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This thesis aims to develop a better understanding of lattices. P] presents lattices, 

types of lattices and discusses three applications of complete lattices. 

Due to the importance of orders and ordered sets ]% study lattices, this thesis 

looks first at definitions and some examples of orders and ordered sets, then it 

defines a lattice in two ways and connects between the two definitions. This thesis 

then exposes some types of lattices with both important properties to each type 

and useful theories ]% determine the type of a given lattices. 

Complete lattices, as a type of lattices have several applications in science. This 

thesis presents three applications of complete lattices hP] discusses the impact of 

retraction operator on a complete lattices , the existence of a fixed point of 

decreasing functions defined on a complete lattices, and finally this thesis defines 

the annihilator of a subset and discuss when this annihilator can be an associated 

prime ideals of complete lattices. 
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NOTATIONS 

In this thesis we used the following notations 

~ To denote a relation and read "related to" 
~ To denote a relation and read "not related to" 
V To denote the join 
I To denote the meet 
U To denote the union 
= w% denote the intersection 
i To denote the empty set 
~ To denote the set of integers 
ZM w% 53=%]3 ]F3 63] %7 q%6z]z~3 z=]343� 6 
~ To denote the set of real numbers 
 w% denote the set of natural numbers 
 % w% 53=%]3 ]F3 63]  R� i / 
k w% 53=%]3 ]F3 63] %7 � X]z%=X€ =VW) 3� 6 
· w% denote the pointwise order 

y 2U0 w% denote the power set ofX 

led To denote the least common multiple 

gcd To denote the greatest common divisor 

1 To denote the inclusion relation 

,dak To denote the down set of Q 

I e w% 53=%]3 ]F3 63] %7 Vqq3� ) %V=56 %7 I 
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Introduction 

The concept of a lattice was introduced by p · 
the nineteenth century. It 53� z~36 7� h euce and Schroder towards the end of 

P� %W qz%=33� z=4 8 %� j ) ! n€ ]F3 71 z€oK v %7 q� %q%6z]z%=X€ €%4z1h wF3 ]3 z5 ti id 3 %= d3 7%�W X€z• X]z%= · erms 1 empotent comm t t · . . X) 6%�q ]z%= X� 3 W%6]€! 5V3 ]% n 1 €3 , V]X]� ~3a X66%1zX]z~3a X=5 oo e. 

The study of lattices became systematic with Birkh 7� fi · · 
b k L · Th . . i 6 ]z� 6] qXq3� m 193 3 and his 

%%€ X]]z13 3%�! (first edition) which appeared · 1940 d 
decades the bible of lattice theorists. m an was for several 

Over the years the theory of lattices and its WX=! €z ]z F z53 d)€  Xqq€z1X]z%=6 dX6 4� %8= 
cons1 era y. otable reference works include books by Abb tt B lb d D · 
C d d 

. o , a es an wmger, 
raw ey X= x z€8 %�] Fa x X~3! and y � z36]€3! x V) � 3z€K; X1%]z=a [ 36z3V� and Croisot 

Freese, Jezek and Nation, Ganter and Wille Hermes and Maeda R ]F3 ·7 ·5 JhP Jzj 1 6jz 5 Jo· 1h ° t V3� � %� 1 -X]da 
1 ors an z asz • P= recent times the Birkhoff bible has been replaced by that of 

Gratzer General Lattice Theory. 

This thesis consist of four chapters, each one contains basic definitions examples 
figures and important theorems. ' ' 

P= chapter one, we begin with basic definitions needed in this work. P= section one we 
define ordered sets, partial order, total order, quasi order, partially ordered sets and 
totally ordered sets, each definition supported with examples. P= section two we learn 
how to represent any finite partially ordered set graphically. Special elements within 
an order such least and greatest, minimal and maximal, upper and lower bounds will 
be given in section three. Duality and duality principle which is very important in 
order theory will introduced in section four. P= section five we give several maps 
between ordered sets such as order-preserving, order-reversing, order embedding and 
order isomorphism. P= section six we give many ways to construct new orders. 
Finally, special subsets of ordered sets such as upper sets, lower sets, ideals, and 
filters will appear in section seven. 

In chapter two, we define lattices in two ways. Lattices as partially ordered sets 
introduce in section one with definitions and examples of semilattices and bounded 
lattices. Lattices as algebraic structure introduce in section two again with definition 
and examples of semilattices and bounded lattices. Connecting lemma and other 
theorems appear in the same section. Connection between the two definitions of 
lattices given in section three. Section four define sublattices and include important 
result that the direct product of two lattices is lattice. We introduce two concept of 
isomorphism for lattices in section five, important theorems about lattice isomorphism 
appear in the same section. Finally, important lattice notions as join and meet 
z�� 35V1z) €3 3€3W3=]a °%z= X=5 W33] q�zW3 3€3W3=]a X]%W 3€3W3=] X=5 1%Wq€3W3=] 
element will be given in section six. Furthermore ideal and its dual notion filter 
introduce in the same section which is end with important theorem about the set of all 
ideals of any lattice. 

In chapter three we introduce some special types of lattices. Complete lattices which 
z6 ~3�! zWq%�] X=] 4z~3= z= 631]z%= %=3 8z]F 63~3� X€ 3»XWq€36 X=5 zWq%�] X=] ]F3%� 3W6 
X6 wX� 6jzK'= X6]3� 7z»35 q%z=] ]F3%� 3W X=5 €X]]z13 ]F3%� 3]z1X€ 7z»35 q%z=] ]F3%� 3Wh 
Modular d · d lar lattices z=]� %5V135 z= 631]z%= two with examples, results 

X= 63WdW%]Vz v da t v 5V€v z5 ]F 
and two basic theorems the first one let us j= %8 z7 ]F3 att1ce 1s mo u ar or not an t e 

1 



the second is the isomorphism theorem. Distributive lattices introduced in section 
three with examples, characteristic properties and two important theorems Birkhoff 
dp- N X=5 Birkhoff 1933. Section four introduce Complemented lattices with examples 
and related definitions and remarks. Finally, Boolean lattices introduced in section 
five which also introduce Boolean algebra, finite Boolean algebra and important 
theorems about them. 

Finally, we end this work with chapter four in which we study three applications 
about complete lattices, the first one about retraction operator on complete lattices, the 
second about fixed point and complete lattices, the third one about associated prime 
ideals of a complete lattice. 

A 



Chapter One 

Preliminaries 

This chapter mainly contains the basic definitions, results lemmas and theorems to be 
used later in this thesis. ' 

When FVWX=6 X� 3 X6j 35 to express preferences among a set of options, they often 
report that establishing a ranked list is difficult if not impossible. Instead, they prefer 
to report a partial order- where comparisons are made between certain pairs of options 
but not between others. Here we make these observations more concrete by 
introducing the concept of ordered sets. 

1.1. Ordered Sets 

A binary relation from a set X to a set Y is a set of pairs (x, y) where x is an element 
of X and y is an element of Y. When an ordered pair is in the relation ~ we write 
»: ! %� 2»a ! 0 Y: h OFz1F W3X=6 ]FX] » z6 � 3€X]35 ]% ! z= ]F3 � 3€X]z%= : h 
When X=Y, we call a relation from X to Ya relation on X. 

Orders are special binary relations, three types of orders will be given in this section 
namely Partial, Total, and Quasi order. 

Definition.1.1.1. 2y X�] zX€ %� 53� 0h J Vqq%63 that X is a set and that ~ is a binary 
relation on X. Then ~ is a partial order if it is reflexive, antisymmetric, and 
transitive, i.e., for all a, b and c in X, we have that 

y Kv z7X: ) X=5) X]F3= X. ) h 

yo z7X ) X=5) 1]F3=X: 1h 

(reflexivity) 

(antisymmetry) 

(transitivity) 

D fi ·t· 11 2 2y X�] zX€€! ordered set). A set with a partial order on it is called 3W=z]V%=hdhdh[h eXdha -b 53±a vh # 
a partially ordered set, poset, or just an ordered 63] z7 ]F3 z=]3= ed meanmg 1s c ear. 

B h ki th rt. p p one immediately sees that the well-known orders 
! 1F31j z=4 d3 q� %q3� d36 ,K - h X€€ �53 t· ]F 

al b · ] ]z%=X€ =VW) 3� 6 and real numbers are a or ers mt e on natur num 3� 6a z=]343� 6a ra 
above sense. 

Remarks.1.1.3. 

dhx V� z=4 ]Fz6 ]F36z6 8 3 8� z]3 y ]% W3X= 2Ua : 0h 

d PP If x ~ y but » c ! a one writes » : ! h The 2. The symbol ~ is read PP relate to , 
relation x ~ y is also written ! · »h 

- 



Chapter I .Preliminaries 

There are many examples of partially ordered sets. Three of such examples are following. 

g»XWq€3hdhdhNh [ 3] P consists of all the subsets of any set A, ( including A itself and 
]F3 3Wq]! 63] 0aX=5 537z=3 : %= y ) ! v I n W3X=6 ]FX] I z6 X 6V) 63] %7 nh wF3= . z6 
a partial order and P is a partially ordered set. ( see Figure! where we listed all 
subsets and their relations for a set of ]F� 33 3€3W3=]60h 

Figure I : inclusion order of the set { » h! a • / 

E I dd 5 Let p consists of the positive integers, define ~ on P ) ! v » :: ! W3X=6 xamp e. • • · · · dd d d set d. .d Then ~ is a partial order and p is a partia y or ere . 
» Xd~d536 ! h 6 Nob Xz� %7]F3 X)3� si 0 2633 ±z4V� 3 A z= 8 Fz1F 8 3 €z6]35 X€€ 5z~z6%� 6 X=5 ]F3z� � 3€X]z%= %0 3 =VW€ -h 

dt 

t 

1 

12 

4 

f d. . ors of 60 ordered by divisibility ±z4V� 3 Av 63] %d Pd~z6 

N 



Chapter I .Preliminaries 

Example.1.1.6. Let P consists of all real single- valued functions defined %= +Kda d }a 
and define ~ on P by: g ~ f means g(x) : 72»0 C » E +Kda d} Then ~ is a partial order 
and P is a partially ordered set. 

[ 3WWXhdhdhSh P= any poset U : U for no x, while » : ! X=5 ! : • imply U : Zh 
Conversely if a binary relation ~ satisfies the two preceding conditions, 537z=3 »: ! ]% 
mean that » : ! or x = Y, then the relation~ satisfies P1- P3_ 

Proof. By way of contradiction let P be any poset and assume that U : U for some x 
z= P then x ~ x but » c»h (see remarks 1.1.3). 

Now let » : ! and ! : • this means that x ~ y and » c ! and y ~ z and ! c• a using 
transitivity property we get that x ~ z and » • which means that U : Zh 

E%=~3� 63€! a €3] : ) 3 a binary relation on any set X X=5 €3] : 6X]z67z36 the above two 
conditions, define x ~ y to mean ]FX] » : ! or x = y. Jz=13 » : » for no x in X, and x 
= » then » @ x for all x z= X, i.e. P1is satisfied. Now assume x ~ y and y ~ x then we 
have the following four cases: 

Case 1: » : ! and ! : »a 

Case 2: x = y and ! : »a 

Case 3: x < y and x . ! a 

Case 4: x=y and y = x. 

The first three cases have a contradiction, only case 4 is true 6% y z6 satisfied. 
Similarly if we assume that x ~ ! and ! @ • we again get another four cases: 

Case 1: » : ! and ! : Za this implies that x ~ z ( using condition two above). 

Case 2: x = y and y < z, this implies that U : Z (i.e. » c Z0 6% x ~ z (using the 
537z=z]z%= %7 : 0h 

Case 3: U : ! and ! = z, this implies that x ~ z (see case 2) 

. ]Fz d · mplies that x ~ z. So P3 is satisfied. This completes Case 4: x = y and ! . Zh IS a so I 
the q�%%7h x 

h - - x (Antcircularity). [ 3WWXhdhdhuh P7»a: »t : · · · : »a: »a]F3= »o. UAhhhS W 

vh v . A]F3=€7»z: »o: »o ]Fz6 W3X=6 ]FX] »d: »o X=5 Proof. n! z=5V1]z%=a X66VW3 n . . h1v >
2
) 

. U (it IS true 1or n- • UAt »° 6% ) ! q� %q3�] ! y o »z. Uo. · d · 
Now, assume it is true 7%� 2=. j Kx0zh3h> >h 20 

: ]F3= »o. U- . hhh. UdKd 
z7 »z: »o: · · : Udt Ud» A : »dJ T Uo: Ua: : Uq}: Uo X=5 6% ) ! 

w k d @ @ : UKP @ Xk -..;: I ] 
%q� %~3 7%�, €3] »z: U4· / • X=56%»o. »4a]FV6»z. »%. hhh. »4h} h ]F t X ~ X ~ XJ ' ("") X1 = X2 = ... = Xk-1 we get a I -..;: n 

t 



Chapter I .Preliminaries 

wF3%� 3Whdhdhph I= ! 6V) 63] J %7 X qX�] zX€€! %� 53� 35 63] y z6 z]63€7 X X�] zX€€! %� 53� 35 
set under the 6XW3 z=1€V6z%= � 3€X]z%=h p Y 

Proof: Let S be any subset of a partially ordered set P with the 6XW3 � 3€X]z%= : %7 P. 
[ 3] »a ! ) 3€%=46 ]% J a 6% »a ! ) 3€%=46 ]% y h J % y aa ya y a z= 537z=z]z%= dhdhd X� 3 
satisfied by ~ m P. So they are satisfied in S. □
Another important order which we will define is total order. 

Definition.1.1.10 (Total order). A binary relation ~ over a set X is a total order if 
and only if it is partial order and for any pair of elements a and b in X a is related to b 
orb is related to a (or both). This is 

y v 7%� X=! XX=5 ) z=Ua 3z]F3� X : ) %� ) : Xh (Totality) 

Example.1.1.11. " less than or equal to" is a total relation over the set of real 
numbers, because for any two numbers either the first is less than or equal to the 
second, or the second is less than or equal to the first. Total relations are sometimes 
said to have comparability. 

Definition.1.1.12. (Totally ordered set). A partially ordered set which 6X]z67z36 ya 
is said to be totally ordered, and is called a chain, i.e. every distinct pair of elements 
are comparable in P. 

We call a partially ordered set an "antichain" if every distinct pair of elements is 
incomparable. 

Example.1.1.13. The 63] Z %7 positive integers is chain under the relation :S. But zM 
is a partially ordered set which is not a chain under the partial ordering of Example 
1.1.5 

g»XWq€3hdhdhdNh [ 3] L . Z 8 Fz1F z6 X �z=4a =Z z6 ]F3 7%�W %7 z]6 z53X€6h 
wF3 63] � = Za =3  / z6 X qX�] zX€€! %� 53� 35 63] 8 z]F z=1€V6z%= � 3€X]z%=a nV] z] z6 =%] X 
chain. 

Example.1.1.15. The set of prime numbers partially ordered by divisibility is an 
anti chain. 

D fl "ti 1 1 16 (Q · der) A binary relation ~ on a set X which is irreflexive, 3� P=P]%=hhhh· h Mh ,VX6d%�D dh • 
and transitive but not necessarily antisymmetric is called quasi order. 

E I 7 The less-than relation on the set of integers I is a quasi order. xamp e.1.1.1 . 

h b et relation on the power set of a set is also a quasi Example.1.1.18. T e proper su s 
order. 

s 



Chapter I .Preliminaries 

dhA x zX4� XW6h 

In any hierarchy, it is important to know when one man is another's immediate 
superior. The notation of immediate superior can be defined abstractly in any partially 
ordered set, as follows. 

x 37z=z]z%=h dhAhdh n! e a cover b" in a q%63] y a z] is meant that X· ) but that 
a >- » · ) is not satisfied by any » Yy h wFz6 leads to a graphical representation of 
any finite partially ordered set X 

• Small circles are drawn to represent the elements of P so that a is higher than b 
whenever X· ) h 

• A segment is then drawn from a to b whenever a covers b. 

Any figure so obtained is called" diagram" of P ( this diagram called Hasse-diagram) 

Definition.1.2.2. Poset Diagram (Hasse Diagram): A graph representing a poset 
but with only immediate predecessor edges, and the edges are oriented up from x toy 
when » : ! h Examples are drawn in Figure 3a-3e. 

Fig.3a Fig.3b 

:]· 2· 
Fig.3c Fig.3d 

Figure 3: Examples of Hasse diagrams 

d7 
Fig.3e 

1.3. Special Elements Within An order 

me elements that play a special role. In this In a partially ordered set there are so 
section we will define them. 

. . eatest elements). By a least element of p we mean 
x 37z=z]z%=hdh- hdh 2[3X6] X=5 4�© aaM� yh n! X 4� 3X]36] 3€3W3=] %7 y 8 3 W3X= 
X= 3€3W3=] X %7 y 6V1F ]FX] X » 7%� X€h U/,o 
an element b of P such that x ~ b for all » P= h 

th hole partially ordered set play a special role 
The least and greatest elements of e w (O) and unit (I) respectively. The latter 
d 1 all d b tt and top or • 3� % , h X= X� 3 X€6% 13 €31 %]]%W z=7V6z%= z6 FXqq3=a zh3h 8 F3= 8 3 X� 3 =%] 

notation of O and I is only used when no co 

S 



Chapter I .Preliminaries 

talking about partial orders of numbers that already c t · 1 % d 1 B on am e ements an ottom and top are often represented by the 6! W) %€6 [ X=5 T · 1 · , respective y. 

P= y . 2Py2U0a E0a 8 3 FX~3 [ . X=5 w. Uh I 7z=z]3 1FXz= X€8 X! 6 FX6 ) %]]%W X=5 ]%q 
elements, but an z=7z=z]3 1FXz= =335 not FX~3h 

g»XWq€3hdh- hAh wF3 1FXz=  FX6 ) %]]%W 3€3W3=] da ) V] =% ]%qa 8 Fz€3 ]F3 1FXz= Z %7 
z=]343� 6 FX~3 neither bottom nor top. Bottom and top do not exist in any antichain 
with more than one element. 

Least and greatest elements may fail to exist, we can see this in the following 
example. 

Example.1.3.3. Consider·the divisibility relation P on the set {2,3,4,5,6}. This set has 
=3z]F3� ]%q =%� ) %]]%Wa ]F3 3€3W3=]6 Aa - a X=5 t 5% =%] FX~3 X=! 3€3W3=]6 ) 3€%8 ]F3Wa 
8 Fz€3 Na t a and 6 have no other 3€3W3=]6 X) %~3h 

Definition.1.3.4. (Minimal and maximal elements). A minimal element of a 
partially ordered set P is an element a such that U : X for no x in P. And a maximal 
element of P is an element b such that ) : » for no x in P. 

Greatest elements of a partially ordered subset must not be confused with maximal 
elements of such a set. A partially ordered subset can have several maximal elements 
without having a greatest element. Clearly a least element must be minimal and a 
greatest element must be maximal, but the converse is not true. 

Examplel.3.5. let X = { 2 , - aN a 9, 16 } where ~ is the divisibility relation. 
Then P is given by { ( 2, 2) , 2- a- 0 2 4, 4 ) , 2pap ),(16, dspa 2AaN 0a 2 - ap 0a Aa ds0a 
2Na ds0 / .It is clear that 9 and 16 are maximal elements but not greatest elements since 
ANp X=5 - Ndsh 

Definition.1.3.6. ( Upper and lower bounds). Given a subset S of some partially 
ordered 63] y a X= upper bound of S is an element b of P that is above all elements of 
S. Formally, this means that s : ) a 7%� all s in S. Lower bounds are defined by 
inverting the order. 

A least upper bound (l.u.b) is an upper bound which is related to every other upper 
bound , this concept is also called supremum or join and is denoted sup (S) or VS . 

A t t l b d (g l b) is a lower bound that every other lower bound grea es ower oun . . . . 
related to z]a ]Fz6 concept also 1X€€35 z=7zWVW %� meet X=5 z6 53=%]35 mf (S) %� lI J h 

X=]3dh- hSh 1%=6z53� 3 � 3X6%= � Xz560%=eqD� _ 
) %V=5 %7 ]8 % =VW) 3� 6 z6 ]F3 6WX€€36] =VW) 3� ]FX] z6 5z~z531 A! %]] %] 3Wa zh3h ]F3 
1 ul · 1 f th umbers Greatest lower ) %V=56 z= ]V�= are given by the east common m tip e o e n · 
greatest common divisor. 

L.k h1Kh · z ·st this can be seen in the following example. dz3 Vqq3� ) %V=56 WX! 7Xza ]% 3»z± ha 

u 
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g»XWq€3hdh- huh Z z= PL FX6 no upper bound and "f 1 t th 1 · " " b d} b · b , i we e e re atlon ~ on 
� Xa Aa1a A34z~3= -! X: 1aX5a) : 1a) : 5h wF3 63] � Xa ) / FX6 Vqq3� ) %V=56 1 
and d, but no least upper bound. 

Zorn's lemma.1.3.9. Every partially ordered set in which every chain (i.e. totally 
ordered subset) has an upper bound contains at least one maximal element. 

 %]X]z%=hdh- ht h P= ]Fz6 ]F36z6 ]F3 7%€€%8 z=4 =%]X]z%=6 8 z€€ Xqq3X� v X C ) 2� 3X5 X6e X 
°%z= ) 0 will be 8�z ]]3= z= q€X13 of sup { a,b} when it exists and a I b (read as "a meet 
) e 0 z= q€X13 %7 z=7 � Xa) /8 F3= z] 3»z6]6h JzWz€X� €! CJ 2]F3 e°%z= %7, J e0 X=5 lI J 2]F3 e 
meet of S ) are used mstead of sup S and inf S when these 3»z6]h 

dhNh x VX€z]! a And Duality Principle 

In the previous section we see that a concept can be defined by just inverting the 
ordering in a former definition. This is the case for "least" and "greatest", for 
eWz=zWX€e X=5 "maximal", for "upper bound" and "lower bound", and so on. This 
is a general situation in order theory: A given order can be inverted by just 
exchanging its direction. This yields the so-called dual, inverse, or opposite order 

Every order theoretic definition has its dual: it is the notion one obtains by 
applying the definition to the inverse order. Since the symmetry of all concepts, this 
operation preserves the theorems of partial orders. For a given mathematical result, 
one can just invert the order and replace all definitions by their duals and one obtains 
another correct theorem. This fact is important and useful, since one obtains two 
theorems for the price of one and reduce the work. 

Every partially ordered set P gives rise to a dual (or opposite) partially ordered set 
8 Fz1F z6 %7]3= 53=%]35 ) ! y %� y ° h P] z6 3X6! ]% 633 ]FX] y e 5zX4� XW 1X= ) 3 %) ]Xz=35 
by turn the Hasse diagram for P upside down, and this will give a partially ordered 
set. (see Figure 4) 

p 
Figure 4 : Diagrams of a poset p and pd 

• p . fi d t b the set with the inverse order, i.e. x ~ y holds in 
wFz6 5VX€ %� 53� y z6 537z=3 ]% 3 sX€ �5 tt -€V5 

pop . . . p Familiar examples of 5VX€ qX�] zX€ %� ers me u e 
z7X=5 %=€! z7 ! : » F%€56 z=h,· a 1 X=5 x %= X=! 1%€€31]z%= %7 63]6a 
• the subset and 6Vq3� 63] � 3€X]z%=6 

p 
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• the divides and multiple relations on the integers. 

wF3 zWq%�] X=13 %7 ]Fz6 6zWq€3 537z=z]z%= 1%W3 7�%W ]F3 7X1] ]FX] 3X1F X=5 3~3�! 
537z=z]z%= X=5 theorem of order theory can readily be transferred to the dual order. 
Formally, this is captured by the Duality Principle for ordered sets: 

"If a given statement is valid for all partially ordered sets, then its dual 
statement, obtained by inverting the direction of all order relations and by 
dualizing all order theoretic definitions involved, is also valid for all partially 
ordered sets." 

As an example, take the statement: "If sup H exists then it z6 V=z#V3eh O 3 get as its 
dual" IfinfH exists then it is unique". The dual of e2y a : 0 FX6 a zero" is e2y a · 0 FX6 a 
unit". 

If a statement or definition is equivalent to its dual then it is said to be self-dual. 

Theorem.1.4.1. Any finite subset X of a partially ordered set has maximal and 
minimal members. 

y � %%7v €3] U 1%=6z6] %7 � »da UAahhha»a/hx 37z=3 Wz. »°a X=5 W4. » z7 »: WV a 
X=5 W! . WX %]F3�8z 63h wF3= Wa 8z€€ ) 3 Wz=zWX€a x VX€€! a U 8 z€€ FX~3 X WX»zWX€ 
element. x 

Corollary.1.4.2. In chains the notation of minimal X=5 €3X6] 2WX»zWX€ X=5 greatest) 
element of a subset are effectively equivalent. Hence any 7z=z]3 1FXz= FX6 a least and 
greatest element. 

Proof: If U : X for no x in U 2 i.e. a is minimal) , then by P N a ~ x for all x in Uh x 

1.5 Maps Between Ordered Sets 

D fi ·t· 1 5 1 A function f from an ordered set P to an ordered set Q is said to be 3oz=dgdi =h · ,· • 

dK e order- preserving" or " monotone" if it satisfies : 

x ~ y in P implies f(x) ~ f(y) in Q for all x,y in x_ 2d0 

vhvh t+o X]z €3X56 ]% 7V=1]z%=6 ]FX] X� 3 %� 53� K� 37€31]z=4a z7 z] AK wF3 1%=~3� 63 %7 ]Fz6 zWq€z1X]z%= 
satisfies 

f(x) : 72! 0 zWq€z36 x ~ Y 

- K P] is may also be order-reversing , 

if x ~ y zWq€z36 72! 0 : f(x). 

(2) 

(3) 

di 
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NK I = order-embedding (and we write f: p N Q) if 

C»aa»a Yy v »N : »a z7 X=5 %=€! z7 72»a0 : 72»a0 z= k h (4) 

It is important to understand the difference between the ]X]o d · " 
d " d ) 355z e no a 10n or er- preservmg X= or er- em e mg map. 

Definition.1.5.2. By an order isomorphism from an ordered set p to an ordered set 
k 8 3 6FX€€ W3X= X= %� 53� Kq� 363�~ z=4 ) z°31]z%= 7v y · k 8 F%63 z=~3� 63 7,vk · y z6 
also order-preservmg. 

I= isomorphism from an ordered set P to itself is called an automorphism 

Two ordered sets are called isomorphic if and only if there exist an isomorphism 
between them. The fact that ordered sets P and Qare isomorphic denoting by y 3 k h 

Theorem.1.5.3. (Theorem 1.10 in [8]). Ordered sets P and Q are isomorphic if and 
only if there is a surjective mapping f: P · k 6V1F ]FX] 

X ~ ! .· 72»0 @ f(y). 

Proof. The necessity is clear. Suppose conversely that such a surjective mapping 
f exists. Then f is also injective; for z7 72»0 . f(y) then from f(x) ~ f(y) we obtain 
x ~ y, and from f(x) ~ f(y) we obtain x ~ y, so that x = y. Hence f is a bijection. 
Clearly, f is monotone; and so also z6 7 ,6z=13 » @ y can be 8�z ]]3= 7+7 ,2»0} : f[r1(y)] 
8 Fz1F 4z~36 7 2»0 : 7 ,2! 0h x 

Remarks.1.5.4. 
(1) Let f: P ~ k and g: k @ R be order preserving maps. Then the composite 

map go f, given by (go f)(x) = g(f(x)) for » Yy a z6 order preserving. 
(2) Let f: y » k and €3] 72y 0 537z=35 as {f(x): » Yy /) 3 ]F3 image off. wF3= 72y 0 

. y h 
(3) An order embedding is a one-to-one map. 

It is easily shown that any finite partially ordered set z6 537z=35 Vq to isomorphism 
) ! z]6 5zX4� XWo X · ) z7 X=5 %=€! z7 63#V3=13 »pa Udhhh aUa 3»z6] 6V1F ]FX] X. »%a ) . 
Xn and Xi-I covers Xi for i = 1,2, ... , n. Graphically, this means that one can move 
from a to b downward along a broken line. 

wF · hism or non isomorphism of a partially ordered sets having few 3 d6%W%�q]aaN aa I= tF z 
3€3W3=]6 1X= ) 3 ]36]35 W%6] 6zWq€3 ) ! z=6q31]z=4 ]F3z� 5zX4� XW6h d! z6%W%�qF z6W 
must be one to one between lowest elements, between elements Just above lowest 

d t d Ondl. ng elements must be covered by equal numbers of e emen s, an so on, corresp . . . 
5h77z d t ·th li"ttle imagmat10n It does not take long to complete the 1 erent e ements, e c; WI X - 
test. 

W h h P d Q dually isomorphic if P = Qd or equivalently, Q= pd_ e s all say t at an are . 
P= th . d h p ~ pd we say that P IS self-dual. e part1cu ar case w 3� 3 . 

dd 
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Many important ordered sets are self-dual (i.e. anti-isomorphism with 
themselves). The power set of a set ordered by inclusion is self-dual since the 
correspondence which carries each subset into its complement is one to one and 
inverts inclusion. Similarly the set of all linear subspaces of n-dimensional Euclidean
space which contains the origin is self dual since the correspondence carrying each 
subspace into its orthogonal complement is one to one and invert inclusion. 

Example.1.5.5. Let SubZ be the set of subgroups of the additive abelian group Z and
order SubZ by set inclusion. Then (No, I), where N,= N U {O}, is dually isomorphic to 
(SubZ,C) under the assignment n ~ n Z. Ir fact, since every subgroup of Z is of the 
form n Z for some n € N, this assignment is surjective. Also, we have n Z C m Z if
and only if mjn. Note that we include O in N0• Then O is the top element of (No, I) and 
corresponds to the trivial subgroup { 0}. The result therefore follows by Theorem 
1.5.3. 

Example.1.5.6 The negation function f:(IR, <)> (IR, >) such that f(x) =-x is an 
order- isomorphism since x < y if and only if -x>-y.

Example.1.5. 7 Let f : (No, :S) ~(N, :S), define fas f(n) = n~ I ,then f is an order 
isomorphism. 

Example.1.5.8. Figure 5 shows some maps between ordered sets. The map <p1 i~ not 
ordered- preserving. Each of cp2 to cp5 is ordered-yreservi~g but not order embeddmg. 
The map cp6 is order embedding but not an order-isomorphism. 

A.>'»/4 Vc 

◊~
b c

a 

! ipi(a) 

'Pl (d) 

'Pl (b)=<p1 (c) 

! cp3(c)=cp3(d) 
==oa(e)

. .

spa (a)=ps (b)

◊ 'P2
' - b c

a 

◊ I ip,{d)=ip4(e) 
924

b_ (b)=ya(c)

y4 (a)

(a)<C-=.
yps (a)

Figure 5: maps between ordered sets 

I <p2(e) 

ya (c)=ya(d)

spa (a)=pg(b)

. . Q fr m an ordered set p to an ordered set Q is Definition.1.5.9. A functwn f P_ ~ d :; if 
" antitone" ( or order-inverting) if an ° y 

X ~ y => f(y) < f(x),

f( x) ~ f(y) ⇒ y ~ x.

(5) 

(6) 

12
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Example.1.5.10. IfEis a non-empty set and A C E then f . IP (E)> P (E) given by 
f,X)=AX is monotone. ·A·

IfX is the complement ofX in Ethen the assignment X X* d fi . 
mapping on Jp> (E). > 1e mes an antitone

Now, we define another special type of self-maps on a partially ordered sets which 
are closure operators. 

Definition.1.5.11. (Closure Operator). A function C: P> P from a partial order P
to itself is called a closure operator if it satisfies the following axioms for all
e emen s x, y m . 

c;: Cc) = C(Cc)) = Cox)

Cs: x <y implies C(x) < Cy)

(extensive) 

(idempotent) 

(isotone). 

If the first condition is changed to C(x) ~ x, then C is called a dual closure map 'on 
P. 

Example.1.5.12. The least integer function from the real numbers to the real 
numbers, which assigns to every real x the smallest integer not smaller than x, is a 
closure operator. The rounding function[.] is an example of a dual closure map. 

A fixed point of the function C, i.e. an element c of P that satisfies C( c) =c, is
called a closed element. A closure operator on a partially ordered set is determined by 
its closed elements. If c is a closed element, then x ~ c and C(x) ~ c are equivalent 
conditions. 

It is evident that every image point of C is a fixed point: for if x = C(a) for some 
a €P, then C(x) = C(C(a)) = C(a) = x. 

Since IP(A) the power set of a set A with inclusion relation is a special kind of 
partially ordered sets, then a mapping C: IfD (A)> P (A) that sat~sfies axioms Cj-C;
for X,Y c A is a closure operator, where Xis a closed subset of A if C(X) = X. 

The partially ordered set of closed subsets of A with set inclusion as the partial 
ordering is denoted by Le. 

13
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1.6 Constructing New Orders 

There are many ways to construct orde :fi .
example. Another important constnc;,,, ""given orders. The dual order is one
ordered sets. t e Cartesian product of two partially 

Definition.1.6.1. (Cartesian product) Th . 
Y, denoted X x Y, is the set of all 3ossi,,CF"tesian product of two sets X and
member of X and whose second comp t . ered pairs whose first component is a 

ponen is a member of y 
'

Xx Y = {(x, y): x EX and y eY};

taken together with the product order . f 1( a, x) ~ (b, y) if ( and onl if) a :::.< on pairs o elements. The ordering is defined by 

d
. . . Y ~ band x ~ y. (Notice carefully that there are three 
istinct meanings for the relation symbol ~ in this definition). 

formally,a product X x Y of finite partially ordered sets is drawn by replacing
each point of a diagram of X by a copy of a diagram for Y, and connecting the
corresponding. See Figure 6.

(b,z) 

(b,x) 

D (a,z) 

Figure 6 

The disjoint union of two partially ordered sets is another typical example of order 
construction. 

Definition.1.6.2. Suppose that P and Qare (disjoint) ordered sets. The disjoint union 
PuQ of P and Q is the ordered set formed by defining x, y in P and x <y in P or x , y 
in Q and x ~ yin Q. 

Definition.1.6.3. (Cardinal sum and Cardinal product). Let X and Y be two 
sets, each with a relation <.By cardinal sum X + Y ofX and Y, we mean the set of 
all elements of X and Y, where ~ keeps its meaning within X and Y, y ~ x 
[ x EX, y €Y] never holds, and X and Y are considered as disjoint. Graphically, the 
addition of two partially ordered sets amounts simply to laying their diagrams side- 
by-side. 

By cardinal product XY, we mean the set of all couples (x,y) [x EX, y eY],
where (x,yi) < (x,y) means x; <x in X and y; <y in Y.

Definition.1.6.4. (Ordinal sum and Ordinal product). Let X and Y be two sets , 
each with a relation <. By ordinal sum X EB Y of X and Y, we mean the set of all 

14
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elements of X and Y, where x < x; in X and y <y; in Y preserves their original 
meaning, and x ~ y for all x EX and y eY.

By ordinal product X0Y, we mean the set of all couples (x,y) where (x1,y1) -< (x,y)
means that either X1 <X or xI=x and y1 <y .

For finite posets, the diagram ofX EBY can be constructed by laying the diagram of 
y above the diagram of X and drawing lines from all minimal elements of Y to all 
maximal elements of X, as in Figure 7. 

z 

%
X y ••a b 

Figure 7 

Similarly, for finite sets X and Y, the diagram for X~ Y can be constructing by using 
the following result. In X·Y, (xi, yi) covers (x, y) if and only if (1) x =x; and y
covers y, or (2) XI covers x and YI is minimal and y maximal in Y, as in Figure 8. 

(z,d) 
d 

z 

• - /% 0 

X y a b (x,a) 
(x,b) 

Figure 8 
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1.7. Subsets Of Ordered Sets 

In an ordered set, one can define many types of special subsets based on the given
order. A simple examples are down- sets and up--sets.

Definition.1.7.1. (down- sets and up- sets). 
Let P be an ordered set and QC P,

(1) Q is a down-set (alternative terms include decreasing set and order ideal) if, 
whenever x € Q,y E P and y ~ x , we have y EQ. 

!Q = { y E P : (3x EQ) y ~ x} and !x = { y E P: y ~ x}. 
The family of all down sets of P is denoted by O(P). It is itself an ordered set, under
the inclusion order. 

(2) Dually, Q is an up-set (alternative terms include increasing set and order 
filter) if, whenever x € Q, y € P and y > x, we have y €Q

1Q= { y E P: (3x EQ) y ~ x} and fx= { y E P: y ~ x}. 

It is easily checked that [Q is the smallest down - set containing Q and that Q is 
down set if and only if Q = !Q, and dually for TQ. Clearly J.{x} =lx, and dually. 
Down- sets (up- sets) of the form Lx (fx) are called principle. 

Example.1.7.2. In the chain Q" of positive rationales the set {q € Q": q° <2} is a
down-set that is not principal. 

Example.1.7.3. Consider the ordered set in Figure 9. The sets {c},{a, b, c, d, e} and
{a, b, d, f} are down- sets. The set {b, d, e} is not down- set. The set { e, f, g} is up
set, but { a, b, d, f} is not. 

f 

d

b 

Figure 9 

g

e 

C 

. · deals which have the additional property that 
More complicated down- subsets ar° ,,nd within the ideal. Their duals are given
each two of their elements have an upper 
by filters. (more details in chapter two).

16
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Lattices 

The general theory of partially ordered sets is based on a single undefined relation.
That of lattices is also based indirectly on this relation, but directly on two dual binary
operations which are analogous in many ways to ordinary addition and multiplication.
It is this analogy which makes lattice theory a branch of algebra. 

There are two standard ways of defining lattices - one based on the notion of order, 
and the otherputs them on the same (algebraic) footing as groups or rings. In this
chapter we will mtroduce the two definitions illustrated with examples and connect 
between them, then some basic theorems and lemmas about lattices will be given. 

2.1 Lattices As Partially Ordered Sets. 

Two kinds of partially ordered sets will be introduced: semilattices and lattices. 

Definition.2.1.1.( Semilattices ). A join- semilattice is a partially ordered set in 
which every two elements a and b have a least upper bound av b. Replacing" least 
upper· bound " with "greatest lower bound " results in the dual concept of a meet 
semilattice i.e. a meet-semilattice is a partially ordered set in which every two 
elements a and b have a greatest lower bound a Ab.

A join-semilattice is bounded if it has a least element. Dually, a meet-semilattice is 
bounded if it has a greatest element. 

Definition.2.1.2. ( Subsemilattice). By a meet-subsemilattice of a meet-semilattice 
L we mean a nonempty subset E of L that is closed under the meet operation, in the 
sense that if x, y E E then x A y E E. A join-subsemilattice of a join-semilattice is 
defined dually. 

Example.2.1.3. The set of all subsets of a set X, partially ordered by inclusion, is a
meet-semilattice, in which the g.l.b. of two subsets is their mtersect10ns. 

This extends to any set of subsets of X that is closed under intersections: thus, the 
b f the Subrings of a ring the ideals of a nng, the submodules of a su groups o a group, >

module all constitute meet- semilattices. 
'

A · h fall b t of a set X partially ordered by inclusion, is a join- gam, t e set o su se s , . . . 
semilattice in which the l.u.b. of two subsets is their union.

'
f ftute a join-semilattice, in which the supremum of 

The subgroups o a group cons I d b h . . the ideals of a ring and the 
two subgroups is the subgroup generate oy their union, .

1 t. tute a join-semilattices, in which the supremum of submodules of a module a so cons 1 
two ideals or submodules is their sum. 

E h . ' meet-semilattice in which x A y = min { x, y}. xample.2.1.4. Every clain 1s a

17
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Example. 2.1.5. (No; I) is a meet-semilattice in which mA = :d( )
I\ n- gc m, n.

Example.2.1.6. (N;; I) is ajoin-semilattice in which v I c m n = cm(m, n). 

Let us now define lattices. 

Definition.2.1.7. (Lattices). A lattice is a partially d d th · b · · jl 5 1d .:r ±. orderec set iat is oth a join
semilattice and a meet-semilattice. Equivalently, a partially ordered set L is a lattice
if and only 1ffor every a, b in L both sup {a, b} and inf {a, b} exist (in L). 

To make the definition of a lattice less arbitrary, we note that an equivalent
definition is the following:

A partially ordered set Lis a lattice if and only if inf Hand sup H exists for 
any finite non empty subset H of L. ' 

Note. It is enough to prove that the first definition implies the second. So let L 
satisfy the first definition and let H ~ L be non empty and finite. 

If H = {a}, then inf H = sup H = a follows from the reflexivity of ~ and the 
definitions of inf and sup. 

Now let H = { a, b, c}. To show that infH exists, set d= inf {a ,b}, e = inf { c ,d} we 
claim that e = infH. 

tlll 

First of all d ~ a, d < band e ~ c, e < d; therefore ( by transitivity) e ~ x for all 
x EH. Secondly, if f is a lower bound of H, then f ~ a, f <b and thus f ~ d, also 
f ~ c, therefore f ~ e, since e = inf { c,d}. Thus e is the infimum of H. 

Now if H= {a0,..., a,1}, n >1,the inf {...,inf {ao, ar}...,a»1} is the infimum ofH,
by an inductive proof whose steps are similar to those in the preceding paragraph. 
By duality, we conclude that sup X exists. 

Example.2.1.8. Every totally ordered set is a lattice. 

If, say, a < b, then inf {a, b} = a and sup {a, b} = b; thus N,Q and IR{, with their 
usual order relations, are lattices. 

Example.2.1.9. If X is a set, and L is a set of subsets of X that is closed under
intersections and contains X , then L , partially ordered by inclusion, is a lattice. 
For ifwe let A Be L. Then An BEL is the g.l.b. of A and Band the l.u.b of A and 
Bis the intersection of all CeL that contain A U B (including X ),which belongs to 
L by the hypothesis. 

Example.2.1.10. As a special case of example 2.1.9, the set of subgroups of a group
G d d b t · 1 · form a lattice In this lattice, the join of two subgroups isor ere y se me us10n o · b - · 
th b d b thel·r union and the meet of two su groups is theire su group generate y ' 
intersection. 

18
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Example.2.1.11. Let J be the set of positive integers, and let a <b mean "a divides
b" it can be seen that this partially ordered set is a lattice with sup{a,b} = lcm (a,b)
and inf { a,b} = gcd (a,b ). 

Clearly the dual of any lattice is again a lattice, with meets and joins interchanged. 
Hence there is a duality principle for lattices :A theorem that holds in every lattice 
remains true when the order relation is reversed. 

Definition.2.1.12. (Bounded Lattice). A partially ordered set is a bounded lattice 
if and only if every finite set of elements (including the empty set) has a join and a 
meet. 
Here, the join of an empty set of elements is defined to be the least element \V = 0, 
and the meet of the empty set is defined to be the greatest element /\= I. 

This convention is consistent with the associativity and commutativity of meet and 
join: the join of a union of finite sets is equal to the join of the joins of the sets, and 
dually, the meet of a union of finite sets is equal to the meet of the meets of the sets, 
i.e., for finite subsets A and B of a partially ordered set L, 

and 
V(AUB) = (VA) V (VB)

/\(AUB) = (/\A) A (AB)

hold. 

Taking B to be the empty set, 

V(AU0) = (VA) v (V0) = (VA) v O = VA
and 

A(AU) = (/\A) /\ (/\0) = (/\A) /\ 1 = /AA

which is consistent with the fact that AU = A

· b rt d · t a bounded lattice by adding a greatest and least Any lattice can e converted into Sf% de ted
fi . 1 . . bounded by taking the join of all e ements, eno e element, and every finite lattice is 5

by 

and the meet of all elements denoted by 

where A= {a1, a, ..., a,}.

Remarks.2.1.13. inf and sup (/J may not exits: the set of real 
1- A lattice need not have 1 or O, so .1 th grater and a /\ b is the smaller has no top 
numbers which is a lattice with a V b is 1e
nor bottom. 
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2- If a and b are elements of a partially ordered set such that b ~ a, then a A b = b. 
proof (2): b ~ a=>b ~ a A b, But a A b ~ b ~ b= a A b. □
Theorem.2.1.14. ( Theorem 2.7 in [8]). Let L be a lattice and let f: L> L be a 
closure. Then Im f is a lattice in which the lattice operations are given by 

inf{a, b} = a Ab, sup{a, b} = f(a V b).

Proof. Recall that for a closure map f on L we have Im f = {x € L: x = f(x)}. 
If a, b E Im f and since f is isotone with f > id( identity map on L), then we have 

f( a) A f(b) = a A b ~ f( a A b) <f(a) A f(b)
the resulting equality gives a A b E Im f. It follows that Im f is a /A-subsemilattice of
L. As for the supremum in Im f of a, b E Im f, we observe first that 

a Vb < f(a Vb)
and so f(a V b) € Im f is an upper bound of {a, b}. 

Suppose now that c = f(c) E Im f is any upper bound of { a,b} in Im f. 
Then from a V b < c we obtain f(a V b) < f(c) =c. Thus, in the subset Im f, the upper
bound f(a V b) is less than or equal to every upper bound of {a, b}. Consequently, 
sup{a, b}exists in Im f and is f(a Vb). D 

Example.2.1.15 Consider the lattice L in Figure 10. Let f: L>L be given by 

e-{ if t = z; 
otherwise. 

Figure 10 

• · th Im f= {0 x y 1 } . In the corresponding 
It is readily seen that f is a closure "",,, .) we have'sup{x, y}= f(x v y) = f(z)
lattice (the elements of which are denote Y 
=l.
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2.2 Lattices As Algebraic Structures . 

It is possible to give an equivalent definition of a lattice without any specific
mention of any type of ordering. In this setting, lattice can be considered more like 
the other members of the family of algebraic systems . 

Definition.2.2.1. ( Semilattice). A join-semilattice is an algebraic structure (L, V)
consisting of a set L with the binary operation V, such that for all members a b c of 
L, the following identities hold: ' ' 

ldempotency : 

Commutativity: 

Associativity : 

a Vb=bV a

a V ( b V c) = ( a Vb) V c 

If A, denoting meet, replaces V in the definition just given, a meet-semilattice results. 

A meet-semilattice (L, A) is bounded if L includes the identity element 1 such that 
for all x in L, 

X A 1 =x. 
Dually, (L, V) is bounded join-semilattice if L includes the zero element such that for 
all X in L, 

XV O = X. 

Definition.2.2.2. An algebraic structure (L,V,A) consisting of a non empty set Land 
two binary operations V and A on L is called a lattice if the following axiomatic 
identities hold for all elements a, b, c of L 

L: Idempotent laws

Lo: Commutative laws

Lg: Associative laws

La: Absorptions laws

a Va=a

a v a = a and a A a = a 

a V b = b V a, and 

aAb=bAa.

a V ( b V c) = ( a V b) V c, and

a A ( bAc)=(a Ab) Ac 

a A ( a v b) = a, and a V ( a A b) = a. 

f opositions let V denote the connective "or" 
Example.2.2.3. Let L be theset Ol !" ,, {o L, are well-known properties from
and A denote the connective and • Then a
propositional logic. 
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Example.2.2.4. Let L be the set of natural numbers let v denote the least common 
multiple and A denote the greatest common divisor. Then properties L to L are bl a 4easily verital te.

Example.2.2.5. Let L be the set of normal subgroups of any group G, define H A K
to be the usual intersection H n K, and H v K = HK= {hk : hEH, kEK}. 
Then properties L; to La are satisfied.

Let L be a lattice, it may happen that (L,<) has a top and bottom elements as 
defined in (1.3.1), when thinking of L as (L,V,A), it is appropriate to view these 
elements from a more algebraic stand point, we say L has a one if there exist 1 E L 
such that a = a A 1 for all a E L. dually, L is said to have a zero if there exists O E L 
such that a =a V 0 for all a € L. A lattice (L,V,A) has a one if and only if (L,<) has a
top element. A dual statement holds for O and bottom. 

Definition.2.2.6. A bounded lattice is an algebraic structure of the form (L,V,A,1,0)
such that (L,V,A) is a lattice, 0 (the lattice's bottom) is the identity element for the join 
operation V, and I (the lattice's top) is the identity element for the meet operation A.
A finite lattice is automatically bounded, with I = VL and O =/AL.

Example.2.2.7. Let X= {a, b, c} and let L = (L, V, A, 0, 1) be the power set of X. 
Then L = {0, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, X }is bounded lattice with O =
and I= X , V is the union: for A , B E L , A V B =AUB ,and /\ is the intersection: for 
A , B E L , A /\ B=AnOB.

Example.2.2.8. Note that (No, 1cm, gcd) is bounded with 1=0 and 0==1, while
(No, min, max) is not bounded (0 is bottom, there is no top). 

Example.2.2.9. For every infinite set E let Pr (E) be the set of finite subsets of E. 
Then (Pr (E);f1,U,<) is a lattice with no top element.

Lemma.2.2.10. (2.8 The Connecting Lemma in [14]). Let L be a lattice and let 
a,b E L. Then the following are equivalent 

:Ill 

I. a ~ b; 
2. a Vb= b; 
3. aAb = a. 

. h th t (I) implies (2) and (3) by the definition of V and /\. Proof: It is easy to s ow a { b} h ~ b 
. b = b then b is an upper bound for a, w ere a =e ·Now assume (2) i.e. a V , 

Thus (I) holds similarly (3) implies (I). D 

Theorem.2.2.11.(Theorem 7 .21 in [24]) If a, b, and c are arbitrary elements of a 
lattice. The following equality holds. 

a Vb=bVa, a Ab=bAa.

V ( b V c) ( a /\ b) A c= a /\ (b A c )(a Vb) V c= a '

1

2
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3- a V a = a, a /\ a= a. 

4- (aVb)Aa=a, (a Ab)Va=a.

Proof: Since there are only " language" differences between the l.u.b of a and b,
and the l.u.b of band a, it is clear that av b = b v a. 

A similar reflection shows that a Ab = bA a, so (1) is proved. In order to establish 
(2), first note that :( a V b) ~ ( a V b) V c and c ~ ( a V b) V c, so that a ~ ( a Vb) V c,
b ~ ( a V b) V c and c ~ ( a V b) V c. Also if x is any element of the lattice such that 
ax, bx and c<x.then aVb<x, (aVb) Vc<x it follows that (a Vb) Vc
is a I. u. b of a, band c. A similar argument shows that av (b v a) is the l.u.b of a,b
and c. So (a Vb) V c = a V ( b V c). 

Similar argument shows that a /A (b /\ c) is g.l.b. of a, band c and (a Ab) /\ c is a g.l.b 
of a, b and c. Hence (a/\ b) A c = a/A (b /\ c). Now the definition of l.u.b requires 
a Va= a and the definition of g.l.b requires a Aa= a, so (3) is proved. 

Finally, since a ~ a Vb, we, have (a V b) A a = a, and since a /A b ~ a it follows 
( a A b) V a = a. This proved ( 4) and completes the proof of the theorem. D

Lemma.2.2.12. In any lattice, the operations of join and meet are isotone: 

If y ~ z, then x /Ay < XAZ and x V y ~ x Vz .

Proof: By L- La in definition 2.2.2 and the connecting lemma, y < z implies
x Ay=(x Ax) A(y/AZ)=(xAy) A(x AZ) whence XxAy <x AZ.
The second inequality can be proved dually ( Duality principle). D

Lemma.2.2.13. In any lattice we have the distributive inequalities (8) and (9) :

(x A y) V (x /\ z) <x A( y V z).

(x V y) A (x V z) < x V (y A z).

(7) 

(8) 

(9) 

P» if. clearly /\ y < x and x A y ~ y ~ y v z; hence x A y ~ x A (y V z). 
roo . =:.< x ; =:.< V z· whence x /\ z ~ x A (y V z). That is x A ( y v z) is 

Also x Az <x, x A z<7 S>, z, from which (8) follows. The distributive
an upper bound of x A y an x . " 
inequality (9) follows from (8) by duality. D

L 2 2 14 Th 1 ts Of any lattice satisfy the modular inequality (10): emma. . . . e e emen 

x ~ z implies x V (y /\ z) ~ (x V y) /\ z. 

<( x v y) /\ z Also y A z ~ y ~ x V y and 
Proof : x ~ x V y and x ~ z. Hence x Whence x v (y /\ z) ~ (x V y) Az. D
y A z ~ z. Therefore y Az ~ (x V Y) /\ z. 

(10) 
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Lemma.2.2.15.(4.2 Lemma in [14]). Let L be a lattice. Then the following are
equivalent: 

1.(Va,b,c€L) c<a=>aA(bVc) =(aAb)vc,

2.(Va,b,c€L) c<a=9aA(bVc)=(aAb)V(aAc),

3. (V p, q, r EL) p A (q V (p Ar))=( p/A q )V ( p Ar ).

Proof. The Connecting Lemma gives the equivalence of (1) and (2). To prove that
(3) implies (2), assume that c ~ a and apply (3) with p = a, q = b and r = c. 
Conversely, assume (2) holds and that p, q and rare any elements of L. We may put 
a= p, b = q and c = p Ar in (2), and this gives (3). □
The following theorem shows that properties L1 to La are not only characteristic of 
any lattice, but they are enough to define this type of system. 

Theorem.2.2.16. (Theorem 7.22 in [24]). Let L be a set in which are defined two 
binary operations V and A, and which possess the identities listed in theorem 2.2.11. It 
is then possible to define a partial ordering ~ in L such that L is a lattice with V and A
are l.u.b and g.l.b respectively. 

Proof: we must define a partial ordering ~ in L and show that 

(1) a<b and b ~ a if and only if a= b. 

(2) if c ~ b and b ~ a, then c ~ a. 

We define the partial ordering as follows , b ~ a if and only if a Vb= a. The two 
required properties of this partial ordering can now be derived. 

Suppose that b ~ a and a ~ b. Then a v b = a and b V a = b, so that by (1) in theorem 
2.2.11 it follows that a = b. Conversely, if a=b, by (3) in theorem 2.2.11 we have 
a v b = a and so b ~ a. In like manner we can show that a ~ b if a = b, thus 
completing the verification of (1 ). 

N th t ~ b and b ~ a Then b V c = b and b V a = a , so that ow suppose iatc 5 • :% ablished
a v c = (a v b) v c = a v (b v c) = a v b = a, Hence c ~ a, and so (2) is esta Is e . 

Th · 1 h that V and J\ play the respective roles of least upper ere remams on y to s ow 
bound and greatest lower bound. 

· _ 4 we have a ~ av b: and a similar argument leads to 
Smee a A (b V a) =a, by ' f L uch that a ~ c and b ~ c. Then a V c = c 

b ~ a V b. Now let c be any element O (sb ) _ v c = c Thus a v b ~ c and so 
= b)Vc=aV Vc -a • and b V c=c, and hence (aV r.like er we can show that a A b is the

V b . th 1 b d of a and b n I e mann a 1s e east upper oun · letin the proof of the theorem. □
greatest lower bound of a and b, thus comp g 
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2.3 Connection Between The Tyo _Definitions. 

An order- theoretic lattice gives rise to the two b · • . . . . mary operat10ns V and A Smee the commutative, associative and absorptions laws cc ·il be 5,
: the : an easily e verified for these

operations, 1ey make (L,\V,/A) into a lattice in algebraic sense. The ordering can be
recovered from the algebraic structure because a<b holds if id 1 'f b .S 1 an on y 1 a = a A .

The converse is also true. Given an algebraically defined lattice (L, V,A) one can 
define a partial order ~ on L by setting: 

a ~ b if and only if a A b = a, or 
a ~ b if and only if a vb = b, 

for all elements a and b from L. The laws of absorption ensure that both definitions 
are equivalent. 

2.4 Sublattices And Products. 

It is usually the case that an algebraic system has subsystems of the same kind. 
Lattices are no exception to this, and it is customary to define a subset of lattice L as a 
sublattice. 

Definition.2.4.1. A sublattice of a lattice L is a subset M =I= (/) of L that is closed 
under infimums and supremums. 
Equivalently, M c L is a sublattice of L if and only if x, y E M implies x A y E M and 
x V y E M, where V and /\ are the lattice operations of L. If M is a sublattice of L 
then for a, b in M we will of course have a ~ b in M if and only if a ~ b in L.

Example.2.4.2. Any one- element subset of a lattice is a sublattice more generally, 
any non- empty chain in a lattice is a sublattice. ( In fact, when testing that a non 
empty subset Mis a sublattice, it is sufficient to consider non- comparable elements). 

Example.2.4.3. In the diagrams in Figure (11) the shaded elements in lattices (i) and
(ii) form sublattices, while those in (iii) do not. 

<> g
~

'. 

G) (ii) (iii)

Figure 11
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It is interesting to note that given a lattice L one can ft fi d b t hi h . o en m su se w c as 
posets (using the same order relation) are lattices but whi h d t lify· h . , 1c o no qua 1 as 
sublattices as t e operations V and /\ do not agree with those of the original lattice L. 

Example.2.4.4. In Figure 12 note that P = { a, d, c, e} as a partially ordered set is in 
fact a lattice, but P is not a sub lattice of the lattice { a, b, c, d, e}.

C d

e
Figure 12 

Example.2.4.5. The lattice L of subsets of a group G with H V K = HUK and
H /\ K = Hf K, along with the lattice M of subgroups of G. Since every subgroup of 
G is a subset of G, it is clear that MCL. However if H and K are arbitrary subgroups 
of G, the subset H V K = HUK is not in general a subgroup of G, and so it not a
member of M. Hence M is not a sublattice of L. While M is a lattice with H V K to be 
the subgroup generated by H and K, and same definition of HAK as for L. 

New lattices can be constructed from given ones by informing direct products. 
This is analogous to processes of forming direct products of groups and direct sum of 
rings. 

Definition.2.4.6. (Products). Let L and K be lattices. Define V and /A coordinates
wise on LXK, as follows: 

(x1,y1) V (x2,y2) = (xi V Xx; ,y1 V yz)

(x1,y1) A (x4,ya) = (x; A X2 ,yi/A y2).

Theorem.2.4. 7 .(Theorem 7 in [7]). The direct product LM of any two lattices is a 
lattice. 

Proof: For any two elements (x,, y,) in LM (i= 1, 2), the element (x; V x>, yi V y:)
t · b th f ( . ·) h ce is an upper bound for the pair. Moreover every other 

contains 0t ot (x, y;) 1enc 1,2), d he (b
upper bound (u, v ) of the two (Xi, yi) satisfies Xi ::::; u (i= , , an ~ce Y
d fi ·t· f I b) v __,, u· li'kewise YI V y2 ::::; v and so ( XI v x2, YI v Y2) ~ (u, v). en110n O' .u. X] X35 5 3
This shows that 

(11) 

whence the latter exists. Dually, 

(12) 

which proves that L is a lattice. D
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2.5 Isomorphic lattices 

An isomorphism between two partially ordered sets p and Q d fi d 
d hi was e me as a one to one correspon ence w ch preserved order, so that. 

x < y in P if and only if f(x) ~ f(y) in Q. (13) 

Such a correspondence must preserve joins and meets whene th · t th t f
P d Q 1 tt. , ver ey ex1s , so a 1 an are .at ices.

f( xAy) == f(x) A f(y).

f (x V y) == f(x) V f(y). 

(14) 

(15) 

Now look closely at several correspondence f: L L' between lattices, they may
satisfy. x ~ y implies f(x) < f(y), but neither (14) nor (15), they may satisfy (14) but 
not (15), or (15) but not (14), or they may satisfy both. 

Such correspondences are called monotones(isotones), meet-homomorphisms, 
join-homomorphisms, and lattice homomorphisms, respectively. 

Remark.2.5.1. For bounded lattices L and K it is appropriate to consider 
homomorphisms f: L ~ K such that f(O) = 0 and f(1) =1. Such maps are called 
{0, 1}-homomorphisms

Example.2.5.2. Let L= L* = (Z,V,A), where a V b is the grater, and a A b is the 
smaller. Now f: L ~ 1* such that f(a) = a+l is monotone, and satisfying (14) and 
(15) so it is a lattice homomorphism. 

Example.2.5.3 In Figure 5, note that each of p; = p% is an order preserving
map(monotone) from one lattice to another. The maps p2 and po; are
homomorphisms, the remainder are not. Neither join nor meet is preserved by pa.
The map <ps preserves joins but does not preserve all meets; <f)6 is meet - preserving
but does not preserve all joins. 

Lemma.2.5.4. Any meet-homomorphism, join- homomorphism, and(lattice)
homomorphism, are all monotone. 

This statement will be proved for meet-homomorphism. 

Proof. Let f:L; > L;be a meet homomorphism, then f (a A b)= f(a) A f(b), for all
a, bin L, and if a, bGL; with a <bin L,, then a = a Ab; thus f(a)= f (a Ab)= f(a)
A f(b), so f(a) ~ f(b). . 

0(similar argument for join and lattice homomorphisms).

N t h th f th b Ve lemma does not hold, nor is there any connection o e t at e converse o e a o 
between join- and meet- homomorphisms. 
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Example.2.5.5. Figure 13 shows thr 
element chain Cs. Iee maps of four-elements lattice L into the three 

The map of figure (i) is monotone but is neither . . 
The map of figure (ii) is a join-homomo his : ~eet nor a join-homomorphism.
not a homomorphism. The map of ng,,,, {S not a meet-homomorphism, thus

e 111 1S a omomorphism. 

(i) (ii) 

Figure 13 

(iii) 

Definition.2.5.6. (Isomorphism For Lattices). 
We can mtroduce two concepts of isomorphism for lattices. 

• Two latticesL(X,<) and L;= (Y,<) are isomorphic (in symbol L= L;) if
there Is a bijection map f ( one to one and onto) from L1 to L2 such that for 
every a,b in L; we have 

a <bin L; if and only if f(a) < f(b) in L2.

• Two lattices L(X, V, A) and Lo- (Y, V, A) are isomorphic (in symbol L;=
L;) if there is a bijection map f ( one to one and onto) from L1 to L2 such that 
for every a, b in L; the following two equations hold: 

f(a V b) = f(a) V f(b), 
and f(a A b) = f(a) A f(b). Such f is called an isomorphism. 

It is useful to note that if f is an isomorphism from L1 to L2 then t1 is an 
isomorphism from L2 to L1, and if g is an isomorphism from L2 to L3 then gof is an 
isomorphism from L; to L3.

Definition.2.5.7. A lattice L; can be embedded into a lattice L2 if there is a 
sublattice of L; isomorphic to L;, in this case we also say L» contains a copy of L;.

Theorem.2.5.8. (Theorem 2.3 in [1 O]). Two lattices L1 and L; are isom~rphic if and 
only if there is a bijection f from L1 to L such that both f and f are order- 
preserving. 

Proof. If f is an isomorphism from L; to L2 and a < b holds in L; then a= a/\ b, 
so f(a) = f(a Ab) = f(a) A f(b), hence f(a) ~ f(b), and thus f is order-preserving. As f'
is an isomorphism, it is also order-preserving. 
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Conversely, let f be a bijection fr L 
preserving. Fora,binL wee;,'? = such that both f and fare order
f(b) ~ f(a Vb), hence f(a) V f(b) <%, "® b ~ a Vb, so f(a) < f(a vb) and 
Furthermore, if f(a) V f(b) < u then f(c) ~
b __,, ..- i ( ) b i a --s: u and f(b) < u h __,, ..- I ( <I (u), soaV' <f'(u), and thus f(aVb)<u. + ence a <f (u) and
This implies that f(a) V f(b)= f(a Vb). Si i1, "
f(a A b). D . Jimilarly, it can be argued that f(a) A f(b) = 

Example.2.5.9. This is an example f b.. f 
preserving but is not isomorphism· 2 between lattices which is order- 5consider e map f(a)= f(d)=d /hand L» are the two lattices in Figure 14. 3%..., 1(¢ = where L;

b 
..mm

a 

b 

C 

d 

Figure 14 

The possible demarcation dispute between order-isomorphism and lattice 
isomorphism does not arise, as 2.5 .10(2) below shows. 

Theorem.2.5.10.(2.19 Proposition in [14]). Let Land K be lattices and f: L ~ K be 
a map.

(1) The following are equivalent: 

(a) f is order-preserving, 
(b) (Va, b €L) f(a Vb) > f(a) V f(b), 
(c) (Va, b €L) f(a Ab) < f(a) A f(b). 

In particular, if f is a homomorphism, then f is order preserving. 

(2) f is a lattice isomorphism if and only if it is an order-isomorphism. 

Proof. Part (1) is an easy consequence of the Connecting Lemma (2.2.10). 
Consider (2). Assume that f is a lattice isomorphism. Then, by the Connecting 
Lemma, 

a <b ~av b = b ~ f(a V b)= f(b) => f(a) V f(b) = f(b) ~ f(a) ~ f(b), 

whence f is an order-embedding and so is an order- isomorphism. 

29



Chapter 2.Lattices 

Conversely, assume that f is an order-isom hi
By (1) and duality, to show that f is a ,-''·m. Then f is bijective (see 1.5.2).
f(a) V f(b) > f(a V b) V a,be L. S;- ,.-° Isomorphism it suffices to show that
cejv iy= re), nea sao oa,,""ye. here crisis c e L soc a
Smee f IS an order-embedding it follows that a ~ d b 

f · d . 3 C an ~ c whence a V b ~ c 
Because is order-preserving, f(a Vb) <f(c)=f(a) V f(b), as required. > 

2.6 Important lattice- theoretic notions 

In the following, let L_ be a lattice. We define some order-theoretic notions that are of 
particular Importance m lattice theory. 

Definition.2.6.1. An element x of L is called join- irreducible if 

1- x# 0 (in case Lhasa zero) 

2- x = a V b implies X=a or x= b for any a,b in L.

Condition (2) is equivalent to the more pictorial 

3- a <X and b <x imply a V b <x for all a,b E L.

Equivalently, x is join-irreducible if it is neither the bottom element of the lattice (the 
join of zero elements) nor the join of any two smaller elements. For instance, in the 
lattice of divisors of 120, there is no pair of elements whose join is 4, so 4 is join 
irreducible. 
A meet irreducible element is defined dully. 

We denote the set of join-irreducible elements of L by JL) and the set of meet 
irreducible elements by M(L).

Example.2.6.2. In a lattice IP(A) of the power set of a set A with inclusion relation 
the join-irreducible elements are exactly the singleton sets, {x}, for x EA. 

Example.2.6.3. In a chain, all the elements except the bottom one are join irreducible. 
Dually, all the elements except the top one are a meet-irreducible. Thus if L is an 
n-element chain, then J(L) and M(L) are an (n-1) - element chains. 

Example.2.6.4 In a finite lattice L, an element is join-irreducible if and only if it has
exactly one lower cover. Figure 15 gives two examples. The join irreducible elements
are shaded. 

Figure 15

30 



Chapter 2.Lattices 

Definition.2.6.5. An element x ofL is called join prime if 

1- xi- 0 (in case Lhasa zero) 

2- x ~ a V b implies x ~ a or x ~ b . 

Again, this can be dualized to yield meet prime. Any join-prime element is also join 
irreducible, and any meet-prime element is also meet irreducible.

Definition.2.6.6 An element x of L is an atom, if L has a 0, 0 <x, and there exists 
no element Y of L such that 0 -< y <x. L is atomic, if for every nonzero element x of 
L there exists an atom a of L such that a ~ x. 

L is atomistic, if every element of L is a supremum of atoms, that is, for all a, b in L 
such that a b, there exists an atom x of L such that x ~ a and x ~ b. 

Example.2.6.7. In example (2.6.2). All singleton subsets {x} of A are atoms in L.
And L with usual intersection and union as the lattice operations meet and join is 
atomistic: every subset B of A is the union of all the singleton subsets of B . 

Example.2.6.8 In the lattice of example (2.1.11 ), any prime number p is an atom. 
This lattice is atomic. But it is not atomistic: 36 is not a join of 2 and 3 this is just a 
counter example. 

Now we want to define two important elements in a lattice which are named 
complement element and relatively complement element, but before we need this 
definition. 

Definition.2.6.9. ( [a,b]). Given any two elements a, b E A with a < b, we denote 
by [a,b] the interval with the endpoints a and b, that is, the set of all elements x EA 
for which a <x< b, in symbols,

•

[a,b] =E[x € Aanda <x <b].

Definition.2.6.10. (Complement and relatively complement). Let L be a bounded 
lattice with greatest element 1 and least element 0. Two elements a and b of L are 
complements of each other if and only if 

a v b= 1 and a A b = 0. 

L Lb 1 · 1 t f L and I= [b c] an interval in L. An element dE L et ve a attice. a an element o » '·
is said to be a complement of a relative to I if:

a V d = c and a A d = b. 

. b ~ aE I Similarly dE I.It is easy to see that a ~ c and sa , so · ' 

I t. ly complemented if for every interval I in L An element a€ L is said to be relative
with aE I, it has a complement relative to I.

31



Chapter 2.Lattices 

Example.2.6.11. In a lattice of subsets of . 
complement of any subset of A as the coll : set 1 with 1 = A and O =, we define 
the subset. Iection of all elements ofA which are not in

Other important notions in lattice theory . d 1terms describe special subsets of a latt;; "®U-al and its dual notion filter. Both
1ce {or o1 any partially ordered set in general).

Definitions.2.6.12. (Ideals And Filters) 
Let L be a lattice, A non- empty subset J of L is called an Ideal if 

1- a, b €J implies a VbeJ.

2- a€L,b€Janda<bimply a€J (see figure 16 for illustrations.)

shaded elements 
an ideal 

shaded elements 
not an ideal 

shaded elements 
not an ideal 

Figure 16 

Clearly, every ideal K of a lattice L is a sublattice, since a Ab ~ a for any a, b €L,
every lattice L is an ideal of itself, and every intersection of ideals of L is an ideal of 
L. 

A dual ideal is called a filter. Specifically, a non- empty subset G of L is called a 
filter if : 

1 - a, b E G implies a/\ b €G,

2 - a€L, b € G and a ~ b imply a E G. 

The set of all ideals of L by denoted Id(L) and the set of all filters denoted by F(L), 
and carries the usual inclusion order. 

Given an element a of a lattice L, the set L(a) of all elements x ~ a is evidently an 
ideal, it is called a principal ideal for L. 

A prime ideal of a lattice L is an ideal J ± O, such that x A y E J implies x E J 
or y E J. 

An order ideal of a lattice is a subset I of L such that x ~ y, Y E I implies x E I . 
Order ideals have been called a variety of other names. 
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An ideal or filter is called proper if it does not · 'd · h L · 
ide :. .:. : coincide witl .It is very easy toshow that an 1 eal J of a lattice with 1 1s proper if and nl if 1 ct. J d d 11I · 'th · . 0 Y 1 # an ua y a filter G of a .attice wi 0 1s proper if and only if o ~ G. ' 

Example.2.6.13. Let L and K be bounded lattices and f:LK a {0, 1)
homomorphism. Then f (0) is an ideal and f'(1) is a filter in L. ' - 

Proof. Let f"(0)= {x EL, f(x) =0}, note that f'(O) is not empty, 0 € f'(O).
Assume a,b E f (0) then f'(a) = 0, and f1(b) = o. 
Now f(a V b) = f(a) V f(b)

= 0 VO
= 0. 

So, a Vb E f'(o).

Now, let a <bin L and b € f'(0), then, f(a) < f(b) =0, but 0 < f(a) for every a in L
so f(a) - 0 1.e., a E f (0) . 
Hence f'(O) is an ideal of L. similarly f'(1) is a filter ofL. 

Theorem.2.6.14.( Theorem 3 in [7]). The set of all ideals of any lattice L, ordered by 
inclusion, itself forms a lattice IL. The set of all principal ideals in L forms a sub lattice 
of this lattice , which is isomorphic to L. 

Proof. Given any two ideals J and K of L, they have a common element since if 
a E J and b E K, then a A b E J AK. Thus we can take J A K as the set -intersection 
of J and K; this is clearly an ideal. 

Again, any ideal which contains J and K must contain the set M of all elements x such 
that x ~ a V b for some a E J, b E K. 
But the set M is an ideal: if x EM and y ~ x ~ a V b, then y ~ a V b by Ps; and if 
{x, y}cM, then since x <aV bandy <a; Vb; for some a, a; €J and b, b; € K,

where a Va €J and b v b1 EK since J and Kare ideals. Hence M= sup {J, K}is the 
set of all ideals of L. 

If J and K are principal ideal of L with generators a and b, then J ~ K and J A K are 
principal ideals generated by av b and a A b, respectively. The principal ideals thus 
form a sublattice of IL which is isomorphic with L. D
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Chapter Three
Types Of Lattices 

It is usually possible to enlarge the set of postul t f . 
thereby obtain a special system with proper, "! @n algebraic system, and

t J thi h . no ci aracteristic of the general sys em. n s c apter we will consider some · 1 ki d · 
complete, modular, distributive, complemented, %,,ds of lattices namely·00lean attices.
3.1 Complete lattices. 

Definition.3.1.1. A partially ordered set p is complete if for eve sub 
both sup A and mf A exist (in P). ry set A of P 

The elements sup A and inf A will be denoted by VA and 11A t' 1 All I · ll, respec 1ve y. complete part1a _Y ordered sets are lattices, and a lattice L which is complete as a 
partially ordered set 1s a complete lattice 

In particular, a complete lattice L has a least element O (such that 0 < x for all x in
L),which IS the g.l.b. of L (and the l.u.b. of the empty subset of L), and it is has a 
greatest element 1 (such that x ~1 for all x in L ), which is the l.u.b. of L (and the 
g.l.b. of the empty subset of L). 

Theorem.3.1.2. (Theorem 4.2 in [IO]). Let P be a partially ordered set such that AA
exists for every subset A, or such that VA exists for every subset A. Then p is a 
complete lattice. 

Proof. Suppose /AA exists for every A ~ P. Then letting Au be the set of upper 
bounds of A in P, it is clear that AA" is indeed VA. The other half of the theorem is 
proved similarly. D 

Any finite lattice is complete, and so is any lattice whose chains are finite. So is any 
cardinal product of complete lattices, and so are the ordinal sum and product of any 
two complete lattices 

The opposite of a complete lattice is a complete lattice. Hence there is a duality 
principle for complete lattices: a theorem that holds in every complete lattice remains 
true when the order relation is reversed. 

Deflnition.3.1.3. A sublattice M of a complete lattice L is called a complete 
sublattice of L if for every subset A of M the elements VA and /AA, as defined in L, 
are actually in M. 

Example.3.1.4. The power set of a given set, ordered by inclusion is a complete
lattice, for, in this case, the supremum of any subset of the lattice is given by the set
theoretic union of the elements of the subset and so 1s an element of the lattice, while 
the infimum of any subset of the lattice is given by the set- theoretic intersection of 
the elements of the subset and so is an element of the lattice. 

Exam l 3 1 5 The 1-1 ative integers, ordered by divisibility is a complete p e. . . . e non neg . ' di id :h
lattice. The least element in this lattice is the number _I,_ smce 1t 1v1 es any ot er 
numbe The el it.3< 0, because it can be divided by any other number.er. e greatest e ement 1s , • 1 d · 
Th f fi · : iven by the least common multiple an the infimume supremum o inite sets 1s g!
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by the greatest common divisor. For infinite sets, the supremum will always be o
while the mfimum can well be greater than 1. For example, the set of all even 
numbers has 2 as the greatest common divisor. 

Example.3.1.6. The subgroups of any given group under inclusion is a complete
lattice. (While the infimum here is the usual set-theoretic intersection, the supremum
of a set of subgroups is the subgroup generated by the set-theoretic union of the 
subgroups, not the set-theoretic union itself). If e is the identity of G, then the trivial 
group { e} is the minimum subgroup of G, while the maximum subgroup is the group 
G itself. 

Example.3.1.7. The submodules of a module, ordered by inclusion is a complete 
lattice. The supremum is given by the sum of submodules and the infimum by the 
intersection. 

Example.3.1.8. Every finite lattice is complete. On the other hand not all lattices are 
complete, for example the lattices N,Q,IR with the usual relation (<) are not complete. 

A complete lattice may, of course, have sublattices which are incomplete 
(for example, consider the reals as a sublattice of the extended reals). It is also 
possible for a sublattice of a complete lattice to be complete, but the sups and infs of 
the sublattice not to agree with those of the original lattice (for example look at the 
sublattice of the extended reals consisting of those numbers whose absolute value is 
less than one together with the numbers -2; +2).

Theorem.3.1.9. (Theorem 5.2 in [10]). Let C be a closure operator (see def" 1.5.11)
on a set A: Then Le is a complete lattice with 

/Aer CA) =fl, C (A)

and 

Proof. Let (A,)er be an indexed family of closed subsets ofA. From

for each i; we have 

so 

hence 

C (fl,er A) = fler A
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so n iEJ Ai is in Le. Then, if one notes that A it If . . L . • . . se 1s 1n c; it follows that L is a 
complete lattice. The verification of the formul: fo the ·©c ulas tor the V's and /A'< f rs {11 f
closed sets is straightforward. ] so1 1amiles o

Interestingly enough, the converse of this theorem · 1 .
1 · L · · fr is a so true which shows that the attices c arising om closure operators provide typical ' I f 
1 tti

. examp es o complete 
a ces. 

Remarks.3.1.10.

1- Homomorphisms of complete lattices: The traditional hc his ,
1 . • omomorp sms etween 

complete lattices are the complete homomorphisms (or 1 t 1 · h . . comp e e attice omo
morphisms). These are characterized as functions that preserve all joins and all meets
Explicitly, this means that a function f: L->M between two complete lattices L and M
1s a complete homomorphism if 

f (AA) = A {fa) : a EA} and 

f (VA) = V { f(a) : a€A}

for all subsets A of L. 

Such functions are automatically monotonic, but the condition of being a complete 
homomorphism is in fact much more specific. For this reason, it can be useful to 
consider weaker notions of homomorphisms, that are only required to preserve all 
meets or all joins, which are indeed in equivalent conditions. This notion may be 
considered as a homomorphism of complete meet-semilattices or complete join 
semilattices, respectively. 

2-Representation: There are various mathematical concepts that can be used to 
represent complete lattices. One means of doing so is the Dedekind-MacNeille 
completion. When this completion is applied to a partially ordered set that already is a 
complete lattice, then the result is a complete lattice of sets which is isomorphic to the 
original one. Thus we immediately find that every complete lattice is isomorphic to a 
complete lattice of sets. 

Another representation is obtained by noting that the image of any closure operator 
on a complete lattice is again a complete lattice ( called its closure system). Since the 
identity function is a closure operator too, this shows that the complete lattices are 
exactly the images of closure operators on complete lattices. 

Besides the previous representation results, there are some other statements that can
be made about complete lattices, or that take a particularly simple form m this case. 
An example is the Knaster-Tarski theorem, named after Bronislaw Knaster and
Alfred Tarski, which we will state and prove after give this definition.

Definition.3.1.11. The least fixed point off is the least element x such that fx) = x, 
or, equivalently, such that f(x) < x, the dual holds for the greatest fixed pomt, the 
greatest element x such that f(x)= x.

Si. 1 1 · t be empty the theorem in particular guarantees the nee comp ete attices canno ' . f 1 ( )
ex. t f 1 fi d · t off and even the existence o a east or greatest is ence o at east one xe pom , . 
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fixed point. In many practical cases, this is the most important implication of the 
theorem. Let's state the theorem: 

Theorem.3.1.12. (The Knaster-Tarski Fixed point Theorem in [14]). 
Let L be a complete lattice and f:L->L an order preserving map. Then 

a := V { x € L : x ~ f(x)} 

is a fixed point off. Further, a is the greatest fixed point off. Dually, f has a least 
fixed point, given by A { x E L :f(x) < x} 

Proof. Let H= { x EL: x <f(x)}. For all x EH we have x ~ a, so x ~ f(x) <f(a).
Thus f() € H", whence a < f(a). We now use this inequality to prove the reverse
one and thereby complete the proof that a is a fixed point. 
Since f is order preserving, f(a) <f (f(a) ). This says that f(a) € H, so f(a) <a. If'3 is
any fixed point of f then BE H, so B a. L

The Knaster-Tarski theorem can be restate to say that : The set of fixed points off is 
itself a complete lattice. 

Theorem.3.1.13. (Lattice theoretical Fixed point Theorem). [31] 

Let (1)L=(A, <) be A complete lattice,

(2) fbe an order- preserving map ( increasing function) on A to A, 

(3) P be the set of all fixedpoints off. 

Then the set p is not empty and the system (P, ~ ) is a complete lattice; in particular 
we have 

VP = V Ex [ f(x) ~ X ]cP

And 

AP=AEA[f(x) <x] €P.

Proof. Let 

(1) u=VE,[f(x)>x]€P
• th f(:) ;::;:: x· hence the function f being We clearly have x ~ u for every element x wi x ,.... ' ' 

order- preserving ( or increasing), 

f (x) < f(u) and x < f(u) • 

By (1) we conclude that 

(2) u ~ f(u). 

Therefore 
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f (u) < f (f (u) ),

so that f(u) belongs to the set Ex [f(x) ~x ]; consequently, by (1), 

(3) f(u) < u. 

Formulas (2) and (3 ) imply that u is a fixedpoint of f; hence we conclude by (1) that
u is the JOm of all fixedpoints off, so that 

(4) VP=VE,[f(x) >x]€P

Consider the dual lattice L d = ( A,>). Ld like L is complete d f · · 
• • • • d • • ' ' , , an 1s agam an 
increasing function in L · The join of any elements in Ld obviously coincides with the 
meet of these elements in L. Hence, by applying to Ld the result established for L in 
(4), we conclude that 

(5) AP=AE, [ f(x) ~ x] EP. 

Now let Y be any subset of P. The system 

B=([VY,1], <)

is a complete lattice. For any x € Y we have x <VY and hence 

x = f(x) <f(VY);

therefore VY < f(VY). Consequently, VY < z implies

VY <f(VY)<f(z).

Thus, by restricting the domain off to the interval [VY, 1], we obtain an increasing 
function f' on [VY, 1 ] to [VY, 1 ] By applying formula (5) established above to the 
lattice '.B and to the function f ', we conclude that the greatest lower bound v of all 
fixedpoints off' is itself a fixedpoint off'. Obviously, vis a fixedpoint off, and in 
fact the least fixedpoint off which is an upper bound of all elements of Y; in other 
words, vis the least upper bound of Yin the system (P, <).

Hence, by passing to the dual lattices L d and '.Bd, we see that there exists also a 
greatest lower bound of y in (P, <). Since Y is an arbitrary subset of P, we finally 
conclude that 

( 6) the system (P, <) is a complete lattice . 

In view of ( 4)-(6), the proof has been completed. ]

The next lemma is useful for showing that certain subsets of a complete lattices are 
themselves complete lattices. 
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Now another important kind of lattices will be introd d uce . 

3.2 Modular Lattices. 

Definition.3.2.1. A modular lattice is any lattice which. atisfie +,c) sat1sties the modular law

Ls: x ~ z implies x V (y A z) ~ (x v y)A z.

The modular law is obviously equivalent (for lattices) to the identity 

(x A y) V (x A z) ~ x A (y V (x A z)) for all X, y, z EL . 

since a < b holds if and only if a= a A b. Also it is not difficult to see that every
lattice satisfies 

x ~ z implies x V (y A z) ~ (x v y)A z,

so to verify the modular law it suffices to check the implication 

x ~ z implies (x V y) Az ~ x v (y A z).

for all x, y, Z EL. 

The opposite of a modular lattice is a modular lattice. Hence there is a duality 
principle for modular lattices: a theorem that holds in every modular lattice remains 
true when the order relation is reversed. 

Example.3.2.2. The lattice of submodules of any module is modular. 

Proof. We saw that the submodules of a module constitute a lattice, in which 
A A B = A nOB and A V B = A + B. Let A, B, C be submodules such that Af;; C . 
Then A+(BOC) c (A+ B) nC (this holds in every lattice). 
Conversely, if x € (A + B) n1 C , then x = a + be C for some a EA c C and b E B , 
whence b = x - a E C and x = a + b E A + (Bn C). D 

Example.3.2.3. The lattice of normal subgroups of any group G is modular 

Proof. We saw that the normal subgroups of a group G constitute a lattice , in which 
A AB = An B and AV B = AB ,with C order.
Let A,B,C be normal subgroups of G, with C A. Take x E A A (B V C), so x ~ A 
and x=kn, for some k €B, and n€C.Then k=xn+ €A since CC Aand A is a
subgroup. This proves that x €(A /\ B ) V C. Hence A A (B V C) c ( A A B ) V C. □
Example.3.2.4. Every chain is a modular lattice. 

Example.3.2.5. The following lattice which called M; (shown in Fig 17) is a modular
1 tt. h" · · al b of V Hence by the above example it is attice, this lattice is norm: subgroup 4
modular. 
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Figure 17: M,

The smallest non-modular lattice is the " ta " . 
elements 0,1,a,b,c such that 0 <b <e ,_,"#on" lattice N; consisting of five
to b. For this lattice bv(aAc)=bvo= ,47,,';"®@ is not comparable to c or
E . . , an a A c - 1 /\ c = c. 
very non-modular lattice contams a copy ofN; as a sublattice 

Figure 18: N;

Remark.3.2.6. 
New lattices can be manufactured by forming sublattices , products and homomorphic 
images. Modularity preserved by these constructions , as follows. 

1. If L is a modular lattice , then every sub lattice of L is modular . 
2. If L and K are modular lattices ,then L x K is modular . 
3. If L is modular and K is the image of L under a homomorphism , then K is 

modular. 

Here (1) is immediate and (2) holds because V and A are defined coordinatewise on 
products. For (3) we use the fact that a join- and a meet- preserving map preserves 
any lattice identity, then invoke (1) ¢=> (3) in lemma(2.2.15). D

Theorem.3.2.7. In a modular lattice, x /\ y <x if and only if y -< x V y . 

Proof. Suppose that x A y -< x but y --t. x v y . Then x A y <x , x ~ y , y <x V y , and 
Y -< Z < X v y for some Z . Then x v y ~ x V z ~ x V y and x V z = x v y. 
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Also x A y ~ x A z ~ x , and x A Z<X : otherwise, x ~ z and x v z = Z<X v y .Hence 
X A Z <X ' and X A z = X A y . Then y V (x A z) = y V (x Ay) = y <Z = (y V x) A z ' 
contradicting modularity. Therefore x A y <x implies y <x v y . The converse 
implication is dual. D

Theorem.3.2.8. ( Theorem 3.2 in [2]). A lattice is modular if and only if it contains 
no sublattice that is isomorphic to N,.

Proof. A sublattice of a modular lattice is modular and not isomorphic to N;
Conversely, a lattice L that is not modular contains elements a, b, c such that b ~ c 
and u = b V (a Ac) <(b Va) Ac= v. Then v ~ b Va,au<v ~c ,and b V a< b V 
u ~ b v v ~ b V a , so that b V u = b V v = b V a . Similarly, b A c ~ u , v ~ b A c , 
and b A c ~ b A u ~ b A v ~ b A c, so that b A u = b A v = b A c . 
Thus b, u , v , b A u = b A v , and b V u = b V v constitute a sublattice of L . 
We show that these five elements are distinct, so that our sublattice is isomorphic to 
N5 :

b v c
/ \bv c

/ 
b I
~ / u "'-- 

b Au a 
\ /

b A a 
Figure 19 

h · b=b A c << u< V and u = b V u = b V v = Already u<V. Moreover, b ~ c : otherwise, _=
v · and a ~ b: otherwise, b = b V a ~ V > U and u=b A u=bA v v · 
iace v<vvoiiaiie,8<v«eoao<tie"g,5",2,"7
(otherwise, b = b Au= b Ac ~ c ), b <b V v (otherwise, - · 

Theorem.3.2.9. (The Isomorphism Theorem). ( Theorem 2 in [19]). 
Let L be a modular lattice and let a, b E L. Then 

po:x+>xAb, x€[a,aVb],

b] The inverse isomorphism is is an isomorphism of [ a, a V b] and [ a A b, · 

'l'a: y ~ y Va, y E [a Ab, b]. 
(See Figure 20.) 
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y 'V a

a 

a V b

T
' s,

s, 9,s~, s

' 's a Ss

s 's
' s

a Ab
Figure 20 

b

XI\. b 

Proof. It is sufficient to show that 'l'a(<pb (x)) = x, for x E [a, av b]. Indeed if this is 
true then by duality os(a (y) ) =y, for ally E [a Ab, b]. 
The isotone maps po and 'l'a, thus, compose into the identity maps, then they are 
isomorphism, as claimed. 
So let x E [a, a Vb]. Thus 'l'a(<pb (x)) = ( x Ab) Va. Since x E [a, a Vb], we have a <b,
and so modularity applies: 

lVa(psx)) = ( x A b) V a = x A ( b V a ) =X,

because x ~ a V b D 

Definition.3.2.10. (Semimodular Lattice). Lattices of finite length which satisfy 
(16) or (17) are called semimodular 

If a :f: b and both a and b cover c, then a V b covers a as well as b. (16) 
If a b and c covers both a and b, then a and b both cover a A b. (17) 

A lattice which satisfy (16) is called upper semimodular, and one which satisfy (17) is 
called lower semimodular. 

Example.3.2.11. The smallest lattice which is semimodular but not modular is show 
in (Figure 21) since d ~ a but a A ( c V d) # ( a A c) V d. 

Figure 21 
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Another important type of lattices is distributive lattices. 

3.3 Distributive Lattices. 

Distributive lattices are less general than modul: 1 · . .
inorant examples. Dist> iaices are ail";";"inehwde some
properties. 2€ following equivalent

Proposition.3.3.1 In a lattice L , the distributivity conditions 
(1) XV (y A z) =(x V y) A (x V z) for all x, y, Z EL, 
(2) xA(yVz)=(xAy) V(xAZ)forallx,y, z€ L,
are equivalent, and imply modularity. 

Proof. Assume (1). Then x ~ z implies xv (y A z) 
=(x V y) A (x V z) 
=(x V y) A z. Hence Lis modular. 

Then X A z ~ X yields (x A z) V (y A x) = X A ( z V (y A x))
= X A (z Vy) A (z V x) 
= x A (z V y).and (2) holds. 

Dually, (2) implies (1). □
Definition.3.3.2. A lattice is distributive when it satisfies the equivalent conditions 
in proposition 3.3.1 

The dual of a distributive lattice is a distributive lattice. Hence there is duality 
principle for distributive lattices: a theorem that holds in every distributive lattice 
remains true when the order relation is reversed. 

Theorem.3.3.3. Every distributive lattice is modular. 
Proof. Just use (1) in proposition 3.3.1, noting that a Vb= b whenever a <b. □
Example.3.3.4. Every totally ordered set is a distributive lattice with max as join and 
min as meet. 

Proof. We will show that x V ( y A z) =(x V y) A (x V z). We may suppose y ~ z 
(If not, z ~ y and we may switch y and z). Recall that y ~ z is equivalent to y V z = 
z. Hence y ~ z implies (x V y) v (x V z)= x V z , i.e., x V y ~ x V z, so the right 
hand side of the equation is equal to (x V y) A (x V z) = x V y. On the left hand side 
we have y A z =y, so equality is established. 

Note that the relation x v (y A z) ~ (x v y) A (x V z) is true in all lattices, as both x
and (y A z) are bounded above by (x Vy) A (x V z) . 

Example.3.3.5. The natural numbers form a (complete) distributive lattice with the
greatest common divisor as meet and the least common multiple as jomn.

Example.3.3.6. Gi ·itive integer n, the set of all positive divisors of n forms a··'-·9% ivenapost • e..:. ]
distributive lattice, again with the greatest common divisor as meet and the east 
common multiple as join. 
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Example.3.3.7. The lattice P(X) of all subsets f • . . . 
sublattice of P(X). O1 a set is distributive. So is every

However, while many lattices are distributive th 1 .
which are not .For example the lattice M, ',""° ®"° @lso many important ones
astitotve sics av (A)=a bat@va."?]eis ao
quintessential nondistributive lattices. c · act, M; and Ns are the 

Remarks.3.3.8.
1- New lattices can be manufactured by forming s blatti vdhi · . u a ices , pro ucts and 
homomorp c images. Distributivity preserved by these constructions , as follows. 

1. If L is a distributive lattice , then every sub lattice of L is distributive 
2. If L and K are distributive lattices ,then L x K is distributive · 
3. If Lis distributive and K is the image of L under a homomorphisr the.K 5

d. tributi: sm , en is ISIII ·u'Ive.

Here (1) is immediate and (2) holds because V and /A are defined coordinatewise on 
products. For (3) we use the fact that a join- and a meet- preserving map preserves 
any lattice identity. D .

2-Characteristic Properties: Various equivalent formulations to the above definition 
exist. For example, Lis distributive if and only if the following holds for all elements 
x, y, z in L:

(x A y) V (y /\ z) V (z /\ x) = (x V y) /\ ( y V z) A ( z V x ).

Similarly, L is distributive if and only if 

x /\ Z= y /\ z and x V Z= y V z always imply x = y. 
Another popular characterization is obtained from two well-known prototypical non 
distributive lattices: M3, the "diamond", and N;, the "pentagon", shown with their 
Hasse diagrams in Fig 17and Fig 18. A lattice is distributive if and only if none of its 
sublattices is isomorphic to M3 or N5 where a sublattice is a subset that is closed under 
the meet and join operations of the original lattice. This will be prove in the following 
theorem. 

Theorem.3.3.19. (Birkhoff [1934]). ( Theorem 4.2 in [2]). A lattice is distributive if 
and only if it contains no sublattice that is isomorphic to M; or to N;.

Proof. A sublattice of a distributive lattice is distributive and is not, therefore, 
isomorphic to M; or N; .

Conversely, assume that the lattice Lis not distributive. We may assume that L 
is modular: otherwise, L contains a sublattice that is isomorphic to Ns, by 3.2.8, and 
the theorem is proved. Since L is not distributive, a/\ (b V c) (a Ab) V ( a /\ c) 
for some a, b, c E L. Let 
u=(aAb) V (b /\ c) V (c /\ a) and v = (a V b) A (b V c) A (c V a).
Then u ~ v , since a /\ b ~ a V b, etc. 
Let, 

X =u V (a/\ v) = (u Va) Av,
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y =uV(bAv)=(uVb) Av,
Z=u V (c A v) = (u V c) Av.

Since Lis modular and a/\ v =a/\ (b v c), b vu= b V (c A a),
x A y = (uV (a/\ v)) A (u V (b A v))

= uV(a/Av)A(uVb)Av))
= u V ((a/\ v) A (u V b))
= u V (a A (b V c)) A(b V (c A a))
= u V (((a A (b V c))A b) V (c A a)))
= u V (a Ab) V (cAa) =u.

Permuting a, b, and c yields y A z = Z A x = u . Dually, x v y = y v z = z v x = v . 
Thus {u, v, x, y, z} is a sublattice of L. We show that u, v, x, y, z are distinct, so that 
{u,v,x,y, z} =M,:
Since a A ( b V c) # (a /\ b) V (a A c), but a A b ~ a A (b v c) and 
a Ac ~ a A (b V c ), we have 

p=(a/Ab) V(a/Ac) <aA(bVc)=q.

Now, a A v = a A (b v c) = q and modularity yields 
u/A a = ( ( ( a Ab) v ( a Ac)) V (b /\ c)) A a

=((aAb)V(aAc)) V((bAc) Aa)=(aAb) V(aAc)=p.

Therefore u < v. Hence x, y, z are distinct (if, say, x = y, then u = x A y = x Vy= v) 
and distinct from u and v (if, say, x = u, then y = x Vy= v and z = x V z = v = y ). D

An example of distributive lattice is order ideals which defined in chapter two. 

Proposition.3.3.10. The order ideals of a partially ordered set S, partially ordered by 
inclusion, constitute a distributive lattice Id (S). 

Proof. First, s is an order ideal of itself, and every intersection of order ideals of S is 
an order ideal of s. Id (S) is a complete lattice, in which infimums are intersections. 

45 



Chapter 3. Types Of Lattices 

Moreover, every union of order ideals of Sis an order ideal of s so th t 
· H d · 3 .a supremums in Id (S) are umons. ence I (S) is a sublattice of P (S) and is distributive. □

Definition.3.3.11. (Homomorphism). A homomorphism of distributive lattices is 
just a lattice homomorphism as given in the article on lattices i.e. a function that is 
compatible with the two lattice operations. °

A very important result about distributive lattices will be given after this needed 
definitions and needed lemma which given without proof. 

Definition.3.3.12. Let S be a set and P (S) be the power set of S . A subset R of
P (S) is said to be a ring of sets of S if it is a lattice under the intersection and union 
operations. In other words, R is a ring of sets if 

• forany A,BER,then A f) B €R,

• for any A, BE J?. , then A U B €R.

Example.3.3.13. The subset { {a}, {a,b}} of the IP ({a,b}) is a ring of sets since 
{a} U {a,b} = {a,b} and {a} n {a,b} = {a}.

Lemma.3.3.14. Let L be a distributive lattice and a,b EL with ab . Then there is a 
prime ideal containing one or the other. 

Theorem.3.3.15. (Birkhoff [1933]). (Theorem 5. 7 in [8]). Every distributive lattice is 
isomorphic to ring of sets. 

Proof. For every x E L let F(x) denote the set of prime filters of L that contain x. 
Then we have 

F E 'F(x /\ y) ~ x A y E F > x, y eF ~ F E 'F (x) n 'F (y); 

FeF(xVy)=3xVy€Fax€Fory€FF€F(x) UTF(y).

Thus F (x A y) = F (x) () F (y) and F(x V y) = F(x) U (y). Consequently
F= {F(x)'x €L} is a ring of sets and the mapping described by x => F (x) is a
1 tt. h ' hi f L onto F By the dual of lemma 3.3.14 this mappmg 1s at:ice omomorpl sm o ·
injective, so we conclude that L = F. D 
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Now complemented lattices will be defined. 

3.4 Complemented lattices 

Definition.3.4.1. A lattice L is called complemented if all its elements have 
complements. And it is called relatively complement if every element of L is 
relatively complemented. Equivalently, L is relatively complemented if and only if
each of its interval is a complemented lattice. A complemented modular lattice is a 
complemented lattice L that is modular. 

Remark.3.4.2 A relatively complemented lattice is complemented if it is bounded. 
Conversely, a complemented lattice is relatively complemented if it is modular. 

In general an element may have more than one complement. However, in a bounded 
distributive lattice every element will have at most one complement. 

Definition.3.4.3. A complemented lattice such that every element has a unique 
complement is said to be uniquely complemented. 

If a is an element of a uniquely complemented lattice, a denotes its (unique)
complement one can think of a as a unary operator on the lattice. One of the first 
consequences is a= a. To see this, we have that a V a*=l, a A a= 0 , as well as 
aV a = 1, a**A a*= 0. So a =a, since they are both complements ofa.

Below are some additional (and non-trivial) properties of a uniquely complemented 
lattice: 

• There exists a uniquely complemented lattice that is not distributive. 
• A uniquely complemented lattice L is distributive if at least one of the 

following is satisfied: 
1. ,as an operator on L , is order reversing; 
2. (avb) =aAb ;
3. (aAb) = avb;
4. (von Neumann) L is a modular lattice; 
5. (Birkhoff-W ard) L is an atomic lattice. 

• (Dilworth) every lattice can be embedded in a uniquely complemented lattice. 

The above statements proof can be found in [8]. 

f t A · s uniquely complemented. For we Example.3.4.4. The lattice of subsets O a se 1 •th O and then define the 
identity e whole set A wid 1 and the s",',,is or A wiich are not i
complement of any subset ofA as the collection
the subset. 

. f all subspaces of Euclidean n-space En . 
Example.3.4.5. Let M be the lattice O

I nted (so it is complemented 
Th . 1 3 2 3) and compiemer .

en M is modular (by example 2.2.- ,j, at S! of any subspace S satisfies
modular lattice ) since the orthogonal comptemen
S(1S±=0,and S +S!= E,.
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Definition.3.4.6. let L be a complemented lattice 
complements of elements of L . M is clearly a sub and denote M the set of 
L. For each aE L, let Ma c M be the set of compl poset off L, with ~ inherited from 

. . ements o a 
L is said to be orthocomplemented if there is fu • · 

1 . . a nct1on .l· L~M call d orthocomplementation, whose unage is written a.L fo L · ' e an 
1. a±€M,, ranya€ ,such that
2. (a-)+=a,and
3. Lis order-reversing; that is for any a bE L a<b · 1· b ' , , --.:: imp 1es .L ~ a.L . 

The element a+ is called an orthocomplement of a . 

Example.3.4.7. Look at the Hasse diagrams of the tw fi it· b 1 th . o in1.e comp emented 
lattices e ow, : one on the nght is orthocomplemented (there exist three
orthocomplementat10n), while the one on the left is not. 

Figure 23 

Remarks.3.4.8 
1. From the first condition above, we see that an orthocomplementation .l is a 
bijection. It is one-to-one: if a.L= b.L , then a =(a!)'= (b.L ).L = b. And it is onto: if we . 
pick a EM c L, then (a-)' = a. As a result, M=L, every element of L is an 
orthocomplement. Furthermore, we have Q.L= 1 and 1-= 0 . 

2. Let L d be the dual lattice of L ( a lattice having the same underlying set, but with 
meet and join operations switched). Then any orthocomplementation .l can be viewed 
as a lattice isomorphism between L and L d •

3. From the above conditions, it follows that elements of L satisfy the de Morgan's 
laws: for a, be L , we have 

a+Ab!=(a Vb)

To derive the first equation, first note a < a Vb• Then 

(a Vb) .t ~ a.t. Similarly, 

(a Vb)' < b±.So(a Vb)+<a!Ab+.

For the other inequality, we start with a.LA b.L ~ a.L. Then 

,
r,

r 
I 
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Similarly, 

Therefore, 

a Vb<(a+Ab')',

which implies that 

a+Ab+ < (a Vb) +.

4. Conversely, any of two equations in the previous re k 1 . 
d
. · · th d fi · · mar can rep ace the third 

con 1t10n m e etinition above. For example suppose h th fi . .1 b.L - ( b ) .1 f ' we ave e tirst equationa-V = a/A ·.fa<b,thena= aAb,so which shows that b!<a!.

5.Let L and M be complemented lattices. A homomorphism from L to M is a 
funct10n f: L~ M that is a bounded lattice homomorphism. 

f(x Vy) = f(x) V f(y), 

f(x A y) =f(x) A f(y), 

f(O) = 0, 

and 

f(l) = 1. 

3.5 Boolean Lattices 

Boolean lattices generalize the lattice of subsets of a set. They were introduced by 
Boole [184 7] for use in mathematical logic, as formal algebraic systems in which the 
properties of infimums, supremums, and complements match those of conjunctions, 
disjunctions, and negations. Boolean lattices are still in use today, as a source of 
models of set theory, and in the design of electronic logic circuits.[2] 

Proposition.3.5.1 In a distributive lattice with a least element and a greatest element: 

(1) an element has at most one complement, 
(2) if a*is the complement of a and b is the complement of b, then a V b is the 
complement of a A b, and a A b is the complement of a V b. 

Proof. (1). Ifb and care complements of a, then 

b=bA(aVc)=(bAa) V(bAc)=bAc<c

exchanging b and c then yields c ~ b. 

(2). By distributivity, 
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(a/\ b) A (a Vb*)= (a Ab A a) v (a Ab Ab*)= 0 VO= 0 

Dually, 

(a V b) V (a Ab)=1. Hence a V b is a complement ofa Ab D 11 * /\ b
complement of a V b. D · ua Y, a 1s a 

Definition.3.5.2. A Boolean lattice B is a distributive latti: ·° which f: lattice in whicl tor eachelement xE B there exists a complement x€ B such that
x Ax = 0 
x V x* = I 

(x) = X 

( x A y )* = x* V y* 
( X V y ) = x* A y* 

In other words a Boolean lattice, is a complemented distributive lattice. 

The opposite of a Boolean lattice L is a Boolean lattice; in fact, L= L , by 
proposition 3.5.1. Hence there is a duality principle for Boolean lattices: a theorem 
that holds in every Boolean lattice remains true when the order relation is reversed. 

Definition.3.5.3. (Boolean Algebra). A Boolean lattices was defined to be a special 
kind of distributive lattice. In such a lattice it is often more natural to regard the 
distinguished elements O and I and the operation as an integral part of the structure. 
Accordingly, a Boolean algebra is defined to be the structure (B; V, A, , 0, 1) such 
that: 

(1) (B; V, A) is distributive lattice, 

(2) a V O = a and a A 1 = a for all aE B, 

(3) a Va= 1 and a Aa= 0.

Example.3.5.4. The set of all subsets of a set , with the usual compositions of 
intersection , union, and complementation is Boolean lattice ( algebra). 

Another important example will be given after define the square-free integer. 

Definition.3.5.5. The positive integer n is square-free if and only if in the prime 
factorization of n, no prime number occurs more than once. 

Another formulation: n is square-free if and only if in every factorization n =ab, the
factors a and b are coprime. For example, 10 is square-free but 18 is not, as it 1s
divisible by 9 = 32_ The smallest square-free numbers are 1, 2, 3, 5, 6, 7, 10, 11, 13,
14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39...

Example.3.5.6. Fc atural number n, the set of all positive divisors of n forms a. . . • or any na . . . B 1 1 ebra if and 
distributive lattice if we write a <b for a] b. This lattice isa.9"",,, natural

1 'f . 11 1 t 0 of this Boo ean augeira 1son y 1 n is square-free. The sma,test e emen . al number n 
number 1, the largest element 1 of this Boolean algebra is the natur · 
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Definition.3.5.7. A Boolean sublattice of a Boolean lattice Lis a sublatti S h 
1 S d S : f; uce sue 

that OE S_, E , _an x E imp ies x*E S. A Boolean sublattice of L is a Boolean 
lattice in its own right.

Definition.3.5.8. A map f: B~c is Boolean homomorphism if f is a lattice homo 
morphism which also preserves 0, 1 and* ( that is f(0)= 0, f(l) =1 and f(a) = (f(a))
for all aE B).

Theorem.3.5.9. A set B is a Boolean algebra if and only if there exist binary 
operations V and /\ on B satisfying the following axioms. 

1. a v b = b V a and a Ab = bA a for a, b E B. 

2.a V (b V c) = (a Vb) V c and a A (b /\ c) =(a/\ b) A c for a, b,c EB. 

3.a A (b v c)=(a Ab) V (aA c) and a V (b A c) = (a Vb) A (a V c) for a, b, c EB. 

4. There exist elements 1 and O such that a V 0 = a and a/\ 1 = a for all a EB. 

5. For every a EB there exists an a € B such that a Va*= 1 and a A a= 0. 

Proof. Let B be a set satisfying (1) - (5) in the theorem. One of the idempotent laws is 
satisfied since 

a =a VO 

= a V(a /A a)

= (a V a) A (a Va*) 

= (a V a) A 1

=aVa 

Observe that 

1 Vb= (1 Vb) A 1 = (1A1) V (b A 1) = 1 Vl = 1 

Consequently, the first of the two absorption laws holds, since 

a V (a/A b) =(a/\ l)V(a/\ b) 

=a/\(lVb) 

=a/\ 1 

= a
· ·jlarly. Since B also satisfies: laws are proven simL·The other idempotent and absorpt10n a t· therefore, B must be a lattice. 

(D-(2), the conditions of Theorem 2.2.11 are"";, .,c B,0v a=a, hence, 0 <a
C . . ' distributive lattice. ·or 'ondition (3) tells us that B is a lis
and 0 is the smallest element in B.
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To show that 1 is the largest element in B . 
equivalent to a A b= a. Since a v 1 =a for sf',',ffrst show that a v b = b is
determine that a , using the absorption laws we can 

a V 1 = (a A 1) V 1 = 1 V (1 A a)= 1 

or a ~ 1 for all a in B. Finall · kn
be a Boolean algebra. y, smce we ow that Bis complemented by (5), B must 

Conversely, suppose that B is a Boolean algeb L 1 least elements in B, respectively. If we a e~d and O be the greatest and 
greatest lower bounds of { a, b}, then B is a B 1 al a A b as least upper and 
Proposition 3 .3 .1, and our hypothesis. 0 °0 ean gebra by Theorem 2.2.16, 

Many other identities hold in Boolean algebras Some of th · d · · the following theorem. 1ese identities are listed in

Theorem.3.5.10. Let B be a Boolean algebra. Then 

1. a V 1 = 1 and a AO= 0 for all a EB. 

2. If a V b = a V c and a A b = a A c for a; b; c EB, then b = c. 

3. If a Vb= 1 and a Ab= 0, then b = a*. 

4. (a*)*= a for all a EB. 

5. 1 * = 0 and 0* = 1.

6. (a Vb)*= a A b and (a Ab) =a Vb* (De Morgan's Laws). 

Definition.3.5.11. (Finite Boolean Algebras). A Boolean algebra is a finite Boolean 
algebra if it contains a finite number of elements as a set. 

Finite Boolean algebras are particularly nice since we can classify them up to 
isomorphism. Let B and C be Boolean algebras. A bijective Boolean homomorphism 
map f: B-·C is an isomorphism of Boolean algebras.

We will show that any finite Boolean algebra is isomorphic to the Boolean algebra 
obtained by taking the power set of some finite set X. We need some lemmas and 
recall the definition of an atom element. 

Recall. Let B be a finite Boolean algebra. An element a E B is an atom of B if a #0
and a A b = a for all b E B. Equivalently, a is an atom of B if there is no nonzero 
b E B distinct from a such that 0 < b <a.

Lemma.3.5.12. Let B be a finite Boolean algebra. If b is a nonzero element of B, 
then there is an atom a in B such that a ~ b. 

Proof. If b is an atom, let a = b. Otherwise, choose an element b;, not equal to 0 or b,
Such that b, < b. We are guaranteed that this is possible since b is not an atom. If bi 1S
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an atom, then we are done. If not, choose b;, not equal to o or bi such that b ~ b 
Again, if b2 is an atom, let a = b2. Continuing this process, we can ~btain a chai~ -.. 1 ·

0...<b, <b, <b) <b.

Since B is a finite Boolean algebra, this chain must be finite. That is, for some k, bk is 
an atom. Let a =b, [

Lemma.3.5.13 Let a and b be atoms in a finite Boolean algebra B such that a * b. 
Then a /\ b = 0. 

Proof. Since a /\ b is the greatest lower bound of a and b, we know that a /\ b ~ a. 
Hence, either a /\ b = a or a /\ b = 0 However, if a /\ b = a, then either a ~ b or a = O. 
In either case we have a contradiction because a and b are both atoms; therefore, a /\ b 
=0. D 

Lemma.3.5.14. Let B be a Boolean algebra and a, b E B. The following statements 
are equivalent. 

1. ab.

2.a Ab = 0. 

3. a* Vb =1. 

Proof. (1) ⇒ (2). If a ~ b, then a V b = b. Therefore, 
a /Ab =a/\ (a V b)

=aA(a Ab)

=(aAa) Ab

= 0Ab

=0. 

(2) ==(3). Ifa/\ b*= 0, then a* Vb=(aAb) = 0* = 1. 

(3) ⇒ (1). If a* Vb= 1, then 

a= aA(a Vb)

=(a/Aa) V (a/Ab)

=0V (a/Ab)

= aAb

Thus, a <b. D
d b and c be elements in B such that 

Lema.3.5.15. Let B be a Boolean als]"""2% and a +e.
b • E B sue t a a =1c. Then there exists an atom a 

here exists an atom a such that Proof. By Lemma 3.5.14, b /\ c** 0. Hen~e, t 
a<bAc. Consequently, a <b and a C.
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Lemma.3.5.16. Let b EB and a,... , an be the atoms of B such that a, < b. Then 

b=arV... V a,,

Furthermore, if a, a1, ... , an are atoms of B such that: 

a ~ b, ai ~ b, and b = a V a1 V ... V an, then 

a =a; for some i = 1, . . . , n. 

Proof. Let b1 =aV ... V an. Since a; < b for each i, we know that bi ~ b. If we can 
show that b <b;, then the lemma is true by antisymmetry. Assume b b,. Then there
exists an atom a such that a ~ b and a ~ b1. Since a is an atom and a<b, we can 
deduce that a = ai for some a;. However, this is impossible since a<b. Therefore,
b<by.

Now suppose that b =a V ... Van. 

If a is an atom less than b, then 

a = a Ab = a A(a I V. . . V an) = ( a J\ a 1) V . . . V ( a /A a,).

But each term is O or a with a /A a; occurring for only one a. Hence, by Lemma 3.5.13 
a = ai for some i. □

Theorem.3.5.17. (Theorem 17.12 in [21]). Let B be a finite Boolean algebra. Then 
there exists a set X such that Bis isomorphic to P(X).

Proof. We will show that B is isomorphic to IP(X) ,where X is the set of atoms of B. 
Let aE B. By Lemma 3.5.16, we can write a uniquely as 

a=a1V...Va, for a1..., a, € X.

Consequently, we can define a map f: B~ flD (X) by 

f(a)=f(a; V...V a,)={a1s..., a,}.

Clearly, f is onto. 

N I - d b= b v v b be elements in B, where each a; andow et a - a1 V ... V an an - 1 · · · m }={ b b } and a = b. 
each bi is an atom. If f(a) = f(b), then { aj,..., an - I,···, m · 
Consequently, f is injective. 

The join of a and b is preserved by f since 

f(a Vb)=f(a; V...V a, Vb; V...V b»)
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=f(a; V...V a, )Uf(by V... V b, )

= f(a) U f(b). 

Similarly, f(a A b) = f(a) n f(b). D
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Chapter Four 

Applications of Complete Lattices 

In this chapter three applications of complete lattices will be di :d E h 
· · t d b • d fi . · ascusse.. ac one contains important anc asic definitions, propositions, and theorems. First one talk

about retracl"® Complete lattices [11], second one talk about fixed point property
of decreasing 1ctions on a complete lattices [23], finally third one talk about
associated pnme ideals of a complete lattices [ 4]. 

4.1. All Retraction Operators On A Complete Lattice Form A Complete Lattice. 

The main topic studied in this section is the following problem raised by H Crapo in 
1982: [1 I] 
Crapo's Problem : If Pis a complete lattice, is Retr(P) a complete lattice? 

An affirmative answer to Crapo's Problem will be given after some needed 
definitions 

Definition 4.1.1. ( Retraction Operator). By a retraction operator on a partially 
ordered set P we mean an order- preserving map of P to itself which is idempotent 
( i.e., f= f ). The set of all retraction operators on P is denoted by Retr(P). 

Definition 4.1.2. ( Pointwise Order). For any two maps f and g of P to itself, define 
f?g if and only if f(x) ~ g(x) for any x E P. This ~ is an order between maps and is 
called pointwise order. 

According to the above definitions ( Retr(P), < ) forms a partially ordered set. 

In the proof of the following theorem Tarski's fixed point theorem on closed intervals 
of a complete lattice L will be used [31]. 

Apparently , any closed interval of a complete lattice L is still a complete lattice
( here, when a subset X of (L, <) is considered as a poset, its order is the mduced 
order). 

:. L :l ·d interval [a, b] into itselfIf an order- preservmg map f on maps a c ose , . 
(f (x) E [a b] for any x € [a b] ) this f can be considered as an order- preserving map

' ' ' · · [ b] · for any fixed pomt y of on [a, b], and then f has a smallest fixed pomt x m a, ,1.€.,
f, x ~ y whenever y € [a, b]. 

· Cr stion will be proved. Now the following theorem which answers rapos que 

Theorem.4.1.3.[10]. (P, <) is a complete lattice if and only if (Retr(P), < ) is a 
complete lattice. 

/1 rde ad ats (P. <) and (Retr(P), <).
Proof. We have to deal with two partially orde®,,-rminology, such as per
To simplify notations, we shall use the same o_;g" since we can distinguish
bods and supremum. This wil not make a," [.) ) co which he subsets
their meaning according to underlying sets (
belong. 
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First, we show the necessity. 

Let O and 1 be the smallest and greatest element f(P ) .
map taking O as the value at every x €P is a 

0
t '. ~ respectively. Obviously, the 

f ( R (p) retraction operator and . th 
element o etr ,9). So, for the completenes f R is e smallest 
show that every nonempty subset F of Retr(P) %&,8etr(P), <) it will suffice tos e supremum.
First, let us define a map :P> P as follows. For x EP 

'
i(x) = sup {f(x): f E F}. 

(1) is an order- preserving map. 

Suppose x and y E P and x <y. Since for every f E F f · d . 
so)s tty)- By ihe definition of i, fy) s i®). Tiis so,,,,],"""® Preserving. hence
f h b {.c-.( ) f . · a 1 y 1s an upper bound 

of the subset {tx): EF}. Then i (x)= sup {f(x): f €F} <i(y).

(2) f $l i for every f EF. 

The conclusion is coming immediately from the definition of 

(3) <] i 2•

Note that for each x €P,

i (x) = sup { f(x): f EF} and ix) = sup { f(i(x): feF}.

For any f E F , by the definition of retraction operators and (2) , 

f(x) =f(x) =f(fx)) < f(ix)) <i(ix)) =ic).
Therefore, ix) is an upper bound of the subset {f(x): f E F}. Hence i(x) ~ i2(x). 

But this map i may not be idempotent, we should adapt it to a retraction operator g 
on P. For any x EP, (3) guarantees that i maps the closed interval [ix), 1] into itself 
because 

ix) < ix) =i(ix)) < iy) < 1
for any y E [i(x), l], according to (1) and (3). By Tarski's fixed point theorem, i has a 
smallest fixed point in [i(x), l] which is defined to be g(x). 

(4) g is an order preserving map . 

Suppose x, y E p and x ~ y . (1) guarantees i(x) < i(y), g(y) is a fixed point of i in
[i®), 1] , hence is a fixed point of i in [i(x), 1]. And g(x) is the smallest fixed pomt of 
i in [i(x), l], hence g(x) ~ g(y). 

(5) g is idempotent, therefore is a retraction operator· 

By the definition of g, for any x € P, g(x) is the smallest fixed point of i in the closed
interval [i (gx)), 1] and g(x) =i(go)) is just a fixed point of i in the closed mterval • 
So, g(cx) = g(x), namely g is idempotent. 

( 6) g is an upper bound of F. 
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By the definition of gig . Then (6) is an immediate consequence of (2).
(7) g is the supremum off. 

Leth E Retr(P) be an upper bound of F. We shall show g <h, i.e. ,g(x) <h(x) for
eachx E P. 

It is easy to see i <!h (h upper bound of F), so i(x) < h(x). For any y E [i(x), h(x)], 
we have by (1), (3), i < hand the definition of retraction operators, that 

i(x) <ix) = (i(x)) ~ i(y) < i(hx)) < h(h(x) =h(x) = h(x). 

This shows that i maps the closed interval [ix), h(x)] into itself. Again , by Tarski's 
fixed point theorem, i has a fixed point z in [ix), h(x)] . This z is a fixed point of i in
[ic), 1] too. Since gx) is the smallest fixed point of i in [i(x), 1], 

g(x) ~ z ~ h(x). 

Hence g <J h. This completes the proof of the necessity. 

In the following we show the sufficiency. 

For each a EP define a map fa : P ~ P as follows. For each x €P, f, (x) = a .
It is always a retraction operator on P. 

By completeness of (Retr(P), <1), we have 

f=sup {f,:a€A}

exists for an arbitrary non empty subset A of P. 

(8) There exist a b E P such that f = f b. 

It is enough to show that f takes the same value at every x €P .Let Y, z €P,c= f(y) 
and d =f(z). For any a EA it follows from f, <af that 

a =fy) < f(y) = C. 

A} Th f<f, since f is the supremumSo, f, <f,, i.e., f, is an upper bound {f,: a E. ·. 1en =fc
of {f,: a €A}. Therefore

) (*) d=f(z) <f(Z)=c

Now, since f,a f for any a EA it follows that 

a=f,(z) < f(z) = d. 
f<f, since f is the supremumSo, f, < fa, i.e., fa is an upper bound {f,: a €A}. Then = Ia

of {f,: a EA}. Therefore

d (**) C = f(y) <fay) =

From () and () we have f(y) = f(z) for any y, z €P.
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(9) b is the supremum of A . 

For any a EA, take x €P. Then by the definition off 

a=f,x) < f(x)=fx) =b.

This shows that b is an upper bound of A . Let c be an upper bound of A. Then f, is an 
upper bound of {fa: a EA}. fb <J fc by (8) and the definition off. Taking x EP we have 

b=fx) f-(x)=c.

Which shows that b is the supremum of A. 

Similarly, to show that the infimum of A exists we may assume (by completeness of 
(Retr(P), <1), that f = inf {fa: a EA} and do the same steps. 

So (P, <) is a complete lattice.[]
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4.2 Fixed Points And Complete Lattices. 

Tarski proved in 1955 that every complete lattice has the fi . 
Later, Davis proved the converse that "every lattice w"th th ~edpomt_ property[3 l ]. 
complete" [13]. For a chain complete ordered set th

1 
• e hixed pomt property is 

Brown fixed point result. As a consequence of hc x,," '?° well known Abian
d d ith 1an- Jrown result every ch · complete or ere set WI a smallest element has th fi d . ' am 

Here a fixed point theorems are given for(order-reversing,,,"°_P®"_Property[].ecreasing ctions.[23]

Recall: 
1. A function from a poset (P,<) into itself is (order- reversing) decreasin if 

whenever x ~ y, then f(y) < f(x). g 

2. A mapping from a poset (P,<) into itself has a fixed point if there exists an x E 
P such that f(x) = x. 

3. The poset (P,<) has the fixed point property if every increasing mapping of 
(P,<) into itself has a fixed point.

Definition.4.2.1. (Chain-complete). Let P be an ordered set. Then Pis called chain 
complete if and only if each non empty subchain C £; P has a supremum and an 
infimum. 

Now, without the poset (P,<) being a lattice, we have the well known Abian/ Brown 
result which says: Let (P,<) be a chain-complete poset. Let f be an increasing 
mapping from (P,<) into itself such that for some a € P, a < f(a). Then the mapping f
has a fixed point"[l]. 

Example.4.2.2. Any complete poset is a chain-complete. 

Exampe.4.2.3. The set of all linearly independent subsets of a vector space V, 
ordered by inclusion is a chain-complete. 

Before proving some theorems, some needed notes will be given. 

Definition.4.2.4. The mapping f from a poset P into itself has a fixed apex u if there 
exists av in P such that f(v) = u and f(u) = v. 

Example.4.2.5. let X = {1, 2}, and let f be a map from (P(X), C) to itself such tha
the image of any subset ofX isits complement, then {1} and {2} are both fixec apex
since f({1}) = {2} andf({2})= {I}. 

. 1 · A Then a subset B Definition.4.2.6. let A be a set and let ~ be a bmary relation on ·
of A is said to be cofinal if it satisfies the following condition: 

· b E B such that a ~ b. For every a € A, there exists some
al b r r there exists natural 

Example.4.2.7. N is cofinal in IR since for every re num e 
number n such that r<n.

60 



Chapter 4:Appli:. p ications of complete lattices 

In the following, the set P will denote a partially ordered set where 

(4)P*=P x {1,-1} 

We define an ordering on P as follows: 

(5) If a < b, define (a,-1) < (b,-l) and (b, 1) ~ (a, 1). 

(6) For all c, d EP, define (c,-1) ~ (d, 1). 

In view of 5 and 6, the set P is clearly a partially ordered set. We will d t 
f th ~ (c ) b * eno e an 

element ot 1e torm (x, 1) y x" where i € {1,-1}. Also, we denote T, as the
projection from P x {1,=1} onto P. 

(7) We say a non empty subset D of (P,<) has the bounded property if the set D is 
bounded and if every non empty subset of n1(D) has a supremum and an infimum in 
(P,<).

Theorem.4.2.8. [23] • The lattice (P,<) is complete is equivalent to the following 
statement every decreasing function from the partially ordered set (P,<) into 
itself has a fixed point where the function f and the partially ordered set (P,<)
have thefollowing properties: there exists a nonempty linearly ordered subset M of 
the lattice (P,<) such thatf(M) C M and

(i) iff(b) <a <b<f(a) holds in M, then there exists an element xCM such
that a <f(x) <b and a <x- b

(ii) if D is a nonempty bounded subset of M with the bounded property, then sup(D) 
exists in M. " (*) 

Proof. Assume that the lattice (P,~) is complete. Let fbe a decreasing mapping of P* 
into itself. Let M be a nonempty linearly ordered subset of P* such that f(M) ~ M. 
Since the set Mis not empty, let a € M.

Without loss of generality, we assume that a <f(a). But then by (1). we have 

(8). f(fa)) =f(a) < f(a).
Let the sets A and B be defined as follows 

(9). A= { x* EM: x* ~ f(x*)} and B = {x €M: f(x*) ~ x*} 
th A d from (8) it follows that In view of our assumption a= f(a), we see at a E ; (l) and by (9) that the 

f(a) € B. Thus, A and B are nonempty. We observe Y 
following can be readily verified 

. * B th f(y*) E A and (10). if x e A, then f(x*) EB, f 2(x*) E A and if y' € , en 
f2 (y*)EB. Thus, f(A) c B and f(B) c A. 

Since M is a linearly ordered set, we have 
(11) . M = AUB. 
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We show that 

(12). x < y* for x € A and every y*EB. 

For ify <x, by 10. we have f(y*) ~y*-< x* ~f( *) H . 
function we must also have f(x) < f(y*). Thus : x ·. owever, smce f is decreasing 
x < y*. ' e arrive at a contradiction and hence 

Since the partially ordered set (P,<) is complete for all 
have nonempty subsets D of A, we 

(13). sup(n(D)) and inf(T,(D) ) exist in the lattice (P,).

Thus in view of (ii) and since A is a bounded subset ofP* h h , we ave t at 

(14). e = sup A exists in the subset M of P*. 

Since Mis a linearly ordered subset of (P,<), we have that either 

e< f(e) or f(e)<e.

If e < f(e), we have by (10). that f(e) E B, and f (e) €A. Since e* is the least 
upper bound of A, we have that fe) ~ e*. Hence, 

f(e) < e*-< f(e*) ~ f(e*). 
By hypothesis of the Theorem, there exists x* EM such that: 

(15). e <x -< f(e*) and e <f(x) < f(e).

From 11. it follows that x* EA or x* E B. If x* E A, then x <e by 14. Which 
contradicts 15. 

Ifx* EB, then f(x*) EA and thus in view of 14,f(x) < e* which also contradicts 15. 

Therefore, e is not < f(e*). The second case f( e) < e is similar to the previous 
case. Thus, the two cases cannot happen. Therefore, e* must be a fixed point as 
desired. 

Conversely, assume that (*) holds and that the lattice (P,<) is not complete. Thus, 
there exists a maximal linearly ordered subset M; of P which is not complete. Thus,
there exists a subset L of M; such that sup L or inf L does not exist in the partially
ordered set (P,=). Without loss of generality, assume that sup L does not existTl
(P,<). Clearly, the set L does not have a maximum. Thus, there exists an infinit
subset L; ofL such that 

(16). L; = {x6<x1 <...<x,<..}

where i E ~ and ~ is a limit ordinal where L; is cofinal in L. 

Let L»={x €Mr:x <xafor some a <B}. ;
Then consider the partially ordered set P* and let M = Lo x { 1,- } ·
D l) f(x, k) = (x,k).Clearly,

efine a mapping f from P* into itself (where k = 1 or - Y ' ' 
the mapping f is decreasing on P* and f(M) CM.
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In order to show (i) is true, assume that 

17.f(b) < a <b <f(a) holds in M

In order for (17) to hold, we must have a* = (a,-1 ), b* = (b, 1) and a=b In .
(16), there exists x a € 1 such that (xa,D)and f(xa,-1)=(x, 2> view of
and (b, 1). Thus part (i) is true. a ,l) are between (a,-1)

In order to show part (ii), let D be a non empty bounded subset of M . 
bounded property. having the

We show that sup D exists in M. If there exists an element of the fc ( l) 
e=inf(1({(x, 1):(x, D)) € D}) exists in(P,<). orm(x, € D, then

Since M; is a maximal linearly ordered subset of (P,<), we have that e € M). Thus, e
€ Lo Then (e, 1) - sup D € M. If no element of the form (x 1) is in D the · . . . , , n smce 
e=sup T(D) exists in the lattice (P,<) and M; is a maximal linearly ordered subset
ofP we have that e Mr.Thus e G Lo.

Thus, clearly the supremum of D in M is ( e,-1 ). In either case we have that sup D 
exists inM. Thus, the mapping f satisfies the hypothesis of () but the mapping f does 
not have a fixed point. □
From the above proof, we have the corollary given below. The following corollary 
gives a sufficient condition for a decreasing function to have a fixed point 

Corollary.4.2.9. Let (P,~) be a nonempty linearly ordered partially ordered set in 
which every nonempty bounded above subset of P has a least upper bound and let f be 
a decreasing function from (P,<) into itself. Assume also that for every element. 

(18). a, b E P such that f(b) < a <b ~ f(a) then a< x <band a< f(x) <b for 
some x € P. 

Then the mapping f has a fixed point. 

Below some remarks concerning the previous corollary. 

Example.4.2.10. Any continuous function on the set of real numbers ~ satisfies Cl 8) 
of the previous Corollary. Thus since the set R has the property that every nonempty
set which is bounded above has' a least upper bound, then every decreasmg contmuous 
function from JR{ into IR has a fixed point. 

. ) . d 1 t d For example let 
Example.4.2.11. The Corollary 4.2.9 is not true if (18) is O], and f(b) = a.
P == { a, b} where a ~ b. Let f : P ➔ P be defin~d ; but f does not have 
The mapping f is decreasing on P and the poset { a, b} is comp e e, 
a fixed point. 

(18) is not sufficient let 
Example.4.2.12. To see in the above corollary that, 5if x e [ 2]-{1+1/n: 
f: [O, 2] -3[0,2] be defined by f(x) = 2 if O ~ x <1; f(x) - l satisfies (18). but 
n € N} and f(l + 1/n) = 1 + 1/(2n), 1 < n. Clearly, the mapp g 
does not have a fixed point.(take a= 0.9, b = 1.9, x = l .S). 
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Example.4.2.13. In (18) of the previous corollary. a < f(x) < b 
' cannot e replaced by 

(19). a <f(x) < b 

For let fmap the closed interval [0, 1] into itself be defined by f(1)=0 and f(x)= 1
if 0 < x < 1. The mapping satisfies 19 and the other hypotheses of the theorem, but
the mapping f does not have a fixed point.( take a= o, b=1, x =0.5)

Theorem.4.2.14. [23] Let (P,<) be a complete partially ordered set. Then ev 
decreasing function from the partially ordered set (P,<) into itself such that for so~~ 
a in P, a < f(a) has a fixed apex or fixed point.

Proof. Assume the partially ordered set (P,<) is complete. Let f be a mapping of the 
lattice (P,<) into itself. Since P is a complete lattice, the poset (P,=) is a complete
lattice. 

We consider the mapping F=f 2
• Then the mapping F is an increasing mapping. By 

Tarski's Fixed Point Result, the mapping F has a fixed point and thus the mapping f 
has a fixed point or a fixed apex.□
From the Abian-Brown Fixed Point result, we have the following corollary: 

Corollary.4.2.15. Let (P,<) be a nonempty linearly ordered partially ordered set in 
which every nonempty bounded subset has a least upper bound and let f be a 
decreasing mapping from P into itself. Assume that there exists an element a EM such 
that a~ f2(a) ~ f(a). Then the mapping fhas a fixed apex or a fixed point. 
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4.3 _Associated Prime Ideals of a Complete Lattice -
This section present an application of a complete distributive latti : . h 

b f . . 1ces, 1t is s own that 
Annihilator of any su set o a complete chain is an associated prime [ 4]. 

Annihilator of a subset of a complete distributive lattice annihilat .
:. 3f 15 illb • ator primes and

associated pnmes o a .attice wi e defined and illustrative examples will b . .
• :: h egiveninthe beginning of this section.

Definition.4.3.1. Let L be a complete lattice, which is also distributive. Let Ab 
non empty subset of L. Annihilator of A is denoted by Ann(A), and is defined as: e a 

Ann(A) = {J EL, such that a A J = 0, for all a EA}. 

Example.4.3.2. Let L = {1, 3, 9, 27}. L is a complete, distributive lattice with
respect to divisibility. Let A= {3, 9}. Then Ann(A) = { 1}. 
Let K = {I, 2, 3, 4, 6, 8, 12, 24}. K is a complete, distributive lattice with respect to 
divisibility, and let B = {3}. Then Ann(B) = {l, 2, 4, 8}. 

Example.4.3.3. Let X = { a, b, c}. Now IP (X), the power set of X is a complete 
distributive lattice with respect to set inclusion . 
Let A = { {a}, { a, b} } . 
Then Ann(A) = {0 ,{c}} since {c} n {a} = and {c} n {a,b} = which is the zero 
element in IP (X) with respect to inclusion. 

Proposition.4.3.4. Let L be a complete lattice, which is also distributive. Let A ~ B 
be two non empty subsets of L. Then Ann(B) => Ann(A). 

Proof. Let J E Ann(B). Then b A J = 0, for all b E B. Now let a E A. Then a E B, and 
therefore a A J = O. So J E Ann(A). Hence Ann(B) => Ann(A).D 

Definition.4.3.5. Let L be a complete lattice, which is also distributive. A subset
B C L is said to be faithful if Ann(B) = {0}.

Example 4 3 6 Let L = {1 2 3 6. 10. 15. 30} with respect to divisibility. · · · · , , ' ' ' ' hi h · the zero Then B = {1, 3, 6} is a faithful subset of L since Ann(B) = {1}W",,nl, as
element with respect to divisibility here. But C = { 1, 3} is not ai ' 
Ann(C) = {1, 2, 10}. 

P . . . • 1 a· tributive. Let A be a roposition.4.3.7. Let L be a complete lattice, which is also 1IS
non empty subset ofL. Then Ann(A) is an ideal ofL. 

Proof. Ann(A) ± , as 0 E Ann(A). 

Now for any r, s E Ann(A) 
r/A a = 0 and s A a = 0 for all a E A. 

65



Chapter 4:Applications of complete lattices 

Now for all a € A,
(rVs) Aa= (r /\ a) V (s A a)= 0 VO= O. 

Therefore,
(r V s) E Ann(A). 

Now let r E Ann(A), and J E L. We have 
r A a = 0 for all a E A, 

and
(r A J) A a=(J /\ r) A a= J /\ (r /\ a) = J /\ 0 = O. 

Therefore, 
(r A J) E Ann(A). 

Hence Ann(A) is an ideal of L.L]

Definition.4.3.8. Let L be a complete lattice, which is also distributive. We say that
Lis a fully faithful lattice if Ann(A) = 0, where A is any non empty subset of L.

Example.4.3.9. In Example (4.3.2) above, Lis fully faithful. 

Proposition.4.3.10. Every chain, which is also complete, is a fully faithful lattice. 

Proof. Let L be a chain and { 0} # A be a non empty subset of L. Let x E Ann(A). 
Then x A a = 0 for all a E A. 
Now L is a chain, therefore x ~ a for at least one O * a E A, or a ~ x for all a E A. 

If a ~ x for all a E A, then 
X /A a=a,

which implies that a = O for all a E A, a contradiction. So x ~ a for at least one 
0± a E A, and therefore, 

x I\ a= x. Thus x = 0. 

Therefore Ann(A) = 0. Hence Lis a fully faithful lattice.□
Note: Recall that an ideal p of a lattice L is called a prime ideal if P ± L, and if 

for any a, b E L with ( a /\ b) €P, we have a E A or b E A. 

Definition.4.3.11. Let L be a lattice. An ideal P is said to be a minimal prime ideal 
if Pis a prime ideal and does not contain properly a prime ideal. 

Example.4.3.12. Consider L = {1,2, 5, 10}.L is a lattice with respect to divisibility.
P= {2} is a minimal prime ideal. S = {1, 2} is a prime ideal, but is not a minimal
Pnme ideal, as {2} c {1, 2}, and {2} is a prime ideal. 

Definition.4.3.13. Let L be a complete distributive lattice. An ideal A of L is called
an annihilator prime if A is a prime ideal and is also annihilator of some non empty
subset B± {0} of L. 
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Example.4.3.14. Let L={1, 2, 5, 10}.L is complete distributive lattic ·th
o avisibility, A= {1, 2} is a prime ideal. Now let M={s®. 4[;"h respect
Therefore A is an annihilator prime. · en = Ann(M).

Let B ={1}, and C = {2, 5}. Then Ann(C) = B. Now B is not : id
t:t. B d 5¢ B . a prime i eal as 215 == I E P, but 2 ~ an ~ . Therefore B is not an annihilator prime. "

Example.4.3.15. In Example (4.3.3) above, Ann(A) is not a prime as 
{b, c} f{a, c} € Ann(A) ={{c}},

but 

and 
{b, c} ¢ Ann(A)

{a, c} ¢ Ann(A).

Definition.4.3.16. Let L be a complete distributive lattice. An ideal A of Lis called 
an associated prime if A is a prime ideal and is annihilator of some non empty subset 
{0}#B of L. Furthermore, A is also the annihilator of any non empty subset C ofB. 

It is clear that an associated prime is an annihilator prime, but every annihilator 
prime need not be an associated prime. 

Example.4.3.17. Let L = {I, 3, 5, 7, 35} with respect to divisibility. 
Let B = {3, 7}, and C = {7}. Then Ann(B) = {I, 5}, and Ann(C) = {I, 3, 5}. 
Now {I, 5} is a prime ideal of L, so it is an annihilator prime, but not an associated 
prime. 

Example.4.3.18. Let L = {I, 2, 4, 5, 10, 20}. With respect to divisibility, L is a 
complete distributive lattice. Let A= {I, 5}, and B = {2, 4}. Then A= Ann(B), and 
A = Ann(C) for any subset C of B. More over A is a prime ideal. Therefore A is an 
associated prime ideal. 

Theorem.4.3.19. In a chain, which is also complete, annihilator of any nonzero 
subset is an associated prime ideal. 

Proof. Let L be a chain, which is also complete. Let {0}± B be a non empty subset of
L.
Let Ann(B) = A. Now A is an ideal by Proposition (4.3.7). 

We will show that A is a prime ideal. 

L . h . th efore b ~ a or a ~ b. eta, b € L be such that (a Ab) € A.Now Lis a chain, 1ere

If a ~ b, then a A b = a, and so a E A. 
If b ~ a, then a A b = b, and so b E A. 

Therefore A is a prime ideal. 
f B Then by Proposition (4.3.4),

Let {0} C c B be a non empty subset O ·

Ann(B) C Ann(C).

We will show that A= Ann(C). 

-
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Suppose not, and 0 ± b E Ann(C), b ~ A. 

Now b A c =0, for all c € C. Now L is a chain, therefore b <c for at least one c € C,
or c ~ b for all c E C. 

Ifb ~ c for at least one c EC. Then b = bAc =0, a contradiction. 
If c ~ b for all c EC, then c = b A c = 0. Then C = {0}, again a contradiction. 

So our supposition must be wrong. Therefore A = Ann(C), and hence A is an 
associated prime ideal of L.□
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