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Abstract 

The problem of flowering plants recognition is considered as a challenging 

problem and it has been partially solved under a certain condition that the 

flowers be pre-detected and nearly optimal segmented. In this thesis, we 

study the flower detection and recognition approaches and we demonstrate 

the ability to detect flowers in full scene images by means of machine learning. 

State of the art feature extraction methods are considered for the detec­ 

tion problems including: Discrete Wavelet Transform, Histogram of Oriented 

Gradients and Gabor Filter. We consider the flowering plant detection and 

recognition as classification problems. A set of Linear Support Vector Ma­ 

chines is used for classification. Poslets as a detection approach is considered 

for flowering plants detection. 

For training the classifiers to recognize a flower, we use a set of benchmark 

images, the classifiers run over a natural test images using a multi-scale 

scanning window to find the strong activations. For full scene detection, 

We have built a new testing dataset of flowering plant species that include 

10 flowering plant species. The experiments show that Discrete Wavelet 

Transform features as input for linear Support Vector Machine is superior in 

the performance of other features. 

We have achieved an accuracy rate in detecting 10 flower species reaches 

about 88%. Experimental results using Receiver Operating Characteristics 
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show that we have achieved 0.92 area under curve. For recognition we have 

achieved an overall accuracy of 81 % and Receiver Operating Characteristics 

of 0.85 area under curve. 
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Chapter 1 

Introduction 

Object detection is one of the challenging fields in computer vision and image 

processing (10, 13, 19], which concerns in detecting and identifying the loca­ 

tion of samples of objects in certain classes. Examples of classes are humans, 

cars, animals and plants, which can be detected in either static images or 

videos. The challenges in detecting objects are that objects in images may 

appear in different viewpoints, colors, scales and illuminations. The objects 

must also be detected even if they translated, rotated or partially occluded. 

The most important applications that object detection plays a major role in 

them are image retrieval and surveillance systems. 

Recently, most of works in object detection contribute to human detection 

(24, 5, 37, 26] and plant detection [10, 22, 40]. The most commonly used way 

to detect such objects in images is based on using a sliding window over 

the image, then classifying the resulted local window to image that includes 

either the desired object or a background. The classification is based on 

the extracted features from images. This approach has been used in most 

applications such as face and pedestrian detection [24, 23, 14, 20]. 

In many applications, object detection is considered as a pre-processing 
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phase to isolate the desired object from the background [28]. One interesting 

application that needs object detection or equivalent techniques to isolate 

objects from background is object recognition. The main difference between 

object detection and object recognition is that in object detection, objects 

are to be isolated from background, which means determine whether it be­ 

longs to a class or not (binary classification). But object recognition is more 

complicated, because object must be identified and classified to which class 

it belongs to from certain classes based on its features (multi-class classifica­ 

tion). In plant detection and recognition systems, plants detection concerns 

at determining whether the window represents a plant or a background. But 

in plant recognition, the system must determine the type of the plant and to 

what class or family it belongs to. The difference between object detection 

and recognition is shown Figure 1.1. 

In our work, we address the problem of detecting and recognizing flow­ 

ering plant species in static image based on machine learning classifiers and 

image processing feature extraction approaches. Before expressing how we 

use computer vision techniques in detecting and recognizing plants, we will 

briefly discuss how botanist recognize flowering plant species. 

Flowering plant species are recognized by botanist based on the charac­ 

teristics of the flowers of a given species, which are shown in Figure 1.2. The 

most important characteristics that are used to identify the flowering plant 

species are: 

1. Color of the flower. 

2. Number and style of petals. 

3. Number and style of sepals. 

4. Number and style of stamens. 
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Input image 
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Figure 1.1: Flowering plant detection Vs. recognition. 

5. Number and style of pistil. 

6. Style of stalk. 

4 



Stamen 

Object detection 

Figure 1.2: Parts of flowers [2]. 

Unfortunately, most of these features are unseen by cameras unless we 

have 3D images. In our work we only use 2D images, which make it more 

challenging. 

Color information is a characteristic that is clear for cameras and it plays 

important roles in detection and recognition, but still color has a problem 

in both detection and recognition tasks. Some flowers that belong to same 

species may have different colors, see Figure 1.3. On the other hand, flowers 

from different species may have the same color, see Figure 1.4. As a result, 

colors by themselves cannot be used to detect or recognize plants, we must 

add other features. 

Petals of flowers are visible to the camera, but in some cases the petals 

Figure 1.3: Samples of flowers from one species with different colors. 
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1.1. CONTRIBUTION 

axe occluded by other objects in the image. Also in some flowers, the petals 

themselves are difficult to be counted . Thus, it is difficult to extract the 

exact number of petal from images in most cases. Barberton daisy flower 

species that is shown in Figure 1.5 is an example of flowers in which it is 

difficult to count the number of its petals by vision based techniques. 

Because of the shortage of information about flower characteristics from 

images, we tend to use other features, which is extracted from the general 

appearance of the flowers. In our work, we consider the problem of detecting 

and recognizing the flowering plant species as a classification problem. We 

aim at comparing different feature extraction methods for plant detection 

and recognition. Also, build a vision based system that aids at detecting and 

recognizing flowering plant species. The system passes through four stages 

namely, image preparation, feature extraction, flowering plant detection and 

finally recognition. 

1.1 Contribution 

Many flowering plant recognition applications require pre-processing phase 

to isolate flowers from background. The applications are highly depend on 

image segmentation, which require sensitive care about capturing images, 

such as focusing on the plants or having a 3D view. For real time applications, 

natural images are captured without care of focusing flowers in images, which 

s2 
Figure 1.4: Samples of flowers from different species with the same color . 
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1.1. CONTRIBUTION 

Figure 1.5: Barberton daisy flower. 

means that segmentation cannot be used to isolate flowers from background 

in such applications. Flower detection is an alternative to isolate flowers from 

background, where detection is done regardless of flowers scale and viewpoint 

or even if the images are not focused. 

Our main contribution: 

1. Build a system to isolate flowering plants from background in natural 

images using detection approach, regardless of its size, shape, color and 

viewpoint. 

2. Study different feature extraction approaches and their effect on detec­ 

tion an recognition 

3. Use ROC analysis curve to depict the performance of our proposed 

approach, because ROC curves provide more reliable and thorough in­ 

formation about the performance of the proposed approach than other 

performance measures. 

4. We are interesting in studying the proposed approach performance on 

flowering plant recognition. 
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1.2. FORMAL DEFINITION 

1.2 Formal definition 

Given an image I that includes the desired flowering plant z and background. 

Detecting the flower z in an image can be formally defined as estimating 

P(x = ilf(J)), where f(J) is a feature vector that is extracted from the 

image and i E 0, 1 represents if the object is flower or not. 

Recognizing the flower x in image J can be formally defined as estimating 

P(x = Jlf(J)), where j E 1, .., M is the set of possible flowering plant 

classes. 

1.3 Thesis Organization 

The rest of the thesis is organized as follows. Chapter 2 is a theoretical back­ 

ground that describes all the terms, topics, and methods that are needed to 

understand this thesis. Chapter 3 provides literature review about the previ­ 

ous works related to the plant detection and recognition. Chapter 4 explains 

the methodology of our work, which includes all the operations, sequences, 

diagrams that are needed to implement the detection and recognition system. 

Chapter 5 presents all the experiments that are conducted and the results 

that are obtained from each experiment. Finally, conclusion and the future 

work will be given in Chapter 6. 

8 



Chapter 2 

Theoretical Background 

In this chapter, we will provide a brief theoretical explanation of all ap­ 

proaches, terms, topics, and methods that are needed to understand this 

thesis. We provide explanation about classification, feature extraction and 

detection approaches. 

2.1 Classification 

The problem of identifying to which class a new data belongs to, among a 

set of classes, is known as classification, which is one of the machine learning 

fields that is considered as a supervised learning technique [38]. In supervised 

learning, a set of input data and their desired output are provided to the 

machine. After a period of training, the machine is theoretically capable of 

generalizing from the provided set of data to novel sets of data. 

Theoretically, when training a classifier to represent a binary classification 

problem, we have N training data points as input, each belongs to one of 

two possible classes Yi ==-] or + 1. The goal is to decide to which class a 
new data point belongs to. To do so, each data point z; is represented by D 

attributes (features), so that the training data will be in the form [6]: 

9 



2.1. CLASSIFICATION 

{@,,} where a € RP,y, € {-1,+1},i= 1...N 

One of the classification techniques that shows its efficiency in classifica­ 

tion problems is support vector machine. 

2.1.1 Support Vector Machine 

A support vector machine (SVM) is a new generation learning system in 

computer science that is based on statistical learning [30]. SVM is among 

the best of supervised learning algorithms, which are used to analyse data 

and recognize patterns within data [6]. In addition, SVM can also be used 

as classification and regression analysis tool [16, 3]. In classification prob­ 

lem, standard SVM generates input-output mapping relations from a set of 

labelled training data [6, 39], and predicts which of the two possible classes 

represents the input data. 

The input data may be linearly or non-linearly separable. When data is 

linearly separable, we can draw a line that can separate the two classes in 

case where D = 2, and a hyperplane in D ~ 2 case. This is called a linear 
SVM classifier. In fact, there will be more than one hyperplane that might 

linearly separate the data. The best is the one with the largest separation, or 

margin between the two classes. Where the distance between the hyperplane 

and the nearest data from each class is maximized. Such hyperplane is called 

maximum margin hyperplane (see Figure 2.1). 

The hyperplane can be written as: w · x + b = 0, where w is the normal 
vector to the hyperplane, and f; is the perpendicular distance from the 

hyperplane to the origin along w. The term 11·11 denotes the Euclidean norm. 

The support vectors (shown in circles in Figure 2.1) are the examples that 

are closest to the hyperplane in both classes. The goal of SVM is to maximize 

the distance between the support vectors by orienting the hyperplane so it 

10 



2.1. CLASSIFICATION 

• 
• • 

0 0 

• 
-b 
[w] 

0 

0 H' @, o hi. 
'@,, 

• 

0 /sac 
Figure 2.1: Hyperplane through two linearly separable classes [6] 

will be as apart as possible from the support vectors in both classes while 

maintain the separation data. We want to choose wand b that maximize the 

margin between the parallel hyperplanes that support vectors lie on to avoid 

overfitting. 

For linearly separable data, we can describe the training data by the 

following equations [12]: 

w·a,+b2+l,#=+l 

w·a;+b<_-l,yr=-1 

Both equations can be rewritten as in Equation 2.3: 

(2.1) 

(2.2) 

(2.3) 

SVM margin is equal to 7. Maximizing this margin subject to the 

stated constraints in Equation 2.3. This optimization is difficult because 

it depends on llwll, which involves a square root. Thus, we can use the 

equivalent term of this optimization, ½ [lu\] subject to the constraints in 2.3. 
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2.2. FEATURE EXTRACTION 

This term can be easily solve using Quadratic Programming (QP). 

To solve this optimization, we need to express the constraints by means 

of Lagrange multipliers ai [12]. Equation 2.4 is used to calculate w. Offset 

b are defined in Equation 2.5. 

N 

o=2oa 
i=l 

(2.4) 

b== w-a;­ (2.5) 

To get more robust value for b, it is best to average all support vector. 

See Equation 2.6, where N,, is the number of support vectors: 

j = +-» sv i=l 
(2.6) 

In some cases when the data cannot be lineally separable, some functions 

can be used to make input data more separable, these functions are called 

nonlinear kernel functions that are often used to transform input data into 

a high-dimensional feature space [6]. 

2.2 Feature Extraction 

In any classification problem, input data cannot be used directly, rather fea­ 

tures must be extracted from it. Features are used to represent the attributes 

and characteristics of input data. The process of transforming input data into 

a set of features is called feature extraction. For reliable applications, fea­ 

tures must be invariant to scale, rotation and translation. Following are a 

brief explanation for some interested features. 
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2.2. FEATURE EXTRACTION 

2.2.1 Wavelet Transform 

Images can be considered as time-domain signals, usually, these signals are 

plotted as time-amplitude representation. From this signal representation, 

no further information can be obtained. Many mathematical transformation 

techniques have been used to transform images from time-domain into other 

domains like frequency domain, which includes distinguishable information 

about signals. 

In Wavelet Transform, signals are treated using an approach called the 

multi-resolution analysis (MRA), where signals are analysed at different fre­ 

quencies with different resolutions. The MRA approach is useful in image 

analysis, where images are expressed at different scales [36] and thus we have 

a scale-invariant interpretation of the image. In which scale changes and 

variations should not affect our interpretation. 

The Continuous Wavelet Transform ( CWT) is one type of the wavelet 

transform. The signal in CWT is divided into small stationary signals using 

a window function, where the width of the window is changed as the trans­ 

formation is computed for every spectral components. CWT is defined as 

follows: 

!{=-) o,a a (2.7) 

From Equation 2.7, the transformation is a function that depends in 

two variable, a and b, the translation and scale of the window function, 

respectively. Scale is used either to dilate or compress the signal. 'If; is the 

transformation funct ion, which is known as the wavelet mother function [1]. 

For more information see Appendix C 

The CWT should be done at every position and every scale, which is con- 
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2.2. FEATURE EXTRACTION 

sidered a costly process. Fortunately, images are stored discretely in comput­ 

ers (band-limited), thus we do not need to compute the continuous version 

of wavelet transform. So we have to use the Discrete Wavelet Transform 

(DWT) in image analyses, in which the transformation can be scaled and 

translated in discrete steps. DWT depends on two types of functions, scaling 

functions and wavelet functions [1]. These functions are associated with 

low pass and high pass filters, respectively. The discrete wavelet function is 

expressed as follows: 

= _1 _.,, (t - nboaom) 
'rm,n ,z m /@0 ag 

The variables n and m are used to control the expansion and translation of 

the wavelet. While variables ay and bo are usually set to 2 and 1, respectively. 

Haar Wavelet 

The Haar wavelet is the simplest possible wavelet. Its scaling function can 

be described as: 

do (t)= 6(2t) + ¢6(2t- 1) 

where 

1
1 O<t<l 

¢ (t) = - 
0 otherwise 

The Haar wavelet mother function can be defined as: 

(2.8) 

(t)= 6(2t) + 6(2t- 1) 

(2.9) 

(2.10) 

(2.11) 
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Figure 2.2: Haar wavelet function and Haar scaling function [36] 

where , 

1 0<t<} 
(t) = -1 3<t<1 (2.12) 

0 otherwise 
~ 

The Haar wavelet function and its associated scaling function are shown 

in Figure 2.2. 

Daubechies Wavelet 

The daubechies wavelet transforms are similar to Haar wavelets in the way 

of calculating the running averages and differences via production of scalar 

with scaling and wavelet function. The differences between them is in how 

the scaling and wavelets functions are computed [42]. In Daubechies the 

frequency responses are balanced, but phase responses are non-linear. Unlike 

Haar wavelets, Daubechies wavelets use overlapping windows to reflect all 

high frequency changes through the high frequency coefficient spectrum [27]. 
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2.2.2 Histogram of Oriented Gradients 

This section provides an overview of Histogram of Oriented Gradients (HOG) 

descriptors, which are developed by Dalal and Triggs in 2005 (see Figure 

2.3) [31]. HOG features are used in computer vision field together with 

image processing for the purpose of object detection. The idea behind 12 

descriptors is that the appearance and shape of local objects with an image 

can be described by the distribution of gradient directions or edge directions. 

This is done depends by evaluating histograms of image gradient directions 

or edge directions in a localized portions of an image. The local histograms 

are well-normalized and they are built on a dense grid. 

Figure 2.3 shows how HOG features are extracted, where the input image 

is divided into small spatially connected regions called ("cells"). An accu­ 

mulated local 1-D histogram of gradient directions or edge orientations is 

calculated for each cell. Then, a larger spatially connected regions called 

("blocks") is used to normalize the contrast of the local histograms. Each 

block consists of a set of adjacent cells, with a possible overlaps between 

block. The normalization process is done by measuring the "energy" or in­ 

tensity of the histograms for cells within one block and using the result to 

normalize each cell's histogram within that block. The normalization pro­ 

cess is done to provide better performance in the detection process; as it 

becomes more invariant to illumination and shadowing changes. Finally, the 

combination of these normalized histograms represent the descriptor, which 

are called Histogram of Oriented Gradient (HOG) descriptors. 

HOG features have 4 steps that are provided below: 
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Figure 2.4: HOG feature extraction chain [31] 

Step 1:Gamma/Colour Normalization: 

In this step, images can be represented using different colour spaces, this 

include RGB, gray-scale, and LAB colour spaces [15]. From [5] experiments, 

it is better to use colour information when available when calculating HOG 

features. So using RGB or LAB colour spaces provide better performance 

than gray-scale. 

Step 2:Gradient Computation 

Several methods exist for the computation of the gradient values. The most 

common and the simplest one is to apply Gaussian smoothing followed by a 

discrete derivative mask, which can be applied on one or both of the vertical 

and horizontal directions of an image. The mask can be done by simply filter 

the color or intensity data of the image using one of the following 1-D filter 

kernels: 
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·Jo[±a' 
Other filter kernels were tested by Dalal and Triggs, this include 3x3 sobel 

kernels as well as centred, uncentred and diagonal kernels. From their exper­ 

iments these kernels achieved poorer performance in human detection. For 

Gaussian smoothing, omitting any smoothing exhibited better performance. 

In case where color images were used, a separate gradients were calculated 

for each channel, and the one with largest norm with be used as a gradient 

vector. 

Step 3: Spatial / Orientation Binning 

The next step is to create the local histograms. Each cell accumulating a 

weighted vote for a local 1-D histogram of gradient or edge directions over 

the pixels of the cell. This local histogram is based on the values found in 

the gradient computation. The shape of the cells can either be rectangu­ 

lar or radial, and the orientation bins or the histogram bins can either be 

evenly spread over O O to 180 ° or O O to 360 °, this depends on whether to 

have "unsigned" gradient or "signed" one. In Dalal and Triggs experiments, 

they found that unsigned gradients in conjunction with 9 histogram bins ex­ 

hibited better performance in their human detection experiments. For the 

vote weight, each pixel can contribute either by the gradient magnitude itself, 

or some function of the magnitude, such as the square root of the gradient 

magnitude or its square, or some clipped version of the magnitude, which 

is used as a representation the presence or absence of an edge at the pixel. 

Best results were obtained by using the gradient magnitude itself. 
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Step 4: Normalization and Descriptor Blocks 

In this step, the problem of illumination and contrast changes is consid­ 

ered, where the local variations in illumination and contrast cause gradient 

strength to be vary over a wide range. Thus, the gradient strength must 

be locally normalized, where the normalization process is based on grouping 

cells together into larger spatial regions cal_led blocks, then normalize each 

block separately. The vector of the normalized cell histograms from all of 

the blocks represents the HOG descriptor. A typical overlap exists between 

block which means that each cell contributes several times to the final de­ 

scriptor vector. Block geometry may be square or rectangular R-HOG blocks 

or circular C-HOG blocks (log-polar). In R-HOG blocks, images are parti­ 

tioned into square or rectangular grids, which are described by the number of 

cells in each block, number of pixels in each cell and number of bins per cell 

histogram. In C-HOG blocks, the blocks can be described by the number of 

radial and angular bins, the center bin radius, and the expansion factor for 

the radius of additional radial bins [31]. 

Dalal and Triggs evaluate four different schemes for the normalization 

process. The schemes are in the following: 

- L2-norm based normalization: 

I= V 

/\let?+ ® 
(2.13) 

- L2-hys based normalization: L2-norm followed by limiting the maxi­ 

mum values of v to 0.2. 
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- Ll-norm based normalization: 

f= V 
(Ill], + ) (2.14) 

- Ll-sqrt based normalization: 

!= (2.15) 

Where v is the unnormalized vector, [[v]], is it k-norm for k = 1,2 and c 
is a small constant. 

Using HOG features have shown very good results for person detection 

in images [31], even in occlusion cases, images with complex background, 

and images with different scales. We will test HOG features efficiency in 

plant detection, also experiment different type of image processing feature 

extractors. 

2.2.3 Gabor Filter 

Gabor Filter (GF) is considered as band-pass filters that is used to represent 

uni-dimensional signals such as speech signals, it also can be used to represent 

2-D signals such as images, in this case GF is called Spatial 2-D Gabor Filter. 

In images, GF is used for edge detection and texture representation and 

discrimination, where images are represented in frequency and orientation 

representation. 

GF is computed by implementing one or multiple convolutions of an input 

image with Gabor function, which is defined as the product of a Gaussian 

kernel times a complex sinusoidal plane wave. The complex sinusoid is called 

the carrier and the 2-D Gaussian function is called envelope. GF is defined 
' 
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in Equation 2.16 [29]: 

(2.16) 

GF function has real and imaginary components, the real component is 

defined as [29]: 

( x'2 + ,,t2y'2) ( x' ) g(@.y)=exp 972 cos 2n + 

The imaginary component is [29]: 

( x'2 + ---t2y'2) ( x' ) g(@,y) =exp 27? sin 2r + 

where A is the wavelength of the sinusoid, 0 is the orientation, is the 

phase offset, a represents the size of the Gaussian envelope and, represents 

the spatial aspect ratio. 

Parameters details are explained in the following: 

Wavelength (A) 

Here A is used to specify the wavelength of the cosine factor, which is specified 

in pixels. Valid values of A are real numbers equal to or greater than 2. Figure 

2.5 shows the effect of A on the filter. 

X= 10 X= 15 

Figure 2.5: The effect of wavelength parameter on GF kernel [29] 

(2.17) 

(2.18) 
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Orientation (0) 

The value of 0 is used to specify the orientation of the normal to the Gabor 

function's parallel stripes. Its values are specified in degrees and must be 

within interval [0,360]. GF kernels with different orientations are show in 

Figure 2.6. 

0 = 0 0 = 45 0== 90 

Figure 2.6: The effect of orientation parameter on GF kernel [29] 

Phase offset(s) (yo) 

The phase offset parameter is used to represent the argument of the cosine 

factor, which is specified in degrees. must be within interval [-180, 180]. 

The function can be center-symmetric, anti- symmetric or asymmetric func­ 

tion, where values 0 and 180 is used to form center-symmetric functions. 

The values 90 and -90 form anti-symmetric function. All other values form 

asymmetric functions. See Figure 2.7. 

p== O 

Aspect ratio (7) 

p == 180 po== -90 

Figure 2.7: The effect of phase offset parameter on GF kernel [29] 

The aspect ratio is used to specify how the support of Gabor function is 

elliptic. When = 1, the support is circular. Figure 2.8 shows GF kernel 
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with aspect ratio value of 0.5 and 1, respectively. 

= 0.5 y= l 

Figure 2.8: The effect of aspect ratio parameter on GF kernel [29] 

2.3 Detection Approach (Poselets) 

One of the human detection approaches that are considered as a classification 

problem is Poselets, which are notions that have been developed by Bourdev 

and Malik for detecting humans in images. The term poselet is used to 

"describe a particular part of human pose under a given viewpoint" [5]. This 

includes frontal and profile faces, pedestrians, head and shoulder views ... etc. 

To construct a poselet, a set of image patches that are tightly clustered 

both in image appearance space as well as configuration space are used as 

positive examples to train one SVM. The configuration space is determined 

by annotating each image with a set of keypoints to facilitate the process of 

finding tightly clustered patches that have similar configuration of keypoints. 

The system have 19 keypoints annotations, which include joints, eyes, ears 

... etc. The location of each keypoint is expressed as Gaussian distribution, 

which is calculated from the location of one keypoint in all images that 

are used to extract patches form them to train one SVM. The Gaussian 

distribution of keypoints will be used for detection purpose [24]. To ensure 

scale invariant detection; different sizes of the training patches are used. 

HOG descriptors are computed for each image patch. The HOG features 

of tightly clustered patches are used as positive examples to train a linear 
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SVM classifier, which will be used to detect the trained part of human. The 

system includes sets of SVMs, each set include a number of SVMs that are 

trained with patches have the same dimensions. 

At test phase, a multi-scale sliding window of same dimensions as training 

patches is used to find strong activations for different SVMs in the test image. 

The size of the sliding window will vary according to the tested set of SVMs. 

The location of the strongly activated patches and the Gaussian distribution 

of the keypoints are used to predict the location of a human in the test 

image. The process of predicting humans in images is started by predicting 

the keypoints for each strong activated patch. The prediction of keypoints 

proceeds by the following steps: 

1. Projecting the activated SVM keypoints on the test image. 

2. Scaling the projected keypoints using the minimum dimension of the 

activated patch in the test image. 

3. Translating the projected keypoints using the center of the activated 

patch in the test image. 

The scale and translation for each keypoint k in the activated patch i is 

done using Equation 2.19 and 2.20 [24, 5], where mu and sig, are the mean 

and the standard deviation of the k- th keypoint respectively. While sc; and 

tr; are the scale and translation of the i- th activated patch respectively. 

mu= mu x sc; + tr, (2.19) 

. 2 sig, = sig, x sc; (2.20) 
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Each strongly activated linear SVM will vote for a possible location of 

a human, which means more than one SVM will predict the location of the 

keypoints for each human in the image. To determine which keypoints be­ 

long to one hypothetically human, all the predicted keypoints are clustered. 

Keypoints within one cluster are used to predict the location of one hypo­ 

thetically human [5]. 

It will be interesting to investigate the poselets approach to flower detec­ 

tion. 
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Chapter 3 

Literature Review 

Most recognition applications that are related to plants require them to be 

isolated from the background [22, 4]. In addition, they are highly depend on 

segmentation [22, 40, 4, 7, 32], which requires the images to be focused on 

the plants. These methods are out of our consideration. We are interested on 

other cases where the plants are part of a whole image. In this cases, more 

complicated approaches are used for isolating plants from background. We 

are interesting at detecting plants in images rather than segmenting them. 

Plant recognition is either based on features produced from plant leaves 

[22, 4] or features extracted to represent the general appearance of plants 

[10, 40, 7, 21, 19, 20]. The related works of plant detection and recognition 

is briefly expressed in the following sections, where detection is used to find 

the location of the flower in the image, but segmentation is used to isolate 

flowers from background. 

3.1 Plant detection 

Plants are considered as a desired objects in some general object detection 

systems, some of these systems is the one that is built by Felzenszwalb et 
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al.[11]. They built a general object detection model, and plants are one of 

the objects that are considered in their work. The model is based on the 

use of pictorial structures framework. The pictorial structures are defined 

according to [11] as "represent objects by a collection of parts arranged in 

a deformable configurationt". Each part represents a local appearance of 

the object, while the deformable configuration is used to provide connection 

information between parts. They have a feature map with a feature vectors 

at each entry in the map. HOG features are extracted from patches located 

in a dense grid images. A linear rectangular filter is used to filter each patch. 

They also built a feature pyramid for each image to evaluate it at different 

positions and scales. In the deformable part models, a root filter is used to 

define the entire object. While smaller parts are represented by other high 

resolution filters. In detection stage, the high scored root filters are used 

to define detection type, while part filters are used to define a full object 

location (hypotheses). 

The problem of the previous system is the time. It takes a relatively long 

time to detect objects. Felzenszwalb et al. in their works in [10] accelerated 

the time that is required to detect the proposed objects in the images. Their 

system depends on building a cascade classifier for the deformable part mod­ 

els which is a star-structured model. A partial hypothesis pruning is used to ' 
prune hypotheses with low scores. The pruning is done using their introduced 

probably approximately admissible thresholds. Their main contribution is to 

speed up detection process, while guarantees the detection performance. 
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3.2 Plant recognition 

One of the systems that are based on leaves features is the one that is in­ 

troduced by Zhan et al. [22]. They developed a system for identifying plant 

species based on GF and statistical moments features that are extracted from 

the leaves of plants. The geometry features for the leaves are also considered, 

such as the ratio of the leaf length to width and 2-D moment invariants. GF 

and statistical moments are used as texture features, where gabor are used in 

multi-resolutions. Next a self organizing map neural network is trained with 

the feature vectors. Query leaf samples will be identified using the trained 

classifier. 

Belhumeur et al. [4] also depend on leaves features to identify plant 

species. Firstly, the system must starts with segmentation phase to isolate 

leaves from background. Images then are mapped into hue saturation value 

(HSV) color space. The system depend on the shape of leaves to identify 

their species. They use inner distance shape context (IDSC) as leaf features 

that are used to match the shape of a query leaf with features of leaves in 

the dataset. The IDSC is represented as 2-D histogram descriptors, which 

is constructed for samples of points over the boundary of leaf shapes. Each 

entry in the histogram represents the angle and the distance between the 

reference point and all other points along the boundary. To identify the 

query leaf, IDSC is constructed for it. Then it is compared with all other 

IDSCs by comparing each sample point in the query leaf by all points in 

all other IDSCs. The final decision is determined by calculating a distance 

matrix between the query leaf shape and other shapes. 

Using leaf features have a problem of having to pre-process the images to 

segment leaves from background. As a result, researchers tend to use texture 

features that are extracted from the general appearance of plants rather than 
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leaves features in identifying plants. Some of plant recognition systems that 

depend on the general appearance texture features are briefly explained in 

the following. 

The flower recognition system that is introduced by Nilsback et al. [33] 

depends on the use of a bag-of-words (Bo W) approach for the proposed fea­ 

tures. Namely, internal dense scale-invariant feature transform (SIFT) [25], 

boundary SIFT and histograms of gradients. These features are extracted 

from images in HSV color space. Then a non-linear support vector machine is 

trained by the feature vectors. Later, they improved their system by adding 

another geometric layout features. 

One use of support-vector-machine for flower recognition can be found 

in the publication by Chai et al. [7]. I their work, flowers are firstly seg­ 

mented from the background using their developed superpixel-based flower 

foreground segmentation algorithm. Then, flower species are recognized us­ 

ing a combination of descriptors, which are extracted from the segmented 

images in Lab color space. The features are multi-scale dense SIFT, interest 

point SIFT and multi-scale boundary SIFT. The multi-scale dense SIFT de­ 

scriptors are used for shape representation and they are the most powerful 

descriptors from the used features. All of the used features are extracted 

in multiple points in each, which result in more than one feature vector for 

each image. They used the Bo W approach in order to transform the feature 

vectors into one vector. A linear support vector machine is trained to classify 

one flower species from all other species. They tested their system on the Ox­ 

ford 17 and 102 dataset 1. In the comparison between their performance and 

recent publications on Oxford Flower 102 dataset, their system outperform 

the others [21, 19, 20]. 

1 http:/ /www.robots.ox.ac.uk/ vgg/data/flowers/ 
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In [40], Siraj et al. developed a system for classifying Malaysian blooming 

flowers. Firstly, images are segmented using thresholding and region filling 

techniques. Images are then transformed into HSV color space to extract 

texture features from them. The extracted features are based on the use 

of a gray-level co-occurrence matrix. From the matrix, four features are 

calculated and used as features to represent each image, which are contrast, 

correlation, energy and homogeneity. Finally, these features are used to train 

neural networks to classify flower species [9]. 

All of the above reviewed systems are based on using learning techniques 

and classification tools for plant recognition. Other systems may depend 

on extracting features for a query image, then use the distance between 

its features and the features of the images in the database to decide the 

plant type and recognize it. Next, some systems that depend on the later 

methodology are briefly explained. 

A flower image recognition system that is developed by Hsu et al. [18] 

starts by providing the user the ability to draw a rectangular window around 

the flower in the image. Then a sobel edge detector is used for flower edge 

detection and stamen region estimation. They have used two types of shape 

features; the whole flower region features and the pistil/stamen area regions. 

Features that represent the whole flower region are based on the center point, 

which is used to find the distance between it and every pixel in flower bound­ 

ary to represent the sharpness of each petal in the flower. Also a normalized 

distances are averaged to ensure scale invariant characteristic. Finally, the 

roundness measure is considered to indicate how much the shape of petals is 

close to the center. The pistil/stamen area features are the mean of the nor­ 

malized distance values between the centroid of the stamen and every pixel 

in the stamen area, the standard deviation of the normalized distance values 
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and the third central moment of the normalized distance values. To recognize 

a query image, the distance between the query image and all images in the 

dataset is calculated. The image with minimum distance is considered. 

Vuarnoz developed a flower recognition system that starts by image seg­ 

mentation [41]. A watershed algorithm is used to segment flowers from im­ 

ages. The segmented images is then used to construct a binary mask images. 

The original image and the mask are used for feature extraction. He used 

three types of features namely; color features, contour-based features and 

texture features. Color features are color histogram and color moment in 

different color spaces. The contour-based features that are used to represent 

the shape of the flowers are the distances and angles between the center of the 

flower and every pixels in the contour, the ratio of the minimum and maxi­ 

mum distances, number of petals and a histogram of the distances, which is 

used to represent the distances is distributed. Finally, the texture features 

are gabor wavelet and gist features. The features are extracted for query 

image and compared to those in the database. 

Some of the reviewed recognition approaches require a pre-processing seg­ 

mentation phase for flower recognition. While others require a special atten­ 

tion of the input image such as focusing it on the flowering plant. In our 

proposed approach, we replace the segmentation phase by detection phase 

that does not need special attention to isolate flowering plant from back­ 

ground. Rather images are in full scene and flowers are part of them. 
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Chapter 4 

Methodology 

We considered both the detection and recognition problems as classification 

problems. Like poselet that is described in Section 2.3, we divide the images 

into patches and train a set of SVMs with these patches to detect the flower­ 

ing plant species. But unlike poselets, we tried to use different features. For 

recognition, we have built new classifiers to recognize the type of the species. 

Having a colored image, the system proceeds through 4 steps; preparing 

images, extracting features, detecting flowers and finally recognizing the de­ 

tected flowers. Since the detection is considered as classifier using machine 

learning, we need a learning phase for detection. For this learning phase, 

a set of classifiers are trained to detect flower species. Then, the trained 

classifiers are used to detect the flower species in full scene images. A slid­ 

ing window slides over the image, extract the features form it, then use the 

trained classifier to determine whether it is a flower or a background. 

In the recognition phase another set of classifiers are trained to recognize 

flower species. The trained classifiers are used to determine the type of the 

windows that are classified as flowers in the detection phase. Each step in 

the flower detection and recognition system is described in details later in 
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this chapter. 

4.1 Dataset 

We have built a new dataset contains images from different species that are 

shown in Figure 4.1. We are constrained to build the dataset for flower 

detection because no benchmark is available. For flower recognition, Oxford 

17 [35] and Oxford 102 [34] datasets are available. Oxford 17 dataset consist 

of 17 flower categories with 80 images for each category. Oxford 102 dataset 

contain 102 flowering plant categories. Each category have between 40 and 

258 images. 

Unfortunately, oxfordl 7 and oxford 102 dataset cannot be used for de­ 

tection phase, because all images in the dataset contain only focused flowers. 

Our problem requires images to be in the full scene in order to detect flowers 

in them. 

The dataset that we have built includes 10 kinds of flower species, which 

are shown in Figure 4.1. Images in the figure represent segmented part of 

the dataset images. The full dataset images are shown in Appendix A. The 

dataset includes around 80 full scene images in RGB color space for each 

species. Images are inclusive, where each species is represented with flowers 

has possibly different color, growth stage, size or different postures. 

4.2 Image Preparation 

Image preparation phase is for detection and recognition. In this phase, full 

scene images in the dataset are used to prepare examples for training phase. 

The images contain flower(s) and background representation. We need to 

divide the image into patches, each patch must represent either part(s) of a 
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flower or full flower. 

To partition images into patches with foreground representation, we must 

annotate images in the dataset with 2D keypoints. The purpose of annotating 

images in our work is to: 

1. Discriminate flowers from background. Figure 4.2 show how keypoints 

discriminate flower parts from background. Keypoints are represented 

by red asterisk. Red rectangles represent patches with flower part(s) 

representation, while blue rectangles represent patches background rep­ 

resentation. 

2. Determine which patches with the same configuration space (keypoint 

Barberton Daisy Bishop of Llandaff Blackberry Lily Californian Poppy 

Daffodil Fangipani 

Cyclamen 

Gazania 

Zantedeschia 

F. 4.1: Segmented parts from our dataset. 1gure. · 

Snowdrop 
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configuration) can be used to train one classifier. In Figure 4.3 rect­ 

angles with same color represent patches with the same configuration 
space. 

3. Predict the bounding box for each flower during detection phase. The 

prediction based on Equation 2.19 and 2.20 

Figure 4.2: Discriminate flowers from background 

Figure 4.3: Keypoint configuration space 
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Keypoints are allocated over flower parts in each image. Then, a multi­ 

scale sliding window slides over the full scene images.The sliding window 

slides each time 8 pixel across the rows and 8 pixels across the columns. The 

multi-scale sliding window will produces patches with different dimensions 

to ensure scale invariably detection and recognition task. Some patches with 

one or more keypoints are considered as foreground patches. While other 

patches are considered as background patches. Due to the large variation 

between flower species, the number of keypoints and the configuration of 

them are varies from one species to another. 

Figure 4.4 shows samples of prepared patches, each row in the Figure in­ 

cludes samples of patches belong to the same species that are tightly clustered 

in both image appearance space and keypoint configuration space. 

Example of flower patches from different species with different Figure 4.4: 
postures. 
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AL3 DL3 
DL2 

VL3 HL3 
DLl 

V12 HL2 

VL1 HL1 

Figure 4.5: Three level 2D DWT. 

4.3 Feature Extraction 

Feature extraction is an important step in any detection and recognition 

system; because it is not worthy to use images directly in the problem, rather 

the use of features in any classification problem make it more effective and 

efficient. When extracting features from images, we transform them into a 

feature vector, which will be used to train the classifiers. We have used three 

popular feature extraction methods, which are DWT, GF and HOG features. 

In DWT features, we decompose each input image by three-level 2D 

wavelet decomposition. Figure 4.5 shows the structure of DWT feature for 

each image, where HLK, VLK and DLK represent horizontal, vertical and di­ 

agonal direction information at level K, respectively. While AL3 represents 

the approximation at level three. Figure 4.6) shows the representation of an 

image in DWT space. 

Gabor features are extracted using the parameters in Table 5.1. The 

feature representation of the input image in Figure 4.5 in gabor space is 

shown in Figure 4.7. 
HOG features are extracted from R, G and B channels in a colored image. 

The channel with maximum orientation histogram is used to calculate the 
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A13 [DL3 

'1..3 HLl 
D 2 

YL2 

' 

4.3 Feature FxT: 

Feature extraction is ar 

system: because it :s = 
the use of featc::s =- _ 

7914 

eatures as they are in the 5th 

efficient. When er--­ 

feature vecto:-. 

popular feat- ­ 

In D 

wavelet 

eacl 

, ,. :.o_ '· :iries according to the size of the patch 

·- -~- '•e length of the feature vectors for each feature 

Input image DWT image 

Figure 4.6: A sample image in DWT space. 
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Table 4.1: Feature vector length. 

Patch size HOG DWT GF 

64 X 96 2772 6144 6815 

64 X 64 2772 4096 4639 

72 X 72 2772 5184 5791 

92 X 94 3420 8648 9427 

112 X 118 5877 13216 14138 

140 X 136 8604 19040 20213 

168 X 176 14328 29568 30975 

212 X 218 22635 46216 47914 

HOG features. We cannot figure out HOG features as they are in the 5th 

dimension. 

The length of the feature vector varies according to the size of the patch 

and the extracted features. The length of the feature vectors for each feature 

are shown in Table 4.1 

, a 

Input image DWT image 

Figure 4.6: A sample image in DWT space. 
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Figure 4. 7: Image in gabor space. 

4.4 Detection phase 

In our proposed approach, we have considered the detection and recognition 

phases as classification problem. We have used linear SVM as a classifier, 

because it shows its efficiency in most classification problems [24, 5]. The 

flower detection and recognition system using SVM classifier is shown in 

Figure 4.8, where D- Model, denotes the set of detection models for flower 

species i. While R- Model, denotes the sets of recognition models that are 

used to recognize flower i. 

The system starts with image acquisition, then features are extracted 

from the image after converting it to a set of overlapped patches. A set of 

detection models that are prepared during training a set of SVMs are used to 

classify the patches to either flower part(s) or not. The final decision about 

the location of flowers in the image is made using a classification criteria (1). 

Features are then extracted from the detected flowers in detection phase to 

be recognized. Recognition models are used to recognize the type of each 

detected patch. The classification criteria (2) are then used to make the final 

decision about the kind of the detected flower. 

In this section, the detection phase is split into detection training phase 

and detection test phase. The following sections provide details about them. 
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Extract features 

D_Model 

Classification criteria (1) 

Detection Results 

Extract features 

R_Model; 

Classification criteria (2) 

Recognition Results 

Figure 4.8: Overview of the detection and recognition system. 

4.4.1 Detection training phase 

The detection training phase is shown in Figure 4.9. Features that are ex­ 

tracted from the prepared patches in Section 4.2 are used to train a set of 

SVMs. The output of each SVM is a score that is used to determine whether 

the patch is a flower or not. 

As we mentioned in Section 2.1.1, SVM is a binary classifier in nature, 

and our problem is a multi-class classification problem. Although there exist 

multi-class SVMs, we use the binary SVM for multi-classes for its simplicity. 
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P q 

Image ~ 
m Feature Training Detection - ~ ts - preparation - extraction - 23 

classifier ~ ~ Model gee - ... ... ~ 

Figure 4.9: Block diagram of detection training phase 

Figure 4.10 shows how we use binary SVM classifier as a multi-class classifier. 

The classification is done by training more than one SVM, each one is used to 

classify one class. The positive examples in each SVM are features extracted 

from one class. While negative examples are features extracted from all other 

classes. For example, if we have 3 classes A, B and C, we will have 3 SVMs 

each one will be used to classify one class. In classifying class A from the 

other classes, we train SVM by class A features as positive examples, while 

features from B and C classes are used as negative examples. The same 

process is used to classify the other 2 classes. 

In detection training phase, each flower species is detected using more 

than one SVM. Each SVM is used to detect a specific part(s) of a flower or 

full flower. Patches of flowers from the same species with same posture and 

keypoint configuration space are used as positive examples to train one SVM. 

The negative examples are patches from background. Later, this trained 

SVM will be used to detect such part(s) or such flower in detection test 

phase. 

4.4.2 Detection test phase 

In this phase, the detection trained SVMs are used to detect flower species in 

full scene images, see Figure 4.11. A multi-scale sliding window slides each 

time 8 pixels across the rows of the full scene image and 8 pixels across the 

1 Th 1 Of the WI. ndow varies as the patch scales vary. Features co umns. e sea e 

d £ the Patch that is represented by the sliding window, then are extracte orm 
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Figure 4.10: Using binary SVM classifier as multi-class classifier. 

the features are fed to the detection trained SVMs. The result is a set of 

patches represent parts of flower(s). Classification criteria (1) in Figure 4.8, 

are used to determine the final detection decision, which are based on the 

results obtained from one or more D- SV Mi. The poselets implementation 

that is explained in Section 2.3 is used as implementation for classification 

criteria (1), which will detect flowers in images. 

4.5 Recognition phase 

Recognition phase is also treated as classification problem and also has recog­ 

nition training phase and recognition test phase. 
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Figure 4.10: Using binary SVM classifier as multi-class classifier. 

the features are fed to the detection trained SVMs. The result is a set of 

patches represent parts of flower(s). Classification criteria (1) in Figure 4.8, 

are used to determine the final detection decision, which are based on the 

results obtained from one or more D- SVM,. The poselets implementation 

that is explained in Section 2.3 is used as implementation for classification 

criteria (1), which will detect flowers in images. 

4.5 Recognition phase 

Recognition phase is also treated as classification problem and also has recog­ 

nition training phase and recognition test phase. 
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Detection 
Model 

I 

~ ,. p g ., 
Sliding Feature 

., 
mes - ::II Detection .. Window - extraction ~ 

_;;i Flower - - 
"" .... ... 

"" 
( 

Not 
Flower 

Figure 4.11: Block diagram of detection phase 

4.5.1 Recognition training phase 

In recognition training phase we have two alternatives, either to use the same 

detection trained SVMs or use another set of SVMs to recognize the detected 

flower species. In our proposed approach, we use another set of SVMs for 

the recognition phase. Each SVM is trained with the same patches that is 

used as positive examples in the detection phase. But the negative examples 

are patches from other species. Each SVM is trained to classify part(s) or 

full flower from one species, see Figure 4.8. The recognition training phase is 

shown in Figure 4.12. Features are extracted from the prepared patches to 

train recognition SVMs, which will be used to determine whether the patch 

belongs to the trained species or not. 

' g ' gr gr 

Image - Feature - Training ... Recognition ~ _:::I ~ _:::I ~ 
preparation gg extraction gr classifier - Model 

.... .... ~ ... .... .... 

Figure 4.12: Block diagram of recognition training phase 
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4.5.2 Recognition test phase 

The recognition test phase is used to test the recognition trained SVMs in full 

scene images, see Figure 4.13. Features are extracted from the hypothetical 

flower that is detected in detection test phase. Then the recognition trained 

SVMs are used to determine the type of the detected flower. The detected 

flower is represented as patches that are classified as part(s) of flowers in 

the detection test phase, these patches are fed to the recognition trained 

SVMs. While other patches that are classified as background patches are 

ignored. The final recognition decision is determined by classification criteria 

(2), which is voting from the recognition SVMs with high scores. The species 

with high votes from SVMs is recognized. 

Recognition 
Model 

\l 
g g 

Hypothetical - Feature - Recognition le» 

species x _ _.:;;a Extraction ~ _:;. Flower ow g ~ 
... ~ ~ 

{} 
,i 

Not 
species x 

Figure 4.13: Block diagram of recognition phase 

To have a scale invariant detection and recognition, SVMs are grouped 

· h t tains a number of SVMs that are trained with feature in sets, eac se con = 
f 1 gth hi.ch are extracted from patches of same size. All vectors o same en , w 

• f th fl wer species are taking into account in each set. In possible postures o e 0 

. d ition phases each flower species have more than both detection an recogm ' 

d t t d recognize it. Figure 4.14 shows a sample of one set of SVMs to e ec an 
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examples that are used to train some SVMs belong to one set. 

In both detection and recognition test phases, we use SVM scores to 

determine the strength of each activated patch in the test image. The score 

is calculated using Equation 4.1, where S, is the score of the i- th SVM, 

while w, and b, are calculated as in Equations 2.4 and 2.5, respectively. 

(4.1) 

SVM scores are used to determine the class of new data point x using 

Equation 4.2, where sgn is the sign functione. Scores are also used to express 

how far the new data point is from the hyperplane. Farther patches from 

hyperplane will get higher scores than closer patches. For Example, if we 

have s1, s2 and s3 scores with their corresponding values .4, .9 and -.7 

respectively. The scores s1 and s2 indicate positive class, while s3 indicates 

negative class. The data point with score s2 is farther from the hyperplane 

than the data point with score sl. 

y= sgn(w • x + b) (4.2) 

SVM 1 SVM2 SVM3 SVM4 

F. 4 14· s les of training examples for Daffodil SVMs with dimensions 1gure .. ·amp 
64 X 96. 
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4.6 Evaluation 

In test phases, we have used three folds cross validation technique to evaluate 

the system. Images are divided into three equally groups, two-third of the 

images are used for training phase and one-third of the images are used 

as validation data in the test phase. The cross validation process is then 

repeated three times, each time the training and testing data are changed, 

but the percentage of them remains unchanged. The results that are obtained 

from the three folds are represented in a Receiver Operating Characteristic 

(ROC) curve. 

We have used ROC curves to express the detection and recognition per­ 

formance, which are used to illustrate the performance of a binary classifier. 

The outcomes of the binary classifier are scores that are calculated using 

Equation 4.1, but they are farther grouped into 4 groups which are: 

1. True Positives (TP): The outcomes that are predicated by the clas­ 

sifier as true and the actual values of them are also true. 

2. False Positives (FP): The outcomes that are predicated by the clas­ 

sifier as true and the actual values of them are false. 

3. True Negatives (TN): The outcomes that are predicated by the 

classifier as false and the actual values of them are also false. 

4. False Negatives (FN): The outcomes that are predicated by the 

classifier as false and the actual values of them are true. 

All of the above binary classifier labels are used to calculate the following 

measurements that are used to plot the ROC curves: 

Tr P •t· Rate (TPR): Also called sensitivity, is the ratio of l. ue 'osiive 

TP to the total number of positives, see Equation 4.3 
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2. False Positive Rate (FPR): Th : e ratio of FP to the total number 
negatives, see Equation 4.4 

TPR= TP 
TP+ FN (4.3) 

PPR= F FP + TN (4.4) 

The FPR measurement is equivalent to 1- specificity (SPC), which is a 

desired measurement in our work and it is calculated using Equation 4.5. The 

ROC curves plot the sensitivity vs. (1- specificity) measurements, see Figure 

4.15 [8]. Perfect classification in the ROC curve indicates 100% sensitivity 

and 100% specificity. which means that all validation data are truly predicted. 

Curve A represents excellent classifier, curve B is a good classifier, Cl and 

C2 curves a.re average classifiers, while curve D represents a random guess 

classifier with 50% true prediction rate. 

TN 
SPC= FP+ (4.5) 

Another measurement is also considered, which are the area under curve 

(AUC) of the ROC curve. We use AUC to compare between two binary 

classifiers and measure the quality of them. The curve with the larger area 

yield a better binary classifier performance [28]. 

Finally, accuracy measurement is used to evaluate the system perfor­ 

mance on full scene images. The accuracy (ACC) is calculated using Equa­ 

tion 4.6 

ACC = 7P +TN + FF + FN 
TP+ TN (4.6) 
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Figure 4.15: The ROC curve space [17] 
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Chapter 5 

Experiments and Results 

We have evaluated our methodology using our dataset. The challenging in 

this dataset is the similarity of flowers from different species both in shape 

and color. On the other hand, flowers in same species may differ in either 

color, shape, or both of them, see the dataset in Appendix B. 

We have conducted different experiments that involve prepare training 

images, extract features and train the classifier for detection and recognition. 

The experiments are shown in the following sections. 

5.1 Image Preparation 

Images in the dataset are full scene, which means we need to divide them into 

smaller patches in order to be used for classification. As we have mentioned 

previously in Section 4.2, each positive example patch includes a part or 

more of a flower or even a full flower. A set of patches with same flower 

part representation is used as one cluster. To prepare these patches different 

approaches are conducted. Approach 1, Approach 2 and Approach 3 are used 

to prepare patches with size 96x64 and 64x64, where each patch include 

flower part(s) as in poselets. Approach 4 is used to prepare patches with full 
r ~ 
,~ ~tj ~ j,! ~i,. ..... 

3 , Pai&stne rFotytscfie vower'snuy 
· 5 {PPU} The library &2Slt 

Acc. ...26.5.l.6... -a 
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flower representation Th • · 1ese images preparation approaches are: 

Approach 1 (Manually extracted patches): Firstly, patches are ex- 
tracted manually from th f 11 . e u scene images. Positive and negative examples 
are extracted in the same A . . way. s we can see in Figure 5.1, all patches with 

same flower posture are well extracted, with a slight variation between them . 

g 
~ 

Figure 5.1: Manually prepared image patches 

Approach 2 (Semi-automatically extracted patches): Each full scene 

image is manually annotated with a number keypoints, see Figure 5.2. Key­ 

points are used to annotate parts of flowers, so the number of keypoints 

varies between flower species. An overlapping multi-scale sliding window is 

used over the full scene image, which slides each time 8 pixel across the rows 

and 8 pixels across the columns. A patch with keypoint(s) represents a part 

of a flower or full flower, this patch is saved as a positive example, while a 

patch without keypoints represents a background that is saved as negative 

example. In Figure 5.3, each row represents a sample of patches belongs to 

same cluster and will be used as positive examples to train one classifier. 
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Figure 5.2: Extracting patches semi-automatically. 

.Er KM5 
IE: 2.4 
Mi±Ha 

Figure 5.3: Samples of semi-automatically extracted patches 

Approach 3 (9-regions patches): We divide each flower into 9 regions 

by adding another 9 keypoints on the flower together with the previous key­ 

points. Figure 5.4 shows the 9 regions, where a region is represented by a 

keypoint in the center of it, which is marked manually. Also an overlapping 

multi-scale sliding window slides over the full scene image in the same man­ 

ner in Approach 2. The resulted patches are then assigned to one of these 

regions. To do this, the euclidean distance (see Equation 5.1 ) is calculated 

between each keypoint in the resulted patch and all keypoints that is used to 

represent the regions. Equation 5.2 is used to assign patches to one region, 

where p is the patch keypoint and qi is the keypoint of the i-th region. In 

this equation, The region with minimum distance is selected. In this exper­ 
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Figure 5.4: Manually dividing a flower into 9 regions 

iment, all patches within one region is used to train one SVM to represent 

that region. 

(5.1) 

(5.2) 

Approach 4 (Full flower patches): In this experiment, patches include 

full flower representation. To prepare the patches, we annotate each flower 

in the full scene image with 2 keypoints. The keypoints represent the top left 

corner and bottom right corner of the hypothesized bounding rectangle for 

each flower, see Figure 5.5. The keypoints are used to find the window width 

and height for each flower. Because flowers vary in size, we need different 

window sizes to have scale invariant detection and recognition. The size of 

the windows is determined using K nearest neighbour clustering approach, 

where windows width and height are clustered into 8 clusters, which are 

72x72, 92x94, 112x118, 140x136, 168x 176, 216x218 and 296x203. 
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Figure 5.5: Full flower patches 

5.2 Feature Extraction 

Features are extracted from images to represent them during training and 

testing phases. In our work, we have three feature extraction methodologies, 

GF, DWT and HOG features, which are extracted from patches in gray scale 

color space. A feature vector is extracted from each patch to represent it 

in the training phase. The associated parameters for each feature extraction 

methodology are shown in Table 5.1. We use the same parameters as in [31]. 

In addition, we modified the GF and DWT parameters as shown in the Table 

5.1 because they lead to best accuracy based on initial experiments. 

5.3 Detection Phase 

We have used the linear SVM as a classifier for the detection phase. As what 

is mention previously in Section 2.1.1, the classifier needs to be trained on 

positive and negative examples. In detection, each SVM is used to detect a 

part or more of one species. Thus, a set of SVMs is used to represent and 

detect one species. In this phase, we have two approaches: 
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Figure 5.5: Full flower patches 

5.2 Feature Extraction 

Features are extracted from images to represent them during training and 

testing phases. In our work, we have three feature extraction methodologies, 

GF, DWT and HOG features, which are extracted from patches in gray scale 

color space. A feature vector is extracted from each patch to represent it 

in the training phase. The associated parameters for each feature extraction 

methodology are shown in Table 5.1. We use the same parameters as in [31]. 

In addition, we modified the GF and DWT parameters as shown in the Table 

5.1 because they lead to best accuracy based on initial experiments. 

5.3 Detection Phase 

We have used the linear SVM as a classifier for the detection phase. As what 

is mention previously in Section 2.1.1, the classifier needs to be trained on 

positive and negative examples. In detection, each SVM is used to detect a 

part or more of one species. Thus, a set of SVMs is used to represent and 

detect one species. In this phase, we have two approaches: 
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Table 5.1: Feature extraction parameters. 

Features Parameter Value 

HOG Colour space RGB 
Gradient filter -1, 0, 1] 
Orientation bins 9 

Block size 16x16 pixel 
Cell size 8x8 pixel 

Detection window 64x96 

Gabor Filter Colour space Gray scale 
Wavelength (X) 0.5 
Orientation ( 0) 0 
Phase shift () 30 
Aspect ratio (y) 0.5 

DWT Colour space Gray scale or one of the RGB channels 
Type 2D wavelet decomposition 
Levels 3 

Wavelet name Daubechies 2 

Approach 1 (Mixed negative patches): The linear SVMs are trained 

with positive examples that are patches within same species and same posture 

to represent that part(s). While negative examples are a combination of 

patches from other species and patches from the background. Figure 5.6 

shows a sample of positive and negative examples used to train one SVM. 

Approach 2 (Background negative patches): In this approach, we 

only use patches from the background as negative example to train the SVMs, 

see Figure 5.7. The positive examples still the same as the positive example 

in the first approach. In this approach, each SVM is only used to classify 

whether the patch belongs to a species or a background regardless of its type. 
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Negative examples (Patches from background and other species) 

Figure 5.6: A sample of positive and negative examples in Approach 1 

F. 5.7 A sample of negative examples in experiment 2 1gure . . 
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5.4 Recognition Phase 

In recognition phase, we also ide tif d di- s.... 3 identity anc liscriminate between species using 

sets of linear SVMs. Thus the recognition task is considered as a classification 

problem. We have also two approaches: 

Approach 1 (Recognition based on detection): We firstly depend on 

the results obtained from mixed negative patches detection phase. As we use 

SVMs to detect 1 type of a flower, the same SVMs can be used to recognize 

the species by using SVMs scores, which are calculated using Equation 4.1. 

SVMs with high scores are used to vote for the type of the detected species. 

Approach 2 (Recognition based on new SVM sets): In this approach, 

we have built other set of SVMs for recognition phase. Here, each species is 

represented by a new set of SVMs, where the positive examples are the same 

as the examples that are used in the detection phase. The negative examples 

are just patches from other species, we don't use the background patches in 

the negative examples. During test phase, the SVMs of the recognition phase 

are just used to recognize the detected parts, not a sliding window all over 

the full scene image. The patches that contribute to determine the location 

of one flower species are fed to the SVMs of recognition phase. Then, the 

maximum number of SVMs that vote to a specific flower species are used to 

determine the final recognition decision. 

5.5 Results 

D · val t; e are interested in measuring the accuracy of the uring our e '!uation, w 

id the ·ition that are achieved by the system. In training detection an t e recogm 1 

d th £ ld cross validation technique. We are interested phase, we have use ree- o 
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in demonstrating two type ·f lt h · es o resu s, tie results of usmg patches during 

training phase and the results of applying the system on full scene images. 

The obtained results are discussed below. 

5.5.1 Time 

The system is implemented under MATLAB environment in a personal com­ 

puter with 2 GB RAM and 2.30 GHz CPU speed. The runtime depends on 

the size of test image and the number of the hypothetical flowers in each 

image. To have accurate time measure, each experiment tested 3 times and 

the average time is taken. 

Experiments show a positive relationship between the size of the image 

and between the number of the hypothetical flowers in the test image. The 

average detection runtime is 12 seconds for HOG features and 8 seconds 

for DWT features when using part(s) patches. For full flower patches, the 

average runtime is 8.6 seconds for HOG features and 6.6 seconds for DWT 

features. Figures 5.8 and 5.9 show the relationship between the image size 

and detection time. 

5.5.2 Test the system using patches 

The proposed approach is tested on classifying patches as flower or back­ 

ground ( detection phase). Also, it is tested on classifying the patches to 

determine whether they belong to a certain flower species type or not (recog­ 

nition phase). The results of detection and recognition phases are shown 

below. 

Detection phase: The proposed approach is firstly tested on detecting 

fl h e the trained classifiers are used to classify the parts of the towers. wher 
t( ) or background. Number of SVMs depends patches to either a flower par s 
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5.5. RESULTS 

Table 5.2: Performance of traini: ed , 
with manually prepa ed,,_"& maced negative patches detection SVMs are pate es. 

Features Accuracy (%) Sensitivity (%) Specificity () AUC (%) 

HOG 85.57 86 15 84 32 84.61 
DWT 87.63 

Gabor Filter 70.36 

87.68 88.36 86.70 

72.59 74.45 72.55 

Table 5.3: Performance of training mixed negative patches detection SVMs 
with semi-automatically prepared patches. 

-,--''------,-------r------, 
Accuracy (%) Sensitivity (%) Specificity (%) AUC (%) 

i====~l====== 
Features 

HOG 82.22 84.75 81.34 82.49 

DWT 85.73 86.47 86.46 85.25 

Gabor Filter 67.16 69.27 70.14 68.35 

on the image preparation approach and the kind of flowering plant species. 

Number of SVMs changes between species because of variation in keypoint 

distribution and numbers. In manually and semi-automatically extracted 

patches, each species has 3around 35 SVMs. For 9-regions extracted patches, 

9 SVMs are used for each species, while full flower patches have 7 SVMs. 

Tables 5.2, 5.3 and 5.4 show a comparison between the experimented fea­ 

tures in mixed negative patches detection SVMs. Each entry in the tables 

represents the average accuracy, sensitivity, specificity and AUC of all detec­ 

tion SVMs in all flower species. The average in each entry is associated with 

one feature. 

A comparison between the experimented features on training background 

negative patches detection SVMs to detect flower parts on the prepared 

patches are shown in Tables 5.5, 5.6, 5.7 and 5.8. For more details about the 
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5.5. RESULTS 

Table 5.4: Performance of trainin . d . 
with 9-regions patches. 3g mzed negative patches detection SVMs 

Features Accuracy (%) Sensitivity (%) Specificity () AUC (%) 
HOG 81.35 83.45 79.89 80.36 
DWT 83.39 85.37 84.49 83.28 

Gabor Filter 64.24 67.69 68.36 66.19 

Table 5.5: Performance of training background negative patches detection 
SVMs with manual patches 

Features Accuracy (%) Sensitivity (%) Specificity () AUC (%) 

HOG 88.49 90.75 89.51 90.19 

DWT 90.65 91.78 91.94 91.87 

Gabor Filter 74.16 76.69 78.05 77.38 

results of each species, see Appendix B. 

From the obtained results, we can conclude that DWT features with gray 

scale images provide better performance in most cases. ROC curves for some 

background negative patches detection phase are shown in Figures 5.10, 5.11 

and 5.12. The results consider the usage of the image preparation approaches. 

Table 5.6: Performance of training background negative patches detection 
SVMs with semi automatic patches o 

Features Accuracy (%) Sensitivity (%) Specificity () AUC (%) 

HOG 87.15 88.65 87.63 88.24 

DWT 88.78 90.10 89.14 89.68 

Gabor Filter 70.34 72.60 72.54 73.85 
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5.5. RESULTS 

Table 5. 7: Performance of training background negative patches detection 
SVMs with 9-regions patches 

Features Accuracy (%) Sensitivity (%) Specificity (%) AUC (%) 
HOG 85.45 86.26 86.68 86.34 
DWT 86.65 88.39 87.41 87.62 

Gabor Filter 68.69 70.36 70.38 69.97 

Table 5.8: Performance of training background negative patches detection 
SVMs with full flower patches. 

Features Accuracy (%) Sensitivity (%) Specificity (%) AUC (%) 

HOG 87.25 87.56 88.45 87.17 

DWT 92.15 93.42 91.43 92.97 
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5.5. RESULTS 

Table 5.9: Performance of recognition SVMs . 
automatic patches s that are tramed with semi- 

Features Accuracy (%) Sensitivity (%) Specificity (%) AUC (%) 
HOG 81.34 83.15 84.25 84.35 
DWT 86.27 87.42 85.34 86.64 

Table 5.10: Performance recognition SVMs that are trained with 9-regions 
patches. 

Features Accuracy (%) Sensitivity (%) Specificity (%) AUC (%) 

HOG 79.15 80.49 82.48 80.59 

DWT 84.25 85.47 81.36 82.13 

In training phase, experiments show that using DWT features from semi­ 

automatic patches as input for a linear SVM provide better performance 

than other features in most cases. An exception is the HOG features, in 

some cases the performance of HOG features slightly exceed DWT features 

performance. 

Recognition phase: The proposed approach is also tested on recogniz­ 

ing the parts of the flowers, where the trained classifiers are used to classify 

patches to determine whether they belong to a flower species or not. We 

ignored manual patches and GF features because they provide bad results 

in detection phase. The performance of recognition based on detection is 

explained in the following section because it depends on detection SVMs. 

Performance of the experimented features in new recognition SVMs are 

shown in Tables 5.9, 5.10 and 5.11 • 
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5.5. RESULTS 

Table 5.11: Performance recogritic SVy 
patches. Ill ion fs that are trained with full flower 

Features Accuracy (%) Sensitivity (%) Specificity (%) AUC (%) 
HOG 82.75 81.98 84.17 82.19 
DWT 84.12 87.67 86.18 85.78 

'Table 5.12: Performance of mired negative patches detection SVMs trained 
witl manually extracted patches. 

Features Accuracy (%) 

HOG 55.2 

DWT 58.6 

5.5.3 Test the system on full scene images 

In this section, we test the detection and recognition phases on full scene im­ 

ages. The SVMs are tested to detect and recognize full flowers not scattered 

parts. 

Detection Phase: Each trained SVM is used to detect its trained part(s) 

on a test (non-trained) image. We ignored the GF features as they give bad 

results during training phase. The results that are obtained from mixed 

negative patches SVMs are shown in Tables 5.12, 5.13 and 5.14. Full flower 

patches are not tested in this approach. 

Table 5.13: Performance of mixed negative patches detection SVMs trained 
with semi-automatically extracted patches. 

Features Accuracy (%) 

HOG 82.4 

DWT 85.6 
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5.5. RESULTS 

Table 5.14: Performance of mized negat 
with 9-regions patches. live patches detection SVMs trained 

Features Accuracy (%) 

HOG 85.8 

DWT 87.7 

Table 5.l5: Performance of background negative patches detection SVMs 
trained with semi-automatically extracted patches. 

Features Accuracy (% ) 

HOG 

DWT 

83.8 

85.6 

The results of using background negative detection SVMsare shown in 

the Tables 5.15, 5.16 and 5.17 and. Manually extracted patches are ignored 

because of their bad results in the previous approach. 

Recognition Phase: The detected species from detection phase then 

will be recognized during recognition phase. The results of recognition phase 

that depend on detection are shown in Table 5.18. Full flower patches are 

not tested in this approach. 

The results of using a new set of SVMs for recognition phase are shown 

in the Tables 5.19, 5.20 and 5.21. 

Table 5.16: Performance of background negative patches detection SVMs 
trained with 9-regions patches 

Features Accu 

HOG 8 

DWT 8 

racy(%) 

0.1% 

2.4% 
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5.5. RESULTS 

Table 5.17: Performance of back d . 
trained with full flower patch,, ""9und negative patches detection SVMs 

Features Accuracy (%) 

HOG 85.2% 

DWT 88.9% 

Table 5.18: Performance of recognition based on detection where SVMs are 
trained with semi-automatic patches ' 

Features Accuracy (% ) 

HOG 56.7 

DWT 60.5 

Table 5.19: Performance of recognition based on new SVMs sets that are 
trained with semi-automatic patches. 

Features Accuracy (% ) 

HOG 74.8 

DWT 78.6 

Table 5.20: Performance of recognition based on new SVM sets are trained 
with 9-regions patches. 

Features Accuracy (%) 

HOG 72.5% 

DWT 75.3% 
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5.6. DISCUSSION 

Table 5.21: Performance of recognition based 
trained with full flower patches. ·ec on new SVMs sets that are 

Features Accuracy (% ) 

HOG 77.1 

DWT 81.7 

Table 5.22: Comparison between our d .. 
other publications roposec recognition approach and 

Publication Accuracy (%) 

Nilsback (2009) 76.3% 

Kanan ( 2010) 71.4% 

Ito (2010) 53.9% 

Chai (2011) 90.0% 

Ours 81.7% 

Comparing our works with the works that are mentioned in [7], his exper­ 

iments performance superior the performance of our recognition approaches. 

But their experiments suppose the existence of flowers in the image and 

flowers must also be focused. This means no detection phase in his work. 

Table 5.22 shows a comparison between our work and the related works in 

recognition task. 

5.6 Discussion 

In image preparation approaches, the manually extracted patches provide 

b tt £ d · detection training phase due to the slight variation e er per ormance 'urng 

b t · · tch The resulted patches from Approach 1 represent e ween training pa c es. 
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5.6. DISCUSSION 

specific cases without having a consid t" f . . 
era ion ° other images m the test phase. 

Thus, learning process will be easier and ·ill, ·;de , 
wil provide wetter performance than 

the performance of the detection SVMs that t . d . h . 
are trainec witl semi-manually 

extracted patches from Approach 2 In the 1 t h h 
· a er approac , t ere are more 

variation between patches, which will actually represent them in test images. 

It is clear in Figure 5.3 the existence of variations between patches belong 

to same clusters. Thus, we certain that patches have general representation 

not special case representation. 

By comparing the results of using patches from Approach 2 and patches 

from Approach 3 in training detection phase classifiers. we notice that the 

performance of the detection SVMs using Approach 3 patches decreased. The 

patches that are resulted from Approach 3 have a very large variation between 

them, which make the learning process harder and thus will result in a slightly 

decreased performance. The purpose of Approach 3 is to decrease the number 

of SVMs that are used to detect each flower species. The reduction decreases 

the performance of the system; because the variation between patches in 

Approach 3 larger than variation between patches in Approach 2. 

Using patches from other species as negative examples in the detection 

phase causes an excellent results during training phase, but this causes a 

bad results in the recognition phase during the test phase. The reduction 

· th c · d to the confusion of using flower parts as negative in e performance is 'ue 

examples. The confusion is resulted form training one SVM with examples 

. . . h ti ie another SVMs is trained with a subset as positives and in the same ame, 

t. To resolve the problem, we use patches only of that examples as negaves. 
:. mples, which enhances the performance from the background as negative exa ' 

nhancement is due to the absence of recognition results. The performance e 
. 1 which reduces confusion between of positive examples as negative examples, 
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5.6. DISCUSSION 

SVMs. Also, this enhances detection rate, as some non-background patches 

will be considered as negatives, which means they are the same as background 
patches and this will not happen here. 

Poselets detecting approach has advantage of having more than one SVM 

that votes for the location of flowers. But poselets require large number of 

SVMs. When using a mutli-scale sliding window to detect full flower patches, 
we have a reduction in SVMs number and time. 
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Chapter 6 

Conclusion and future work 

6.1 Conclusion 

We have built a vision-based system for flower species detection and recog­ 

nition using linear SVM as a classification tool to detect and recognize a 

flowering plant species. We experimented 4 types of patches preparation ap­ 

proaches, which are manually prepared patches, semi-automatically, 9-region 

patches and full flower prepared patches. Performance of the full flower 

patches superior the other patches in all experiments. We experimented 3 

features namely, HOG, DWT and GF. Performance of DWT superior the 

other 2 features in all experiments. 

The experiment of using linear SVM that is trained with background 

patches as negative examples superior the performance of training linear 

SVM with patches from background and other species. We used another 

set of linear SVMs to recognize the type of the flowering plant rather than 

depending on the detection phase results. 

Th h . t sted in our dataset which includes 10 types e propose approacl is es • 

Experiments show that DWT with linear SVM of flowering plant species. 
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6.2. FUTURE WORK 

outperform other experimented features in b th • 
Ot accuracy and runtime. We 

have achieved an accuracy rate in detecting 10 fl · h 
a lower species reaches about 

88 ± 2 %. 

6.2 Future work 

In this section some ideas can be used that may improve the current work. 
The ideas are: 

1. Speed up the system either by changing he features as they take rel­ 

atively long time to be extracted or other changes that may speed up 

the system runtime. 

2. Experiment different color spaces such as HSV and LAB colors. 

3. Enhance the system performance in recognition. 

4. Expand the dataset to accommodate another flowering plant species. 

5. Use the system in mobile applications. 
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Appendix A 

Dataset 

The dataset has 704 images divided into 10 categories with 60 to 124 images 

per category. For each category, two-third training images are predefined, 

while the rest is left for testing. A subset of images for each category is 

shown in the following: 
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Appendix B 

Detailed Results 

B.1 Detection phase 

For the mixed negative patches detection phase, Figures B.l, B.2 and B.3 

show the performance of detection SVMs for each flower species, which are 

trained by manually, semi-automatically and 9-regions extracted patches, 

respectively. Full flower patches are not tested in this experiment. Each bar 

in the figures represents the average AUC for all detection SVMs that are 

used to detect the associated flower species. 

The obtained results of background negative patches detection SVMs are 

shown in Figures B.4, B.5, B.6 and B.7. Full patches are not tested on GF 

features. The figures show the performance of detection SVMs for each flower 

species, which are trained by manually, semi-automatically, 9-regions and full 

flower extracted patches, respectively. 

B.2 Recognition phase 
SVMs are shown in Figures The obtained results of recognition based on new 

fc ce of recognition SVMs B.8, B.9 and B.10. The figures show the pertorman 
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B.2. RECOGNITION PHASE 
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Figure B.l: Performance of training mixed negative patches detection SVMs 
for each flower species that are trained by manually extracted patches 

for each flower species, which are trained by semi-automatically, 9-regions 

and full flower extracted patches, respectively. 
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Figure B.3: Performance of training mixed negative patches detection SVMs 
for each flower species that are trained by 9-regions extracted patches 
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Figure B.5: Performance of training background negative patches detection 
SVMs with semi-automatic patches. 
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Figure B. 7: Performance of training mixed negative patches detection SVMs 
for each flower species that are trained by full flower patches 
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Figure B.9: Performance of training recognition SVMs for each flower species 
that are trained by 9-regions extracted patches 

Zantedeschia 

Cyclamen 

Snowdrop 

'% 

3 c. 
Q 
ho 

~ Californian Poppy 
0 
~ 

Gazania 

Fangipani 
Daffodil 

Barberton Daisy 

T! t 3 40 60 
AUC (%) 

0 20 

VM for each flower F. • · ognition S s 'Eure B.10: Performance of training recc ,,, 
species that are trained by full :flower extracted pate es 

85 



Appendix C 

Wavelet Transform 

Some of the mathematical transformation techniques that have been used to 

transform images from time-domain into other domains are explained in this 
appendix. 

C.1 Fourier Transform 

Fourier Transform (FT) is the most popular transformation method, where 

signals are plotted as frequency-amplitude representation. This represent a­ 

tion tells us how much each frequency exists. The problem of FT is better 

used to characterise stationary signal, but in non-stationary signals, FT has 
the Problem of its inability to tell us when in time each frequency exist. To 

solve this problem, a revised version of FT was developed, called Short Time 

Fourier Transform (STFT). In STFT, the signal is divided into small seg­ 

mnents.. ignal. This is done S, where each segment is assumed to be stationary si£ L 
usin • h ual to stationary seg­ g a window function which must be of lengt eq 

' . . . . the width of the Inent in the original signal. The problem here is in choosmg 
wid resolution. Narrow Indow function. which also affect time and frequency 
Wind .,' · oor frequency resolution, 

Ows will provide good time resolution, but p 
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C.2 CONTINUOUS WAVELET TRANSFORM 

---­ and vice versa for wide windows. In frequency resolut· 
Ion problem, we only know the frequency bandwidth without have any• £ . 

Intormation about bh% 
Spec­ tral components. To solve window function problem, W 

' avelet Transform can be used. 

C.2 Continuous Wavelet Transform 

The wavelet mother function in CWT must fulfil the following condition: 

[wa-o (C.1) 

From Equation C.1, the convolution should be done at every position 

and every scale, which is considered a costly process. Fortunately, images 

are stored discretely in computers (band-limited), thus we do not need to 

compute the continuous version of wavelet transform. So we have to use 

the Discrete Wavelet Transform (DWT) in image analyses, in which the 

transformation can be scaled and translated in discrete steps. 

C.3 Discrete Wavelet Transform 

DW 1 · functions and wavelet T depends on two types of functions, called sea mg 

d hl.gh pass filters, fuj . d 'th I pass an nct ions. These functions are associate WI ow 

. . . ed as follows: respectively. The discrete wavelet function is express 

! .(-war) .»°,a,F «" 
. d translation of Th 5l the expansion an e variables n and mare used to control ·tively. 

d 1 respec Iv th 11 set to 2 an ' e Wavelet. While variables ao and bo are usua Y 

'I'hus We can rewrite Equation C.2 as: 

(c.2) 
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DISCRETE WAVELET TRANSFORM C.3. 

e.-'(-4y o,3° 5» 
When DWT is used to transform a continuous signals (t) h 

x , t e wavelet 

(C.a) 

transform is defined as: 

/_

00 1 T%%= "0,,,%(s "- n,) a =oo d (C.A) 

This is used to measure the similarity between the wavelet at the current 

scale and the signal itself. It can be calculate using the inner product: 

T,,% = (@, »,%) (C.5) 

Tm,n are the detail wavelet coefficients. 

C.3.1 Orthonormal Wavelets 

I 
. . th onal and all of unit n orthonormal wavelets the wavelets are pairwise or og ' 

energy. This type of wavelets can be expressed as: 

/_wee era= 
I 1 if m =m'and n == m (C.6) 

o otherwise 

. 1 · f the computation Orthonormal wavelets are desirable because they simpl y . h 

f wavelet wit of . C.6. th product o any Wavelet coefficients. From Equatwn · ' · e . which 
. dant transform, 1n all other wavelets equal zero. This yields non-redun 

the,) ·ithout redundancy. reconstruction of signals can be done WI 
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3 2 Wavelet Scaling Function C.. 

Tl wavelet scaling function is considered as a band fil 
ev @pass filter [wiki], w,,-, 

it is used to have a finite number of wavelets. It Is associat d . h . 
J®ed with the signs] and can be expressed as follows: 

(C.7) 
It also must satisfy the admissibility condition: 

(C.8) 

To produce the approximate coefficients from scaling function, the signal 

is convolved with it as follows: 

..=/«ere,,a 
The scaling function must have the following property: 

o@) =2as2u-) 
k 

(C.9) 

(C.10) 

h . f,;, (t) which is com- w ere p6 (2t k) represents the compressed version ° 'P ' 

iable Ck represents Pressed by a factor of 2 and is translated by k [h]. The var 

the s 1· £ II · g condition: ca. Ing coefficient that must satisfy the o owm 

-«-? 
k 

al. function, TL, ad sing the scaling e rnother wavelet function is constructe usi 
the co . . ·n equation: Istruction process is done usmg the followi g 

(C.11) 
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»» ()=J-cw ±-o 2¢ -) (C.a2) 
k 

Assume we have N; coefficients, the sum of them is zero. The Equation 
C.12 can be rewritten as: 

N,-1 

%» ()= S co (2e- 1) 
k=O 

(C.13) 

where bk is: 

(C.14) 

Referring to Equation C.7 and C.10, the scaling function at index m + 1 
(next scaling function) can be calculated as follows: 

1 %. 0=,% 2@ca ca () 
k 

The associated wavelet function is expressed as: 

1 
7Pm+l,n (t) = y'2 ~ bk</Jm,2n+k (t) 

(C.15) 

(C.16) 

Thus, the scaling function and the wavelet function are composed of 

shifted scaling functions, each is factored by its scaling coefficients. 
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