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Abstract 

This thesis introduces the concepts of solvable and nilpotent groups 

and presents important definitions like supersolvable groups, polycyclic 

groups, Carter subgroups, metabelian groups ,hypercentral groups, HM= 
groups, and Chernicov groups. This thesis includes applications in Galois 

theory, and the solvability by radicals. Also, this research presents 

examples, propositions, and applications related to solvable and nilpotent 

groups. 

Finally, this thesis presents three applications of solvable and 

nilpotent groups, it discusses the solvability of Carter subgroups in the 

groups in which every element is conjugate to its inverse, proofs of 

interesting properties of metabelian groups, and this thesis study groups 

with many hypercentral subgroups. 
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Introduction 

Algebra comes from Arabic word (al-jabr, -el); it means a branch of 
mathematics concerning the study of structure, relation, and quantity. Together with 

geometry, analysis, and number theory, algebra is one of the main branches of 
mathematics. In addition to working directly with numbers, algebra covers working with 

symbols, variables, and set elements. Addition and multiplication are viewed as general 
operations, and their precise definitions lead to structures such as groups, rings and 

fields. 

This thesis consists of four chapters: 

In chapter 1 we present a short summary of notions and notations for groups that 

are used in this research. A discussion of mathematical definitions is also included. 

In chapter 2 we present a history of solvable groups which was introduced by 
Galois. We include important definitions, propositions, properties, and examples that 
help every one in studying the concept of solvable groups. Also, we present important 

definitions like (supersolvable & polycyclic groups) that are related to solvability of 

groups. 

In chapter 3 we define nilpotent groups. In addition, this chapter includes great 
theorems and their proofs about nilpotent groups, finally we study a great relation 

between solvable and nilpotent groups. 

In chapter 4 we study very important theorems and their proofs from different 

papers for solvable and nilpotent groups .The first one is about the solvability of Carter 
subgroups in the groups in which every element is conjugate to its inverse, the second is 

about interesting properties of metabelian groups, and the third is about groups with 

many hypercentral subgroups. 



Chapter (1) 

In the beginning, before Galois, a group meant a collection of permutations, and 

group multiplication was the composition of permutations. The abstract notion of group, 

as a set in its own right, did not exist .Galois first identified the abstract notion of groups. 

Although Galois did not clarify his abstractions, subsequent work by others led to 

notions (such as, solvable group, normal subgroups) that would have been difficult to 

develop by viewing a group as a collection of permutations. 

The term group dates back to the early nineteenth century. It comes from the earlier 

phrase group of transformations which was how groups were perceived. 

This abstraction of the group concept proved to be very helpful when there was a general 

switch from permutation representations to linear representations (where a linear 

representation ofG is anyhomomorphisim from G into GL (V)). 

1.1Groups 

Definition 1.1.1 (Group) 

A group is a nonempty set G with a binary operation * (termed the multiplication or 

product) such that the following hold: 

• For any a, b, c in G, a* (b * c) =(a* b) * c. This property is termed associativity. 

• There exists an element e in G such that a * e = e * a = a for all a in G. Such an e is 

termed an identity element for G. 

• For any a in G, there is an element b such that a* b = b *a= e. Such a (b) is termed 

an inverse of a and is denoted as a - 1• 

From the above definition, we can prove that there is only one identity element, and 

that the inverse is unique. 

Example1.1.2 
Number systems provide several examples of groups. (Z, +),Q, +), (CR,+), and (C, +) all 
are groups. But (N, +) is not a group, and Z, Q ,R, Care not groups under multiplication, 
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since their element O has no inverse. However, nonzero rational numbers, nonzero real 

numbers, nonzero complex numbers, all constitute groups under multiplication; so do 

positive rational numbers, positive real numbers, and complex numbers with absolute 

value 1. The set of all nXn matrices (with entries in R, or in any given field) is a group 

under addition, but not under multiplication; however, invertible n x n matrices 

constitute a group under multiplication. So do, more generally, invertible linear 

transformations of a vector space into itself. 

Now let us give a precise definition of the term abelian group that comes from Niels 

Henrick Abel, a mathematician who worked with groups even before the formal theory 

[ an axiomatic system] was laid down, in order to prove unsolvability of the quintic [ a 

polynomial of degree 5]. 

Definition 1.1.3 (Abelian group) 

An Abelian group is a group where any two elements commute. In other words, a group 

G is said to be Abelian if for any elements a and b in G, ab = ba (here ab denotes the 

product of a and b in G). Also we can easily show that the following are true. 

• A group is abelian if its center is the whole group. 

An element of a group is termed central if it commutes with every element of the group. 

Defmition 1.1.4 ( cyclic group) 

A group G is cyclic if G can be generated by a single element, i.e., there is some 

element ge G such that 

G= {g"\n is an integer} 

(where as usual the operation is multiplication). 

In additive notation G is cyclic if G= {ng]n is an integer} 

In both cases we shall write G=<g>, and say G generated by g. 
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A cyclic group may have more than one generator. Also by the laws for exponents 

cyclic groups are abelian group. 

Proposition 1.1.5 
Every group of prime order is cyclic. 

Definition 1.1.6 (Subgroup) 

Given a group G under a binary operation *, we say that some subset A of G is a 

subgroup of G if A also forms a group under the operation *. This is usually represented 
notationally by A <G, read as (A is a subgroup of G). 

Also, the intersection of subgroups A and B is again a subgroup .But the union of 
subgroups A and B is a subgroup if and only if either A or B contains the other. 

Definition 1.1. 7 (proper Subgroup) 

A proper subgroup of a group G is a subgroup A which is a proper subset of G (i.e. 

A # G). The trivial subgroup of any group is the subgroup { e} consisting of just the 

identity element. If A is a subgroup of G, then G is sometimes called an overgroup of A. 

Example 1.1.8 
(Z,+) is a subgroup of (Q, +); (Q, +) is a subgroup of (R, +) ; (R, +) is a subgroup of 

(C, +). On the other hand, (N, +) is not a subgroup of (Z, +) (even though N is 

closed under addition). 

Definition 1.1.9 (normal subgroup) 

A subgroup N of a group G is called a normal subgroup if for each element, n in N 

and each g in G, the element gng' is still in N. We write 

N <1G <VneN,g eG,gng' e N 
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Definition 1.1.10 (quotient group) 

Let N be a normal subgroup of a group G. We define the set GIN to be the set of all 

left cosets of N in G, i.e., GIN = { aN: a in G}. The group operation on GIN is the 

product of cosets where, for each aN and bN in GIN, the product of aN and bN is 

(aN) {bN)= (ab)N. 

The normality of N is used in this equation. Because of the normality of N, each 

left coset is itself a right coset, and so GIN could be defined as the set of right cosets of 

NinG. 

Note: Index ofN in G denoted by 

G:w]-Gp\-] rose 

Definition 1.1.11 (simple group) 

A simple group is a group which is not the trivial group and whose only normal 

subgroups are the trivial group and the group itself. 

Example 1.1.12 

The cyclic group G = Z/3Z of congruence classes modulo 3 is simple. If H is a 

subgroup of this group, its order (the number of elements) must be a divisor of the order 

of G which is 3. Since 3 is prime, its only divisors are I and 3, so either His G, or His 

the trivial group. On the other hand, the group G = Z/12Z is not simple. Because the set 

H of congruence classes of 0, 4, and 8 modulo 12 is a subgroup of order 3, and it is a 

normal subgroup since any subgroup of an abelian group is normal. Similarly, the 

additive group Z of integers is not simple; the set of even integers is a non-trivial proper 

normal subgroup. 
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Definition 1.1.13 (The commutator of two elements) 

The commutator of two elements, x and y, of a group G , is the element 

[x, y]=xy x'y'. 

Definition 1.1.14 (commutator subgroup) 

The commutator subgroup or derived subgroup of a group is the subgroup generated by 

all its commutators, or elements of the form [x,y]=x yx 'y, 

Now in abstract algebra , the commutator subgroup is important because it is the 

smallest normal subgroup such that the quotient group of the original group by this 

subgroup is abelian .Also a group G is an abelian group if and only if the derived group 

is trivial: [G,G] = {e}. Note that one must consider the subgroup generated by the set of 

commutators because in general the set of commutators is not closed under the group 

operation. Commutators are used to define nilpotent and solvable groups. The 

commutator subgroup [G,G] (also called the derived subgroup), is denoted by G'or G. 

Example1.1.15 

• The commutator subgroup of the Alternating group A4 is the Klien four group 
(which is isomorphic to the direct product Zi x Zi). 

• The commutator subgroup of the symmetric group Sn is the alternating group An. 

Definition 1.1.16(commutator series) 
The commutator series is the smallest descending sequence of subgroups of a group 

G with abelian factors. 

G =G® G' >G" •. 
For example: S 

3 
-::J A3 -=:J {e} is a commutator series of a group G. 
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Definition 1.1.17 ( Homomorphisms) 

Homomorphisms of groups are mappings that preserve products. They allow 

different groups to relate to each other. A homomorphism of a group A into a group B 

(written multiplicatively) is a mapping h of A into B such that: 

6 (x y)= 6 (x) h (y) 

for all x, y e A. If A is written additively, then h (x y) becomes h ( x + y ); if B is 

written additively, then © (x) © (y) becomes h (x)+ h (y). 

Example 1.1.18 

Given an element a of a group G, the power map n ➔ an is a homomorphism of Z into 

G. The natural alogarithm function is a homomorphism of the multiplicative group of all 

positive reals into (R, +). If His a subgroup of a group G, then the inclusion mapping 

l : H ➔ G, defined by l (x) = x for all x e H, is the inclusion homomorphism of H 

into G. 

Definition 1.1.19 (Isomorphism): 

Given two groups (G, *) and (H, 0 ), a group isomorphism from (G, *) to (H, 0) is 

a bijective group homomorphisim from G to H. 

This means that a group isomorphism is a bijective function f : G>H such that for 
all u and v in G we have: 

f (uv)=f ()Of (v). 

The two groups ( G, *) and (H, 0 ) are isomorphic if an isomorphism exists between 

them. 

In such a case we write: G = H 
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Example 1.1.20 
The group of all real numbers with addition, (R ,+), is isomorphic to the group of all 

positive real numbers with multiplication (R, ·): 

By f(x)=e. 

Definition 1.1.21 (Automorphism ) 

An isomorphism from a group (G,*) to itself is called an automorphism of this group. 

Thus it is a bijection f : G ➔ G such that: 

f (u) * f (v ) = f (u v) . 

An automorphism always maps the identity to itself The composition of two 

automorphisms is again an automorphism, and with this operation the set of all 

automorphisms of a group G, denoted by Aut(G), forms itself a group, the automorphism 

group ofG. 

Definition 1.1.22 ( characteristic subgroup) 

A characteristic subgroup of a group G is a subgroup H that is invariant under each 

automorphism p of G. That is, 

po(H),=H 

for every automorphism po of G (where cp(H) denotes the image ofH under cp). 

The statement H is a characteristic subgroup of G" is written 

HcharG 

Notes: 

1-Every subgroup of a cyclic group is characteristic subgroup. 
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2-Every characteristic subgroup of G is also a normal subgroup of G. 

Since if G is a group, and g is a fixed element of G, then the conjugation map: 

x » gxg 
is an automorphism of G (known as an inner automorphism). A subgroup of G that is 

invariant under all inner automorphisms is called normal. Since a characteristic subgroup 

is invariant under all automorphisms, every characteristic subgroup is normal. 

Example 1.1.23 

1- Every group is char as a subgroup of itself. 
2- {e}char G. Since q, ( {e}) = {e}. 

Definition 1.1.24 (Fully characteristic subgroup) 

A subgroup H of a group G is termed fully invariant or fully characteristic, if for 

any homomorphisim of G we have: 

pH)<H 

Every group G has itself and the trivial subgroup as two of its fully characteristic 

subgroups. Also, the commutator subgroup of a group is always a fully characteristic 

subgroup. 

Definition 1.1.25 (normal series) 
A normal series of a group G is a finite sequence (Go,...,G%) of normal subgroups 

of G such that 

{e}=G <tG;<t ...4 G%=G 

For example: {e} < 8Z ~ 4Z ~ Z is a normal series of Z under addition. 
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Definition 1.1.26 (subnormal series) 

A subnormal series is a subgroup series where each member of the series is normal 

in the next one containing it. 

We have two kinds of subnormal series: 

(1) A descending series: 
G =A,24,2..24, 

of subgroups of a group G is termed a subnormal series if Ai+ 1 is a normal subgroup of 

A; for 0 <i< r-I 

(2) An ascending series: 

of subgroups of a group G is termed a subnormal series if each Ai is a normal subgroup 

of A;+ 1. 

Every group G has a trivial normal series {e} <1 G , where { e} is the trivial subgroup 

of G. While Sn has a nontrivial normal series {e} <I An <IS n . 

Note that the subnormal series must have its largest member equal to the whole 

group. Also for abelian groups the notations of subnormal and normal series concide, 

since every subgroup is normal. A normal series is always subnormal, but the converse 

need not be true. For example: 

{o,} <{p,,4} <{%s9£s4s4} <D, is a subnormal series of D, (the group of 

symmetries of the square). But {Po} ~ {Po, A} ~ {Po, P2, J1i, µ2} ~ D, is not normal in 

D4 since {p,,,} is not normal in D,. 

Definition 1.1.27 (composition series) 

A composition series of a group G is a subnormal series , 
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Such that each factor H,,/ H; is simple, for all i, such that 0<i<n-l. 

For example: {e} <14, <1S, for n>5 is a composition series of S,, since 4,/{e} is 

isomorophic to4,, which is simple forn > 5, and S,/A, is isomorophic to Z; which is 

simple. 

Definition 1.1.28 (derived series) 

The derived series of a group G is a sequence of subgroups such that: 

Where 

G =G 

G=[G®,c"\,n eN 

The groups G®,G,... are called the second derived subgroup, third derived subgroup, 

and so on. 

For a finite group, the derived series terminates in a perfect group [a group G is perfect 

if G = G '], which may or may not be trivial. [ 19] 

Definition 1.1.29 ( characteristic series) 

A subgroup series of a group is termed a characteristic series if all members of the 

series are characteristic subgroups of the whole group. 

For example: {e} <J 2Z <J Z is a characteristic series, since 2Z char Z. 

Definition 1.1.30 (fully characteristic series) 

A subgroup series of a group is termed a fully characteristic series if all members of 

the series are fully characteristic subgroups of the whole group. 
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Definition 1.1.31(center of a group) 
The center of a group GisZ(G)={g e G, gxg=x forall x e G). 

Equivalently, Z(G) = { ge G, gx = xg for all x e G}. 
Note: IfG is abelian, then Z(G) = G. 

For example, Z(Ss) ={,} .Z(D) ={%» }s and ZZs)=Z%. 

Proposition 1.1.32 
Z(G) and all its subgroups are normal subgroups ofG. 

Definition 1.1.33 (The centralizer in G) 

The centralizer in G of an element x of a group G is Cc(x)= { g e G , gxg'= x } . 
Equivalently, Cc(x) = { g e G , gx = xg } . 

Definition 1.1.34 (The normalizer of subgroup S in G) 

The normalizer of subgroup S in a group G is defined as No (S) = {x e G: xS = Sx}. 

Note: No (S) can easily be seen to be a subgroup of G. 

A subgroup H of a group G is called a self-normalizing subgroup of G if Nc(H) = H. 

Definition 1.1.35 (Central normal series). 
A normal series {e}=C» <1C;<t ...<4 C,=Gis central, when C; <1 G and 

Ci/C; c Z(G/C;), for all0 < i <m. 
Central normal series are also called just central series. A central normal series has 

abelian factors, but a normal series with abelian factors need not be central. 

Definition 1.1.36 (finite p- group) 

A finite group is a p-group, where p is a prime number, if and only if its order (the 

number of its elements) is a power of p. 

Also, given a prime number p, a p-group (also p-primary group) is a group such that for 
each element g of the group there exists a nonnegative integer n such that g to the power 

p" is equal to the identity element. 
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Definition 1.1.37 (sylow p- subgroup) 

A Sylow p-subgroup (sometimes p-Sylow subgroup) of a group G is a maximal p 
subgroup of G, i.e., a subgroup which is a p-group, and which is not a proper subgroup 

of any other p-subgroup of G. The set of all Sylow p-subgroups for a given prime p is 

sometimes written Syl,(G). 

The following theorems were first proposed and proven by Ludwig Sylow in 1872. 

Theorem 1.1.38 (Sylow's first theorem) 

For any prime factor p with multiplicity n of the order of a finite group G, there 

exists a Sylow p-subgroup of G, of order p". 

The following weaker version of theorem 1.1.38 was first proved by Cauchy. 

Corollary: Given a finite group G and a prime number p dividing the order of G, then 

there exists an element of order p in G. 

Theorem 1.1.39 (Sylow's second theorem) 

Given a finite group G and a prime number p, all Sylow p-subgroups of G are 

conjugate (and therefore isomorphic) to each other, i.e. if H and K are Sylow p 
subgroups of G, then there exists an element g in G with g 'Hg=K. 

Theorem 1.1.40 (Sylow's third theorem) 

Let p be a prime factor with multiplicity n of the order of a finite group G, so that 

the order of G can be written as p" · m, where n>0 and p does not divide m. Let n, be 
the number of Sylow p-subgroups of G. Then the following hold: 

• n, divides m, which is the index of the Sylow p-subgroup in G. 

• n,=lmodp. 
• n,=[G: NG(P)], where P is any Sylow p-subgroup of G and N, (P) denotes the 

normalizer of Pin G. 
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Definition 1.1.41 (Direct Products) 
The direct product of two groups G; and G; is their Cartesian product G; x G;, also 

denoted by: 
G1 EB G2, together with the componentwise operation : in the multiplicative notation, 
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1.2 Galois Group 

First of all we have to define some notions and notations that are helpful in this section. 

Defmition 1.2.1 (field) 

A field is a set together with two operations, usually called addition and 

multiplication, and denoted by + and ·, respectively, such that the following axioms 

hold: 

Closure ofF under addition and multiplication. 

For all a, b in F, both a + b and a · b are in F. 

Associativity of addition and multiplication. 

For all a, b, and c in F, the following equalities hold: a+ (b + c) =(a+ b) + c and 

a · (b · c) = ( a · b) · c. 
Commutativity of addition and multiplication: 

For all a and bin F, the following equalities hold: a+ b = b + a and a· b = b · a. 

Additive and multiplicative identity : 

There exists an element of F, called the additive identity element, denoted by 0, 

such that for all a in F, a + 0 = a. Likewise, there is an element, called the 

multiplicative identity element, denoted by 1, such that for all a in F, a · 1 = a. 

For technical reasons, the additive identity and the multiplicative identity are 

required to be distinct. 
Additive and multiplicative inverses: 

For every a in F, there exists an element -a in F, such that a+(=a)=0. Similarly, 

for any a in F other than 0, there exists an element a ' in F, such that 
a·a'=l.(The elements a+(-b) and a·b' are also denoted a-b and a /b, 

respectively.) 

Distributivity of multiplication over addition: 

For all a, b and c in F, the following equality holds: a·(b +c)=(a·b) + (a·c). 

Definition 1.2.2 ( extension field) 

A field Eis said to be an extension field (or field extension, or extension) of a field 

F, (written as EIF and read E over F), if Fis a subfield of E. 
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For example, the complex numbers are an extension field of the real numbers, and 

the real numbers are an extension field of the rational numbers. 

Definition 1.2.3 (Algebric field) 

A field extension L /K is called algebraic if every element of Lis algebraic over K, 

i.e. if every element of L is a root of some non-zero polynomial with coefficients in K. 

Field extensions which are not algebraic, i.e. which contain transcendental elements, are 

called transcendental. 

For example /2 is algebraic over Q, since it is the root of the polynomial g(x) =x- 2 
whose coefficients are rational. Also is transcendental over Q but algebraic over the 
field of real numbers R: it is the root of g(x) = x - m, whose coefficients (1 and -m) are 
both real, but not of any polynomial with only rational coefficients. 

Also, the field extension R/Q , that is the field of real numbers as an extension of 

the field of rational numbers, is transcendental, while the field extensions CIR and 

Q( ✓2 )/Q are algebraic, where C is the field of complex numbers and 

Q6/2)={a+t /2 :4,te Q}. 

Definition 1.2.4 (Splitting field) 

The extension field E of a field F is called a splitting field for the polynomial 
f )eF [x ] if f (x ) factors completely into linear factors in E [e] and f (x ) does not 
factor completely into linear factors over any proper subfield of E containing F . 

For example, the field extension Q(/3i)/ Q is the splitting field for x+3 since it is 
the smallest field containing its roots, /3i and -\/3i .Note that it is also the splitting 
field for x+1.Where Q(6/3i) = {a+b /3i,a,b e Q} 

Definition 1.2.5(Normal field) 

An algebraic field extension E IF is said to be normal if E is the splitting field of a 

family of polynomials in F [X]. 
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For example, Q(/2) is a normal extension of Q, since it is the splitting field of 
-2. On the other hand, Q({/2) is not a normal extension of Q since the polynomial 
-2 has one root in it (namely, ~ ), but not all of them (it does not have the non-real 
cubic roots of 2). 

Definition 1.2.6(separable field) 

An algebraic field extension L/K is separable if it can be generated by adjoining to 

Ka set each of whose elements is a root of a separable polynomial over K. (where a 
polynomial f(x) is seperable over Kif and only if all its roots are distinct, for example 

the polynomial x- 2 is seperable over Q ). 

The condition of separability is central in Galois theory. A perfect field is one for 

which all algebraic extensions are separable. There exists a simple criterion for 

perfectness: a field F is perfect if F has characteristic 0, so inparticular the fields R, Q 

and C are perfect. 

In particular, all fields of characteristic O and all finite fields are perfect [13]. This 

means that the separability condition can be assumed in many contexts. 

Now, we exhibit an example of a field that is not a perfect field. 

Let F= F,(t), where F, is the field with p elements and t transcendental over F,. The 
splitting field E of the irreducible polynomial [f (x) = x Pt] is not separable over F. 
Indeed, if B is an element of E such that B° = t, we have: 

this shows that f has one root of multiplicity p. 

Definition 1.2. 7 ( Galois extension) 

An algebraic field extension E IF is Galois if it is normal and separable. 

Equivalently, the extension E IF is Galois if and only if it is algebraic, and the field fixed 

by the automorphism group Aut (E /F) is precisely the base field F. 
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Definition 1.2.8 (Galois Group) 

Suppose that E is an extension of the field F. Consider the set of all automorphisms 

of EIF (that is isomorphisms a from E to itself such that a(x) = x for every x in F). This 

set of automorphisms with the operation of function composition forms a group, 
sometimes denoted by Aut(EIF). 

If E/IF is a Galois extension, then Aut(E/F) is called the Galois group of (the 
extension) E over F, and is usually denoted by Gal(E/F). 

Example 1.2.9 

Gal(F/ F) is the trivial group that has a single element, namely the identity 

automorphism, since the identity automorophisim is the only automorphisim that fix F. 

Example 1.2.10 

Gal( Q(/i) /Q) has two elements, the identity automorphism and the automorphism 

which exchanges /2 and -\/2. 

Galois theory 1.2.11 [11, 13] 

In mathematics, more specifically in abstract algebra, Galois theory, named after 

Evariste Galois, provides a connection between field theory and group theory. Using 

Galois theory, certain problems in field theory can be reduced to group theory, which is 

in some sense simpler and better understood. 

Originally Galois used permutation groups to describe how the various roots of a 

given polynomial equation are related to each other. The modern approach to Galois 

theory, developed by Richard Dedekind, Leopold Kronecker and Emil Artin, among 

others, involves studying automorphisms of field extensions. The birth of Galois theory 

was originally motivated by the following question, whose answer is known as the Abel 

Ruffini theorem. 

"Why is there no formula for the roots of a fifth (or higher) degree polynomial 

equation in terms of the coefficients of the polynomial, using only the usual 
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Definition 1.2.8 (Galois Group) 

Suppose that E is an extension of the field F. Consider the set of all automorphisms 
of EIF (that is isomorphisms a from E to itself such that a(x) = x for every x in F). This 
set of automorphisms with the operation of function composition forms a group, 
sometimes denoted by Aut(E/F), 

If EIF is a Galois extension, then Aut(E/F) is called the Galois group of (the 
extension) E over F, and is usually denoted by Gal(E/F). 

Example 1.2.9 

Gal(F/F) is the trivial group that has a single element, namely the identity 
automorphism, since the identity automorophisim is the only automorphisim that fix F. 

Example 1.2.10 

Gal( Q( ..j2) /Q) has two elements, the identity automorphism and the automorphism 

which exchanges /2 and -,/2. 

Galois theory 1.2.11 [11, 13] 

In mathematics, more specifically in abstract algebra, Galois theory, named after 

Evariste Galois, provides a connection between field theory and group theory. Using 
Galois theory, certain problems in field theory can be reduced to group theory, which is 

in some sense simpler and better understood. 

Originally Galois used permutation groups to describe how the various roots of a 

given polynomial equation are related to each other. The modem approach to Galois 
theory, developed by Richard Dedekind, Leopold Kronecker and Emil Artin, among 

others, involves studying automorphisms of field extensions. The birth of Galois theory 
was originally motivated by the following question, whose answer is known as the Abel 

Ruffini theorem. 

"Why is there no formula for the roots of a fifth (or higher) degree polynomial 

equation in terms of the coefficients of the polynomial, using only the usual 
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algebraic operations (addition, subtraction, multiplication, division) and 

application of radicals (square roots, cube roots, etc)?" [41] 

Galois theory not only provides a beautiful answer to this question, it also explains in 

details why it is possible to solve equations of degree four or lower in the above manner, 

and why their solutions take the form that they do. Further, it gives a conceptually clear, 

and often practical, means of telling when some particular equation of higher degree can 

be solved in that manner. 

While Ruffini and Abel established that the general quintic could not be solved, some 

particular quintics can be solved, such as (x - 1), and the precise criterion by which a 
given quintic or higher polynomial could be determined to be solvable or not was given 

by Evariste Galois, who showed that whether a polynomial was solvable or not was 

equivalent to whether or not the permutation group of its roots - in modern terms, its 

Galois group- had a certain structure - in modern terms, whether or not it was a 

solvable group. This group was always solvable for polynomials of degree four or less, 

but not always so for polynomials of degree five and greater, which explains why there 

is no general solution in higher degree.[ 40] 
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Chapter Two 

Solvable Groups 

Introduction 
This term of solvable group was introduced by Galois. The notion of solvable 

group arose from the attempt to characterize the Galois groups of those field extensions 

which could be solved by radicals (which essentially means there is an algebric formula 

for the roots). [see page 35]. 

Also, in the history of mathematics, the origins of group theory lie in the search for 

a proof of the general unsolvability of quintic and higher equations, finally realized by 

Galois theory. The concept of solvable (or soluble) groups arose to describe a property 

shared by the automorphism groups of those polynomials whose roots can be expressed 

using only radicals (square roots, cube roots, etc., and their sums and products). 

2.1 solvable groups 

A solvable group is a group with a normal series whose factors are abelian. So, 

solvable groups are a large class of groups with remarkable properties. 

Definition 2.1.1 (solvable group) 

A group G is called solvable if it has a normal series whose factor groups are all 

abelian, that is, if there are subgroups 

Such that G;is normal in G, and G; /G;-+ is an abelian group, for j =1,2,...,k .And {e} 

is the trivial subgroup. [ 1 O] 

Proposition 2.1.2 
G' is a normal subgroup of G; in fact, G' is the smallest normal subgroup of G such 

that G/ G' is abelian. 

20 



Proof: 
The inverse of a commutator xyx'y' is a commutator, and a conjugate of a 

commutator is again a commutator: 

a xyx'y'a'=axa'aya"(axa')'(aya')'. 
Hence every x e G' is a product of commutators x = c1 c2 ... Cn , and then 

axa'=ac,a'ac»a...a, a'e G'for all a e G. 
Thus G '<JG . 

Next, xyx' ye G' for all x, ye G; hence G'xy= G'yx and G/G' is abelian. 

Conversely, if N <tG and G/N is abelian, then N xy=N yx and xyx'y' e N for 

all x, y e G, and G' c N. 

Definition 2.1.3. (Commutator series) 
The commutator series of a group G is the sequence 

G D> G'> G " I> ••• I> G (k) I> G (k +l) I> ... 

The group GO is the kth derived group ofG; it is normal in G 'by proposition 2.1.2. 
The commutator series is not a normal series, but it becomes one if some o<r) = {e}and 
the tail o<r+-I) 1> ••• is chopped off. [23] 

Definition 2.1.4 ( solvable length ) 

Given a solvable group G, we define its solvable length or derived length as follows: 

it is the length of the derived series of the group G. 

Note here that by length of the series, we mean the number of successive inclusions, 

so the length is one less than the actual number of subgroups in the derived series. The 

least n such that G® = {e} is called the derived length of the solvable group G. 

For finite groups, an equivalent definition to solvable group is that a solvable group 

is a group with a composition series whose factors are all cyclic groups of prime order. 

This equivalent because a finite abelian group has finite composition length and every 

finite simple abelian group is cyclic of prime order. The Jordan-Holder theorem states 

that if one composition series has this property, then all composition series will have this 
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property as well. For the Galois group of a polynomial, these cyclic groups correspond 

to nth roots (radicals) over some field. "The equivalence does not necessarily hold for 

infinite groups: for example, since every nontrivial subgroup of the group Z of integers 

under addition is isomorphic to Z itself, it has no composition series, but the normal 

series {O,Z}, with its only factor group isomorphic to Z, proves that it is in fact 

solvable".[32] 

Solvable groups are often useful for reducing a conjecture about a complicated 

group into a conjecture about a series of groups with simple structure: abelian groups 

(and in the finite case, cyclic groups of prime order). 

Defmition 2.1.5(metabelian group) 

A metabelian group is a group whose commutator subgroup is abelian. 

Equivalently, a group G is metabelian if and only if there is an abelian normal 

subgroup K such that the quotient group GIK is abelian. So, all abelian groups are 

metabelian. 

Solvable groups are sometimes called metabelian. In fact, metabelian groups are 

precisely the solvable groups of derived length at most 2 . But solvable groups need not 

be abelian. [28] 

Properties of metabelian group : 

1- Any subgroup of a metabelian group is metabelian. This follows from the general fact 

that the derived series of the subgroup is contained in the derived series of the whole 

group. 

2- Any quotient group of a metabelian group is metabelian. This follows from the fact 

that the derived series of the quotient is the quotient of the derived series of the original 

group. 

3- A direct product of metabelian groups is metabelian. This follows from the fact that 

the derived series of the direct product is the direct product of the respective derived 

series. 
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Abelian groups are solvable; on the other hand, nonabelian simple groups aren't 

solvable, since the single factor in their one normal series is not abelian; thus, An (if n> 
5) and the simple groups are not solvable. The first major step of the Classification 

theorem, the Feit and Thompson theorem [1963], states that all nonabelian finite 

simple groups have even orders; equivalently, every group of odd order is 

solvable. [12] 

Proposition 2.1.6. 
A group G is solvable if and only if G )= { e} for some r ;;:: 0. 

Proof: 
If G )= { e}, then {e} = G <<G <r-t) <l ... <l G '<G is a normal series whose factors 

are abelian, by proposition 2.1.2. 

Conversely, assume that G has a normal series {e} =A,14,4... <l Am = G whose 

factors A; /A;-; are all abelian. 
Then G/A a-1 is abelian; by proposition 2.1.2, G' c Am-I• 

In general, A a- /A -w-1 is abelian, so GO S Aa- implies Gc4',, <A, ,,by 

proposition 2.1.2. 

Induction then yields G(k) c A m-k for all k <m, in particular G" = { e} . 

Proposition 2.1.6 is often used as a definition of solvable groups. 

Proposition 2.1.7. [10] 
Let po:G >H be a surjective homomorphisim .Then (G"")=H"> for every 

n?0. 
Proof: 

We have p([x,y ]) = [<p(x ),<p(y)], and since (G) = H, we see that p maps the 

set of commutators in G onto those in H. 

It follows that p(G')=H', and repeated application of this argument yields 

that p(G) = H, as required. 

Proposition 2.1.8. 
If G is solvable, and there is a homomorphism from G onto H, then His solvable 
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Proof: 
Assume that G is solvable, and there is a homomorphisim <p from G onto H. 

Then, p(G) = H" [by Proposition 2.1.7.]. 

Also, H (n) = { e} [ since G is solvable and po is a homomorphisim map] 

Therefore, His solvable. [by Proposition 2.1.6.] 

Proposition 2.1.9. 
Every subgroup of a solvable group is solvable. 

Proof: 
Let A be a subgroup of G .Then A cG implies that A' c G' and in general 

A cG® 
Now ifG is solvable, then for some n we have A <n> cG<n> = {e }and so A is solvable. 

Proposition 2.1.10. 
Every quotient group of a solvable group is solvable. 

Proof: 
Let N <l G, then by using the canonical homomorphisim : G ➔ G / N we have, 

(G/N)'°=oG®),and so if G = {e}, we have(G/N)° = {e}. 

Proposition 2.1.11. [10] 
If N <l G and GIN are solvable, then G is solvable. 

Proof: 

To see this let G =G/N, and let {e}=N, <1N,<1...4N,=N be a chain of 

subgroups of N such that N,,,/N, is abelian for all O <i< n . 

And let {e} =G <G 1 <l ••• <l Gm = G be a chain of subgroups of G such that G /G, is 
abelian for all O <i < m . 

Then there are subgroups G; of G with N < G; such that G;/ N= G, and G; <t G;1, 
I 

0 <i<m (by lattice isomorphism theorem [1 O]). 
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Now by the third isomorphism theorem 

G,,/6,=G,,/N)/G,/N)=G,,/G,. 
Thus 

{e}=N,<1N,<1...4N,=N =G,4G,4...4G,=G is a chain of subgroups of G all 

of whose successive quotient groups are abelian. Therefore G is solvable. 

Proposition 2.1.12 
Every finite p-group is solvable. 

Proof. 
That a group G of order p is solvable is proved by induction on k. 

1st Step. For k = 1 our group is a cyclic group of prime order thus it is solvable by 

definition of solvable group. 

2nd step. Let the statement hold for all n <k. 

3d Step. We will prove that it holds for k= n + 1. Now since G is a p-group Z(G) + {e}. 

Also Z( G) is a normal subgroup of G and Z(G) is abelian. Thus Z(G) is solvable. Now 

G/Z(G) is again a p-group or trivial. 
If it is trivial then G = Z( G) thus G is abelian hence it is solvable. 

If it is not trivial then [G/Z (G)]< p ,so by the inductive step it is solvable. 

Therefore by theorem 2.1.11 G is also solvable and we are done. 

Proposition 2.1.13 [17] 
n 

Every group of order P q (where p and q are primes) is solvable. 

Proof: 
We may assume that p = q. The proof is by induction on n. 

Let S be a Sylow p-subgroup of G. If S <J G, then G/S is cyclic, since [G/SI = q is 
prime, S is solvable by proposition 2.1.12 and G is solvable by proposition 2.1.11. 

25 



Now assume that S is not normal. Then Sc No(S) c G; since [ G : S ] = q is prime 
¢ 

,this implies No(S) = S , and S has [ G : No(S) ] = q conjugates. Thus there are q Sylow 

p-subgroups. 

If the q Sylow p-subgroups of G are pairwise disjoint ( S n T = { e} when S * T ), 
then G has q (p"- 1) elements whose order is a positive power of p , leaving at most q 

elements whose order is a power of q . 

Therefore G has only one Sylow q -subgroup Q, and Q <aG. Then Q is cyclic, G/Q is 
solvable by proposition 2.1.12 and G is solvable by proposition 2.1.11. 

In particular, proposition 2.1.13 holds when n= 1. 

Now assume that the q Sylow p-subgroups of G are not pairwise disjoint. 
Then there are Sylow p-subgroups S and T such that snT ± {e}, and one can choose S 
and T so that M = S n T has the greatest possible number of elements. 

By Lemma 2.1.14 below H = NG(M) has more than one Sylow p-subgroup; M is the 
intersection of all the Sylow p-subgroups of H; and every Sylow p-subgroup of H is 
contained in a unique Sylow p-subgroup of G. Now, the number of Sylow p-subgroups 
of H divides p"q but is not divisible by p; hence H has q Sylow p-subgroups. 
Since G also has q Sylow p-subgroups, M is contained in every Sylow p-subgroup of G. 

Therefore Mis the intersection of all the Sylow p-subgroups of G. Since the latter 

are all conjugate, this implies that M <1 G. 

Now, [M]= p, where 1 < k <n. 
Hence G/M is solvable, by the induction hypothesis; M is solvable by proposition 

2.1.12; and G is solvable, by proposition 2.1.11. 

Lemma 2.1.14. 
Let M be the intersection of two distinct Sylow p- subgroups of a group G. IfM has 

the greatest possible number of elements, then H = Na(M) has more than one sylow p 
subgroup; M is the intersection of all the Sylow p-subgroups of H ; and every sylow p 

subgroup ofH is contained in a unique Sylow p-subgroup of G. 

Proof: 
We have Mz S for some Sylow p-subgroup S of G. 
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Now M zNs(M)=H (S. As, Ns(M) _ S is a p -subgroup of H and is contained in a 
Sylow p-subgroup P of H , which is in tum contained in a Sylow p-subgroup T of G, 

then M er. N s(M) c S n T and S = T by the choice of M. 

Hence P _ H ()S =Ns(M) and Ns(M) = P is a Sylow p-subgroup of H. 

Since M <I No(M) = H, Mis contained in every conjugate of P and is contained in 

every Sylow p-subgroup of H. 

We also have M=Sn T for some Sylow p-subgroups S T ofG. 

Then M g NS(M) (\N+ (M) c S nT and M =Ns(M) DON; (M). 

Then Ns(M) ± Nr (M), since M z Ns(M), N; (M). 
By the above, applied to S and to T, M is the intersection of two distinct Sylow p 

subgroups of H. 

Therefore H has more than one Sylow p-subgroup, and M is the intersection of all the 

Sylow p-subgroups of H. 

Finally, let P be any Sylow p-subgroup of H .(Since in a finite group, every p 

subgroup is contained in a Sylow p-subgroup ) then, P is contained in a Sylow p 

subgroup S of G, but P is not contained in two distinct Sylow p-subgroups S and T of G. 

Otherwise, M er. Pc SO T contradicts the choice ofM. 

The Hall Theorems ... [17] 
The three theorems below, due to Hall [1928], are stronger versions of the Sylow 

theorems that hold in solvable groups. First we prove a lemma. 

Lemma 2.1.15 
Every nontrivial finite solvable group contains a nontrivial abelian normal p- 

subgroup for some prime p. 

Proof: 
Let G be a finite solvable group. 

There is a smallest integer r> O such that G= {e}. 
Then A= oCr-I) is a nontrivial abelian normal subgroup of G. 

Some prime p divides [A] > 1, let N be the set of all elements of A whose order is a 

power of p. Then N ± { e}, N ~ A, and N is a p-group. 
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Ifx e N and g e G, then gxg' e A and the order of gxg-1 is a power ofp, so that gxg 
e N; thus N <a G. 

The proof of the first theorem also uses Schur's theorem which states that" If m and 

n are relatively prime, then a group of order mn that contains an abelian normal 

subgroup of order n also contains a subgroup of order m". [17, page 102] 

Theorem 2.1.16. 
Let m and n be relatively prime. Every solvable group of order mn contains a subgroup 

oforderm. 

Proof: 
Let G be solvable of order mn. If m is a power of a prime, then theorem 2.1.16 

follows from the first Sylow theorem. 

Otherwise, we proceed by induction on IGI. 

By lemma 2.1.15, G contains a nontrivial abelian normal subgroup N of order pk > 1 for 

some prime p. 
Now, pk divides [G]= mn; since m and n are relatively prime, either pk divides m, or 

p divides n. 
If pk divides m, then [G/N] = (m /po) n, where m /p and n are relatively prime and 

JG/N] <JG]. 
By the induction hypothesis, GIN has a subgroup HIN of order m/p, where Nc H ~ G; 

then [H] = m. 
If pk divides n, then [G/N]= (n /p )m, where n /p and m are relatively prime and 

IG / NI < IGI. By the induction hypothesis, GIN has a subgroup HIN of order m, where N 

c H<G. 
Then [H]= m p. 

Now, N <I H, N is abelian, and N has order pk, which is relatively prime tom; by 

Schur's theorem, H has a subgroup of order m, and then so does G. 

The subgroups of G of order m are the Hall subgroups of G. [Hall subgroup of G is 

subgroup with order and index are relatively prime]. 
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Lemma 2.1.17 
Let m and n be relatively prime and let G be a group of order mn with an abelian 

normal subgroup of order n. Then all subgroups of G of order m are conjugate. 

Proof: 

Let [G] = mn and let N <1 G, with [N]= n and N abelian. 
Let A and B be subgroups of G of order m. Since m and n are relatively prime we have 

AN=BON={e}; 
Hence 

AN=BN=G. 

Therefore 

Every coset ofN intersects A in exactly one element, and similarly for B. The element of 

Nx nB can then be written as: 
Ux x for some unique u, e N. 

Then 

And 
-1 U,, = u,au,a 

Let, 

V = IT b eA U b E N. 

Since N is abelian, 

For all a c A. 

We also have u: =l, since [N]= n. 

N + 1 fi r Some q re Z since m and n are relatively prime; hence ow, qm r n = o , ' 
qm+m qm =u • u.=u. 

o=v® =u" (ava')' =u,aa', 
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- 
and 

U .a== -1 
a =ao for all a c A. 

Therefore 

B - .A -1 0A is a conjugate of A. 

Theorem 2.1.18 
In a solvable group of order nm, where m and n are relatively prime, all subgroups 

of order m are conjugates. 

Proof: 
Let G be solvable of order mn. 

If m is a power of a prime, then 2.1.18 follows from the third Sylow theorem. 

Otherwise, we proceed by induction on IGI. By 2.1.15, G contains an abelian normal 

subgroup N of order pk > 1 for some prime p, and pk divides m or n. 

Let A, B <G have order m. 

Assume that p divides m. Then [N A]= \A] ([]/ [A f) N]) = mp" for some h < k. 
Now, mp" = [N A] divides mn = [G\; since p" and n are relatively prime this implies 

p" = 1. Hence 
IN Al = IAI and N c A. Similarly, NcB. 

By the induction hypothesis, AIN and BIN are conjugate in GIN: 

BIN = (Nx)(A/N)(Nx)' for some x e G. 

Then, 

B = LJ Nb= LJ (Nx )(Na)(Nx r1 

beB aeA 

=LJNxar '=N(Ax')=xAx' 
acA 

S. N _u -1 x Ax' Thus A andB are conjugate in G. mce =XIVX C • 

N th t k d. ·des n Then A n N = B n N = { e}; hence [NA] =[NB]= pm, and 
ow assume a p 1VI · 

th b Nr A /AT Al/ A (\ N) and NB/IN = B/ (B n N) of GIN have order m. 
e subgroups A/N = (a V 

By the induction hypothesis, NA/N and NBIN are conjugate in GIN. 
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As above, it follows that NA and u'B . . G INr are conjugate in ': 

NB = xNAx' for some x e G. 
Then B and x 4x' are subgroups of NB of order m. Hence B and xAx' are conjugate in 
NB: this follows from the induction hypothesis if p<n, from Lemma 2.1.17 if pk = n. 
Therefore A and B are conjugate in G. 

Theorem 2.1.19. [19] 
In a solvable group of order mn, where m and n are relatively prime, every 

subgroup whose order divides m is contained in a subgroup of order m. 

Proof: 
Let G be solvable of order mn. If m is a power of a prime, then theorem 2.1.19 

follows from Proposition. "In a finite group, every p-subgroup is contained in a Sylow p 

subgroup". 

Otherwise, we proceed by induction on IGI. 
By 2.1.15, G contains an abelian normal subgroup N of order pk > 1 for some prime p , 

and p divides m or n. 
Let H be a subgroup of G whose order divides m. 

Assume that pk divides m. Then jNH/NI = IHIIIH n NI divides m, is relatively prime to 

n, and divides [G/N]= (m/ p) n. 
By the induction hypothesis, HIN is contained in a subgroup KIN of GIN of order ml pk, 

where N cK ~ G; then His contained in the subgroup K of G of order m. 

Assume that p divides n. Then H (\N= {e} and [NH]=p • 
Hence jNH/.NI =l divides m, is relatively prime to n, and divides [G/N]= (n/ pk )m. 

By the induction hypothesis, NH/N is contained in a subgroup KIN of GIN of order m, 

where 
NcK ~ G; then [K]= pk m and H c NH c K. 
If p <n, then [K] <[G] and H is contained in a subgroup of K of order m, by the 

induction hypothesis. 

th 
k Let A be a subgroup of G of order m. 

Now assume at p = n. 
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Then A \N= {e}, [N A]= [N] [A]= [G\, and N A = G. Hence [A (\ NH]= \4] [NH] / \ANH] 
=mp/n= Th H d · us an K=A n NH are subgroups of NH of order • 
By 2.1.18, Hand Kare conjugate in NH: H = xKx'for some x e NH. 

Then H is contained in the subgroup x Ax' of G, which has order m. 

2.2 Supersolvable groups 

A group is said to be supersolvable if it has a normal series (where in all the members 

are normal in the whole group) of finite length, starting from the trivial group and ending 

at the whole group, such that all the successive quotients are cyclic. Supersolvablility is 

stronger than the notion of solvability. 

Def"mition 2.2.1 (supersolvable) 

A group G is said to be supersolvable if there exists a normal series: 

where each H, <1G and further, each Hi + 1 / Hi is cyclic. By contrast, for a solvable 
I 

group the definition requires each quotient to be abelian. [42] 

Properties of supersolvable groups 2.2.2 

1-Any subgroup of a supersolvable group is supersolvable. 
The normal series for the subgroup can be obtained simply by intersecting the normal 

series of the group, with the subgroup. 

· f a supersolvable group is supersolvable. 2-Any quotient group o 

Th al 
• .r:. the quotient is obtained by taking the image of the normal series e norm series 1or 

for the original group under the quotient map. 

• f finitely many supersolvable groups is supersolvable. 
3-Any direct product o1 {© 
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Proof: 

Suppose G and K are sup 1 erso vable groups and let {e} =G, <G, <...<G. =G be 
asupersolvable series of G al e " s [SO et {e} = K < K < . o - 1 - ...<K = K be a supersolvable 
series ofK. " 

We note that for all 1 < i < n . - - , smce G. <1 G I 

G, x{e} =G,xK, <aG xK 

Similarly, for all 1 s; j < m 

G xK.<aGxK J 

Furthermore, 

And 

For 1<j<m,we see that 

Is a supersolvable series of G xK . 

4-A finite group is supersolvable if and only if every maximal chain of subgroups has 

the same length. This is important to those interested in the lattice of subgroups of a 

group, and is sometimes called the Jordan-Dedekind condition. 

Examples: 2.2.3 

Zs,Z4 x Z4 and Z4 are supersolvable groups .While A4 is not supersolvable. 
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2.3 Polycyclic groups 

Polycyclic group is 1 bl a so va e group that satisfies the maximal condition on 
subgroups (that is, every sub • fi . > Y group is initely generated).A group is said to be polycyclic 
if it has a subnormal series ( h · · · · · w ere in each member IS normal in its successor) of finite 
length, starting from th tri 'al e VI group and ending at the whole group, such that all the 
successive quotients are cyclic. 

Definition 2.3.1 (polycyclic) 

A group G with symbols is said to be polycyclic if there exists a series of subgroups: 

where each H;++ / H;is cyclic. [42] 

Polycyclic groups are finitely presented, and this makes them very interesting from 

acomputational point of view. Examples of polycyclic groups include finitely generated 

abelian groups, and finite solvable groups. Supersolvable groups are always polycyclic, 

and hence solvable. 

In another direction, a polycyclic group must have a normal series with each 

quotient cyclic, but there is no requirement that each H, be normal in G. As every finite 

solvable group is polycyclic, this can be seen as one of the key differences between the 

definitions. For a concrete example, the alternating group on four points, A4, is solvable 

but not supersolvable. 

Example 2.3.2. 

Kl
. .c. • an example of noncyclic supersolvable group, so it is polycyclic. 
ien four group 1s 
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l.4 Solvability by Radicals 

When we say that a polyn •a1 . . orm equation is solvable by radicals we mean that the . ' 
solutions can be obtained fr th · · om e coefficients m a finite sequence of steps, each of 
which may involve addition, subtra ti 1lti-»l; : u..:.: > action, multiplication, division, or taking nth roots. 

Only the extraction of an nth root leads to a larger field, and so our formal definition is 

phrased in terms of subfields and adjunction of roots of x"-- a for suitable elements a. 

Definition 2.4.1. (radical extension) 

An extension field F of a field K is called a radical extension of K if there exist 

elements u1, U;, ..., u, in F and positive integers n, n, ..., n, such that 

(i) F =K (u, U2, ..., u,), and 

(
"") n1 • • K d : . K ( ) c. • ii) u; isin an u; isin uj,...,uj fori=2,...,m. 

For a polynomial f(x) in K[x], the polynomial equation f(x) = 0 is said to be solvable by 
radicals if there exists a radical extension F ofK that contains all roots off(x). [13] 

To study solvability by radicals of a polynomial equation f(x) = 0, we let K be the 

field generated by the coefficients of f(x). We let F be an extension field of K that is 
generated by the roots of f(x) over K. This is called the splitting field for f(x) over K, 

and is unique up to isomorphism. 

Theorem 2.4.2. [ 41] 

Let p(x) be a polynomial over a field K of characteristic zero. The equation p(x) = 0 
is solvable by radicals if and only if the Galois group of p(x) over K is solvable. 

Theorem 2.4.3. [9] 

1
.tti. field of x" - 1 over a field K of characteristic zero. Then 

Let F be the sp i mg 

Ga(F/K) is an abelian group. 
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Theorem 2.4.4. [10] 

There exists a polynomial of d 5 . . egree with rational coefficients that is not solvable by 
radicals. 

Theorem 2.4.5.[45] 

Let K be a field of characteristic zero that contains all nth roots of unity, let a be an 

element of K, and let F be the splitting field of x"-a over K. Then Gal(F/K) is a cyclic 
group whose order is a divisor of n. 

Theorem 2.4.6. [ 45] 

For every positive integer n, the Galois group of the nth cyclotomic polynomial @,(x) 
[13]over Q is isomorphic to Z,. Where Z, is the set of units of Zn) 

Theorem 2.4.7.[ 45] 

Let K be a field, let p(x) be a polynomial in K[x], and let F be a splitting field for p(x) 

over K. If p(x) has no repeated roots, then jGal (F I K )I = [F : K] 

Eisenstein's criterion 2.4.8 [10] 

Eisenstein's criterion gives sufficient conditions for a polynomial to be irreducible 

over the rational numbers. 

S h th .c.
0
Jlowing polynomial with integer coefficients. uppose we ave e I 

. . ber p such that the following three conditionals all apply: 
If there exists a prime num 

• p divides each a; for i# n, 

• p does not divide a,, and 
e p does not divide ao» 

tionals. Thus there cannot be any rational roots. 
then /(x) is irreducible over the rat " 
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Example2.4.9 

Consider g(x) =3x + 15x2 + 10, 

Usingp =5, as 5 does divide 15, the coefficient of x and 10, the constant term. Also, 5 

does not divide 3, the leading coefficient. Finally, 25 = 5° does not divide 10. So, we 
conclude that g(x) is irreducible over Q . 

In some cases the prime to choose can be unclear, but can be revealed by a change 

of variable y = x + a, which is often referred to as a shift. 

For example consider h(x) = x2 + x + 2. This looks difficult as no prime will divide 

1, the coefficient of x. But if we shift h(x) to h(x + 3) = x2 + 7x + 14 we see instantly that 

the prime 7 divides the coefficient of x and the constant term and that 49 cannot divide 

14. So by shifting the polynomial we have made it satisfy Eisenstein's criterion. [ 1 0] 

Examples 2.4.10. 

1. Find the Galois group of x9 -1 over Q. 

Solution: 

We can construct the splitting field F of x-1 over Q by adjoining a primitive 9th 

root of unity to Q. We have the factorization 

x-1 = (x-1) (x®+x'+1) 
= (x-1) (x+x+1) (x+x"+1). 

Substituting x+ 1 in the last factor yields 
6, 1+1=x+6x'+15x+ 21x+18x+9x+3. (x+l) +(x+l + - 

. t · 's criterion for the prime 3, which implies that the 
Thi I . al satisfies E1sens em 

s polynom: Q The roots of this factor are the primitive 9th roots 
6 3 • · educ1ble over · factor x'+x"+l ts rrr f f Theorem 2.4.3 shows that Gal (F/Q) 

th t [F·Q] = 6. The proo o 
f :. it follows a · · o unity, so 1 0 . 7 _ x • beli· an of order 6 it is isomorphic to Z6. fZ,. Since Z9 1sat ° 
is isomorphic to a subgroup 0 

It follows that Gal (F/Q) = Zs. 
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Comment: Theorem 2 4 6 5h .. s ows th t th x 1a e Galois f n Zn and so the Galois orou . . group O x -1 over Q is isomorphic to 
' Ip 1s cyclic. 

2. Show that x4-x3+x2-x+l • . . 1s irreducible over Q, d : x1over Q. 2%and use it to find the Galois group of 

Solution: We can construct th 1; e splitting field F of x IO 1 Q 
10th root of unity to Q W h - over by adjoining a primitive 

· e ave the factorization 

10.1 (6°. .s x - = x-l)x'+ 1) 
= (x-1)(x+x+x+x+1) (x+1)x-x+x-x+1), 

Substituting x-1 in the last factor yields 

(x-1)-(x-1)+x-1)-(6-1)-+ 1 
= (x-4x+6x-4x+1) - (x?-3x+3x-1) + (x-2x+1)- (x-1) + 1 
= x-5x+10x-10x+5. 

This polynomial satisfies Eisenstein's criterion for the prime 5, which implies that the 

factor 

x-x+xx+1 is irreducible over Q. 
So it follows that [F:Q] = 4. The proof of theorem 2.4.3 and theorem 2.4.6 show that Gal 

(F/Q) ~ Z10 x and so the Galois group is cyclic of order 4. 

3. Show that p(x) = x-4x+2 is irreducible over Q, and find the number of real roots. 

Solution: The polynomial p(x) is irreducible over Q since it satisfies Eisenstein's 

criterion for p = 2. Since p(-2) = -22, p(-1) = 5, p(O) = 2, p(l} =-l,and p(2) = 26, we see 

that p(x) has a real root between -2 and -1, another between O and 1, and a third between 
I and 2. The derivative p'(x) = 5x- 4 has two real roots, so p(x) has one relative 

maximum and one relative minimum, and thus it must have exactly three real roots. Also 

it has precisely two non- real roots in C .So, the Galois group of px) =x-4x+2 over Q 

is S; ,and so it is not solvable .( Since if f (x) is irreducible over Q and of degree prime p 

with precisely two nonreal roots in C then the Galois group of f is S P [ 1 OJ). 
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2.5 Burnside's theorem 

Burnside's theorem h 1 . as long been one of th 
representation theory to the th e best-known applications of 

eory of finite groups th gh 
group characters was publish d b ' ou a proof avoiding the use of 

e Y D. Goldschmidt d 
proved by William Burnside i th aroun 1970. The theorem was 

n e early years of the 20th century. 

Lemma 2.5.1 [10] 

If [r] is a power of prime for sor ide 5 me nom entity co · 1 nJugcy c ass of G, then G is not a 

non-abelian simple group. 

Theorem 2.5.2:( Burnside's theorem) [10] 

If G is a finite group of order pq° where pand q + 1b , are pnme num ers, and a and b are 

non-negative integers, then G is solvable. 

Proof: 

Let G be a group of order pq for some primes p and q . 
Now if p = q or either exponent is O then G is solvable . 
Thus we may assume this is not the case .Proceeding by induction let G be a counter 

example of minimal order. 
If G has a proper, nontrivial normal subgroup N, then by induction both N and GIN are 

solvable, hence so is G. 
Thus we may assume G is non-abelian simple group. 

Let P e syl,(G). 

Then 3 gc Z(P) with g± e. Now since P< Cc(g), the order of the conjugacy class 0f 8 

(which equals \G : c, ( g) is prime to p. i.e. is a power of q. This violates lemma 2.5.1 

and so completes the proof of Burnsides theorem. 
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Chapter Three 

3.1 Nilpotent groups 

Nilpotent groups are a class of solvable groups with even more striking properties. 

In group theory, a nilpotent group is a group having a special property that makes 

it"almost" abelian, through repeated application of the commutator operation, [x,y] = 
-1 -1 xyX y . 

This idea is motivated by the fact that nilpotent groups are solvable, and for finite 

nilpotent groups, two elements having relatively prime orders must commute. 

It is also true that finite nilpotent groups are supersolvable. Nilpotent groups arise in 
Galois theory, as well as in the classification of groups. 

Definition 3.1.1 (Nilpotent groups). 

A group G is called nilpotent if there exists a finite collection of normal subgroups 

G,G1,...,G, with 

such that, Gj; /G; _ Z(G/G,) for.j =1,2,..k =J, 

h . t h a central normal series. 
That means a group is nilpotent w en 1 as 

1 ·t t, and nilpotent groups are solvable .The 
" . :u1 abelian groups are n!po en 
In partic iar, D : ·ilpotent but not abelian, and that D3 and 

• 5hall see that J4 1s TI converses are not true, we s 
D5 l ible but not nilpotent. [17] 

are so va r ·t central normal sen1es: 
Nilpotent groups have two expl1ci! 

(1 )central senes 1- The descending lower 
2- The ascending(upper) central series 

Definition 3.1.2 G is the sequence 
tral series of a group 

The descending (lower )cen 
1 

k 1> g> ... 
G>G'>...>G' -1.' 5th 

ted by all commutators xyx Y wi 
k+l the subgroup genera 

in which G" = G, and G 1s 
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Chapter Three 

3.1 Nilpotent groups 

Nilpotent groups are a class of solvable groups with even more striking properties. 

In group theory, a nilpotent group is a group having a special property that makes 

it"almost" abelian, through repeated application of the commutator operation, [x,y] = 
-1 -l xyx Y . 

This idea is motivated by the fact that nilpotent groups are solvable, and for finite 
nilpotent groups, two elements having relatively prime orders must commute. 

It is also true that finite nilpotent groups are supersolvable. Nilpotent groups arise in 
Galois theory, as well as in the classification of groups. 

Definition 3.1.1 (Nilpotent groups). 

A group G is called nilpotent if there exists a finite collection of normal subgroups 
G,G1,...,, with 

such that, G;+; /G; c Z(G/G) for.j =1,2,...,k -1. 

h . t has a central normal series. That means a group is nilpotent w en 1 

.1 t t, and nilpotent groups are solvable .The " . u1 abelian groups are ru po en 
In partic lar, . ·1 otent but not abelian, and that D3 and · shall see that D4 is milp converses are not true, we 

t '!potent". [ 1 7] D5 are solvable but not ni es· 
1. ·t central normal seri . :» he two expf1ct Nilpotent groups ave . 

1 )central senes 1- The descending (lower 
) central series 2- The ascending(upper 

Definition 3.1.2 ,G is the sequence 
tral series of a group 

The descending (lower)cen 
1 

k 1> G'>... 
G 1>G 1> ••• 1>G -1 -1 "th 

b all commutators xyx y WI 
b generated Y k+I · the subgroup in which G= G, and G is 
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x e Gandy eG 

In particular, G'=G' T ' - · e descendin r 8 central series yield 
G'= { e} and subsequent tenn s a central normal series if some 

s are removed. 
Proposition 3.1.3 
G < G and GG' e z(GIG"), ; 

- , J.Or all k. 
Proof: 

The proof is by induction on k. 

First, G=G@ G,and GIG' =G/G' < ZGGh. 
- ( ) since G/ G' is abelian by proposition 

2.1.2. Now assume that G < G A . 
-1 -1 . s in the proof of proposition 2.1.2., the inverse of the 

commutator xyx y of x and • th -1,--1.,-1_ -1 Y is e commutator of y and x, and a conjugate 
axyx y a =axa aya' (axa')' (aya')' 
of xyx -1 y -1 is the commutator of a conjugate of x and a conjugate of y. 

Hence every g e G 1 is a product = g - c1, • • ., Cn of commutators xyx y'of x e G 
and y e G, and commutators xyx' y ofx e G and y e G; then 

-1 -1 -1 aga =acja • • • ac,a 

is a product of similar commutators. 

Th c! us <1 G. For all x e G and y e G , xyx-1 y1 e Gk+l ; hence Gk+1xy =Gk+tyx 

and Gy e Z(GIG"). Thus GIG'® c Z(GIG'), 

The other series ascends by way of centers and is constructed as follows: 

Proposition 3.1.4. 
Every group G has unique normal subgroups Zk (G) such that Zo(G) ={e} and 

Zk+t(G) I Z, (G) = Z(G/Z (G)) for all k ~ 0. 

Proof. 
First, Za(G) = { e} is normal in G. If Zk <l G, then Z(G/Z; (G)) is a normal subgroup 

of G/Z, (G). Now since zk <l G, then (every subgroup of G/Zk is the quotient HI Zk of a 

unique subgroup H of G that contains Z;). So there is a unique normal subgroup H = 

Zk+1{G) => zk (G) of G such that Z (G/Zk (G)) =Z,G) / Zk (G). 

In particular, Z,(G) = Z(G) is the center ofG. 

Definition 3.1.5. 
Th . al · f oup G is the sequence e ascending(upper) centra sen1es O a gr 

{e}=Z,(G) < Z,(G) <1...< Z (G) <I Zk+1(G) <I 

constructed in Proposition 3.1.4 
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The ascending central series · Id 
yields a central normal series if some Z, (G) = G 

and subsequent terms are removed. [171 

A group is said to be nilpotent if it satisfies the following equivalent conditions: 

• Its upper central series stabilizes after a finite length at the whole group . 

Clearly, the upper central series, when finite, is itself a central series, so its length puts 
an upper bound on the minimum possible length of a central series. But the fact that the 

upper central series is the fastest ascending central series, also shows that every central 

series has length at least as much as the upper central series. Thus, the length of the 
upper central series is the minimum possible length of a central series. 

• Its lower central series stabilizes after a finite length at the trivial subgroup. 

Clearly, the lower central series, when finite, is itself a central series, so its length puts 

an upper bound on the minimum possible length of a central series. But the fact that the 
lower central series is the fastest descending central series, also shows that every central 

series has length at least as much as the lower central series. Thus, the length of the 
lower central series is the minimum possible length of a central series. 

For a nilpotent group, the lower central series and upper central series are closely 

related. 

The length after which the upper central series stabilizes equals the length after which 

the lower central series stabilizes, and this length is termed the nilpotence class of the 

group. For any c greater than or equal to the nilpotence class, the group is said to be of 

1 E · al tl the nilpotency class of G equals the length of the lower central c ass c. qwv en y, 
· tral en· es (the minimum n such that the nth term is the trivial seres Or upper cen s 

subgroup, respectively the whole group). 

S . f ilpotent group is the length of its lower central series, i.e., o, The rulpotence class o a m P . 
h that G'is trivial, and The nilpotence class of a for a group G, it is the smallest c sue a ' . . 

:» : itral series, i.e., for a group G, it is the nilpotent group is the length of its upper cen 
smallest c such that Z.(G)= G. 
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I 

If a group has nilpotency class at most m th ·t · . I 7 _ • .1 ' en 1 is sometimes called a nil-m group. For examp C, 24 1S a nil-l group and Q . . 
, s 1s a rul-2 group. 

The trivial group is the unique grour f . 
P o1 nilpotency class 0, and groups of nilpotency 

class 1 are exactly non-trivial abeli an groups. 

Examples 3.1.6 

These are some important examples of nilpotent groups: 

• The dihedral group of order 8 (D4) is the smallest nilpotent group which is not 
abelian. 

• The quaternion group (Qs) is also the smallest nilpotent group which is not 
abelian. 

Proposition 3.1. 7 

A group G is nilpotent if and only if G r = { e} for some r ~ O, if and only if Zr ( G) = G 
for some r ~ 0. 

Proof: 

If G r = { e} for some r ~ 0, or if Zr (G) = G for some r ~ 0, then the descending 

central series, or the ascending central series, yields a central normal series, and G is 

nilpotent. 

Conversely, assume that G has a central normal series { e }= Co <t C, -< ••• <1 Cm= G. 

We prove by induction on k that Gk C Cm-k and ck C zk (G) 

for all O ~ k ~ m; hence Gm= {e} and Z,(G) = G. (Thus, the ascending and descending 

central series are in this sense the "fastest" central series.) 

We have G" " G = Cm. Assume that Gm-j c Cj, where j > 0. Let x e G and 

yeG"?c C}. Since C;-1 y e C; /Cj; c Z(G/Cj-1), we have C; jxy= C; 1yx and 
:. rG"n Qi C xyx'y? e C;4. Thus C; ; contains every generator ot ; 1ence c j-1 

We also have Z» (G)= {e} = Co. Assume that C, c Z = Z (G), where k <m. 

Then G/Z, = (G/C;)/ (Z/C;) and there is a surjective homomorphism 
: G/C, -> G/Z, with kernel Z/C, namely n : C; x-> Z x . 
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Since 7t is surjective 7t sends th 
3 2e center of G/C, into the center of G/Z,: 

(Ci/C) c Z(G/C,) cz(G/z,)= z,,, 
= k f a+1/Z; 

hence Zx e Z/Z; for allx e C, +d k+1, anc C e Z»1. 

In fact, we have shown that G'= { e} if and only if Zr (G) =G; the least such r 
is the nilpotency index of G. 

3.2 Properties of nilpotent groups 

1. Any subgroup of a nilpotent group is nilpotent. In fact, any subgroup of a 
group of nilpotence class r has nilpotence class r. 

Let G be a nilpotent group of nilpotence class r . H <G then H <G <r> but 

G= {e} .So yr)= { e} ,hence His nilpotent of nilpotence class r. 

2. Any quotient of a nilpotent group is nilpotent. In fact, any quotient of a group 
of nilpotence class r has nilpotence class r. 

Suppose that G is nilpotent group of nilpotence class r ,and N a normal 

subgroup of G . Then by using canonical homomorphism p: G ➔G IN we have, 

(G/N)= o (G (r))= <p ( {e} )={e}.Then the result holds. 

3. Any direct product of groups of nilpotent groups is nilpotent. In fact, if both of 

them are of nilpotence class r (we can r as the higher of their nilpotence 

classes) then their product is also of nilpotence class r. 

This follows from the fact that the central series of the direct product is the 

direct product of the respective central series. 

Remark: 

N.1 · 1 ed under taking joins of finitely many normal subgroups. In 1 potence is c os 

th d •r · generated by finitely many nilpotent normal subgroups, it is o er wor s, 1 a group 1s 

also nilpotent. 
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Proposition 3.2.1 
IfN ~ z (G) and GIN is nilpotent the G . ·1 

, n 1s nilpotent. 

Proposition 3.2.2 
Every finite p-group is nilpotent. 
Proof. 

That a group G of order p" is nilpotent is proved by induction on n . 
Ifn ~ 2 then G is abeli h hr : ' an, ence m potent, (since every group of order p, where p 

is prime, is abelian). 

If n > 2, then G has a nontrivial center, (since every nontrivial p-group has a 
nontrivial center). Then G/Z(G) is nilpotent, by the induction hypothesis, and G is 
nilpotent, by proposition 3.2.1 (3). 

Theorem 3.2.3. 
A finite group is nilpotent if and only if all its Sylow subgroups are normal, if and only 

if it is isomorphic to a direct product of p-groups (for various primes p ). 

Proof: 

The ascending central series of any group G has the following property: 

if Z, _ H < G,then Z1 c NG(H). Indeed, let x e Zr and y e H. Since 
Z x e Z/Z; c Z (G/Z) we have Zxy=Z2yx, so that xyx'y' e Z, 
and xyx=(xyx' y') y e H. Thus x e NG (H). 

Now let G be a finite group. Let S be a Sylow p-subgroup of G. (since in a finite 

group, a subgroup that contains the normalizer of a Sylow p-subgroup is its own 

normalizer). 
Nc(S) is its own nonnalizer. Hence Zo= { e} c Na(S), and Z c Nc(S) implies 
Z, g NG(Na(S)) = NG(S) by the above, so that Z, c Nc(S) for all k. If G 
is nilpotent, then Na(S) = G, by Proposition 3. I. 7 ., and S <J G. 

Next, assume that every Sylow subgroup of G is normal. Let Pi, P2, ... , Pm 

be the prime divisors of [G\. Then G has one Sylow p-subgroup S; for every 
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p. We have [G]=[S/ [$5] ...[S/; hence G=S, S, S,.M 
1 2 . . . m• oreover, 

(S; ...S;) 1 S;1= {e} for all i <m, since[S;/and[S, .S,]: elatiel , 1+ 1 1 . . . 1 are re a ve y 
prime. Hence G = S, x S2 x x s by (Pr :: 

··· m, y 'roposition. A group G is isomorphic to the 
direct product G; x G» x .x G, fr G,,,, 

· · · n o groups 1, G2 , ... , G, if and only if it contains 
normal subgroups A; = G; such that A, A5...A,=G and (A; A5...A,)f)A,, = {e} 
for all i<n • Then every element g of G can be written uniquely in the form 

g=a1a5... a, with a; c A;; a; c A; and a; e A; commute whenever i ± j ; and the 
mapping 

(a1, a2,...,a,)>a; ay... a, is an isomorphism of A; x A;x...x A, onto G). 

Finally, if G is isomorphic to a direct product of p-groups, then G is nilpotent, 
by Proposition 3.2.2 and Property 3 page 44. 

In particular, D4 and Qs are nilpotent, by Proposition 3.2.2, but the solvable groups D, 
and D; are not nilpotent, by theorem 3.2.3. If G is a nilpotent finite group, we will easily 

deduce from theorem 3.2.3 that every divisor of [G] is the order of a subgroup of G. This 

property does not extend to solvable groups; for instance, the solvable group ~ of order 

12 does not have a subgroup of order 6. 

Theorem 3.2.4: 

Any abelian group is a nilpotent group. In fact, abelian groups are the nilpotent 
groups of nilpotence class 1. 

Proof: 

Suppose that G is an abelian group .Now G is abelian if and only if Z(G)=G, and so, the 

first member Z,(G) of the upper central series is the center of G, which is the whole of 

G Th th tral Sen.es terminates in 1 step, and G is nilpotent of nilpotence . us e upper cen 

class 1. 

R th em 3 2 4 easily by using the lower central series of G. emark: we can prove eor · · 

Theorem 3.2.5: 

Not every nilpotent group is abelian. 
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Proof: 

For a small non-abelian example, consider the quaternion group Q
8
, which is a smallest 

non-abelian p- group. It has center { 1, -1} of order 2, and its upper central series is 
{l}, {l,-1}, Q8; so it is nilpotent of class 2. 

Proposition 3.2.6. 

Let G be nilpotent with derived length d and nilpotent class c .Then 

d <1+log,(c +1) 
Proof: 

We have G' = G 
2 
and since if G = G 1 =:JG 2 =:J ... be lower central series of an arbitrary 

group G.Then [G',G?]cG'? foralli.j > 1 

We get G" =[ G2,G2]cG4 

G"' = [G",G"] c [G4 ,G4] cG8 

:.... G G Continuing we see that c 

Now {e} <Gd-I cG2
d-l and yet G'= {e} .This gives c +I> 2d-i , and so 

d <1+log,(c +1). 

3.3 Relation between Solvable groups and Nilpotent groups 

Lemma 3.3.1: [10] 

th -rh her of the derived series is contained in the th member of For any group, er mem 
the lower central series. 

Proof: 

We prove this lemma inductively. 

For i= 1: Both d1> and G; are the same. 

Thus G<G, 

Suppose G<G, .Then we have: 
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Gm+ 1 =[G,G,] and 

Now, G<G and G<G, (using the induction assumption). Thus, every 
commutator between cJ-m) and r-lm) · al 

tr' IS so a commutator between G and Gm. Thus, we 
have a generating set for [G®.G] vh1ch : 

, w IC IS a subset of a generating set for [G,G,,]. 

From this, it follows that [G,G]is a subgroup of[G,G,]. Thus: 

G" <G m+] 

Theorem 3.3.2 

Any nilpotent group is a solvable group. 

Proof: 

We now use the fact that for any group G, G < G i [by lemma3.3.1]. 

Suppose G is a nilpotent group. Let c be the nilpotence class of G, so the length of 

the lower central series of G is c or the smallest c such that Ge is the trivial group. Then, 

.G <G ={c} by the lemma 3.3.1. - c - e 

and hence de) is trivial. This means that G is solvable. 

Remark: 

Not every solvable group is nilpotent. 

Since the smallest solvable non-nilpotent group is the symmetric group on three letters. 

This is centerless, so it cannot be nilpotent. On the other hand, it is clearly solvable, 

because its commutator subgroup is the alternating group on three letters, which is 

abelian. 
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Chapter Four 

Applications 

4.1 Carter subgroup of solvable group in © 

Let © denotes the class of finite groups in which every element is conjugate to its 

inverse [see definition 4.1.1]. Here we investigate solvable groups in ©. 

In particular we show that if G e © and G is solvable then the Carter subgroup of G is a 
Sylow 2-subgroup. [9] 

Definition 4.1.1 (conjugate elements) [10] 
Suppose G is a group. Two elements a and b of G are called conjugate if there exists 

an element g in G with 

gag'=b. 

It can be readily shown that conjugacy is an equivalence relation [reflexive, 

symmetric and transitive], and therefore partitions G into equivalence classes. (This 

means that every element of the group belongs to precisely one conjugacy class, and the 

classes Cl(a) and Cl(b) are equal if and only if a and b are conjugate, and disjoint 

otherwise.) .The equivalence class (conjugacy class) that contains the element a in G is: 

Cl (a)= {gag':g e G}. 
The class number of G is the number of distinct (nonequivalent) conjugacy classes. 

For example: The symmetric group S; has three conjugacy classes: 

• The class of the identity element. 
• The class of transpositions. 
• The class of 3-cycles 
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Definition 4.1.2( self-normalizi» mg su group) 

A subgroup H of a group G · all . 1s ca led a self-normalizing subgroup of G if No(H)=H . 

Definition 4.1.3 (Carter subgroup) 

Carter subgroup of a finite gr G · b · · oup is a su group H that IS a rulpotent group, and self- 
normalizing. 

For example: the sylow 2- subgroups in S; are the Carter subgroups 

Definition 4.1.4(central element) 

An element of a group is tenned central ifit commutes with every element of the group 
or if its centralizer is the whole group 

Lemma 4.1.5 
Let C be a Carter subgroup of the solvable group G and let A and B be subsets of C, 

both normal in C. If A = B then A and B are not conjugate in G. 

Theorem 4.1.6 
IfG is a solvable group in © then a Carter subgroup ofG is a Sylow 2-subgroup ofG. 

Proof: 
Let C be a Carter subgroup of G. If C has a nonidentity element of odd order then C has 

a nonidentity central element g of odd order, since C is nilpotent. Then with A = {g} and 
B= {g'} the hypotheses of Lemma 4.1.5 are satisfied and, since A± B, g and g "are not 
conjugate in G, contradicting our supposition that Ge ©. Hence C is a 2-group. As c is 
self-normalizing in G, C must be a Sylow 2-subgroup of G. 

Corollary 4.1.7. 
If Tis a Sylow 2-subgroup of a solvable group Ge©. then Na{T) = T. 

Proof: 
B Th 4 1 6 T • carter subgroup of G. and by def 4.1.3 it is clear that Tis self- y eorem . . IS a 
normalizing. 
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4.2 Metabelian Groups 

Metabelian groups can be thought of as groups that are "close" to being abelian, in 

the sense that every abelian group is metabelian, but not every metabelian group is 

abelian. This closeness is reflected in the particular structure of their commutator 

subgroups. As we have developed techniques for examining commutator subgroups, we 

are now able to apply the techniques to examine this particular class of groups. Because, 

as we will see later, metabelian groups are very simple instances of solvable groups, it is 

worthwhile for us to examine metabelian groups before we move on to studying solvable 

groups in general. The goal of this section is to prove several interesting properties of 
metabelian groups.[ 46] 

Definition 4.2.1 
A group G is metabelian if there exists a normal subgroup A of G such that both A and 
GI A are abelian. 

Proposition 4.2.2. 
Every abelian group is metabelian. 

Proof: 
Let G be an abelian group. Then all subgroups of G are normal, and G' = { e}. So all of 

· are abelian [since ifG is a group and N is normal subgroup ofG G's quotient groups 

with G' cN then GIN is abelian], and thus G is metabelian. 

th .c. 11 wm· g three theorems. We may now prove e tollo 

Theorem 4.2.3 
G is metabelian if and only if G" = {e} (G" is the commutator subgroup of G' ). 

Proof: 
if direction. Let G be a metabelian group; we will show that We first prove the only 1 rr 
: tabelian, it has a normal abelian subgroup N, and GIN is G" = {e}. Because G is me 

abelian. 
1. G' = {e} and so G" = {e}. Th G, cN. Since N is abe ian, ' us, 

51 



We now prove the if direction. Let G" = { e}. We will show that G is metabelian. We 

will do this by first establishing the existence of a normal abelian subgroup of G and 

then by showing that G's quotient with that group is abelian. Note that if G is abelian, 

then G is metabelian by proposition 4.2.2. So, we have only to consider the case where 
G is not abelian, and hence G' ± {e} . Thus, assume that G is not abelian. 

We will now show the existence of a normal abelian subgroup of G. Consider the 

commutation of two elements x, y e G'.We know that xyx'y'=e since G" = {e} 
and so we have that xy = yx. Thus, arbitrary elements x, y e G' commute, so 

G' ± {e} .is an abelian subgroup of G. We must now show that G' is normal in G to 

establish the existence of a normal abelian subgroup of G. Let g eG and he G'. 
To show normality: 

we must show that ghg' e G'. We know that ghg 'h' e G' because ghg 'h' is the 
commutation of g, h c G'. Because G' is a group containing h and ghg'h', 
multiplying ghg 'h' by h yields another element in G'. 
Thus, ghg 'h 'h= ghg' e G',and so G' is normal in G. Thus, G' is a normal abelian 
subgroup ofG. 

We have established the existence of a normal abelian subgroup of G, namely G' , so all 

that remains is to show that G/ G' is abelian. Because G' <1 G and G' cG' , we have 

that G/ G' is abelian. Thus, G has an abelian normal subgroup, G' , and G/ G' is abelian, 

so G is metabelian. 

Theorem 4.2.4 
lfH is a subgroup of a metabelian group G, then His metabelian. 

Proof: 

Let Hbe a subgroup of the metabelian group G. Since G is metabelian, 

by theorem 4.2.3, G" = { e}. 
· b th case that H' is a subgroup of G' Consider H' . As His a subgroup of G, it must e e 

f H, th t =aba 'b' e H' for some a, be H. To see this let x be a generator o , so a x - 
. " aba''=; e G'.Therefore, H' is a subgroup of Smee H ~ G, a, be G and hence a a - x 
G'. 

,, • of G" Since G" = {e}, it follows Thus, it must also be the case that H is a subgroup · 

that H" = {e}. Thus, by theorem 4.2.3, H is metabelian. 
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Theorem 4.2.5 

If G is metabelian and po: G ➔ K is a group homomorphism, then p(G) is metabelian. 

Proof: 

Let G be metabelian and po be as above. We will show that rp(G)" = {e}, so that 
p(G) is metabelian by theorem 4.2.4. 

To that end, we will show that commutation is respected by group homomorphisms in 

general. In other words, we will show that the image of a commutator subgroup is the 

commutator subgroup of the image. Let A and B be groups, and let X be a subgroup of 

A; let py:43 B be a group homomorphism. We will show that (X )' =(X ')by 
showing that: 

f//(X )' c X') and f//(X ')c yX)'. 
Note that the notation (X )' denotes the commutator 

subgroup of (X). Let a e y(X)' be a generator of (X )' . 
Then 

a = (a) f// (b) y (a)' (b) 
for some a, b e X. Because f// is a group homomorphism, we may simply the 

expression to get a= (aba'b') e (X'),as aba'be X'. 
Thus, 

(X)' c (X'). 

Now, let p e f//(X ') be a generator of (X') · 

Then B = (aba 'b') for some a, b c X. As y is a group homomorphism, we may 

expand this expression to get 

3=y (a) (b) (a)' (b)' e (X)', 

as B is the commutation of two elements If/ (a), If/ (b) e If/ (X). 

Thus, 
lf/(X ') C lj/(X )' . 

Therefore, 
y(X )' =(X'). 

. thi eans that for a subgroup Hof G, that rp(H)' = rp(H') For our particular case, s m 

53 

J 



Thus, have that 
(G)" = po(G')' = o(G") 

Since G is metabelian, G" = { e}, and as group 

homomorphisms always map identity to identity, we have that . 
po(G)" =po(G")=e) =e 

Thus, by theorem 4.2.4, p(G) is metabelian. 

We can now see that metabelian groups really are simple instances of solvable 
groups. 

A metabelian group is a solvable group which has the sequence of subgroups 
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4.3 Groups with many hypercentral subgroups 

We obtain a characterization of solvable groups with the minimal condition 

[see definition 4.3.5] on non-hypercentral (respectively non-nilpotent) subgroups. 

Definition 4.3.1(Maximal subgroup) 

A subgroup H ofG is maximal if there is no proper subgroup K contains H strictly. 

For example: A4 is maximal subgroup of S,. 

Definition 4.3.2( Minimal non-abelian group) 

A minimal non-abelian group G is a non-abelian group in which every proper subgroup 
is abelian. 

For example: S; is minimal non-abelian group. 

Definition 4.3.3(Minimal non-nilpotent ) 

A group G is minimal non-nilpotent if each of its maximal subgroup S is nilpotent but G 
itselfis not. [39] 

For example : S5 is minimal non-nilpotent group 

Definition 4.3.4( Maximal condition) 

A group G is said to satisfy the maximal condition if every strictly ascending chain of 

subgroups 

is finite. 

Definition 4.3.5 ( Hypercentral Groups) 

. . h central if the last term of its upper central series is a group A group G is said to be 1yper 
G itself. [ 40] 

For example: Qs is hypercentral group. 
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Definition 4.3.6 (minima] condition Min-ZA ) 

A group G satisfies the minimal .. 
condition on a non-hypercentral subgroups Min-ZA 

(respectively, the minimal d" · · condition on non- mlpotent subgroups Min-N) if for any 
properly descending chain G > G > · · 16''2=...2G, 2... of subgroups G, in G there exists a 

number m E N such that G, is hypercentral (respectively, nilpotent) for each n > m .[ 41] 

Definition 4.3.7(Quasicyclic group) 

The p-quasicyclic group ( or Prufer p-group) is the p-primary component of Q/Z ,that is , 
the unique maximal p-subgroup of Q/Z. 

The p-quasicyclic group will be denoted by Z(p) 

Definition 4.3.8 (Cernicov group ) 

A Cerinkov group ( or Cherincov group) is a group G that has a normal subgroup N such 

that GIN is finite and N is a direct product of finitely many quasicyclic groups. 

Cherincov groups are named after Sergei Cherincov, who proved that every solvable 

group that satisfies the minimal condition is a Chernicov group. Also, afinite extension 

of an abelian group with minimum condition is called Chernicov group. 

Definition 4.3.9 (Non - z-group) 

Let ? be a class of groups .A group which does not belong to ? but all of whose proper 

quotients belong to is called just Non-? -group. 

Al hi h does not belong to ? but all of whose proper subgroups belong to so, a group w c 

R is called minimal-Non- ? - subgroup.[43] 

Definition 4.3.10(HM- group) 

· tat r subgroup G' is hypercentral and the A group G is HM- group if its commu o 

quotient group G/G' is a divisible Cernikov p-group. [43] 
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Definition 4.3.11 ( subnor 1 ma subgroup) 

A subgroup H of a group G . b 
G h is su nonnal if there is a finite chain of subgroups of the 

group eac one normal in the next b . . 
egInning at H and ending at G . 

In notation, H is k-subnormal in G if th 1 ere are subgroups 

H =H H ,H .H 0> 1> 25- , =G 

of G such that H, <H,, for each i. 

Definition 4.3.12 (Conjugate Closure): [37] 

The conjugate closure ( or nonnal closure) of a subset S of a group G is the subgroup 

of G generated by S, i.e. the closure of S° under the group operation, where S° is the 

conjugate of the elements of S: 

S= {g'sg:g e GandseS} 

The conjugate closure of any subset S of a group G is always a normal subgroup of G; in 

fact it is the smallest normal subgroup of G which contains S. 

For example: the conjugate closure of the empty set is the trivial group. 

Also, any normal subgroup is equal to its normal closure. 

Definition 4.3.13(Heineken- Mohamed group) 

Heineken - Mohamed group is a non-nilpotent p- group (p a prime)in which every 

subgroup is both subnormal and nilpotent . 

Heineken and Mohamed construct a metabelian group G with the property that every 

proper subgroup of G is nilpotent and subnormal in G but G itself has trivial center. [ 42] 

Also, any Heineken - Mohamed type group is a minimal non-nilpotent group and 

satisfies Min-N and Min-ZA.Therefore S; is Heineken-Mohamed type group. 
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Definition 4.3.14(Normaliz er condition) 

A group G is said to satisfy the nonn . . . 
:.· · 1alizer condition (NC) if every proper subgroup of G 
is properly containd in its normali: : 1zer in G. 

That is, if and only if H <N,(H) for allH <G . 

A group that satisfies the nonnal · d' . . 1zer condition is sometimes called an N-group. [42] 

For example: Every nilpotent group is an N-group. 

Definition 4.3.15 (Locally Nilpotent Group) 

A locally nilpotent group is a group G in which every finitely generated subgroup is 
nilpotent. [ 40] 

For example: All nilpotent groups is locally nilpotent. 

Lemma 4.3.16 : [ 43] 

Let G be a locally nilpotent group. IfG satisfies Min-N (respectively,Min-ZA), then G 
satisfies the normalizer condition and every minimal non-nilpotent (respectively, non 

hypercentral) subgroup of G is subnormal. 

Proof: 
Let H be a proper subgroup of G. If H is either a non-nilpotent (respectively, non 

hypercentral) or maximal nilpotent (respectively, hypercentral) subgroup of G, then the 

set {S : H <S <G} has a minimal element, say M. Since H is a maximal subgroup of M, we 

conclude that H is normal in M. Moreover, every nilpotent (respectively, hypercentral) 

subgroup of G satisfies the normalizer condition and so G has also this property. 

Let H be a minimal non-nilpotent (respectively, non-hypercentral) subgroup of G. 

Then the quotient group GIG' is quasicyclic (respectively, quasicyclic or trivial). 
If the derived subgroup H' is not normal in G, then Nc(H') is a proper subgroup of 
NG(Nc(H')). Since any radicable abelian ascendant subgroup is subnormal, the subgroup 

H/H' is subnormal in M/H'. As a consequence, His subnormal in M. The quotient group 
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M/H' has a finite series whose qu ti : 
it is .Cernikc J0 ents satisfy the minimal condition on subgroups and 

so11 1s a OV group. 

Let t eNc(M) \M. Then (H')' · · 1s normal in M and therefore M/ (H' (H')' is 
Cernikov. Hence H'= H' (H')' N . . . low it is not difficult to prove that H' = (H')', 
a contrary with the choice f t Th 0 • us a subgroup H' is normal in G. Since H/H' is 
ascendant in G/H, we conclude by the same argument as above that H/H is subnormal 
in G/H'and consequently His subnormal in G. 

Corollary 4.3.17. 
Let G be a non-nilpotent (respectively, non-hypercentral) locally nilpotent group 

satisfying Max-N (respectively, Max-ZA). If all proper normal subgroups of G are 

nilpotent (respectively, hypercentral), then G is minimal. non-nilpotent (respectively, 
non-hypercentral) group. 

Proof. 

Let H be a proper subgroup of G and H be a minimal non-nilpotent (respectively, 

non-hypercentral) group. By Lemma 4.3.16 H is subnormal in G. Then the normal 

closure H° of H in G is a proper normal subgroup of G and, moreover, HG is non 

nilpotent (respectively, non-hypercentral), a contradiction. Hence G is a minimal non 

nilpotent (respectively, non-hypercentral) group. 

Theorem 4.3.18 [ 43] 
Let G be a solvable group. Then G satisfies the minimal condition on non-hypercentral 

(respectively, non-nilpotent) subgroups if and only if one of the following holds: 

(I) G is a hypercentral (respectively, nilpotent) group; 

(2) G is a Cernikov group; 
(3) G = P xQ is a group direct product of a hypercentral (respectively, nilpotent) 

. Q d a non-hypercentral (respictivily, non-nilpotent) p-group P Cernicov p'- group an 
. . al HM-subgroup H of finite index (respictively ,HM- subgroup 

which contains a norm 
;4 :. A+ the ·ilpotent commutator subgroup H') with the normalizer 

H of finite index with ie n1 

condition. 
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Proof: 

Let G be a solvable group satisfyin M' . 
. . . g m-N (respectively, Min-ZA). We assume that G 
is neither nilpotent (respectively, hype ral) 

. ' ercentr nor a Cernikov group. 
Then G contains a subnormal non- ·il . · -nilpotent (respectively, non-hypercentral) sub-group 
H in which any normal subgrour ·> ;j pis ru potent (respectively, hypercentral). 

Furthermore, if H= G, <1G; <1···<1G,=G ' fini 
n = 1Sa te subnormal series connecting H 

to G, then every quotient G;;/G; satisfies the minimal conditic ab; id. 3 n 1 on on su groups an so it 
is Cernikov. 

If the subgroup H is not locally nilpotent, then it contains a finitely generated non 

nilpotent subgroup F. Then H = H' F and the quotient H/H' is cyclic of prime power 

order, because in other case H is nilpotent (respectively, hypercentral) as product of two 

nilpotent (respectively, hypercentral) normal subgroups. 

So the intersection H'nF is a nilpotent subgroup. 
Now it is easy to see that F is finite. Since the set of all subgroups containing F satisfies 

the minimal condition, G is a Cernikov group. This is a contradiction. 

Hence His a locally nilpotent group and therefore by Corollary 4.3.17 His a minimal 

non-nilpotent (respectively, non-hypercentral) p-group for some prime p. 

As a consequence, G is a locally finite group. By the above argument G is a locally 

nilpotent group. 
To complete the proof it is enough to suppose that G is a p-group and to prove 
that in this case it contains an HM-subgroup of finite index satisfying the normalizer 

condition. This is obvious if n = 0 because G = H is a minimal non-nilpotent 

(respectively, non-hypercentral) group and so G/G' is quasicyclic. 

By induction on n, we may suppose that G,- contains an HM*-group T of finite index. 

S. G • al in G without loss of generality we can assume that T is normal in Ince mn-iis norm '3 
. GIT is Cernikov. IfD is a preimage of the finite residual D/T 

G. Then the quotient group 
of G/T, then Dis an HM-subgroup of finite index in G. 

. D tisfies the normalizer condition. The proof is complete. 
In view of Lemma 4.3.16 sa 
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Corollary 4.3.18 

Let G be a non-hypercentral (respectively, non-nilpotent) group. Then G satisfies 
Min-ZA (respectively, Min-N) if and only if G satisfies the normalizer condition 
(respectively, G satisfies the normalizer condition and G' is nilpotent). 
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