diagram. The transformation

is defined using QVT (Query/View/Transformation)-relational language and

implemented in Java as a prototype tool.

Bajwa and Choudhary [40] proposed an approach for generating a class dia-

gram from requirements written in English specifications. Software specifica-

tions are mapped to Semantic Business vocabulary and Rule (SBVR) which

is adopted standard by OMG. Semantic Business Vocabulary and Rules are

presented to generate controlled notations of software specifications. English

requirements are parsed lexically, semantically, and syntactically and SBVR

vocabulary is extracted. Then, the SBVR vocabulary is processed to con-

struct an SBVR rule. In the last phase from the SBVR’s rule, they extract

the OO information (such as classes, attributes, methods, associations, etc).

The approach is presented in a tool named NL2UMLviaSBVR.

Yue et al. [41] proposed an approach and a tool to automatically generate

the sequence diagrams from use case specifications. A set of heuristic rules

to identify the objects to presented UCSs. Also, a set of transformation rules

is presented in the same study. They have implemented their proposed ap-

29

3.3. Automated Generation of UML Diagrams

proach using a tool called a-Toucan. They validated their approach with six

case studies. They compare their approach results with a diagram created

by 4th-year undergraduate students and experts. The tool has better results

than the ones manually created by students. Also, the results show that

sequence diagrams generated by this tool are extremely consistent with the

ones devised by experts.

Ilieva and Ormandjieva [42] presented a semi-automated approach to gener-

ate and create three requirements engineering models: use case model, hybrid

activity diagram, and the domain model. Firstly, they use some of the avail-

able Part of Speech (POS) taggers to obtain the syntax category for each

word in the text. The syntax category of each word is used to discover the

role of the word in the sentence. Then arrange them in a table, there are

three roles in a sentence: subject (Su), predicate (Pr), and object (Ob). A

semantic network is created to represent the interconnections between the

elements within the whole text. The last stage is interpretation of relation-

ships extracted from the text in order to arrange this information and model

it in the form of a diagram.

30

Chapter 4

Research Approach

Chapter 2 provides an overview of software requirements, expert systems, and

NLP processing tools (CAMeL). This chapter focuses on the classification ap-

proach of the software requirements into functional and non-functional.

The new approach shows the steps of tokenizing and generating Posof the

Arabic user requirements using CAMeL Tools. We proposed a set of heuris-

tics based on basic constructs of Arabic sentences in order to classify Arabic

user requirements into FR and NFR.

4.1 Arabic Sentence Syntax

Arabic sentences are mainly formed of two types: nominal and verbal sen-

tences, the nominal sentence begins with a noun or pronoun, while the verbal

sentence begins with a verb. In order for a sentence to be nominal sentence, it

should have two main parts: the subject (

@Y
�
JJ.Ó) and the predicate (Q�.

	
g). The

verbal sentence should begin with a verb (Éª
	
¯) and has a subject (É«A

	
¯). In

more detail, the sentence also can be simple or complex, in which the simple

sentence is the sentence where each part is formed of one word only and has

31

4.2. Arabic User Requirements Classification Approach

no inner sentences in its main elements. While the complex sentence is the

sentence in which one of its main entities is another sentence [11].

4.2 Arabic User Requirements Classification

Approach

Software user requirements are often classified as functional requirements or

non-functional requirements where FR (Statements of services the system

should provide), NFR (Constraints on the services or functions offered by

the system) [5]. This section describes how the user requirements are auto-

matically classified into functional and non-functional requirements based on

Arabic sentence grammar and keywords. We reviewed several software grad-

uations projects for PPU students and SRS documents for developers to ex-

tract features that distinguish functional from non-functional requirements.

These features are used in proposing a set of heuristics for our approach. To

analyze the Arabic sentence, we used CAMeL NLP tools for parsing, tok-

enization, part of speech, and sentence splitting. We extracted the following

features for each non-functional and functional requirement and proposed

heuristics for each one.

4.2.1 Non-Functional Requirement Linguistic Features

1. Non-functional requirements can contain numbers and digits, we rep-

resented it by H#1.

2. Non-functional requirements can contain non-Arabic words, we repre-

sented it by H#2.

3. Non-functional requirements can contain adjectives/adverbs, we repre-

sented it by H#3.

32

4.2. Arabic User Requirements Classification Approach

4. Non-functional requirements can contain NFR keywords, that have

been mentioned in table 4.4 [43], and table 4.5 [23], we represented

it by H#4.

5. Non-functional requirements sentence can be a verbal sentence (the

main verb is verb-to-be) and the actor is the “system”, we represented

it by H#5.

6. Non-functional requirements can contain negation tools, we represented

it by H#6.

4.2.2 Functional Requirement Linguistic Features

1. Functional requirements sentences have some common sentence struc-

ture, we represented it by H#7.

2. Verbs that are repeated in functional requirements sentences are usually

verbs denoting action, we represented it by H#8.

3. Functional requirements sentences can be conditional sentences, we rep-

resented it by H#9.

In order to make our approach more accurate, we asked three software en-

gineering experts to evaluate our heuristics through their experience. Then

we’ve used the evaluation average as a Certainty Factor (CF) of our heuris-

tics. We got evaluations mentions in Table 4.1:

We’ve found in the evaluation of H#1 and H#2 that the evaluation of

expert#2 is lower than the evaluation of other experts, also in the evaluation

of H#5 the first expert’s evaluation is much lower than the evaluation of

others. To confirm the validity of the heuristics and the accuracy of the

experts’ evaluation average. We’ve studied a larger number of examples of

requirements and made more requirements classification experiments based

on those heuristics. As a result, we found that the average for the experts’

33

4.2. Arabic User Requirements Classification Approach

Table 4.1: Expert Evaluations for Proposed Heuristics.

Heuristics# Expert#1 Expert#2 Expert#3 Average
H#1 80% 60% 95% 78.33%
H#2 90% 60% 90% 80%
H#3 90% 70% 98% 86%
H#4 90% 90% 90% 90%
H#5 60% 90% 98% 82.66%
H#6 40% 50% 70% 53.33%
H#7.1 95% 80% 80% 88.33%
H#7.2 95% 80% 80% 88.33%
H#8 95% 70% 85% 83.33%
H#9 90% 70% 70% 76.66%

evaluations was very satisfactory for us.

Here, we manually selected a cutoff threshold (> 0.75). We have chosen this

threshold because we found that all expert evaluations larger than 75% led

to obtaining satisfactory classification results. So all the heuristics exceeding

the cutoff threshold were selected as valid heuristics.

As we can see in the above table the average rate for all heuristics is higher

than 75%, except for H#6, which was evaluated by experts as being less

reliable than the other, so based on their opinions we have modified this

heuristic to be more accurate and reliable.

Figure 4.1 describes the empirical methodology for our research. We de-

veloped a set of heuristics to classify the user requirements into functional

and non-functional requirements by extracting user requirements features,

using Arabic user grammar, analyzing PoS tags, collect FR and NFR key-

words. The input of the approach is a set of unclassified user requirements

written in Arabic language in which, the first step is normalise all require-

ments using CAMeL tools before passing text to other CAMeL Tools. The

second step is generate tokens for all statements using CAMel tokens gener-

ator. The third step is generate PoS tags for all words in given sentences.

34

4.2. Arabic User Requirements Classification Approach

Then apply the proposed heuristics using generated PoS and Tokens. To

get each sentence class compering FR Score with NFR Score then compare

FR CF with NFR CF. The output of the approach is a set of classified user

requirements.

Figure 4.1: Empirical Methodology.

35

4.3. Proposed Heuristics

4.3 Proposed Heuristics

To classify the Arabic requirements into FR and NFR, we proposed a set of

heuristics for Arabic sentences depending on the output of the CAMeL tools.

These heuristics are presented as follows:

H1: If [‘digit’] or [‘noun num’] tag exists at sentence PoS, then it is more

likely to be NFR.

The appearance of cardinals/numbers is indicating a high probability of NFR.

If cardinals/numbers are existing in sentences in any sentence syntax then

it raises the likelihood that the sentence is a non-functional requirement

whether it is written in numbers or letters. So, cardinals/numbers may dis-

tinguish non-functional requirements from functional based on their PoS tags.

In order to check whether cardinals /numbers are present in the sentence, we

have to look for all [‘digit’] or [‘noun num’] tags and then add the certainty

factor of this heuristic to the NFR CF for the certain sentence.

If this condition applies to a sentence, the certainty factor of H1 is added to

the NFR-CF of this sentence. NFR CF = 78.33%

Some Possible structures for requirements that show the locations of cardi-

nals/numbers in Arabic sentences:

1. Verb + Subject + Object (1) | Object (2) | Object (3) -> Verb + (Noun

| Pronoun) + (Noun | Preposition + Noun | + name number + Noun |

Digit + Noun) + (Noun | Preposition + Noun | name number + Noun

| Digit + Noun) + (Noun | Preposition + Noun | name number + Noun

| Digit + Noun)

CAMeL Pos Tags:

Verb + (noun — pron) + (noun | prep + noun | noun num + noun |

36

4.3. Proposed Heuristics

digit + noun) + (noun | prep + noun | noun num + noun | digit +

noun) + (noun | prep + noun | noun num + noun | digit + noun)

A. Example: ”
�
éJ

	
K A
�
K

	á�

�
KC

�
K É¿

	
�QªË@

�
IK
Yj

�
JK. ÐA

	
¢
	
JË @ Ðñ

�
®K
.”

A translation of the example: ”The system updates the display

every thirty seconds.”

CAMeL Tokens: [’Ðñ
�
®K
’, ’ÐA

	
¢
	
JË @’,’H. ’,’

�
IK
Ym

�
�
'’,’ 	

�QªË@’,’É¿’,’ 	á�

�
KC

�
K’,’

�
éJ

	
K A
�
K’,

’.’]

CAMeL PoS: [’verb’, ’noun’, ’prep’, ’noun’, ’noun’, ’noun quant’,

’noun num’, ’noun’, ’punc’]

B. Example:”
�
éJ

	
K A
�
K 30 É¿

	
�QªË@

�
IK
Yj

�
JK. ÐA

	
¢
	
JË @ Ðñ

�
®K
 .”

A translation of the example: The system updates the display ev-

ery 30 seconds.

CAMeL Tokens: [’Ðñ
�
®K
’, ’ÐA

	
¢
	
JË @’,’H. ’,’

�
IK
Ym

�
�
'’,’ 	

�QªË@’,’É¿’,’30’,’
�
éJ

	
K A
�
K’,

’.’]

CAMeL PoS: [’verb’, ’noun’, ’prep’, ’noun’,’noun’, ’noun quant’,

’digit’, ’noun’, ’punc’]

2. Subject + Verb + Object (1) | Object (2) | Object (3) -> (Noun |

Pronoun) + Verb + (Noun | Preposition + Noun | name number +

Noun | Digit + Noun) + (Noun | Preposition + Noun | name number

+ Noun | Digit + Noun) + (Noun | Preposition + Noun | Adverb +

Noun | Digit + Noun)

CAMeL PoS Tags:

(noun | pron) + Verb + (noun | prep + noun | noun num + noun |

digit + noun) + (noun | prep + noun | noun num + noun | digit +

noun) + (noun | prep + noun | noun num + noun | digit + noun)

37

4.3. Proposed Heuristics

A. Example: ”
�
éJ

	
K A
�
K

	á�

�
KC

�
K É¿

	
�QªË@

�
IK
Yj

�
JK. Ðñ

�
®K
 ÐA

	
¢
	
JË @ .”

A translation of the example: ”The system updates the display

every thirty seconds.”

CAMeL Tokens: [’ÐA 	¢ 	
JË @’, ’Ðñ

�
®K
’,’H. ’,’

�
IK
Ym

�
�
'’,’ 	

�QªË@’,’É¿’,’ 	á�

�
KC

�
K’,’

�
éJ

	
K A
�
K’,

’.’]

CAMeL PoS: [’noun’, ’verb’, ’prep’, ’noun’, ’noun’, ’noun quant’,

’noun num’, ’noun’, ’punc’]

B. Example:”
�
éJ

	
K A
�
K 30 É¿

	
�QªË@

�
IK
Yj

�
JK. Ðñ

�
®K
 ÐA

	
¢
	
JË @ .”

A translation of the example: The system updates the display ev-

ery 30 seconds.

CAMeL Tokens: [’ÐA 	¢ 	
JË @’, ’Ðñ

�
®K
’,’H. ’,’

�
IK
Ym

�
�
'’,’ 	

�QªË@’,’É¿’,’30’,’
�
éJ

	
K A
�
K’,

’.’]

CAMeL PoS: [’noun’, ’verb’, ’prep’, ’noun’,’noun’, ’noun quant”,

’digit’, ’noun’, ’punc’]

H2: If [’foreign’] tag exists at sentence PoS, then it is more likely to be NFR.

The appearance of non-Arabic words often denotes techniques or program-

ming languages, like (SQL, HTML. . . etc.). They are usually found in the

description of NFR. If foreign words are existing in sentences in any sentence

syntax, then it raises the likelihood that the sentence is a non-functional

requirement. So, foreign words can distinguish non-functional requirements

from functional based on their PoS tags. In order to check whether foreign

words are present in the sentence, we have to look for all [’foreign’] tags and

add the certainty factor of this heuristic to the NFR CF for the certain sen-

tence.

If this condition applies to a sentence, the certainty factor of H2 is added to

38

4.3. Proposed Heuristics

the NFR-CF of this sentence. NFR CF = 80%

Some possible structures for requirements that show the locations of foreign

words in Arabic sentences:

1. Verb + Subject + Object (1) | Object (2) | Object (3) -> Verb + (Noun

| Pronoun | Forgan Word) + (Noun | Preposition + Noun |Preposition

+ Forgan Word | Forgan Word) + (Noun | Preposition + Noun | Prepo-

sition + Forgan Word | Forgan Word) + (Noun | Preposition + Noun

| Preposition + Forgan Word | Forgan Word)

CAMeL PoSTags:

Verb + (noun | pron | forgan) + (noun | prep + noun | prep + forgan

| forgan) + (noun | prep + noun | prep + forgan | forgan) + (noun |

prep + noun | prep + forgan | forgan)

Example: ”.Windows XP ÉJ

	
ª
�
�
�
�Ë @ ÐA

	
¢
	
� 	áÖÞ

	
� l .

×A
	
KQ�. Ë @ ÉÒªK
”

A translation of the example: ” The program works under Windows

XP.”

CAMeL Tokens: [’ÉÒªK
’,’ l .
×A
	
KQ�. Ë @’,’ 	áÖÞ

	
�’,’ÐA 	¢

	
�’,’ÉJ

	
ª
�
�
�
�Ë @’,’Windows’,’XP’,’

’.’]

CAMeL PoS: [’verb’, ’noun’, ’noun’, ’noun’, ’forgan’, ’forgan’, ’punc’]

2. Subject + Verb + Object (1) | Object (2) | Object (3) -> (Noun | Pro-

noun | Forgan Word) + Verb + (Noun | Preposition + Noun | Forgan

Word | Preposition + Preposition) + (Noun | Preposition + Noun |

Forgan Word | Preposition + Preposition) + (Noun | Preposition +

Noun | Preposition + Forgan Word | Forgan Word)

CAMeL PoS Tags:

39

4.3. Proposed Heuristics

(noun | pron | forgan) + verb + (noun | prep + noun | prep + forgan

| forgan) + (noun | prep + noun | prep + forgan | forgan) + (noun |

prep + noun | prep + forgan | forgan)

Example: ”.Windows XP ÉJ

	
ª
�
�
�
�Ë @ ÐA

	
¢
	
� 	áÖÞ

	
� ÉÒªK
 l .

×A
	
KQ�. Ë @”

A translation of the example: ” The program works under Windows

XP.”

CAMeL Tokens: [’ l .
×A
	
KQ�. Ë @’,’ÉÒªK
’,’ 	áÖÞ

	
�’,’ÐA 	¢

	
�’,’ÉJ

	
ª
�
�
�
�Ë @’,’Windows’,’XP’,’

’.’]

CAMeL PoS: [’noun’,’verb’, ’noun’, ’noun’, ’forgan’, ’forgan’, ’punc’]

We excluded from this heuristic the words that appear in parentheses, where

they are usually explanatory words for some terms that pertain to the system

field. In order to check the appearance of a foreign word between parentheses

in the sentence, the first step is to look for this sequence of PoS tags [’punc’,

’foreign’, ’punc’] then we will not add the certainty factor of this heuristic to

the NFR flag for the certain sentence. Such as the following example:

Example: ”.(RBC) Z @QÒmÌ'@ ÐYË@
�
HAK
Q» XY« H. A�m�'. ÐA

	
¢
	
JË @ Ðñ

�
®K
”

A translation of the example: ” The system counts the number of red blood

cells (RBC).”

CAMeL Tokens: [’Ðñ
�
®K
’,’ÐA

	
¢
	
JË @’,’H. ’,’H. A�k’,’XY«’,’ �HAK
Q»’,’ÐYË@’,’Z @QÒmÌ'@’,’(’,’RBC’

,’)’ ,’.’]

CAMeL PoS: [’verb’, ’noun’, ’prep’, ’noun’, ’noun’, ’noun prop’, ’noun’,

’noun’, ’punc’, ’forgan’, ’punc’, ’punc’]

H3: If [’adj’] or [’adv’] tag exists at sentence PoS, then it is more likely to

be NFR.

The appearance of adjectives/adverbs indicates a high probability of NFR.

40

4.3. Proposed Heuristics

We propose a set of heuristics for verbal and nominal sentences as follows:

If adjectives/adverbs are existing in sentences in any sentence syntax then

it raises the likelihood that the sentence is a non-functional requirement

whether it is written in numbers or letters. So, adjectives/adverbs may dis-

tinguish non-functional requirements from functional based on their Pos tags.

In order to check whether adjectives/adverbs are present in the sentence, we

have to look for all [’adj’] or [’adv’] tags and add the certainty factor of this

heuristic to the NFR CF for the certain sentence.

If this condition applies to a sentence, the certainty factor of H3 is added to

the NFR-CF of this sentence. NFR CF = 86%

Some possible structures for requirements that show the locations of adjec-

tives/adverbs in Arabic sentences:

1. Verb + Subject + Object (1) | Object (2) | Object (3) -> Verb +

(Noun | Pronoun) + (Noun | Preposition + Noun | Adverb + Noun | +

Adjective) + (Noun | Preposition + Noun | Adverb + Noun | Adjective)

+ (Noun | Preposition + Noun | Adverb + Noun | Adjective)

CAMeL Pos Tags:

Verb + (noun | pron) + (noun | prep + noun | noun + adv | adj) +

(noun | prep + noun | noun + adv | adj) + (noun | prep + noun | noun

+ adv | adj)

Example: ”Q�
ëAÒm.Ì'@ ©J
Òm.Ì A
�
K. @
	
Yg. ©

�
¯ñÖÏ @

	
àñºK
.”

A translation of the example: ”The site should be attractive to all

audiences.”

CAMeL Tokens: [’ 	àñºK
’, ’©
�
¯ñÖÏ @’, ’ AK. @

	
Yg. ’, ’È’, ’©J
Ôg. ’, ’

Q�
ëAÒm.
Ì'@’, ’.’]

CAMeL PoS: [’verb’, ’noun’, ’adj’, ’prep’, ’noun’, ’noun’, ’punc’]

41

4.3. Proposed Heuristics

2. Subject + Verb + Object (1) | Object (2) | Object (3) -> (Noun |

Pronoun) + Verb + (Noun | Preposition + Noun | Adverb + Noun |

+ Adjective) + (Noun | Preposition + Noun | Adverb + Noun | Ad-

jective) + (Noun | Preposition + Noun | Adverb + Noun | Adjective)

CAMeL PoS Tags:

(noun | pron | forgan) + Verb + (noun | prep + noun | noun + adv

| adj) + (noun | prep + noun | noun + adv | adj) + (noun | prep +

noun | noun + adv | adj)

Example: ”
�
é
�
�A

�
�Ë@ ú

	
¯
�
é
�
KYjÖÏ @

�
HA

	
KAJ
J. Ë @ úÎ«

	
 A

	
®jÊË ©K
Qå� É¾

�
��. I. J
j.

�
���
 i.

�
J
	
JÖÏ @.”

A translation of the example: ”The product responds quickly to keep

the updated data in the screen”

CAMeL Tokens: [’i.
�
J
	
JÖÏ @’, ’I. J
j.

�
���
’,’H. ’,’É¾

�
�’,’©K
Qå�’,’È’,’

	
 A

	
®mÌ’,’úÎ«’,’ �HA

	
KAJ
J. Ë @’

,’
�
é
�
KYjÖÏ @’ ,’ú

	
¯’ ,’

�
é
�
�A

�
�Ë@’ ,’.’]

CAMeL PoS: [’noun’, ’verb’, ’prep’, ’noun’, ’adj’, ’prep’, ’noun’, ’prep’,

’noun’, ’noun’, ’perp’, ’noun’, ’punc’]

H4: If any of lemmas of Tokens[sentence] exists at NFR keywords lookup

table lemmas, then it is more likely to be NFR.

If the sentence contains keywords of non-functional requirements, that has

been mentioned in table 4.4, and table 4.5. It raises the likelihood that the

sentence is a non-functional requirement. We can find out whether the prob-

ability that this sentence is a non-functional requirement by returning the

subjects/ object to their Lemma using CAMeL tools Lemmas then compar-

ing them with the lemma of Keywords in table 4.4, and table 4.5. So, there

are keywords that may distinguish non-functional requirements from func-

tional ones.

42

4.3. Proposed Heuristics

If this condition applies to a sentence, the certainty factor of H4 is added to

the NFR-CF of this sentence. NFR CF = 90%

Some examples of requirements that contain NFR Keywords:

1. Example: ”
�
é
	
K AJ
�ÊË CK. A

�
¯ i.

�
J
	
JÖÏ @

	
àñºK

	
à

@ I. m.

�'

.”

A translation of the example: ”The product should be Maintainable.”

CAMeL Tokens: [’I. m.
�'

’ ’

	
à

@’,’ 	àñºK
’,’i.

�
J
	
JÖÏ @’,’CK. A

�
¯’,’È’,’

�
é
	
K AJ
�Ë’,’.’]

CAMeL Lemma: [’I. k. ð’, ’
�	
à

@’,’ 	àA¿’,’i.

�
J
	
JÓ’,’ÉK. A

�
¯’,’

�
é
	
K AJ
�’, ’.’]

CAMeL PoS: [’verb’, ’conj sub’, ’verb’, ’noun’, ’adj’, ’prep’, ’noun’,

’punc’]

2. Example: ”
�
éJ

	
Kñ
	
KA
�
®Ë @

�
HAJ. Ê¢

�
JÖÏ @ ©Ó

�
�J
J.¢

�
JË @

�
�
	
¯@ñ

�
JK

	
à

@ I. m.

�'

.”

A translation of the example: ”The application should comply with

legal requirements.”

CAMeL Tokens: [’I. m.
�'

’, ’ 	à@’,’

�
�
	
¯@ñ

�
JK
’,’

�
�J
J.¢

�
JË @’,’©Ó’,’ �HAJ. Ê¢

�
JÖÏ @’,’

�
éJ

	
Kñ
	
KA
�
®Ë @’,’

’.’]

CAMeL Lemma: [’I. k. ð’, ’
�	
à

@’,’

�
�
	
¯@ñ

�
K’,’

�
�J
J.¢

�
�’,’©Ó’,’ �HAJ. Ê¢

�
JÓ’,’ �ú

	
Gñ

	
KA
�
¯’,’ ’.’]

CAMeL PoS: [’verb’, ’conj sub’, ’verb’, ’noun’, ’prep’, ’noun’, ’adj’,

’punc’]

H5: If [’part neg’] tag exists at sentence PoS, then it is more likely to be

NFR.

Usually, non-functional requirements talk about determinants and limitations

(Usually: security and performance), so the negative sentences may be classi-

fied closer to non-functional requirements. It can be determined by checking

if any negative prefixes are present in the sentence. If negative prefixes are

existing in sentences in any sentence syntax, then it raises the likelihood that

43

4.3. Proposed Heuristics

the sentence is a non-functional requirement whether it is written in numbers

or letters. So, negative prefixes may distinguish non-functional requirements

from functional based on their PoS tags. In order to check whether negative

prefixes are present in the sentence, we have to look for all [’part neg’] tags

and add the certainty factor of this heuristic to the NFR flag for the certain

sentence.

Negation in the Arabic language is the denial of something or its negation by

something else that contradicts it. The negation method is used to negate

the sentence, whether it is verbal or nominal, using one of the negation tools

(ÕË , AÓ ,��
Ë ,
	áË , AÖÏ , B).

If this condition applies to a sentence, the certainty factor of H5 is added to

the NFR-CF of this sentence. NFR CF = 82.66%

Some examples of requirements that contain negative prefixes:

1. Example: ”ÐA 	¢ 	
JË @ Èð

ñ�Ó

�
é¢�@ñK. B@ YK
Yg. H. A�k ZA

�
�
	
� @ 	áºÖß
 B.”

A translation of the example: ”A new account can only be created by

the system administrator.”

CAMeL Tokens: [B’, ’ 	áºÖß
’,’ZA ��
	
� @’,’H. A�k’,’YK
Yg. ’,’B@’,’

�
é¢�@ñK. ’,’Èð

ñ�Ó’,

’ÐA 	¢ 	
JË @’,’.’]

CAMeL PoS: [’ part neg ’, ’verb’, ’noun’, ’noun’, ’adj’, ’part’, ’prep’,

’noun’, ’noun’, ’noun’, ’punc’]

2. Example: ”
�
éJ

	
K A
�
K 30 	PðAj.

�
JK
 B

�
I

�
¯ð ú

	
¯ l .

�

'A
�
J
	
JË @ úÎ« Èñ�mÌ'@ I. m.

�'

.”

A translation of the example: ”Results shall be obtained in no longer

than 30 seconds.”

CAMeL Tokens: [’I. m.
�'

’, ’Èñ�mÌ'@’,’úÎ«’,’ l .

�

'A
�
J
	
JË @’,’ú

	
¯’,’ �I

�
¯ð’,’B’,’ 	PðAj.

�
JK
’,’30’,

’
�
éJ

	
K A
�
K’, ’.’]

44

4.3. Proposed Heuristics

CAMeL PoS: [’verb’, ’noun’, ’prep’, ’noun’, ’prep’, ’noun’, ’part neg’,

’verb’, ’digit’, ’noun’, ’punc’]

H6: If the main actor is the “system”, or one of its synonyms in Arabic,

then it is more likely to be NFR.

If the system is the main actor in the requirement, indicating that the re-

quirement. The system in Arabic could be: (©
�
¯ñÖÏ @ ,

�
�J
J.¢

�
JË @ , l .

×A
	
KQ�. Ë @ , ÐA

	
¢
	
JË @).

If the sentence is verbal then the main actor is the first subject after the

main verb whereas (the main verb is the first verb in the sentence that is

followed by a noun). This heuristic is presented as follows:

(’verb’, ’conj sub’,)Verb + Subject + Object -> Verb + (Noun | Pronoun)

+ (Noun | Preposition + Noun | Adverb + Noun)

CAMeL Pos Tags:

Verb + (noun | pron) + (noun | prep + noun | noun + adv) + (noun | prep

+ noun | noun + adv) + (noun | prep + noun | noun + adv)

If this condition applies to a sentence, the certainty factor of H6 is added to

the NFR-CF of this sentence. . NFR CF = 53.33%

Example:” �
I

�
¯ñË@ 	áÓ % 99

�
éJ.�

	
�K. A

�
gA

�
JÓ i.

�
J
	
JÖÏ @

	
àñºK

	
à

@ I. m.

�'

.”

A translation of the example: The product shall be available 99% of the time.

CAMeL Tokens: [’I. m.
�'

’, ’

	
à@’, ’ 	àñºK
’, ’i.

�
J
	
JÖÏ @’,’ AgA

�
JÓ’, ’

�
éJ.�

	
�K. ’, ’99’, ’%’, ’ 	áÓ’,

’ �I
�
¯ñË@’, ’.’]

CAMeL PoS: [’verb’, ’conj sub’, ’verb’, ’noun’, ’adj’, ’prep’ ,’noun’, ’digit’,

’punc’, ’prep’, ’noun’, ’punc’]

As we noticed from our reading of the non-functional requirements that we

reviewed, in many of them the actor is the system. When we were asked to

evaluate this rule by experts, it was rated less than 75%, so we added some

45

4.3. Proposed Heuristics

conditions to it to be more accurate and credible, as follows:

1. In cases where the main verb in the sentence is “verb to be” that

means it does not indicate an action, this is closer to non-functional

requirements. For example, the system must be secure.

2. In cases where the main verb denotes movement and action, and the

actor is the system, this is almost closer to functional requirements.

Such as: that the system calculates the rates.

H7: We found some common structures for Functional Requirements. As

we indicated in the previous heuristic there are correct structures of the

Arabic sentence, we concluded through our study of the SRS documents there

are certain structures are repeated in the functional requirements sentences,

which we explain as follows:

• H7.1) ” 	
à

@” + Verb + Subject + Object (1) | Object (2) | Object (3)

->” 	
à

@” +” 	

àñºK
” + (Noun | Pronoun) + ” @PXA
�
¯” + (Noun | Preposition

+ Noun) + (Noun | Preposition + Noun)

CAMeL PoS Tags:

tokens [0] = [‘ 	à

@’] + verb + (noun | pron) + tokens [1] = [‘ 	àñºK
’] +

tokens [3] = [‘ @PXA
�
¯’] + (noun | prep + noun) + (noun | prep + noun)

If this condition applies to a sentence, the certainty factor of H7.1 will

add the FR CF of this sentence. FR CF = 88.33%

Where the verb is 	
àñºK
, and the first object is @PXA

�
¯

1. Example: ”H. C¢Ë@ ÉJ
j. �
�
� úÎ« @PXA

�
¯

	
¬Qå

�
�ÖÏ @

	
àñºK

	
à

@ .”

A translation of the example: ”The supervisor should be able to

enroll students.”

46

4.3. Proposed Heuristics

CAMeL Tokens: [à@’, 	
àñºK
’,’

	
¬Qå

�
�ÖÏ @’,’ @PXA

�
¯’,’úÎ«’,’ÉJ
j. �

�
�’,’H. C¢Ë@’,’.’]

CAMeL PoS: : [’conj sub’, ’verb’, ’noun’, ’adj’, ’prep’, ’noun’,

’noun’, ’punc’]

2. Example: ” é�KAÓñÊªÓ Q�
J

	
ª
�
K úÎ« @PXA

�
¯ ÐY

	
j
�
J�ÖÏ @

	
àñºK

	
à

@.”

A translation of the example: ”The user is able to change his in-

formation.”

CAMeL Tokens: [à@’, 	
àñºK
’,’ÐY

	
j
�
J�ÖÏ @’,’ @PXA

�
¯’,’úÎ«’,’Q�
J

	
ª
�
K’,’ �HAÓñÊªÓ’,’ è’

,’.’]

CAMeL PoS: [’conj sub’, ’verb’, ’noun’, ’adj’, ’prep’, ’noun’, ’noun’,’pron’,

’punc’]

• H7.2) ” 	
à

@” + Subject +Verb + Object (1) | Object (2) | Object (3) ->

” 	
à

@” + ” 	áºÒ

�
JK
” + (Noun | Pronoun) + (Noun | Preposition + Noun)

+ (Noun | Preposition + Noun) + (Noun | Preposition + Noun)

CAMeL PoS Tags:

tokens [0] = [‘ 	à

@’] + tokens [1] = [‘ 	áºÒ�JK
‘] + verb + (noun | pron) +

(noun | prep + noun) + (noun | prep + noun)

Where the verb is ’ 	áºÒ�JK
.

If this condition applies to a sentence, the certainty factor of H7.2 will

add the FR CF of this sentence.

FR CF = 88.33%

1. Example: ”
�
�A�Ó ÉJ
j. �

�
� 	áÓ I. ËA¢Ë@

	áºÒ
�
JK

	
à

@.”

A translation of the example: ”The student should be able to reg-

ister a course.”

CAMeL Tokens: [’ 	à@’, ’ 	áºÒ�JK
’, ’I. ËA¢Ë@’, ’
	áÓ’, ’ÉJ
j. �

�
�’, ’

�
�A�Ó’, ’.’]

47

4.3. Proposed Heuristics

CAMeL PoS: [’conj sub’, ’verb’, ’noun’, ’prep’, ’noun’, ’noun’,

’punc’]

2. Example: ”
	

­ÊÓ ZA
�
�
	
� @

	áÓ ÐY

	
j
�
J�ÖÏ @ 	áºÒ

�
JK

	
à

@.”

A translation of the example: ”The user can create a file.”

CAMeL Tokens: [à@’, 	áºÒ
�
JK
’,’ÐY

	
j
�
J�ÖÏ @’,’ 	áÓ’,’ZA ��

	
� @

’,’

	
­ÊÓ’,’ ’.’]

CAMeL PoS: [’conj sub’, ’verb’, ’noun’, ’prep’, ’noun’, ’noun’,

’punc’]

H8: If any of lemmas of sentence Token exists at FR keywords lookup table

lemmas, then it is more likely to be FR.

Some words are repeated in the main verb of functional requirements sen-

tences. The main verb is usually the first verb (PoS: verb) in the sentence

after the main actor(PoS: noun).

Usually, the main verbs in functional requirements denote the movement

”action”. The main verb in the Arabic sentence can be known through the

following linguistic structures:

Verb + Subject + Object -> Verb + (Noun | Pronoun) + (Noun | Preposi-

tion + Noun | Adverb + Noun)

CAMeL PoS: Verb + (noun | pron) + (noun | prep + noun | noun + adv) +

(noun | prep + noun | noun + adv) + (noun | prep + noun | noun + adv)

After getting the main verb from the sentence based on the sentence struc-

ture and on the output of complete tools, we convert the verb to its lemma

using CAMeL tools and compare it from the lookup table shown below 4.2.

We can find out whether the probability that this sentence is a functional

requirement by returning the main verbs to their Lemma using CAMeL tools

Lemmas then comparing them with the lemma of Keywords. So, there are

48

4.3. Proposed Heuristics

Table 4.2: Functional Main Verb Keywords.

English Verbs Arabic Verbs

Add
	

­J

	
��

Register Éj. ��

Modify ÈYªK

Update �
HYm�'

Filling
úæ
.
ªK

Activate Éª
	
®K

Display 	
�QªK

Delete
	

¬
	
Ym�'

Calculate I. �m�'

Create
úæ
�
�
	
JK

Search �
Ij�. K

Choose PA
�
J
	
m�'

Send É�QK

keywords that may distinguish non-functional requirements from functional

ones.

If this condition applies to a sentence, the certainty factor of H8 is added to

the FR CF of this sentence. FR CF = 83.33%

1. Example: ”
�
éJ
�

	
�
�
éËA�P ÐY

	
j
�
J�ÖÏ @
úæ

�
�
	
JK

	
à

@.”

A translation of the example: ”The user should creates a text message.”

CAMeL Tokens: [’ 	à@’, ’
úæ�� 	JK
’, ’ÐY
	
j
�
J�ÖÏ @’, ’

�
éËA�P’, ’

�
éJ
�

	
�’, ’.’]

CAMeL Lemma: [’
��	
à

�

@’, ’

A
�
�
�
�	
�

�

@’, ’ÐY�

�	
j
��
J
�
�
�
Ó’, ’

�
é
�
Ë A�P

�
’, ’ �

�
�	
�’, ’.’]

CAMeL PoS: [’conj sub’, ’verb’, ’noun’, ’noun’, ’noun, ’punc’]

2. Example: ” AêÊJ
j. �
�
� YK
XQK
 ú

�
æË @

�
HA

�
¯A�ÖÏ @ I. ËA¢Ë@ PA

�
J
	
m�'

	
à

@.” A translation

of the example: ”The student chooses the courses he wants to regis-

ter.”

49

4.3. Proposed Heuristics

Table 4.3: Functional Requirements Keywords.

English Verbs Arabic Verbs

Adding
�
é
	
¯A

	
�@

Registration ÉJ
j. �
�
�

Modification ÉK
Yª
�
K

Update �
IK
Ym

�
�
'

Filling
�
é

JJ.ª

�
K

Activation ÉJ
ª
	
®
�
K

Displays 	
�Q«

Delete
	

¬
	
Yg

Calculation H. A�k

Creation ZA
�
�
	
� @

Search �
Im�'.

Selection PAJ

�
J
	
k@

Sending ÈA�P@

CAMeL Tokens: [’ 	à@’, ’PA�J
	
m�'
’, ’I. ËA¢Ë@’, ’

�
HA

�
¯A�ÖÏ @’, ’ú

�
æË@’, ’YK
QK
’, ’ÉJ
j. �

�
�’,

’ Aë’ ,’.’]

CAMeL Lemma: [’
�	
à

@’, ’PA�J

�	
k@’, ’I. Ë�A£’, ’

�
HA

�
¯A�ÖÏ @’, ’ø

	
Y�

��
Ë @’, ’ø

�
X �P

�

@’, ’ÉJ
j.�

�
�
��
�’,’.’]

CAMeL PoS: [’conj sub’, ’verb’, ’noun’, ’noun prop’, ’pron rel’, ’verb’,

’noun’, ’pron’, ’punc’]

Also, this action can be contained in the form of words (PoS: noun) in some

sentence structures. These words are usually found after the preposition in

the sentence. After getting any of these words from the sentence based on

the sentence structure and on the output of complete tools, we convert it to

its lemma using CAMeL tools and compare it from the lookup table shown

below 4.3.

1. Example: ”
�
�K
Y�

�
é
	
¯A

	
�@

 úÎ

« @ �PXA
�
¯ ÐY

	
j
�
J�ÖÏ @

	
àñºK

	
à

@.”

A translation of the example: ”User should be able to add a friend.”

50

4.3. Proposed Heuristics

CAMeL Tokens: [’ 	à

@’, ’ 	àñºK
’, ’ÐY

	
j
�
J�ÖÏ @’, ’ @PXA

�
¯’, ’úÎ«’, ’

�
é
	
¯A

	
�@’, ’

�
�K
Y�’,

’.’]

CAMeL Lemma: [’
��	
à

@’, ’ 	àA¿’, ’ÐY

	
j
�
J�ÖÏ @’, ’PX� A

�
¯’, ’úÎ«’, ’

�
é
�	
¯A

	
�@

�
’, ’

�
�K

��
Y�� ’, ’.’]

CAMeL PoS: [’conj sub’, ’verb’, ’noun’, ’adj’, ’prep’, ’noun’, ’noun prop’,

’punc’]

2. Example: ”I. ËA£ H. A�k ÉJ
ª
	
®
�
K 	áÓ

	
¬Qå

�
�ÖÏ @ 	áºÒ

�
JK

	
à

@.”

A translation of the example: ”The supervisor should be able to acti-

vate a student account.”

CAMeL Tokens: [’ 	à

@’, ’ 	áºÒ�JK
’, ’

	
¬Qå

�
�ÖÏ @’, ’ 	áÓ’, ’ÉJ
ª

	
®
�
K’, ’H. A�k’, ’I. ËA£’,

’.’]

CAMeL Lemma: [’
��	
à

�

@’, ’ 	á

��
º�Ü

��
ß’, ’

	
¬

��Qå
�
�
�
�
Ó’, ’ 	áÓ� ’, ’ÉJ
ª�

�	
®
��
K’, ’H. A�k� ’, ’I.

�
ËA£’,

’.’]

CAMeL PoS: [’conj sub’, ’verb’, ’noun’, ’prep’, ’noun’, ’noun’, ’noun’,

’punc’]

H9: If the sentence is a conditional sentence, it means that there is highly

probability that it is FR.

The sentence is more likely to be FR if its structure as the following:

Subordinating Conjunction + (Verb | Negative Particle +Verb) + (Connec-

tive Particle + Pseudo Verb) | Future Particle | (Response Conditional+

Future Particle) + verbal sentence.

If the sentence is a conditional sentence, means that it is highly probability

of FR. We propose a set of heuristics for conditional sentences as follows:

51

4.3. Proposed Heuristics

Conditional sentences could be:

• Proof sentence.

• Negation sentence.

Conditional Arabic sentence’s structure is:

1Conditional Particle + 2Conditional sentence + 3Answer Particle + 4Con-

ditional Answer

1. Conditional particle: There are two common condition particles in Ara-

bic Language (” @
	
X @

”,”ñË”). These tags are (subordinating conjunction)

in CAMeL tools [‘conj’].

2. Conditional sentence: A conditional sentence is a verbal sentence.

There are two types of conditional sentences: proof and negation sen-

tences.

• Proof sentence contests of condition particle followed by condi-

tional sentence directly without existing of negation particle (neg-

ative particle ”ÕË”)

• Negation sentence has the negation particle (negative particle ”ÕË”)

after the conditional particle.

3. Answer Particle: Answer particle is an adverb for the condition answer.

Answer particles in Arabic language are:” 	
àA

	
¯”, ”

	
¬ñ�”, ”

	
¬ñ�

	
¯”. The

tags for them are: (”
	

¬” connective particle +” 	
à@

” Pseudo verb) ,

(”
	

¬ñ�” Future particle) , (”
	

¬” Response conditional)

4. Conditional answer: The conditional answer is a verbal sentence.

52

4.3. Proposed Heuristics

Conditional sentences Tags:

Subordinating Conjunction + (Verb | Negative Particle +Verb) + (Connec-

tive Particle + Pseudo Verb) | Future Particle | (Response Conditional+

Future Particle) + verbal sentence

CAMeL PoS Tags:

conj + (verb | part neg + verb) + (part rc + part emphac | part fut |

part rc+ part fut) + (Verb + (Noun | Pronoun) + (Noun | Preposition +

Noun | Adverb + Noun))

If this condition applies to a sentence, the certainty factor of H9 is added the

FR CF of this sentence. FR CF = 76.66%

1. Example: ” Aê
	
¯
	
Yg Õ

�
æJ
� ú

	
GX

B@ YmÌ'@ 	áÓ É

�
¯

@
�
éJ.ª

�
�Ë@ ú

	
¯ H. C¢Ë@ XY«

	
àA¿ @

	
X @.”

A translation of the example: ”If there are no registered students, the

supervisor will be able to delete the section.”

CAMeL Tokens: [’ @
	
X @’, ’ 	àA¿’, ’XY«’, ’H. C¢Ë@’, ’ú

	
¯’, ’

�
éJ.ª

�
�Ë@’, ’É

�
¯

@’, ’ 	áÓ’,

’YmÌ'@’, ’ú
	
GXB@’, ’�’, ’Õ �æK
’, ’

	
¬

	
Yg’ , ’ Aë’ ,’.’]

CAMeL PoS: [’conj’, ’verb’, ’noun’, ’noun’, ’prep’, ’noun’, ’noun’, ’prep’,

’noun’, ’noun’, ’part fut’, ’verb’, ’noun’, ’pron’, ’punc’]

2. Example: ” AëPAê 	£AK. Èð

ñ�ÖÏ @ ÐA

�
¯ @

	
X @

é
�
JÓC«

�
éK

ðP 	áÓ I. ËA¢Ë@

	áºÒ
�
J�
�.”

A translation of the example: ”The student will be able to see his mark

if the supervisor shows it.”

CAMeL Tokens: [’�’, ’ 	áºÒ�JK
’, ’I. ËA¢Ë@’, ’
	áÓ’, ’

�
éK

ðP’, ’ �HAÓC«’, ’ è’, ’ @

	
X @’,

’ÐA
�
¯’, ’Èð

ñ�ÖÏ @’, ’H. ’, ’PAê
	
£@’, ’ Aë’, ’.’]

CAMeL PoS: [’part fut’, ’verb’, ’noun’, ’prep’, ’noun’, ’noun’, ’pron’,’conj’,

’verb’, ’adj’, ’prep’, ’noun’, ’pron’, ’punc’]

53

4.4. The Novel Approach for Classification of Arabic User Requirements

4.4 The Novel Approach for Classification of

Arabic User Requirements

The following algorithmic steps represent the classification of the Arabic user

requirements into functional and non-functional requirements based on the

presented heuristics.

Algorithm 1 Algorithm of Applying Heursticis

Input: Unclassified Arabic User Requirements
Output: Classified Requirements
FR Score [] = 0
NFR Score [] = 0
FR CF [] = 0
NFR CF[] = 0
Tokens = []
PoS Tags = []
for all Unclassified Arabic User Requirements statements

Step 1: Normalize the Arabic user requirements using CAMeL tools.
Step 2: Tokenize the Arabic user requirements using CAMeL tools.
Step 3: Generate the PoS tags of the Arabic user requirements tokens
using CAMeL tools.
Step 4: Apply proposed heuristics from H1 to H9:
if [‘digit’] or [‘noun num’] tag exists at PoS Tags[sentence] then

NFR Score[sentence] = +1
NFR CF [sentence] = Maximum (NFR CF [sentence], 0.875)

end if
if [’foreign’] tag exists in PoS Tags[sentence] then

NFR Score[sentence] = +1
NFR CF [sentence] = Maximum (NFR CF [sentence], 0.90)

end if
if [’adj’] or [’adv’] tag exists at PoS Tags[sentence] then

NFR Score[sentence] = +1
NFR CF [sentence] = Maximum (NFR CF [sentence], 0.86)

end if
if any of lemmas of Tokens[sentence] existing at NFR keywords lookup
table lemmas then

NFR Score[sentence] = +1
NFR CF [sentence] = Maximum (NFR CF [sentence], 0.90)

end if

54

4.4. The Novel Approach for Classification of Arabic User Requirements

if [’part neg’] tag exists at PoS Tags[sentence] then
NFR Score[sentence] = +1
NFR CF [sentence] = Maximum (NFR CF [sentence], 0. 8266)

end if
if the sentence is verbal and the main actor is the “system” & the [‘verb’]
Tokens is ‘verb to be’ then

NFR Score[sentence] = +1
NFR CF [sentence] = Maximum (NFR CF [sentence], 0.5333)

end if
if the requirements are at one of the Functional Requirements structures
then

FR Score[sentence] = +1
FR CF [sentence] = Maximum (FR CF [sentence], 0.88.33)

end if
if any of lemmas of Tokens[sentence] existing at FR keywords lookup
table lemmas. then

FR Score[sentence] = +1
FR CF [sentence] = Maximum (FR CF [sentence], 0. 8333)

end if
if the sentence is a conditional sentence, means that it is highly proba-
bility of Functional Requirements. then

FR score[sentence] = +1
FR CF[sentence] = Maximum (FR CF[sentence], 0. 7666)

end if
end for
Step 5: Compare each sentence’s Scores and CFs to determine the class
it belongs to:
if (FR Score[sentence] > NFR Score[sentence]) then
Class[Sentence] = FR

else if (FR Score[sentence] < NFR Score[sentence]) then
Class [Sentence] = NFR

else if (FR Score[sentence] == NFR Score[sentence]) then
if (FR CF[sentence] > NFR CF[sentence]) then

Class[Sentence] = FR
else if (FR CF[sentence] < NFR CF[sentence]) then

Class[Sentence] = NFR
else if (FR CF[sentence] == NFR CF[sentence]) then

Class [Sentence] = Nan
end if

end if

55

4.5. Case Study

4.5 Case Study

In this section, we illustrate the proposed approach and show how we classify

Arabic user requirements. We chose one of the projects on the Internet to

test our approach. We chose an SRS document written in English [44], and

then we request a translation expert to translate the functional and non-

functional requirements into Arabic. We chose 10 Functional requirements

by selecting the first 10 odd numbers, then we chose 10 non-functional re-

quirements in the same way to be our benchmark 4.6.

The chosen SRS is for an Android Mobile Application project. The main idea

of this project is to provide a new messaging system named location-based

messaging system and a new social platform that gives people a chance to

meet new people with the same interests.

This project has two major features: The first one is a location-based mes-

saging system. It enables the user to see the location of his/her friend and

message with that friend on the same interface. The second major feature

is event-based which enables the user to create events and share posts with

the locations, photos, and contents.

Table 4.6: Case Study

Sentences in Arabic Sentences in English

F
u
n
ct
io
n
al

úÎ« @ �PXA
�
¯ ÐY

	
j
�
J�ÖÏ @

	
àñºK

	
à

@ I. m.

�'

�
éJ
ÊÔ

« ÉJ.
�
¯ é

	
®
�
KAë Õ

�
P̄ 	áÓ

�
�
�
®j

�
JË

.
�
éJ
Êª

	
®Ë @ ÉJ
j. �

�
�Ë @

User shall be able to verify his/her

phone number before actual regis-

tration process.

56

4.5. Case Study

úÎ« @ �PXA
�
¯ ÐY

	
j
�
J�ÖÏ @

	
àñºK

	
à

@ I. m.

�'

.
�
�J
J.¢

�
JË @ ÐA

	
¢
	
� 	áÓ éK. A�k

	
¬

	
Yg

User shall be able to delete his ac-

count from system of application.

úÎ« @ �PXA
�
¯ ÐY

	
j
�
J�ÖÏ @

	
àñºK

	
à

@ I. m.

�'

. é

KA
�
¯Y�

@ 	áÓ

�
�K
Y�

	
¬

	
Yg

User shall be able to delete friend in

his friends.

úÎ« @ �PXA
�
¯ ÐY

	
j
�
J�ÖÏ @

	
àñºK

	
à

@ I. m.

�'

�
é¢�
Q

	
mÌ'@ úÎ« ZA

�
¯Y�

B@ ©

�
¯ñÓ

�
éK

ðP

.
�
éJ
��

KQË @

User shall be able to see location of

friends on main map.

úÎ« @ �PXA
�
¯ ÐY

	
j
�
J�ÖÏ @

	
àñºK

	
à

@ I. m.

�'

ú

	
¯

�
�K
Y�

�
éK

ðQË Q¢

�
®»

�
é
	
¯A�ÖÏ @ YK
Ym

�
�
'

.
�
é
	
JJ
ªÓ

�
é
�
®¢

	
JÓ

User shall be able to select the dis-

tance as diameter in order to see

friend in certain area.

úÎ« @ �PXA
�
¯ ÐY

	
j
�
J�ÖÏ @

	
àñºK

	
à

@ I. m.

�'

øQK
 AÒ
	
J�
K. Yg@ð

�
�K
Y� ©Ó

�
é
�
�XPYË@

. é
�
®K
Y� ©

�
¯ñÓ ð éª

�
¯ñÓ ÐY

	
j
�
J�ÖÏ @

User shall be able to chat with one

friend while user is seeing his loca-

tion and his friend’s location.

57

4.5. Case Study

úÎ« @ �PXA
�
¯ ÐY

	
j
�
J�ÖÏ @

	
àñºK

	
à

@ I. m.

�'

ÑêªÓ
�
HYmÌ'@

�
é»PA

�
�ÖÏ ZA

�
¯Y�

B@ PAJ

�
J
	
k@

. ¡
�
®
	
¯

User shall be able to select friends in

order to share event only with them.

úÎ« @ �PXA
�
¯ ÐY

	
j
�
J�ÖÏ @

	
àñºK

	
à

@ I. m.

�'

�
IÖ

�
ß ú

�
æË @

�
é�A

	
mÌ'@

�
H@Yg

B@

�
éK

ðP

.
�
é¢�
Q

	
mÌ'@ úÎ« éªÓ Aî

�
D»PA

�
�Ó

User shall be able to see private

events that shared with him on map.

úÎ« @ �PXA
�
¯ ÐY

	
j
�
J�ÖÏ @

	
àñºK

	
à

@ I. m.

�'

úÎ«
�
è
	Q�
ÒÖÏ @

�
H@Yg

B@ ©J
Ô

g
.

�
éK

ðP

.
�
é¢�
Q

	
mÌ'@

User shall be able to see all priv-

ileged events on map.

úÎ« @ �PXA
�
¯ ÐY

	
j
�
J�ÖÏ @

	
àñºK

	
à

@ I. m.

�'

ÐAªË@
�
HYmÌ'@ Qº

�
JJ.Ó úÍ@

I. Ê£ ÈA�P@

.
�
HYmÌ'@ úÍ@

ÐAÒ

	
�
	
�CË

User shall be able to send a request

to creator of public event for joining

event.

N
on

F
u
n
ct
io
n
al

Ñ«X úÎ« @PXA
�
¯

�
�J
J.¢

�
JË @

	
àñºK

	
à

@ I. m.

�'

ú

	
¯ ÐY

	
j
�
J�Ó 100.000 	á« É

�
®K
 B AÓ

. Yg@ð
�
I

�
¯ð

The app shall be able to support at

least 100.000 simultaneous users.

58

4.5. Case Study

ÉJ
j. �
�
�Ë @ É

�
JÓ

	
­

KA
	
£ñË@ ©J
Ô

g
.
Z @X

@ I. m.

�'

�
éK

ðPð É

KA�QË@ ÐC

�
J�@ð É

KA�QË@ ÈA�P@

ð

�
éK

ðPð

�
é¢�
Q

	
mÌ'@ úÎ« ZA

�
¯Y�

B@ ©

�
¯@ñÓ

3 	áÓ É
�
¯

@ ú

	
¯

�
é¢�
Q

	
mÌ'@ úÎ«

�
H@Yg

B@

.
	
à
�
@ñ
�
K

All of the functions such as regis-

tration, sending messages, receiving

messages, seeing locations of friends

on map, seeing events on map shall

perform in less than 3 seconds.

øQ
	
k

B@

�
HA

�
®J
J.¢

�
JË @ É�

�
� B

@ I. m.

�'

úÍ@

ÐY
	
j
�
J�ÖÏ @

	
­

�
KAë úÎ«

�
èXñk. ñÖÏ @

ÐY
	
j
�
J�ÖÏ @

	
­

�
KAë ú

	
¯

�
é
	
K 	Q

	
jÖÏ @

�
HA

	
KAJ
J. Ë @

. AîE. I. «C
�
J
�
Kð

Other applications on user’s phone

should not reach and manipulate

stored data in phone of user.

�
éÒÊ

�
J�ÖÏ @ð

�
éÊ�QÖÏ @

�
HA

	
KAJ
J. Ë @ É

�
®
	
K I. m.

�'

.HTTP ÈA�
�
�@ Q�.«

Sent and received data should be

transferred via HTTP connection.

6 	áÓ PðQÖÏ @
�
éÒÊ¿

	
àñº

�
J
�
K

	
à

@ I. m.

�'

. É
�
¯

B@ úÎ«

	
¬Qk

@

Password shall be at least 6 charac-

ters.

úÍ@

Èñ�ñË@
	á�
ÓY

	
j
�
J�ÒÊË iÒ��
 B

	áK
Q
	
k
�
B@

	á�
ÓY
	
j
�
J�ÒÊË

�
é
	
K 	Q

	
jÖÏ @

�
HA

	
KAJ
J. Ë @

. Aî
�
Dm.
Ì'AªÓð

�
HA

	
KAJ
J. Ë @

�
èY«A

�
¯ ú

	
¯

Users should not reach and manip-

ulate stored data of other users in

database.

59

4.5. Case Study

7
�
èYÖÏ A

�
gA

�
JÓ ÐA

	
¢
	
JË @

	
àñºK

	
à

@ I. m.

�'

.
�
é«A� 24 ð ÐAK

@

The system should be available for 7

days and 24 hours.

�
CK. A

�
¯ ÐA

	
¢
	
JË @ Éªk. ð , YJ

�
®ª

�
JË @ ÉJ
Ê

�
®
�
JË

I. m.
�'

 , ÐA

	
¢
	
JË @ QK
ñ¢

�
� ZA

	
J
�
K

@ ©J.

�
�
�
JÊË

É
�
JÓ P@Y�B

@ ú

	
¯ Õºj

�
JË @ ÐA

	
¢
	
� Ð@Y

	
j
�
J�@

. gitlab

To reduce complexity and make the

system traceable, a version control

system such as gitlab should be used.

ÉJ

	
ª
�
�
�
�Ë @ ÐA

	
¢
	
� P@Y�@

	
àñºK

	
à

@ I. m.

�'

.3 	áÓ Q�.»

@ 	PAêm.

Ì'@ úÎ« Android

The version of Android Operating

system on device should bigger than

3.

úÎ« ÐA
	
¢
	
JË @ @

	
Yë

	
¡
	
¯Am�'

	
à

@ I. m.

�'

.
�
HA

	
KAJ
J. Ë @

�
èY«A

�
¯

�
IK
Ym

�
�
'

This system should keep the

database updated.

1. Arabic Sentence:

�
éJ
ÊÔ

« ÉJ.
�
¯ é

	
®
�
KAë Õ

�
P̄ 	áÓ

�
�
�
®j

�
JË @ úÎ« @ �PXA

�
¯ ÐY

	
j
�
J�ÖÏ @

	
àñºK

	
à

@ I. m.

�'

.
�
éJ
Êª

	
®Ë @ ÉJ
j. �

�
�Ë @

CAMeL Tokens: [’I. m.
�'

’, ’

	
à@’, ’ 	àñºK
’, ’ÐY

	
j
�
J�ÖÏ @’, ’ @PXA

�
¯’, ’úÎ«’, ’

�
�
�
®j

�
JË @’,

’ 	áÓ’, ’Õ
�
P̄’, ’

	
­

�
KAë’, ’ è’, ’ÉJ.

�
¯’, ’

�
éJ
ÊÔ

«’, ’ÉJ
j. �
�
�Ë @’, ’

�
éJ
Êª

	
®Ë @’,’.’]

CAMeL PoS: [’verb’, ’conj sub’, ’verb’, ’noun’, ’adj’, ’prep’, ’noun’,

’prep’, ’noun’, ’noun’, ’pron’,’noun’, ’noun’, ’noun’, ’adj’, ’punc’]

60

4.5. Case Study

2. Arabic Sentence:

.
�
�J
J.¢

�
JË @ ÐA

	
¢
	
� 	áÓ éK. A�k

	
¬

	
Yg úÎ« @ �PXA

�
¯ ÐY

	
j
�
J�ÖÏ @

	
àñºK

	
à

@ I. m.

�'

CAMeL Tokens: [’I. m.
�'

’, ’

	
à@’, ’ 	àñºK
’, ’ÐY

	
j
�
J�ÖÏ @’ ’ @PXA

�
¯’, ’úÎ«’, ’

	
¬

	
Yg’,

’H. A�k’, ’ è’, ’ 	áÓ’, ’ÐA 	¢
	
�’, ’

�
�J
J.¢

�
JË @’ ,’.’]

CAMeL PoS: [’verb’, ’conj sub’, ’verb’, ’noun’, ’adj’, ’prep’, ’noun’,

’noun’, ’pron’,’prep’, ’noun’, ’noun’, ’punc’]

3. Arabic Sentence:

. é

KA
�
¯Y�

@ 	áÓ

�
�K
Y�

	
¬

	
Yg úÎ« @ �PXA

�
¯ ÐY

	
j
�
J�ÖÏ @

	
àñºK

	
à

@ I. m.

�'

CAMeL Tokens: [’I. m.
�'

’, ’

	
à@’, ’ 	àñºK
’, ’ÐY

	
j
�
J�ÖÏ @’ ’ @PXA

�
¯’, ’úÎ«’, ’

	
¬

	
Yg’,

’
�
�K
Y�’, ’ 	áÓ’, ’ZA

�
¯Y�@’, ’ è’ ’.’]

CAMeL PoS: [’verb’, ’conj sub’, ’verb’, ’noun’, ’adj’, ’prep’, ’noun’,

’noun prop’, ’prep’, ’noun’,’pron’, ’punc’]

4. Arabic Sentence:

�
é¢�
Q

	
mÌ'@ úÎ« ZA

�
¯Y�

B@ ©

�
¯ñÓ

�
éK

ðP úÎ« @ �PXA

�
¯ ÐY

	
j
�
J�ÖÏ @

	
àñºK

	
à

@ I. m.

�'

.
�
éJ
��

KQË @

CAMeL Tokens: [’I. m.
�'

’, ’

	
à@’, ’ 	àñºK
’, ’ÐY

	
j
�
J�ÖÏ @’, ’ @PXA

�
¯’, ’úÎ«’, ’

�
éK

ðP’,

’©
�
¯ñÓ’, ’ZA

�
¯Y�B@’, ’úÎ«’, ’

�
é£PA

	
mÌ'@’, ’

�
éJ
��

KQË @’, ’.’]

CAMeL PoS: [’verb’, ’conj sub’, ’verb’, ’noun’, ’adj’, ’prep’, ’noun’,

’noun’, ’noun’, ’prep’, ’noun’, ’adj’, ’punc’]

5. Arabic Sentence:

ú

	
¯

�
�K
Y�

�
éK

ðQË Q¢

�
®»

�
é
	
¯A�ÖÏ @ YK
Ym

�
�
' úÎ« @ �PXA

�
¯ ÐY

	
j
�
J�ÖÏ @

	
àñºK

	
à

@ I. m.

�'

.
�
é
	
JJ
ªÓ

�
é
�
®¢

	
JÓ

CAMeL Tokens: [’I. m.
�'

’, ’

	
à@’, ’ 	àñºK
’, ’ÐY

	
j
�
J�ÖÏ @’ ’ @PXA

�
¯’, ’úÎ«’, ’YK
Ym�

�
'’,

’
�
é
	
¯A�ÖÏ @’, ’¼’, ’Q¢

�
¯’, ’È’, ’

�
éK

ðP’, ’

�
�K
Y�’, ’ú

	
¯’, ’

�
é
�
®¢

	
JÓ’, ’

�
é
	
JJ
ªÓ’ ’.’]

CAMeL PoS: [’verb’, ’conj sub’, ’verb’, ’noun’, ’adj’, ’prep’, ’noun’,

61

4.5. Case Study

’noun’, ’prep’,’noun’, ’prep’, ’noun’, ’noun’, ’prep’, ’noun’, ’adj’, ’punc’]

6. Arabic Sentence:

øQK
 AÒ
	
J�
K. Yg@ð

�
�K
Y� ©Ó

�
é
�
�XPYË@ úÎ« @ �PXA

�
¯ ÐY

	
j
�
J�ÖÏ @

	
àñºK

	
à

@ I. m.

�'

. é
�
®K
Y� ©

�
¯ñÓ ð éª

�
¯ñÓ ÐY

	
j
�
J�ÖÏ @

CAMeL Tokens: [’I. m.
�'

’, ’

	
à@’, ’ 	àñºK
’, ’ÐY

	
j
�
J�ÖÏ @’ ,’ @PXA

�
¯’, ’úÎ«’, ’

�
é
�
�XPYË@’,

’©Ó’, ’
�
�K
Y�’, ’Yg@ð’, ’ AÒ 	J�
K. ’, ’øQK
’, ’ÐY

	
j
�
J�ÖÏ @’, ’©

�
¯ñÓ’, ’ è’, ’ð’, ’©

�
¯ñÓ’,

’
�
�K
Y�’, ’ è’, ’.’]

CAMeL PoS: [’verb’, ’conj sub’, ’verb’, ’noun’, ’adj’, ’prep’, ’noun’,

’prep’, ’noun prop’, ’noun’, ’conj sub’, ’verb’, ’noun’, ’noun’, ’pron’,’conj’,

’noun’, ’noun’, ’pron’, ’punc’]

7. Arabic Sentence:

ÑêªÓ
�
HYmÌ'@

�
é»PA

�
�ÖÏ ZA

�
¯Y�

B@ PAJ

�
J
	
k@ úÎ« @ �PXA

�
¯ ÐY

	
j
�
J�ÖÏ @

	
àñºK

	
à

@ I. m.

�'

. ¡
�
®
	
¯

CAMeL Tokens: [’I. m.
�'

’, ’

	
à@’, ’ 	àñºK
’, ’ÐY

	
j
�
J�ÖÏ @’, ’ @PXA

�
¯’, ’úÎ«’ ’PAJ

�
J
	
k@’,

’ZA
�
¯Y�B@’, ’È’, ’

�
é»PA

�
�Ó’, ’ �IK
Ym

Ì'@’, ’©Ó’, ’Ñë’, ’¡
�
®
	
¯’, ’.’]

CAMeL PoS: [’verb’, ’conj sub’, ’verb’, ’noun’, ’adj’, ’prep’, ’noun’,

’noun’, ’prep’, ’noun’, ’noun’, ’prep’,’pron’, ’adv’, ’punc’]

8. Arabic Sentence:

�
IÖ

�
ß ú

�
æË @

�
é�A

	
mÌ'@

�
H@Yg

B@

�
éK

ðP úÎ« @ �PXA

�
¯ ÐY

	
j
�
J�ÖÏ @

	
àñºK

	
à

@ I. m.

�'

.
�
é¢�
Q

	
mÌ'@ úÎ« éªÓ Aî

�
D»PA

�
�Ó

CAMeL Tokens: [’I. m.
�'

’, ’

	
à@’, ’ 	àñºK
’, ’ÐY

	
j
�
J�ÖÏ @’, ’ @PXA

�
¯’, ’úÎ«’, ’

�
éK

ðP’,

’ �H@YgB@’, ’
�
é�A

	
mÌ'@’, ’ú

�
æË@’, ’ �IÖ

�
ß’, ’ �I»PA

�
�Ó’, ’ Aë’, ’ 	©Ó’, ’ è’, ’úÎ«’, ’

�
é£PA

	
mÌ'@’,

’.’]

CAMeL PoS: [’verb’, ’conj sub’, ’verb’, ’noun’, ’adj’, ’prep’, ’noun’,

’noun’, ’adj’, ’pron rel’, ’verb’, ’noun’, ’pron’, ’prep’, ’pron’, prep’,

62

4.5. Case Study

’noun’, ’punc’]

9. Arabic Sentence:

úÎ«
�
è
	Q�
ÒÖÏ @

�
H@Yg

B@ ©J
Ô

g
.

�
éK

ðP úÎ« @ �PXA

�
¯ ÐY

	
j
�
J�ÖÏ @

	
àñºK

	
à

@ I. m.

�'

.
�
é¢�
Q

	
mÌ'@

CAMeL Tokens: [’I. m.
�'

’, ’

	
à@’, ’ 	àñºK
’, ’ÐY

	
j
�
J�ÖÏ @’ , ’ @PXA

�
¯’, ’úÎ«’, ’

�
éK

ðP’,

’©J
Ôg. ’, ’
�
H@YgB@’, ’

�
è
	Q�
ÒÖÏ @’, ’úÎ«’, ’

�
é£PA

	
mÌ'@’, ’.’]

CAMeL PoS: [’verb’, ’conj sub’, ’verb’, ’noun’, ’adj’, ’prep’, ’noun’,

’noun’, ’noun’, ’adj’, ’prep’, ’noun’, ’punc’]

10. Arabic Sentence:

ÐAªË@
�
HYmÌ'@ Qº

�
JJ.Ó úÍ@

I. Ê£ ÈA�P@

 úÎ« @ �PXA
�
¯ ÐY

	
j
�
J�ÖÏ @

	
àñºK

	
à

@ I. m.

�'

.
�
HYmÌ'@ úÍ@

ÐAÒ

	
�
	
�CË

CAMeL Tokens: [’I. m.
�'

’, ’

	
à@’, ’ 	àñºK
’, ’ÐY

	
j
�
J�ÖÏ @’, ’ @PXA

�
¯’, ’úÎ«’, ’ÈA�P@’,

’I. Ê£’, ’úÍ@’, ’Qº
�
JJ.Ó’,’

�
HYmÌ'@’, ’ÐAªË@’, ’È’, ’ÐAÒ 	

�
	
�B@’, ’úÍ@’, ’ �HYmÌ'@’, ’.’]

CAMeL PoS: [’verb’, ’conj sub’, ’verb’, ’noun’, ’adj’, ’prep’, ’noun’,

’verb’, ’prep’, ’noun’, ’noun’, ’adj’, ’prep’, ’noun’, ’prep’, ’noun’, ’punc’]

11. Arabic Sentence:

ÐY
	
j
�
J�Ó 100.000 	á« É

�
®K
 B AÓ Ñ«X úÎ« @PXA

�
¯

�
�J
J.¢

�
JË @

	
àñºK

	
à

@ I. m.

�'

. Yg@ð
�
I

�
¯ð ú

	
¯

CAMeL Tokens: [’I. m.
�'

’, ’

	
à@’, ’ 	àñºK
’, ’

�
�J
J.¢

�
JË @’ ’ @PXA

�
¯’, ’úÎ«’, ’Ñ«X’, ’ AÓ’,

’B’, ’É
�
®K
’, ’ 	á«’ ’100’, ’.’, ’000’, ’ÐY

	
j
�
J�Ó’, ’ú

	
¯’, ’ �I

�
¯ð’, ’Yg@ð’, ’.’]

CAMeL PoS: [’verb’, ’conj sub’, ’verb’, ’noun’, ’adj’, ’prep’, ’noun’,

’pron rel’, ’part neg’, ’verb’, ’prep’, ’digit’, ’punc’, ’digit’, ’adj’, ’prep’,

’noun’, ’noun’, ’punc’]

12. Arabic Sentence:

ð É

KA�QË@ ÐC

�
J�@ð É

KA�QË@ ÈA�P@

ð ÉJ
j. �

�
�Ë @ É

�
JÓ

	
­

KA
	
£ñË@ ©J
Ô

g
.
Z @X

@ I. m.

�'

63

4.5. Case Study

É
�
¯

@ ú

	
¯

�
é¢�
Q

	
mÌ'@ úÎ«

�
H@Yg

B@

�
éK

ðP ð

�
é¢�
Q

	
mÌ'@ úÎ« ZA

�
¯Y�

B@ ©

�
¯@ñÓ

�
éK

ðP

.
	
à
�
@ñ
�
K 3 	áÓ

CAMeL Tokens: [’I. m.
�'

’, ’Z @X@’, ’©J
Ôg. ’, ’

	
­

KA
	
£ñË@’, ’É�JÓ’, ’ÉJ
j. �

�
�Ë @’, ’ð’,

’ÈA�P@’, ’É
KA�QË@’, ’ð’, ’
�
éK

ðP’, ’©

�
¯@ñÓ’, ’ZA

�
¯Y�B@’, ’úÎ«’, ’

�
é¢�
Q

	
mÌ'@’, ’ð’, ’

�
éK

ðP’,

’ �H@YgB@’, ’úÎ«’, ’
�
é¢�
Q

	
mÌ'@’, ’ú

	
¯’, ’É

�
¯@’, ’ 	áÓ’, ’3’, ’ 	à

�
@ñ
�
K’, ’.’]

CAMeL PoS: [’verb’, ’noun’, ’noun’, ’noun’, ’noun’, ’noun’, ’conj’,

’noun’, ’noun’, ’conj, ’noun’, ’noun’, ’conj’, ’noun’, ’noun’, ’noun’,

’prep’, ’noun’, ’conj’, ’noun’, ’noun’, ’prep’, ’noun’, ’prep’, ’noun’,

’prep’, ’digit’, ’noun’, ’punc’]

13. CAMeL PoS:Arabic Sentence:

úÍ@

ÐY
	
j
�
J�ÖÏ @

	
­

�
KAë úÎ«

�
èXñk. ñÖÏ @ øQ

	
k

B@

�
HA

�
®J
J.¢

�
JË @ É�

�
� B

@ I. m.

�'

. AîE. I. «C
�
J
�
K ð ÐY

	
j
�
J�ÖÏ @

	
­

�
KAë ú

	
¯
�
é
	
K 	Q

	
jÖÏ @

�
HA

	
KAJ
J. Ë @

CAMeL Tokens: [’I. m.
�'

’, ’B@’, ’É�

�
�’, ’ �HA

�
®J
J.¢

�
JË @’ ’øQ

	
kB@’, ’

�
èXñk. ñÖÏ @’,

’úÎ«’, ’
	

­
�
KAë’, ’ÐY

	
j
�
J�ÖÏ @’, ’úÍ@’, �

HA
	
KAJ
J. Ë @’, ’

�
é
	
K 	Q

	
jÖÏ @’, ’ú

	
¯’, ’

	
­

�
KAë’ ’ÐY

	
j
�
J�ÖÏ @’,

’ð’, ’I. «C
�
J
�
K’, ’H. ’, ’ Aë’, ’.’]

CAMeL PoS: [’verb’, ’part neg’, ’verb’, ’noun’, ’adj’, ’noun’, ’prep’,

’noun’, ’noun’, ’prep’, ’noun’, ’noun prop’, ’prep’, ’noun’, ’noun’, ’conj’,

’verb’, ’prep’, ’pron’, ’punc’]

14. Arabic Sentence:

HTTP. ÈA�
�
�@ Q�.«

�
éÒÊ

�
J�ÖÏ @ ð

�
éÊ�QÖÏ @

�
HA

	
KAJ
J. Ë @ É

�
®
	
K I. m.

�'

CAMeL Tokens: [’I. m.
�'

’, ’É

�
®
	
K’, ’ �HA

	
KAJ
J. Ë @’, ’

�
éÊ�QÖÏ @’ ,’ð’, ’

�
éÒÊ

�
J�ÖÏ @’, ’Q�.«’,

’ÈA�
�
�@’, ’HTTP’ ,’.’]

CAMeL PoS: [’verb’, ’noun’, ’noun’, ’noun’, ’conj’, ’noun’, ’noun’,

’noun’, ’foreign’, ’punc’]

64

4.5. Case Study

15. Arabic Sentence:

. É
�
¯

B@ úÎ«

	
¬Qk

@ 6 	áÓ PðQÖÏ @

�
éÒÊ¿

	
àñº

�
J
�
K

	
à

@ I. m.

�'

CAMeL Tokens: [’I. m.
�'

’, ’

	
à@’, ’ 	àñº�J�K’, ’

�
éÊÒ»’ ’PðQÖÏ @’, ’ 	áÓ’, ’6’, ’

	
¬Qk@’,

’úÎ«’, ’É
�
¯B@’, ’.’]

CAMeL PoS: [’verb’, ’conj sub’, ’verb’, ’noun’, ’noun’, ’prep’, ’digit’,

’noun’, ’prep’, ’noun’, ’punc’]

16. Arabic Sentence:

ú

	
¯ 	áK
Q

	
k
�
B@

	á�
ÓY
	
j
�
J�ÒÊË

�
é
	
K 	Q

	
jÖÏ @

�
HA

	
KAJ
J. Ë @ úÍ@

Èñ�ñË@
	á�
ÓY

	
j
�
J�ÒÊË iÒ��
 B

. Aî
�
Dm.
Ì'AªÓð

�
HA

	
KAJ
J. Ë @

�
èY«A

�
¯

CAMeL Tokens: [’B’, ’iÒ��
’, ’È’, ’
	á�
ÓY

	
j
�
J�ÖÏ’, ’Èñ�ñË@’, ’úÍ@’, ’ �HA

	
KAJ
J. Ë @’,

’
�
é
	
K 	Q

	
jÖÏ @’, ’È’, ’ 	á�
ÓY

	
j
�
J�ÖÏ’, ’ 	áK
Q

	
kB@’, ’ú

	
¯’, ’

�
èY«A

�
¯’, ’ �HA

	
KAJ
J. Ë @’, ’ð’, ’

�
Im.

Ì'AªÓ’,

’ Aë’, ’.’]

CAMeL PoS: [’part neg’, ’verb’, ’prep’, ’noun’, ’noun’, ’prep’, ’noun’,

’noun prop’, ’prep’, ’noun’, ’adj’, ’prep’, ’noun prop’, ’noun’, ’con’,

’noun’,’pron’, ’punc’]

17. Arabic Sentence:

.
�
é«A� 24 ð ÐAK

@ 7

�
èYÖÏ A

�
gA

�
JÓ ÐA

	
¢
	
JË @

	
àñºK

	
à

@ I. m.

�'

CAMeL Tokens: [’I. m.
�'

’, ’

	
à@’, ’ 	àñºK
’, ’ÐA

	
¢
	
JË @’ ,’ AgA

�
JÓ’, ’È’, ’

�
èYÓ’, ’7’, ’ÐAK
 @’,

’ð’, ’24’, ’
�
é«A�’, ’.’]

CAMeL PoS: [’verb’, ’conj sub’, ’verb’, ’noun’, ’noun’, ’prep’, ’noun’,

’digit’, ’noun’, ’conj’, ’digit’, ’noun’, ’punc’]

18. Arabic Sentence:

Ð@Y
	
j
�
J�@ I. m.

�'

 , ÐA

	
¢
	
JË @ QK
ñ¢

�
� ZA

	
J
�
K

@ ©J.

�
�
�
JÊË

�
CK. A

�
¯ ÐA

	
¢
	
JË @ Éªk. ð YJ

�
®ª

�
JË @ ÉJ
Ê

�
®
�
JË

. gitlab É
�
JÓ P@Y�B

@ ú

	
¯ Õºj

�
JË @ ÐA

	
¢
	
�

CAMeL Tokens: [’È’, ’ÉJ
Ê
�
®
�
K’, ’YJ

�
®ª

�
JË @’, ’ð’ ,’Éªk. ’, ’ÐA 	¢ 	

JË @’, ’CK. A
�
¯’, ’È’,

65

4.5. Case Study

’©J.
�
�
�
JË’, ’ZA 	J�K @’, QK
ñ¢

�
�’, ’ÐA 	¢ 	

JË @’, ’,’, ’I. m.
�'

’ ,’Ð@Y

	
j
�
J�@’, ’ÐA 	¢

	
�’, ’Õºj�

JË @’, ’ú

	
¯’,

’P@Y�B@’, ’É�JÓ’, ’gitlab’ ,’.’]

CAMeL PoS: [’prep’ ,’noun’, ’noun’, ’conj’, ’verb’, ’noun’, ’adj’, ’prep’,

’noun’, ’noun’, ’noun’, ’noun’, ’punc’, ’verb’, ’noun’, ’noun’, ’noun’,

’prep’, ’noun’, ’noun’, ’foreign’, ’punc’]

19. Arabic Sentence:

.3 	áÓ Q�.»

@ 	PAêm.

Ì'@ úÎ« Android ÉJ

	
ª
�
�
�
�Ë @ ÐA

	
¢
	
� P@Y�@

	
àñºK

	
à

@ I. m.

�'

CAMeL Tokens: [’I. m.
�'

’,’

	
à@’, ’ 	àñºK
’, ’P@Y�@’, ’ÐA 	¢

	
�’, ÉJ

	
ª
�
�
�
�Ë @’,’Android’,

’úÎ«’, ’ 	PAêm.Ì'@’, ’Q�.» @’,’ 	áÓ’, ’3’, ’.’]

CAMeL PoS: [’verb’, ’conj sub’, ’verb’, ’noun’, ’noun’, ’noun’, ’foreign’,

’prep’, ’noun’, ’adv’, ’prep’, ’digit’ ’punc’]

20. Arabic Sentence:

.
�
HA

	
KAJ
J. Ë @

�
èY«A

�
¯

�
IK
Ym

�
�
' úÎ« ÐA

	
¢
	
JË @ @

	
Yë

	
¡
	
¯Am�'

	
à

@ I. m.

�'

CAMeL Tokens: [’I. m.
�'

’, ’ 	à@’, ’ 	

¡
	
¯Am�'
’, ’ è

	
Yë’, ’ÐA 	¢ 	

JË @’, ’úÎ«’, ’ �IK
Ym
�
�
'’,

’
�
èY«A

�
¯’, ’ �HA

	
KAJ
J. Ë @’, ’.’]

CAMeL PoS: [’verb’, ’conj sub’, ’verb’, ’pron dem’, ’noun’, ’prep’, ’noun’,

’noun prop’, ’noun’, ’punc’]

Table 4.7 represents the result of analyzing the case study requirements

tags based on the proposed heuristics to classify requirements. It contains

the heuristics applied to each requirement, numbers of heuristics support

the possibility that the requirement is functional which is represented by

FR Score, and numbers of heuristics support the possibility that the require-

ment is nun-functional which is represented by NFR Score. Also, it contains

the certainty factor of being a functional requirement and the certainty fac-

tor of being a non-functional requirement for each requirement. The last

66

4.5. Case Study

column represents the class of each requirement depending on the proposed

heuristics.

Table 4.7: Case Study Classification Results Based on the Proposed Ap-
proach.

Req# Heuristic/s Applied To FR Score NFR Score FR CF NFR CF Class

Req#1 H3, H7, H8 2 1 88.3 86 FR

Req#2 H3, H7, H8 2 1 88.3 86 FR

Req#3 H3, H7, H8 2 1 88.3 86 FR

Req#4 H3, H7 1 1 88.3 86 FR

Req#5 H3, H7 1 1 88.3 86 FR

Req#6 H3, H7 1 1 88.3 86 FR

Req#7 H3, H7, H8 2 1 88.3 86 FR

Req#8 H3, H7 1 1 88.3 86 FR

Req#9 H3, H7 1 1 88.3 86 FR

Req#10 H3, H7, H8 2 1 88.3 86 FR

Req#11 H1, H3, H5, H6, H7 1 4 88.3 86 NFR

Req#12 H1, H4 0 2 0 87.5 NFR

Req#13 H3, H5 0 2 0 86 NFR

Req#14 H3 0 1 0 80 NFR

Req#15 H1 0 1 0 78.33 NFR

Req#16 H3, H4, H5 0 3 0 90 NFR

Req#17 H1 0 1 0 78.33 NFR

Req#18 H2, H3 0 2 0 90 NFR

Req#19 H1, H2, H3 0 3 0 86 NFR

Req#20 H8 1 0 83.33 0 FR

67

4.5. Case Study

Table 4.4: NFR Keywords (1)

English Arabic English Arabic

Accessibility Èñ�ñË@
�
éJ

	
K A¾Ó@

Auditability

�
�J

�
¯Y

�
K

Adaptability
	

­J
º
�
K Visibility hñ

	
�ð

Affordability
	

­J
ËA¾
�
JË @ ÉÒm�

�
' Compatibility

�
�
	
¯@ñ

�
K

Availability Q
	
¯ñ
�
K Compatibility 	PAm.

�'

 @

Capacity
�
éª� Consistency

�
��A

	
J
�
K

Understandability Ñê
	
¯ Coordination Cost

�
�J
�

	
�
�
JË @

�
é
	
®Ê¾

�
K

Confidentiality
�
éK
Qå� Cost

�
é
	
®Ê¾

�
K

Controllability Õºj
�
JË @ úÎ«

�
èPY

�
¯ Development Cost QK
ñ¢

�
JË @

�
é
	
®Ê¾

�
K

Correctness
�
ém�� Diversity ¨ñ

	
J
�
K

Space Performance �
HA

	
KAJ
J. Ë @

�
ékA�Ó Z@X

@ Evolvability Pñ¢

�
JË @

�
éJ
ÊK. A

�
¯

Dependability
�
éK
XAÒ

�
J«@ Flexibility

�
é
	
KðQÓ

Enhanceability 	á�
�m�
�
' Maintainability

�
é
	
K AJ
�Ë@

�
éJ
ÊK. A

�
¯

Extensibility XYÖ
�
ß Maintenance Time

�
é
	
K AJ
�Ë@

�
I

�
¯ð

Interoperability
�
éJ

�
®
	
¯ @ñ

�
K Measurability �AJ

�
¯

Learnability ÕÎª
�
K Performance Z @X

@

Maintenance
�
é
	
K AJ
� Plasticity

�
é
	
KñJ
Ë

Performance Z @X

@ Project Stability ¨ðQå

�
�ÖÏ @ P@Q

�
®
�
J�@

Modifiability ÉK
Yª
�
K Recoverability X@XQ

�
��@

Observability
�
é
	
¢kCÖÏ @

�
éJ
ÊK. A

�
¯ Reliability

�
éJ

�
¯ñ
�
KñÓ

Productivity
�
éJ
k. A

�
J
	
K @

Replicability P@Qº
�
JË @

�
éJ
ÊK. A

�
¯

Promptness
�
é«Qå� Reusability Ð@Y

	
j
�
J�B@

�
èXA«@

Reconfigurability 	áK
ñº
�
JË @

�
èXA«@

Scalability ©�ñ

�
JË @

�
éJ
ÊK. A

�
¯

Responsiveness
�
éK. Aj.

�
J�@

Surety 	
àAÖÞ

	
�

Safety
�
éÓC� Sustainability

�
éÓ@Y

�
J�@

Security 	
àAÓ

B@ Throughput

�
éJ
k. A

�
J
	
KB

@

Simplicity
�
é£A��. Transparency

�
éJ

	
¯A
	
®
�
�

Stability P@Q
�
®
�
J�@ Usability Ð@Y

	
j
�
J�B@

�
éËñîD�

Supportability Ñ«X Maintainability ÉK
Yª
�
JË @

�
éJ
ÊK. A

�
¯

Testing Time PAJ.
�
J
	
kB@

�
I

�
¯ð Integrity ÉÓA¾

�
K

Timeliness �
IJ

�
¯ñ
�
K Execution Cost

	
YJ

	
®
	
J
�
JË @

�
é
	
®Ê¾

�
K

Trainability I. K
PY
�
JË @

�
éJ
ÊK. A

�
¯ Fault-Tolerance

A¢

	
mÌ'@ ©Ó l×A�

�
�

Understandability Ñê
	
®ÊË

�
éJ
ÊK. A

�
¯ Mobility É

�
®
	
J
�
JË @

�
éJ

	
K A¾Ó@

Validity
�
éJ
kC� Robustness

�
é
	
K A
�
JÓ

Sensitivity
�
éJ
�A�k Response Time

�
éK. Aj.

�
J�B@

�
I

�
¯ð

68

4.5. Case Study

Table 4.5: NFR Keywords (2)

English Arabic English Arabic

Completeness ÈAÒ
�
J» @ Space

�
ékA�Ó

Accuracy
�
é
�
¯X Time 	áÓ 	P

Perturbation H. @Q¢
	
�@ Memory

�
èQ» @

	
X

Virus �ðQK
A
	
¯ Storage 	áK

	Q
	
m�
�
'

Access Èñ�ð Response
�
éK. Aj.

�
J�@

Authorization 	
��
ñ

	
®
�
K Index �Qê

	
¯

Card
�
é
�
¯A¢�. Compress ¡

	
ª

	
�

Key hA
�
J
	
®Ó Uncompressed ¡

	
ª
	
�Ë@ ½

	
¯

Password PðQÖÏ @ Qå�Ë @ éÒÊ¿ Runtime 	
�QªË@

�
èYÓ

Noise ZA
	
�ñ

	
� Perform

	
Y
	
®
	
K

Fixing hC�@ Execute
	
Y
	
®
	
JK

Early @QºJ.Ó Alarm P@
	
Y
	
K @

Late Q
	
k

A
�
JÓ Encryption Q�

	
®
�
�
�
�

Appear Qê
	
¢�
 Year ÐA«

Update �
IK
Ym

�
�
' Train H. PYK

Interface éêk. @ð Hour
�
é«A�

Achieve
�
�
�
®k Color 	

àñË

Regular Ñ
	
¢
�
J
	
JÓ Prevent ©

	
JÖß

Interface éêk. @ð Fast ©K
Qå�

Maintain
�
é
	
K AJ
� Look Qê

	
¢Ó

Response I. J
j.
�
���
 Minute

�
é
�
®J

�
¯X

Handle ÉÓAª
�
JK
 Expect ©

�
¯ñ
�
K

Easy ÉîD� Ensure Y»

A
�
K

Standard ú

æ�A�@ Promote l .

�'
ðQ
�
K

Release P@Y�@ Understand Ñê
	
¯

Server ÐXA
	
g Legal ú

	
Gñ

	
KA
�
¯

Author
	

­Ë

ñÓ Browser i

	
®�

�
JÓ

Appeal
�
éJ
K.

	
XAg. Process

�
ém.
Ì'AªÓ

Secure 	áÓ@ Successfully hAm.
�
	
'

Estimate QK
Y
�
®
�
K Downtime

	
­

�
¯ñ
�
K

Scheme ¡¢
	
m× Law 	

àñ
	
KA
�
¯

Logo PAª
�
� Window

�
è
	
Y
	
¯A
	
K

Budget
�
éJ

	
K @
	Q�
Ó Complete ÉÒ

�
JºÓ

Launch
�
�Ê¢�
 Defect ÉÊ

	
g

Develop Pñ£ Feel Qª
�
��

69

Chapter 5

Evaluation

This chapter presents and analyzes the experimental results of applying the

proposed approach.

5.1 Evaluation Methodology

In this chapter, we present the evaluation of our approach. The purpose

of the evaluation is to calculate the accuracy of our approach and compare

the result with those derived by graduate and undergraduate students and

check if our approach is better than students’ requirements classification. We

use three threshold types of discriminator metrics to evaluate our approach.

These metrics are as follows [45]:

1. Accuracy (acc).

2. Precision (p).

3. Recall (r).

Confusion Matrix is also used as a performance measurement for classification

problems. It is a table with combinations of predicted and actual values.

70

5.1. Evaluation Methodology

Table 5.1: Confusion Matrix

Actual Positive Class Actual Negative Class
Predicted Positive Class True Positive (TP) False Negative (FN)
Predicted Negative Class False positive (FP) True Negative (TN)

The row of the table represents the predicted class, while the column

represents the actual class. From this confusion matrix, TP and TN denote

the number of positive and negative instances that are correctly classified.

Meanwhile, FP and FN denote the number of misclassified negative and

positive instances, respectively.

• Accuracy(acc): In general, it measures the ratio of correct predictions

over the total number of instances evaluated. In our approach it mea-

sures the ratio of correct requirements statement classified true over

the total number of requirements.

Accuracy =
TP + TN

TP + FP + FN + TN
(5.1)

• Precision(P): In general, Precision is the ratio of correctly predicted

positive observations to the total predicted positive observations. In

our model, we measure precision for both classes.

Precision =
TP

TP + FP
(5.2)

PFR: is the ratio of correctly predicted FR statements to the total

predicted FR statements PNFR: is the ratio of correctly predicted NFR

statements to the total predicted NFR statements.

• Recall (R): In general, it is the ratio of correctly predicted positive

observations to all observations in the actual class. In our model, we

71

5.2. Experiments

measure recall for both classes.

Recall =
TP

TP + FN
(5.3)

PFR: is the ratio of correctly predicted FR statements to all obser-

vations in FR class. PNFR: is the ratio of correctly predicted NFR

statements to all observations in NFR class.

5.2 Experiments

User requirements for a set of cases are classified in three ways: using the

proposed approach of this thesis, by a set of graduate students, and a set of

undergraduate students. The comparison of the results in all cases has been

done and the accuracy measurements have been calculated.

We chose three SRS for open-source projects to test our approach. The SRS

documents are written in English. So, we request a translation expert to

translate the project’s user requirements into Arabic. We chose ten Func-

tional requirements by selecting the first ten odd numbers, then we chose ten

non-functional requirements in the same way to be our case studies. Then

we asked a software engineering expert to reclassify the requirements. To

adopt his classification as a benchmark for our experiments.

Three case studies were given to five graduate students in the master of the

informatics program with good knowledge of software requirements. We also

gave the first case study to ten excellent undergraduate students from the

College of Information Technology and Computer Engineering at Palestine

Polytechnic University. They are at third or fourth academic levels (They

have completed a software engineering course).

72

5.3. Evaluation Results

We created Google forms for both graduate students and undergraduate stu-

dents in which there is a brief explanation and twenty unclassified require-

ments for each project. They can choose between three options (functional,

non-functional, or I don’t know).

To evaluate our approach, we wrote a Python code using the CAMeL tools

for pre-processing and part of speech tag generation. Our experiments were

implemented using CAMeL Tools 1.3.1, and Python 3.6.7, under ubuntu

20.04 LTS.

Each project’s requirements are stored as a CSV file. It was automatically

categorized using the code, and the result was printed on another CSV file.

The code classifies the requirement into FR or NFR and if it cannot de-

termine any requirement class, it leaves it to user intervention. Then the

evaluation of the approach was done based on the benchmark.

5.3 Evaluation Results

The results obtained from the graduate students, undergraduate students,

our approach, and the benchmark including the percentage of correct, in-

correct, and indeterminate classified requirements for the graduate students,

undergraduate students, benchmark, and our approach are summarized in

Tables 5.2, 5.3 and 5.4.

Table 5.2: Percentage of Correct Classified Requirements

Correct Benchmark Undergraduate Graduate Our Approach
Functional 100% 85% 94% 100%
Non-Functional 100% 82% 90% 90%

As presented in Table 5.2, the percentage of correct functional and non-

functional classified requirements for undergraduate students are 85%, 84%,

73

5.3. Evaluation Results

Table 5.3: Percentage of Incorrect classified requirements

Incorrect Benchmark Undergraduate Graduate Our Approach
Functional 0% 7% 4% 0%
Non-Functional 0% 10% 6% 10%

Table 5.4: Percentage of Unclassified classified requirements

Unclassified Benchmark Undergraduate Graduate Our Approach
Functional 0% 7% 4% 0%
Non-Functional 0% 8% 4% 0%

respectively. And for graduate students are 94%, 90%, respectively. Our

proposed classify the functional requirements correctly as 100% and the non-

functional requirements at 90% in this case study.

As shown in Table 5.3, the percentage of incorrect correct functional and

non-functional classified requirements for undergraduate students are 7%,

10%, respectively. And for graduate students are 4%, 6%, respectively. Our

proposed classify the functional requirements incorrectly as 0% and the non-

functional requirements at 10% in this case study.

As shown in Table 5.4, the percentage of the requirements that are unclassi-

fied functional and non-functional requirements for undergraduate students

are 8%, 8%, respectively. And for graduate students are 2%, 4%, respectively.

Our proposed approach Classify the functional requirements Incorrectly as

0% and the non-functional requirements at 0% in this case study.

Table 5.5 shows the evaluation of measure metrics: accuracy, precision,

and recall. Here, we note that our approach is higher evaluation results as

compared to the results of activity diagrams of graduate students.

In addition to the previous case study, we solved two different case studies

of various lengths [46][47]. The results of all the case studies were used to

74

5.3. Evaluation Results

Table 5.5: Measure Metrics Results

Metrics Benchmark Undergraduate Graduate Our Approach
Accuracy 100% 83.5% 93% 95%
Precision (FR) 100% 82% 90% 91%
Precision (NFR) 100% 84% 93.8% 100%
Recall (FR) 100% 85% 94% 100%
Recall (NF) 100% 82% 90% 90%

calculate accuracy, precision, and recall shown in table 5.6.

Generally, we concluded from these results, that our approach is a better

method to classify user requirements written in Arabic into functional and

non-functional than graduate and undergraduate students. Also from the

results, we know that our approach is more accurate in determining non-

functional requirements than the functional ones. Whereas the average recall

of functional is equal to 83.33% while the average recall of non-functional is

equal to 93.33%.

75

5.3. Evaluation Results

T
ab

le
5.
6:

E
va
lu
at
io
n
R
es
u
lt

B
e
n
ch

m
a
rk

G
ra

d
u
a
te

O
u
r
A
p
p
ro

a
ch

A
c
c
.

P
.

(F
R
)

P
.

(N
F
R
)

R
.

(F
R
)

R
.

(F
R
)

A
c
c
.

P
.

(F
R
)

P
.

(N
F
R
)

R
.

(F
R
)

R
.

(F
R
)

A
c
c
.

P
.

(F
R
)

P
.

(N
F
R
)

R
.

(F
R
)

R
.

(F
R
)

C
a
se
#
1

10
0%

10
0%

10
0%

10
0%

10
0%

93
%

90
%

93
.8
%

94
%

90
%

95
%

91
%

10
0%

10
0%

90
%

C
a
se
#
2

10
0%

10
0%

10
0%

10
0%

10
0%

84
%

81
%

86
%

88
%

80
%

85
%

10
0%

76
%

70
%

10
0%

C
a
se
#
3

10
0%

10
0%

10
0%

10
0%

10
0%

87
%

93
%

82
%

80
%

94
%

90
%

88
%

81
%

80
%

90
%

A
v
e
ra

g
e

10
0%

10
0%

10
0%

10
0%

10
0%

88
.6
%

88
%

87
.2
%

87
.3
%

88
%

90
%

93
%

85
.6
6%

83
.3
3%

93
.3
3%

76

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we proposed a novel approach for semi-automated classifica-

tion of user requirements written in Arabic using natural language processing

tools (CAMeL tools). A set of heuristics is presented to classify Arabic user

requirements. These heuristics use the tokens, PoS tags, and lemmas pro-

duced by CAMeL tools. These outputs are used in different ways throughout

each heuristic to classify requirements into functional and non-functional.

We implement the proposed approach using Python code and CAMeL tools

API. The proposed is very useful for software engineers who are responsible

for writing and analyzing Arabic user requirements. This research aims to

help software engineers in the analysis phase to reduce the cost and the time

required in performing manual classification.

Results indicate that user requirements classified by our approach are highly

consistent with the ones manually classified by the expert (benchmark). Re-

sults also show that applying our approach leads to higher accuracy at non-

functional requirements as compared to the student’s classification accuracy.

77

6.2. Future work

However, our approach classification accuracy is slightly lower in classifying

the functional requirements compared to the student’s classification.

6.2 Future work

Our future work includes evaluating the approach with more and larger case

studies and decreasing the human interaction and limitations with our ap-

proach by adding extra descriptions and rules to our heuristics. Moreover,

it is worth proposing more heuristics for functional requirements in order to

reduce incorrect classification. As an extension work of this thesis, it would

be very valuable to have an automated classification of Arabic non-functional

requirements types such as performance, security, availability, and usability.

78

Bibliography

[1] Pérez-Verdejo J.M, Sánchez-Garćıa A.J, and Ocharán-Hernández J.O.
A systematic literature review on machine learning for automated re-
quirements classification. In 2020 8th International Conference in Soft-
ware Engineering Research and Innovation (CONISOFT), pages 21–28.
IEEE, 2020.

[2] Wiegers K and Beatty J. Software requirements. Pearson Education,
2013.

[3] Gegentana X. A systematic review of automated software engineering.
Master of Science Thesis in Program Software Engineering and Man-
agement, University of Gothenburg, 2011.

[4] Zayed M.A. Automatic software requirements classification: A system-
atic literature review. Informatics Bulletin, pages 29–37, 2021.

[5] IEEE Computer Society. Software Engineering Standards Committee
and IEEE-SA Standards Board. IEEE recommended practice for soft-
ware requirements specifications. IEEE, 1998.

[6] Sommerville I. Software Engineering 9th. Addison-Wesley, 2011.

[7] Khoufi N, Aloulou C, and Belguith L.H. Parsing arabic using induced
probabilistic context free grammar. International Journal of Speech
Technology, pages 313–323, 2016.

[8] Shehadeh K, Arman N, and Khamayseh F. Semi-automated classifi-
cation of arabic user requirements into functional and non-functional
requirements using nlp tools. In 2021 International Conference on In-
formation Technology (ICIT), pages 527–532. IEEE, 2021.

[9] Chakraborty A, Baowaly M.K, Arefin A, and Bahar A.N. The role of
requirement engineering in software development life cycle. Journal of
emerging trends in computing and information sciences, pages 723–729,
2012.

[10] Laplante P.A. Requirements engineering for software and systems. Auer-
bach Publications, 2017.

79

Bibliography

[11] Windle D.R and Abreo L.R. Software requirements using the unified
process: a practical approach. Prentice Hall Professional, 2003.

[12] Kar P and Bailey M. Requirements management working group: char-
acteristics of good requirements. In INCOSE International Symposium,
pages 1225–1233. Wiley Online Library, 1996.

[13] Elazhary H. Avoiding ambiguities in arabic software user requirements.
International Journal of Software Engineering and Its Applications,
pages 141–160, 2016.

[14] Manning C.D, Surdeanu M, Bauer J, Finkel J.R, Bethard S, and Mc-
Closky D. The stanford corenlp natural language processing toolkit. In
Proceedings of 52nd annual meeting of the association for computational
linguistics: system demonstrations, pages 55–60, 2014.

[15] Habash N, Rambow O, and Roth R. Mada+ tokan: A toolkit for arabic
tokenization, diacritization, morphological disambiguation, pos tagging,
stemming and lemmatization. In Proceedings of the 2nd international
conference on Arabic language resources and tools (MEDAR), Cairo,
Egypt, page 62, 2009.

[16] Pasha A, Al-Badrashiny M, Diab M, El Kholy A, Eskander R, Habash
N, Pooleery M, Rambow O, and Roth R. Madamira: A fast, compre-
hensive tool for morphological analysis and disambiguation of arabic. In
Proceedings of the ninth international conference on language resources
and evaluation (LREC’14), pages 1094–1101, 2014.

[17] Obeid O, Zalmout N, Khalifa S, Taji D, Oudah M, Inoue B, Alhaf-
niand G, Eryani F, Erdmann A, and Habash N. Camel tools: An open
source python toolkit for arabic natural language processing. In Pro-
ceedings of the 12th language resources and evaluation conference, pages
7022–7032, 2020.

[18] Obeid O. Camel tools releases. https://github.com/CAMeL-Lab/camel
tools/releases. Date accessed: 20.11.2021.

[19] columbia. [mada-users] mada+token download. https://lists.cs.
columbia.edu/pipermail/mada-users/2016-May/000116.html. Date ac-
cessed: 12.9.2021.

[20] Singh P, Singh D, and Sharma A. Rule-based system for automated
classification of non-functional requirements from requirement specifi-
cations. In 2016 International Conference on Advances in Comput-
ing, Communications and Informatics (ICACCI), pages 620–626. IEEE,
2016.

80

https://github.com/CAMeL-Lab/camel_tools/releases
https://github.com/CAMeL-Lab/camel_tools/releases
https://lists.cs.columbia.edu/pipermail/mada-users/2016-May/000116.html
https://lists.cs.columbia.edu/pipermail/mada-users/2016-May/000116.html

Bibliography

[21] Hussain I, Kosseim L, and Ormandjieva O. Using linguistic knowledge to
classify non-functional requirements in srs documents. In International
Conference on Application of Natural Language to Information Systems,
pages 287–298. Springer, 2008.

[22] Sharma V.S, Ramnani R.R, and Sengupta S. A framework for identifying
and analyzing non-functional requirements from text. In Proceedings
of the 4th international workshop on twin peaks of requirements and
architecture, pages 1–8, 2014.

[23] Cleland-Huang J, Settimi R, Zou X, and Solc P. The detection and
classification of non-functional requirements with application to early
aspects. In 14th IEEE International Requirements Engineering Confer-
ence (RE’06), pages 39–48. IEEE, 2006.

[24] Kurtanović Z and Maalej W. Automatically classifying functional and
non-functional requirements using supervised machine learning. In 2017
IEEE 25th International Requirements Engineering Conference (RE),
pages 490–495. IEEE, 2017.

[25] Haque M.A, Rahman M.A, and Siddik M.S. Non-functional require-
ments classification with feature extraction and machine learning: An
empirical study. In 2019 1st International Conference on Advances in
Science, Engineering and Robotics Technology (ICASERT), pages 1–5.
IEEE, 2019.

[26] Younas M, Jawawi D.N, Ghani I, and Shah M.A. Extraction of non-
functional requirement using semantic similarity distance. Neural Com-
puting and Applications, pages 7383–7397, 2020.

[27] Rahman M.A, Haque M.A, Tawhid M.N, and Siddik M.S. Classify-
ing non-functional requirements using rnn variants for quality software
development. In Proceedings of the 3rd ACM SIGSOFT International
Workshop on Machine Learning Techniques for Software Quality Eval-
uation, pages 25–30, 2019.

[28] Ott D. Automatic requirement categorization of large natural language
specifications at mercedes-benz for review improvements. In Interna-
tional Working Conference on Requirements Engineering: Foundation
for Software Quality, pages 50–64. Springer, 2013.

[29] Knauss E and Ott D. (semi-) automatic categorization of natural
language requirements. In International Working Conference on Re-
quirements Engineering: Foundation for Software Quality, pages 39–54.
Springer, 2014.

81

Bibliography

[30] Winkler J and Vogelsang A. Automatic classification of requirements
based on convolutional neural networks. In 2016 IEEE 24th Interna-
tional Requirements Engineering Conference Workshops (REW), pages
39–45. IEEE, 2016.

[31] Jabbarin S and Arman N. Constructing use case models from arabic user
requirements in a semi-automated approach. In 2014 World Congress
on Computer Applications and Information Systems (WCCAIS), pages
1–4. IEEE, 2014.

[32] Arman N and Jabbarin S. Generating use case models from arabic user
requirements in a semiautomated approach using a natural language
processing tool. Journal of Intelligent Systems, pages 277–286, 2015.

[33] Arman N. Using mada+ tokan to generate use case models from arabic
user requirements in a semi-automated approach. ICIT 2015 The 7th
International Conference on Information Technology, 2015.

[34] Nassar I.N and Khamayseh F.T. Constructing activity diagrams from
arabic user requirements using natural language processing tool. In
2015 6th International Conference on Information and Communication
Systems (ICICS), pages 50–54. IEEE, 2015.

[35] Alami N, Arman N, and Khamyseh F. A semi-automated approach
for generating sequence diagrams from arabic user requirements using a
natural language processing tool. In 2017 8th International Conference
on Information Technology (ICIT), pages 309–314. IEEE, 2017.

[36] Alami N, Arman N, and Khamayseh F. Generating sequence diagrams
from arabic user requirements using mada+ tokan tool. Int. Arab J. Inf.
Technol., pages 65–72, 2020.

[37] Seresht S.M and Ormandjieva O. Automated assistance for use cases
elicitation from user requirements text. In Proceedings of the 11th Work-
shop on Requirements Engineering (WER 2008), pages 128–139, 2008.

[38] Thakur J.S and Gupta A. Automatic generation of sequence diagram
from use case specification. In Proceedings of the 7th India Software
Engineering Conference, pages 1–6, 2014.

[39] Gutiérrez J.J, Nebut C, Escalona M.J, Mej́ıas M, and Ramos I.M. Visu-
alization of use cases through automatically generated activity diagrams.
In International Conference on Model Driven Engineering Languages
and Systems, pages 83–96. Springer, 2008.

[40] Bajwa I.S and Choudhary M.A. From natural language software specifi-
cations to uml class models. In International Conference on Enterprise
Information Systems, pages 224–237. Springer, 2011.

82

Bibliography

[41] Yue T, Briand L.C, and Labiche Y. Automatically deriving uml sequence
diagrams from use cases. Simula Research Laboratory, 2010.

[42] Ilieva M.G and Ormandjieva O. Models derived from automatically
analyzed textual user requirements. In Fourth International Confer-
ence on Software Engineering Research, Management and Applications
(SERA’06), pages 13–21. IEEE, 2006.

[43] Chung L, Nixon B.A, Yu E, and Mylopoulos J. Non-functional require-
ments in software engineering, volume 5. Springer Science & Business
Media, 2012.

[44] Mustafa M.C, Gencol M, Oguz A, and Gedikli A.M. Ners project, soft-
ware requirement specification. https://senior.ceng.metu.edu.tr/2016/
codewhisperers/documents/SRS.pdf. Date accessed: 27.1.2022.

[45] Hossin M and Sulaiman M.N. A review on evaluation metrics for data
classification evaluations. International journal of data mining & knowl-
edge management process, page 1, 2015.

[46] Danis B. Software requirements specification (srs) for the ¡nodes
portal toolkit (npt)¿. https://www.researchgate.net/publication/
265397639 Software Requirements Specification SRS for the Nodes
Portal Toolkit NPT. Date accessed: 25.2.2022.

[47] Bus L and Eccam. Reqview software requirements specification
example. https://www.reqview.com/papers/ReqView-Example
Software Requirements Specification SRS Document.pdf. Date ac-
cessed: 17.3.2022.

83

https://senior.ceng.metu.edu.tr/2016/codewhisperers/documents/SRS.pdf
https://senior.ceng.metu.edu.tr/2016/codewhisperers/documents/SRS.pdf
https://www.researchgate.net/publication/265397639_Software_Requirements_Specification_SRS_for_the_Nodes_Portal_Toolkit_NPT
https://www.researchgate.net/publication/265397639_Software_Requirements_Specification_SRS_for_the_Nodes_Portal_Toolkit_NPT
https://www.researchgate.net/publication/265397639_Software_Requirements_Specification_SRS_for_the_Nodes_Portal_Toolkit_NPT
https://www.reqview.com/papers/ReqView-Example_Software_Requirements_Specification_SRS_Document.pdf
https://www.reqview.com/papers/ReqView-Example_Software_Requirements_Specification_SRS_Document.pdf

Appendix A

CAMeL Installation

You can install CAMeL tools API in two ways [18]:

1. Install using pip by the following command:

pip install camel-tools

Or run the following if you already have camel tools installed

pip install camel-tools --upgrade

2. Install from source using the following command:

Clone the repo
git clone https://github.com/CAMeL-Lab/camel tools.git

cd camel tools

Install from source
pip install .

or run the following if you already have camel tools installed
pip install --upgrade .

Next, we need to tell CAMeL Tools to install the data. This will take a
couple of minutes to complete. To install the datasets required by CAMeL
Tools components run one of the following:
To install all datasets
camel data -i all

Or just the datasets for morphology and MLE disambiguation only
camel data -i light

Or just the default datasets for each component
camel data -i defaults

After installation, you can call CAMeL tools libraries in your Python
code and then use the utilities at the time and manner you need.

84

	Introduction
	Motivation
	Problem Statement
	Proposed Solution
	Research Steps
	Research Objective
	Contributions
	Research Importance
	Thesis Organization

	Background
	Requirements Engineering (RE)
	Software Requirements Specification (SRS)
	Types of Requirements
	Benefits of Good User Requirements
	User Requirements Written in Arabic

	Natural Language Processing Tools
	CAMeL Tools

	Literature Review
	Software Requirements Classification Rule-Based Approaches
	Software Requirements Classification Machine Learning Approaches
	Software Requirements Classification of English Specifications
	Software Requirements Classification of German Specifications

	Automated Generation of UML Diagrams
	Automated Generation of UML Diagrams from Arabic User Requirements
	Automated Generation of UML Diagrams from English User Requirements

	Research Approach
	Arabic Sentence Syntax
	Arabic User Requirements Classification Approach
	Non-Functional Requirement Linguistic Features
	Functional Requirement Linguistic Features

	Proposed Heuristics
	The Novel Approach for Classification of Arabic User Requirements
	Case Study

	Evaluation
	Evaluation Methodology
	Experiments
	Evaluation Results

	Conclusion and Future Work
	Conclusion
	Future work

	CAMeL Installation

