PALESTINE POLYTECHNIC UNIVERSITY
College of IT and Computer Engineering

Department of Computer Science and Computer Engineering

Graduation Project

Campus Grid Computing System

Project Team
Ibrahim Qdemat & Muhammad Dwaib

Supervisor

Dr. Mohammed Al-dasht

According to the system of the College of IT and Computer Engineering, and to the
recommendation of the Project Supervisor, this project is presented to Computer Science and Computer

Engineering Department as a part of requirements of B.Sc. degree in Computer System Engineering.

Hebron-Palestine

Jun-2014



Signatures

Project Supervisor signature

oooooooooooooooooooooooooooooooooooooooo



Dedication

We dedicate this work to our parents, brothers, sisters and friends. Without their
continuous support, endless patience, understanding and encouragement, this

project wouldn’t have been completed successfully.



Acknowledgment

Our deepest gratitude and thanks go to our supervisor, Dr. Mohammed Aldesht for his
great efforts, enlightening guidance, continuous supports and encouragement throughout the
entire period of this project. Also we would like to thank labs’ supervisors, lecturers and students
for their valuable assistance during our experiments. We wish to thank the examining committee

for their support and guidance.

Special thanks to our parents, brothers and sisters, who always encourage, support us
throughout our life. We are also grateful to all our colleagues in the computer engineering field.
We would like to thank everyone who, in way or another, contributed in the preparation and the

completion of this project.



Abstract

Grid computing is a service for sharing computer power and data storage capacity over
the Internet. This project aims to increase the utilization of the available computing resources in
PPU. Computing resources at different facilities of the university especially those in labs are
almost idle for long periods of time or for scattered periods. These resources can be exploited in

another place or for other computational tasks in the university.

The goal of this project is to develop a grid computing system that provides the research
units with a large computational power to enable the working on a computational-intensive

experiments that may not be able to handle previously.

In addition, this project aims to operate a grid computing system with minimal costs.
Hardware costs are eliminated since the project will use the hardware components that are
already exist in the university, no additional components are needed. Software costs approaches
to zero since all the dedicated software needed to develop the system are free open source

software. So we will get a system that will provide a large computing power with a minimal cost.



gdlall

ol dehsal) 5ead Apball 5yl Pliiad I Gangd s depall k) Y laa 2a) A LS Gagal)

c_;!Lu]\ iy eial) ol dallea o Wyea Jaad ‘5_\3\} Jgaddl Al ‘55 0o uﬂ\ sy o ehalloda EOS

JSAI Lalge Slad) G (SaT (S Al dglun 8 ) gling A daelal)l 3 @3l (e 2paall Sllis

s (Sas Al Cosula Sl e ain 513 il iy Y gling S Sad) e a0l ) GLaYL meaal
»3a oSy . (super computers)ililgdl eyl cild Cundeally Bihall o3a 255 Gob e Al dgluall ¢l oda
Aplooad) bl 5 Ll Sy A b ol 8 Ll 5 e Cad (lal) (i) 3 Al A ) e
Cyiina A 3agasall Cplal) 3eaY dplual)l il wpend e Jony 3 LS Aagall Qs by Gyl e Al
Sl Al il Aaba ) el 20y ey 52 B gl isula Slea e Jimni Cuny kil Csulal)

el g lias

o Basasal) Beat Lulual) 5ol Dliiad Lo Clual Blae Ludyd ehal o Janin pyphall 1 oL
AUl a5 i Tleil s . BeaY) G Aepena o Sl Auwsal) ol el o Janin Liag L Raslall cilida

2 g oy Lgimdlany osid et (o Aplua (il s JUiil e 5yl

Vi



Project Contributions

This document summarizes the contributions of our project. Each of these contributions
is described briefly below.

Studying CPU usage at PPU computer labs

The study applied to find the average CPU utilization at PPU computer labs. Two
freeware programs were used for this purpose: Altra CPU monitor and CPU usage logger. These
two programs installed on a sample of computers from different labs. The study applied for

approximately one month.

Through this study we found that the average CPU usage at PPU computer labs is
approximately around 9% for most of the time. This means that there is a huge computational
power can be obtained from computers at PPU computer labs to perform important researchs.
For more details about this study see section 7.2.

Configuring and installing the grid server and grid clients

We had configured a grid computing system which consists basically from grid server and
grid clients. Grid server control and manage the overall system. Grid clients represent resources

that can be attached to the server to perform computations.

This system provides the environment for researchers to perform their computations. It also
allows developers to focus on advanced features in developing the grid computing system rather

than starting from the beginnings.

We chose the BOINC to be our grid computing middleware. BOINC server runs on UNIX
operating systems. We used Ubuntul2.04 LTS 64-bit Linux distribution. In addition, we
installed the BOINC server software prerequisites and dependencies. Furthermore, we solved
some problems that appeared during the deploying of BOINC server. The detailed explanation

about the BOINC server setting up process is described in appendix A.

At the client side, BOINC client software was installed on each computer participated in

our grid system. We installed BOINC client as a service by checking the Service
VI



Install checkbox. In addition, we disabled screen saver option and prevented other users (usually

students) from controlling BOINC client software. More details at section 6.2.2.

Customizing and automating the core functionalities of the grid system

The BOINC middleware implemented the core functionalities of the grid system. But if
you want to handle any of these functionalities, you need to deeply understand the BOINC
environment, you must be able to write shell scripts, you have to be familiar with Linux OS
administration, you also need to do a lot of steps to perform any of these functions.

We implemented a set of shell scripts that simplify the process of executing any of these
functions. You can, for example, create a whole BOINC project by executing a one terminal
command. Using these shell scripts we can control the BOINC project and the BOINC clients.
These scripts also enable us to build another level of the system which is the grid portal. For
more details about the implementation of these scripts you can see section 6.2.

Lunching Single Job Project

BOINC is designed to handle streams of millions of jobs. It takes some work to set up a
stream: you need to create applications and application versions, workunit (WU) and result
templates, validators, assimilators, etc. we implemented a set of shell scripts that handle running

a job without any of these hassles and handle also the results of the execution.

To enable single job submission, we created a special project called single job project. Single
job project is a BOINC project that it is configured to use single job submission mechanism
supported by BOINC; but we modified the source code of this mechanism to make it suitable for

our purpose.

Vil



In addition, we created a set of shell scripts and PHP files that are responsible for

submitting a job, monitoring its execution and handling the result.

By single job mechanism, the system user (usually the researcher) can submit any C/C++
program compiled for a particular platform to be executed on one of clients attached to the

single job project.

Also, we configured the single job project to support the famous and well-known
platforms: Windows, Linux and MAC operating systems with their 32-bit and 64-bit
architectures.

Furthermore, we automate the process of creating and configuring single job project
which contains a lot of hassle and requires you to follow a long list of steps. Thus, the single
job project becomes one of the projects that are supported by our grid system. It is designed to
support the single job submission mechanism.

Implementing the Grid portal

Without a grid portal all the work and interaction with the grid system is done locally at
the grid server by executing terminal commands. To simplify the interaction with the grid system
such that a grid user doesn’t need to write terminal commands. Also, building the grid portal

enables the interaction with the system remotely.

Thus, the grid portal enables users to interact with the grid system remotely through user
friendly interfaces; they don’t need to know anything about the underlying system. Grid portal
make the use of the shell scripts implemented previously to support management and control
over the grid system, enable the users to submit jobs for execution over the grid system and
enable the control of the jobs execution. More details about the grid portal can be found in

section 6.3.

Testing the Grid system performance

After investigating the grid computing system we performed an experiment to test its
performance. This experiment was applied by running a BOINC project that contains a simple

application that provides computations for execution over the grid clients. This application is

IX



called Test application provided by the BOINC; it generates instances that read input text files,

converts their contents to uppercase and write the results to the output files.

The sample size of grid clients used in this experiment is 40 PC. The experiment was
applied for two weeks. Through this experiment we found that each PC provides approximately
3.45 GFLOPS as an average. See section 7.3 for more information.



List of contents

T I
SIGNALUIES ...ttt et et I
DedICatiON. ... et e Il
ACKNOWIEAGMENT. ... ... e v
ADSTIACT L. \Y
Arabic ADSEIACE ... e VI
Project CoNtribULIONS. ...t e Vil
LiSt OF CONEENES. ...\t XI
List Of taDIES ....eee XVI
LISt OF fIQUIES .o XVIII
LiSt OF APPENAICES . .oevii it e e XX
Chapter One Introduction 7
L1 OVBIVIBW .ottt e e e e e e e s 1

1.2 1dea DeSCIIPLION .....vintieiiie e e e e L

1.3 Problem/MOtIVALION ..ot e e 2
e o Tt S Tol] oSSR 3
1L SUMMIAIY e e e e 7
Chapter Two Literature Review and Theoretical Background 8
2. L OVBIVIBW ...ttt e e e et e e e e e 8
2.2 Theoretical Background ............ccoouiiiiiii e e 8
2.2. L DEfiNITIONS ....eti e e 8
2.2.2Buildingagrid..... ..o D
2.2.3 Classification of Grids ......ccccovviriiii e e 11
2.2.4 Grid computing POrtals ...........ooeoiriiiii e 15
2.2.4 Grid-pOWEred PrOJECES. . ..viiie it ettt 16
2.3 Literature REVIEW ........ccociieiiiie e eiee e e e et eeeaeeeeeeeaneeneennena 10
2.3.1 PC Grid Computing In Higher Education Institutions..................... 17
2.3.2 How is grid computing different from the World Wide Web?................ 18
2.3.3 Grid versus Volunteer Computing ............c.ooeiviiiniiriiiiriiiieienenns 18

XI


http://www.gridcafe.org/EN/building-grid.html
http://www.gridcafe.org/EN/grid-powered-project.html

2.3.4 The University of Westminster desktop grid system ..........c.c............. 20
2.4 SUMMANY . eyttt et ie et e et e e e e et ee e e e e e e re e esbeeesbeeesbeeesnnesnsnen s e veens 24

Chapter Three Project Management Plan 22
UL OVEIVIBW ..ottt e e e e e e e e e 22
B 2 PrOJECt PlaN ... e 22
3.2.1 Sets Of Project tasks ........c.oeiriirii i 23
3.2.2 Time estimation (Gantt chart)................cooii i 27
3.3 project methodology ......c.onviniii 27
3.3.1 flow of ProjeCt Work ..o 27
3.3.20ptioNs and @NalYSIS........ouiurii i 28
3.3.3 RISKMaNagemMeNt ..ottt 33
3.4 Project components and resource cost estimations.............o.oevvveieiiiiiiennns 41
3.4.1 Hardware COMPONENTS ........veeititetetet ettt et et eerie e eeeaeee e a e 41
3.4.2 Software COMPONENTS ... ..ouiiiieii it e e 42
3.4.3 HUMAN FESOUICE COSES ...ttt ettt et et e 42
3D SUMIMIAIY e e ———————_———— 43
Chapter Four Software Requirements Specification 44
AL L OVEIVIBW .ottt ettt e e et e e et e et e, 44
4.2 Requirements DESCIIPHION ....ouienuintiniitit it 44
4.2.1 SYSIEM ACTOIS ..ottt 44
4.2.2 Use-Case teMPIaes ........oniirii i e 45
4.2.3 USe-Case DIagrams .........ouiiriiit i e 65
4.3 Class-Responsibility-Collaborator Modeling (CRC): ..., 68
4.4 Class Hierarchies and relationships ..o 71
A.S SUMIMIAIY Lttt ettt et ettt et e e et e e et e eraeere e e e e 72

Xl



Chapter Five Software Design Description 73

ST OVEIVIEW ..ttt ettt et e e e e e e e et 73
5.2 BOINC MiddIeWare .......cc.oiiniiiitiiie et e e e eeenireens 73
5.2.1 BOINC ATChiteCtUI® .. .ueeeeetitie et e e 74
522 BOINC SEIVET ...ttt e 75
5.2.3 BOINC CHENE ...neneiteet e e 75
5.2.4 BOINC Database. .....cuiiiieiiieie i e e e eeeeaes 76
5.3 System configuration desig@n............couiiiiiiiiiiiiiiiii i i ees e e aans (O
5.3.1 Installing BOINC Server Software.............coovveiiiniiiiineiiiiie e, 77
5.3.2 Creating And Running A BOINC Project..........ccoiviiiiiiiiiiiiiiiinn, 79
5.3.3 Deploying BOINC CHents ..........cooiiiiiiiiiiiee e 83
5.4 Object relational model ..........coooiiniiii 84
5.5 System functionalities. ..ot e e 88
5.5.1 Admin side functionalities. ..............cooiiiiiiii i, 89
5.5.2 User side functionalities ...............coooiiiiiii 95
5.5.3 System functionalities ............ovueieniiiiriii i e 97
5.6 Software interface deSi@N.........oviiuiiiiitii e 98
5.7 Data Base DeSI@N......ouuiiiiiiii it 107
5.8 Hardware interface Design.........c.oviiiiiiiiiiiii i 108

5.9 Overall Work SUMMary...........coooeeiiiiiiiii i iieieeeeeeecesesesesieeie e e e e ea e 109

B5.A0WRAL IS INEXL ...t 110
o T00 I A 0110 1y 111
Chapter Six Implementation and Testing 112
B.LOVEIVIEW ...eititii it 112
6.2 System Configuration and Core Functions...............ccocoiiiiiiiiiiiiiiiinniin. 112
6.2.1 BOINC Server Deployment ...........ccoooiiiiiiiiiiiiiiiiii et 112
6.2.2 BOINC Client Deployment...........ccoooviiiiiiiiiicee e 113
6.2.3 ProjeCt CreatioN. .......c.oiviini i e e 113
6.2.4 Create Admin ACCOUNT. ... ...o.uitiitt it 116
6.2.5 Disable/Enable Account Creation ............ccovvveiiiiiiieniinnienniinnnns. 117
6.2.6 Client to Project Attachment/Detachment..........................ooe. 118
6.2.7 Project CONtrol ..., 121



6.2.8 Update Attached Projects ..........oovviiiiiiiiiiii e, 122

6.2.9 Project Deletion ... ..., 123
6.2.10 SINGIeJOb ProjJect.. ... ..ouiiiiii s 125
6.2.10.1 Single job submission mechanism....................cooiinen.n. 125
6.2.10.2 SingleJob Project .........coooiiiiiii 125
6.2.10.3 Automatic SingleJob Project Configuration....................... 131
6.2.10.4 JOb SUDMISSION ....ouvieiii 133
6.2.10.5 Job Submission AUtOMation ..............cooveiiiiiiiiiiiiii s 136
6.3 Portal Implementation.............ccooeiii i 141
6.3.1 Software development tools and programming languages .................. 141
6.3.2 Portal SUDPAgES ... 141
6.3.3Portal Main page .........cooiiiii e 102
6.4 SeCUIIty ISSUES ...ttt 155
6.4.1 Securing the Server and the Clients .............coooiiiiiiiiii e, 155
6.4.2 Client/ Server Authentication and Authorization.............................. 156
6.4.3 Protecting Administrative web interface ... 157
6.4.4 Securing the Web Portal ... 158
(ST =T 1] 1o [PPSR 159
6.5.1 Testing system functionalities (Testing lower level).......................... 159
6.5.2 Testing Portal functionalities (Testing higher level)........................... 174
6.6 SUMMATY .. ...ttt e e et et 193
Chapter Seven Experiments and Results 194
T N 0S4 1o A TP 194
7.2 Average CPU usage at PPU computer labs ......................ccoooiiiie, 194
7.1.1 Environment specification and work difficulties............................... 194
7.1.2Practical WOrk..... ... 198
7.3 Examination the performance of PPU Environment ..................coooiiiiiiiniiiienne. 201
T QUM Y .ottt ettt e e et e e et e e e 204

XV



Chapter Eight Conclusion and Future Work

B L OVRIVIEW .. utttititt ettt et et e et e et et e e et et e e et e et e e eans
8.2 CONCIUSION ...eeei e e e e e e
8.3 Challeng@es . ..ottt e
BAFUtUIe WOTK ..o
B D SUMIMIANY .o e
RO B ENCES ..ot
Appendix A Server and Client Software Installation
A.1 BOINC server Pre-installation requirements ................cooeeviieeiniennininenn...
A.L.1 Hardware reqUIiremMents ...........oooeieiniiiieiie e
A.1.2 Software reqUIrEMEeNtS ..........o.iiiiiiiii e
A.2 BOINC server installation ProCess ...........eeveerieteiteanietenieaeeneenneennnn.
A3 Trouble SNOOLING .. ..o
A.4 BOINC Client Installation .............coouiiriieiniiriir i,
A4 1 Microsoft WINAOWS .......ooininiieiiiee e
Ad.2 LINUX oo e
A.4.3 Other Platforms .........oooniiiiiii e
A.4.4 BOINC Clent SECUITLY ...vuetititiiiiiitea e
Appendix B Project Creation

B.LBOINC PrOJECE . vttt
B.LLIProjJeCt DB ....ouiiieiie e,
B.1.2 Project DIreCtOry ......oviuiiiii e
B.1.3 Project configuration file ...
B.2 Project creation pre-requIremMents .........ccccoevverieriireeiiiieneeanenns.
B.3 Project Creation PrOCESS ........c.ovvieiniiiiieie e,
B.3.1 Creating an Empty BOINC Project .............cccoovviiiinnnn.
B.3.2 Creating project having a test application example..............

B.4 phpMyAdmin Installation ...........cooiiiiiii



Appendix C Security 255

C.l INtrodUCHION. ... vttt et e e e 255

C.2 Protecting Administrative web interface..........cccocooeviiiiinncnienieneee e, 256
C.2.1 Protection by .htaccess ..........coiiiiiiiiii 256
C.2.2 Project-defined protection policy .............cooviiiiiiiiiiiinn, 257

C.3 Other TechniqUES. ... ...ouviniieiitiiiieiienieeieeeie e e e ee e e enenn 258
C.3.1 COde SIGNING. ..uvieint et e e e aee 258
C.3.2 Secure Socket Layer (SSL) ......ovviiiiiiiieiecie e, 261

Appendix D Boinccmd tool 263

D.1 Account query and attach...................oiiriiiiiie e, 263

D.2 SEAE QUEIIES ..\ttt ettt et e e e et e e 264
D.3 Control OPerations ...........c.o.ieiniiii i e 265
D EXaMIPIES .ottt e 267
Appendix E Glossary 268
List of tables
Table 3.1: RiSK Management ........o.irii i e e 33

Table 3.2: lack of experience information sheet..................ciiiiiieeeen. 34

Table 3.3: Late delivery information sheet..................cooiiiiii e 3D

Table 3.4: Lack of testing experience information sheet.................cccooiiiiiiiiiiinnnnnn.. 36
Table 3.5: low staff productivity information sheet...................oooiii . 37
Table 3.6: Lack of training on tools information sheet....................coooiiiiiiiii e, 38
Table 3.7: Loss of team member information Sheet.................ooviiiiiiiiiiii e, 39
Table 3.8: Inaccurate cost estimations information sheet. ... 40

XVI



Table 3.9: Hardware COmMPONENTS.. .....oiuiiietiit et e e eeeeaaeenns 41

Table 3.10: Software COMPONENTS ...ttt e e e 42
Table 4.1: Adding/deleting project use case template ..............coviiiiiiiiiiiiiiinein, 46
Table 4.2: Adding/deleting user use case template..............coooiiiiiiiiiiiiiiii e, 47
Table 4.3: Attaching/deleting resource use case template.................cooiiiiiiiiiineennn.. 48
Table 4.4: Update resource use case template ..............cooiiiiiiiiiiii e 49
Table 4.5: Stopping/starting/restarting project use case template ....................cooeinnnn 50
Table 4.6: Modifying user information use case template .................ocooiiiiiiiiiiiiiinnn 51
Table 4.7: Managing computing preferences use case template ...........cccccoeoeeviiieeiciciinennn, 52
Table 4.8: Monitoring project status use case template......................cccccecviiveiieesiesieeseennn. D3

Table 4.9: Upload a new job use case template...... ........ooeviiriiiiniiniiiiniieesieeseesieseenen 94

Table 4.10:
Table 4.11:
Table 4.12:
Table 4.13:
Table 4.14:
Table 4.15:
Table 4.16:
Table 4.17:
Table 4.18:
Table 4.19:
Table 4.20:
Table 4.21:
Table 4.22:
Table 4.23:
Table 4.24:
Table 5.1:
Table 5.2:
Table 5.3:
Table 5.4:
Table 5.5:
Table 6.1:
Table 7.1:

Monitor jobs execution status use case template. ...............ccccoeevevcieeiviennnn 95
Abort jobs while it is in Progress stat..............cccociieriiiiiienie et e eeesiieeieennn. 00
Download the results of completed JobS..........ccovevieiiiie i 57
Delete the results of completed JoObS .............coiiiiiiiiiiiie .. D8
Modify account information ... 59
Generate instance of job use case template .................cooiiiiiiiiii, 60
Send instance to a client use case template ...............oooviiiiiiiiiiiii 61
Validate results use case template ..o 62
Prepare results for download by USers ... 63
Job Execution use case template ...........c.cooeriiiiiniiii 64
DBConnection CRC..... ...t e e e 68
ProjectCreation CRC ... ..ot e e e 68
ProjectManagment CRC ... ..., 69
USerCreation CRC ... .o e 69
JObSUbMISSION CRC ... . 70
DBCONNECLION ClaSS. ... ..ttt et e eaaes 85
ProjectCreation Class ..........cooiiriii e 85
Project Management Class ...........oouiiiniii e e 86
USEr Creation CIASS .......uuein ettt e e e e 87
JOBSUDMISSION CIASS ...o.eee e 88
Supported PIatforms. ... 131
Computers SPeCITICAtIONS. .........oeiti it e 195



Table 7.2: Average CPU usage at AL-Beruni(l) lab foroneday.....................ooooiiniii. 198
Table 7.3: Average CPU usage in PPU computer 1abs ...............ccoiiiiiiiiii 199

List of figures

Figure 2.1: Grid ArChiteCtUre ......ccceoiiiiieiier e e cvieeneene. 10

Figure 2.2: A typical form of cluster computing ..., 11
Figure 2.3 Example of Enterprise Grid Infrastructure .................ccoiiiiiiiiiiiiieninnnn 12
Figure 2.4 Local PC Grid at the University of Westminister .................coiviiiiiiiinecnn. 19

Figure 3.1: Figure 3.1: Project time liNe............oiiiiiiiieie e, 20
Figure 3.2: BOINC ArChIteCture .............ocoiiiiiiiiiiiere e e eee e ene e, 29
Figure 3.3: Alchemi layer architecture .................ccoiiiiiiiiiiiiiiiiiiie e ieisiesieeiienn.. 31

Figure 4.1: Admin USE-CaSe IAGIaM. . ... .ouiutinit et et eee e e e e 65
Figure 4.2: User USe-Case TIagram ........ooeeueuiiteniniit ettt e et eee e 66
Figure 4.3: system and client use-case diagram .................ccoviiiiiiiiiiiiiiiiiiinnenann. 67
Figure 4.4: Class Hierarchies and relationships diagrams..................ccciiiiiiiinnnnn.n. 71
Figure 5.1: BOINC architeCture ..........ccoiiiriiiiii e e 74
Figure 5.2: BOINC ClHeNt. ... e, 75
Figure 5.3: Installing BOINC Server Software.............cccoeviiuiuiiiiiiiiiiiiiiiiiiniennne. 77
Figure 5.4:Creating And Running A BOINC Project ..........cccovviiiiiiiiiiiiiiiiiieenns 79
Figure 5.5: Deploying BOINC CHENtS........ouiuiiiiie s e, 83
Figure 5.6: Project Creation...........o.ieiieirinit i e e 89
Figure 5.7: stopping/starting/restarting Project ...............oe.eueuerininininineniininienenenenen. 90
Figure 5.8: attaching/detaching client to @ BOINC project ..............ccoovviviiriiiiiiniinnnnn. 91
Figure 5.9: disable/enable account Creation ..............cooiuieiiiiiiiiin i 92
Figure 5.10: adding new user to @ BOINC Project .........c.ovieiriiieiniieeeieeieieeeienen, 93
Figure 5.11: USErs Management .........uineentitit ettt et et e et e e e e e ene e 94
Figure 5.12: Job SUDMISSION .....uieitit e e e e 95
Figure 5.13: JODS MANAGEMENT ...\ttt e e e e 96
Figure 5.14: JOD EXECULION .....unitit et e e e 97

Figure 5.15: The ADOUL Page ......c.oiiiiiiiii e e, 98
Figure 5.16: CONTACE PAQE ....viirintitii ettt et et et e e e e e eeaaaens 99
Figure 5.17: Login Page INterface ...........cooiiriiiiiiiii e 100
Figure 5.18: Admin home page interface ............c.oooiiiiiiiii e 101



Figure 5.19: Users page iNterface ............cooeiiiiiiiii e 102
Figure 5.20: Project management page interface ................ocoiiiiiiiiiiiiiiiiiieieee 103
Figure 5.21: Modify user page interface ............cooiiiiiiiiiii e 104
Figure 5.22: Job submission page interface .............coooiiiiiiiiiiiiiiiii e 105
Figure 5.23: modify account page interface ...............cocoiiiiiiiiiiiii i, 106
Figure 5.24: Grid System DB ERD ........oooiiiiiii e 107
Figure 5.25: Hardware interface design ............ccooieiiiiiiiiiiiiiiiiii e, 108
Figure 6.1: Create Test Project Algorithm ............ccoooiiiiiiiiiiii e, 116
Figure 6.2: Create Account Algorithm ..., 117
Figure 6.3: Attachment/Detachment Algorithm .......... ... 120
Figure 6.4: Update Attached Projects Algorithm ...............coooiiiiiiiiiiiiiiiiiiiii, 123
Figure 6.5: Project Deletion Algorithm ...........cccooiiiiiiiiiiiiiiii e, 124
Figure 6.6: Single Job Configuration Algorithm................coiiiiiiiiie, 132
Figure 6.7: Submit Job Algorithm ... 139
Figure 6.8: Output Handler Algorithm ... 140
Figure 6.9: Admin page left part ...........cooiiiiiiiiiiiiiii e eieenne e 142
Figure 6.10: User page left part ........ccooooiiiiiiiiiiiiiiiii e 142
Figure 6.11: Project creation form ................ooiiiiiiiiiiiiiiiiiiiiinncseeneenn. 143
Figure 6.12: Project creation form ..............ccooiiiiiiiiiiiiiiiiiiiiiiiirereeeniee e eenennn 144
Figure 6.13: Add new user form ............c.ocoiiiiiiiiiiiiiiiiiiiii e 145
Figure 6.14: Add new user form ............ccciiiiiiiiiiiiiiiiiiiieeeeeeeeiee e, 140
Figure 6.15: Project management form ...............c.coociiiiiiiiiiiiiiiiiiiiiininineneen 147
Figure 6.16: Client attachment ... 148
Figure 6.17: Header subpage ..........c.ocivviiiiiiiiiiiiiiiiiiiiiiiiieieeeeseeseeseesseesneseennenn 151
Figure 6.18: Footer subpage ........ccoceiiiiiiiiiiiiiiiiiiiiiiiiii e sieeseeeieeneeeenee. 11
Figure 6.19: Download result .........cccoooiiiiiiiiiiiiiiiiiiiiiiiieeeenreneeneeneenne 151
Figure 6.20: Results SUbPage ........c.ovviiiiiiiiiiiiiiiiii e 152
Figure 6.21: Admin home page ........cccoviiiiiiiiiiiiiiiiiiiii e eee e 153
Figure 6.22: USETS PAZE .. .uvenrintinieiieeieiteeteiteeie et e ireesieeteesieeereesenessseesneesseenenees 1 94

Figure 6.23: Create ProjJeCt CaSE 1 .ooioioiiiiiiiiic e 159
Figure 6.24: Project hOmMe PAgE ...oociiiiiiiiiie e 160
Figure 6.25: Project creation €ase 2(WIONG USAJE)......c.eiurreerueriurreereeseesseesseesseseessnessesssessens 160

Figure 6.26: Project creation case 3(WIONQ USAJE) .....ecovererreereereerieesieseesseeseeseessessseesseseessens 160

XIX



Figure 6.27: Create TeSt PrOJECE .ooiieiiiieic e 161

Figure 6.28: Create  ACCOUNT  .oooiiieiiciicie et re e esre e sraesneaneens 162
Figure 6.29:  AMACh  CHENL .o 162
Figure 6.30: Attached client BOINC MaNAJET ........cccooiiiiiiieieieiesee e 163
Figure 6.31: Update attached ProJECIS ....ccoccviiiiiiiiiiiiic e 163
Figure 6.32: BOINC manager after executing updateAttachedProject.sh ........c.cccceeveveiveinnns 164
Figure 6.33: DetaCh @ CHENT oo 164
Figure 6.34: BOINC manager after executing deattach.sh ..o, 165
Figure  6.35:  SIOP  PrOJECE  oeiiiieii et et re e e e ne 166
Figure  6.36:  Start  ProOJECE  ioiiiieiicc e 166
Figure  6.37: RESEAIT  PrOJECT  .oooiiiiiiiiiie e 167
Figure 6.38: Customize project to single JOb project ..., 168
Figure 6.39: Project status executing singleJob.Sh ... 168
Figure  6.40:  SUDMIL  JOD oo 169
Figure  6.41:  ADOIT  JOD oo 169
Figure  6.42:  Output  handler ... 170
Figure 6.43: Enable account Creation .........cccccoveiiioiieieiiec e 171
Figure 6.44: Project home page after executing enable_account_creation.sh .................. 171
Figure 6.45: Disable account Creation ... 172
Figure 6.46: Project home page after executing disable_account_creation.sh ................. 172
Figure  6.47:  ProjeCt  StALUS  ...occciiieiiiiciic et ste e ra e sre e ene 173
Figure 6.48: Project deletion ..o 173
Figure 6.49: Project Creation 1feSt 1 ..o 174
Figure 6.50: Project Creation teSt 2 .....cccccoiiiiiiiiieeesese e 175
Figure 6.51: Successful Project Creation .........cccccciiiiiiiiiieiiieiie e 175
Figure 6.52: Error handling test for adding NEW USET .........ccccvevieiiieiie i 176
Figure 6.53: TeSt adding NEW USEI ...occoiiiiiiiiiieiieiiiniesiee ettt 177
Figure 6.54: Error handling test for attaching CHeNt ... 177
Figure 6.55: Before attaching a client ... 178
Figure 6.56: After attaching a client ... 178
Figure 6.57: BOINC manager of the updated Client ... 179
Figure 6.58: Project status page after Project S0P .......cocovevirieiieienene e, 180
Figure 6.59: Project status page after start/restart Project .........ccooceverienieieniinin e 180
Figure 6.60: Project management page after deleting the project ..........ccccccovovevenieneniniiiennnns 181

XX



Figure 6.61: Invalid account mOdifiCatioN .........cccccceiiiiiiieii e 182

Figure 6.62: Valid account modifiCation .........ccccoiieiiiiiiiicie e 182
Figure 6.63: User information before modifiCation ...........cccccoviiiiiniieiiniies e 183
Figure 6.64: User information after modifiCation ............ccoccoiveiiiniiiniieie e 183
Figure 6.65: Enabling account Creation .........cccccoceiiioiiisiiesiieie e ese e 184
Figure 6.66: Disabling acCcount Creation ..........cccccccoiiiiiiiiierisiesieese s e se e 185
Figure 6.67: Checking users for deletion ... 185
Figure 6.68: USers deletion ..o 186
Figure 6.69: Error job SUDMISSION ....cccoiiiiiie it 186
Figure 6.70: Valid job SUDMISSION ....cciciiiiiiciece e 187
Figure 6.71: Aborting Job confirmation ..., 188
Figure 6.72:  ADOMING  JOD oo 188
Figure 6.73: Job eXecution (State 1) .occoiiioiiioiiiieii e 189
Figure 6.74: Job eXeCution (StAle 2) .icciiiieiiiiiiiicie e 189
Figure 6.75: Job execution (State 3) ..o 190
Figure 6.76: JOD eXecution (StAte 4) ..o 190
Figure 6.77: Download WINAOW .....ccocoiiiiiiiiice et 191
Figure 6.78: Check results to delete .......cccoooiiiiiiiiiiicce e 192
Figure 6.79: Home page after click Delete JODS ..o 192
Figure 7.1: CPU usage 10gger Program ... seeseesnens 196
Figure 7.2: Ultra CPU mMONItOr Program ......ccccocoiiioieiiieieeieseesieeeesee e esnesvaesneesneennen 197
Figure 7.3: Sample of the log file generated by CPU usage 10gger ........ccccccovevivevvrevnenen, 199
Figure 7.4: Average CPU usage at PPU 1aDS ..., 200
Figure A.3.1: BOINC installation problems 1 ... 141
Figure A.3.2: BOINC installation problems 2 ... 142
Figure A.3.3: BOINC installation problems 3 ... 143
Figure A.3.4: Proper BOINC insStallation ...........ccocvvieiieiiieiieieeee e 144

Figure A.4.1: BOINC Client Deployment STEP 1 .....ccooiiiiiiiniiiinieeeeee e 200
Figure A.4.2: BOINC Client Deployment STEP 2 .....ccoveiiieiiiiiie et 201
Figure A.4.3: BOINC Client Deployment SIEP 3 .....ooviiiiiiiecieceeee e 202
Figure A.4.4: BOINC Client Deployment SIEP 4 ....ovoieiieiiiiiireeeeeie e 203
Figure A.4.5: BOINC Client Deployment StEP 5 .....covviieiiiieiiereee e 204
Figure A.4.6: BOINC Client Deployment StEP 6 ........cocveviiiriiiiiiiie e 205

XXI



Figure A.4.7: BOINC Client Deployment StEP 7 .....cceevveeeiieiieie i 206

Figure A.4.8: BOINC Client Deployment SteP 8 ........cocveieiieiieiieiie e 207
Figure B.1: ProjeCt hOmME PagE ....oocoiiiiiiiiii s 200
Figure B.2: AddINg ProjeCt NAmMe 1 ..o 201
Figure B.3: Adding ProjeCt NAME 2 ...ccccooieiieieiieic ettt 202
Figure B.4: Adding copy FightS 1 oo 203
Figure B.5: AddIng COPY FghtS 2 i 204
Figure B.6: Setting admin. ACCOUNT 1 oo 205
Figure B.7: Invalid login to admin. PAge .....cccccciiiiiiiiieiieiie e 206
Figure B.8: Setting admin. ACCOUNE 2 .......cccoeiieiiiiieiee et 207
Figure B.9: AdMINISratiVE PAJE  .ooieieeiiieiieeieieie e bbb 208
Figure B.10: ProjeCt StAtUS 1 ....coccocioiiiiiiiiiiiiiie ettt 209
Figure B.11: ProjJeCt STALUS 2 .....cveiuieiiieieecie ettt ettt sneeneesneennas 210
Figure B.12: ProjJeCt STATUS 3 .....cveiieiiieiieeii sttt sttt et s te et ste e sneennas 211
Figure B.13: ProjJeCt STATUS 4 ....coieiiiiiiiiiiiiieseete st 212
Figure B.14: Project fOrUM 1 ..o 213
Figure B.15: Project fOrUm 2 ..o 214
Figure B.16: Test example application Project Status ..........ccccccovcevivereiiiiieiieesieeseeie e, 215
Figure B.17: phpMYAdmMIN 10giN PAGE ...cveveiierieiiiiieieie e 216
List of Appendices

Appendix A Server and Client Software Installation 220
Appendix B Project Creation 234
Appendix C Security 255
Appendix D Boinccmd tool 263
Appendix E Glossary 268

XXII



Chapter One

Introduction

1.1 Overview

In this chapter we provide an introduction to our project concentrating on three
main topics. First, we briefly provide a description of the project idea. Second, we
talk about the problems and motivations that lead to the idea of this project. Finally,
we talk about the scope of the project.

1.2 Idea Description

Grid computing is a form of distributed computing in which an organization
(business, university, etc.) uses its existing computers (desktop and/or cluster nodes)
to handle its own long-running computational tasks [1]. In our project we want to
make use of grid computing to utilize the computing resources available in our

university by building our own grid.

The PPU grid will make use of the computing power that is supplied by
computing lab machines, desktop and laptops belonging to faculty, staff, students,

and any computing resource belonging to our university.

The project will be done into two stages. First, we have to gather the information
about all the computing resources in the university, analyze the financial costs of
upgrading some important resources to new ones with more computing capabilities

and make a comparison between the current situation and the new one, supposing



the grid computing is applied. Secondly, we have to achieve the technical work and
apply the grid computing on some facilities of the university.

There are some basic components and technologies that are needed in the
project. We have the grid resources, such as computers, electronic data storages and
any other computing resource connected to the network. These grid resources need to
be connected using a network, so we need to have a fast and reliable network. In
addition, we need a middleware layer that provides the tools that enable the various
elements (servers, computers, storage, networks, etc.) to participate in a grid and

communicate with each other.

This project will basically concentrate on distributed systems and grid
computing to deal with workloads and computing resources. This is done by dividing
large projects into smaller independent tasks and assigning these tasks to the

available idle computing resources.

1.3 Problem/Motivation

While the computing resources are utilized during the teaching periods, there
are large periods of time during the night or holidays or for scattered periods when
these resources like computer labs are idle. These unused computing resources can

be employed to run computation-intensive tasks for different university units.

Also, we know many of the PPU services sometimes suffer from latency due to
the large number of users and poor resources, e.g. e-registration and e-learning. Grid
computing can help solving this problem and enhancing these services at a very low

cost.


http://www.gridcafe.org/EN/middleware.html

Many researches use computing-intensive algorithms and may need a large
amount of data sets to solve their research problems. This large computing power
and memory capacities can be provided at little or no cost to university researchers
using our grid. This resource enables previously infeasible researches or shortens the

needed time for others. This leads to the publicity of the university and its researches.

Sometimes researchers realize that they need to use distributed computing; but
they lack the expertise and resources to do it themselves. The basic idea behind this
is to divide a huge work which may take days to be computed on a standalone
computer, into many pieces which can be done concurrently by the available
computing resources at their idle time. Finally gather the work done by these

computers to produce the result.

In addition, the project team has many challenges and new things to be learned.
Some of these are: learning new technologies, looking deeper in the networks
functionalities, dealing with middleware layer and learn about distributed systems,

grid computing and network’s programming.

1.4 Project Scope

Basically this project will concentrates on utilizing the computing resources of
PPU labs to fill the shortage in some facilities, like the research unit or to improve
some services like E_Learning or E_Registration. The main features of the project
scope are listed below with more details:

1. System Input:
e Computational projects or tasks.

e Clients demands.



2. System Outputs :

e Results for a running project and tasks to the clients demands. This is
done Dby achieving balanced load distribution and concurrency
execution using the available computing resources to get results in

more efficient manner.

3. Project requirements :

a)
b)

c)

Utilize the available computing resources.

Supply some facilities of the university with the available computational
resources to be able to perform large computational tasks.

Solve some problems that come from the limited performance of the

available computing resources.

4. System components :

a)

b)

d)

Server: represents the system hardware backbone. It supplies some
coordination functionalities in the system.

Computing resources: the main supplier for these components is the
university labs. These computing resources will be configured to accept
the computational tasks that are assigned by the server and supply results
back.

Network: an excellent network bandwidth to connect system components
together.

Middleware: represents the system software backbone. It will provide the
suitable grid environment for all components. It provides the main system

functionalities, management and control.



5. Project Deliverables

We will provide a study about the project visibility by analyzing different
factors on different aspects:
e Analysis of the performance of the available computing resources at
the university.
e Analysis the need of some researches in the university to a high
computational power.
e Analysis of the utilization of some computing resources especially

those are in labs.

After achieving the technical work and building the grid system, the final output

of the project will be as follow:

A user can login to the grid portal using a username and password. The user will
be able to upload his computational task to the server. Now, the server is responsible
to find the available idle computing resources and send this task to these resources
which execute it and return the result back to server. Finally, the result will be

returned to that user.

6. Project assumptions, boundaries and constraints

Grid computing system needs a good network bandwidth and infrastructure to
work well. This means that the access to the grid system from the web will not be

efficient until upgrading the overall network capabilities.

The process of dividing the large computing task into smaller parallel tasks is
not a part of this project. We assume that the server will get tasks which will be
executed concurrently on different computational resources. Projects of multi-tasks

must be partitioned to independent tasks before they are delivered to the server.



Partitioning projects to independent tasks needs additional effort which is out of the

scope of this project.

In this project will use one computer as a grid server and a set of computers in
the university labs as grid clients. The main limitations and assumptions regarding
this project can be stated and summarized in the following points:

1. The project considers computers available in one of computer labs in wad-
Alharria branch at PPU. This sample is small compared to available
computers in all PPU branches.

2. The project is limited to PCs available in computer laboratories and does
not include servers or computers used by academic/administrative staff for
security matters.

4. The project is performed on these PCs during work hours (08:00 — 16:00)
from Sunday to Thursday only.

5. Most of experiments in this study will be performed on PCs with Microsoft
Windows OS (XP Professional and x86 Windows 7 Professional x86).

6- In our project we assume that the project to be executed is ready for
deployment on the grid; i.e. the project is gridified and all jobs are identified.

7. Initial project organization:

- Project Team:

e Group of 2 students.

- Stakeholders:
e Computer center staff.
e University teaching staff.

e Students.

® Researchers



1.5 Summary

In this chapter we talked about the project idea. Then, we presented some of
the project motivations. Finally, we have discussed the project scope which
addressed these topics: system input and output, project requirements, components,
deliverables, assumptions, boundaries constraints, and finally the Initial project

organization.



Chapter Two

Literature Review and Theoretical Background

2.1 Overview

The purpose of this chapter is to clarify some of the concepts and components
associated with grid computing. In addition, this chapter presents an overview of grid
technologies and compares it with several similar technologies. Also, we will discuss

some of the previous related projects and studies related to grid computing.

2.2 Theoretical Background

In this section we discuss the grid computing technology and its related issues in

more details.

2.2.1 Definitions

The "Grid" takes its name from the analogy with the electrical "power grid" [2].
The grid power provides you with electricity just by plugging-in your device into
wall socket; you do not have to care how the electricity was generated or how it
reaches to your home. The same thing happens in grid computing technology which
provides you with required computing power and storage resources without any need
to know how you get these resources or form where it is originated, the grid hides all

of these details.



Since the grid computing is emerging and evolving technology, there are many
definitions to grid computing according to the different understanding of this term,
but all of them share the same concept. Here we show some of these definitions from

different sources:

e According to [3], the first and most cited definition of Grid Computing was
suggested by Foster and Kesselman (1998):
"A computational grid is a hardware and software infrastructure that provides
dependable, consistent, pervasive, and inexpensive access to high-end

computational capabilities”.

e Grid computing is a service for sharing computer power and data
storage capacity over the Internet [4].

e A grid is a collection of machines typically referred to as ‘“nodes”,

b 1Y

“resources”, “clients”, “hosts”, and other similar terms [5].

2.2.2 Building a grid

There are three things that should be available in order to set up a grid:
architecture, hardware, and middleware layer. These components are described

briefly below.

1. Architecture:

The overall design of the grid is called the grid architecture; it identifies the
fundamental components that should be taken in consideration when a grid is to be
built.


http://www.gridcafe.org/EN/building-grid.html
http://www.gridcafe.org/EN/grid-architecture.html

A grid's architecture can be divided into layers, where each layer has a specific
function. These layers are described below from the lowest layer to the highest:

The network layer: which connects grid resources and deals with different

components like routers, switches, etc.

e The resource layer: actual grid resources, such as computers or storage
systems that are connected to the network [6].

e The middleware layer: provides the tools that enable the various elements
(servers, storage, networks, etc.) to participate in a grid. The middleware
layer represents the environment where the grid can be built and work [6].

o The application layer: This includes applications in science, engineering,
business, finance and more, as well as portals and development toolkits to
support the applications. This is the layer that grid users see and interact with

[6].
2. Hardware

The hardware forms the physical infrastructure of a grid. A grid depends
on underlying hardware like computers and networks which are the backbone of the

grid.
3. Middleware

Middleware is the software that organizes and integrates the resources in a grid
[7]. Middleware layer is made up of many software programs that coordinate all the
different grid resources. Middleware resides between the operating systems software

(like Windows or Linux) and the applications software [7].

10


http://www.gridcafe.org/EN/underlying-hardware.html
http://www.gridcafe.org/EN/underlying-hardware.html
http://www.gridcafe.org/EN/underlying-hardware.html
http://www.gridcafe.org/EN/middleware.html
http://www.gridcafe.org/EN/gridifying-your-application.html
http://www.gridcafe.org/EN/underlying-hardware.html
http://www.gridcafe.org/EN/middleware.html

The grid architecture is depicted in figure 2.1:

Fig. 2.1: Grid Architecture

2.2.3 Classification of Grids

Grid Architecture is still in the evolving stage. There are many variations and
types of Grids. There are different classifications of grids based on type of

classification or based on understanding of grid concept.

There is no standard in categorization of grids. Many Research Analysts, IT
vendors, and Computer scientists began classifying the grid and grid variations based
on their own understanding and vision. Some base it on the functionality, some base
it on the architecture and others on the built-in components. Many organizations have
different focuses, thus resulting in different classifications [8]. In this section we
explain the classification of the grid based on scalability and function concentration.
Grids can be classified based on the scalability as below:

11



1. Cluster Grids:

Cluster Grids, or clusters, are a collection of co-located computers connected by a
high-speed local area network and designed to be used as an integrated computing or

data processing resource (see Fig. 2.2) [9].

Cluster grids are the most popular and simplest form of a grid. Cluster grid
consists of one or more systems, working together, to provide a single point of access
to users. Cluster grid meets the need of most of the organizations. Typically used by
a team of users such as a single project or a department, a cluster grid supports both
high throughput and better performance for the jobs [5].

Connection of servers
through high-speed
LAN

Clients accessing
tools, databases, etc.
of a specific business
function or other
applications

1 Administrative entity

with full control over . i
each server Sy
<,

Fig. 2.2: A typical form of cluster computing, Source [15]

12



2. Campus/ Enterprise Grids

Campus grids enable multiple projects or departments to share computing
resources in a cooperative way. It is also referred as the cooperative grid. Campus
grids may consist of dispersed workstations and servers, as well as centralized
resources located in multiple administrative domains, in departments, or across the

enterprise [5].

The term Enterprise Grid is used to refer to application of Grid Computing for
sharing resources within the bounds of a single company [10]. All components of an
Enterprise Grid operate inside the firewall of a company, but may be heterogeneous
and physically distributed across multiple company locations or sites and may belong

to different administrative domains (see Fig. 2.3) [9].

Clusters providing
storage and compute
capacity for various
business functions,
e.g. CRM, SCM, ERP

Department A Department B

Department C
| rM, nd' nd e n# nﬂ nﬂ,

h;; hﬂ, ﬁ’ n’ ﬁ’ ”ﬁ h’ B

/ ./ ./
Es 35 is Clients accessing

> D i tools, databases, etc.
CRM SCM ERP of a specific business

function
Centralized g e
monitoring based on oo™
virtualization

Fig. 2.3: Example of Enterprise Grid Infrastructure, Source [15]

13



3. Global Grids

When application needs exceed the capacity of a campus grid, organizations can
tap partner resources through a global grid. it is designed to support and address the
needs of multiple sites and organizations, global grids provide the power of
distributed resources to users anywhere in the world for computing and
collaboration. Individuals or organizations sending overflow work to a grid provider
or by multiple companies working together and sharing data - crossing organizational

boundaries with ease can use the global grid [5].

Also, grid can be categorized based on the grid infrastructure and functions
concentration. In this classification we have two categories; data grids and

computational grids which are described briefly below:

1. Computational Grids

A computational grid aggregates the processing power of a distributed collection
of heterogeneous systems [5]. In this category, the emphasis in Grid infrastructure is
given on the computation. A large computing problem is divided into sub-problems
and then solved over the nodes of the grid independently. Large scale problems in
Science and Engineering are being solved on the computational grid. The computing
environment of a computational grid provides a demand driven, reliable, powerful
and yet an inexpensive power for its customers [11]. Thus a computational grid
environment consist of one or more hardware and software enabled environments
that provide dependable, consistent, pervasive and inexpensive access to high end

computational capabilities [12].

14



2. Data Grids

A data grid focuses on secure access to distributed, heterogeneous pools of data
[5]. In data grid, the emphasis is over the management of the data that is being held
in a variety of data storage facilities in geographically dispersed locations. The data
sources may be databases, file systems and storage devices. The grid must also
provide data virtualization services to satisfy various transparency issues e.g.
transparency for data access, integration, and processing. Security and privacy is

very important requirements of data in a grid system and is very complex [11].

2.2.4 Grid computing portals

Web-based Grid computing portals, or Grid portals [13], have been established
as effective tools for providing users of computational Grids with simple, intuitive

interfaces for accessing Grid information and for using Grid resources [14].

Grid middleware such as the Globus Toolkit provides powerful capabilities for
integrating a wide variety of computing and storage resources, instruments, and
sensors, but Grid middleware packages generally have complex user interfaces (Uls)
and Application Programming Interfaces (APIs). Grid portals make these distributed,
heterogeneous compute and data Grid environments more accessible to users and

scientists by utilizing common Web and Ul conventions [15].

Grid portals are now being developed, deployed, and used on large Grids
including the National Science Foundation (NSF), Partnership for Advanced
Computational Infrastructure (PACI) TeraGrid, the NASA Information Power Grid,
and the National Institute of Health (NIH) Biomedical Informatics Research Network
[15].

15



The software used to build Grid portals must interact with the middleware
running on Grid resources. The portal software must also be compatible with

common Web servers and browsers/clients [15].
2.2.5 Grid-powered projects

There are hundreds of computer grids around the world. Many grids are used for
e-science enabling projects that would be impossible without massive computing
power [16].

Grid computing is changing the way the world is doing science, as well as
business, entertainment, social science and more. Below are a few examples of grid-

powered projects [16].

e The WISDOM project is using grid computing to speed the search for a cure
for malaria, a disease that affects millions of people all over the developed
world.

e MammoGridis building a grid for hospitals to share and analyse
mammograms in an effort to improve breast cancer treatment.

e The MathCell project aims to create a grid-managed multi-purpose
environment for further research in biology and bioinformatics.

o The P12S2 project uses grid computing to learn more about the spread of

plant diseases.

2.3 Literature Review

We have reviewed and studied several references, scientific papers and books
concerning grid computing and its related issues like volunteer computing and local

desktop grid. In this section we summarize the most important and relevant topics.

16


http://www.gridcafe.org/EN/grid-powered-project.html
http://wisdom.eu-egee.fr/
http://www.cems.uwe.ac.uk/cccs/project.php?name=mammogrid&menu=off
http://www.mathcell.ru/
http://www.pi2s2.it/

2.3.1. PC Grid Computing Environment In Higher Education Institutions:

One of the recent researches in grid computing field was introduced by Bader
Ahmed Bader Ajrab in 2013 at Al-Quds University as a master thesis. It had stated
the importance of grid computing especially in high education institutions in

Palestine.

Al-Quds Open University was chosen as a test bed of his research which focuses
on local PC grid computing. Since AlQuds Open University has a lot of
geographically distributed branches, reliable network communications and ample
resources available in computer labs, it is considered the most suitable environment

to be the test bed for local PC grid computing project [3].

An overall study for Al-Quds Open university different branches was introduced.
This study encompasses the overall communication network, computer labs and
specifications of computers in these labs, in addition to the authentication and

authorization issues.

A study for percentage of computer utilization was performed on computer labs
at Jerusalem and Bethany branches by running some programs that logs the CPU
utilization for some periods of time. The researcher found that” the average CPU

utilization doesn’t far exceed 10% for 90% of the time” [3].

Finally, some real experiments to build a grid were performed in Jerusalem and
Bethany branches. These experiments used two middleware frameworks, which
BOINC and Alchemi. A detailed study of the operating system and the network
effect, in addition to the CPU utilization of grid computers is performed. This study

17



applied two times; one time using BOINC as a middleware and the other time using
Alchemi as a middleware.

The result of the study proved that the computing resources at Al-Quds Open
University are not utilized well. Also it shows that the grid computing is very useful
to utilize these resources and fill the shortage of high performance supercomputers.
This thesis shows some experiments on grid only. In contrast, our work will focus on
the PPU environment.

We will provide a study about the available computing resources in PPU and
the percentage of utilization of our resources. Then we will use one of the computer
labs to build our grid using specific middleware. The main difference between our
work and the previous one that he didn’t make any real or users’ computations, he
just made specific tests using specific projects to prove the grid functionality while in
our case we will provide a portal to upload user tasks to be executed on the grid.

2.3.2. How is grid computing different from the World Wide Web?
Grid computing uses the Internet to help us sharing computer power, while the
Web uses the Internet to help us sharing information. Grid computing is making big

contributions to scientific research, helping scientists around the world to analyze

and store massive amounts of data [4].

2.3.3. Grid versus volunteer computing

Grid and volunteer computing are both forms of distributed computing and both
aims to utilize the CPU usage but the main difference is the type of computing

resources involved in the grid which leads to new other differences.

18



In volunteer computing the available computing resources (such as processing
power and storage) are being donated by their owners; it is a matter of volunteering,
anyone can donate his own computer to be part of  the volunteer grid by
downloading a special software for this purpose and it starts receiving jobs in its
idle time. While you're not using your computer, someone else is using it for their
research, perform simulations and otherwise contribute to some projects [17].

In Grid computing, an organization (business, university, etc.) uses its existing
computers (desktop and/or cluster nodes) to handle its own long-running

computational tasks. This differs from volunteer computing in several ways [18]:

e The computing resources can be trusted; i.e. one can assume that the PCs
don't return results that are intentionally wrong, and that they don't falsify
credit. Hence there is typically no need for replication.

o There is no need for screensaver graphics; in fact it may be desirable to have
the computation be completely invisible and out of the control of the PC user.

e The deployment of middleware on clients is typically automated since the
resources are under your authorization.

e In volunteer computing trust between resource providers and users is

essential, especially when they don't know each other [19].

In addition, volunteer computing systems must deal with problems related to

correctness [20]:

e Volunteers are unaccountable and essentially anonymous.
e Some volunteer computers occasionally malfunction and return incorrect results.
« Some volunteers intentionally return incorrect results or claim excessive credit

for results.

19



2.3.4. The University of Westminster desktop grid system

The Centre for Parallel Computing at University of Westminster in UK built a
local desktop grid system that currently includes over 1500 laboratory PCs which
represents about half the total number of PCs in the university . These machines are
available for desktop grid computations whenever they are switched on but not

utilized by students for teaching or other purposes.

The university is set over four main campuses and some additional smaller
locations in Central- and North-West-London each of them offering a variable
number of mainly windows based PCs for teaching purposes. The table below
summarizes the approximate number of machines offered by these locations and the

figure gives an overview of the geographical location of the campuses [21].

¢ Over 1500 Windows PCs from 6 different campuses

Tt
A

g
Lifecycle of a node:
1.  New Cavendish Street 576 nodes 1. PCs basically used by students/staff
2. Ifunused, switch to Desktop Grid mode
2. Maryvleb i 559 nod '
SRt noeey 3. No more work from DG server ->
3. Regent Street 395 nodes :
shutdown (green solution)
4. Wells Street 31 nodes
5.  Little Tichfield Street 06 nodes
6. Harrow Campus 254 nodes

Fig. 2.4: Local PC Grid at the University of Westminister, Source [3]

20



The periods of time when PCs are idle were employed to run computation-
intensive tasks for university researchers such as powerful simulation programs.
Researchers using the Westminster Local Desktop Grid have found that they can

shorten a typical execution time from weeks to hours.

The desktop grid system implemented at the University of Westminster is
estimated to be equivalent, in raw computational power terms, to a £500,000 cluster
procurement or supercomputer. Also the grid keep evolved and improved with no
direct cost since the PCs themselves participated in the grid are continuously
replaced from existing budgets. In other words, old PCs are always replaced with
much better, higher performance ones, so the desktop grid always keep pace with PC
performance improvements with no direct costs while other installed clusters need to
be replaced or evolved on a three or four year cycle incurring all of the costs
associated with this [22].

2.4. Summary
This chapter presented an overview of grid computing technology and its related
issues. In addition, we discussed some of previous grid-based projects and studies

and analyzed their results.

From the above discussion we can conclude that organizations can create their
grids to match their special requirements and there is no fixed grid size can fit all

organizations.

We can notice that there is no two grids are the same and each organization has
its own environment and resources. Thus, we want to study our case in Palestine
Polytechnic University (PPU) in order to be able to build our own suitable grid that
can give an indication about what can be done in future in order to enhance our

storage and computing capabilities.

21



Chapter Three

Project Management Plan

3.1 Overview

This chapter states the project plan, which includes all the sets of project tasks in
addition to the project timeline. It also talks about the methodology of the work during
project implementation. Project methodology consists of two parts, the first part
introduces in general the steps of work flow in the project, and the second one states and
analyzes the available options that can be used to implement the project. In addition, this
chapter introduces some of project risks and an information sheet for each risk. Finally,
it includes an analysis to all the project components with their estimated costs, these

costs considered as the overall project cost.

3.2 Project Plan

This section will contain two basic subsections which are sets of project tasks
and the project time line. These two subsections are stated as follow:

3.2.1 Sets of Project Tasks

- Communications And Meetings : 2 weeks

We will meet different units in the university and listen to their

computational problems.

22



e We meet the computer center supervisors to get information about the
available resources and their specifications.

e We communicate with the scientific research deanship.

- Data Collection and Data Analysis: 4 weeks
e Data Collection:
+ Identify the available computing resources.
¢ Determine the running time and workloads of these resources.
+ Determine the buying, maintenance and periodic costs of these
resources.

¢+ Gather information about the underlying network.

e Data Analysis:
¢ ldentify the mount of wasted (unutilized) computing powers
when the computers are idle or run with minimal tasks.
¢+ Compute the utilization percent of our computing resources.
%+ Make sure that the underlying infrastructure can support the
grid.
¢+ Make a comparison between the current situation and the new

one, supposing the grid computing is applied.

- Project Analysis And Design: 8 weeks
e  Analysis task set
1) Review requirements that have been collected during the data
collection and analysis stages.
2) Refine the user scenarios

e Define all actors who deal with the grid.

23



e Represent how actors interact with the software.
e Extract the functions and features from the user scenarios.
e Review refined scenarios for completeness and accuracy.
3) Model the information domain (Data)
e Identify all major information objects.
e Define attributes for each information object.
e Determine the relationships between objects.
4) Model the functional domain(functions)
e How functions modify data objects.
e Refine functions to provide elaborative details.
e Describe each function and subfunction.
e Review functional model.
5) Model the behavioral domain(behavior)
e Determine events that cause behavioral changes within
system.
e ldentify the states (modes) that the system goes through in its
response to particular event.
e Describe how an event causes the system move from one state
to another.
e Review the behavioral models.
6) Modeling the graphical user interface(GUI)
e Determine the GUI Layout and basic user interaction
requirements.
e Design task set:
1) Review all analysis models for completeness and consistency.

2) divide the analysis model into design subsystems

24



e Make sure the each subsystem is functionality cohesive.
e Design subsystem interfaces.
e Design appropriate data structures using the information
domain model.
3) Based on interface analysis, design user interface.
e Review GUI analysis done in analysis activity.
e Using user scenarios; specify action sequence.
e Create behavioral model of the interface.
o Define interface objects, control mechanism.

e Review the interface design and revise as required.

4) conduct component-level design
e Specify all algorithms at a relatively low level of abstraction.
e Refine the interface of each component.
e Define component level data structures.

e Review the component level design.

- Prepare The Environment : 2 week
e Choosing the suitable middleware software environment after
investigating the available ones.
e Setup the middleware and any other software on the server side and

on the resource computing involved in the grid.
- Middleware Investigation And Learning : 3 weeks

e Read the middleware software documentation

e Learn how to deal with middleware layer.

25



e Read more about grid computing and its implementation.

e Learn server programming.

Project Implementation and coding: 10 weeks
1) Build architectural infrastructure
e Review the architectural design
e Code and test components that enable architectural infrastructure.
e Acquire reusable architectural patterns.
e Test the infrastructure to ensure interface integrity.
2) Build a software component
e Review the component-level design.
e Create a set of unit tests for the component.
e Code component data structures and interfaces.
e Code internal algorithms and related processing functions.
e Review code as it is written
e Look for correctness.
e Ensure that coding standards have been maintained.
e Ensure that the code is self-documenting.
3) Unit test the component
e Conduct all unit tests.
e Correct errors uncovered.
e Reply unit test.

4) Integrate completed component into the architectural infrastructure.

Project Testing And Modification: 2 weeks

o Test all project components, and modify when detecting errors.

26



3.2.2 Time estimation (Gantt chart): The following figure shows the overall project

time estimation that starts from September of 2013 and continues to May of 2014.

D Task Name

1 Communication and meetings
I Data collection and analysis
1 Analysis Task set

Design Task set

¢ Prepare the environment

a0n3nne

5 Middleware investization and learnming 214773

7 Project implementation and coding 2014

¢ Project Testing and Mod ification

5 Documantation

2014510

Frish

2013101 23w
o L
ANy 4w
W2 9w
anen 2w
XM 20w

0 0 W
s | 20w
MuE1 | 40w

Durabon

s
3;’" kU I T T T
—
L ———
—_—
. .
—

Figure 3.1: Project time line.

3.3 project methodology

Hrann

AMECn | Mi4An | Xnamn | XaaEn LT

e

r .
[——
—

Firstly, we will state the steps that will be followed to evaluate the project, and then

we will discuss the available options in the project.

3.3.1 Flow of the project work

Firstly, we will evaluate the need of some facilities of PPU University to more

powerful computational resources. This will be done by making meetings with the staff

of these facilities.

Secondly ,we will evaluate the utilization percentage of some resources in the

university labs during their work ,by installing some dedicated software programs to log

27



the CPU and memory usage at small scattered periods then we will averaging these
values to get a more general term that represents the usage percentage of these resource.

Thirdly, we will study and make use of the previous studies to choose the most

suitable middleware to use in our project.

Fourthly, we will use this middleware to build our grid on a sample of one or two
labs. Finally we will provide a portal that users can load there computational jobs

through. These jobs will be computed using the grid resources.

3.3.2 Options and analysis
» Middleware:
Middleware provides the tools that enable the various elements to
participate in a grid. “The middleware layer is the brain behind a computing
grid” [23], there are many middleware frameworks that can be used, some of

them are:

% Berkeley Open Interface for Network Computing (BOINC):
according to reference [24] we state the following description about
BOINC:

- BOINC is a set of software modules that enable the use of
idle CPU cycles on a personal computer. It is an open source
middleware platform for PRC. It provides one of the most
powerful supercomputers in the world.

- BOINC is a client-server architecture: the server generates
tasks and distributes them to clients then collects their

results. The following figure shows BOINC architecture.

28



BOTNC elient

Weh
interface

Task server

rject
ikalalase

BOINC server

Figure 3.2: BOINC Architecture, Source [3].

% Entropia:

Commercial product.

Supports windows desktop grid system by aggregating
desktop resources into a single logical resource.

Depends on a central job manager that administers various
desktop clients.

Provides a centralized interface to manage all of the clients on
the Entropia grid.

This description stated according to reference [3].

29



«» Distributed.net:

Volunteer computing middleware.
Focuses only on two specific projects.
Its server code cannot be obtained and thus used for any other

projects [3].

% Grid MP:

Commercial distributed computing software package.

It is centralized architecture: a Grid MP Service represents the
manager. It accepts tasks from the user and schedules them on
the resources having Grid MP agents. The Grid MP agents
can be deployed on clusters. Grid MP agents receive tasks
and execute them on resources, advertise their resource
capabilities on Grid MP services and return results to the Grid
MP services [25].

% Alchemi .NET: according to references [26, 27] we stated the

following about Alchemi.

Dedicated to build PC Grid projects.

Layered architecture : as shown in Figure 3.2

Alchemi follows the master-worker parallel programming
paradigm: central component dispatches independent tasks for
parallel execution to workers and manages them.

Object oriented .NET programming environment.

30



- It was shut down after 2006 means that support is currently
unavailable.

- Aneka is the successor of Alchemi: it is commercial package.

Alchemi.Net architecture is shown in the figure 3.3 below.

N N £ B
D ——_—
r———u

Figure 3.3: Alchemi layer architecture, Source [23].

All of the middleware frameworks that were stated previously are commercial
products except BOINC and Alchemi .NET that were free software packages. BOINC

provides many features that are related to our project.

» Operating system on the server machine:

< Windows.

31



« Linux.

The choice between Linux and windows depends on the middleware
framework because different middleware frameworks show different
performance on different operating systems. In general Linux has an
advantage over windows which is providing more security levels.

Security is very important characteristic to the grid system.

» Grid hosts: lab PCs that will be used as computing resources of the grid.
%+ The grid hosts will be one of the labs of university. These labs may differ
in their utilization percentage and the performance of their machines in

addition to the availability and authorization issues.

32



3.2.3 Risk Management

The following table states the risks that may arise during the project implementation.

| Table 3.1: Risk Management

Risks Category Probability Impact
Lack of experience Staff experience 70% critical
Going beyond Schedule (late delivery) | Schedule risk 50% marginal
Lack of testing experience Performance risk 40% critical
Low staff productivity Schedule risk 35% marginal
Lack of training on tools Development environment 30% negligible
Loss of team member Staff size 20% critical
Inaccurate Cost estimations Cost risk. 15% Marginal

Each of these risks has its own risk information sheet that clarifies the risk and
show how to deal with it when happening. All of these sheets are shown in the following

tables:

33



Table 3.2: lack of experience information sheet.

Risk Information Sheet

Project Name < Grid Computing In PPU >

ID<risk id:PO1> lack of experience Identified<12-10-2013>

Impact< high> Risk Statement(Description)

Probability<70%> | Lack of experience with network management, security and web

programming may affect on the performance of the final software.

Context :
Subconditionl:

The system requires a high experience in network administration and management in
addition to Linux experience.

Subcondition2:

Also a good web programming experience is needed in this project.

Mitigation strategy
1- The team adequate training on website design and such programming language.
2- An intensive work on server and network configuration with Linux scripts to get

better experience which is very important to be able to build the grid.

Contingency plan and trigger
- Taking intensive training courses in network configuration and web

programming.

Status / date
<1-1-2014>: Mitigation steps initiated.

Originator: Muhammad Dwaib | Assigned: Ibrahim Qdemat

34




Table 3.3: Late delivery information sheet.

Risk Information Sheet

Project Name < Grid Computing In PPU >

ID<risk id:PO2> Late delivery Identified<16-10-2013>

Impact<high> Risk Statement(Description)

Probability<50%> | The degree of uncertainty that the project schedule will be

maintained and the product will be delivered on time.

Context
Subconditionl: poor experience of time estimation may cause an unrealistic end date

Subcondition2: Ambiguity in the system requirements.

Subcondition3: A need to unavailable software.

Subcondition4: Lack of effective project team integration and project assembling
problems

Mitigation strategy:

1- Define the scope accurately.

2- Create a realistic and achievable schedule. Some level of risk analysis is required.
3- Analyze risks and adjust the schedule.

Contingency plan and trigger:
1- Abandon (give up) some additional features that does not affect the whole
system.
2- Increase the team productivity.
3- Evaluate the basic functional requirements of system.

Status / Date

<During first semester>: Mitigation steps initiated.

Originator: Ibrahim Qdemat Assigned: Muhammad Dwaib

35




Table 3.4: Lack of testing experience information sheet.

Risk Information Sheet

Project Name < Grid Computing In PPU >

ID<risk id:PO6>

Lack of testing experience

Identified<12-10-2013>

Impact< high>

Probability<40%>

Risk Statement(Description)

This project may need to a good knowledge about quality

assurance to be able to track the system and find problems to

solve.

Context :
Subcondition:

Many tests may be required to examine the overall system performance and to detect

any problem that need to be solved.

Mitigation strategy

1- Take a help from experts of quality assurance.

Contingency plan and trigger

2- Offer the system to the quality assurance testers to help in problems detection.

Status / date

<10-10-2013>: Mitigation steps initiated.

Originator: Ibrahim Qdemat

Assigned: Muhammad Dwaib

36




‘ Table 3.5: low staff productivity information sheet.

Risk Information Sheet

Project Name < Grid Computing In PPU >

ID<risk id:PO3> low staff productivity Identified<14-10-2013>

Impact< high> Risk Statement(Description)

Probability<35%> | Project team may need longer time than expected to perform the

required work.

Context :
Subconditionl:

The project team may not be familiar with the project environment as fast as expected.

Subcondition2:

The project team may need to intensive efforts to be able to perform the work.

Mitigation strategy
- The team determine a period of time before the evaluation work start for training
on website design and network management on Linux operating systems to get

better experience which is very important to be able to build the grid.

Contingency plan and trigger

Taking intensive training courses in network management and web programming.

Status / date
<1-1-2014>: Mitigation steps initiated.

Originator: Muhammad Dwaib Assigned: Ibrahim Qdemat

37



| Table 3.6: Lack of training on tools information sheet.

Risk Information Sheet

Project Name < Grid Computing In PPU >

ID<risk id:PO5> Lack of training on tools Identified<12-10-2013>

Impact< high> Risk Statement(Description)

Probability<30%> | To perform this project; team members may need to deal with

new tools which they don’t have any previous experience with.

Context :

Subcondition:

The system requires a good knowledge on dealing with many software tools, like some
middleware frameworks. The project team may need to work on some tools that never
deals with previously

Mitigation strategy
1- Try to identify all the needed tools in the project to take an experience courses

with these tools.

Contingency plan and trigger

2- Intensifies work on these tools with some experiments.

Status / date
<10-10-2013>: Mitigation steps initiated.

Originator: Ibrahim Qdemat Assigned: Muhammad Dwaib

38



Table 3.7: Loss of team member information sheet.

Risk Information Sheet

Project Name < Grid Computing In PPU >

ID<risk id:PO4> Loss of team member Identified <12-10-
2013>

Impact< high> Risk Statement(Description)

Probability<20%> | The team consists of two students only, so any loss of members

will be so critical.

Context :

Subcondition:

This project may need three members to be manipulated well. Since the team members
are two only so they have to work intensively to evaluate this project correctly, and any
loss of project team may cause unexpected results on the project.

We have two types of loss of team member :
1- Temporary absent which may come from illness or any other causes.
2- Permanent absent which may come from death.

Mitigation strategy:

Really this type of risk doesn’t have any mitigation strategies.

Contingency plan and trigger:
- Permanent absence:
Refine the project scope.
- Temporally absence:
Try to work overtime and intensively to perform the work.

Status / date
<1-1-2014>: Mitigation steps initiated.

Originator: Muhammad Dwaib Assigned: Ibrahim Qdemat

39




Table 3.8: Inaccurate cost estimations information sheet.

Risk Information Sheet

Project Name < Grid Computing In PPU >

ID<risk id:PO7> Inaccurate cost estimations Identified<12-10-2013>

Impact< high> Risk Statement(Description)

Probability<15%> Cost estimations may be determined inaccurately.

Context :
Subconditionl:

Lack of experience on costs estimations or an ambiguity in the required components may

lead to inaccurate project estimation.

Mitigation strategy

- Tryto clarify all of the project requirements.

Contingency plan and trigger:
- Search for free alternatives.

- Search for financial support.

Status / date
<10-10-2013>: Mitigation steps initiated.

Originator: Muhammad Dwaib Assigned: Ibrahim Qdemat

40




3.4 Project components and resource cost estimations

This project aims to operate a grid computing system with minimal costs. Basically
the cost is represented by three aspects, which are the hardware components, software
components and human resources. These components are stated in the following

subsections.
3.4.1 Hardware Components
Grid computing consists of basic HW components that represented as:

- Computational and storage resources:

e Grid server: a certain computer will work as a grid server, it is cost will be
approximately 1000$. No need to use a dedicated hardware server in this
project.

e Grid clients: These are all the computers in the labs that will participate in
the grid system.

- Communication:
e Network: The network will connect the different components of the grid

together.

These components are summarized in the following table:

Table 3.9: Hardware Components.

Component Price
Grid server 1000%
Grid clients Available
Network Available

41



3.4.2 Software components

Middleware: as stated previously there are many options of middleware frameworks
to work on, the preferred middleware is the free one. So the software components

may also have no costs.

PHP editor: for web page design.

Mysql DB server: to build the needed DB for the project.

Apache server: which is http server used to generate web pages as a response for

users requests.

These components are summarized in the following table:

Table 3.10: Software Components.

Component Price
Ubuntu 12.04 Linux distribution | Free
Middleware Free
PHP editor Free
MySQL DB server Free
Apache server Free
Shell scripting Free

3.4.3 Human resource costs

The team of this project consists of two under graduation computer system

engineering (CSE) students.

42




3.5 Summary

In this chapter we defined all the project task sets then we generated the project
Gantt chart. We briefly described how the work will goes during the project
manipulation, and then we stated the available options to use in the project
implementation. Some of project risks was stated and analyzed. Finally, we define all
the components that are needed for the project evaluation in addition to the costs

estimations.

43



Chapter Four

Software Requirements Specification

4.1 Overview

In this chapter we clarify the system requirements by identifying the possible actors
and their expected interactions with the system. Scenarios and use-case diagrams are used
to describe the system actors and their interaction with the system. This chapter also
presents the class responsibilities collaborator modeling that contains the functions and
attributes of each class and it's helping classes. Finally, it states the hierarchies of classes

and their relationships.

4.2 Requirements Description

In this section we show all possible system's actors and describe the system

requirements in terms of scenarios and use-case diagrams.

4.2.1 System Actors

There are four possible actors. Here we briefly describe them:
e Grid Administrator :

This is the person that has the absolute control over the grid system and its
resources. He manages, maintains and monitors the grid and its overall
functionalities.

e Grid User :
This is the end user of the grid system who can log into his account and

upload his jobs that is to be performed on the grid resources and download results

44



back. He also can delete the results, abort jobs execution and modify his account
information.
Grid System :

This is the main actor, consists of the middleware and the configurations
to evaluate the system. It is responsible about utilizing available resources,
scheduling jobs and monitoring their execution, validate results and prepare them
for download.

Grid Client :

This represents the computer machines at the computer labs. These
machines will not be involved in decision making; they are forced to perform
submitted jobs in their idle time and return the results back.

4.2.2 Use-case templates

The interaction between the possible actors and the grid system can be clarified using

expected scenarios; here we provide all expected scenarios that will be initiated by the

system actors.

Grid administrator:

There are eight use-cases that are initiated by the grid administrator. These use-cases are:

Creating/deleting projects.
Adding/deleting users.
Attaching/deleting resources.
Updating resources.
Stopping/starting/restarting project.
Modifying user information.
Managing computing preferences.
Monitoring project status.

45



Analysis for each use-case:

Each use-case analyzed by use-case template as follow:

| Table 4.1: Creating/deleting project use case template. |

Use case template for creating/deleting project:

Use case:

- Creating/deleting projects.

Primary actor:

- Administrator.

Goal:

- Adding new project or deleting an existing one.

Precondition:

- Verifying the administrator authenticity.

Trigger:

- Administrator clicks on delete button.

Scenario:

- Creating project: Administrator login to the system, goes to project creation part, enter the
project name, select the project type and finally click on create project button.

- Deleting project: Administrator login to the system, select one of project at the system, click on
delete button.

Exception:

- Connection loses during the process.

46




| Table 4.2: Adding/deleting user use case template. |

Use case template for Adding/deleting user:

Use case: Adding/deleting users.

Primary actor: Administrator.

Goal:
- Adding a new user to the grid-users.

- Or deleting a specific user from the grid-users.

Precondition:

- Verifying the administrator authenticity.

Trigger:

- Select adding a new user, or select one user to delete.

Scenario:
- Adding new user: A specific request for adding or deleting user received by the
administrator, admin enters the user information and click add button.

- Deleting user: Administrator select a user and click on delete button.

Exception:

- Losing connection during process.

47




\ Table 4.3: Attaching/deleting resource use case template. \

Use case template for Attaching/deleting resource:

Use case: Attaching/deleting resources.

Primary actor: Administrator.

Goal:

- Attaching a resource to a project.

- Or deleting a resource from serving a project.

Precondition:

- Verifying the administrator authenticity.

Trigger:

- Administrator decides to add or remove some resources from serving the project.

Scenario:

- Admin select a project
- Enters the resource IP address.

- Click on attach/delete button to attach or delete the resource.

48



| Table 4.4: Update resource use case template. |

Use case template for Update resource :

Use case: Update resource.

Primary actor: Administrator.

Goal:

- Refresh the connection between the resource and the project.

Precondition:

- Verifying the administrator authenticity

Trigger: Administrator select update resource function.

Scenario:

- Administrator logs into the grid portal.
- Select a project.
- Enter the resource IP address.

- Click on the update function.

49




\ Table 4.5: Stopping/starting/restarting project use case template. \

Use case template for Stopping/starting/restarting project:

Use case: Stopping/starting/restarting project.

Primary actor: Administrator.

Goal:

- Control the project status.

Precondition:

- Verifying the administrator authenticity.

Trigger:

- Administrator select stop/start/restart function.

Scenario:

- Admin select a project

- Click on the button start to start running a stopped project.

- Click on the button stop to stop running a project.

- Click on the button restart to restart the project running; needed for the cases when

some diamonds are stopped while the project is running.

50



\ Table 4.6: Modifying user information use case template.

Use case template for Modifying user information :

Use case: Modifying user information.

Primary actor: Administrator.

Goal:

- Modify user information.

Precondition:

- Verifying the administrator authenticity.

Trigger:

- Select a specific user to modify his information.

Scenario:

- Admin show system users.
- Select one of them.
- Show his information.

- Modify the information and clock on update information button.

51



\ Table 4.7: Managing computing preferences use case template. \

Use case template for Managing computing preferences:

Use case: Managing computing preferences.

Primary actor: Administrator.

Goal:

- Control the resource usage of CPU, memory and other preferences.

Precondition:

- Verifying the administrator authenticity.

- Verifying the project account authenticity.

Trigger:

- Administrator selects computing preferences.

Scenario:

- Admin select a project
- Click on the computing preferences link.

- Modify the computing preferences and click on save button.

52



\ Table 4.8: Monitoring project status use case template.

Use case template for Monitoring project status :

Use case: Monitoring project status.

Primary actor: Administrator.

Goal:

- Monitor the project status.

Precondition:

- Verifying the administrator authenticity.

Trigger:

- Administrator click on the project status link.

Scenario:

- Admin select a project

- Click on the project status link.

Grid-user:

Grid-user is responsible about initiating some use-cases in the system. These use cases

are:

1- Upload a new job.

2- Monitor jobs execution status.

3- Abort jobs while it is in progress state.
4- Download the results of completed jobs.
5- Delete the results of completed jobs.

6- Modify account information.

Analysis for each use-case using use-case template:

53



\ Table 4.9: Upload a new job use case template.

Use-case template for Upload a new job:

Use case: Upload a new job.

Primary actor: User.

Goal: uploading new job for execution on the grid system.

Precondition: Verifying the user authenticity.

Trigger: a user open Job Submission page to submit a new job.

Scenario:

1- A user open job submission page.

2- A user selects a job for uploading from his device.
3- A user selects the platform for executing the job.

4- Enters any arguments if needed by the executed job.

5- Click on upload button.

Exception:

- A user selects invalid job type for submission.

- A user doesn’t select the platform.

54




| Table 4.10:

Monitor jobs execution status use case template.

Use-case template for Monitor jobs execution status:

Use case: Monitor jobs execution status.

Primary actor: User.

Goal:

- Monitoring jobs execution status.

Precondition: Verifying the user authenticity.

Trigger:

- User login to the system.
- User goes the home page.

Scenario:

1- A user login to the home page.
2- All uploaded jobs displayed at this page with their status.

55




| Table 4.11: Abort jobs while it is in progress state. |

Use-case template for Abort jobs while it is in progress state:

Use case: Abort jobs while it is in progress state.

Primary actor: User.

Goal: Aborting job execution.

Precondition:

- Verifying the user authenticity.

- Auser has a job in the progress status.

Trigger: A user click on abort button.

Scenario:

1- User enters to the portal.
2- Show all his jobs.
3- Click on abort button for one of in progress status job.

Exception:

portal.

- Display the status in progress for a job having a status not in progress; since the page is not

updated such that the real status of the job is changed and the effect doesn’t appear yet on the

56



| Table 4.12: Download the results of completed jobs. |

Use-case template for Download the results of completed jobs

Use case: Download the results of completed jobs.

Primary actor: User.

Goal: Download the results of completed jobs.

Precondition:

- Verifying the user authenticity.

- Auser has a result for his uploaded job.

Trigger: A user click on download link.

Scenario:

4- User enters to the portal.
5- Show all his jobs.

6- Click on download link for a job result.

Exception:

- Result folder was deleted by the system or the server admin.

57



| Table 4.13: Delete the results of completed jobs. |

Use-case template for Delete the results of completed jobs

Use case: Delete the results of completed jobs.

Primary actor: User.

Goal: Delete the results of completed jobs.

Precondition:

- Verifying the user authenticity.

- Auser has a result for his uploaded job.

Trigger: A user click on download link.

Scenario:

7- User enters to the portal.
8- Show all his jobs.

9- Select jobs for deletion.
10- Clock on delete button.

Exception:

- Result folder was deleted by the system or the server admin.

58



| Table 4.14: Modify account information. |

Use-case template for Modifying account information.

Use case: Modify account information.

Primary actor: User.

Goal: Modify account information.

Precondition:

- Verifying the user authenticity.

Trigger: A user goes to "my Account™ page.

Scenario:

11- A user enters to the portal.
12- Goes to "my account™ page.
13- A user modifies his account information.

14- Click on modify information button.

Grid System:

There are four use-cases that are initiated by the grid system actor. These use-cases are:

-
1

Generating instance of job.
2- Sending instance to a client.

w
1

Validating results.
4

Preparing results for download by users.

Analysis for each use-case:

Each use-case analyzed by use-case template as follow:

59



| Table 4.15: Generate instance of job use case template. |

Use case template for Generate instance of job :

Use case:

- Generate instance of job.

Primary actor:

- System.

Goal:

- Generate instance of job for executing on one of the computing resources.

Precondition:

- Valid executable job submitted by one of the grid users.

Trigger:

- Job is submitted by user.

Scenario:

- System handles a new submitted job or handles fail of the previous instance of the job.
- System generate instance of the job for execution on one of the computing resources.

Exception:

- Lose the result before arriving to the server. The job will fall in the status "in progress on host...".
The solution here is just aborting the job by the user and submits the job again.

60




| Table 4.16: Send instance to a client use case template.

Use case template for Send instance to a client:

Use case: Send instance to a client.

Primary actor: System.

Goal:
- Send the job instance for execution on a client.

Precondition:
- Valid executable job submitted by one of the grid users.

- System generated an instance of the job for sending to a client.

Trigger:
- New instance of the job is available at the system.

Scenario:
- System handle new instance of the job waiting to submit to a client for execution.

- System selects the available client and sends the instance to.

Exception:
- No clients are currently available.

- No client has the suitable platform to execute the job.

61




| Table 4.17: Validate results use case template.

Use case template for Validate results:

Use case: Validate results.

Primary actor: System.

Goal:

- Check the validity of the results.

Precondition:

- Job is executed by one of the clients or aborted while executing.

Trigger:

- Client uploads results of execution of the Job.

Scenario:

- Job is executed by a client.
- A connection between the client and server is activated.
- Result is uploaded.

- System checks the validity of the results by a pre-determined mechanism.

62




| Table 4.18: Prepare results for download by users. |

Use case template for Prepare results for download by users :

Use case: Prepare results for download by users.

Primary actor: System.

Goal:

- Prepare the result for download by the user.

Precondition:

- Job execution is completed.

Trigger: a user requires downloading the completed job.

Scenario:

- Auser logs into the grid portal.
- Select a completed job for download.

- System does the appropriate compression mechanism to prepare the job for download.

Grid Client:
This actor has the Job execution scenario.

e Job-Execution :
When a job is to be executed the grid client machine and the grid server are

involved in this process. They cooperate with each other to achieve the job.

The following template shows how the scenario happens:

63




| Table 4.19: Job Execution use case template. |

Use case template for Job Execution:

Use case: Job Execution.

Primary actors: Grid Client, Grid System (Server).

Goal:

- Executing an uploaded job on one of available computing resource (machine).

Precondition:

- The Job is submitted to the project and its associated input and output files are determined so the

project is ready to execute.

Trigger:

- Job is added to a running project.

- ltis on the top of the server scheduler.

Scenario:

- The unutilized Grid Client (computer machine) gets a set of tasks from the project's scheduling
server.

- Grid Client downloads executable and input files from the project's data server.

- Grid Client runs the application programs (jobs), producing output files.

- Grid Client uploads the output files to the data server.

- After a period of time the grid client reports the completed tasks to the scheduling server, and
gets new tasks.

- This cycle is repeated indefinitely while project running.

64



4.2.3 Use-case Diagrams

This subsection clarifies the interaction between actors and the grid system, as shown in

figures below.

Grid computing
System

Creating/deleting
projects
Adding/deleting
- users

MoC ' '.n)gmer
information
“anaging computing

nitoring projec
status

Figure 4.1: Admin use-case diagram.

65



User

Gnd computing
System

Uploading new job

mod ."ing account
information

Figure 4.2: User use-case diagram.

66



System

Gnd computimg
System

renerating instance
of job

vending instance to a
client

Validating results

/Preparing results for
download

computing resource)

Figure 4.3: system and client use-case diagram.

67



4.3 Class-Responsibility-Collaborator Modeling (CRC)

This section identifies the classes required in the project implementation. Also, it
provides a simple mean about the functionality of each class, and the class relationships.

All the classes are represented using CRC modeling as follow:

1) DBConnection class:

| Table 4.20: DBConnection CRC. |

Class : DBConnection

Description: this class has the responsibility of creating and managing connections with DB's.

Responsibility: Collaborator:

Setting the connection with DB following | ProjectCreation class.

to a specific user at a specific server. ProjectManagment class.
Getting a DB connection. UserCreation class.

2) ProjectCreation Class:

| Table 4.21: ProjectCreation CRC. |

Class : ProjectCreation

Description: this class has the responsibility of creating different types of projects.

Responsibility: Collaborator:

Generate the form to enable the admin DBConnection class.

enter the inputs needed for project creation.

Validate the project name.

Create project.

68



3) ProjectManagment Class:

| Table 4.22: ProjectManagment CRC.

Class : ProjectManagment

Description: this class has the responsibility of managing the grid system project.

Responsibility:

Collaborator:

Stop project.

DBConnection class.

Start project.

Restart project.

Attach clients.

Delete clients.

Update client.

Validate IP.

Delete project.

Generate the form.

4) UserCreation class:

| Table 4.23: UserCreation CRC. |

Class : UserCreation

new users to the system.

Description: this class has the responsibility of providing the functionality for adding

Responsibility:

Collaborator:

Generate the form to enable adding new

users.

DBConnection class.

Validate the new user name.

Validate the new user email.

Validate the new user password.

Adding the new user.

69




5) JobSubmission class:

| Table 4.24: JobSubmission CRC. |

Class : JobSubmission

submitting new jobs.

Description: this class has the responsibility of providing the functionality for

Responsibility:

Collaborator:

Generate the form to enable submitting

new jobs.

DBConnection class.

Validate the type of the job folder.

Check all inputs.

Uploading the job folder.

Extracting the folder.

Submitting job to a specific project.

Adding the job to the DB

70




4.4 Class Hierarchies and relationships

This section shows the relations between classes using class hierarchy and

relationship diagram as shown in figure 4.4:

ProjectCreation
getForm()
validateIName()
CreateProject()
: ProjectManagment
| getForm()
R validate[P(})
S W attachClient()
obaubmssion DBConnection deleteClient()
updateClient()
getForm( | > setServer() - startProject()
validatelnputs() setUserG) |~ | StopProject(}
extarctF older() setDB EestartPtoject()
submitToProject() getConnection() DeleteProject(}
addToDB() 7
UserCreation
getForm()
validateName(}
validateEmail()
validatePassword()
addUser()

Figure 4.4: Class Hierarchies and relationships diagrams.

More details about this section will be discussed in chapter five.

71




4.5 Summary

System requirements were introduced in this chapter by defining system actors, use-
cases templates, use-cases diagrams, CRC modeling and the class hierarchy and
relationship. System actors defined as four basic actors, those actors are: Administrator,
User, System and Grid Client (computing resource). All scenarios that may occur
introduced in the use case templates. Each actor can initiate some of use-cases which
clarified in use-case diagrams. At CRC modeling we define five classes which are
system, resources, projects, jobs generator and result handler. Finally, class hierarchy and
relationship clarify the relations between the classes in the system.

72



Chapter 5

Software design description

5.1 Overview

This chapter describes the overall system design. It describes the lower level of the
system which is the BOINC middleware, then it goes in more details in describing the

higher level of the system.

5.2 BOINC Middleware

Berkeley Open Interface for Network Computing (BOINC) is an open source
middleware platform. BOINC has been developed by a team based at the Space Sciences
Laboratory (SSL) at the University of California, Berkeley led by David Anderson, who
also leads SETI@Home. SETI@HOME tries to fine extraterrestrial life by analyzing
radio signals [29].

BOINC is designed to be a free structure for anyone wishing to start a volunteer
computing project. It is a set of software modules that enable the use of idle CPU cycles

on a personal computer to do scientific computing.

BOINC is the most popular desktop grid systems today with the aggregated
computational power of more than 2,576,332 participants is about 8,361.840 Teraflops,

thus providing one of the most powerful —supercomputers in the world [30, 31].

5.2.1 BOINC Architecture

The structure of BOINC is simple. BOINC follows the client-server architecture;

the server generates work units (WUs), distributes them to clients and collects their

73


http://en.wikipedia.org/wiki/Space_Sciences_Laboratory
http://en.wikipedia.org/wiki/Space_Sciences_Laboratory
http://en.wikipedia.org/wiki/University_of_California,_Berkeley
http://en.wikipedia.org/wiki/David_P._Anderson

results. Each PC, acting as a client, communicates with the server to get WUs which
include executables and input files and return results of computation, BOINC is not peer-
to-peer; the clients do not communicate with each other [32]. These components are

shown in Fig. (5.1) and are explained below.

Web
interface

Task server

BOINC client 4

BOINC server

"oject
database

Figure 5.1: BOINC architecture [3].

5.2.2 BOINC Server

BOINC server runs on Linux and uses Apache, PHP, and MySQL as a basis for its
web and database systems, which easily scales to projects of any size. BOINC server
consists of the following components:

e Web interfaces: uses Apache web server and PHP, for user account and team
management, message boards, current server status, and other features.

e The task server: creates tasks, posts them to clients, and processes returned
tasks.

e The data server: downloads input files and executables, and uploads output file,

uses HTTP protocol.



5.2.3 BOINC Client

Four components construct the BOINC client: core client, manager, screensaver, and

command line tool. These components are shown in Fig. 5.2 below.

1-

/ ~ T T~
P ~
! \
|

BOINC Core BOINC
Client Manager

BOINC
Command
Line Tool

\_ /

Figure 5.2: BOINC Client.

The core client takes care of scheduling among jobs from different projects,
possibly preempting jobs, downloading and uploading results to the different
projects to which it is attached [1].

BOINC manager enables control over the core client via user preferences. Some
of these preferences are project specific and some are not. As a project specific
preference the user can set a minimum and a maximum amount of work the client
should keep on the computer for the given project [1].

The screensaver displays application specific graphics as a screensaver just to
attract and entertain volunteer users in the first place [1].

75



4- BOINC command tools provide non-GUI version of BOINC manager [1]. The
client is available for Windows and Linux on Intel x86 architectures, for Mac OS
X on PowerPC, and Solaris on Sparc architectures, but since it is open source it

should not be too difficult to get it running on other platforms as well.

5.2.4 BOINC Database

A MySQL database stores all information relevant to the BOINC project. This
includes information about registered users and their associated hosts, about applications
and application versions, about BOINC core clients and the versions involved and of
course about WUs and their associated results. Basically the entire state of the server is

stored in this database and queried by among others the above mentioned daemons [1].

5.3 System configuration design

This section includes a description for installing BOINC server software, creating

and running a BOINC Project and deploying BOINC clients.

5.3.1 Installing BOINC Server Software
This involves setting up BOINC software, and other required open-source

software, on a Linux computer. The software requirements installation process is

shown in figure 5.3.

76



g )

Choose hardware

A

Install linux OS

v

Configure network

\ 4

Install server dependencies

4

Install BOINC server

N /

Figure 5.3: Installing BOINC Server Software.

1. Hardware

For experimentation and debugging, you can use almost any computer as a BOINC
server. For better performance, availability, and security, the server needs the

requirements [54]:

e The Internet connection should have adequate performance and reliability. The
server must have a static IP address.

e The server should have good CPU speed (dual Xeon or Opteron), at least 2 GB of
RAM, and at least 40 GB of free disk space. For a high-traffic project, use a
machine with 8 GB of RAM or more and 64-bit processors.

e Other requirements to make it highly reliable (UPS power supply, RAID disk

configuration, hot-swappable spares, temperature-controlled machine room, etc.).

77



2. Operating System installation:

BOIC server runs almost on any up-to-date UNIX or Linux variant machine so we

can use for example Ubuntu Linux distribution.

3. Network configuration:

The server should be given a static IP out of the range of IPs available in the

university.

4. BOINC Server Dependencies Installation:

BOINC server needs the following components and prerequisites to run:

e make 3.79+, m4 1.4+, libtool 1.5+

e autoconf 2.58+, automake 1.8+, GCC 3.0.4+ pkg-config 0.15+

e Python 2.2+ with MySQL DB module 0.9.2+

e MySQL 4.0.9 or higher (with mysql-dev(el), and mysql-client)

e SQLite 3.1 or higher (packages sqlite-dev(el) and SQL.ite)

e Apache web server with mod_ssl and PHP5+

e PHPS5 with cli support and the GD and MySQL modules (packages php5-cli and
php5-gd)

e OpenSSL version 0.9.8+

5.3.2 Creating And Running A BOINC Project

A BOINC project is the environment under which the grid application runs.

Project creation block diagram is shown in figure 5.4.

78



create project environment

~

set project permissions

Add Jobs to project

attach clients to project

Start the Project

o

/

Figure 5.4: Creating And Running A BOINC Project.

e Template Files for applications

In order to run the application, its input and output files must be described via
XML template files; commonly these are called workunit.xml and result.xml. The
former describes the application and its input data while the latter describes the output
data and the process which occurs once the application has executed. Template files

must reside in the projectName/templates/ directory.

1. A Typical Workunit (Input) Template

<input_ template>

<file_info>

<number>0</number>

79



<[file_ info>

<file_ info>
<number>1</number>

<[file_info>

<workunit>
<file_ ref>
<file_ number>0</file_ number>
<open_ name>in_datal.txt</open_name>

<file_ ref>

<file_ ref>

<file_ number>1</file_number>

<open_ name>in_data2 . txt</open_name>
<file_ ref>

</workunit>

</ input_template>

This input template specifies that there are two input files called in_datal.txt and
in_data2.txt. If an input file has been specified in the input template, this must be
manually placed in the download directory before starting the project. The XML

components above have the following meanings:

file_ info: specifies the number of input files.

workunit: defines a unit of work. In this case, the executable only has two input files,

hence the executable and the two input files can then be passed to the client and run.

file_ref: provides a reference to the file entered between the open_name tags.

80



Others XML descriptors can be entered dependent on the application resource

requirements. These can be found at references [33, 34].

2. A Typical Result (Output) Template

<output_template>

<file_ info>
<name><QOUTFILE_ 0/></name>
<generated_ locally />
<upload_when_present />
<max_nbytes>5000</max_nbytes>
<url><UPLOAD_URL/></url>

</ file_info>

<result>
<file_ ref>
<file_ name><OUTFILE_0/></ file_ name >
<open_ name>out . txt</open_name>
<[file_ ref>

</result>

</output_template>

This output template describes the result of the application, specifies the unique
name of the output file out.txt and that it is generated on the client and does not have
to be downloaded. When present, it is automatically uploaded to the BOINC server
and must not exceed the 5000 byte limit else it will fail to upload. The XML

components above have the following meanings:

81



file_ info: provides information of the resulting output file.

name/OUTFILE_O: gives the output file the unique name of workunitName_N.

generated_locally: indicates that the file will be generated on the client, rather than

downloaded.
upload_when_present: indicates that the file should be uploaded when the
application finishes.

url/UPLOAD_URL.: this is replaced with the upload URL.

max_nbytes: if the output file is larger than this, an error will occur and it will not be

uploaded.

file_ref: references the file and gives it a unique name related to the project and

workunit identifier.

More information about the output file and the complete list of XML descriptors can

be found at references [33, 34].

5.3.3 Deploying BOINC Clients

The last part in the installation process after setting up BOINC server and

preparing the project to handle jobs, is installing BOINC client software in computer

labs. Figure 5.5 shows a block diagram for the deployment process:

82



Fig. 5.5: Deploying BOINC Clients.

For the PPU campus environment, the BOINC client must be deployed to meet the
following requirements:

e The BOINC Client must run all the time (even when no one is logged in).

e Project attachment must be automatic.

e BOINC manager must be disabled: no user intervention is required in client

configuration (the student cannot attach to or disconnect from a project, cannot
create a new user, or start/stop/pause/exit the BOINC client).

e Screen saver must be disabled: no screensaver is needed because it looks strange

for students, they may think the PC is occupied/busy and choose not to use it.

e To insure security, no internet connection is required for the BOINC client since it
runs within the university's LAN.

e For a large number of PCs, deployment must be performed automatically, not
manually.

83



After deploying server and client software and attaching the clients to the created
project, the project is now ready to send work units to clients and receive results back

from them.

5.4 Object relational model and object design

The system has five basic software objects that are:

e DBConnection: manages the connection with the system DB's. all the
other classes have the "access to" relation as shown in the class hierarchy
in chapter 4.

e ProjectCreation: provides the functionality for project creation.

e ProjectManagmant: provides the functionality for project management.

e UserCreation: provides the functionality for adding new users to the grid
system.

e JobSubmission: enable users submitting jobs.

The following tables show more details about the functionality of each class.

84



Table 5.1: DBConnection class ‘

DBConnection

setDBServer(){

set the IP address of the DB server;
¥

setDBUser(){

set the DB account username;

¥

setDBUserPassword(){

set the password of the user account;
}

setDB(){

set the DB;

¥

getDBConnection(){

return a connection to the DB specified,;

}

‘ Table 5.2 ProjectCreation class. ‘

ProjectCreation

getForm(){

return html code, represent a form to enable project creation
}

validateName(){

return boolean value based on the name entered for the project
to be created.// project name may be a combination of
letters,digits and //underscore or one of them.

generate error massages for invalid inputs.

}

createProject(){

add the project to grid_system DB,;

execute the appropriate shell script that perform the project
creation process;

}

85



‘ Table 5.3: Project Management class. \

Project Management

getForm(){

return html code, represent a form to enable project management functions}
attachClient(){

call the validatelP function to check the validity of the entered IP address;

add the client who has the entered IP address to the computing resources that serve the
project;

generate error massages in the case of invalid IP address format;

}

deattachClient(){

call the validatelP function to check the validity of the entered IP address;
delete the client who has the entered IP address from the computing resources that serve
the project;

generate error massages in the case of invalid IP address format;

}

stopProject(){

execute the shell script stopProject.sh;// stop all project diamonds

modify the project status to not running status;

}

startProject(){

execute the shell script startProject.sh;// start all project diamonds

modify the project status to running status;

}

restartProject(){// needed at the case when some diamonds are stopped working.
execute the shell script restartProject.sh;// restart all project diamonds

modify the project status to running status;

}

deleteProject(){

execute the shell script deleteProject.sh;// delete the project directory and //DB
delete the project from grid_system DB,;

delete the project name from users following to this project;

}

validatelP(){

return Boolean value based on the entered IP address;//entered IP must match with the
/lcorrect IP address format

generate error massages for invalid inputs.

¥

86



| Table 5.4: User Creation class. |

UserCreation

getForm(){

return html code, represent a form to enable adding new users;

}

validateName(){

return boolean value based on the name entered for the new user;// project name may be
a combination of letters,digits and underscore or one of them.

generate error massages for invalid inputs.

¥

validateEmail(){

return Boolean value based on the email entered for the new user;//email //must match
with the correct email format.

generate error massages for invalid email format or in the case that the entered email is
used by a user in the grid_system;

¥

addUser(){

//in the case of valid inputs:

add a new user to the grid_system DB having the information entered,

create a directory for the new user;// to enable uploading the user jobs inside that
/ldirectory

}

87



| Table 5.5: JobSubmission class. |

JobhSubmission

getForm(){

return html code, represent a form to enable submitting jobs;
¥

validatelnputs(){

check that all inputs are set;

check the type of selected file to upload;// it must be one of compression types
return a Boolean value based on these parameters;

}

uploadFolder(){

upload the selected file to a specific folder;

¥

extractFolder(){

extract the uploaded folder;

¥

submitJob(){

submit the job to a specific project;

add the job to DB;

}

5.5 System functionalities

This section describes the system functionalities and how they are processed.
System functionalities are classified as admin side functionalities, user side
functionalities, and system functionalities. Admin side functionalities include project
creation, project management, adding users to the system, and users’ management. User
side functionalities include submitting new jobs, monitoring jobs execution status,
downloading results, deleting results, and aborting jobs execution. System functionalities
handle managing the system at the lower level.

88



5.5.1 Admin side functionalities

Admin can create or delete projects, mange projects, add or delete users, and
manage Users.

Project creation:

Creating a BOINC project is done as shown in the flowchart below.

( start )
dispaly fo rm/

enter name,
select type

display error
massage

valid inputs

create project

create account
to add resources

disable account
creation

end

Figure 5.6: Project creation.

89



Project management:

Project management includes attach resources, delete resources, start, stop or
restart project, disable or enable account creation, and project deletion. The following

flowcharts describe these functionalities.

( start )

i dispaly form ;

sto . restart
P select choice

start

restarting

stopping . .
starting project project

project

\I/

update project
status

end

Figure 5.7: stopping/starting/restarting project.




1 start )
/ dispaly form /
set resource

IP

validate IP

2

display error invalid

massage

valid IP

attach/deattach
resource

end

Figure 5.8: attaching/detaching client to a BOINC project.

91




disable e S~ enable
~_select choice >
L 4 L 4
disabling enabling
account account
creation creation
h—l'r.'---\.\l‘
\
T
h 4

update account
creation status

Figure 5.9: disable/enable account creation.

92




User creation and management:

Adding new user to the system is done as described in the figure below.

=»

/
/

|s paly for

set inputs

\\

display error

validate inputs
massage

valid inputs

add user to DB

create directory
for new user

end

Figure 5.10: adding new user to a BOINC project.

93



Managing users is done by enabling the modification of some important

information of the user, like moving the user from one project to another, or even by

( start )

display all
users

deleting the user.

select a user

modify
informatio delete
n elect choice user
i delete user
read inputs |
i directory
'_“(f)dify l:_Ser delete user
information elete Lse

end

Figure 5.11: Users management.




5.5.2 User side functionalities

Users can submit jobs, monitor execution status, abort jobs, download results,

delete results and modify their account information.
Job submission:

Job submission is done as in figure 5.11.

( start )
display
submission form

select file
and platform

invalid inputs

validate inputs

display error
massage

valid inputs
upload job
folder

extract job
folder

submit to
project

end

Figure 5.12: job submission.

95



Jobs management:

Jobs management includes monitoring execution status, aborting jobs while

execution, downloading results of completed jobs, and deleting the results.

{ start )
/ display all /

/ submitted jobs /

/ select job /
do nothing

do nothing
downl ) completed in progress .
rgsolmpfflilser alead < . oo P prog choice
being
assimilated aback
download delete result Lo
result directory e
f\ delete DB entry
k / that points to the
job

Figure 5.13: jobs management.

96




5.5.3 System functionalities

System needs to perform some functions automatically as a response for some
functions from the higher level. Functions that are purely initiated by the system exist at

the job execution stage. This stage described below.
Job execution:

As stated in chapter four; job execution is initiated by the system, while the
overall process of the job execution is done by the cooperation between the server and the
client. Figure below clarifies the process of job execution.

e .
( start |
. /
l | 3ctor: sener l actor: owner(user)
create aborted””
instance
¥ actor: server
aborted

schedule

Y —| actor: client{computing resource)
aborted

instance lost
download

actor: client{computing resource)

v

aborted

instance lost

execute

finished ‘ actor: client{computing resource)

v

upload result

l actor: server

validate |«

l actor: server

assimilate

result

1

7 ™\
( end )
M A

Figure 5.14: Job Execution.

97



5.6 Software interface design

This section describes user interfaces that will be implemented to enable the

interaction between the system and grid users.

The About page interface:

[ PPU Grid x

€ C [} 195.3.191.24/PPUGr

/

What is grid computing: Why grid computing:

Grid computing is a service of

: 5 Grid computing provides a rich
sharing computational power and data OHDE

. computational power for different uses.
storage capacity over the internet.

Grid computing enhance the
utilization of computing resources
available at the organization having the
erid computing system.

Grid computing is applying the
resources of many computers in a
network to a single problem at the
same time - usually to a scientific or
technical problem that requires a great
number of computer processing

Grid computing simplify solving a
computational-intensive problems

Future Vision:

Building a grid computing system to
enhance research in Palestine.

Making the use of all resources at the
Palestinian high education instit- utions.

Providing a sufficient techniques to
divide and farm out pieces of a comp-
utational-intensive problems to as many
as several thousand computers to

eles
Sy prepare them for running at the grid
i Grid computing is the collection of Grd SOTDURE fIproyes te YR,
3 5 economic situation of the organ-
computing resources from multiple S
3 izations; reduces the number of
[ | locations to reach a common goal.
supercomputers needed.
|
Palestine Polytechnic University Copyright © PPU Grid Team jan 2014 ——
y szfinc
z 4 A A gz 4

Figure 5.15: The About Page.

98




Contact page interface:

y [ PPU Grid x

€ C' | [ 195.3.191.24/PPUGridSystem/About.php

X Campus Grid Computing had built over the BOINC middleware, which is free and
Contact Information:
powerful framework used by many global projects that make significant researches which need
L to a huge computational power. For more information about BOINC you can visit BOINC
Ibrahim Qdemat qusaymusa@yahoo.com
MURARWEET EwalD mohammad thwaib@yahoo.cor This project done as a part of graduation project for Computer System Engineering at the
Project supervisor: IT and CSE collage at Palestine Polytechnic University during the year 2013-2014.
Dr. Mohammed Aldesht mohammed@ppu.edu
Palestine Polytechnic University Copyright © PPU Grid Team jan 2014 _B)'(IE

Figure 5.16: Contact page.

99



Login page intrface:

PPU Gnd
« c 195.3.191.24/PPUGridSystem

Login to PPU Grid System

Login

Figure 5.17: Login Page Interface.

100



Admin home page interface:

) PPUGrid x

C [} 1953.191.24/PPUGridSyste

=St

<=

User Information:

Name: boincadm
Emal: boincadm@yahoo.com
Level: admin

Logo

Grid Computing Project List: Create New Project
Project Name:
Project Number 1:
--PPUTest
Project Number 2:

--SystemTestl

olytechnic University Copyright © PPU Grid Team jan 2014

Figure 5.18: Admin home page interface.

101



Users page interface:

/[ PPU Grid x

€« C' | [} 195.3.191.24/PPUGridSystem/Users.phy

User Tuformahion: All Authenticated System Users: Add a New user.
Name:

Name: boincadm Email

Email: boincadm@yahoo.com Password:

Level: admin i Project ProjectD:

Togont boincadm boincadm@yahoo.com SystemTest1 v
Muh d | thwaib@yahoo.com | SystemTestl | Levet user v
Ibrahim | qusaymusa@yahoo.com | systemTesn |
Mohammed | mohammed@ppu.edu | SystemTestl |
superuser | superuser@ppu.edu | SystemTestl |
saleem | saleem@ppu.edu I |
Palestine Polytechnic University Copyright © PPU Grid Team jan 2014 _B)'@
VS WS R e - NN

Figure 5.19: Users page interface.

102



Project management page interface:

PPU Grid

User Information:

Name: boincadm
Email: boincadm@yahoo.com
Level: admin

Logout

SystemTest1:

is a research project that uses computers at PPU computer labs to do research
in PPU.

The following platforms supported by this project

Platform

1 | Microsoft Windows (98 or later) running on an Intel x86-
compatible CPU

Microsoft Windows running on an AMD x86_64 or Intel EM64T
CPU

3 | Linux running on an Intel x86-compatible CPU

4 Linux running on an AMD x86_64 or Intel EM64T CPU
5 Mac OS X 10.3 or later running on Motorola PowerPC
6 Mac OS 10.4 or later running on Intel

for more details about supported platforms you can visit Platforms

For more information you can visit

>> Home Page

>> Adminstrative Page

>> Adminstrator A«

>> Computing resources

>> Computing preferences

Submitted Jobs

boincadm

***SystemTest! is Running
Control the Project

Attach Client:
Client IP address:

Delete Client:
Client IP address:

Update the attached Projects on client

Client IP address:

Restart the Project,
Restart All diamons

Stop the Project

All running diamons will be stopped:

Delete the Project
Project will be deleted permanently

Delete

Palestine Polytechnic University

Copyright © PPU Grid Team jan 2014

Figure 5.20: Project management page interface.

103



Modify user information page interface:

[*) PPU Grid

€« c
v

x

[} 195.3.191.24/PPU

Modifyl

1

7

F
% i,
iy ™

3

g

%

=

Logout boincadm

Users Account

User Account Information:

Name

boincadm Change user information
Email boincadm@yahoo com Project | systemTest1 v
Project Name:
Level: admin

Level User v

update information

Copyright © PPU Grid Team jan 2014

Figure 5.21: Modify user page interface.

104



Job submission page interface:

€« C' | [} 195.3.191.24/PPUGric

User Information: )

JOB Submission:
Name: Muhammad

AL e e File to upload: Choose File |Nofile chosen

Choose the compatible platform that runs your job:

Jobs for Microsoft Windows (98 or later) running on an Intel x86-compatible CPU

Jobs for Microsoft Windows running on an AMD x86_64 or Intel EM64T CPU

Jobs for Linux running on an Intel x86-compatible CPU

Jobs for Mac OS 10.4 or later running on Intel

Jobs for Intel 64-bit Mac OS 10.5 or later

Jobs for Linux running on an AMD x86_64 or Intel EM64T CPU |

Project Information:

- Parameters(optional):
- SystemTestl

-- Running

URL.

To avoid failure Job execution read the follow

guides accurately, .

vour uploaded compressed folder must be as follow:

* Contains one executable file
* Al other files are optional but if any of them exists it must be compatible
with the following guides
- Name of standard input file must be stdin.

- Name of standard output file must be stdout

- All other input files must be located in a folder named inputs

Polytechnic University Copyright © PPU Grid Team jan 2014

Figure 5.22: Job submission page interface.

105



Modify account information page:

[*) PPU Grid
&«

x

C' | [} 195.3.191.24/F

S

7
g
Syt

7 i e

Logout Muhammad

Home

JOB Submission

Account

Account Information:

*Contact the admin if you want to change
information at this part.

*Information at this part is available for update:

Name: Muhammad
Project Name:s, stemTest1 Email mohammad thwaib@yahoo.com
Level user Current Password:
New Password:

Confirm Password:

update information

Pal e Polytechnic University

Copyright © PPU Grid Team jan 2014

Figure 5.23: modify account page interface.

106



5.7 Data Base Design

The controlling DB named grid_system and has the ERD as in figure 5.22. This
DB manages the overall system since it is project independent; it connects all projects

together, stores all users of different projects, and manages the users’ jobs.

There is another DB which is project dependent; each BOINC project has its own
DB. So, in the case of many projects exists on the same server, there will be many DBs in
the system. More information about the BOINC project DB can be found in appendix B.

_— ( status \LiL) .
(\Ii) (e \ > A Type
— ‘\'-.\ _,f"ff _._.--""-. ™

.-"'-'

s e

___---------- "-.____ " = P ] -
—
1 | FROJECT 1

I~

( “\ame N
SE' E'S f'#’]'ms ™
~ it d\x"\« H\\{/
| Emﬂ.ll F

i,-) USER [ 4\51,1,? N | JoE
- _ -_FL_.-___,...._.---' ‘.:.- _,-'f 1

— i |
. Project O Id A e,
'\“’;““9 QD) Groject zame

Figure 5.24: Grid System DB ERD.

107




5.8 Hardware interface Design
Basic hardware components in the system are:

1- Server: System coordinator.
2- Routers, switches.
3- Grid clients: the computing resources that perform the computations assigned to

the grid system.

PPU LAN represents the system infrastructure.

PPU LAN

Computer with g
Software Access Point

Wired Ethernet
Matwork 2

Figure 5.25: Hardware interface design.

108



5.9 Overall Work Summary

The work during the last semester was mainly concentrated on trying to better
understand the project, determine its components, costs and time schedule. In addition, a
lot of time was paid for analyzing and designing the project. This was done through five
chapters, in each chapter we discussed a particular issue associated with this project. In
the following paragraphs we summarize the work which was done in each chapter.

In chapter one, we talked about the project idea. Then we presented some of the
project motivations. In addition, we have discussed the project scope which addressed
these topics: system input and output, project requirements, components, deliverables,

assumptions, boundaries constraints, and the Initial project organization.

In chapter two, we presented an overview of grid computing technology and its related
issues. In addition, we discussed some of previous grid-based projects and studies and analyzed
their results.

In chapter three, we defined all the project task sets and sketched the project Gantt chart.
Then we stated the available options to be used in the project implementation. Also some of
project risks were stated and analyzed. Finally we define all the components that are needed for

the project evaluation in addition to the costs estimations.

In chapter four, we defined the system actors, use-cases templates, use-cases diagrams, CRC
modeling and the class hierarchy and relationship. All scenarios that may occur were introduced
in the use case templates. Each actor can initiate some of use-cases which clarified in use-case

diagrams.

109



In chapter five, we stated the basic features of the system design. These features include
object relational model, state behavioral model and System configuration design. It includes also,

software interface, hardware interface and database design.

5.10 What Is Next?

The work of this project during the next four months of project life will be divided
into three parts. First, we will measure the CPU utilization in selected computer lab PCs
in the university. In order to get a realistic results, the study should be performed during
the university work days (from Sunday to Thursday), and during work hours only (from
08:00 to 16:00).

In the second part, we start the system configuration process to build a local desktop
grid using BOINC middleware. This grid consists of the server device, which can be a
real server or one of our available high performance computers, and three or more grid

clients(PCs), each one can be any computer available in our labs.

Finally, in the third part we will start testing the grid and trying to build the grid
interface. This interface enables grid users like researchers to make use of the grid which
was built in the second part by providing them the capability to submit jobs to grid's

clients and get the results back.

110



5.11 Summary

This chapter stated the basic features of the system design. These features include each of

the following:

- System configuration design: It has a large part of the final project design. That
includes server and clients’ configuration, software installation, project creation
and deployment and other configurations.

- Object relational model: as shown previously there are five basic software objects
that need to be implemented for this system. They are: ProjectCreation,
ProjectManagement, UserCreation, and JobSubmission.

- System functionalities: describes all system functions using flowcharts.

- Software interface design: shows the main portal pages interfaces that will be
implemented.

- Data base design: this section defines in context the basic structure of the
controlling data base. This data base will contain basically three tables — project,
user, and job.

- Hardware interface Design: it shows the system hardware environment.

In the last two sections we talked about what was accomplished until now during the
first four months of life cycle of this project. Then we presented the major parts and the
set of tasks which will be done in the next semester during the remaining time for this
project.

111



Chapter Six

Implementation and Testing

6.1 Overview

In this chapter, we explain the implementation procedure at two levels. At the first
level (the low level), we describe the system configuration steps to prepare the grid
environment in addition to grid system core functions implemented using Linux bash
scripts. At the second level (the higher level), we describe the portal implementation and
how the core functions were enabled remotely. Also this chapter includes the testing

applied on all system functionalities at both higher and lower levels.

6.2 System Configuration and Core Functions

In this section we describe the implantation of system configuration part of this
project. This part represents the low level layer of the project. We show the process of
setting up the grid environment.

Shell scripts using bash interpreter were used at this level to communicate directly
with the operating system, the BOINC core client software and the BOINC middle-ware
as a whole. The PPU Grid System Portal is built above this layer.

6.2.1 BOINC Server Deployment

The first step of building our grid system is to configure and prepare BOINC server to

work. Our BOINC server computer has the following properties:

e Processor: core i5 3.2GHz.

e RAM: 4GB

e Disk storage capacity: 320GB.
e Network: 100Mbps.

e Global IP address: 195.3.191.24
e Local IP address: 10.10.16.12

112



BOINC server runs on UNIX operating systems. In our project we used Ubuntul2.04
LTS 64-bit Linux distribution. In addition, we installed the BOINC server software
prerequisites and dependencies. Furthermore, we solved some problems that appeared
during the deploying of BOINC server. The detailed explanation the BOINC server

setting up process is described in appendix A.
6.2.2 BOINC Client Deployment

At the client side, BOINC client software was installed on each computer
participated in our grid system. We installed BOINC client as a service by checking
the Service Install checkbox. In addition, we disabled screen saver option and prevented

other users (usually students) from controlling BOINC client software.

To make the communication between the BOINC core client and a remote computer
secure, two files are added to BOINC data directory (where BOINC's data files will be

stored). These files are:

1. gui_rpc_auth.cfg file
This file contains the BOINC client password. Any remote computer

wants to communicate with BOINC core client must provide this password in its
communication commands.

2. remote_hosts.cfg file

This file contains the IPs or DNS names of remote hosts that are allowed
to communicate with BOINC core client if they provide the correct password
stored in gui_rpc_auth.cfg file. Any other host will be prevented from

communicating with BOINC core client.

The technical details of preparing grid clients (PCs) to participate in the grid

system are described in appendix A.

6.2.3 Project Creation

A project is an entity that does distributed computing using BOINC. Projects are

independent; each one has its own applications, database, web site, and servers, and is not

113



affected by the status of other projects. Each project is identified by a master URL, the

URL of its web site. Multiple projects can coexist on a single server computer [37].

At the implementation level, a project consists of [37]

o adirectory tree, containing files related to the project, and
e aMySQL database.

We created BOINC projects for different purposes, two types of these projects are:

1. New/Empty Project
The process of creating a BOINC project requires you to follow a certain

steps and instructions given by BOINC documentation. At the end of these steps
you may need to solve some problems regarding server Linux distribution. The
process of creating New/Empty project on Ubuntu 12.04 LTS is described in
appendix B.

The Empty project is a BOINC project that doesn't contain any application.
Creating an Empty project requires well Linux administrative skills and a long list
of steps. In addition, it needs to solve some problems regarding server Linux
distribution (Ubuntu 12.04). Furthermore, one will find himself forced to repeat

all these steps when he decides to create another project.

To facilitate project creation process, we need to automate this process. For
this purpose, we create a bash script called createProject.sh. This script executes
all required steps to create a project and solve all problems.

e createProject.sh bash script
= Usage: bash createProject.sh projectName [installroot]
Where:
projectName: the name of the project
installroot: the path of the folder containing the project. It is optional
argument, if not determined then the default (/home/boincadm /projects) is

used.

114


http://boinc.berkeley.edu/trac/wiki/ServerComponents#ThemasterURL

Usage Example: bash createProject.sh emptyProject

2. Test/Example Project

Test/Example Project is an Empty Project that has an example application for test
purposes. The example application is a single-thread native BOINC application [38].
This application has application versions to run on different well known platforms.
The application reads an input file, converts the file to upper case and writes it to an

output file.

To create a BOINC project running the test application example you can follow
the same scenario with creating empty BOINC project with some changes. This
process is described in appendix B. Figure 6.1 describes the main steps of creating

Test/Example application.

e createTestProject.sh bash script
= Usage: bash createTestProject.sh projectName [installroot]
Where:
projectName: the name of the project
installroot: the path of the folder containing the project. It is optional
argument, if not determined then the default (/home/boincadm /projects) is
used.

Usage Example: bash createTestProject.sh testProject

115



Usage

Print Correct / invalid

l

configure apache server to
include project webpage

Read script

!

arguments

custumize project's
webpage

J

set password for project's
adminstrative webpage

|

Set Variables

N

create Test Project by

calling make_project
script

s project created
correctly ?

Use 'crontab’ to insert a
cron job to run the project's
periodic tasks

Install and enable test
application

!

Start the project

|

Yes
\ L open project's webpage
=5 set the suitable :
using default browser
// > permissions for project g
T folder and its contents

Figure 6.1: Create Test Project Algorithm

6.2.4 Create Admin Account

For each project you can create one or more accounts, any computing resource must
follow a certain account. In our case, we only need one account since that all computing

resources will be under the control of campus grid system Administrator (Admin

account) for each project.

Admin account creation can be done using BOINC manager interface, but in our
system we assumed the BOINC manager is not used. To solve this problem we created a

bash script called (createAccount.sh) which uses boinccmd tool commands to create the

admin account for a certain project.

The createAccount.sh bash script implements the steps of creation admin account

that are depicted in Figure 6.2 show below:

e createAccount.sh bash script

Usage: createAccount.sh projectName

Where: projectName: is the name of the project

116




store the
admin account in

Figure 6.2: Create Account Algorithm

6.2.5 Disable/Enable Account Creation

Since we need only one account (admin account) that is responsible for all computing
resources in our grid system, we should disable account creation after creating this

account.

Disabling account creation for a certain project can be done by adding the following
line <disable_account_creation/> between <config>...</config> tags inside config.xml
file which exists in the project directory. To enable account creation again, we need to
remove the previously added line from config.xml file.

117



To automate the process of enabling/disabling account creation for a particular

project, we created two bash scripts which automatically add or remove the needed line.

These scripts are: disable_account_creation.sh and enable_account_creation.sh.

e disable_account_creation.sh bash script

Usage: bash disable_account_creation.sh projectName [installroot]

Where:

projectName: the name of the project.

installroot: the path of the folder containing the project. It is optional
argument, if not determined then the default (/home/ boincadm /projects)
is used.

Usage Example: bash disable_account_creation.sh test

e enable_account_creation.sh bash script

Usage: bash enable_account_creation.sh projectName [installroot]

Where:

projectName: the name of the project

installroot: the path of the folder containing the project. It is optional
argument, if not determined then the default (/home/ boincadm /projects)
is used.

Usage Example: bash enable_account_creation.sh test

6.2.6 Client to Project Attachment/Detachment

After creating a project and admin account, clients (computing resources) can be

attached to a certain project under the control of admin account of that project. Once the

client (computer) becomes attached to a project, it becomes ready to download jobs from

that project, execute them and return the results back to the project server.

The client attachment to a certain project can be done using BOINC manager

interface. However, we want to attach the computing resources silently without any user

interaction. For this purpose, we created a bash script called attach.sh that does the

attachment process automatically.

118



The attach.sh bash script can attach multiple clients to the same project at the same

time given their IP addresses and using boinccmd tool to communicate with BOINC core

client.

In contrast, if we used the BOINC manager interface approach, we would have to

repeat the attachment process on each client (computer) separately which is effort and

time consuming especially if the number of the clients to be attached is large. The

explanation below shows the implementation and the usage of attach.sh bash script.

e Attachment script

Usage: bash attach.sh projectName client_ip
OR : bash attach.sh projectName *client_ip [other client_ips]'
Where: ProjectName: the name of the project

client_ip: the ip of the client machine
Note: If you have more than one ip, put them between single quotations.
Example 1: attach.sh ProjectX 192.168.1.5
As result of example 1 script calling, the client (computer) with IP
addresses 192.168.1.5 will be attached to ProjectX.

Example 2: attach.sh ProjectX '192.168.1.5 192.168.1.6'
As result of example 2 script calling, the two clients (computers) with
IP addresses 192.168.1.5 and 192.168.1.6 will be attached to ProjectX.

On the other hand, sometimes we want to detach a certain client from a particular

project. In other words, we want to stop a certain computing resource from serving a

particular project. This process is called client detachment and it is done using another

bash script called deattach.sh.

e Detachment script

Usage: bash deattach.sh projectName client_ip
OR : bash attach.sh projectName *client_ip [other client_ips]’
Where: ProjectName: the name of the project

client_ip: the ip of the client machine
Note: If you have more than one ip, put them between single quotations.
Example 1: deattach.sh ProjectX 192.168.1.5

119



As result of example 1 script calling, the client (computer) with IP
addresses 192.168.1.5 will be detached from ProjectX.

Example 2: deattach.sh ProjectX '192.168.1.5 192.168.1.6"

As result of example 2 script calling, the two clients (computers) with IP
addresses 192.168.1.5 and 192.168.1.6 will be detached from ProjectX.

The attachment/detachment scripts implements the algorithm shown in figure 6.3.

Set server staticip to a
variable in the script

!

Read script arguments
(projectName,client_ip(s))

Print Correct i heck corre
Usage /° o usage
Yes

get project url from server ip and
project name

get the admin account key from
project database

Project
Database

attach/deattach all cleint(s) with
given ip(s) to specified project

= End

Figure 6.3: Attachment/Detachment Algorithm

120




6.2.7 Project Control

During the project life time we need to control BOINC project in different ways.

BOINC has the following Python scripts control a project [67]:

e Dbin/start
Start the project: start all daemons, and remove the stop_sched and stop_daemon
files (see below).

e bin/stop
Stop the project (create the stop_sched and stop_daemon files)

e bin/start --cron
If the project is started, perform all periodic tasks that are past due, and start any
daemons that aren't running. Otherwise do nothing.

e bin/status
Show whether the project is stopped. Show the status of all daemons. Show the
status of all periodic tasks (e.g., when they were last executed).

We created four bash scripts to control a certain project using the previous Python
scripts. These bash scripts are:

e Start project script
= Usage: bash startProject.sh projectName [installroot]
Where:
projectName: the name of the project
installroot: the path of the folder containing the project. It is optional
argument, if not determined then the default (/home/ boincadm /projects)
IS used.
Usage Example 1: bash startProject.sh test
Usage Example 2: bash startProject.sh test /nome/boincadm /myprojects

e Stop project script
= Usage: bash stop.sh projectName [installroot]
*= Implementation: the same as the startProject.sh with the last line replaced
by ./bin/stop

e Restart project script
= Usage: bash stopProject.sh projectName [installroot]
= Implementation: the same as the startProject.sh with the last line replaced
by:
Jbin/stop

121



Jbin/start

Project status project script

Usage: bash projectStatus.sh projectName [installroot]
Implementation: the same as the startProject.sh with the last line replaced
by ./bin/status

6.2.8 Update Attached Projects

At the client side the core client which attached to one or more projects the

admin needs sometimes to update the attached projects. Project update causes the

BOINC core client to contact scheduling server immediately.

The bash script updateAttachedProject.sh is created in order to update all a

client's attached projects. It can be called on a local or a remote client using client

IP address. Multiple clients can be updated with same call.

Update script

Usage: bash updateAttachedProject.sh projectName client_ip
OR: bash updateAttachedProject.sh projectName ‘client_ip [other
client_ips]'
Where: ProjectName: the name of the project

client_ip: the ip of the client machine
Note: If you have more than one ip, put them between single quotations.
Example 1: updateAttachedProject.sh.sh ProjectX 192.168.1.5
As result of example 1 script calling, all projects to which the client
(computer) with IP addresses 192.168.1.5 will be updated.

Example 2: updateAttachedProject.sh  ProjectX  '192.168.1.5
192.168.1.6"

As result of example 2 script calling, all projects to which the two clients
(computers) with IP addresses: 192.168.1.5 and 192.168.1.6 will be
updated.

122



The updateAttachedProject.sh script implements the algorithm shown in figure 6.4.

Set server static ip and
store it in the script

[

ead script arguments
(client_ip(s))

Print Correct

Usage /= RS

get all projects URLs
to which a client with a
client_ip is attached

|

update each project to which
a client is attached

Is this last
client_ip ?

Figure 6.4: Update Attached Projects Algorithm

6.2.9 Project Deletion

To delete a particular project, we have to do two things:
e Delete the project directory tree, containing files related to the project, and
e Delete the project MySQL database.

123



We implemented the project deletion using deleteProject.sh bash script. Figure 6.5

describes the project deletion steps.

e deleteProject.sh bash script

Usage: bash deleteProject.sh projectName [installroot]

Where:

projectName: the name of the project

installroot: the path of the folder containing the project. It is optional
argument, if not determined then the default (/home/boincadm /projects) is
used.

Usage Example: bash delete.sh test

SR ===

Figure 6.5 Project Deletion Algorithm.

124



6.2.10 Single Job Project

This is the third type of projects that is supported by our grid system. It is designed to

support the single job submission mechanism.

6.2.10.1 Single job submission mechanism

BOINC is designed to handle streams of millions of jobs. It takes some work to set
up a stream: you need to create applications and application versions, workunit (WU)

and result templates, validators, assimilators, etc [39].

BOINC's single job submission mechanism lets you run a job without any of these
hassles. In order to do this, one should configure BOINC project to handle single jobs.
The configuration steps are described in [39]. Jobs submitted by this way will have some

estimates and limit parameters. These parameters are [39]:
Job estimates and limits

e processing estimate: 1 GFLOPS-hour
e processing bound: 1 GFLOPS-day

e memory bound: 500MB

e disk bound: 1GB

e delay bound: 1 week

You can change these parameters by editing the boinc_submit script (see below).
6.2.10.2 Single Job Project Creation

We used single job mechanism supported by BOINC to build a single job project. To
explain the process of configuring single job project, we assume the following:
e The directory of the BOINC Server source code is: /nome/boincadm/boinc/
e The root directory of the BOINC project that is to be configured to work with
single job submission mechanism: /home/boincadm/projects/SingleJobProject

e The boincadm user home directory is: $HOME = /home/boincadm/ = ~

125



-Steps for the server platform

1. Create Empty/New project (see appendix B)

bash createProject.sh projectname

2. Initially the wrapper for the server platform in
/home/boincadm/boinc/samples/wrapper is not compiled. To compile it, we
need to do the following:

a) cd /home/boincadm/boinc/samples/wrapper

b) make

Note: you need to do this only one time to compile the wrapper. Once it is
compiled, it can be used in the next step without any need to

recompilation.

3. Configure BOINC Project for single jobs:
a. change directory (cd) to project folder(directory)
b. html/ops/single_job_setup.php path-to-boinc-samples
c. follow the resulting instructions of the previous command
e.g. cd /projects/SingleJob
html/ops/single_job_setup.php /home/boincadm/boinc/samples

4. Set the environment variable BOINC_PROJECT_DIR to the root directory of
the project.
export BOINC_PROJECT_DIR=$HOME/projects/SingleJobProject

5. go to the path that contains the application(executable) and its input and

output files:

cd /path/to/application

126



6. After configuring single job project, we use the boinc_submit PHP script to
submit a job (see the subsection 6.2.10.4).

~/boinc/tools/boinc_submit [boinc-options] program [program-options]

The boinc-options are:

--infile name

specifies an input file.

--stdin name

direct the given file to the program'’s stdin.
--outfile name

specifies an output file.

--stdout name

direct the program's stdout to the given file.
--platform

the platform on which the program is to be run (default: the server's
platform; assumed to be Linux).

- Using other platforms

In order to use other platforms, we need to do further steps, let us take

windows_intelx86 platform as an example. In this case you need to do the following:

1. Go to your project's apps directory

2. Create directories apps/single_job_windows_intel86/1.0/windows_intelx86.

4.

Note: 1.0 is the application version

Download the BOINC wrapper executable for windows_intelx86, and put it in
the windows_intelx86 directory.

Add single job application for windows_intelx86 platform. This is done by
editing the file $HOME/projects/SingleJobProject/project.xml, adding the
following lines before </boinc> tag:

<name>single_job_windows_intelx86</name>

127



<user_friendly_name> Jobs for Microsoft Windows (98 or later)
running on an Intel x86-compatible CPU </user_friendly_name>

</app>

5. Add single_job_assimilator and sample_trivial_validator daemons. This is
done by editing the file $HOME/projects/SingleJobProject/config.xml, adding
the following lines before </daemons> tag:

<daemon>
<cmd>single_job_assimilator -app single_job_windows_intelx86</cmd>
<output>single_job_assimilator_windows_intelx86.out</output>
<pid>single_job_assimilator_windows_intelx86.pid</pid>

</daemon>

<daemon>
<cmd>single_job_assimilator -app single_job_windows_intelx86</cmd>
<output>single_job_assimilator_${friendly_name}.out</output>
<pid>single_job_assimilator_${friendly_name}.pid</pid>

</daemon>

Go to your project's root directory
Run bin/xadd

Run bin/update_versions. Answer yes to all questions.

© o N o

Restart the project.
e Din/stop

e bin/start

You can then submit jobs to Windows/x86 hosts:
1. Create a directory with a Windows executable for your application, say app.exe
2. cd /path/to/application
3. Type a command of the form: boinc_submit --platform windows_intelx86 app.exe

128



Example: testBoinc.exe is C++ program compiled on windows_intelx86 computer, it

reads from standard input (cin) and writes to standard output(stdout). A job can be

submitted using the following command:

1.

Go to application directory that contains the files: testBoinc.exe , stdin and
stdout(optional: created if not exist).

cd /path/to/application

Run the command:

~/boinc/tools/boinc_submit --platform windows_intelx86 --stdin in --stdout

out testBoinc.exe

BOINC developers have built wrappers for different platforms. Table 6.1 shows

the BOINC supported platforms wrappers. To develop applications for hosts of these

platforms, you should follow the same previous steps for windows_intelx86 platform

with the following changes:

Create directories
apps/single_job_PlatformTechnicalName/1.0/PlatformTechnicalName.

Note: 1.0 is the application version

Add single job application for particular platform. This is done by editing the file
$HOME/projects/SingleJobProject/project.xml, adding the following lines
before </boinc> tag:
<app>
<name>single_job_PlatformTechnicalName</name>
<user_friendly_name> PlatformUserFriendlyName
</user_friendly_name>

</app>

Download the BOINC wrapper executable for a particular platform from BOINC

website, and put it in the PlatformTechnicalName directory.

129



e Add single_job_assimilator and sample_trivial_validator daemons for
application of particular platform. This is done by editing the file
$HOME/projects/SingleJobProject/config.xml, adding the following lines

before </daemons> tag:
<daemon>

<cmd>single_job_assimilator -app
single_job_PlatformTechnicalName</cmd>
<output>single_job_assimilator_PlatformTechnicalName.out</output>
<pid>single_job_assimilator_PlatformTechnicalName.pid</pid>

</daemon>

<daemon>
<cmd>single_job_assimilator -app
single_job_PlatformTechnicalName</cmd>
<output>single_job_assimilator_PlatformTechnicalName out</output>
<pid>single_job_assimilator_PlatformTechnicalName.pid</pid>

</daemon>

» For each particular platform:
= PlatformTechnicalName: is platform technical name that is adopted by
BOINC and used in the code. These names are shown in table 6.1 under
Technical Names title.
» PlatformUserFriendlyName: is platform user-friendly name that appear
to end users. These names are shown in table 6.1 under User-friendly

Names title.

130



Table 6.1: Supported Platforms

User-friendly names Technical names

Jobs for Microsoft Windows (98 or later) running on an Intel x86- | windows_intelx86
compatible CPU

Jobs for Microsoft Windows running on an AMD x86_64 or Intel | windows_x86_64
EM64T CPU

Jobs for Linux running on an Intel x86-compatible CPU 1686-pc-linux-gnu

Jobs for Linux running on an AMD x86_64 or Intel EM64T CPU x86_64-pc-linux-gnu

Jobs for Mac OS 10.4 or later running on Intel 1686-apple-darwin

Jobs for Intel 64-bit Mac OS 10.5 or later x86_64-apple-darwin

If you want to support all BOINC supported platforms, you have to use previous
steps to add a single job application and wrapper for each platform. By doing this, you
will have a single job project which can be used to submit jobs compiled on different
platforms. According to that, you will be able to exploit more hosts(computers) that have

different architectures (platforms).

6.2.10.3 Automatic SingleJob Project Configuration

As it is obvious from previous explanation, the process of creating and configuring
single job project contains a lot of hassle and requires you to follow a long list of steps.
Also, if you want to let the single job project supporting different platforms, then the
difficulty will increase. In addition, if we want to create more than one single job project,
we will have to repeat all previous steps again which will become a headache for
developers.

131



The best solution of such problem is to automate this process. In Linux systems this
can be done by writing a shell script that does the whole job. For this purpose we wrote a
shell script using bash interpreter to configure an Empty/New project as a single job
project. This script is called singleJob.sh.

However, singleJob.sh script assumes that two folders are stored in $HOME
directory. The first folder is called wrappers which contains all pre-compiled wrappers
for different platforms that are downloaded from BOINC website and stored with certain
names in this folder. The second folder is called ppu_boinc which contains two PHP

files relating job submission and monitoring.

singleJob.sh script is called after calling createEmpty.sh script that creates an
Empty/New project (see appendix B). The work flow of singleJob.sh is described in the

algorithm shown in the figure 6.6.

Figure 6.6: Single Job Configuration Algorithm

132



6.2.10.4 Job Submission

After configuring the project to work as a single job project, you can submit jobs for

hosts that are running on any platform supported by your project. To do this, BOINC

single

job submission mechanism provides an executable PHP file that is called

boinc_submit. This file can be used to submit a job as follows:

1.

Notes:

go to the path that contains the application(executable) and its input and output
files:
cd /path/to/application

call boinc_submit script (script path: ~/boinc/tools/boinc_submit)

~/boinc/tools/boinc_submit [boinc-options] program [program-options]

The boinc-options are:

--infile name

specifies an input file.

--stdin name

direct the given file to the program’s stdin.
--outfile name

specifies an output file.

--stdout name

direct the program'’s stdout to the given file.
--platform

the platform on which the program is to be run (default: the server's platform;

assumed to be Linux).

[39]
You can include as many --infile and --outfile options as you want, and at most

one of others.

The program-options will be passed as command-line arguments to the program

when it runs on the remote machine.

133



e --platform option is followed with one of platform technical names shown in
table 6.1.

e |If the program requires any non-standard libraries, link these statically. Otherwise

it will fail on machines that lack these libraries.

e You can run boinc_submit from any host that NSF-mounts your project directory
and can access the MySQL database.
e When the job is completed successfully, the output files will appear in the job

directory.

During the testing process, we found that boinc_submit script deals all command line
arguments as one single argument. We explored the source code of this script carefully,

and we were able to solve this problem.

In addition, we modified and created a new version of boinc_submit. The new
modified version is called ppu_boinc_submit. This modification is done to facilitate the
integration of job submission mechanism in our Grid System. The following points

summarize the performed modifications:

1. The new version prints the wuid(job Id) as a return value. The job Id can be
stored and used to check job status

2. This version solves a problem in the origin boinc_submit that has a bug which
deal all commmand line arguments as one argument. To solve this problem, the
line:
$cmdline_args .= "".$argv[$i]; is replaced with $cmdline_args .= " *.$argv[$i];

3. A general modification is done to make the file suitable to submit a job in PPU
Grid System (e.g. remove calling some functions)

After a job is submitted we need a mechanism to monitor the job status. For

this purpose we create an executable PHP script called ppu_boinc_job making

134



use of the functions provided in boinc_submit script. This script is used as

follows:

ppu_boinc_job PHP script
= Usage: ppu_boinc_job project_dir job-options
project_dir: is the path to the single job project

job-options:
--show_job

Show job id and whether the job is in progress, being assimilated or

completed
--show_status jobID
Show job's status (show more information than '--show_job joblD")
--show_status2 jobID

the same as --show_status jobID but without showing jobID and

current date.
--job_status jobID

shows job status without showing job id ('in progress','being

assimilated' and 'completed’)
--show_host

shows the instance(s) of Job location (on which host, the instance of

job is being handled)
--wait jobID

Wait for the completion of an existing job

135



--abort jobID

Abort an existing job
--jobs

Show pending jobs
--help

Print this (print the usage)

The ppu_boinc_submit and ppu_boinc_job PHP scripts are usually used by single
job projects so they are stored in ppu_boinc folder to facilitate the automation of single
job configuration which is done by singleJob.sh bash script. The folder ppu_boinc is

stored inside home directory (SHOME/ppu_boinc).

When a singleJob.sh bash script is called to configure the project as a single job
project the ppu_boinc folder is copied to project directory for later use. By doing this,
each single job project will contain its own version of ppu_boinc folder that contains the
two PHP scripts to submit a job and monitor its status.

6.2.10.5 Job Submission Automation

Calling ppu_boinc_submit.sh script differs according to the job to be submitted. Here

are some examples:

e Job1l: contains one input file (mylnput), one output file (myOutput) and the
executable file (program1). The job is submitted to the default platform (server
platform).

ppu_boinc_submit --infile mylnput --outfile myOutput programl

e Job2: contains two input file (inl and in2), one output file (outl and out2), and the
executable file (program?2).The job is submitted to the windows_intelx86
platforms.

136



ppu_boinc_submit --infile in1--infile in2 --outfile outl --outfile out2 --platform

windows_intelx86 program2

e Job3: contains standard input file (input), standard output file (outl), one output
file (out) and the executable file (program3). The job is submitted to computers

with platform of type x86_64-pc-linux-gnu.

ppu_boinc_submit --stdin input --stdout outl --outfile out2 --platform

windows_intelx86 program3

As we can see from previous examples, there are different versions of calling the
submission script (calling with different arguments) depending on the application to be

submitted. For each job we must determine the following:

e Inputfiles: each input file used by job executable must be stated after --infile
option

e Output files: each output file used by job executable must be stated after --outfile
option

e Standard input file: Any job that reads from standard input (keyboard) which is
equivalent to “cin” statements in c/c++ must be redirected to a file since there is
no user input in the grid system. The name of this file must be stated after --stdin
option.

e Standard output file: Any job that reads from standard output (screen) which is
equivalent to “cout” statements in c/c++ must be redirected to a file. The name of
this file must be stated after --stdout option.

e Platform name: the name of the platform type that job executable is compiled to
run on .The name of this platform comes after --platform option. In other words,
this option determines the computers that can execute this job.

e Executable file: this is the executable file which is compiled to run on a

particular platform type.

137



To automate the process of submitting a certain job, we put a set of guidelines
(restrictions) on the structure of the job to be submitted. The submitted Job folder should

follow the following conventions (guides) accurately:

= Contains one executable file for specific platform supported by the project.
= All other files are optional but if any of them exists, it must be compatible with

the following guides:
- Name of standard input file must be stdin.
- Name of standard output file must be stdout.
- All other input files must be located in a folder named inputs.
- All other output files must be located in a folder named outputs.

After that we created submit.sh bash script which parses the job folder that is
assumed to follow previous guides and generates the correct call (using correct
arguments) of ppu_boinc_submit script. The work flow of submit.sh is described

in the algorithm shown in the figure 6.7.

e submit.sh bash script
= Usage: bash submit.sh projectName jobPath platform
Where:
projectName: the name of the single job project under which the job is
submitted.
jobPath: the path of the folder containing the job.
platform: is the platform name where the program can be executed. This

argument is put after --platform option in ppu_boinc_submit.sh call.

Note: projects are assumed to be stores in /home/boincadm/projects so the

project path is /home/boincadm/projects/projectName

= Usage Example: bash submit.sh SingleJobProject SHOME/Jobs/job1

windows_intelx86

138



Figure 6.7: Submit Job Algorithm

Furthermore, we created another bash script called output_handler.sh to handle
the result of the submitted job when it is completed and returned back to the server. This
script put the output files, job _summary file, stdin and stdout files if any in a
compressed result folder. The output_handler.sh implements the algorithm shown in the
figure 6.8.

The job_summary file contains the final state of the job. If the job is executed
successfully, then the job_summary file contains on which host (computer) the job is
executed and the CPU time needed for executing that job. Otherwise, if the job is not executed

successfully, then the job_summary file will contain an error message.

139



output_handler.sh bash script

Usage: bash output_handler.sh projectName jobPath jobID

Where:
projectName: the name of the single job project under which the job is

submitted.
jobPath: the path of the folder containing the job.
jobID: the Job ID. The Job Id is returned when ppu_boinc_submit.sh is called.

Note: projects are assumed to be stores in /nome/boincadm/projects so the

project path is /home/boincadm/projects/projectName

Usage Example: bash output_handler.sh SingleJobProject SHOME/job1 1

Not found

Figure 6.8: Output Handler Algorithm

140



6.3 Portal implementation

Here we clarify the system higher level implementation which is the portal
implementation. Firstly, we talk about the software development tools that were used in
implementing the portal. Secondly, we show the invisible pages and the sub-pages that
support the main pages functionalities. Finally, we state the main pages of the portal and

describe their functionalities.
6.3.1 Software development tools and programming languages

This subsection includes programming languages used to implement the portal
and the IDE used. It also states the software servers needed to support the portal

functionalities.
Programming languages used in the portal implementation:

e PHP.

e HTML.

e JavaScript.
e CSS.

The IDE used in the portal development:
e NetBeans/.4 IDE.

Software servers need to be installed on the portal server to enable the system

functionalities:

e BOINC server.
e Apache server.

e MYSQL server.
6.3.2 Portal subpages:

Portal sub-pages are the pages that called by the main pages to perform a specific

functionalities. These pages are:

141



1. PageLeftPart: this page required by all portal main pages. It displays information
about the logged user. See figures below.

— . . )
User Information: User Information:

Name: superuser Name:Muhammad
Email: superuser@ppu.edu Email: mohammad thwaib@vahoo com

Level: admin Level:user

Logout Logout

Figure 6.9: Admin page left part.

Project Information:

Mame:
- SwystemTestl
Status:

- Eunning

— (Go to Project home page

Figure 6.10: User page left part.

142



2. PageRightPart: this page supports the administrator main pages functionalities.
It manages the content of the right side of the admin pages. PageRightPart
declares objects from the classes ProjectCreation, ProjectManagement, and
UserCreation- discussed in chapter five.

PageRightPart is required from three different pages:

2.1 Admin Home page: Requiring page Right Part from this page lunches
calling getForm() - the function of the projectCreation object. The

generated form is shown in figure 6.11.

Create New Project:

Project Name:

Project Twpe:
¢ Test Applicaton Project
Single Job submission Project
New Application Project

Create

Figure 6.11: Project creation form.

Project creation process:

% Admin requests creating a BOINC project by doing the following steps:
- Enter a project name.
- Select the project type.
- Click on create button.

* As aresponse for the admin request the following steps done:

143



- Calling the function createProject($projectName,$ProjectType,$con) —
function of the ProjectCreation object.
Where:
% $projectName: is a variable contains the name of the project.
% $projectType: is a variable contains the type of the project.

% $con: is the DB connection.
The function $createProject(..) do the following:

- Validate the name of the project with a specific format- a valid project name
must be only letters, digits, underscores.
- Generate error massages in the case of invalid project name. See figure 6.12.
- If the entered name is valid, the process goes into the steps below:
= Add the project to the list of projects in the grid_system DB.
= Execute the appropriate shell script; based on the selected project type.
Execute the script createTestProject.sh for the first choice. Execute the
script createProject.sh for the second and the last choices. Execute
additional script for the second choice which is singleJob.sh, and create a
directory named users in the project directory.
= Create admin account following to this project by executing the script
createAccount.sh.
= Disable account creation by executing the script

disable_account_creation.sh.

Create New Project:

Project Name:
fde= %

* letters and digits only

Project Twvpe:
= Test Application Project
Single Job submission Project
New Application Project

Figure 6.12: Project creation form.

144



2.2 Users page: Requiring page Right Part from Users page lunches calling

getForm() - the function of the userCreation object. The generated form is

shown in figure 6.13.

Add a Wew user
Name:

Email
Pazzword:

ProjectIDx

Level:

SystemTest1 -

LUSET r

6.13: Add new user form.

Adding a new user:

- Admin requests adding new user by doing the steps:

Enter the name of new user.

Enter the email.

Enter a password.

Select a Project to allow submitting jobs to that project from
this new user.

Select the level of the user to be admin or user.

Click on add user button.

- System response to admin request by doing the steps:

= Calling the function createUser($con,$email,$userName,Password,$level)-

function of the UserCreation object.

The function createUser(...) in tern calls the following functions:

145



% validateName($userName): is a function of the UserCreation object. It
checks the validity of the user name to a specific format (letters, digits, and
underscores only). It also generates error massages in the case of mismatch
the correct format.

% validateEmail($email): is a function of the UserCreation object. It checks
the validity of the email and checks if this email exists in the DB or not.
Generate error massage in both cases: invalid email format or the email exist
in the DB previously.

% validatePassword($password): is a function of the UserCreation object. It
checks the validity of the password — valid password must be at least five
digits.

- After calling these three functions, createUser(..) check if neither of the errors was
generated, then perform the steps:

¢ Add the new user to the DB.

% Create a directory for this user inside the users directory that is exist in the

directory of the selected project.

- Inthe case of errors exist the form will be re-generated with errors

massages.

Add a New user:

Name: mah?
* letters and digits only
Email gho@bo

* invalid email address
Password: [,,.

* must at least 5 digits

ProfeetD’| gystemTestt v

Level:

User v

Add user

6.14: Add new user form.

146



2.3 Project management page: Requiring page Right Part from Project
Management page lunches calling getForm() - the function of the

projectManagement object. The generated form is shown in figure 6.15.

*#3PDTTest 13 Running

Control the Project:

Attach Clisnt:

Cliznt IF address:

Attach

Dizlate Clisnt:

Client TP address:

Delete

Update the attach=d Projects on clisnt:

Cliznt IF address:

Update

Eezstart ths Project,

Restart All diamons:

Restart

Enable account ersation:

Stop the Project:

Al running diarmons will be stopped:

Dizlzte the Project:

Project will be delated permanentls:

6.15: Project management form.

147



Through the project management form, admin can attach or de-attach computing

resources to the project, update the projects running on a specific resource, start the

project if it is stopped and stop the project if it is running, disable account creation if it is

enabled and enable account creation if it is disabled, and he also can delete the project.

Attaching new resource/s:

*

*

Admin enter the IP address/es of the computing resource/s to be attached then
click on attach button.

System calls a function attachClient($ipList) - a function of projectManagement
object.

attachClient($ipList) calls the function validatelPs($ipList).
validatelPs($ipL.ist) expands the $ipList in to array of IP's and calls the function
validatelP($ip) for each array element.

validatelP($ip) checks the IP format and generate error massage in the case of
invalid IP.

When error appears no resources will be attached and error massages will be
displayed like the figure 6.16.

At the case of no errors the function will attach the resource/s by calling the script
attach.sh.

*#*PPUTest 1s Running
Control the Project:

Artach Client
Client IP address: 49 10 10 10 260.250.240

# incorrect IP format
Delate Client:

Client IP address:

Delete

Figure 6.16: Client attachment.

148



Detaching a computing resource:

*

*

Admin enter the IP address/es of the computing resource/s to be deleted
from the computing resources list then click on delete button.

System calls a function deattachClient($ipList) - a function of
projectManagement object.

This function calls the same function as in the attachment process.

When error appears no resources will be de-attached and error massages
will be displayed; same as in the attachment process.

At the case of no errors the function will delete the attached resource/s by
calling the script deattach.sh.

Updating projects at a client:

*

*

Admin enter the IP address of the computing resource to update the
attached projects then click on update button.

System calls a function updateProject ($ipAddress) - a function of
projectManagement object.

updateProject ($ipAddress) calls the function validatelP($ipAdress) —
stated above.

When error appears error massages will be displayed; same as in the
attachment process.

At the case of no errors the function will update the attached projects by
calling the script updateAttachedProjects.sh.

Stopping project:

#*
#*

Admin clicks on stop button.
System stops the project by executing the script stopProject.sh and

modifies the project status to be 'not running' in the DB.

Starting project:

*

Admin clicks on start button.

149



#* System starts the project by executing the script startProject.sh and

modifies the project status to be ‘running' in the DB.
Restarting project:

#* Admin clicks on restart button.
#* System restarts the project by executing the script resartProject.sh and
modifies the project status to be 'running' in the DB.

Disabling account creation:

# Admin clicks on disable button.

# System disables account creation by executing the script
disable_account_creation.sh and modifies the account_creation_status to
be 'disabled’ in the DB.

Enabling account creation:

# Admin clicks on enable button.

#* System enables account creation by executing the script
enable_account_creation.sh and modifies the account_creation_status to
be 'enabled' in the DB.

Deleting project:

*

Admin clicks on delete button.
#* System deletes the project directory and the project DB by executing the
script deleteProject.sh.

#* System deletes the project from the projects table.

*

System deletes all jobs following to this project.
# System sets the project_name to all users following to this project to
'NULL".

150



3. Header: manages pages headers, menu, and the slide bar. Figure below show the

header of the home page.

@yrn}?l&@ Logout  superuser
A

Users Account

Figure 6.17: Header subpage.

4. Footer: displays the footer in all pages as in the figure 6.18.

Copyright © PPU Grid Team jan 2014 | Eoweneo sy
o : sjzfinc

Figure 6.18: Footer subpage.

5. Logout: destroys the existent session and logs the user out.
6. AjaxResponse: used to asynchronously abort the selected job — abort the job
while processing other functionality in the main page without stopping. Aborting

jobs is done by executing the PHP script called abort_job.

7. Download: enable downloading results.

151



1ssion

All your submitted Job File name:  Result_10

Save s type: | WinRAR archive

Figure 6.19: Download result.

8. Results: supports the functionality of the user Home page by doing the functions:
* Displays all submitted jobs and their execution status. The job execution
status is retrieved by executing the PHP script show_status.
* Enable aborting jobs during the execution using AjaxResponse page.
* Enable downloading results using Download page.

* Enable deleting results.

All vour submitted Jobs:

e
Download )

| abort
=
| Instance 0: in progress on host 8 | abort |
==
|

Download
'A |

Instance 0: completed on host 0

Job2 | Instance 0: unsent

Instance 0: completed on host 0

Delete jobs

Figure 6.20: Results subpage.

152



9. Config: declares the global variables needed in all pages.

6.3.3 Portal main pages
The portal main pages are classified into three types:

1- Common pages.
2- Admin pages.
3- User pages.

1. Common pages:

The common pages are displayed for all visitors and the system users before login. These
pages are:

- About: provides basic definitions of the grid computing, the importance of grid
computing, and the project future vision.

- Contact: states more dedicated information about the project team, project
organization, and the middleware used to build the grid system.

- Login: authenticates the access to the system for authorized users.
2. Admin Pages:
Admin Pages is the pages that can be accessed by the admin users only. Those pages are:

- Home: requires the PageRightPart and PagelLeftPart. Also it displays all
existing projects with links for projects management. See figure 6.21.

=

User Information: Grid Computing Project List: Create New Project:
Project Name
Name:superuser

Email: superuser@ppu.edu Project Number 1: o
Project Type:

--PPUTest ® Test Application Project
Logout - Single Job submission Project
Project Number 2: New Application Project
--SystemTest]

Project Number 3

--test2

PagelL eft P:
age L eft Part Page Right Part

Figure 6.21: Admin home page.

153



Uit e All Authenticated System Users: AddaNewuser
Name:
Name:superuser Email
. Pacoury
Email: superuser@ppu.edu Password
Level admin ProjectD:
) SystemTest! ¥
SHEG hoincadm hoincadm(@yahoo.com Level:
o © | user Y
Muhammad | mohammad.thwaib@yahoo.com | SystemTest] | i
Thrahim | qusaymusa@yahoo.com | SystemTest] | i
. Mohammed | mohammed @ ppu.edu | SystemTest] | i
3. modifying user
| superuser | superuser@ppu.edu | SystemTest] |
saleem saleem@ppu.edu |
L- —
1.adding a user
Delete users 2. deleting users

Figure 6.22: Users page.

- Users: requires the PageRightPart and PageLeftPart. Also it displays all system

users with links for modify their information. See figure 6.22.

- Account: displays the account information and enable the admin to modify his
them.

- Project management: requires PageRightPart, PagelL eftPart, and states basic
information about the project with important links to the main pages of the project.

- Modify user information: enable the admin to modify the account information for

any user.
3. User pages:

- Home: requires PageRightPart, PageLeftPart, and Results pages.
- Job submission:

* Requires PagelL eftPart.

% Display the submission form.

* Validate the inputs.

154




*  Generate error massages.

* Upload the job folder.

* Extract the job folder and generate a unique name.

% Submit job for execution and add a new entry to the jobs table.

- Account: displays the account information and enable the user to modify his them.

6.4 Security Issues

In this section, we talk about the project’s security issues. We explain the security
mechanisms supported by BOINC. In addition, we show our security measures to make

our grid system project secure.

6.4.1Securing the Server and the Clients

To secure the grid server, BOINC advises to read and implement the UNIX
Security Checklist 2.0 from AusCERT and CERT/CC. According to that we
can give the proper permissions for users, groups and others to ensure the

security.

In addition, we can put the server and all client computers behind the
university firewall that lets through minimal traffic (e.g., HTTP and SSH
where needed). Also, we read about MySQL general security guidelines, and
we follow these guides to make MySQL server as secure as possible.

At the client side, we installed the BOINC core client as a service on admin
account and we prevent other users (usually students) from controlling the

boinc client software. Only the admin can control the BOINC client software.

In addition, BOINC was configured to use account-based sandboxing - that

is, to run project applications under an unprivileged account [70]. This is the

155


http://www.cert.org/tech_tips/usc20_full.html
http://www.cert.org/tech_tips/usc20_full.html
http://dev.mysql.com/doc/refman/5.0/en/security-guidelines.html

default on Android, Mac OS X and on the installers provided by Linux
distributions. Currently, it is not the default on Windows because GPU
applications can't run under unprivileged accounts [70]. However, we enabled
it on Windows by checking the “Service Install” checkbox in advanced option

during installation.

On the other side, the developers of BOINC applications should make sure
that the application does not become infected and secure their source-code
repository. Also, they should read about Secure Programming for Linux and

UNIX, especially if the application does network communication.

6.4.2 Client/ Server Authentication and Authorization

The BOINC client typically is controlled by the BOINC Manager or the
Boinccmd tool (see appendix D) running on the same machine. The two programs
communicate over a local connection, using '‘GUI RPC' (Graphical User Interface
Remote Procedure Call). It is also possible to use the BOINC Manager to control a
client on a different host.

The BOINC command tool (boinccmd) provides a command-line interface to a
running BOINC client (local or remote). This provides an alternative to the BOINC
Manager, e.g. on systems with no graphics display.

In our grid system we want to run the core client software silently in the
background without any user intervention; so we used Boinccmd tool to

communicate with the core client instead of BOINC Manager.

We continuously need to communicate with BOINC core clients remotely from
the server. This communication is needed to control our computers like attaching them
to our projects in addition to get their status and for other purposes (see appendix D for
more information). This remote communication (remote RPC) must be secure and

safe.

To make the system secure, all remote RPCs are authenticated using the GUI RPC

password which is stored in gui_rpc_auth.cfg file inside BOINC data directory on

156


http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/index.html
http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/index.html
http://boinc.berkeley.edu/wiki/BOINC_Client
http://boinc.berkeley.edu/wiki/BOINC_Manager
http://boinc.berkeley.edu/wiki/Boinccmd_tool
http://boinc.berkeley.edu/wiki/BOINC_Client
http://boinc.berkeley.edu/wiki/Boinccmd_tool
http://boinc.berkeley.edu/wiki/BOINC_Manager

each computer participating in our grid. By default, remote RPCs are not accepted
from any host. To specify a set of hosts from which RPCs are allowed, we created a
file remote_hosts.cfg in BOINC data directory containing a list of allowed DNS host
names or IP addresses (one per line). In our case, this file contains the server IP
address (10.10.16.12). Therefore, only the server will be able to connect to core client

software installed on our computers.

For example if a host A wants to communicate with a BOINC core client on a
remote computer X, host A must satisfies two conditions. First, the IP of host A should
be included in remote_hosts.cfg file on computer X. Second, host A should give GUI
RPC password of the computer X in his RPC command (using boinccmd tool). If any

of previous conditions is missed, then host A will not be able to connect to machine X.

6.4.3 Protecting Administrative web interface
Each BOINC project has an administrative web interface that lets you [40]:

o Browse the database

e Screen user profiles

o Administer "special users" (e.g., forum moderators)

« Create and edit applications and app versions

e Send mass email to users (note: a more flexible way of doing this is
described here).

o Send emails to users with malfunctioning hosts.

o See adistribution of how many FLOPs results are using.

o Cancel work units

o View recent results, and analyze failures

. Browse strip charts

o Browse log files

If project's URL is for example http://a.b.c.d/test, then the URL of the admin web

interface s http://a.b.c.d/test ops. The directory containing the admin pages

is ~/projects/test/html/ops/.

157


http://boinc.berkeley.edu/trac/wiki/ProfileScreen
http://boinc.berkeley.edu/trac/wiki/VolunteerRecruit
​http:/a.b.c.d/test
​http:/a.b.c.d/test_ops

Because the admin interface lets you do things like see user email addresses, it's
extremely important that it be secure. There are two levels of protection: protection by
.htaccess and Project-defined protection policy. These two techniques are clarified in
appendix C.

6.4.4 Securing the Web Portal

Web portal provides interfaces for administrator and users. Administrator interfaces
provide critical information and control for the overall system. Users interfaces display
information about the user account and enable all the user functionalities described
previously. Since of that, system portal must be secure enough to prevent any
unauthorized access. Below we describe briefly the mechanisms implemented to make

the system portal secure.

One of the expected attacks to the system through the portal is the SQL code
injection. SQL code injection is a code injection technique, in which malicious SQL
statements are inserted into an entry field for execution. These SQL statements may cause
for example deleting the system DB. To secure the portal against this type of attack, we
implement validation mechanisms that handle all the user inputs and insure that the
inputs match the proper formats before making any execution on these inputs. It also

returns error massages in the case of invalid formats of inputs.

It is important that any user needs to access to the system must firstly prove his
authenticity using his email address and password in the login page. In addition the same
user mustn’t be able to login from different locations at the same time. The criteria
implemented in this system that the last login to a user from a specific location is the only
active login to that user; if a user login to the system from a location then the same user

login from another location then the first login will be destroyed directly.

All passwords are encrypted before storing them in the DB using MD5 encryption
mechanism. So, when a user enters his password for login this password encrypted firstly

then compared with the password stored in the DB.

158



6.5 Testing

In this section, we explain the testing procedure at two levels. At the first level (the
lower level), we test the functionality of each shell script independently. At the second
level (the higher level), we test the integration of the portal functionalities with

underlying level of the system.

6.5.1 Testing system functionalities (Testing lower level)

In this subsection we provide figures that were captured during the testing of the

functionality of the shell scripts.
1. Testing the script createProject.sh
The command used in testing this script was:

bash creatProject.sh NewProject

The execution of this command will create a BOINC project named NewProject. If
the project name is not set in the command the script will handle this error and display a
help massage. Also the script takes another optional parameter, that is, the root directory
of the NewProject where the project directory tree will be stored. If the user enters an
invalid directory, the script will handle this error and display a help massage. Figures
below show the output of the execution of this script in two cases: in the case of correct

usage and in the case of missing the name of the project in the command.

ibrahim@ubuntu: ~fshellScripts

ibrahim@ubuntu:~/shellScripts$ bash createProject.sh NewProject
Enter user password when prompted
Creating project 'NewProject@Home' (short name 'NewProject'):
PROJECT_ROOT /home /ibrahim/projects/NewProject/
URL_BASE = http://192.168.1.1685/
HTML_USER_URL = http://192.168.1.105/NewProject/
HTML_OPS_URL http://192.168.1.105/NewProject_ops/
KEY_DIR /home/ibrahim/projects/NewProject/keys/
DB_NAME NewProject
DB_HOST

Continue? [Y/n] Creating directories
Generating encryption keys
iopying files

Figure 6.23: Create Project case 1.

159



After executing the script, the project home page looks like shown in the figure below.

NewProject

About NewProject

News
XXX is a research project that uses Internet-connected computers to do research in
XXX. You can participate by downloading and running a free program on your MRS
computer.
XXX is based at [describe your institution, with link to web page] News is available as an RSS feed IS

» [Link to page describing your research in detail]
+ [Link to page listing project personnel, and an email address]

Join NewProject

Read our rules and policies

This project uses BOINC. If you're already running BOINC, select Add
Project. If not, download BOINC.

‘When prompted, enter

http://192.168.1.105/NewProject/

If you're running a command-line version of BOINC, create an account first.
If you have any problems. get help here.

Returning participants

Your account - view stats, modify preferences
Server status

Teams - create or join a team

Certificate

Applications

Community

+ Profiles

Figure 6.24: Project home page.

Ll L L e e @S @ boincadm@ubuntu: ~/shellScripts

nuhammad@ubuntu:~/shellscripts$ bash createProject.sh boincadm@ubuntu:~/shellScripts$ bash createProject.sh PPUTest2 home/projects
Usage: createProject.sh projectName [installroot] Enter user password when prompted

projectname: the name of the project mkdir: cannot create directory ‘home/projects': No such file or directory
installroot: the path of the folder containing the project createProject.sh: line 186: cannot create temp file for here-document: No space
installroot: is optional if not determined then the defualt is used jleft on device

installroot: the default of installroot is /home/muhammad/projects The directory 'home/projects/'PPUTest2' is not existing

Usage Examplel : createProject.sh test Error, do not continue. )
Usage Example2 : createProject.sh test /home/muhammad/projects boincadmgubuntu:~/shellscriptss |l
muhammad@ubuntu:~/shellScriptss I

Figure 6.25: Project creation case 2(wrong usage). Figure 6.26: Project creation case 3(wrong usage).

160



All of our scripts support error handling mechanisms. Since there are too
many cases of the errors that can occur and need to be handled by the scripts; it
will not be easy to show all of these cases within this subsection. All of the
remaining tests show only the output of the scripts in the case of correct usage of

their execution commands.
2. Testing the script creatTestProject.sh
The execution command:
bash creatTestProject.sh ExampleProject

The result of execution is creating the Test example project. Figure 6.27 shows

the output of the script execution.

@ = @ ibrahim@ubuntu: ~/shellScripts

ibrahim@ubuntu:~/shellScripts$ bash createTestProject.sh ExampleProject
Creating project 'ExampleProject@Home' (short name 'ExampleProject'):
PROJECT_ROOT Jhome /ibrahim/projects/ExampleProject/
URL_BASE = http://192.168.1.185/
HTML_USER_URL http://f192.168.1.105/ExampleProject/
HTML_OPS_URL http://f192.168.1.105/ExampleProject_ops/
KEY_DIR /home/ibrahim/projects/ExampleProject/keys/
DB_NAME ExampleProject
DB_HOST

Continue? [Y/n] Creating directories
Generating encryption keys

Copying files

Setting up database

Figure 6.27: Create Test Project.

3. Testing the script creatAccount.sh

The execution command:
bash creatAccount.sh ExampleProject

Figure 6.28 shows the output of the script execution.

161



Yy Yy

ibrahim@ubuntu: ~/shellScripts

ibrahim@ubuntu:~/shellScripts$ bash createAccount.sh ExampleProject
status: Success

poll status: operation in progress

account key: 7999f42fs7b@6azacb42a708deda3feb
ibrahim@ubuntu:~/shellscriptss I

Figure 6.28: Create Account.

4. Testing the script attach.sh

The execution command:
bash attach.sh ExampleProject 192.168.1.100
Figure 6.29 show the output of the script execution.

M ™ @ ibrahim@ubuntu: ~fshellScripts

ibrahim@ubuntu:~/shellScripts$ bash attach.sh ExampleProject 192.168.1.1600
ibrahim@ubuntu:~/shellScripts$ I

Figure 6.29: Attach client.

Figure 6.30 shows the BOINC manager interface after attaching the client.

162



e
Projeces:
D 1 |
}_,\ ExampieSroject 8rsome

Work done for thes progect: S

Project Web Pages

Figure 6.30: Attached client BOINC manager.

5. Testing the script update.sh

The execution command:
bash updateAttachedProject.sh 192.168.1.105
Figure 6.31 shows the script execution.

DE ibrahim@ubuntu: ~fshellScripts
ibrahim@ubuntu:~/shellScripts$S bash updateAttachedProjects.sh 192.168.1.105.

Figure 6.31: Update attached projects.

163



BOINC Manager

waiting to contackt projeckt servers.

Projecks: Add Project

et
A b

work done For this projeck: 8

Projeckt Web FPages Projeckt Commands

MNokices suspend Help

Figure 6.32: BOINC manager after executing updateAttachedProject.sh

6. Testing the script deattach.sh

The execution command:
bash deattach.sh ExampleProject 192.168.1.105

Figure 6.33 shows the output of the script execution.

OO ibrahim@ubuntu: ~fshellScripts

ibrahim@ubuntu:~/shellScripts$ bash deattach.sh ExampleProject 192.168.1.105
ibrahim@ubuntu:~/shellScriptss I

Figure 6.33: Detach a client.

164



You don't have any projects. Please Add a Project.

Projects: Add Project

I -

Project Commands

Figure 6.34: BOINC manager after executing deattach.sh.

7. Testing the script stopProject.sh

The execution command:
bash stopProject.sh ExampleProject

Figure 6.35 shows the output of the script execution.

165



@S @ ibrahim@ubuntu: ~/shellScripts

brahim@ubuntu:~/shellscriptss bash stopProject.sh ExampleProject
i DISABLED mode
all daemons

process 5870
Killed process 5872
Killed process 5885

Killed process 5876

Killed process 5882

Killed process 5879

Waiting for process 5870 to end: . ok
brahim@ubuntu:~/shellscriptss I

Figure 6.35: Stop project.

8. Testing the script startProject.sh

The execution command:
bash startProject.sh ExampleProject

Figure 6.36 shows the output of the script execution.

@™ @ ibrahim@ubuntu: ~fshellScripts

ibrahim@ubuntu:~/shellScriptsS bash startProject.sh ExampleProject
Entering ENABLED mode
EStarting daemons

Starting daemon: feeder -d 3

Starting daemon: transitioner -d 3

Starting daemon: file_deleter -d 3

Starting daemon: sample_work_generator -d 3

Starting daemon: sample_bitwise validator -d 3 --app example_app

Starting daemon: sample_assimilator -d 3 --app example_app
librahim@ubuntu:~/shellScripts$ I

Figure 6.36: Start project.

166



9. Testing the script restartProject.sh

The execution command:
bash restartProject.sh ExampleProject

Figure 6.37 shows the output of the script execution.

@™ @ ibrahim@ubuntu: ~/shellScripts

ibrahim@ubuntu:~fshellScripts$ bash restartProject.sh ExampleProject
Entering DISABLED mode
Stopping all daemons
Killed process 4167
Killed process 4171
Killed process 4181
Killed process 4173
Killed process 4179
Killed process 4177
Waiting for process 4167 to end: . ok
Entering ENABLED mode
Starting daemons
Starting daemon: feeder -d 3
Starting daemon: transitioner -d 3
Starting daemon: file_deleter -d 3
Starting daemon: sample_work_generator -d 3
Starting daemon: sample_bitwise_validator -d 3 --app example_app
Starting daemon: sample_assimilator -d 3 --app example_app
ibrahim@ubuntu: ~fshellScripts$ I

Figure 6.37: Restart project.

10. Testing the script singleJob.sh

The execution command:
bash singleJob.sh singleJob

Figure 6.38 shows the output of the script execution.

167



ibrahim@ubuntu: ~fshellScripts

ibrahim@ubuntu:~/shellScripts$ ./singleJdob.sh singleJob
Installing current wrapper.

- type 'bin/update_versions', and answer 'y' to all questions.
|- Add the following to the =daemons> section of config.xml:

<daemon=>
<cmd>single_job_assimilator -app single_job_x86_64-pc-1linux-gnu</cmd=
<putput>single_job_assimilator_x86_64-pc-linux-gnu.out</output>
<pid=single_job_assimilator_x86_64-pc-1linux-gnu.pid</pid=

</daemon>

<daemon=>

<cmd>sample_trivial_validator -app single_job_x86_ 64-pc-linux-gnu</cmd>
<output>sample_trivial_validator_x86_64-pc-linux-gnu.out</output=
<pid>sample_trivial_validator_x86_64-pc-linux-gnu.pid</pid=>
=</daemon=>
Then restart your project by typing

Found application version: single_job_x86_64-pc-linux-gnu 1.0 x86_64-pc-linux-gn
u
platform not found: x86_64-pc-linux-gnu
Processing <Platform#None windows_intelx86> ...
Committed <Platform#l windows intelx86> ; values:

Figure 6.38: Customize project to single Job project.

Project status
21 May 2014, 9:20:40 UTC
Server status Computing status
Program Host Status
Work # Users #
data-driven web pages ubuntu Running 3
Tasks ready to send L] with recent credit 0
upload/download server ubuntu Running y
Tasks in progress L] with credit 0
scheduler ubuntu Running B N
‘Workunits waiting for validation L] registered in past 24 hours 0
feeder ubuntu Running B
‘Workunits waiting for L] C #
transitioner ubuntu Running B N . N
‘Workunits waiting for file deletion 0 with recent credit 0
file_deleter ubuntu Running N N 5
- Tasks waiting for file deletion L] with credit 0
single_job_assimilator_x86_64-pc-linux-gnu  ubuntu Running
Transitioner backlog (hours) L] registered in past 24 hours 0
sample_trivial_validator_x86_64-pc-linux- ubuntu Running
gnu current GigaFLOPs 0
single_job_assimilator_windows_intelx86 ubuntu Running
sample_trivial_validator_windows_intelx86  ubuntu Running e v
single_job_assimilator_ windows_x36 64  ubuntu Running G5 lEEETT (=) [ yieapes ] cor St =i on
sample_trivial_validator_windows_x86 64  ubuntu Running Jobs for x86_64-pe-linux-gnu - 0 0 0.00 (0.00 - 0.00)
single_job_assimilator_i686-pc-linux-gnu ubuntu Running Jobs for windows_intelx86 0 0 0.00 (0.00 - 0.00)
sample_trivial_validator_i686-pc-linux-gnu  ubuntu Running Jobs for windows_x86_64 0 0 0.00 (0.00 - 0.00)
single_job_assimilator_i686-apple-danwin  ubuntu Running Jobs for i686-pc-linux-gnu 0 0 0.00 (0.00 - 0.00)
sample_trivial_validator_i686-apple-darwin  ubuntu Running Jobs for i686-apple-dawin 0 0 0.00 (0.00 - 0.00)
single_job_assimilator_x86_64-apple-darwin ubuntu Running Jobs for x86_64-apple-darwin - 0 0 0.00 (0.00 - 0.00)
sample_trivial_validator_x86_64-apple- ubuntu Running
darwin

168



11. Testing the script submitJob.sh
The execution command:
bash submitJob.sh singleJob home/ibrahim/job2 x86_64-pc-linux-gnu

Figure 6.40 show sthe output of the script execution. It return the wuid(work unit
id) assigned to the submitted job which is 1 in this case as shown in the figure

below.

| @@ ibrahim@ubuntu: ~/shellScripts

ibrahim@ubuntu:~/shellscripts$ bash submitJob.sh singleJob /home/ibrahim/Job2 x86_64-pc-linux-gnu
1

ibrahim@ubuntu:~/shellScripts$ I

Figure 6.40: Submit job.

12. Testing the php script abort

The execution command:
php5 ppu_boinc_job ~[projects/singleJob/ --abort 1

Figure 6.41 shows the output of the script execution.

ibrahim@ubuntu: ~/ppu_boinc
ibrahim@ubuntu:~/ppu_boinc$ php5 ppu_boinc_job ~/projects/singledob/ --abort 1

Job 1 has been aborted.

ibrahim@ubuntu:~/fppu_boinc$ I

Figure 6.41: Abort job.

169



13. Testing the script output_handler.sh

The execution command:
bash submitJob.sh ExampleProject home/ibrahim/job2 1

Figure 6.42 shows the output of the script execution.

muhammad@ubuntu: ~fshellScripts
muhammad@ubuntu:~/shellScripts$ bash output_handler.sh singleJob ~/Jobs/Job2/ 1

7-Zip (A) [64] 9.20 Copyright (c) 1999-2010 Igor Pavlov 2810-11-18
p7zip Version 9.20 (locale=en_US.UTF-8,Utf16=on,HugeFiles=on,2 CPUs)
Scanning

Creating archive Result_1.7z
Compressing Result_1/job_summary_ 1

Compressing Result_1/stdin
Compressing Result_1/stdout

Everything is 0k
muhammad@ubuntu:~/shellScripts$ I

Figure 6.42: Output handler.

14. Testing the script enable_account_creation.sh

The execution command:
bash enable_account_creation.sh ExampleProject

Figure 6.43 shows the output of the script execution.

170



ibrahim@ubuntu: ~/shellScripts

ibrahim@ubuntu:~/shellScripts$ bash enable_account_creation.sh ExampleProject
ibrahim@ubuntu:~/shellScriptss I

Figure 6.43: Enable account creation.

The project home page will show the option of creating account as shown in the
figure below.

ExampleProject

About ExampleProject

News
XXX is a research project that uses Internet-connected computers to do research in
XXX. You can participate by downloading and running a free program on your - more
computer.
XXX is based at [describe your institution. with link to web page] News is avaiiable as an RSS feed ENGES]

» [Link to page describing your research in detail]
+ [Link to page listing project personnel, and an email address]

Join ExampleProject

+ Read our rules and policies
« This project uses BOINC. If you're already running BOINC, select Add
Project. If not, download BOINC.
« When prompted, enter
http://192.168.1.105/ExampleProject/
+ If you're running a command-line version of BOINC, create an account first.
+ If you have any problems, get help here.

Returning participants

+ Your account - view stats, modify preferences
» Server status

Figure 6.44: Project home page after executing enable_account_creation.sh.

15. Testing the script disable_account_creation.sh

The execution command:
bash disable_account_creation.sh ExampleProject

Figure 6.45 shows the output of the script execution.

171



ibrahim@ubuntu: ~/shellScripts

ibrahim@ubuntu:~/shellScripts$ bash disable_account_creation.sh ExampleProject
ibrahim@ubuntu:~/shellScripts$ I

Figure 6.45: Disable account creation.

The project home page will remove the option of creating account as shown in the
figure below.

ExampleProject

About ExampleProject

News
XXX is a research project that uses Internet-connected computers to do research in
XXX, You can participate by downloading and running a free program on your - mare
computer.
XXX is based at [describe your institution, with link to web page] News is avaiable as an RSS feed ENEEE

+ [Link to page describing your research in detail]
« [Link to page listing project personnel, and an email address]

Join ExampleProject

+ Read our rules and policies
+ This project is not currently accepting new accounts.
+ |f you have any problems. get help here.

Returning participants

+ Your account - view stats, modify preferences

Figure 6.46: Project home page after executing disable_account_creation.sh.

16. Testing the script projectStatus.sh

The execution command:
bash projectStatus.sh ExampleProject

Figure 6.47 shows the output of the script execution.

172



ibrahim@ubuntu: ~fshellScripts

ibrahim@ubuntu:~/shellScripts$ bash projectStatus.sh ExampleProject
BOINC is EMNABLED

DAEMON pid status lockfile disabled commandline
1 8293 running locked no feeder -d 3
8296 running locked no transitioner -d 3
8299 running locked no file_deleter -d 3
8382 running locked no sample_work_generator -d 3
running locked no sample_bitwise_validator -d 3 --app

running locked no sample_assimilator -d 3 --app examp

last run period next run lock file disabled ¢

1 ? 24 hours NOW unlocked no
tique_file_deleter -d 2

2 ? 24 hours NOW unlocked no
_dump -d 2 --dump_spec ../db_dump_spec.xml

3 ? 1 days NOW unlocked no
n_in_ops . /update_uotd.php

4 2014/05/20 16:50:81 1 hour 2014/05/20 17:50:01 unlocked no

Figure 6.47: Project status.

17. Testing the script deleteProject.sh

The execution command:
bash deleteProject.sh ExampleProject

This script deletes the project directory as well as the project DB. Figure 6.48

shows the script execution.

ibrahim@ubuntu: ~/shellScripts

ibrahim@ubuntu:~/shellScripts$ bash deleteProject.sh NewProject
ibrahim@ubuntu:~/shellscripts$ I

Figure 6.48: Project deletion.

173



6.5.2 Testing Portal functionalities (Testing higher level)

Through this section we test all the functionalities provided by the system portal.

These tests discussed below.
1. Project creation

Admin can create BOINC projects remotely using the system portal. The created
project is ready for adding computing resources and users to submit jobs. Through the
project creation many scripts are executed; createTestProject.sh for Test example
project, createProject.sh for empty and single job project, singleJob.sh for single
job project, createAccount.sh and disable_account_creation.sh. Each of these

scripts is described previously in the implementation section.

Creating project is done through the project creation form. Admin enters the
project name and project type and click on the create button. The system must
validate the name of the project before creating it, and displays error massages for
invalid names. The test of this functionality was done by entering an invalid name

(TestSystem?). The result is shown in the figure below.

Grid Computing Project List: Create New Project:
Project Name:
TestSystemp
Pl“OjECl Number 1: * letters and Iﬁgils only
”M Project Type:
= Test Application Project
Project Number 2: Single Job submission Project

New Application Project
--SystemTest]

Project Number 3:

--test2

Figure 6.49: Project creation test 1.

174



The second test was done by entering the name “TestSystem”. Figure 6.50 shows the
portal interface during the project creation process. A successful project creation is
shown in figure 6.51.

Grid Computing Project List: -
PY@®

Project Number 1:

--PPUTest

Project Number 2:

--SystemTest]
Create New Project:

Project Name:

TestSystem

Project Type:
# Test Application Project
Single Job submission Project

New Application Project

Figure 6.50: Project creation test 2.

b *#%* TestSystem created successfuly

Grid Computing Project List:

Create New Project:

Project Name:
Project Number 1: TestSystem

--PPUTest Project Type:
# Test Application Project

Pl’OjEC[ Number 2: Single Job submission Project
) New Application Project
--SystemTest1
Project Number 3:
--TestSystem

Figure 6.51: Successful Project Creation.

175




The same tests were applied to all project types and all of them followed the same

scenario.

2. Adding new user

The first test is applied by entering invalid inputs; the result is shown in figure 6.52.

All Authenticated System Users: Add a New user:

Name:  [samer><><

* letters and digits only
mo@po

Project select * invalid email address
Password: |,,,

Email

boincadm boincadm@yahoo.com

* must at least 5 digits

Muhammad |mohammad.lhwaih@yahoo.com |S_v5lemTest1 ProjectID: s Testl
ystemTest v

Ibrahim | qusaymusa(@yahoo.com | SystemTest1 Level:
user v

I
|
Mohammed | mohammed@ppu.edu | |
I

superuser | superuser{@ppu.edu |

saleem saleem@ppu.edu SystemTest1

Delete users

Figure 6.52: Error handling test for adding new user.

The second is test applied by entering valid inputs; the result is shown in figure 6.53.

176



All Authenticated System Users: Add a New user:

Name:

samer
Email samer@ppu.edu
Password: [,ueees
Project .
y n Project]D:
boincadm boincadm@yahoo.com SystemTestl v
. Level:
Muhammad mohammad.thwaib@yahoo.com SystemTest1 user v
Ibrahim qusaymusa@yahoo.com SystemTest1

Mohammed mohammed@ppu.edu

superuser superuser(@ppu.edu

saleem saleem@ppu.edu SystemTest1

samer samer@ppu.edu SystemTest1

Delete users

Figure 6.53: Test adding new user.

3. Attaching/ de-attaching client to a project:

Test the error handling was done by entering invalid IP addresses as shown in the

figure below.

**+TestSystem is Running

Control the Project:
TestSystem:

Attach Client:
is a research project that uses computers at PPU computer labs to do research Client IP address: [10 19 10.10.10.10.10
in PPU. * incorrect P format
Account Creation Is Disabled AIERD
The following platforms supported by this project: Delete Client:

Client IP address:

Platform
Delete

Microsoft Windows (98 or later) running on an Intel x86-
compatible CPU

Update the attached Project: lient:
Microsoft Windows running on an AMD x86_64 or Intel EM6AT prate The attached Frojects on chen
CPU Client IP address:

Linux running on an Intel x86-compatible CPU

Linux running on an AMD x86_64 or Intel EM64T CPU

Restart the Project,
Restart All diamons:

Mac OS5 10.4 or later running on Intel

Mac OS5 X 10.3 or later running on Motorola PowerPC

Figure 6.54: Error handling test for attaching client.

177



These tests applied also on de-attach and update functionalities, the same results

retrieved.

Another test was done by entering a valid IP address. Figure 6.55 and Figure 6.56
show the BOINC manager of the target client before and after the attachment.

ee_—_—_—

@ ™ BOINC Manager @& BOINC Manager

Tasks: | & Example Application 4

You don't have any projects. Please Add a Project. From: TestSystem@Home

Elapsed: 00:00:02
Remaining (estimated): 00:01:07
L] 50.000%

Status: Running

Task Commands

Projects: Add Project Projects: Add Project

5 TestSystem@Home v
-

Work done For this project: 0

Project Web Pages Project Commands
Notices Suspend Help Notices Suspend Help
Figure 6.55: before attaching a client. Figure 6.56: After attaching a client.

178



4. Update client attached projects:

Figure 6.57 show the BOINC manager of the target client. It is appear that the
target client is doing contact with the attached project.

@ ™ BOINC Manager

Waiting to contact project servers.

Projects: Add Project
h TestSystem@Home -
Wwork done For this project: 0
Project Web Pages Project Commands
Notices Suspend Help

Figure 6.57: BOINC manager of the updated client.

5. Stop, start and restart project:
Figure 6.58 below shows the project status after the admin click on the stop

project button.

179



Project status

20 May 2014, 19:19:08 UTC

Server status

Program Host Status
data-driven web pages ubuntu Running
upload/download server ubuntu Running
scheduler ubuntu

feeder ubuntu

transitioner ubuntu

file_deleter ubuntu

sample_work_generator  ubuntu
sample_bitwise_validator ubuntu

sample_assimilator ubuntu

Running: Program is operating normally
Not Running: Program failed or the project is down

Disabled: Program is disabled

Figure 6.58: Project status page after project stop.

Figure 6.59 shows the project status after the admin click on the either start or

restart project button.

Project status

20 May 2014, 19:18:28 UTC

Server status

Program Host Status
data-driven web pages ubuntu Running
upload/download server ubuntu Running
scheduler ubuntu Runnirng
feeder ubuntu Running
transitioner ubuntu Running
file_deleter ubuntu Running
sample_work_generator ubuntu Runnirng
sample bitwise walidator ubuntu Running
sample_assimilator ubuntu Running

Running: Program is operating normally
Mot Running: Program failed or the project is down

Disabled: Program is disabled

Figure 6.59: Project status page after start/restart project.

180



6. Delete project:

Project directory and project DB are deleted when admin click on delete

project button. As a result all the project pages were deleted also. Figure 6.60 shows
the project home page after deletion.

User Information: Testsystem:

NS T This project have been deleted
Email: boincadm@yahoo.com
Level: admin

Logout

Figure 6.60: Project management page after deleting the project.

7. Modifying Account Information
Any user can modify his account information through account form. First, a test

is applied by entering an invalid password and click on modify account. The
result is shown in figure 6.61 below.

181



boincadm@yahoo.com

Figure 6.61: Invalid account modification.

Many other tests were applied to all cases of errors; all of them were handled

successfully.

Another test of modification with correct inputs was applied, the result is shown

in figure 6.62.

boincadm@yahoo.com

Figure 6.62: Valid account modification.

182



8. Modifying User Information

Admin can modify some information of users through user account form.
Figures below show the user information before and after modification.

qusaymusa@yahoo.com I

Figure 6.63: User information before modification.

SystemTestl

qusaymusa@yahoo con r—

Figure 6.64: User information after modification.

183



9. Enable/disable account creation

Testing enabling account creation was done by clicking on Enable button exist in

the project management page. Result is shown below.

TestSystem:

is a research project that uses computers at PPU computer labs to do research
in PPU.

Account Creation Is Enabled

The following platforms supported by this project:

Platform

Microsoft Windows (98 or later) running on an Intel x86-
compatible CPU

2 | Microsoft Windows running on an AMD x86_64 or Intel EM64T
CPU

3 | Linux running on an Intel x86-compatible CPU
4 | Linux running on an AMD x86_64 or Intel EM64T CPU
5 | Mac OS X 10.3 or later running on Motorola PowerPC

Mac OS5 10.4 or later running on Intel

for more details about supported platforms you can visit Platforms

***TestSystem is Running

Control the Project:

Attach Client:
Client IP address:

Attach

Delete Client:
Client IP address:

Delete

Update the attached Projects on client:
Client IP address:

Restart the Project,
Restart All diamons:

Disable account creation:

Figure 6.65: Enabling account creation.

Testing disabling account creation was done by clicking on disable button exist in

the project management page. Result is shown in figure 6.66.

184



TestSystem:

in PPU.

Account Creation Is Disabled

Platform

Microsoft Windows (98 or later) running on an Intel x86-
compatible CPU

CPU

Mac 0S 10.4 or later running on Intel

The following platforms supported by this project:

Microsoft Windows running on an AMD x86_64 or Intel EM64T

Linux running on an Intel x86-compatible CPU
Linux running on an AMD x86_64 or Intel EM64T CPU

Mac OS X 10.3 or later running on Motorela PowerPC

for more details about supported platforms you can visit Platforms

is a research project that uses computers at PPU computer labs to do research

— _ _
*#**TestSystem is Running

Control the Project:

Artach Client:
Client IP address:

Attach

Delete Client:
Client 1P address:

Delete

Update the attached Projects on client:
Client IP address:

Restart the Project,

Restart All diamons:

Enable account creation:

Figure 6.66: Disabling account creation.

10.

Delete users

Admin can delete users from Users page by checking the users to be deleted,

and then click on “Delete users” button. Figures below show a test applied on

this functionality.

User Information:

All Authenticated System Users:

Name: boincadm
Email: boincadm@yahoo.com

Level: admin

boincadm

Logout

beincadm@yahoo.com

h: .t

.com

Ibrahim

Mok

qusaymusa@yahoo.com

h. edu

superuser
saleem
sami
sami22

samer

samer22

superuser@ppu.edu

sami@ppu.edu
sami22@ppu.edu
samer@ppu.edu

|
|
|
|
| saleem@ppu.edu
|
|
|
| samer22@ppu.edu

Add a New user:
Name:  samerzz
Email samerzz@ppu.edu
Project select
Password: [o....
SystemTest1 | . .
rojectID:
SystemTest1 | ! SystemTestl v
| Level: veer v
I
SystemTest1 |
SystemTest1 | r
SystemTest1 | &
SystemTest1 | &
SystemTest1 | @

.

Figure 6.67: Checking users for deletion.

185



o e Bore All Authenticated System Users: Add a New user:
Name: ‘ ‘
Name: boincadm
Email: boincadm@yahoo.com Email ‘ ‘
Level: admin Project
Logout boincadm ‘boincadm@yahoo.com Password: ‘ ‘
Muhammad | mohammad.thwaib@yahoo.com | SystemTest1
ProjectID:
) ol SystemTestl v
Ibrahim | qusaymusa@yahoo.com | SystemTest1
Mohammed | mohammed@ppu.edu | Level:
user v

superuser | superuser@ppu.edu |

saleem saleem@ppu.edu SystemTest1

Delete users

Figure 6.68: Users deletion.

11. Job submission:

Error handling test was applied by choosing an invalid job file and trying to submit
the job without selecting a platform, result shown in the figure6.69.

Platform Select
Jobs for Microsoft Windows (98 or later) running on an Intel x86-compatible CPU

Jobs for Microsoft Windows running on an AMD x86_64 or Intel EM64T CPU

Jobs for Linux running on an Intel x86-compatible CPU

Jobs for Linux running on an AMD x86_64 or Intel EM64T CPU
Jobs for Mac OS 10.4 or later running on Intel

Jobs for Intel 64-bit Mac OS 10.5 or later

Submit

Figure 6.69: Error job submission.

186



Another test of job submission with valid inputs is shown in figure 6.70.

Platform Select
Jobs for Microsoft Windows (98 or later) running on an Intel x86-compatible CPU

Jobs for Microsoft Windows running on an AMD x86_64 or Intel EM6AT CPU

Jobs for Linux running on an Intel x86-compatible CPU
Jobs for Linux running on an AMD x86_64 or Intel EM64T CPU
Jobs for Mac OS 10.4 or later running on Intel

Jobs for Intel 64-bit Mac OS 10.5 or later

Figure 6.70: Valid job submission.

12. Aborting job execution
When the user clicks on abort button, system displays a confirmation massage as

shown in figure 6.69. If the user click on “Ok” job will be aborted. Figure 6.72

shows the process while aborting a job.

187



User Information:

Name: Muhammad
Email: mohammad. thwaib(@yahoo.com

Level: user

Logout

Project Information:

Name:
N

All your submitted Jobs:

Name Status select

I K =T

@ The page at localh
g=p.  Areyousure
@ wrn.

Cancel || OK |

Figure 6.71: Aborting Job confirmation.

User Information:

Name: Muhammad
Email: mohammad. thwaib@yahoo.com
Level: user

Logout

Project Information:

All your submitted Jobs:

Name Status select

I =T

Figure 6.72: Aborting job.

188




13. Job execution:

Test applied by submitting a job and monitoring its status during the execution.

As shown in the figures below that the job was moved successfully through the

execution states arriving to the completion state.

User Information:

Name: Muhammad
Email: mohammad. thwaib@yahoo.com
Level: user

Logout

All your submitted Jobs:

(no instances yet) Download

Instance 0: unsent | abort

Delete jobs

select

Figure 6.73: Job execution (state 1).

User Information:

Name: Muhammad
Email: mohammad.thwaib@yahoo.com

Lewvel: user

Logout

All your submitted Jobs:

Name Status

(no instances yet) Download

Instance 0: in progress on host 1 | abort

Delete jobs

select

Figure 6.74: Job execution (state 2).

189




User Information: All your submitted Jobs:

Name: Muhammad

Email: mohammad. thwaib(@yahoo.com

Status select
Level: user (no instances yet) Download
Logout Job is being assimilated
Figure 6.75: Job execution (state 3).
U it All your submitted Jobs:

Name: Muhammad

Email: mohammad.thwaib@yahoo.com Name Statns

Level: user (no instances yet) Download

Logout

Instance 0: completed on host 1 Download

Figure 6.76: Job execution (state 4).

190




14. Download Results

A user can download results of an executed job by clicking on the
“Download” link. A test applied on one of the completed jobs; download

window was lunched as shown in the figure below, and finally result was
downloaded successfully.

Name: [ 7z |
saveinfolder: | ¢ ||[@ muhammad I|J|:|wnl|:|a|:lsI Create Folder
1 | Places Name v  Size Modified
7 Qi search [ 20-5-2014 22:44

User Information: @) Recently Used

4  [® muhammad

Name: Muhammad & Desktop

Email: mohammad.thwaib@y 1 File System

Level: user — 107 GBFilesyst...
Logout . 102 GBFilesyst...

— 954 MB Filesyst...
I Documents

Il Music

I Pictures

il videos

|Zi Downloads

Project Information:
j 7z =
Name: Cancel save |
projectStatus.sh T grid systemsqr T PPUGTOSYStEM ZID -

Figure 6.77: Download window.

15. Delete results

A user can delete the results by checking them, and then click on “Delete jobs”
button. Figures below show a test applied on this functionality.

191




User Information: All your submitted Jobs:

Name: Muhammad
Email: mohammad.thwaib@yahoo.com

Level: user (no instances yet) Download

Logout
| (no instances yet) Download

| (no instances yet) Download

| (no instances yet) Download

(no instances yet) Download

Delete jobs %

Project Information:

Name:
- SystemTest1
Status:
- Running
URL;
Figure 6.78: Check results to delete.
User Information: All your submitted Jobs:

Name: Muhammad

Email: mohammad. thwaib(@yahoo.com

Name Status select

Logout
Delete jobs

N

Project Information:

Name:
-- SystemTest1

Status:

Figure 6.79: Home page after click Delete Jobs.

192




6.6 Summary

This chapter clarifies the system implementation at the lower level which consists of
set of shell scripts that perform the system main functionalities. Also, it describes the
implementation of the higher level of the system. The higher level of the system includes
performing the system functionalities remotely and through user friendly interfaces.
Finally, we stated the procedures followed in testing the system.

193



Chapter Seven

Experiments and Results

7.1 Overview

In this chapter we talk about the CPU utilization at PPU computer labs.
Through this experiment we uses CPU Usage Logger and Altra CPU monitor —
freeware programs — in order to arrive to approximation to the average CPU usage at
PPU computer labs. Also we examine how many floating point operations per second

can be obtained from the PPU environment.

7.2 Average CPU usage at PPU computer labs

This section has two main subsections; the first one clarifies the environment,
describes the programs used to get the average CPU usage and the difficulties that we
face during this stage. The second one states the practical work to get the average
CPU usage in PPU labs.

7.2.1 Environment specification and work difficulties

PPU contains approximately 1000 PC computers distributed over computer
labs. These computers are interconnected with local area network (LAN) of 100Mbps
speed, which is suitable for grid clients. A continuously upgrading and maintaining
are performed to these computers; so they are almost have a computational power
much far exceeds their usage by students for learning and internet access purposes.
During this project we monitored the CPU usage for a selected sample of PCs in some
of labs. These labs are: Al-Beruni(l), Al-Razi, Al-khwarizmi, PC1, and the security

lab. The following table shows the specifications of the PCs in these labs.

194



Table 7.1: Computers specifications.

Lab Building CPU specification
Beruni(l) B,2" floor | Core 2 duo /2.66GHz
Beruni(l1) B,2" floor | Core 2 duo/2.66GHz
Al-Razi B,2" floor | Core 2 duo /2.66GHz
Al-khwarizmi | B,2" floor | Core i5 /3.2GHz
PC1 B+,1" floor | Dual core /2GHz
Security C,1" floor | Corei5/3.2GHz

Monitoring CPU usage done during working hours (from 08:00am to
04:00pm).the study was applied approximately for 20 days distributed over semester.
Two main utility programs were used to log the CPU usage during the study. These
programs are ultra CPU usage monitor and CPU usage logger. The result from this

study generalized to represent the average CPU usage for all labs at the university.

CPU Usage Logger:

CPU Usage Logger is used to log the CPU usage to a text file. It is
recommended by many researchers and developers to perform this work; “since it is
small, simple and reliable freeware utility that offers a handy way for developers and

software testers to easily monitor and log CPU usage for any period of time”’[18].

This program has many advantages to perform this work. Some of them: it
logs the CPU usage to a log file so that we can retrieve these log files at any time even
if the computer got unexpected shut down during working hours. In addition, it
doesn’t produce extra load to the CPU or memory usage during its running since it is
lightweight program. It doesn’t need an installation sequence to be running on the
system. Just copy it’s folders to any place on the free space of disk and double click
on the executable file, it will start running directly. On the other hand it has a critical

disadvantage; which is the need for user interaction to direct its output to a specific

195



log file; this is needed each time the program is running. So it can’t be added to the

start-up list.

CPU usage logger will display the interface shown in figure 6.1 when it is run; we
can direct its output to a specific log file using that interface. It will add entry to the
file each 5sec. This entry will contain the columns headers as follow:

e Date of reading

e Time of reading

e Percentage of CPU usage between (90-100) percent during the last 5sec.
e Percentage of CPU usage between (80-90) percent during the last 5sec.
e Percentage of CPU usage between (70-80) percent during the last 5sec.
e Percentage of CPU usage between (60-70) percent during the last 5sec.
e Percentage of CPU usage between (50-60) percent during the last 5sec.
e Percentage of CPU usage between (40-50) percent during the last 5sec.
e Percentage of CPU usage between (30-40) percent during the last 5sec.
e Percentage of CPU usage between (20-30) percent during the last 5sec.
e Percentage of CPU usage between (10-20) percent during the last 5sec.

e Percentage of CPU usage between (0-10) percent during the last 5sec.

= -
mZ] CPU Usage Logger l = | Bl
5 Second History:
Current CPU Usage: 3.84% 33.8495025634766
20.0040645599365
Calc Moving Average: [« 4.05248403549154
0.593298673629761
S5 Sec Moving Average: 8.1613% 5.2239236831665
2.50495672225952
Log File: |D:\CPFUUsage.txt Browse 3.09110283851624
4.58736991882324
Log Moving Average: ra 3.86174917221069
3.840482234954E83
Since Program Start:

830-100 mw Z2.52%
80-90 m 2.33%
TO0-80 o 3.73%
60-70 mm 4_B0%
50-60 [y 5.12%
40-50 mn 5_27%
30-40 Mmoo 7.52%
20-30 mwmn 8.47%
10-20 W 18 _09%
0-10 [T 47 _15%

Figure 7.1: CPU usage logger program.

196



Ultra CPU monitor:

Ultra CPU monitor is a professional application designed to be a small CPU
monitoring tool that shows its activity as a diagram in the system tray. This free
software tool can display many icons. Each monitor can display its activity as a text or
as a diagram. Ultra CPU Monitor works on Windows operating systems [43].

Ultra CPU monitor has important advantages; it can be added to the start-up
list, so it runs automatically when the system start. It also averages the CPU usage
while the running period. In addition it doesn’t produce extra loads to the CPU while
it’s running. It doesn’t need an installation sequence to be running on the system. Just
copy it’s folders to any place on the free space of disk and double click on the
executable file, it will start running directly. On the other hand, this program doesn’t
produce a log file, so if the computers got unexpected shut down during the running

period we can’t retrieve any previous results.

Ultra CPU monitor will add 3 basic icons to the system toolbar as shown in figure
6.2; we can get the average CPU usage using those icons.

CPU load (now): 14.94 %
Average :20.29 %

Figure 7.2: Ultra CPU monitor program.

197



7.2.2 Practical Work

During this subsection we will perform the computations needed to arrive
to a general term that represent the overall average CPU usage at PPU computer
labs. This work will basically depend on the data collected by the freeware

programs that stated in the previous section. The work goes on 3 levels that are:

e Collect the daily results about the average CPU usage and perform the
needed computation to get the average usage in that day.

e Averaging all the data for each lab that represents the average CPU usage
in that lab.

e The overall average CPU usage at PPU labs will be the average of all of

CPU usage for all labs during the study period

Table 7.2 shows the average CPU usage on the computers at AL-Beruni(l) lab
for one day. Figure 7.3 show a part of the log file generated by CPU usage logger

which used in the computations to get the results shown in table 7.2.

Table 7.2: Average CPU usage at AL-Beruni(l) lab for one day.

PC Average CPU usage(using | CPU usage less than 10% (CPU usage
name | Ultra CPU monitor logger program)
program)

PCl | 7% 92%

PC2 | 15% 86%

PC3 | 9% 91%

PC4 | 11% 88%

PC5 | 20% 83%

PC6 | 3% 96%

198



Date Time
02/13/2014 12:06:08 »
02/13/2014 12:06:13 »
02/13/2014 12:06:18 »
02/13/2014 12:06:23 »
02/13/2014 12:06:28 »
02/13/2014 12:06:33 »
02/13/2014 12:06:38 »
02/13/2014 12:06:43 »
02/13/2014 12:06:48 »
02/13/2014 12:06:53 ~
02/13/2014 12:06:58 »
02/13/2014 12:07:03 »
02/13/2014 12:07:08 »
02/13/2014 12:07:13 »
02/13/2014 12:07:18 -
02/13/2014 12:07:23 -
02/13/2014 12:07:28 -
02/13/2014 12:07:33 -
02/13/2014 12:07:38 -
02/13/2014 12:07:43 -
02/13/2014 12:07:48 -
02/13/2014 12:07:53 -

(90-100)% (80-90)% (70-80)% (60-70)% (50-60)% (40-50)% (30-40)% (20-30)% (10-20)% (0-10)%

o o

L= = == [ o e [ = R = [ = = = = R = = = = ) = = R = I = = B =)
L= = == [ o e [ = R = [ = = = = R = = = = ) = = R = I = = B =)

o o 1 1 1

00 0000000000000 00O00O00
00 0000000000000 00O00O00
i i i i R R i i e i i
i i i i R R i i e i i
i i i i R R i i e i i

2 4 91
92
91
91
91
91
91
91
91
91
91
92
92
92
92
92
92
92
92
92
92
92

i i i e i i R L R R SR SR SRR X
BB R R BE AR AR R R BB R R BB BB B BB

Figure 7.3: Sample of the log file generated by CPU usage logger.

The following table summarizes the average CPU usage in each lab according

to both of programs and the number of computers that were monitored in each lab.
Where U_CPU_M s the ultra CPU monitor program and CPU_U_L is CPU usage

logger program.

Table 7.3 Average CPU usage in PPU computer labs.

Lab Name Sample size | Avg. CPU usage( U_CPU_M) Avg. CPU usage( CPU_U L)
Al-Beruni(l) 6 12% Less than 10% for 83% of the time.
Al-Razi 6 13% Less than 10% for 82% of the time
Al-khwarizmi 10 8% Less than 10% for 91% of the time.
PC1 10 10% Less than 10% for 86% of the time.
security lab 10 6% Less than 10% for 93% of the time.

199




Average CPU usage for each lab is displayed in the chart diagram below.

14%

12%

10%

8%

6%

4%

2%

0% T T T T 1
Al-Beruni(l) Al-Razi Al-khwarizmi PC1 security lab

Figure 7.4: Average CPU usage at PPU labs.

The stated averages in the previous table represent the average of CPU usage
in the labs during the lectures since most of times the computers are turned off after
each lecture. So they are running only when they are under use. This means that the
average CPU usage of the computers will be decreased much more than shown, that is
if they remain running all the time, and so increase the ability of providing more

computational power.

Depending on table 7.3; the average CPU usage at the stated labs together is:

e approximately 9.3% using Ultra CPU monitor
e and approximately less than 10% for 87.9% of the time, using CPU usage
logger:

The previous results can be generalized to represent the average CPU usage at PPU
computer labs. They are come in favour with many researches on CPU utilization of

PCs, some of them:

e Bader Al-Ajrab stated that "the average CPU usage is not far exceed 10% for
90% of the time"[18], his research applied at Al-Quds Open University in
2013.

200



e Domingues stated CPU idleness is impressively high with an average of
97.93%"[36].

Results show that computers at PPU computer labs have a large computational power

that is not utilized, so it can be used to build a grid computing system.

7.3 Examination the performance of PPU Environment

The goal of this experiment is basically to prove that the Grid System is running
and working properly. By this experiment we show that our grid computing
environment is ready for further studies and researches .In addition, we try to get an
approximate estimation of the PPU environment performance. Arriving to an exact
estimation of the PPU environment performance is out of the scope of this project.

We used the Giga floating point operations per second (GFLOPS) that is
obtained from the system as the performance metric. Larger number of GFLOPS
obtained from a system means better performance of this system. GFLOPS can be

calculated using the equation below:
GFLOPS = F X C XN .coceevennnn. [44]
Where:

- F: CPU frequency.
- C: number of cores.
- n: number of floating point operations per CPU cycle. Most likely

equals 4.
Pre-requirements needed for doing this experiment:

- Arunning BOINC Test project.

- Sample of computing resources ready for attaching to the Test project.
To handle these requirements we do the following:

- Create a BOINC Test project named PPUTest.

201



Install the BOINC client software on all PCs of Al-Khwarizmi lab and set the

appropriate  configurations. The details of installation and setting

configurations are discussed in appendix A.

#* The specification of Al- Khwarizmi lab PCs are Intel, Core i5-3470 CPU,
3.20GHz. The theoretical number of GFLOPS obtained by one of these

PCs can be calculated using the previous equation as follow:

GFLOPs= 4 (cores) x 3.2 GHz x 4 (floating operations per cycle) = 51.2GFLOPS.

The practical gained GFLOPS is smaller than the theoretical. There are many

factors that make the practical GFLOPS smaller than the theoretical:

- A computer cannot run at the maximum utilization all the time; it may
be exposed to a hardware failure.

- CPU is not always available for the test computations; it is shared for
all purposes.

- Many times computers are not running, or even not connected to the
network.

- Many times server itself is not running or not connected to the
network.

- The test application used in the experiment is so simple so it doesn’t

need to a large computational power.

The applied experiment has totally 39 PCs working as grid clients and having the

same specifications. This experiment was applied for ten days. We obtained

approximately 96 GFLOPS as the average of GFLOPS can be produced from all of

these PCs together. Through the analysis of the results we found that:

Twelve of these PC were not working properly (this found from the number of
work units done by these PCs, which was too low comparing with other
computers). This may happen because these PCs were disconnected to the
network for long periods of time during the experiment. So, we will ignore
these PCs and their effect which is about 3 GFLOPS.

As a result we have 27 PCs producing 93 GFLOPS:

202



GFLOPS per PC =

total number of GFLOPS gained _ 93
— — = 3.45GFLOPS
number of PCs 27

PPU has approximately 1000PCs distributed over all the university. If we

suppose that all PPU PCs have a similar specification of AL-Khwarizmi lab

PCs, then attaching all PPU PCs to the grid system produces:

GFLOPS = GFLOPS per PC x number of PC = 3.45 x 1000 = 3.45TeraFLOPS

Many limitations must be considered when taking this result:

It is generalized from one test of a small sample. To determine the
performance of the environment many tests with different sample sizes are
needed to be performed.

The test was done over ten days only, which is a short period to generalize
on all semester. Computers usage may differ during the semester life
cycle, which surly affects the number of GFLOPS obtained from each PC.
The test is applied only on windows 7 operating system PCs. So, it
doesn’t take into consideration the effect of the operating system. Tests
must be applied on different OS since each OS make different usage to the
PC resources.

Network effect is not taken into consideration since only AL-Khwarizmi
lab computers were used in this test. Grid clients may exist in different
locations that have different link speeds which surly affect the
performance.

Only one application was used in the test; which is the BOINC test
application. CPU usage may differ for different applications that make
different access to memory or Input/Output. So, many tests with different
applications must be performed.

The BOINC test application used in the test is so small and simple which
is not the case of many real applications. So, it may not increase the

utilization of the CPU usage as well.

203



7.4 Summary

In this chapter we talked about the CPU utilization at PPU computer labs.
Through this experiment we found that the average CPU usage at PPU labs doesn’t
far exceed 9%; this mean there is a huge computational power can be obtained by
these resources to perform important researchs. Also we performed a small
experiment to estimate how many FLOPs can be obtained from the PPU environment.
Thruogh this experiment we found that each PC prooduces approximatly
3.45GFLOPS.

204



Chapter Eight

Conclusion and Future Work

8.1 Overview

In this chapter, we introduce the overall project conclusion and talk about the
challenges appeared during the project. Also, we talk about some fields that are

important to be taken in to consideration within the future work.

8.2 Conclusion

This project has two main objectives. The first objective is to highlight the
amount of wasted computing power during idle CPU cycles. The second objective is
to build a local PC grid computing system in the university to utilize the available
idle CPU power in computer labs.

The first objective is achieved by performing a study to find the CPU utilization
percentage in the university. The result of this study shows that CPU utilization in
computer labs is very low. The average CPU utilization for a whole working day
(08:00-16:00) is less than 10%, this agrees with all surveyed researches in this field.
Our results emphasize the fact that available idle CPU power is large, and can be

employed to build a local Grid computing system.

The second objective is achieved by building the Campus Grid Computing
System which is done as follow:
e Installing BOINC server on one of the university PCs.

e Installing BOINC client on a sample of the university PCs.

205



e Creating shell scripts that provide the core functionalities of the system.

e Creating a web portal for Campus Grid Computing System.

Campus Grid Computing System implements two levels of transparency. The
lower level of transparency consists of shell scripts that provide the core
functionalities of the system. The higher level of transparency which is the web
portal is built over the lower level. This level provides user interfaces that enable
performing any functionality without the need to write a terminal commands directly
on the server; Users can perform any functionality remotely through user friendly

interfaces and without seeing the underlying levels of the system.

One of the experiments that were done using the Campus Grid Computing
System is examining how many FLOPs can be obtained from the PPU environment.
This study proved that the Grid System is running and working properly. Through
this experiment each PC produces approximately 3.45 GFLOPS.

BOINC middleware is centralized system where the server works on managing
all resources and jobs. This has some drawbacks, which are:
e The need for a powerful central server to manage all slave computing
nodes.
e Single point of failure; if the grid server crashed all the system will

stop evaluation.

8.3 Challenges

During the work over this project we face many challenges and difficulties. The

following paragraphs talk about these challenges and difficulties.

Project scope is large and requires the team members to be from different

backgrounds to work on. Project team must be experienced with parallel

206



programming, Linux administrative skills, web development, and security

considerations for all of these sides.

BOINC is a powerful tool that supports volunteer computing, which we
customized to support grid computing. In contrast, there are many challenges for
using BOINC. The complexity of BOINC; such that developers need to put large

efforts on learning the BOINC environment before being able to start using it.

Moreover, BOINC environment is still under construction. So, BOINC
documentation is not complete and many topics are mentioned abstractly. Many
times we arrived to solutions based on our overall understanding of BOINC

complexity.

In addition, the lack of previous studies in this field increases the difficulty of
going on with this project. This project approximately considered the first graduation

project specialized in the field of grid computing over BOINC middleware.

Many difficulties also come with the experiments that we perform over PPU
environment. We need to enter the labs many times each day of the study of CPU
utilization to run the CPU usage logger program and at the end of the day we need to
come back to take the results. But, we were not being able to enter to labs freely
during the lectures. Moreover, all the labs were heavily loaded with lectures. So we
forced to wait the breaks between lectures to do our work that is too short and not

enough to finish the work.

In addition, turning off the programs by the users was one of the most annoying
difficulties. Both of the programs used in the study of CPU utilization don't have the
ability to run in background so many times users close them. When we come back at
the end of the day to take the results we shocked that programs are closed and no

valid data exist. Since of that we were forced to do the work again and again.

207



Another difficulty that we face is shutting down the computers at the end of
lectures. This affect the results of both of the programs used at the CPU utilization
study. It also affects the number of work units performed by the computers which

represents their performance at the grid system.

8.4 Future Work

Although, we have obtained promising initial results, but still the following

points may help to further contributions in Grid computing:

1. Developing GPU Applications

While our project mainly focuses on utilizing idle CPUs power in our
computer labs, BOINC supports applications that use coprocessors. The
supported coprocessor types are NVIDIA, AMD, and Intel GPUs [45]. The
Graphical Processing Unit (GPU) provides a very large computing power

which is usually not utilized well.

The computing power of GPUs has increased rapidly, and they are now
often much faster than the computer's main processor, or CPU [46]. The
wasted power of computers' GPUs can be utilized by building BOINC GPU
applications. You can develop your application using any programming
system, e.g. CUDA (for NVIDIA), CAL (for ATI) or OpenCL [45].

208



2. Grid Data Archival

PCs nowadays have large disk space capacities while only small portion
of this space is used by normal users. A study can be performed on the
university PCs to find the available disk space capacities and their utilization
percentage. In the light of this study, we can determine the efficiency of
building a distributed data storage system to make use of unused disk

capacities.

BOINC is currently used for computation, but it also provides primitives
for distributed data storage: file transfers, queries, and deletion [47]. It is
possible to develop a system that uses these primitives to implement a

distributed data archival system

3. Testing BOINC client performance

Most of our experiments were done under Windows XP and Windows 7.
However, we can test the BOINC client software performance under different
platforms like UNIX based operating systems. Also, it is a good idea to test
BOINC client under Windows 8 which takes its place in the market and it

may be used in our labs in near future.
4. Mass Deployment Of BOINC Client Software
Deploying BOINC client software manually on a large number of
computers is not an easy task; it needs a large effort and takes a lot time

repeating the same process.

The BOINC installer uses the Microsoft MSI technology framework so

we can customize the BOINC installer properties. In addition, we can control

209



certain aspects on the installation process by launching the BOINC installer
with certain command line options. For example, we can automate the
process of client deployment using unattended or silent install by executing a
installer command with untended or silent command line argument (see

reference [48]).

Developing and porting BOINC applications

This involves meeting the researchers, identifying those with
computationally-intensive problems that map well to grid computing. The

applications used by those researchers are then ported to BOINC.

On the other hand, adopting an existing application to run within BOINC
environment can be reached by two approaches:
a. Using BOINC wrappers
This is the simplest way. The existing application can be run with no
modifications.
b. Writing Native BOINC applications
With some minor source code modifications, you can run an
application directly without need for the wrapper [49]. The changes
are [49]:
e Adding calls to BOINC initialization and finalization routines.
e Preceding each fopen() call with a BOINC function that maps
logical to physical names.
e Linking it with the BOINC runtime library

210



6. Test BOINC Wrappers

Any existing application (or sequence of applications) can be run under
BOINC using a wrapper program supplied by BOINC. The wrapper runs the
applications as sub-processes, and handles all communication with the
BOINC client (e.g., to report CPU time and fraction done) [50].

A study can be performed to test the effect of using BOINC wrappers to
run the applications. The study should determine the overhead, effectiveness,
advantages and disadvantages of wrappers. The result of this study may

suggest mechanisms to enhance wrappers performance.

In addition, it will be a good idea to compare the performance of an
application; one time is run under BOINC wrapper and the other time is run

as native BOINC application.

7. Determine Best Parameters (BOINC experiments)

BOINC provides different parameters to control and specify preferences
that limit when and how BOINC uses the computers under a certain account.
Many experiments can be performed to determine the best values for these

parameters like processor, disk and memory usage.

8. Use BOINC with different programming languages

BOINC is originally designed to work with C/C++ applications, but it
provides some mechanisms to adopt other programming languages like Java
and Python. We can try to develop applications for these programming
languages. In addition, we can enhance the single job submission to include

new programming languages other than C/C++.

211



9.

10.

11.

12.

Build BOINC software add-ons using BOINC API

BOINC Project is still under work and it is developed on volunteer bases.
One can participate in different fields of this project as a volunteer and can be
part of the world wide effort in this area.

Build a volunteer computing system (Investigate VVolunteer Computing).

Because of the huge number (more than one billion) of PCs in the world,
volunteer computing can supply more computing power to science than does
any other type of computing [51]. BOINC is originally designed for volunteer
computing; so it can be used to build a volunteer system.

Deploy BOINC server on different UNIX and Linux distributions.

The BOINC server must be a UNIX computer, generally running Linux
[52]. In this project we deployed the BOINC server on Ubuntu 12.04, but we
can try to get the experience of deploying the BOINC server on different

Linux distributions.

Build a tool to control BOINC clients remotely

The BOINC manager provides a graphical user interface to facilitate the
communication with only one BOIC core client locally or remotely. In a real
campus grid system, it is essential to control the BOINC core client remotely
on all computers participate in the grid. For this purpose, an add-on tool can
be built using boinccmd tool or BOINC APIs.

212



13.

14.

15.

16.

Build a Palestine Universities Grid System (PUGS)

We can generalize the project idea by building a large scale grid system
that encloses all the Palestinian universities. This grid system will provide a
large computational power that will develop and enhance scientific researches
in Palestine.

Launch our first BOINC based real project that does real computation or

performs a scientific research.

This can be done by helping researchers in the university to develop
BOINC based projects that serve their research fields. The publication of

such projects and their results can increase the publicity of the university.

BOINC For Android

Mobile devices such as smartphones and tablets are small, but they have
serious computing power - as much as 25% of an average desktop computer
[53]. In addition there are a huge number of android devices in the world and
their market is growing rapidly.

BOINC client software is now available for android devices; so it is
important to develop applications for android devices exploit their
computational power which may play an important role in the future for

scientific computing.

Investigating other grid computing middle-wares and tools (e.g. Globus,
Alchemi).

213



17. Mobile Agent Grid System
BOINC follows a client-server centralized approach. This centralization

of the system produces some limitations on the BOINC based systems.

Mobile agent works on decentralization manner. It also supports the
interaction and the communication between agents during their execution on
different hosts. So, mobile agent based systems can avoid the limitations
come from centralization. But in the other hand, different limitations will
appear since of the nature of mobile agents.

As an example of mobile agent based middleware systems is Agent
Teamwork “is a grid-computing middleware system that dispatches a
collection of mobile agents to coordinate a user job over remote computers in

a decentralized manner”[69].

8.5 Summary

In this Chapter, we summarized the main results that were found through this
project, then talk about the challenges that appeared during the project. Finally, we

stated the main issues that are considered as a future work.

214



References

[1] BOINC: Berkeley Open Infrastructure for Network Computing,
http://boinc.berkeley.edu/, (accessed on 13/11/2013).

[2]What is grid computing?, http://www.gridcafe.org/EN/what-is-the-grid.html,
(accessed in September, 2013).

[3] Bader Ahmed Bader Ajrab,” PC Grid Computing Environment In Higher
Education Institutions”, master thesis at AIQuds university, Palestine, 2013.

[4] Grid computing in 30 seconds, http://www.gridcafe.org/EN/grid-in-30-sec.html ,
(accessed in September, 2013).

[5]D.P. Vidyarthy, B.K. Sarker, L.T.Yang, "Scheduling in Distributed Computing
Systems Analysis, Design & Models", A Research Monograph, pp.(244-245),2009

[6] Grid architecture, http://www.gridcafe.org/EN/grid-architecture.html , (accessed
in October, 2013).

[7] Middleware, http://www.gridcafe.org/EN/middleware.html, (accessed in October,
2013).

[8] Ault, M. and Tumma, M., "Oracle10g Grid Computing with RAC", Oracle RAC -
Types of Grid computing, 2004.

[9]Stanoevska K., Wozniak T., Ristol S.,"Grid and Cloud Computing: A Business
Perspective on Technology and Applications”, Springer, 2010.

[10]Goyal B, Lawande S (2005) Grid Revolution: An Introduction to Enterprise Grid
Computing. McGraw-Hill, Emeryville, CA, 2005

[11]Joseph J., Fellenstein C., "Grid Computing", Pearson Education, 2004.

[12]1an Foster, Carl Kesselman, The Grid: Blueprint for a New Computing
Infrastructure, Morgan Kaufmann, 2004.

[13]Fox, G., Furmanski, W. (1998) High performance commodity computing,
Chapter 10, in Foster, I. and Kesselman, C. (eds) The Grid: Blueprint for a New
Computing Infrastructure. San Francisco, CA: Morgan Kaufmann Publishers.

[14] Foster, I. and Kesselman, C.,"The grid: Blueprint for a new computing
infrastructure”, Morgan Kaufmann, San Francisco, CA,1998.

215


http://boinc.berkeley.edu/
http://www.gridcafe.org/EN/what-is-the-grid.html
http://www.gridcafe.org/EN/grid-in-30-sec.html
http://www.gridcafe.org/EN/grid-in-30-sec.html
http://www.gridcafe.org/EN/grid-architecture.html
http://www.gridcafe.org/EN/grid-architecture.html
http://www.gridcafe.org/EN/middleware.html

[15]Fran Berman, Anthony J.G. Hey, Geoffrey C. Fox,

"Grid Computing Making the Global Infrastructure a Reality”, Wiley Series in
Communications Networking and Distributed Systems, pp.(722-723),2003.

[16] Grid-powered projects, http://www.gridcafe.org/EN/grid-powered-project.html ,
(accessed in October, 2013).

[17] Volunteer computing , http://www.gridcafe.org/EN/volunteer-computing.html
,(accessed on September, 2013).

[18] Desktop Grid, http://boinc.berkeley.edu/trac/wiki/DesktopGrid, (accessed in
October, 2013).

[19] Volunteer computing vs. cloud vs. grid vs. HPC ,

http://www.volunteer-computing.org/EN/volunteer-computing-vs-cloud-vs-grid-vs-
HPC.html, (accessed in October, 2013).

[20] Volunteer computing , http://en.wikipedia.org/wiki/\Volunteer_computing,
(accessed in October, 2013).

[21] Desktop_Grid:Westminster_Local DG,
http://wgrass.wmin.ac.uk/index.php/Desktop Grid:Westminster Local DG,

(accessed in October, 2013).
[22] NEW DIY SUPERCOMPUTER SAVES £1,000S,

http://www.westminster.ac.uk/news-and-events/news/2011/university-of-
westminster-launches-new-diy-supercomputer-saving-hundreds-of-thousands-of-
pounds, (accessed in October, 2013).

[23] Middleware - Volunteer garage, http://www.volunteer-
computing.org/EN/middleware.html, (accessed in October, 2013).

[24] Anderson,” BOINC: A system for public-resource computing and storage”, 5th
IEEE/ACM International Workshop on Grid Computing, Pittsburgh, PA, USA, pp. 4-
10,Dec,2004.

[25] Grid MP - Wikipedia, the free encyclopedia
http://en.wikipedia.org/wiki/Grid_MP, (accessed in October, 2013).

[26] Alchemi v0.6.1 Documentation,
http://www.cloudbus.org/~alchemi/doc/0_6_1/index.html, (accessed in October,
2013).

216


http://www.gridcafe.org/EN/grid-powered-project.html
http://www.gridcafe.org/EN/volunteer-computing.html
http://boinc.berkeley.edu/trac/wiki/DesktopGrid
http://www.volunteer-computing.org/EN/volunteer-computing-vs-cloud-vs-grid-vs-HPC.html
http://www.volunteer-computing.org/EN/volunteer-computing-vs-cloud-vs-grid-vs-HPC.html
http://www.volunteer-computing.org/EN/volunteer-computing-vs-cloud-vs-grid-vs-HPC.html
http://en.wikipedia.org/wiki/Volunteer_computing
http://wgrass.wmin.ac.uk/index.php/Desktop_Grid:Westminster_Local_DG
http://www.westminster.ac.uk/news-and-events/news/2011/university-of-westminster-launches-new-diy-supercomputer-saving-hundreds-of-thousands-of-pounds
http://www.westminster.ac.uk/news-and-events/news/2011/university-of-westminster-launches-new-diy-supercomputer-saving-hundreds-of-thousands-of-pounds
http://www.westminster.ac.uk/news-and-events/news/2011/university-of-westminster-launches-new-diy-supercomputer-saving-hundreds-of-thousands-of-pounds
http://www.volunteer-computing.org/EN/middleware.html
http://www.volunteer-computing.org/EN/middleware.html
http://en.wikipedia.org/wiki/Grid_MP
http://www.cloudbus.org/~alchemi/doc/0_6_1/index.html

[27] Alchemi [.NET Grid Computing Framework],
http://www.cloudbus.org/~alchemi/, (accessed in October, 2013).

[28] Akshay Luther, Rajkumar Buyya, Rajiv Ranjan, and Srikumar Venugopal,
“Peer-to-Peer Grid Computing and a .NET-based Alchem Framework”, Grid
Computing and Distributed Systems (GRIDS) Laboratory, Department of Computer
Science and Software Engineering, The University of Melbourne, Australia.

[29] SETI, http://setiathome.berkeley.edu/, (accessed on 13/11/2013)

[30] BOINCstats, http://boincstats.com/, (accessed on 13/11/2013)

[31] TOP500 list, http://www.top500.0rg/list/2012/11/, (accessed on 13/11/2013).

[32] Anderson, D., Korpela, E. and Walton, R., —High-Performance Task
Distribution for Volunteer Computingl, Proceedings of the First IEEE International
Conference on e-Science and Grid, . Melbourne, Australia, 2005.

[33] JobSubmission-Boinc. http://boinc.berkeley.edu/trac/wiki/JobSubmission,

(accessed in January, 2014).

[34] JobTemplates-Boinc. http://boinc.berkeley.edu/trac/wiki/JobSubmission,

(accessed in January, 2014).

[35] Free CPU usage monitor programs, http://softwaresolution.informer.com/Free-
CPU-Usage-Monitor/.(accessed in January, 2014).

[36] Patricio Domingues, Paulo Marques, Luis Silva,”Resources Usage of Windows
Computer Laboratories”, aEscola Superior de Tecnologia e Gestdo — Instituto
Politécnico de Leiria — Portugal fDepartamento Eng. Informatica, Universidade de
Coimbra — Portugal, Jan, 2005.

[37] BasicConcepts-BOINC, http://boinc.berkeley.edu/trac/wiki/BasicConcepts,
(accessed on 06/05/2014).

[38] Example applications, http://boinc.berkeley.edu/trac/wiki/ExampleApps#nol,
(accessed on 8/5/2014).

[39] SingleJob-BOINC, http://boinc.berkeley.edu/trac/wiki/SingleJob, (accessed on
07/05/2014).

[40] HtmIOps-BOINC, http://boinc.berkeley.edu/trac/wiki/HtmIOps, (accessed on
04/04/2014).

[41] M. Alfalayleh and L. Brankovic, "an overview of security issues and techniques
in mobile agents”, The University of Newcastle, 2004.

217


http://www.cloudbus.org/~alchemi/
http://setiathome.berkeley.edu/
http://boincstats.com/
http://www.top500.org/list/2012/11/
http://boinc.berkeley.edu/trac/wiki/JobSubmission
http://boinc.berkeley.edu/trac/wiki/JobSubmission
http://boinc.berkeley.edu/trac/wiki/ExampleApps#no1
http://boinc.berkeley.edu/trac/wiki/HtmlOps

[42] SecureHttp-BOINC, http://boinc.berkeley.edu/trac/wiki/SecureHttp, (accessed on
02/04/2014).

[43] Free CPU Usage Monitor, http://softwaresolution.informer.com/Free-CPU-
Usage-Monitor/, (accessed on 10/01/2014).

[44] FLOPS - Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/FLOPS,
(accessed 22/05/2014).

[45] AppCoprocessor, http://boinc.berkeley.edu/trac/wiki/AppCoprocessor, (accessed
on 06/05/2014).

[46] GPU Computing-BOINC, http://boinc.berkeley.edu/wiki/GPU_computing,
(accessed on 06/05/2014).

[47] ResearchProjects-BOINC, http://boinc.berkeley.edu/trac/wiki/ResearchProjects,
(accessed on 06/05/2014).

[48] Creating custom installers,
http://boinc.berkeley.edu/wiki/Creating_custom_installers, (accessed on 06/05/2014).

[49] AppIntro-BOINC, http://boinc.berkeley.edu/trac/wiki/Applntro, (accessed on
08/05/2014).

[50] WrapperApp-BOINC, http://boinc.berkeley.edu/trac/wiki/WrapperApp,
(accessed on 08/05/2014).

[51] VolunteerComputing-BOINC,
http://boinc.berkeley.edu/trac/wiki/\VolunteerComputing, (accessed on 10/05/2014).

[52] Creating and Configuring a BOINC Project,
http://www.spy-hill.net/myers/help/boinc/Create_Project.html#server, (accessed on
10/05/2014).

[53] Android FAQ-BOINC, http://boinc.berkeley.edu/wiki/Android_FAQ, (accessed
on 10/05/2014).

[54] Setting up a BOINC server, http://boinc.berkeley.edu/trac/wiki/Serverintro,
(accessed on 10/1/2014).

[55] BOINC server guide installation,
https://wiki.debian.org/BOINC/ServerGuide/Initialisation, (accessed 15/1/2014).

[56] Installing BOINC, http://boinc.berkeley.edu/wiki/Installing_ BOINC, accessed on
02-May- 2014

[57] Installing BOINC On Ubuntu,
http://boinc.berkeley.edu/wiki/Installing BOINC on_Ubuntu, (accessed on
02/05/2014).

218


http://boinc.berkeley.edu/trac/wiki/SecureHttp
http://softwaresolution.informer.com/Free-CPU-Usage-Monitor/
http://softwaresolution.informer.com/Free-CPU-Usage-Monitor/
http://en.wikipedia.org/wiki/FLOPS
http://boinc.berkeley.edu/wiki/Android_FAQ
http://boinc.berkeley.edu/trac/wiki/ServerIntro
https://wiki.debian.org/BOINC/ServerGuide/Initialisation
http://boinc.berkeley.edu/wiki/Installing_BOINC
http://boinc.berkeley.edu/wiki/Installing_BOINC_on_Ubuntu

[58] Controlling BOINC Remotely,
http://boinc.berkeley.edu/wiki/Controlling_ BOINC_remotely, (accessed on
02/05/2014).

[59] BOINC DB, http://boinc.berkeley.edu/trac/wiki/DataBase, (accessed on
8/5/2014).

[60] Server directory structure, http://boinc.berkeley.edu/trac/wiki/ServerDirs,
(accessed on 8/5/2014).

[61] Project configuration file, http://boinc.berkeley.edu/trac/wiki/ProjectConfigFile,
(accessed on 8/5/2014).

[62] Server Components, http://boinc.berkeley.edu/trac/wiki/ServerComponents,
(accessed on 8/5/2014).

[63] Setting up a BOINC server, http://boinc.berkeley.edu/trac/wiki/Serverintro,
(accessed on 8/5/2014).

[64] anonscm.debian.org Git - pkg-boinc, http://anonscm.debian.org/gitweb/?p=pkg-
boinc/scripts.qit;a=blob;f=server-examples/boinc_project maker.sh, (accessed in
January, 2014).

[65] Code signing, http://boinc.berkeley.edu/trac/wiki/CodeSigning, (accessed on
02/04/2014).

[66] KeySetup-BOINC, http://boinc.berkeley.edu/trac/wiki/KeySetup, (accessed on
02/04/2014).

[67] StartTool-BOINC, http://boinc.berkeley.edu/trac/wiki/StartTool, (accessed on
12/05/2014).

[68] Boinccmd tool-BOINC, http://boinc.berkeley.edu/wiki/Boinccmd_tool, (accessed
on 07/04/2014).

[69] The design concept and initial implementation of Agent Teamwork grid
computing middleware, http://www.academicpub.com/map/items/3933371.html,
(accessed on 28/5/2014).

[70] BOINC Security-BOINC, http://boinc.berkeley.edu/wiki/BOINC Security,
(accessed on 30/05/2014).

219


http://boinc.berkeley.edu/wiki/Controlling_BOINC_remotely
http://boinc.berkeley.edu/trac/wiki/DataBase
http://boinc.berkeley.edu/trac/wiki/ServerDirs
http://boinc.berkeley.edu/trac/wiki/ProjectConfigFile
http://boinc.berkeley.edu/trac/wiki/ServerComponents
http://boinc.berkeley.edu/trac/wiki/ServerIntro
http://anonscm.debian.org/gitweb/?p=pkg-boinc/scripts.git;a=blob;f=server-examples/boinc_project_maker.sh
http://anonscm.debian.org/gitweb/?p=pkg-boinc/scripts.git;a=blob;f=server-examples/boinc_project_maker.sh
http://boinc.berkeley.edu/trac/wiki/CodeSigning
http://boinc.berkeley.edu/trac/wiki/KeySetup
http://boinc.berkeley.edu/wiki/Boinccmd_tool
http://www.academicpub.com/map/items/3933371.html
http://boinc.berkeley.edu/wiki/BOINC_Security

Appendix A

Server and Client Software Installation

This appendix describes the deployment process of BOINC software. First, we
show the installation and configuration process of BOINC server, then we describe

the installation of BOINC client software on different platforms.
A.1 BOINC server Pre-installation requirements

There are pre-installation requirements that must be satisfied before installing
the BOINC server. These requirements are classified as hardware requirements and

software requirements.
A.1.1 Hardware requirements

Hardware requirements which are needed for running a BOINC server vary
according to the size of the grid system and the type of services provided by the
system. In general, any computer can be used as a BOINC server if its usage just for
experiments and debugging purposes. However, before deploying the system more
widely, we have to make sure that the server has adequate performance, availability,

and security. Here are some factors [54]:

« Internet connection should have adequate performance and reliability.
e  Server must have a static IP address.
e Server should have:
o Good CPU speed(dual Xeon or Opteron):
o Atleast 2 GB of RAM,
o Atleast 40 GB of free disk space.
o For ahigh-traffic project, use a machine with 8 GB of RAM or more.
« All these factors suppose that the server used to serve only one BOINC

project, more details about BOINC project stated in Appendix B.

In our case the server has:

e Processor: core i5 3.2GHz.

220



e RAM: 4GB

e Disk storage capacity: 320GB.
e Network: 100Mbps.

e Global IP address: 195.3.191.24
e Local IP address: 10.10.16.12

A.1.2 Software requirements

The currently stable and up to date version of BOINC server runs on any 64-

bit UNIX operating system. In our project we used Ubuntul2.04 LTS.

There are some additional software dependences needed for BOINC server
like apache server, PHP, MYSQL, and other packages that must be installed before
BOINC server installation. These dependences can be installed by running the

following terminal command:

e sudo apt-get install git build-essential apache2 php5 \
mysql-server php5-gd php5-cli php5-mysql python-mysqldb \
libtool automake autoconf pkg-config libmysql++-dev libssl-

dev

A.2 BOINC server installation process
System installation process goes into the following steps:

1. Download BOINC source:

e (it clone git://boinc.berkeley.edu/boinc-v2.git boinc
2. Compile BOINC:

e cd boinc
e ./ autosetup
e ./configure --disable-client --disable-manager

e make

221



A.3 Trouble Shooting

This section shows some problems that may arise during the compilation process

of BOINC server and provides solutions for these problems.

e Fatal error: curl/curl.h: No such file or directory:

Solution: sudo apt-get install libcurl4-gnutls-dev

e Problem: error with (m4) :
Solution: download and install m4-1.4.1
e sudo apt-get install m4.1

e Problem: configure: WARNING: fcgi-stdio.h not found.

Solution: Install the follwoing library [55]: libfcgi-dev

e sudo apt-get install libfcgi-dev

e Problem with openssl directory.

Solution: use instead of the Compile BOINC commands (step 2 in section
A.2) the following one:

cd boinc; ./_autosetup; ./configure --with-ssl=/usr/include/openss| --disable-
client --disable-manager; make

« For assurance that we have updated version of the BOINC source code we
need to execute the command:
e gitpull

« After fixing all the problems we need to re-compile the BOINC source code.

222



The following figures show the compilation process that has some problems:

A ®© muhammad@ubuntu: ~/boinc

checking if CFLAG '-include fcgi_stdio.h' works...
configure: MARKNING. 1Cgl-stdio.h noT Tounu.

. yes

for shmget in dynamic library cygipc... no
for aio_fork in dynamic library aio... no

for dlopen in dynamic library dl... -1dl

for gethostbyname in static library nsl... -1lnsl
for bind in static library socket... no

for bind in dynamic library socket... no

for gzopen in static library z... -1z

for md5_finish in dynamic library cups...

for the pthreads library -lpthreads... no

whether pthreads work without any flags...
whether pthreads work with -Kthread... no

whether pthreads work with -kthread... no

for the pthreads library -1llthread... no

whether pthreads work with -pthread... yes

for joinable pthread attribute... PTHREAD_CREATE_JOINABLE

Figure A.3.1 BOINC installation problems 1.

" IThe GL, GLU and glut libraries are required in order to build the graphical part

- ) . k

of the BOINC application API library.

==> only building non-graphical parts of the BOINC API Library for now.

HINT: on Mac0S X/Darwin you might consider running configure with the option
'./configure --with-apple-opengl-framework'
in order to use the Mac-native openGL framework

Figure A.3.2 BOINC installation problems 2.

223



M55 muhammad@ubuntu: ~/boinc

make[2]: Leaving directory ' /home/muhammad/boinc/apps'’
Making all in tools
: Entering directory ' /home/muhammad/boinc/tools'
cancel_jobs
create_work.o
create_work
dir_hier_move.o
dir_hier_move
dir_hier_path.o
dir hier nath
remote_submit.o
./l\b/rewote submit. cpp:24:23: fatal error: curl/curl.h: No such file or directi®
ory
conpllaticntormanreesn
T RRs [remote submit. o] Error 1
3 o ddpootonpeyianiEinuhammad /boinc /tools '
. Wk [all recurstve] Error 1

oy 2] rEsvtigT e trestmpy 7 Woie /muhammad /boinc '
: *** [311] Error 2
'imunm. muQ.\.._...'.-..'; ,uuLllLb =

Figure A.3.3 BOINC installation problems 3.

When the compilation finished properly, the result will be as shown in figure A.3.4
below:

@ F muhammad@ubuntu: ~/boinc2

Making all in vda
: Entering directory °/home/muhammad/boinc2/vda’
vda.o
vda_lib2.0
stats.o
vda
vdad
ssim
: Leaving directory °/home/muhammad/boinc2/vda’
Making all in html
make[2]: Entering directory ' /home/muhammad/boinc2/html'’
make[2]: Nothing to be done for “all'.

make[2]: Leaving directory ' /home/muhammad/boinc2/html’

: Entering directory ' /home/muhammad/boinc2/doc'’

: Entering directory " /home/muhammad/boinc2/doc'

: Nothing to be done for “all-am'.

: Leaving directory ' /home/muhammad/boinc2/doc'’

: Leaving directory °/home/muhammad/boinc2/doc’

: Entering directory °/home/muhammad/boinc2'

sh generate_svn_version.sh

: Leaving directory ' /home/muhammad/boinc2’

: Leaving directory °/home/muhammad/boinc2’
muhammad@ubuntu:~/boinc2$

Figure A.3.4 Proper BOINC installation.

224



A.4 BOINC Client Installation

This section describes the deployment process of BOINC client software on

different platforms.
A.4.1 Microsoft Windows

Most of installation work is done on Microsoft Windows operating system which
is used by most of our computers. First, we need to download the BOINC installer for
Windows, and then double-click the installer icon. After that, we follow the
installation process that is described in the figures below (Figure A.4.1 to Figure
A.4.8).

~ W 1) BOINC - InstaliShield Wizard

The InstaliShield(R) Wizard will install BOINC on your computer.
To continue, dick Next.

WARNING: This program is protected by copyright law and
international treaties.

Figure A.4.1: BOINC Client Deployment Step 1

225



1] BOINC - InstaliShield Wizard

License Agreement
Please read the following license agreement carefully.

Berkeley Open Infrastructure for Network Computing
(BOINC)

License Agreement

Please carefully read the following terms and conditions
before using this software. Your use of this software
indicates ycur acceptance of this license agreement and
warranty.

e mmT admansw Af THaww
@ I accept the terms in the license agreement
() 1do not accept the terms in the icense agreement

jm———— ~ - InstaiShield

Figure A.4.2: BOINC Client Deployment Step 2

1% BOINC - InstaliShield Wizard

BOINC Configuration
These are the current nstallation options

= Program directory:
L-] C:\Users\jbrahim\Program Fies 64\8OINC\

(7, Datadirectory:
*J C:\Usersbrahim \CommonAppData\BOINC\

/1 Use BOINC Scareensaver
Service Install

This option is now disabled by default.
A reboot may be required.

/| Allow all users on this computer to control BOINC

Click Next to use these options.
Click Advanced to customize options.

4. Click on
| “Advanced “

Figure A.4.3: BOINC Client Deployment Step 3

226



15 BOINC - InstaliShield Wizard

Customize installation options
Customize how BOINC is instalied on your computer

(", Program directory:
' C:\Users\brahim\Program Fies 64\B0INC\

ij Data directory:

C:\Users\ibrahim \CommonAppData\BOINC\

[V] Use BOINC Screensaver

Run project applications under an unprivileged account. This provides increased protection
from faulty applications, and on Windows, it will prevent the use of applications that use
graphics chips (GPUs)

(A reboot may be required.)

V] Allow all users on this computer to control BOINC

InstaliShield

[ <Bak |[ mext> || cancel

Figure A.4.4: BOINC Client Deployment Step 4

3%} BOINC - InstaliShield Wizard

Customize installation options
Customize how BOINC is installed on your computer

Program directory:
C:\UsersYbrahim\Program Files 63\80INC\

Data directory:
C:\Users ybrahim\CommonAppData\BOINC\

[ Use BOINC Screensaver

[¥] Service Instal
Run project applications under an unprivileged account. This provides increased protection
from faulty applications, and on Windows, it will prevent the use of applications that use
graphics chips (GPUs)
(A reboot may be required.)

[] Allow all users on this computer to control BOINC

InstaliShield

<dsa [

8. Click “Next”

Figure A.4.5: BOINC Client Deployment Step 5

227




1) BOINC - InstaliShield Wizard

Ready to Install the Program
The wizard s ready to begn nstallaton.

Click Install to begin the installation,

If you want to review or change any of your installation settings, dick Back. Cick Cancel to
exit the wizard.,

Figure A.4.6: BOINC Client Deployment Step 6

~
~

/.~ Installation
I
' in progress

%) BOINC - InstaliShield Wizard

Installing BOINC
The program features you selected are being installed.

& Please wait while the InstalShield Wizard installs BOINC. This may take
several minutes.
Status:

————————

Figure A.4.7: BOINC Client Deployment Step 7

228



5 BOINC - InstaliShield Wizard

InstaliShield Wizard Completed

The InstalShield Wizard has successfully installed BOINC. Click
Finish to exit the wizard.

IO TS e A AT S e S

10. Click “Finish”

Figure A.4.8: BOINC Client Deployment Step 8

e Note:

In step 4 which is shown in Figure A.4.4 we chose to install BOINC client

as service by checking the Service Install checkbox. In addition, we disabled screen

saver option and prevented other users (usually students) from controlling BOINC

client software.

A.4.2 Linux

You can install BOINC on a Linux computer in any of three ways [6]:

= Use the package management system of your Linux distribution;

= Use the "Berkeley installer" provided by BOINC (a self-extracting archive, not

distro-specific);

= Build directly from source code.

229



e Installing BOINC as a package [6]

Some Linux distributions (Fedora, Ubuntu, Debian, Gentoo, possibly others)
have BOINC packages that you can install using your distro's package manager.

Compared to using the Berkeley Installer, this has several advantages [6]:

= The resulting BOINC installation runs applications under an unprivileged
account, and is therefore more secure.

= The BOINC binaries are dynamically linked; therefore they require less
memory than the binaries in the Berkeley Installer.

= The package manager checks for dependencies and installs any additional
libraries required to run BOINC on your Linux distro.

= BOINC is installed as a daemon (BOINC runs automatically at boot time
even if no user is logged in).

= BOINC updates can be automated if your Linux distro has automated

package update capability (most popular distros do)

e Installing BOINC On Ubuntu[57]

Ubuntu is a popular distribution of the GNU/Linux operating system. We used
Ubuntu as an example of Linux distributions to deploy BOINC client as a

package:

= Basic Installation
You can easily install the BOINC client software on Ubuntu Linux
to run as a daemon, which autostarts the BOINC client at boot time,
and to put a BOINC Manager icon on the applications menu. Simply
open a Terminal window (via the menu Applications -> Accessories ->
Terminal) to get a command line (aka "shell") and give the following

command:

sudo aptitude install boinc-client boinc-manager

230



= Non-graphics Installation
If you have a "headless™ computer with no graphics then you do not
want or need the BOINC Manager. In this case just install the client by
itself, with the command

sudo aptitude install boinc-client

A.4.3 Other Platforms

BOINC client is also set to work with other platforms and operation systems other
than Microsoft Windows and Linux. Examples of supported platforms are: Mac OS
X, FreeBSD and OpenBSD. The process of installing BOINC client on these

platforms and other can be found in reference [56].
A.4.4 BOINC Client Security

To make the communication between the boinc core client and a remote computer
secure, two files are added to BOINC data directory (where BOINC's data files will
be stored). These files are:

1. gui_rpc_auth.cfg file
This file contains the BOINC client password. Any remote computer
wants to communicate with BOINC core client must provide this password in
its communication commands.

2. remote_hosts.cfg file

This file contains the IPs or DNS names of remote hosts that are allowed to
communicate with BOINC core client if they provide the correct password stored
in gui_rpc_auth.cfg file. Any other host will be prevented from communicating
with BOINC core client.

In our case, we used this mechanism to protect our machines and to secure
the communication between the client and the server. We added a unified
password inside gui_rpc_auth.cfg on all of our clients (computers). In addition,

231



we added only the server IP to remote_hosts.cfg file so only the server can

communicate with BOINC core clients remotely and any other remote

communication is prevented.

Boinc data directory[58]

The files: gui_rpc_auth.cfg and remote_hosts.cfg need to be placed in the

BOINC data directory.

Windows XP/2000

On Windows XP/2000 the BOINC data directory is by default

C:\Documents and Settings\All Users\Application Data\BOINC

This is a hidden directory so if you can't navigate to it via Windows
Explorer Folder view, just paste the whole path name, "C:\Documents and
Settings\All Users\Application Data\BOINC" into the Windows Explorer
address line and it'll jump you there.

Windows Vista/7/8/8.1

On Windows Vista/7/8/8.1 the BOINC data directory is by default

C:\Programdata\BOINC

This is a hidden directory so if you can't navigate to it via Windows
Explorer Folder view, just paste the whole path
name, "C:\Programdata\BOINC", into the Windows Explorer address line and

it will jJump you there.
Linux

If you installed the boinc-client package from a package manager

in Debian or Ubuntu, client data is stored in /var/lib/boinc-client

Mac OS X

On a Mac, the client data is in: /Library/Application Support/BOINC Data

232



http://boinc.berkeley.edu/wiki/Installing_BOINC_on_Debian
http://boinc.berkeley.edu/wiki/Installing_BOINC_on_Ubuntu

= All platforms

If you are in any doubt, to find the BOINC data directory, go to the client message
log. Near the top of the start-up section there will be a line similar to these examples:

11/02/2010 9:04:24 AM Data directory: C:\Documents and Settings\All

Users\Application Data\BOINC
26-Apr-2010 13:08:53 [---] Data directory: /var/lib/boinc-client

233




Appendix B

Project Creation

This appendix describes what the BOINC project is, shows the pre-
requirements of the project creation, then it clarifies the project creation process.
Finally, it includes a description for installing phpMyAdmin on Ubuntul2.04LTS

with solutions for some problems that may arise.
B.1 BOINC Project

BOINC project is built over BOINC middleware. It is used to do distributed
computing and/or storage by making the use of the available computing

resources. Each project has its own applications, database, web site, and servers.
BOINC project consists of:

e A MySQL database.
e Adirectory structure.

e A configuration file, which specifies options, daemons, and periodic tasks.

B.1.1 Project DB
Information is stored in a MySQL database. It has the following main tables [59]:

- Platform: A platform is a compilation target (combination of CPU architecture
and an operating system). BOINC defines a set of standard platforms.

- App (Applications): An application includes several programs (for different
platforms) and a set of work units and results. A project can include multiple

applications.

- App_version (application versions): An application program may go through a
sequence of versions. A particular version compiled for a particular platform is

called an application version.

234



- User: Describes users, including their email address, name, password, and

authenticator.
- Host: Describes hosts.

- Workunit: A workunit is a computation to be performed (Job). It may include
any number of input files. It has various attributes, such as resource

requirements and deadline.

- Result: A result describes an instance of a computation, either not started, in
progress, or completed. Each result is associated with a workunit. In some

cases there may be several instances of a given workunit.

- Account: Each volunteer in a project has an account, identified by an email
address and password. An account has an associated amount of credit; a
numerical measure of the work done by that volunteer's computers. In our
case, volunteers are disabled; all hosts (computing resources) are following to

the university. So, all computing resources will follow to the same account.

B.1.2 Project Directory

The directory structure for a typical BOINC project looks like shown below [60]:

PROJECT/
apps/
bin/
cgi-bin/
log_ HOSTNAME/
pid HOSTNAME/
download/
html/
inc/
ops/
project/

235



stats/

user/

user_profile/
keys/

upload/

Where: PROJECT is the name of the project.

Main folders at the project directory are:

apps: application and core client executables.

- bin: server daemons and programs.

- download: storage for data server downloads.

- upload: storage for data server uploads.

- html: PHP files for public and private web interfaces.
B.1.3 Project configuration file

Project configuration is described by a config.xml file exist within the project

directory.

The config.xml file has the format[61]:

<boinc>
<config>
[ configuration options ]
</config>
<daemons>
[ list of daemons ]
</daemons>
<tasks>
[ list of periodic tasks ]

236



</tasks>

</boinc>

More details about BOINC project can be found at reference [62].

B.2 Project creation pre-requirements

As we know that each project has its own DB. To create and manage the DB we
need a MySQL user. This MySQL user must be granted the right privileges that
enable him creating and managing DB. This user also must be created before going to
the project creation process, since the project DB will be under the control of this user

account. In our case we will give this user the name 'boincadm’.
Creating DB user is done by:

1- going to mysqgl through the terminal using the command:
e Mysgl —u root —p
2- Creating the user named 'boincadm' by running the mysqgl terminal command:

e CREATE USER 'hoincadm'@'localhost' IDENTIFIED BY
'Boincadm?2014";

3- Granting privileges to boincadm:

e GRANT ALL PRIVILEGES ON * . * TO 'boincadm'@'localhost'
IDENTIFIED BY ' Boincadm2014' WITH GRANT OPTION ;

e Where ' Boincadm2014' is the password for boincadm.

B.3. Project Creation Process

This section talks about creating a BOINC project. Firstly, it describes
creating empty project (project doesn't have any application). Secondly, it describes

creating BOINC project having the test application example.

237



B.3.1 Creating an Empty BOINC Project

We need to set some parameters to be used during the project creation process. These

parameters are:

PPUTest: The name of the project.

boincadm: the name of DB user; the owner of project DB. Also it is the
name of the system user; the owner of the project directory.

Boincadm2014: the password for boincadm DB user and the password for
the system user.

195.3.191.24: is the IP address of the server.

Project creation process:

Project creation goes into the following steps:

1. Creating project directory and DB, setting the default configurations and

deleting any previous project having the same name. This is done by executing

the commands:

cd boinc/tools

sudo ./make_project --url_base http://195.3.191.24 --db_name PPUTest --
db_user boincadm --delete_prev_inst --drop_db_first --db_passwd
Boincadm?2014 --project_root home/boincadm/projects/PPUTest --srcdir
home/boincadm/boinc/ PPUTest "PPU Test"

2. Some specific files in the project directory need custom setting to their

permissions to allow the project works well. These permissions are set by

executing the commands:

cd home/boincadm/projects/PPUTest
sudo -S chown boincadm:boincadm -R . <<<Boincadm2014
sudo chmod g+w -R .
sudo chmod 02770 -R upload

sudo chmod 02770 -R html/cache

238



e  sudo chmod 02770 -R html/inc

e sudo chmod 02770 -R html/languages

e sudo chmod 02770 -R html/languages/compiled
e sudo chmod 02770 -R html/user_profile

e sudo chgrp -R www-data log_ubuntu upload

e sudochmod o+x html/inc

e  sudo chmod -R o+r html/inc

e sudochmod o+x html/languages/

e sudochmod o+x html/languages/compiled

More information about setting permissions can be found at reference [63].

3. Appending the project http.conf file to the apache server http.conf file to allow
browsing the project web site:

Open the file home/boincadm/projects/PPUTest/html/http.conf.
e Copy its content.
e  Open the file /etc/apache2/http.conf.

e Paste that content there and save changes. Note that you need to open

the file as administrator to be able to save changes.
e Restart apache server to make the changes take effect.

= You can use the command: sudo service apache?2 restart

After doing these three steps, we can open the link 195.3.191.24/PPUTest/ to see the

project home page as shown in figure B.1.

239


http://195.3.191.24/PPUTest/

|| REPLACE WITH PROJECT %

L o € [ 195.3.191.24/PPUTest

REPLACE WITH PROJECT NAME
log in

About REPLACE WITH PROJECT

NAME i

i . No news forum. Run html/ops/create_forums. php.
XXX is a research project that uses Intemet-

connected computers to do research in XXX, You
can participate by downloading and running a free
program on your computer.

XXX is based at [describe your institution. with link
to web page]

+ [Link to page describing your research in
detail]

+ [Link to page listing project personnel, and an
email address]

Join REPLACE WITH PROJECT
NAME

« Read our rules and policies

+ This project uses BOINC. If you're already
running BOINC, select Add Project. If not,
download BOINC.

* When nromnted. enter

Figure B.1 Project home page.

4. Setting the project name to appear in project url:

e Open the file
home/boincadm/projects/PPUTest/html/project/project.inc

e Change the statements "REPLACE WITH PROJECT NAME" with

"PPUTest" and save changes.

Before the changes the home page looks like shown in figure B.2:

240



|| REPLACE WITH PROJECT

& @ [[195.3.191.24/PPUTest
REPLACE WITH PROJECT NAME «

About REPLACE WITH PROJECT
NAME

News

. . Mo news forum. Run html/ops/create_forums.php.
XXX is a research project that uses Internet-

connected computers to do research in XXX. You
can participate by downloading and running a free
Program on your computer.

XXX is based at [describe your institution, with link
to web page]

+ [Link to page describing your research in
detail]

+ [Link to page listing project personnel, and an
email address]

Join REPLACE WITH PROJECT
NAME

Read our rules and policies

This project uses BOINC. If you're already
running BOINC, select Add Project. If not,
download BOINC.

s When nromnted. enter

Figure B.2: Adding project name 1.

After the changes you can see the difference as shown in figure B.3 below:

[ PPUTest

& =» @ |[) 195.3.191.24/PPUTest

PPUTest

About PPUTest
News

XXX is a research project that uses Internet-

connected computers to do research in XXX. You Mo news forum. Run html/ops/create_forums.php.
can participate by downloading and running a free

program on your computer.

XXX is based at [describe your institution, with link to
web page]

= [Link to page describing your research in
detalil]

+ [Link to page listing project personnel, and an
email address]

Join PPUTest

Read our rules and policies

This project uses BOINC. If you're already
running BOINC, select Add Project. If not,
download BOINC.

When prompted, enter

Figure B.3: Adding project name 2.

241

leg in

log in




5. Setting the copy right holder in project URL.:

e Open the file
home/boincadm/projects/PPUTest/html/project/project.inc

e Change the statement "REPLACE WITH COPYRIGHT
HOLDER" with "PPU Grid Team: Ibrahim Qdemat and
Muhammad Dwaib™ and save changes.

Before these changes, the page will be as shown in figure B.4.

. If )Eou're running a command-line version of
BOINC, create an account first.
+ If you have any problems, get help here.

Returning participants

« Your account - view stats, modify
preferences
Server status
Teams - create or join a team
Certificate
Applications

Community

Profiles

User search

Message boards
Questions and Answers
Statistics

Languages

e

.
.
[
.
L]
.

Copyright © 2014 REPLACE WITH COPYRIGHT HOLDER

Figure B.4: Adding copy rights 1.

242



After the changes are done, you can see the difference as shown in figure B.5

+ |f you're running a command-line version of
BOINC, create an account first.
+ |If you have any problems, get help here.

Returning participants

* Your account - view stats, modify preferences
+ Server status

« Teams - create or join a team

+ Certificate

+ Applications

Community

« Profiles

* User search

+ Message boards

+ Questions and Answers
+ Statistics

+ Languages

WERED BY |

55finc

J

Copyright © 2014 PPU Grid Team: Ibrahim Qdemat and Muhammad Dwaib

Figure B.5: Adding copy rights 2.

6. Setting password for project administrative webpage.
This can be done by executing the commands:
e cd home/boincadm/projects/PPUTest/html/ops/
e htpasswd -b -c .htpasswd boincadm Boincadm2014

e Where: boincadm is the admin username and Boincadm2014 is the

admin password.

Before doing this step you will not be able to open the project administrative
page 195.3.191.24/PPUTest_ops/ . It will ask you for a login username and password

but they are not set yet. So, the administrative page will just show a massage as in the

figure B.7.

243


http://195.3.191.24/PPUTest_ops/

PPUTest

& @ | [ 195.3.191.24/PPUTe

v =

log in

PPUTest

About PPUTest
News

XXX is a research project that uses Internet-

connected computers to do research in XXX. You -.. more
can participate by downloading and running a free

program on your computer.

e

XXX is based at [describe your institul - The server http://195.3.191.24:80 requires a
web page] username and password. The server says: PPUTest.

+ [Link to page describing your re .
detail] User Name: [| ]

« [Link to page listing project pers
email address] Password:

Join PPUTest

Cancel | Login|

Read our rules and policies

This project uses BOINC. If you're already
running BOINC, select Add Project. If not,
download BOINC.

When prompted, enter
http://10.10.16.12/PPUTest/

If you're running a command-line version of

Figure B.6: Setting admin. Account 1.

| ] 500 Internal Server Error  x

= & | [} 195.3.191.24/PPUTest_ops/

Internal Server Error

The server encountered an internal error or misconfiguration and was unable to complete
your request.

Please contact the server administrator, webmaster@localhost and inform them of the time
the error occurred, and anything you might have done that may have caused the error.

More information about this error may be available in the server error log.

Figure B.7: Invalid login to admin page.

244



After setting the administrator username and password, you can point the
browser to 195.3.191.24/PPUTest_ops/. Enter the username ‘boincadm’ and the

password 'Boincadm2014', then you will see the administrative page shown in figure
B.9.

PPUTest

- @ [ 195.3.191.24/PPL <7 =
PPUTest
log in

About PPUTest

News
XXX is a research project that uses Internet-
connected computers to do research in XXX, You ==« More
can participate by downloading and running a free
program on your computer. —

XXX Is based at [describe your institul - The server http://195.3.191.24:80 requires a

web page] username and password. The server says: PPUTest.
s [Link describi .
‘[j;;”]to page describing YOUr'® yyser Name: | boincadm
» [Link to page listing project pers
email address] Password: | ssesssssssss
Join PPUTest Cancel | LogIn

Read our rules and policies

This project uses BOINC. If you're already
running BOINC, select Add Project. If not,
download BOINC.

‘When prompted, enter
http:/110.10.16.12/PPUTest/

If you're running a command-line version of

Figure B.8: Setting admin Account 2.

|7 Project Management

Project Management

log in

+ There are 0 remaining candidates for User of the Day.

Browse database: Computing User management
» Results » Manage applications » Screen user profiles
» Workunits » Manage application versions » Badges
+ Hosts + Manage jobs + User privileges
+ Users (recently registered) <+ Cancel jobs + User job submission privileges
+ Teams o Transition jobs + Send mass emalil to a selected set of users
« Applications (this can ‘unstick’ old jobs) -
+ Application versions < Re-validate jobs *  Manage user| ID:
» Platforms » FLOP count statistics
» DB row counts and disk » Stripcharts
usage + Show/Grep logs

.

Tail MySQL logs « | Clear RPC seqno | host ID:

Show deprecated applications
Periodic tasks
The following scripts should be run as periodic tasks. not via this web page (see http://boinc.berkeley edu/trac/wiki/ProjectTasks):

update forum_activities.php, update profile_ pages.php, update uotd.php

Figure B.9: Administrative page.

245


http://195.3.191.24/PPUTest_ops/

7. By default the example application provided by BOINC will be added to the

project, so you need to remove this application as follow:
e Open the file home/boincadm/projects/PPUTest/project.xml.

e Remove the lines that define example application from this file and

save changes. Those lines are:
u <app>
= <pame>example_app</name>

= <user_friendly_name>Example

Application</user_friendly_name>
= </app>

8. Starting PPUTest project daemons is done by executing:
e cd home/boincadm/projects/PPUTest
e /bin/start

Before doing this step, the project status page
http://195.3.19.124/PPUTest/server_status.php will look like shown in figure B.10

| | Project status

= & | [7 195.3.191.24

Project status

log in
6 May 2014, 19:25:44 UTC
Server status Computing status
Program Host Status
Work # Users #
data-driven web ubuntu Running
pages Tasks ready to send o with recent credit o
upload/download  ubuntu Disabled Tasks in progress o with credit o
senver Workunits waiting for validation 0 registered in past 24 hours 0
scheduler ubuntu Running Wogkunits waiting for assimilation 0 Computers #
feeder ubuntu _ iting for file deletion 0 with recent credit 0
transitioner ubuntu _ for file deletion 0 with credit 0
file_deleter ubuntu _ sitioner backlog (hours) 0 registered in past 24 hours 0
Running: Program is operating current GigaFLOPs o
normally
Not Running: Program failed or the project
is down Tasks by application
Disabled: Program is disabled application unsent in avg runtime of last 100 users in
— Y et 2R

Figure B.10: Project status 1.

246


http://195.3.19.124/PPUTest/server_status.php

After starting daemons the project status page will appear as shown below:

|| Project status

= & |[4195.3.191.24

Project status

log in
6 May 2014, 19:53:58 UTC
Server status Computing status
Program Host Status
Work # Users #
data-drivenweb  ubuntu Running
pages Tasks ready to send 0 with recent credit 0
upload/downioad  ubuntu Disabled Tasks in progress 0 with credit 0
server Workunits waiting for validation 0 registered in past 24 hours 0
scheduler ubuntu Running Waor'-units waiting for assimilation 0 Computers #
feeder ubuntu Running 1g for file deletion 0 with recent credit 0
transitioner ubuntu T i file deletion 0 with credit 0
file_deleter ubuntu Running 11 sitioner backlog (hours) 1] registered in past 24 hours 0
Running: Program is operating curment GigaFLOPs 0
normally
Not Running: Program failed or the project
is down Tasks by application
Ricahlad: Drnaram ic dicahlad annliratinn uneant in aun runtima nf last 100 nears in

Figure B.11: Project status 2.

If the path of pid file of upload/download server is not determined in project's
config.xml as following: <uldl_pid>path</uldl_pid>, then the default which is
[etc/httpd/run/httpd.pid  will be used. In our case: the pid file of
upload/download server is /var/run/apache2.pid. To resolve this problem do

the following:
= Open the file home/boincadm/projects/PPUTest/config.xml

= Copy the line "<uldl_pid>/var/run/apache2.pid</uldl_pid>"

and paste it within the "<config>...</config>" tag

= Save changes to enable upload/download.

247



Before:

|| Project status

- € |[4 195.3.191.24/PP

Project status

log in

6 May 2014, 19:53:58 UTC

Server status Computing status
Program Host Status Work # Users #
data-driven web ubuntu Running R .
pages Tasks ready to send 0 with recent credit 0
upload/download  ubuntu Disabled Tasks in progress 0 with credit 0
server .Warkunits waiting for validation 0 registered in past 24 hours 0
scheduler ubuntu Running Workunits waiting for assimilation 0 Computers #
feeder ubuntu Running Workunits waiting for file deletion 0 with recent credit 0
transitioner ubuntu Running Tasks waiting for file deletion 0 with credit 0
file_deleter ubuntu Running Transitioner backlog (hours) 0 registered in past 24 hours 0
Running: Program is operating current GigaFLOPs o
normally
Not Running: Program failed or the project o o

| Figure B.12: Project status 3. |

After:

|7 Project status x

- € | [3 195.3.191.24/PPUTest/server_status.phg

Project status

log in

6 May 2014, 20:02:44 UTC

Server status Computing status

Program Host Status Work 4 Usars 4

data-drivenweb  ubuntu Running
pages Tasks ready to send 0 with recent credit 0
upload/download ~ ubuntu Running Tasks in progress 0 with credit 0
Server Workunits waiting for validation 0 registered in past 24 hours 0
scheduler ubuntu Running Workunits waiting for assimilation 0 Computers #
feeder ubuntu Running Workunits waiting for file deletion 0 with recent credit 0
transitiener ubuntu Running Tasks waiting for file deletion 0 with credit 0
file_deleter ubuntu Running Transitioner backlog (hours) 0 registered in past 24 hours 0
Running: Program is operating current GigaFLOPs 0

normally

Not Running: Program failed or the project
is down Tasks by application

| Figure B.13: Project status 4. |

248



10. Solving “ the antique file deleter is not working” problem:

This problem can be found at the antique_file_deleter.out log file which has
the path ‘/home/boincadm/projects/log_ubuntu/test/antique_file_deleter.out'.

The problem appears as follows:

2014-03-26 11:45:02.7498 Starting

2014-03-26 11:45:02.7545 [CRITICAL] Couldn't find http_user "apache" in passwd
2014-03-26 11:45:02.7545 [CRITICAL] delete_antiques() returned with error -1
2014-03-26 11:45:02.7545 Done

File deleter problem is caused by the BOINC default configurations set the
user of the web-server to be ‘apache’ but in Ubuntu the default web-server user

IS 'www-data'.
In order to solve this problem, do the following:
e Open the file home/boincadm/projects/PPUTest/config.xml

e Add the line <httpd_user>www-data</httpd_user> within the
<config></config> tag and save changes.

11. Enabling the project forum:

e Open the file
home/boincadm/projects/PPUTest/html/ops/create_forums.php

e Delete the line starting with “die();”
e Run create_forums.php. You can do that by execute the commands:
= cd home/boincadm/projects/PPUTest /html/ops/

= php5 create_forums.php

249



Before:

[ ] PPUTest
& =» € |[195.3.191.24/PPUTest/

PPUTest

log in

About PPUTest
News

XXX is a research project that uses Intemet-

connected computers to do research in XXX. You No news forum. Run html/ops/create_forums.php.
can participate by downloading and running a free

program on your computer.

XXX is based at [describe your institution, with link to
web page]
+ [Link to page describing your research in
detail]

« [Link to page listing project personnel, and an
email address]

Join PPUTest

+ Read our rules and policies
* This project uses BOINC. If you're already

| Figure B.14: Project forum 1. |

After:

| 7] PPUTest
L o & | [1 195.3.191.24/PPUTest/

DY
m

PPUTest

log in

About PPUTest
News

XXX is a research project that uses Internet-

connected computers to do research in XXX. You ... more
can participate by downloading and running a free

program on your computer.

News is avaiable as an RSS feed
XXX is based at [describe your institution, with link to
web page]

+ [Link to page describing your research in
detail]

+ [Link to page listing project personnel, and an
email address]

Join PPUTest

+ Read our rules and policies
+ This project uses BOINC. If you're already
running BOINC, select Add Project. If not,

| Figure B.15: Project forum 2. |

250



Now the project is running and ready for adding applications. As it can be
inferred from the previous steps, the process of creating BOINC project is not an easy
task. In addition to the long steps must be followed, there are a lot of problems and
bugs that need to be handled and solved. In order to simplify this process, we created
a shell script named creatProject.sh. This script is responsible for performing all the
steps of creating BOINC project and solving the problems that appear during the
project creation process.

B.3.2 Creating a project with a test application example

Test application example is an example single-thread native BOINC
application [38]. It is used to perform tests for environments that use the BOINC as a
middleware. This application has application versions that run on computers with
different well known platforms. The example application reads an input file, converts

the file to upper case and writes it to output file.

To create a BOINC project running the test application example you can follow
the same scenario with creating empty BOINC project with some changes stated

below:

1. Replace the second command at step 1 to include the example application at
the project creation. The command will be as follow:

sudo ./make_project --url_base http://195.3.191.24/ --test_app PPUTest --
db_name PPUTest --db_user boincadm --delete_prev_inst --drop_db_first --
db_passwd Boincadm2014 --project_root home/boincadm/projects/PPUTest --
srcdir home/boincadm/boinc/ PPUTest "PPU Test"

2. Follow the same steps until arriving to step 7. Now you need to replace this
step with the following one:

Preparing the application example for running by executing the commands:
e cd home/boincadm/project/PPUTest/
e crontab PPUTest.cronjob
= Make the tasks running periodically.
e ./bin/xadd

251



= Adds the application example.
e /bin/update_versions
= Adds the application versions.
= You need to answer yes to all questions.
Follow all remaining steps without changes.

You can see the difference between the empty project and this one directly at
the page http://195.3.191.24/PPUTest/server_status.php. Additional three

daemons were added. See figure below:

| Project status

@ | [1195.3.191.24

Project status

log in
8 May 2014, 20:37:35 UTC
Server status Computing status
Program Host Status
Work # Users #
data-driven web pages ubuntu Running ) )
Tasks ready to send 10 with recent credit 0
upload/download server  ubuntu Running . X .
Tasks in progress 0 with credit 0
scheduler ubuntu Running ) - o ) )
Workunits waiting for validation 0 registered in past 24 hours 1
feeder ubuntu Running . " N
Warkunits waiting for assimilation 0 Computers #
transitioner ubuntu Running . . X . . i
Workunits waiting for file deletion 0 with recent credit 0
file_deleter ubunty Running - ] ) ) )
- Tasks waiting for file deletion 0 with credit 0
sample_work_generator  ubuntu Running » ) )
Transitioner backlog (hours) 0 registered in past 24 hours 0
sample_bitwise_validator ubuntu Running )
- - current GigaFLOPs 0
sample_assimilator ubuntu Running
murnanyg. Coyidin IS operating
normally Tasks by application
ina: i lication unsent in avg runtime of last 100 users in
Not Running: Program failed or the app
project is down progress results in h (min-max) last 24h
Disabled: Program is disabled Example 10 0 0.00 (0.00 - 0.00) 0
Annlication

Figure B.16: Test example application project status.

Since it is not an easy task to go through all of the previous steps to
create a test application project; we created another shell script named
createTestProject.sh. This script creates the test application project taking in

consideration all of previous steps.

252


http://195.3.191.24/PPUTest/server_status.php

The createTestProject.sh script was built to work on Ubuntu Linux
distribution by making use of a similar script that was made for Debian Linux
distribution. The similar script is called boinc_project_maker and can be found

at reference [64].

B.4 phpMyAdmin Installation

phpMyAdmin provides a GUI interfaces for MySQL databases. You can use
it to simplify monitoring and controlling MySQL databases and reduce the need for
writing SQL queries as a terminal commands.

To get phpMyAdmin running on Ubuntu follow the steps below:
1. Install the phpMyAdmin:
e sudo apt-get install phpMyAdmin

2. Include the phpMyAdmin configurations by appending the file
[etc/apache2/apache2.conf with the following line:

e Include /etc/phpmyadmin/apache.conf

Once previous steps are done, a user can point his browser to
195.3.191.24/phpmyadmin (in our case) to start using phpMyAdmin. A user should
be able to login using the account created in MySQL (see section B.2). phpMyAdmin
login page is shown below in Figure B.17.

i = | S| e S—

Aiea PhpMyAdmin W

L C | [ 195.3.191.24/phpmyadminy/ e =

php
Welcome to phpMyAdmin

Language

English v

Log in

Username: "
boincadm

Password:

Go

Figure B.17: phpMyAdmin login

253



Some problems may arise after installing phpMyAdmin, some of them are discussed

below:

1. Getting a 404 "Not Found" error when pointing the browser to the location of

phpMyAdmin. The issue is likely caused by either:

e Not checking the 'Apache 2' selection during installation. To handle

this problem run the following commands:
a. sudo dpkg-reconfigure -plow phpMyAdmin
b. Then select Apache 2 for the webserver you wish to configure.

e Or if this does not work, then you can do the following to include the
phpMyAdmin-shipped Apache configuration into Apache:

a. sudo In -S letc/phpmyadmin/apache.conf
/etc/apache2/conf.d/phpmyadmin.conf

b. sudo /etc/init.d/apache?2 reload

2. Sometimes at the development stage, one may set the root user without a
password, this may cause another problem. This problem appears when you

attempt to login to the root user:
“Login without a password is forbidden by configuration”.

The solution of this problem is done by uncommenting or adding the

following line (if it is not exist) to the file /etc/phpmyadmin/config.inc.php:
o $cfg['Servers][$i]['AllowNoPassword'] = TRUE;

Note that you need to open this file as administrator to be able to save changes.
Also you have to make sure to retrieve these configurations and setting a

password for root user before deploying the system.

254



Appendix C
Security

In this appendix, we show the technical details of enabling different security
mechanisms supported by BOINC. In addition, we show our technical security

measures to make our grid system project secure.

C.1 Introduction

BOINC was originally designed for volunteer computing. Volunteer computing
has a lot of security issues that need to be handled properly to ensure security.
Because of this, BOINC provides security mechanisms that address the major issues,

making volunteer computing safe.

Although it was originally designed for volunteer computing, BOINC works
very well for grid computing. So as we build our grid system using BOINC
middleware, we can make use of its rich security mechanisms to make our grid

system more safe and secure.

If we do not use these mechanisms correctly, our projects will be vulnerable to a
variety of attacks. In the worst case, these projects could be used as a vector to

distribute malicious software to large numbers of computers.

In our grid system, the computing resources are under our control so they can be
trusted. In other words, we can assume that the PCs do not return results that are

intentionally wrong. Hence there is typically no need for replication.

We deal with the security issues from different sides, securing the server and the

clients’ machines, authentication between the client and the server and securing the

255


http://boinc.berkeley.edu/trac/wiki/SecurityIssues

software components. If we deal with all of these security issues properly, we end up

with a secure system as a whole.

C.2 Protecting Administrative web interface

Each BOINC project has an administrative web interface. If project's URL is for
example http://a.b.c.d/test, then the URL of the admin web interface is
http://a.b.c.d/test ops. The directory containing the admin  pages
Is ~/projects/test/html/ops/. Because the admin interface lets you do things like see
user email addresses, it's extremely important that it be secure. There are two levels
of protection [40]:

C.2 .1 Protection by .htaccess

The “.htaccess” file is a configuration file for use on web servers running the
Apache Web Server software. The original purpose of .htaccess file was to allow
per-directory access control, by for example requiring a password to access the

content.

When a project is created, a file html/ops/.htaccess is created that disallows
access to the admin web interface. You can use htpasswd to create a .htpasswd file

containing credentials for yourself:

htpasswd -c .htpasswd username

The previous line code creates a hidden password file named ““.htpasswd” for user
“username” and print the user to enter the password. The password is hashed and
stored in “.htpasswd” file. When you want to visit the administrative webpage, you

must enter the username and the password entered in the previous step.

256


​http:/a.b.c.d/test
​http:/a.b.c.d/test_ops
​http:/a.b.c.d/test_ops
​http:/a.b.c.d/test_ops

The following chunk of code is an example of setting the administrative

webpage password in our grid system,

#setting password for project administrative webpage
installroot=/home/ibrahim/projects
fileprojectname=PPU Project

#Project administrative webpage password
adminWebPagePasswd=boincadm

#name of database user (project admin)
dbuser=boincadm

cd "$installroot"/"S$fileprojectname"/html/ops/

htpasswd -b -c .htpasswd $dbuser $adminWebPagePasswd

C.2 .2 Project-defined protection policy

The config file html/project/project.inc can specify a function auth_ops() that
defines a project-specific policy for protecting the admin interface. Possible

policies:

e Access only if logged in as user from a given list.

e Access only to users with ADMIN or DEV flag set in
forum_preferences.privileges.

e Access only from specific IP addresses.

« Any other policy you can think of.

Some examples are given in the function auth_ops_example() in the default

config file.

257



C.3 Other Techniques
In addition to previous security measures, there are other techniques that can
be used to ensure more security. Code signing and secure socket layer two examples

of such techniques.

C.3.1 Code Signing

The Code Signing technique ensures the integrity of the code
downloaded from the Internet. It enables the platform to verify that the code
has not been modified since it was signed by its creator. Code Signing cannot
reveal what the code can do or guarantee that the code is in fact safe to run
[41].

BOINC uses digital signatures to allow the core client to authenticate
executable files. It is important that we use a proper code-signing procedure
for publicly-accessible projects. If we don't, and our server is broken into,
hackers will be able to use our BOINC project to distribute malware. This
could result in the end of the project, and will negatively impact all BOINC
projects.

BOINC advises to follow a given procedure to properly use code signing
and provides some file signing utilities. We explain the BOINC advisable
code singing procedure in addition to technical details of code singing
utilities in appendix C.

BOINC uses digital signatures to allow the core client to authenticate
executable files. It is important that we use a proper code-signing procedure
for publicly-accessible projects. If we don't, and our server is broken into,
hackers will be able to use our BOINC project to distribute malware. This

could result in the end of our project, and will negatively impact all BOINC

258



projects. BOINC advises to follow the following procedure to properly use
code signing [65]:

e Choose a computer (an old, slow one is fine) to act as your "code
signing machine”. After being set up, this computer must remain
physically secure and disconnected from the network (i.e. keep it in
a locked room and put duct tape over its Ethernet port). You'll need
a mechanism for moving files to and from the code-signing

machine, such as a USB memory stick.

e Install crypt_prog(see appendix D) on the code signing machine (it's
easiest if the machine runs Linux or Mac OS X; Windows can be
used but requires Visual Studio 2005).

e Run crypt_prog -genkey to create a code-signing key pair. Copy the
public key to your server. Keep the private key on the code-signing
machine, make a permanent, secure copy of the key pair (e.g. on a
CD-ROM that you keep locked up), and delete all other copies of
the private key.

e To sign an executable file, move it to the code-signing machine,
run crypt_prog -sign to produce the signature file, then move the

signature file to your server.

e Use update_versions to install your application, including its

signature files, in the download directory and database.

259


http://boinc.berkeley.edu/trac/wiki/KeySetup
http://boinc.berkeley.edu/trac/wiki/AppVersionNew

e File signing utilities [66]
Use sign_executable to sign executable files:

sign executable file to sign private key file >

signature file

sign_executable is compiled in the lib/ directory, and installed in your
project's bin/ directory. It writes the signature to stdout.

e Creating encryption keys [66]
The program lib/crypt_prog performs various encryption tasks.

crypt_prog -genkey nbits private_keyfile public_keyfile
Create a key pair with nbits bits (always use 1024). Write the keys
in encoded ASCII form to the indicated files.

The following commands generate the file upload and code signing
key pairs. BOINC_KEY_DIR is the directory where the keys will be
stored. The code signing private key should be stored only on a highly
secure (e.g., a disconnected, physically secure) host.

crypt_prog -genkey 1024 BOINC_KEY _DIR/upload_private
BOINC_KEY_DIR/upload_public

crypt_prog -genkey 1024 BOINC_KEY_DIR/code_sign_private
BOINC_KEY_DIR/code_sign_public

Other functions of crypt_prog:

crypt_prog -sign file private_keyfile
Create a digital signature for the given file (same as

sign_executable).

260



crypt_prog -sign_string string private_keyfile
Create a digital signature for the given string, write it to stdout.
crypt_prog -verify file signature_file public_keyfile
Verify a signature for the given file.
crypt_prog -test_crypt private_keyfile public_keyfile
Perform an internal test, checking that encryption followed by
decryption works.
crypt_prog -cert_verify file signature_file certificate_dir ca_dir
Verify a certificate-based signature for the given file.
crypt_prog -convsig 02b/b2o input_file output_file
Convert a signature from OpenSSL form to/from BOINC form.
crypt_prog -convkey 02b/b20 priv/pub input_file output_file
Convert a key from OpenSSL form to/from BOINC form.

C.3.2 Secure Socket Layer (SSL)

BOINC supports and encourages enabling SSL on project's web servers. To
use SSL, we will need to buy an SSL certificate. Self-signed certificates can't be
used. To enable SSL will then need to configure BOINC projects and change our

Apache configuration as described below [42]:

e BOINC configuration

For each project, add the following line to html/project/project.inc file:
define("SECURE_URL_BASE", "https://your_url/");

where the URL is that of our HTTPS server (typically our project's master
URL with "https://" at the start).

261



e Apache configuration

Use the Linux "wget" program to test your HTTPS; it uses libcurl, same
as the BOINC client.If you use virtual hosts your Apache config file will

need an entry like the following:

<VirtualHost *:443>

ServerName setiathome.berkeley.edu
DocumentRoot ... path to your /html/user
SSLENgine On

SSL CertificateFile
[etc/pkiltls/certs/setiathome.berkeley.edu.SAN.cert

SSL CertificateKeyFile
[etc/pki/tis/private/setiathome.berkeley.edu.SAN.key

SSL CertificateChainFile /etc/httpd/conf/ssl.crt/in_common.crt

</VirtualHost>

If we do this, and follow the previous instructions, the following

communication will be protected from man-in-the-middle attacks [42]:

e The web RPCs used for account creation, which carry volunteer email
addresses.
e HTTP requests that carry volunteer email addresses and passwords,

such as the login form.

If, in addition, we use HTTPS for our scheduler URLSs, scheduler requests
(which carry account authenticators, which can be used to log in to accounts)

will be encrypted.

262



Appendix D [68]
Boinccmd tool

The BOINC command tool (boinccmd) provides a command-line interface to a
running BOINC client (local or remote). This provides an alternative to the BOINC

Manager, e.g. on systems with no graphics display.

The usage of boinccmd is:

boincecmd [--host hostname] [--passwd passwd] command

If you run boinccmd in the same directory as the BOINC client, you don't need to

supply either a host name or a password.

Otherwise you need to supply (as password) the string stored in the
file gui_rpc_auth.cfg in the client's data directory. If you run boinccmd remotely you also

need to configure the client to accept remote control.

If the client uses a non-default GUI RPC port, you can specify it as hosthame: port.

D.1 Account query and attach

--lookup_account URL email password
Look up account and print account key.
--create_account URL email password name
Create account with the given email address, password, and user name
--project_attach URL account_key
Attach to an account
--join_acct_mgr URL name password

Attach to an account manager (or do RPC if already attached).

263



http://boinc.berkeley.edu/wiki/BOINC_Client
http://boinc.berkeley.edu/wiki/Controlling_BOINC_remotely

--quit_acct_mgr

Detach from the current account manager.

D.2 State queries

--get_cc_status

Show CPU/GPU/network run modes and network connection status (version

6.12+)
--get_state

Show complete client state
--get_tasks

Show tasks
--get_simple_gui_info

Show projects and active tasks
--get_file_transfers

Show file transfers
--get_project_status

Show status of all projects

--get_disk_usage
Show disk usage by project
--get_proxy_settings

Get proxy settings
--get_messages seqno

Show messages with sequence numbers beyond the given segno
--get_host_info

Show host info
--version, -V

Show core client version

264



D.3 Control operations

--task URL task_name operation {--window_station ws} {--desktop dt} {--display dp}
Do operation on a task, identified by the project master URL and the task name.

operations:

= suspend: temporarily stop work on task

= resume: allow work on task

= abort: permanently stop work on task

= graphics_window: open graphics in a window. The
optional desktop/window_station (Windows) or display (X11) arguments specify
the display.

= graphics_fullscreen: open graphics fullscreen

--project URL operation

Do operation on a project, identified by its master URL. Operations:

= reset: delete current work and get more;

= detach: delete current work and don't get more;

= update: contact scheduling server;

= suspend: stop work for project;

= resume: resume work for project;

= nomorework: finish current work but don't get more;
= allowmorework: undo nomorework

= detach_when_done: detach project

--file_transfer URL filename {retry | abort}

Do operation on a file transfer

265



--set_run_mode {always | auto | never} [ duration ]

Set run mode.

= always: do CPU work always
= auto: do work only when allowed by preferences

= never: don't do work

If duration is zero or absent, this mode is permanent. Otherwise, after

‘duration’ seconds elapse, revert to last permanent mode.

--set_gpu_mode {always | auto | never} [ duration ]

Set GPU mode. Like set_run_mode but applies to GPU computation.
--set_network_mode {always | auto | never} [ duration ]

Set network mode. Like set_run_mode but applies to network transfers
--set_proxy_settings http_server_name http_server_port http_user_name
http_user_passwd socks_server_name socks_server_port socks_version
socks5_user_name socks5_user_passwd

Set proxy settings (all fields are mandatory). (exists but doesn't work
before 6.6.12).
--run_benchmarks

Run CPU benchmarks
--set_screensaver_mode on|off blank time {--desktop desktop} {--
window_station window_station} {--display display}

Tell the core client to start or stop doing fullscreen graphics, and going to
black after blank_time seconds. The optional arguments specify which
desktop/windows_station (Windows) or display (X11) to use.
--read_global_prefs_override
Tell the core client to read the [PrefsOverride global prefs_override.xml]
file, and incorporate any global preferences indicated there.
--quit

Tell the core client to quit

266



--read_cc_config
Reread the configuration file (cc_config.xml)
--set_debts URL1 STD1 LTD1 {URL2STD2LTD2...}
Set the short- and long-term debts of one or more projects. Note: if you
adjust the debts of a project, the debts of other projects are changed, so if
you want to set the debts of multiple projects, do it in a single command.
--help, -h

Show options and commands

D.4 Examples

It's not hard to write useful scripts based on boinccmd, as long as you know your

way around Unix tools. Here's one to run 'update’ on all attached projects on your client:

for url in $(boinccmd --get_project_status | sed -n 's/\s*master URL.: //p"); do
boinccmd --project ${url} update;
done

If you have remote RPCs set up on your clients, it's easy to, for example, attach a

project on all 50 machines, by looping over a list of IPs instead of a list of projects:

for num in $(seq 2 50); do

boinccmd --host 192.168.42.${num} --passwd 1234 \

--project_attach http://project_url/ a84dcObec631chf81le25e6e7cd9ca826;
done;

That will connect to the machines 192.168.42.2 - 192.168.42.50 using the RPC
password '1234' and make them attach to http://project_url/ with the specified account
key.

267




Appendix E

Glossary

PC: Personal Computer

UK: United Kingdome

BOINC: Berkeley Open Infrastructure for Network Computing
GFLOPS: Giga Floating Point Operations per second

LAN: Local Area Network

CPU: Central Processing Unit

CRC: Class Responsibility Collaborator.

RAM: Read Access Memory

ROM: Read Only Memory

1/0O: Input/Output

GUI: Graphical User Interface

APIs: Application Programming Interfaces

PPU: Palestine Polytechnic University

IT: Information Technology

NSF: National Science Foundation

PACI: Partnership for Advanced Computational Infrastructure
NIH: National Institute of Health

OS: Operating System

DB: Database

HW: Hardware

SW: Software

RPC: Remote Procedure Call

GUI: Graphical User Interface
IDE: Integrated Development Environment

GFLOPS: Giga Floating-point Operations Per Second

268



References

[1] BOINC: Berkeley Open Infrastructure for Network Computing,
http://boinc.berkeley.edu/, (accessed on 13/11/2013).

[2]What is grid computing?, http://www.gridcafe.org/EN/what-is-the-grid.html,
(accessed in September, 2013).

[3] Bader Ahmed Bader Ajrab,” PC Grid Computing Environment In Higher
Education Institutions”, master thesis at AlQuds university, Palestine, 2013.

[4] Grid computing in 30 seconds, http://www.gridcafe.org/EN/grid-in-30-sec.html ,
(accessed in September, 2013).

[5]D.P. Vidyarthy, B.K. Sarker, L.T.Y ang, "Scheduling in Distributed Computing
Systems Analysis, Design & Models’, A Research Monograph, pp.(244-245),2009

[6] Grid architecture, http://www.gridcafe.org/EN/grid-architecture.html , (accessed
in October, 2013).

[7] Middleware, http://www.gridcafe.org/EN/middleware.html, (accessed in October,
2013).

[8] Ault, M. and Tumma, M., "Oraclel0g Grid Computing with RAC", Oracle RAC -
Types of Grid computing, 2004.

[9]Stanoevska K., Wozniak T., Ristol S.,"Grid and Cloud Computing: A Business
Perspective on Technology and Applications’, Springer, 2010.

[10]Goyal B, Lawande S (2005) Grid Revolution: An Introduction to Enterprise Grid
Computing. McGraw-Hill, Emeryville, CA, 2005

[11]Joseph J., Fellenstein C., "Grid Computing", Pearson Education, 2004.

[12]1an Foster, Carl Kesselman, The Grid: Blueprint for a New Computing
Infrastructure, Morgan Kaufmann, 2004.

[13]Fox, G., Furmanski, W. (1998) High performance commodity computing,
Chapter 10, in Foster, |. and Kesselman, C. (eds) The Grid: Blueprint for a New
Computing Infrastructure. San Francisco, CA: Morgan Kaufmann Publishers.

[14] Foster, |. and Kesselman, C.,"The grid: Blueprint for a new computing
infrastructure”, Morgan Kaufmann, San Francisco, CA,1998.



[15] Fran Berman, Anthony J.G. Hey, Geoffrey C. Fox,

"Grid Computing Making the Global Infrastructure a Redlity”, Wiley Seriesin
Communications Networking and Distributed Systems, pp.(722-723),2003.

[16] Grid-powered projects, http://www.gridcafe.org/EN/grid-powered-project.html ,
(accessed in October, 2013).

[17] Volunteer computing , http://www.gridcafe.org/EN/volunteer-computing.html
,(accessed on September, 2013).

[18] Desktop Grid, http://boinc.berkeley.edu/trac/wiki/DesktopGrid, (accessed in
October, 2013).

[19] Volunteer computing vs. cloud vs. grid vs. HPC ,

http://www.volunteer-computing.ora/EN/vol unteer-computing-vs-cloud-vs-grid-vs-
HPC.html, (accessed in October, 2013).

[20] Volunteer computing , http://en.wikipedia.org/wiki/Volunteer computing,
(accessed in October, 2013).

[21] Desktop_Grid:Westminster_Local DG,
http://wgrass.wmin.ac.uk/index.php/Desktop Grid:Westminster Local DG,

(accessed in October, 2013).
[22] NEW DIY SUPERCOMPUTER SAVES £1,000S,

http://www.westminster.ac.uk/news-and-events/news/2011/university-of-
westminster-launches-new-diy-supercomputer-saving-hundreds-of -thousands-of -
pounds, (accessed in October, 2013).

[23] Middleware - Volunteer garage, http://www.volunteer-
computing.org/EN/middleware.html, (accessed in October, 2013).

[24] Anderson,” BOINC: A system for public-resource computing and storage”, 5th
|[EEE/ACM International Workshop on Grid Computing, Pittsburgh, PA, USA, pp. 4-
10,Dec,2004.

[25] Grid MP - Wikipedia, the free encyclopedia
http://en.wikipedia.org/wiki/Grid_MP, (accessed in October, 2013).

[26] Alchemi v0.6.1 Documentation,
http://www.cloudbus.org/~a chemi/doc/0_6_1/index.html, (accessed in October,
2013).




[27] Alchemi [.NET Grid Computing Framework],
http://www.cloudbus.org/~alchemi/, (accessed in October, 2013).

[28] Akshay Luther, Rajkumar Buyya, Rajiv Ranjan, and Srikumar Venugopal,
“Peer-to-Peer Grid Computing and a .NET-based Alchem Framework”, Grid
Computing and Distributed Systems (GRIDS) Laboratory, Department of Computer
Science and Software Engineering, The University of Melbourne, Australia.

[29] SETI, http://setiathome.berkeley.edu/, (accessed on 13/11/2013)

[30] BOINCstats, http://boincstats.com/, (accessed on 13/11/2013)

[31] TOP500 list, http://www.top500.org/list/2012/11/, (accessed on 13/11/2013).

[32] Anderson, D., Korpela, E. and Walton, R., —High-Performance Task
Distribution for Volunteer Computingl, Proceedings of the First IEEE International
Conference on e-Science and Grid, . Melbourne, Australia, 2005.

[33] JobSubmission-Boinc. http://boinc.berkeley.edu/trac/wiki/JobSubmission,

(accessed in January, 2014).

[34] JobTemplates-Boinc. http://boinc.berkel ey.edu/trac/wiki/JobSubmission,

(accessed in January, 2014).

[35] Free CPU usage monitor programs, http://softwaresol ution.informer.com/Free-
CPU-Usage-Monitor/.(accessed in January, 2014).

[36] Patricio Domingues, Paulo Marques, Luis Silva,”Resources Usage of Windows
Computer Laboratories”, aEscola Superior de Tecnologia e Gest&o — Instituto
Politécnico de Leiria— Portugal BDepartamento Eng. Informética, Universidade de
Coimbra— Portugal, Jan, 2005.

[37] BasicConcepts-BOINC, http://boinc.berkel ey.edu/trac/wiki/Basi cConcepts,
(accessed on 06/05/2014).

[38] Example applications, http://boinc.berkel ey.edu/trac/wiki/ExampleA pps#nol,
(accessed on 8/5/2014).

[39] SingleJob-BOINC, http://boinc.berkeley.edu/trac/wiki/SingleJob, (accessed on
07/05/2014).

[40] HtmIOps-BOINC, http://boinc.berkeley.edu/trac/wiki/HtmlOps, (accessed on
04/04/2014).

[41] M. Alfalayleh and L. Brankovic, "an overview of security issues and techniques
in mobile agents®, The University of Newcastle, 2004.



[42] SecureHttp-BOINC, http://boinc.berkeley.edu/trac/wiki/SecureHttp, (accessed on
02/04/2014).

[43] Free CPU Usage Monitor, http://softwaresol ution.informer.com/Free-CPU-
Usage-Monitor/, (accessed on 10/01/2014).

[44] FLOPS - Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/FL OPS,
(accessed 22/05/2014).

[45] AppCoprocessor, http://boinc.berkeley.edu/trac/wiki/AppCoprocessor, (accessed
on 06/05/2014).

[46] GPU Computing-BOINC, http://boinc.berkeley.edu/wiki/GPU_computing,
(accessed on 06/05/2014).

[47] ResearchProjects-BOINC, http://boinc.berkeley.edu/trac/wiki/ResearchProjects,
(accessed on 06/05/2014).

[48] Creating custom installers,
http://boinc.berkel ey.edu/wiki/Creating_custom_installers, (accessed on 06/05/2014).

[49] Applntro-BOINC, http://boinc.berkel ey.edu/trac/wiki/Applntro, (accessed on
08/05/2014).

[50] WrapperApp-BOINC, http://boinc.berkel ey.edu/trac/wiki/WrapperApp,
(accessed on 08/05/2014).

[51] VolunteerComputing-BOINC,
http://boinc.berkel ey.edu/trac/wiki/V olunteerComputing, (accessed on 10/05/2014).

[52] Creating and Configuring a BOINC Project,
http://www.spy-hill.net/myers/hel p/boinc/Create Project.html#server, (accessed on
10/05/2014).

[53] Android FAQ-BOINC,http://boinc.berkeley.edu/wiki/Android FAQ, (accessed
on 10/05/2014).

[54] Setting up aBOINC server, http://boinc.berkeley.edu/trac/wiki/Serverintro,
(accessed on 10/1/2014).

[55] BOINC server guide installation,
https://wiki.debian.org/BOINC/ServerGuide/Initialisation, (accessed 15/1/2014).

[56] Installing BOINC, http://boinc.berkeley.edu/wiki/Installing BOINC, accessed on
02-May- 2014

[57] Instaling BOINC On Ubuntu,
http://boinc.berkeley.edu/wiki/Installing BOINC _on_Ubuntu, (accessed on
02/05/2014).




[58] Controlling BOINC Remotely,
http://boinc.berkeley.edu/wiki/Controlling BOINC_remotely, (accessed on
02/05/2014).

[59] BOINC DB, http://boinc.berkeley.edu/trac/wiki/DataBase, (accessed on
8/5/2014).

[60] Server directory structure, http://boinc.berkeley.edu/trac/wiki/ServerDirs,
(accessed on 8/5/2014).

[61] Project configuration file, http://boinc.berkeley.edu/trac/wiki/ProjectConfigFile,
(accessed on 8/5/2014).

[62] Server Components, http://boinc.berkel ey.edu/trac/wiki/ServerComponents,
(accessed on 8/5/2014).

[63] Setting up aBOINC server, http://boinc.berkeley.edu/trac/wiki/Serverintro,
(accessed on 8/5/2014).

[64] anonscm.debian.org Git - pkg-boinc, http://anonscm.debian.org/gitweb/?p=pkg-
boinc/scripts.git;a=blob;f=server-examples/boinc_project maker.sh, (accessed in
January, 2014).

[65] Code signing, http://boinc.berkeley.edu/trac/wiki/CodeSigning, (accessed on
02/04/2014).

[66] KeySetup-BOINC, http://boinc.berkel ey.edu/trac/wiki/KeySetup, (accessed on
02/04/2014).

[67] StartTool-BOINC, http://boinc.berkeley.edu/trac/wiki/StartTool, (accessed on
12/05/2014).

[68] Boinccmd tool-BOINC, http://boinc.berkeley.edu/wiki/Boinccmd_tool, (accessed
on 07/04/2014).

[69] The design concept and initial implementation of Agent Teamwork grid
computing middleware, http://www.academi cpub.com/map/items/3933371.html,
(accessed on 28/5/2014).

[70] BOINC Security-BOINC, http://boinc.berkeley.edu/wiki/BOINC Security,
(accessed on 30/05/2014).




	Campus Grid Computing System (CGCS).pdf
	11) References.pdf

