

I

PALESTINE POLYTECHNIC UNIVERSITY

College of IT and Computer Engineering

Department of Computer Science and Computer Engineering

Graduation Project

Campus Grid Computing System

Project Team

 Ibrahim Qdemat & Muhammad Dwaib

 Supervisor

 Dr. Mohammed Al-dasht

 According to the system of the College of IT and Computer Engineering, and to the

recommendation of the Project Supervisor, this project is presented to Computer Science and Computer

Engineering Department as a part of requirements of B.Sc. degree in Computer System Engineering.

Hebron-Palestine

Jun-2014

II

Signatures

Project Supervisor signature

…………………………...

Testing Group signature

………...…..………. ………...…..………. ………...…..……….

Department Headmaster signature

………………………………….

III

Dedication

 We dedicate this work to our parents, brothers, sisters and friends. Without their

continuous support, endless patience, understanding and encouragement, this

project wouldn’t have been completed successfully.

IV

Acknowledgment

 Our deepest gratitude and thanks go to our supervisor, Dr. Mohammed Aldesht for his

great efforts, enlightening guidance, continuous supports and encouragement throughout the

entire period of this project. Also we would like to thank labs’ supervisors, lecturers and students

for their valuable assistance during our experiments. We wish to thank the examining committee

for their support and guidance.

 Special thanks to our parents, brothers and sisters, who always encourage, support us

throughout our life. We are also grateful to all our colleagues in the computer engineering field.

We would like to thank everyone who, in way or another, contributed in the preparation and the

completion of this project.

V

Abstract

Grid computing is a service for sharing computer power and data storage capacity over

the Internet. This project aims to increase the utilization of the available computing resources in

PPU. Computing resources at different facilities of the university especially those in labs are

almost idle for long periods of time or for scattered periods. These resources can be exploited in

another place or for other computational tasks in the university.

The goal of this project is to develop a grid computing system that provides the research

units with a large computational power to enable the working on a computational-intensive

experiments that may not be able to handle previously.

In addition, this project aims to operate a grid computing system with minimal costs.

Hardware costs are eliminated since the project will use the hardware components that are

already exist in the university, no additional components are needed. Software costs approaches

to zero since all the dedicated software needed to develop the system are free open source

software. So we will get a system that will provide a large computing power with a minimal cost.

VI

 الملخص

الحوسبة الشبكية هي احد مجالات الانظمة الموزعة والتي تهدف الى استغلال القدرة الحسابية للأجهزة الموزعة على

معالجة فائقة. يتم ذلك عن طريق تقسيم المشاريع الضخمة الى اجزاء مستقلة بحيث يتم الشبكة لتشكيل حاسوب ظاهري بقدرة

 والتي تعمل بدورها على معالجة هذه الاجزاء وتعيد النتائج. توزيع هذه الاجزاء على الاجهزة التي تكون في حالة الخمول

ة لكي تتمكن من انجاز مهامها بالشكل هناك العديد من المرافق في الجامعة التي تحتاج الى قدرات حسابية هائل

توفير يمكنو . على أجهزة حاسوب عادية تنفيذها تم بالإضافة إلى العديد من الأبحاث التي تحتاج إلى وقت طويل إذا الصحيح

. ولكن هذه (super computers) تزويد هذه المرافق بالحواسيب ذات القدرات الهائلة عن طريق العالية هذه القدرات الحسابية

الحواسيب ذات كلفة باهظة وفي اغلب الاحيان ليست متوفرة لنا في فلسطين. وفي المقابل يمكن ايضا توفير القدرات الحسابية

الحاسوب الموجودة في مختبرات لأجهزةالهائلة عن طريق بناء نظام الحوسبة الشبكية الذي يعمل على تجميع القدرات الحسابية

نحصل على جهاز حاسوب ظاهري فائق القدرة يمكنه تزويد المرافق المختلفة بالقدرات الحسابية التي حيثبالحاسوب المختلفة

 تحتاج اليها.

الموجودة في للأجهزة الحسابيةاثناء هذا المشروع سنعمل على اجراء دراسة عملية لحساب نسبة استغلال القدرة

ة الشبكية على مجموعة من الاجهزة . وفي النهاية سنقوم بتزويد النظام مختبرات الجامعة. ايضا سنعمل على بناء نظام الحوسب

 بالقدرة على استقبال وظائف حسابية من المستخدمين ليقوم بمعالجتها وارجاع النتائج.

VII

Project Contributions

This document summarizes the contributions of our project. Each of these contributions

is described briefly below.

Studying CPU usage at PPU computer labs

 The study applied to find the average CPU utilization at PPU computer labs. Two

freeware programs were used for this purpose: Altra CPU monitor and CPU usage logger. These

two programs installed on a sample of computers from different labs. The study applied for

approximately one month.

 Through this study we found that the average CPU usage at PPU computer labs is

approximately around 9% for most of the time. This means that there is a huge computational

power can be obtained from computers at PPU computer labs to perform important researchs.

For more details about this study see section 7.2.

Configuring and installing the grid server and grid clients

We had configured a grid computing system which consists basically from grid server and

grid clients. Grid server control and manage the overall system. Grid clients represent resources

that can be attached to the server to perform computations.

This system provides the environment for researchers to perform their computations. It also

allows developers to focus on advanced features in developing the grid computing system rather

than starting from the beginnings.

We chose the BOINC to be our grid computing middleware. BOINC server runs on UNIX

operating systems. We used Ubuntu12.04 LTS 64-bit Linux distribution. In addition, we

installed the BOINC server software prerequisites and dependencies. Furthermore, we solved

some problems that appeared during the deploying of BOINC server. The detailed explanation

about the BOINC server setting up process is described in appendix A.

At the client side, BOINC client software was installed on each computer participated in

our grid system. We installed BOINC client as a service by checking the Service

VIII

Install checkbox. In addition, we disabled screen saver option and prevented other users (usually

students) from controlling BOINC client software. More details at section 6.2.2.

Customizing and automating the core functionalities of the grid system

The BOINC middleware implemented the core functionalities of the grid system. But if

you want to handle any of these functionalities, you need to deeply understand the BOINC

environment, you must be able to write shell scripts, you have to be familiar with Linux OS

administration, you also need to do a lot of steps to perform any of these functions.

We implemented a set of shell scripts that simplify the process of executing any of these

functions. You can, for example, create a whole BOINC project by executing a one terminal

command. Using these shell scripts we can control the BOINC project and the BOINC clients.

These scripts also enable us to build another level of the system which is the grid portal. For

more details about the implementation of these scripts you can see section 6.2.

Lunching Single Job Project

 BOINC is designed to handle streams of millions of jobs. It takes some work to set up a

stream: you need to create applications and application versions, workunit (WU) and result

templates, validators, assimilators, etc. we implemented a set of shell scripts that handle running

a job without any of these hassles and handle also the results of the execution.

To enable single job submission, we created a special project called single job project. Single

job project is a BOINC project that it is configured to use single job submission mechanism

supported by BOINC; but we modified the source code of this mechanism to make it suitable for

our purpose.

IX

 In addition, we created a set of shell scripts and PHP files that are responsible for

submitting a job, monitoring its execution and handling the result.

 By single job mechanism, the system user (usually the researcher) can submit any C/C++

program compiled for a particular platform to be executed on one of clients attached to the

single job project.

 Also, we configured the single job project to support the famous and well-known

platforms: Windows, Linux and MAC operating systems with their 32-bit and 64-bit

architectures.

 Furthermore, we automate the process of creating and configuring single job project

which contains a lot of hassle and requires you to follow a long list of steps. Thus, the single

job project becomes one of the projects that are supported by our grid system. It is designed to

support the single job submission mechanism.

Implementing the Grid portal

 Without a grid portal all the work and interaction with the grid system is done locally at

the grid server by executing terminal commands. To simplify the interaction with the grid system

such that a grid user doesn’t need to write terminal commands. Also, building the grid portal

enables the interaction with the system remotely.

 Thus, the grid portal enables users to interact with the grid system remotely through user

friendly interfaces; they don’t need to know anything about the underlying system. Grid portal

make the use of the shell scripts implemented previously to support management and control

over the grid system, enable the users to submit jobs for execution over the grid system and

enable the control of the jobs execution. More details about the grid portal can be found in

section 6.3.

Testing the Grid system performance

 After investigating the grid computing system we performed an experiment to test its

performance. This experiment was applied by running a BOINC project that contains a simple

application that provides computations for execution over the grid clients. This application is

X

called Test application provided by the BOINC; it generates instances that read input text files,

converts their contents to uppercase and write the results to the output files.

The sample size of grid clients used in this experiment is 40 PC. The experiment was

applied for two weeks. Through this experiment we found that each PC provides approximately

3.45 GFLOPS as an average. See section 7.3 for more information.

XI

List of contents

Title………………………………………………………………………………... I

Signatures ……………..........…………………………………….…….……........ II

Dedication……….……………………………………………………………....... III

Acknowledgment………………………………………………………………..... IV

Abstract …..……………………………………………………..…………….….. V

Arabic Abstract ...………………………………………………..……………...... VI

Project Contributions...…………………………………………..……………….. VII

List of Contents...…………………………………………………..…………...... XI

List of tables ………………………………………………………..……….......... XVI

List of figures …………………………………………………………..……........ XVIII

List of Appendices …………….…………………...………………..……............ XXII

Chapter One Introduction 7

1.1 Overview ………………………………………………………………..………. ... 1

1.2 Idea Description …………………………………………... 1

1.3 Problem/Motivation ……………………………………………………………....... 2

1.4 Project Scope …………………………………………………………..................... 3

1.5 Summary …...…………………………………………………………….….....….... 7

Chapter Two Literature Review and Theoretical Background 8

2.1 Overview …………………………………………………………..…..…….......... 8

2.2 Theoretical Background …………..…………………………………...……...…... 8

2.2.1 Definitions ………………………………………….……….………....... 8

2.2.2 Building a grid………….............……………………….………....…..... 9

2.2.3 Classification of Grids …......……………………….……….……..….... 11

2.2.4 Grid computing portals …......……………………….……….……........ 15

2.2.4 Grid-powered projects…......……………………….……….…………... 16

2.3 Literature Review ……...................................……………………….……..….. 16

2.3.1 PC Grid Computing In Higher Education Institutions………………... 17

2.3.2 How is grid computing different from the World Wide Web?……….…… 18

2.3.3 Grid versus Volunteer Computing …….…………………….…..……... 18

http://www.gridcafe.org/EN/building-grid.html
http://www.gridcafe.org/EN/grid-powered-project.html

XII

2.3.4 The University of Westminster desktop grid system ……........…..….... 20

2.4 Summary …,,.………….………………….………….….............................…..... 21

Chapter Three Project Management Plan 22

3.1 Overview …………………………………………………………………………..... 22

3.2 Project Plan ………………………………………………………………………..... 22

3.2.1 Sets of project tasks ………………………………………………..…....... 23

3.2.2 Time estimation (Gantt chart)…………………..………………………… 27

3.3 project methodology ………………………………..………………………......…... 27

3.3.1 flow of project work …………………………….……….…….….…….... 27

3.3.2 options and analysis..………………………………….………………..….. 28

3.3.3 Risk management ……………………………………….……………........ 33

3.4 Project components and resource cost estimations………..……………........……. 41

3.4.1 Hardware components ……………………………..………....….…..……. 41

3.4.2 Software components ………….…………………….…..……..….......…. 42

3.4.3 Human resource costs …………………………………….……….…….... 42

3.5 Summary …………………………………………….…….…….....................….… 43

Chapter Four Software Requirements Specification 44

4.1 1 Overview …………………………………………………………………………... 44

4.2 Requirements Description …….………………………………………….….……... 44

4.2.1 System Actors ………………………………….………….…………….…..... 44

4.2.2 Use-case templates ………………………………………………….…….…... 45

4.2.3 Use-case Diagrams …………………………………………………..……....... 65

4.3 Class-Responsibility-Collaborator Modeling (CRC): ………………….…….……... 68

4.4 Class Hierarchies and relationships ……………………………………….….….….. 71

4.5 Summary …………………………………………….…….……................…..….... 72

XIII

Chapter Five Software Design Description 73

5.1 Overview …………………………………………………………………………..... 73

5.2 BOINC Middleware ………………………………………………………….......... 73

5.2.1 BOINC Architecture ………………………………………………...….... 74

5.2.2 BOINC Server …………………..………………………………………… 75

5.2.3 BOINC Client …………………………………………………………..….75

5.2.4 BOINC Database……………………………………………………….…..76

5.3 System configuration design………………..……………………….....................…... 76

5.3.1 Installing BOINC Server Software………………….…….…....…...... 77

5.3.2 Creating And Running A BOINC Project………………………………….79

5.3.3 Deploying BOINC Clients ……………….……………………..…........ 83

5.4 Object relational model ………..……………........…………………………….…. 84

5.5 System functionalities.………………….…….…….…...............................….… 88

 5.5.1 Admin side functionalities………………….…….….......……….…...... 89

 5.5.2 User side functionalities ……...………………………….……………… 95

 5.5.3 System functionalities ……...………………………………………...…. 97

5.6 Software interface design…………………………….……………………………...98

5.7 Data Base Design………………………………………….…………………….….107

5.8 Hardware interface Design………………………………………………………… 108

5.9 Overall Work Summary…………….…….……...............................…………... 109

5.10 What Is Next …………………………………………………………………….. 110

5.11 Summary…………………………………………………………………………. 111

Chapter Six Implementation and Testing 112

6.1 Overview ………………………………………………………………………..... 112

6.2 System Configuration and Core Functions….………………………………....... 112

6.2.1 BOINC Server Deployment ………………………………………......... 112

6.2.2 BOINC Client Deployment..………………………………………...….. 113

6.2.3 Project Creation…………………………………………………….…..... 113

6.2.4 Create Admin Account…………………………………………………... 116

6.2.5 Disable/Enable Account Creation ………………………………….....… 117

6.2.6 Client to Project Attachment/Detachment…………………….………... 118

6.2.7 Project Control ……………………………………………………..…... 121

XIV

6.2.8 Update Attached Projects …………………………………………..….. 122

6.2.9 Project Deletion ……………………………………………………….... 123

6.2.10 SingleJob Project……………………………………………...….......... 125

6.2.10.1 Single job submission mechanism…………………………… 125

6.2.10.2 SingleJob Project ………………………………………………125

6.2.10.3 Automatic SingleJob Project Configuration…………………..131

6.2.10.4 Job Submission ……………………………………………..….133

6.2.10.5 Job Submission Automation ……..……………………...…....136

6.3 Portal Implementation…………...………………..………………………....................141

6.3.1 Software development tools and programming languages .…....…......... 141

6.3.2 Portal subpages …………………………………………………...…………. 141

6.3.3 Portal main page ……………….……………………..…........................ 152

6.4 Security Issues ………………….…………………………………………….......... 155

6.4.1 Securing the Server and the Clients …………………………..…………. 155

6.4.2 Client/ Server Authentication and Authorization…………..…………….156

6.4.3 Protecting Administrative web interface ………………………………….157

6.4.4 Securing the Web Portal ………………………………………………….. 158

6.5 Testing ………….……………….…………………………………………….......... 159

6.5.1 Testing system functionalities (Testing lower level)……….……………. 159

6.5.2 Testing Portal functionalities (Testing higher level)…………..………….174

6.6 Summary……………….……………………...........……………..……………….. 193

Chapter Seven Experiments and Results 194

7.1 Overview ……………………………………………………………………….…... 194

7.2 Average CPU usage at PPU computer labs …………………………............ 194

 7.1.1 Environment specification and work difficulties…………………….......194

7.1.2 Practical Work..……………………..…….…………………….………... 198

7.3 Examination the performance of PPU Environment ……………………….…........… 201

7.4 Summary …………………………………………………………………………........ 204

XV

Chapter Eight Conclusion and Future Work 205

8.1 Overview …………………………………………………………………………...... 205

8.2 Conclusion ………………………………………….…………….……..…………....... 205

8.3 Challenges ………………………………………………………………………....…… 206

8.4 Future Work ……………………………………………………………………....….… 208

8.5 Summary ………………………………..……………………………………….…...… 214

References …………………………………………………………………..…….…….…. 215

Appendix A Server and Client Software Installation 220

A.1 BOINC server Pre-installation requirements ……………………………......………… 220

A.1.1 Hardware requirements …………………………………………………..….. 220

A.1.2 Software requirements …………………………………………………..…… 221

A.2 BOINC server installation process …………………………………………………….. 221

A.3 Trouble Shooting ……………………………………………………………………..... 222

A.4 BOINC Client Installation ……………………………………………………………... 225

A.4.1 Microsoft Windows ……………………………………………...................... 225

A.4.2 Linux …………………………………………………………………………. 229

A.4.3 Other Platforms ………………………………………………………………. 231

A.4.4 BOINC Client Security ……………………………….……………………… 231

Appendix B Project Creation 234

B.1 BOINC Project ……………………………... 234

B.1.1 Project DB ……………………….…….……………………....……. 234

B.1.2 Project Directory ……………………………………………..…….. 235

B.1.3 Project configuration file ……………………………………...……. 236

B.2 Project creation pre-requirements ………....………………………….……… 237

B.3 Project Creation Process ………………………………………………….….. 237

 B.3.1 Creating an Empty BOINC Project …………………………….….. 238

B.3.2 Creating project having a test application example……………..….. 251

B.4 phpMyAdmin Installation ……………………………………………....….… 253

XVI

Appendix C Security 255

C.1 Introduction……………………………………………………..………... 255

C.2 Protecting Administrative web interface…….. 256

C.2.1 Protection by .htaccess …………….…….……………………..... 256

C.2.2 Project-defined protection policy .……………………………….. 257

C.3 Other Techniques………………….....................…………………...…. 258

C.3.1 Code Signing…...………....…………….………………………... 258

C.3.2 Secure Socket Layer (SSL) …………………………………….... 261

Appendix D Boinccmd tool 263

D.1 Account query and attach…….……………... 263

D.2 State queries ………………………..……....……………………………… 264

D.3 Control Operations …………………………………………………………265

D.4 Examples …………………..………………………………………………. 267

Appendix E Glossary 268

List of tables

Table 3.1: Risk Management …………………………..……. ……………….……………. 33

Table 3.2: lack of experience information sheet.………………... 34

Table 3.3: Late delivery information sheet.………………………... 35

Table 3.4: Lack of testing experience information sheet.…………………….…….…..…… 36

Table 3.5: low staff productivity information sheet.……………………………..……..…… 37

Table 3.6: Lack of training on tools information sheet.…………………………...…...……. 38

Table 3.7: Loss of team member information sheet.…………………………………....…… 39

Table 3.8: Inaccurate cost estimations information sheet. ………..…………………..…….. 40

XVII

Table 3.9: Hardware Components.. ………………………………………………………….. 41

Table 3.10: Software Components .…………………………………………...…..…….….... 42

Table 4.1: Adding/deleting project use case template …………………………………….…. 46

Table 4.2: Adding/deleting user use case template………………….……………….………. 47

Table 4.3: Attaching/deleting resource use case template……………………………....……. 48

Table 4.4: Update resource use case template ………………………………….……..……... 49

Table 4.5: Stopping/starting/restarting project use case template …………………….……... 50

Table 4.6: Modifying user information use case template .…………………………………... 51

Table 4.7: Managing computing preferences use case template …..….................................... 52

Table 4.8: Monitoring project status use case template.......……………................................. 53

Table 4.9: Upload a new job use case template…... ……………………................................. 54

Table 4.10: Monitor jobs execution status use case template. ……………............................ 55

Table 4.11: Abort jobs while it is in progress stat…..……….......................………............... 56

Table 4.12: Download the results of completed jobs... 57

Table 4.13: Delete the results of completed jobs .……………................……...................... 58

Table 4.14: Modify account information ………….................................…......................... 59

Table 4.15: Generate instance of job use case template …..………………………………… 60

Table 4.16: Send instance to a client use case template ……..……………………………… 61

Table 4.17: Validate results use case template ……………………………………………… 62

Table 4.18: Prepare results for download by users ……………………………………..…… 63

Table 4.19: Job Execution use case template …………...…………………………………… 64

Table 4.20: DBConnection CRC…………………………...………………………………… 68

Table 4.21: ProjectCreation CRC …………………………...……………………………..…68

Table 4.22: ProjectManagment CRC ………………………………………………………... 69

Table 4.23: UserCreation CRC ……………………………………………………………… 69

Table 4.24: JobSubmission CRC ………………………………………………..……………70

Table 5.1: DBConnection class……………..……….…………………………..………….… 85

Table 5.2: ProjectCreation class …………………….…………………………..………….… 85

Table 5.3: Project Management class ……………...….………………………..………..…… 86

Table 5.4: User Creation class ……………...…...….…………………………..…………..… 87

Table 5.5: JobSubmission class ……………...….…………………………..………………... 88

Table 6.1: Supported Platforms……………...….…………………………..……………….. 131

Table 7.1: Computers specifications………………………………………..……………….. 195

XVIII

Table 7.2: Average CPU usage at AL-Beruni(I) lab for one day…………..……………….. 198

Table 7.3: Average CPU usage in PPU computer labs ………………….…..……………….. 199

List of figures

Figure 2.1: Grid Architecture……………………………..………........... 10

Figure 2.2: A typical form of cluster computing ….……………………………….…...… 11

Figure 2.3 Example of Enterprise Grid Infrastructure …………………………......….….. 12

Figure 2.4 Local PC Grid at the University of Westminister ………….………….......….... 19

Figure 3.1: Figure 3.1: Project time line.……………..................……………………….…. 27

Figure 3.2: BOINC Architecture ……………........................…………….…….….…..…. 29

Figure 3.3: Alchemi layer architecture ……………………………….…...…..................... 31

Figure 4.1: Admin use-case diagram…………………..………..…………………….…….. 65

Figure 4.2: User use-case diagram ……………………………………….…….…………… 66

Figure 4.3: system and client use-case diagram ……………………………………………. 67

Figure 4.4: Class Hierarchies and relationships diagrams…………………..………………. 71

Figure 5.1: BOINC architecture …………………………………………………………….. 74

Figure 5.2: BOINC Client..………………………………………………………………..... 75

Figure 5.3: Installing BOINC Server Software.………………………………………….… 77

Figure 5.4:Creating And Running A BOINC Project ……………………………………….79

Figure 5.5: Deploying BOINC Clients..……………………………………. …………………. 83

Figure 5.6: Project creation.…….…………………………….………………………..…….. 89

Figure 5.7: stopping/starting/restarting project ……………………………………………… 90

Figure 5.8: attaching/detaching client to a BOINC project ..………………………………… 91

Figure 5.9: disable/enable account creation ..…………………..………………………….…. 92

Figure 5.10: adding new user to a BOINC project .…………………………………………... 93

Figure 5.11: Users management ...………………………………………………………….….. 94

Figure 5.12: job submission ..………………………………..………………………………... 95

Figure 5.13: jobs management ..……………………..………………………………..…..…. 96

Figure 5.14: Job Execution .…………………………………………………….….……....... 97

Figure 5.15: The About Page ………………………………………………………………..98

Figure 5.16: Contact page …….………………………………………………………….……99

Figure 5.17: Login Page Interface ……………………………………………………...........100

Figure 5.18: Admin home page interface ……………………………………………............101

XIX

Figure 5.19: Users page interface ………………….…………………………………............102

Figure 5.20: Project management page interface ……………………………………............103

Figure 5.21: Modify user page interface ……………………..………………………...........104

Figure 5.22: Job submission page interface …….……………………………………...........105

Figure 5.23: modify account page interface …….……………………………………..........106

Figure 5.24: Grid System DB ERD …………………………………………………….........107

Figure 5.25: Hardware interface design …………..……………………………………..........108

Figure 6.1: Create Test Project Algorithm …………..…………………………………….....116

Figure 6.2: Create Account Algorithm …………..……………………………………..........117

Figure 6.3: Attachment/Detachment Algorithm ……………………………………..........120

Figure 6.4: Update Attached Projects Algorithm ………..…………………………...........123

Figure 6.5: Project Deletion Algorithm …………..………………………………………...124

Figure 6.6: Single Job Configuration Algorithm..……………………………………..........132

Figure 6.7: Submit Job Algorithm ……………………………………..............................139

Figure 6.8: Output Handler Algorithm ………..………………………….........................140

Figure 6.9: Admin page left part ……………………………………..................................142

Figure 6.10: User page left part ………..…………………………....................................142

Figure 6.11: Project creation form ……………………………………...............................143

Figure 6.12: Project creation form ………..…………………………................................144

Figure 6.13: Add new user form …………………………………….................................145

Figure 6.14: Add new user form ………..…………………………..................................146

Figure 6.15: Project management form ……………………………………......................147

Figure 6.16: Client attachment ……………………………………..................................148

Figure 6.17: Header subpage ……..…………………………...151

Figure 6.18: Footer subpage ……………………………………......................................151

Figure 6.19: Download result ………..………………………….....................................151

Figure 6.20: Results subpage ……………………………………....................................152

Figure 6.21: Admin home page ………..…………………………..................................153

Figure 6.22: Users page ……………………………………..154

Figure 6.23: Create Project case 1 ..159

Figure 6.24: Project home page ..160

Figure 6.25: Project creation case 2(wrong usage)..160

Figure 6.26: Project creation case 3(wrong usage) ...160

XX

Figure 6.27: Create Test Project ..161

Figure 6.28: Create Account ...162

Figure 6.29: Attach client ...162

Figure 6.30: Attached client BOINC manager ..163

Figure 6.31: Update attached projects ...163

Figure 6.32: BOINC manager after executing updateAttachedProject.sh164

Figure 6.33: Detach a client ...164

Figure 6.34: BOINC manager after executing deattach.sh ...165

Figure 6.35: Stop project ...166

Figure 6.36: Start project ...166

Figure 6.37: Restart project ...167

Figure 6.38: Customize project to single Job project ..168

Figure 6.39: Project status executing singleJob.sh ..168

Figure 6.40: Submit job ...169

Figure 6.41: Abort job ...169

Figure 6.42: Output handler ..170

Figure 6.43: Enable account creation ...171

Figure 6.44: Project home page after executing enable_account_creation.sh171

Figure 6.45: Disable account creation ..172

Figure 6.46: Project home page after executing disable_account_creation.sh172

Figure 6.47: Project status ...173

Figure 6.48: Project deletion ..173

Figure 6.49: Project creation test 1 ...174

Figure 6.50: Project creation test 2 ...175

Figure 6.51: Successful Project Creation ..175

Figure 6.52: Error handling test for adding new user ..176

Figure 6.53: Test adding new user ...177

Figure 6.54: Error handling test for attaching client ...177

Figure 6.55: Before attaching a client ..178

Figure 6.56: After attaching a client ..178

Figure 6.57: BOINC manager of the updated client ..179

Figure 6.58: Project status page after project stop ...180

Figure 6.59: Project status page after start/restart project ..180

Figure 6.60: Project management page after deleting the project ...181

XXI

Figure 6.61: Invalid account modification ...182

Figure 6.62: Valid account modification ...182

Figure 6.63: User information before modification ...183

Figure 6.64: User information after modification ..183

Figure 6.65: Enabling account creation ..184

Figure 6.66: Disabling account creation ...185

Figure 6.67: Checking users for deletion ..185

Figure 6.68: Users deletion ..186

Figure 6.69: Error job submission ...186

Figure 6.70: Valid job submission ...187

Figure 6.71: Aborting Job confirmation ..188

Figure 6.72: Aborting job ..188

Figure 6.73: Job execution (state 1) ..189

Figure 6.74: Job execution (state 2) ..189

Figure 6.75: Job execution (state 3) ..190

Figure 6.76: Job execution (state 4) ..190

Figure 6.77: Download window ..191

Figure 6.78: Check results to delete ..192

Figure 6.79: Home page after click Delete Jobs ..192

Figure 7.1: CPU usage logger program ..196

Figure 7.2: Ultra CPU monitor program ..197

Figure 7.3: Sample of the log file generated by CPU usage logger199

Figure 7.4: Average CPU usage at PPU labs ..200

Figure A.3.1: BOINC installation problems 1 ...141

Figure A.3.2: BOINC installation problems 2 ..142

Figure A.3.3: BOINC installation problems 3 ...143

Figure A.3.4: Proper BOINC installation ..144

Figure A.4.1: BOINC Client Deployment Step 1 ...200

Figure A.4.2: BOINC Client Deployment Step 2 ..201

Figure A.4.3: BOINC Client Deployment Step 3 ..202

Figure A.4.4: BOINC Client Deployment Step 4 ..203

Figure A.4.5: BOINC Client Deployment Step 5 ..204

Figure A.4.6: BOINC Client Deployment Step 6 ..205

XXII

Figure A.4.7: BOINC Client Deployment Step 7 ..206

Figure A.4.8: BOINC Client Deployment Step 8 ..207

Figure B.1: Project home page .. 200

Figure B.2: Adding project name 1 .. 201

Figure B.3: Adding project name 2 .. 202

Figure B.4: Adding copy rights 1 ... 203

Figure B.5: Adding copy rights 2 ... 204

Figure B.6: Setting admin. Account 1 .. 205

Figure B.7: Invalid login to admin. page ... 206

Figure B.8: Setting admin. Account 2 ... 207

Figure B.9: Administrative page ... 208

Figure B.10: Project status 1 .. 209

Figure B.11: Project status 2 .. 210

Figure B.12: Project status 3 .. 211

Figure B.13: Project status 4 ... 212

Figure B.14: Project forum 1 .. 213

Figure B.15: Project forum 2 ... 214

Figure B.16: Test example application project status ... 215

Figure B.17: phpMyAdmin login page .. 216

List of Appendices

Appendix A Server and Client Software Installation 220

Appendix B Project Creation 234

Appendix C Security 255

Appendix D Boinccmd tool 263

Appendix E Glossary 268

1

Chapter One

Introduction

1.1 Overview

 In this chapter we provide an introduction to our project concentrating on three

main topics. First, we briefly provide a description of the project idea. Second, we

talk about the problems and motivations that lead to the idea of this project. Finally,

we talk about the scope of the project.

1.2 Idea Description

 Grid computing is a form of distributed computing in which an organization

(business, university, etc.) uses its existing computers (desktop and/or cluster nodes)

to handle its own long-running computational tasks [1]. In our project we want to

make use of grid computing to utilize the computing resources available in our

university by building our own grid.

 The PPU grid will make use of the computing power that is supplied by

computing lab machines, desktop and laptops belonging to faculty, staff, students,

and any computing resource belonging to our university.

 The project will be done into two stages. First, we have to gather the information

about all the computing resources in the university, analyze the financial costs of

upgrading some important resources to new ones with more computing capabilities

and make a comparison between the current situation and the new one, supposing

2

the grid computing is applied. Secondly, we have to achieve the technical work and

apply the grid computing on some facilities of the university.

 There are some basic components and technologies that are needed in the

project. We have the grid resources, such as computers, electronic data storages and

any other computing resource connected to the network. These grid resources need to

be connected using a network, so we need to have a fast and reliable network. In

addition, we need a middleware layer that provides the tools that enable the various

elements (servers, computers, storage, networks, etc.) to participate in a grid and

communicate with each other.

 This project will basically concentrate on distributed systems and grid

computing to deal with workloads and computing resources. This is done by dividing

large projects into smaller independent tasks and assigning these tasks to the

available idle computing resources.

1.3 Problem/Motivation

 While the computing resources are utilized during the teaching periods, there

are large periods of time during the night or holidays or for scattered periods when

these resources like computer labs are idle. These unused computing resources can

be employed to run computation-intensive tasks for different university units.

 Also, we know many of the PPU services sometimes suffer from latency due to

the large number of users and poor resources, e.g. e-registration and e-learning. Grid

computing can help solving this problem and enhancing these services at a very low

cost.

http://www.gridcafe.org/EN/middleware.html

3

 Many researches use computing-intensive algorithms and may need a large

amount of data sets to solve their research problems. This large computing power

and memory capacities can be provided at little or no cost to university researchers

using our grid. This resource enables previously infeasible researches or shortens the

needed time for others. This leads to the publicity of the university and its researches.

 Sometimes researchers realize that they need to use distributed computing; but

they lack the expertise and resources to do it themselves. The basic idea behind this

is to divide a huge work which may take days to be computed on a standalone

computer, into many pieces which can be done concurrently by the available

computing resources at their idle time. Finally gather the work done by these

computers to produce the result.

 In addition, the project team has many challenges and new things to be learned.

Some of these are: learning new technologies, looking deeper in the networks

functionalities, dealing with middleware layer and learn about distributed systems,

grid computing and network’s programming.

1.4 Project Scope

 Basically this project will concentrates on utilizing the computing resources of

PPU labs to fill the shortage in some facilities, like the research unit or to improve

some services like E_Learning or E_Registration. The main features of the project

scope are listed below with more details:

1. System Input:

 Computational projects or tasks.

 Clients demands.

4

2. System Outputs :

 Results for a running project and tasks to the clients demands. This is

done by achieving balanced load distribution and concurrency

execution using the available computing resources to get results in

more efficient manner.

3. Project requirements :

a) Utilize the available computing resources.

b) Supply some facilities of the university with the available computational

resources to be able to perform large computational tasks.

c) Solve some problems that come from the limited performance of the

available computing resources.

4. System components :

a) Server: represents the system hardware backbone. It supplies some

coordination functionalities in the system.

b) Computing resources: the main supplier for these components is the

university labs. These computing resources will be configured to accept

the computational tasks that are assigned by the server and supply results

back.

c) Network: an excellent network bandwidth to connect system components

together.

d) Middleware: represents the system software backbone. It will provide the

suitable grid environment for all components. It provides the main system

functionalities, management and control.

5

5. Project Deliverables

 We will provide a study about the project visibility by analyzing different

factors on different aspects:

 Analysis of the performance of the available computing resources at

the university.

 Analysis the need of some researches in the university to a high

computational power.

 Analysis of the utilization of some computing resources especially

those are in labs.

 After achieving the technical work and building the grid system, the final output

of the project will be as follow:

 A user can login to the grid portal using a username and password. The user will

be able to upload his computational task to the server. Now, the server is responsible

to find the available idle computing resources and send this task to these resources

which execute it and return the result back to server. Finally, the result will be

returned to that user.

6. Project assumptions, boundaries and constraints

 Grid computing system needs a good network bandwidth and infrastructure to

work well. This means that the access to the grid system from the web will not be

efficient until upgrading the overall network capabilities.

 The process of dividing the large computing task into smaller parallel tasks is

not a part of this project. We assume that the server will get tasks which will be

executed concurrently on different computational resources. Projects of multi-tasks

must be partitioned to independent tasks before they are delivered to the server.

6

Partitioning projects to independent tasks needs additional effort which is out of the

scope of this project.

 In this project will use one computer as a grid server and a set of computers in

the university labs as grid clients. The main limitations and assumptions regarding

this project can be stated and summarized in the following points:

1. The project considers computers available in one of computer labs in wad-

Alharria branch at PPU. This sample is small compared to available

computers in all PPU branches.

2. The project is limited to PCs available in computer laboratories and does

not include servers or computers used by academic/administrative staff for

security matters.

4. The project is performed on these PCs during work hours (08:00 – 16:00)

from Sunday to Thursday only.

5. Most of experiments in this study will be performed on PCs with Microsoft

Windows OS (XP Professional and x86 Windows 7 Professional x86).

6- In our project we assume that the project to be executed is ready for

deployment on the grid; i.e. the project is gridified and all jobs are identified.

7. Initial project organization:

- Project Team:

 Group of 2 students.

- Stakeholders:

 Computer center staff.

 University teaching staff.

 Students.

 Researchers

7

1.5 Summary

 In this chapter we talked about the project idea. Then, we presented some of

the project motivations. Finally, we have discussed the project scope which

addressed these topics: system input and output, project requirements, components,

deliverables, assumptions, boundaries constraints, and finally the Initial project

organization.

8

Chapter Two

 Literature Review and Theoretical Background

2.1 Overview

 The purpose of this chapter is to clarify some of the concepts and components

associated with grid computing. In addition, this chapter presents an overview of grid

technologies and compares it with several similar technologies. Also, we will discuss

some of the previous related projects and studies related to grid computing.

2.2 Theoretical Background

 In this section we discuss the grid computing technology and its related issues in

more details.

2.2.1 Definitions

 The "Grid" takes its name from the analogy with the electrical "power grid" [2].

The grid power provides you with electricity just by plugging-in your device into

wall socket; you do not have to care how the electricity was generated or how it

reaches to your home. The same thing happens in grid computing technology which

provides you with required computing power and storage resources without any need

to know how you get these resources or form where it is originated, the grid hides all

of these details.

9

 Since the grid computing is emerging and evolving technology, there are many

definitions to grid computing according to the different understanding of this term,

but all of them share the same concept. Here we show some of these definitions from

different sources:

 According to [3], the first and most cited definition of Grid Computing was

suggested by Foster and Kesselman (1998):

"A computational grid is a hardware and software infrastructure that provides

dependable, consistent, pervasive, and inexpensive access to high-end

computational capabilities".

 Grid computing is a service for sharing computer power and data

storage capacity over the Internet [4].

 A grid is a collection of machines typically referred to as “nodes”,

“resources”, “clients”, “hosts”, and other similar terms [5].

2.2.2 Building a grid

 There are three things that should be available in order to set up a grid:

architecture, hardware, and middleware layer. These components are described

briefly below.

1. Architecture:

 The overall design of the grid is called the grid architecture; it identifies the

fundamental components that should be taken in consideration when a grid is to be

built.

http://www.gridcafe.org/EN/building-grid.html
http://www.gridcafe.org/EN/grid-architecture.html

01

 A grid's architecture can be divided into layers, where each layer has a specific

function. These layers are described below from the lowest layer to the highest:

 The network layer: which connects grid resources and deals with different

components like routers, switches, etc.

 The resource layer: actual grid resources, such as computers or storage

systems that are connected to the network [6].

 The middleware layer: provides the tools that enable the various elements

(servers, storage, networks, etc.) to participate in a grid. The middleware

layer represents the environment where the grid can be built and work [6].

 The application layer: This includes applications in science, engineering,

business, finance and more, as well as portals and development toolkits to

support the applications. This is the layer that grid users see and interact with

[6].

2. Hardware

 The hardware forms the physical infrastructure of a grid. A grid depends

on underlying hardware like computers and networks which are the backbone of the

grid.

3. Middleware

 Middleware is the software that organizes and integrates the resources in a grid

[7]. Middleware layer is made up of many software programs that coordinate all the

different grid resources. Middleware resides between the operating systems software

(like Windows or Linux) and the applications software [7].

http://www.gridcafe.org/EN/underlying-hardware.html
http://www.gridcafe.org/EN/underlying-hardware.html
http://www.gridcafe.org/EN/underlying-hardware.html
http://www.gridcafe.org/EN/middleware.html
http://www.gridcafe.org/EN/gridifying-your-application.html
http://www.gridcafe.org/EN/underlying-hardware.html
http://www.gridcafe.org/EN/middleware.html

00

Fig. 2.1: Grid Architecture

The grid architecture is depicted in figure 2.1:

2.2.3 Classification of Grids

 Grid Architecture is still in the evolving stage. There are many variations and

types of Grids. There are different classifications of grids based on type of

classification or based on understanding of grid concept.

 There is no standard in categorization of grids. Many Research Analysts, IT

vendors, and Computer scientists began classifying the grid and grid variations based

on their own understanding and vision. Some base it on the functionality, some base

it on the architecture and others on the built-in components. Many organizations have

different focuses, thus resulting in different classifications [8]. In this section we

explain the classification of the grid based on scalability and function concentration.

Grids can be classified based on the scalability as below:

01

Fig. 2.2: A typical form of cluster computing, Source [15]

1. Cluster Grids:

 Cluster Grids, or clusters, are a collection of co-located computers connected by a

high-speed local area network and designed to be used as an integrated computing or

data processing resource (see Fig. 2.2) [9].

 Cluster grids are the most popular and simplest form of a grid. Cluster grid

consists of one or more systems, working together, to provide a single point of access

to users. Cluster grid meets the need of most of the organizations. Typically used by

a team of users such as a single project or a department, a cluster grid supports both

high throughput and better performance for the jobs [5].

01

Fig. 2.3: Example of Enterprise Grid Infrastructure, Source [15]

2. Campus/ Enterprise Grids

 Campus grids enable multiple projects or departments to share computing

resources in a cooperative way. It is also referred as the cooperative grid. Campus

grids may consist of dispersed workstations and servers, as well as centralized

resources located in multiple administrative domains, in departments, or across the

enterprise [5].

 The term Enterprise Grid is used to refer to application of Grid Computing for

sharing resources within the bounds of a single company [10]. All components of an

Enterprise Grid operate inside the firewall of a company, but may be heterogeneous

and physically distributed across multiple company locations or sites and may belong

to different administrative domains (see Fig. 2.3) [9].

01

3. Global Grids

 When application needs exceed the capacity of a campus grid, organizations can

tap partner resources through a global grid. it is designed to support and address the

needs of multiple sites and organizations, global grids provide the power of

distributed resources to users anywhere in the world for computing and

collaboration. Individuals or organizations sending overflow work to a grid provider

or by multiple companies working together and sharing data - crossing organizational

boundaries with ease can use the global grid [5].

 Also, grid can be categorized based on the grid infrastructure and functions

concentration. In this classification we have two categories; data grids and

computational grids which are described briefly below:

1. Computational Grids

 A computational grid aggregates the processing power of a distributed collection

of heterogeneous systems [5]. In this category, the emphasis in Grid infrastructure is

given on the computation. A large computing problem is divided into sub-problems

and then solved over the nodes of the grid independently. Large scale problems in

Science and Engineering are being solved on the computational grid. The computing

environment of a computational grid provides a demand driven, reliable, powerful

and yet an inexpensive power for its customers [11]. Thus a computational grid

environment consist of one or more hardware and software enabled environments

that provide dependable, consistent, pervasive and inexpensive access to high end

computational capabilities [12].

01

2. Data Grids

 A data grid focuses on secure access to distributed, heterogeneous pools of data

[5]. In data grid, the emphasis is over the management of the data that is being held

in a variety of data storage facilities in geographically dispersed locations. The data

sources may be databases, file systems and storage devices. The grid must also

provide data virtualization services to satisfy various transparency issues e.g.

transparency for data access, integration, and processing. Security and privacy is

very important requirements of data in a grid system and is very complex [11].

2.2.4 Grid computing portals

 Web-based Grid computing portals, or Grid portals [13], have been established

as effective tools for providing users of computational Grids with simple, intuitive

interfaces for accessing Grid information and for using Grid resources [14].

 Grid middleware such as the Globus Toolkit provides powerful capabilities for

integrating a wide variety of computing and storage resources, instruments, and

sensors, but Grid middleware packages generally have complex user interfaces (UIs)

and Application Programming Interfaces (APIs). Grid portals make these distributed,

heterogeneous compute and data Grid environments more accessible to users and

scientists by utilizing common Web and UI conventions [15].

 Grid portals are now being developed, deployed, and used on large Grids

including the National Science Foundation (NSF), Partnership for Advanced

Computational Infrastructure (PACI) TeraGrid, the NASA Information Power Grid,

and the National Institute of Health (NIH) Biomedical Informatics Research Network

[15].

01

 The software used to build Grid portals must interact with the middleware

running on Grid resources. The portal software must also be compatible with

common Web servers and browsers/clients [15].

2.2.5 Grid-powered projects

 There are hundreds of computer grids around the world. Many grids are used for

e-science enabling projects that would be impossible without massive computing

power [16].

 Grid computing is changing the way the world is doing science, as well as

business, entertainment, social science and more. Below are a few examples of grid-

powered projects [16].

 The WISDOM project is using grid computing to speed the search for a cure

for malaria, a disease that affects millions of people all over the developed

world.

 MammoGrid is building a grid for hospitals to share and analyse

mammograms in an effort to improve breast cancer treatment.

 The MathCell project aims to create a grid-managed multi-purpose

environment for further research in biology and bioinformatics.

 The P12S2 project uses grid computing to learn more about the spread of

plant diseases.

2.3 Literature Review

 We have reviewed and studied several references, scientific papers and books

concerning grid computing and its related issues like volunteer computing and local

desktop grid. In this section we summarize the most important and relevant topics.

http://www.gridcafe.org/EN/grid-powered-project.html
http://wisdom.eu-egee.fr/
http://www.cems.uwe.ac.uk/cccs/project.php?name=mammogrid&menu=off
http://www.mathcell.ru/
http://www.pi2s2.it/

01

2.3.1. PC Grid Computing Environment In Higher Education Institutions:

 One of the recent researches in grid computing field was introduced by Bader

Ahmed Bader Ajrab in 2013 at Al-Quds University as a master thesis. It had stated

the importance of grid computing especially in high education institutions in

Palestine.

 Al-Quds Open University was chosen as a test bed of his research which focuses

on local PC grid computing. Since AlQuds Open University has a lot of

geographically distributed branches, reliable network communications and ample

resources available in computer labs, it is considered the most suitable environment

to be the test bed for local PC grid computing project [3].

 An overall study for Al-Quds Open university different branches was introduced.

This study encompasses the overall communication network, computer labs and

specifications of computers in these labs, in addition to the authentication and

authorization issues.

 A study for percentage of computer utilization was performed on computer labs

at Jerusalem and Bethany branches by running some programs that logs the CPU

utilization for some periods of time. The researcher found that” the average CPU

utilization doesn’t far exceed 10% for 90% of the time” [3].

 Finally, some real experiments to build a grid were performed in Jerusalem and

Bethany branches. These experiments used two middleware frameworks, which

BOINC and Alchemi. A detailed study of the operating system and the network

effect, in addition to the CPU utilization of grid computers is performed. This study

08

applied two times; one time using BOINC as a middleware and the other time using

Alchemi as a middleware.

 The result of the study proved that the computing resources at Al-Quds Open

University are not utilized well. Also it shows that the grid computing is very useful

to utilize these resources and fill the shortage of high performance supercomputers.

This thesis shows some experiments on grid only. In contrast, our work will focus on

the PPU environment.

 We will provide a study about the available computing resources in PPU and

the percentage of utilization of our resources. Then we will use one of the computer

labs to build our grid using specific middleware. The main difference between our

work and the previous one that he didn’t make any real or users’ computations, he

just made specific tests using specific projects to prove the grid functionality while in

our case we will provide a portal to upload user tasks to be executed on the grid.

2.3.2. How is grid computing different from the World Wide Web?

 Grid computing uses the Internet to help us sharing computer power, while the

Web uses the Internet to help us sharing information. Grid computing is making big

contributions to scientific research, helping scientists around the world to analyze

and store massive amounts of data [4].

 2.3.3. Grid versus volunteer computing

 Grid and volunteer computing are both forms of distributed computing and both

aims to utilize the CPU usage but the main difference is the type of computing

resources involved in the grid which leads to new other differences.

09

 In volunteer computing the available computing resources (such as processing

power and storage) are being donated by their owners; it is a matter of volunteering,

anyone can donate his own computer to be part of the volunteer grid by

downloading a special software for this purpose and it starts receiving jobs in its

idle time. While you're not using your computer, someone else is using it for their

research, perform simulations and otherwise contribute to some projects [17].

 In Grid computing, an organization (business, university, etc.) uses its existing

computers (desktop and/or cluster nodes) to handle its own long-running

computational tasks. This differs from volunteer computing in several ways [18]:

 The computing resources can be trusted; i.e. one can assume that the PCs

don't return results that are intentionally wrong, and that they don't falsify

credit. Hence there is typically no need for replication.

 There is no need for screensaver graphics; in fact it may be desirable to have

the computation be completely invisible and out of the control of the PC user.

 The deployment of middleware on clients is typically automated since the

resources are under your authorization.

 In volunteer computing trust between resource providers and users is

essential, especially when they don't know each other [19].

 In addition, volunteer computing systems must deal with problems related to

correctness [20]:

 Volunteers are unaccountable and essentially anonymous.

 Some volunteer computers occasionally malfunction and return incorrect results.

 Some volunteers intentionally return incorrect results or claim excessive credit

for results.

11

2.3.4. The University of Westminster desktop grid system

 The Centre for Parallel Computing at University of Westminster in UK built a

local desktop grid system that currently includes over 1500 laboratory PCs which

represents about half the total number of PCs in the university . These machines are

available for desktop grid computations whenever they are switched on but not

utilized by students for teaching or other purposes.

 The university is set over four main campuses and some additional smaller

locations in Central- and North-West-London each of them offering a variable

number of mainly windows based PCs for teaching purposes. The table below

summarizes the approximate number of machines offered by these locations and the

figure gives an overview of the geographical location of the campuses [21].

Fig. 2.4: Local PC Grid at the University of Westminister, Source [3]

10

 The periods of time when PCs are idle were employed to run computation-

intensive tasks for university researchers such as powerful simulation programs.

Researchers using the Westminster Local Desktop Grid have found that they can

shorten a typical execution time from weeks to hours.

 The desktop grid system implemented at the University of Westminster is

estimated to be equivalent, in raw computational power terms, to a £500,000 cluster

procurement or supercomputer. Also the grid keep evolved and improved with no

direct cost since the PCs themselves participated in the grid are continuously

replaced from existing budgets. In other words, old PCs are always replaced with

much better, higher performance ones, so the desktop grid always keep pace with PC

performance improvements with no direct costs while other installed clusters need to

be replaced or evolved on a three or four year cycle incurring all of the costs

associated with this [22].

2.4. Summary

 This chapter presented an overview of grid computing technology and its related

issues. In addition, we discussed some of previous grid-based projects and studies

and analyzed their results.

 From the above discussion we can conclude that organizations can create their

grids to match their special requirements and there is no fixed grid size can fit all

organizations.

 We can notice that there is no two grids are the same and each organization has

its own environment and resources. Thus, we want to study our case in Palestine

Polytechnic University (PPU) in order to be able to build our own suitable grid that

can give an indication about what can be done in future in order to enhance our

storage and computing capabilities.

22

Chapter Three

Project Management Plan

3.1 Overview

 This chapter states the project plan, which includes all the sets of project tasks in

addition to the project timeline. It also talks about the methodology of the work during

project implementation. Project methodology consists of two parts, the first part

introduces in general the steps of work flow in the project, and the second one states and

analyzes the available options that can be used to implement the project. In addition, this

chapter introduces some of project risks and an information sheet for each risk. Finally,

it includes an analysis to all the project components with their estimated costs, these

costs considered as the overall project cost.

3.2 Project Plan

 This section will contain two basic subsections which are sets of project tasks

and the project time line. These two subsections are stated as follow:

3.2.1 Sets of Project Tasks

- Communications And Meetings : 2 weeks

 We will meet different units in the university and listen to their

computational problems.

23

 We meet the computer center supervisors to get information about the

available resources and their specifications.

 We communicate with the scientific research deanship.

- Data Collection and Data Analysis: 4 weeks

 Data Collection:

 Identify the available computing resources.

 Determine the running time and workloads of these resources.

 Determine the buying, maintenance and periodic costs of these

 resources.

 Gather information about the underlying network.

 Data Analysis:

 Identify the mount of wasted (unutilized) computing powers

when the computers are idle or run with minimal tasks.

 Compute the utilization percent of our computing resources.

 Make sure that the underlying infrastructure can support the

grid.

 Make a comparison between the current situation and the new

one, supposing the grid computing is applied.

- Project Analysis And Design: 8 weeks

 Analysis task set

1) Review requirements that have been collected during the data

collection and analysis stages.

2) Refine the user scenarios

 Define all actors who deal with the grid.

24

 Represent how actors interact with the software.

 Extract the functions and features from the user scenarios.

 Review refined scenarios for completeness and accuracy.

3) Model the information domain (Data)

 Identify all major information objects.

 Define attributes for each information object.

 Determine the relationships between objects.

4) Model the functional domain(functions)

 How functions modify data objects.

 Refine functions to provide elaborative details.

 Describe each function and subfunction.

 Review functional model.

5) Model the behavioral domain(behavior)

 Determine events that cause behavioral changes within

system.

 Identify the states (modes) that the system goes through in its

response to particular event.

 Describe how an event causes the system move from one state

to another.

 Review the behavioral models.

6) Modeling the graphical user interface(GUI)

 Determine the GUI Layout and basic user interaction

requirements.

 Design task set:

1) Review all analysis models for completeness and consistency.

2) divide the analysis model into design subsystems

25

 Make sure the each subsystem is functionality cohesive.

 Design subsystem interfaces.

 Design appropriate data structures using the information

domain model.

3) Based on interface analysis, design user interface.

 Review GUI analysis done in analysis activity.

 Using user scenarios; specify action sequence.

 Create behavioral model of the interface.

 Define interface objects, control mechanism.

 Review the interface design and revise as required.

4) conduct component-level design

 Specify all algorithms at a relatively low level of abstraction.

 Refine the interface of each component.

 Define component level data structures.

 Review the component level design.

- Prepare The Environment : 2 week

 Choosing the suitable middleware software environment after

investigating the available ones.

 Setup the middleware and any other software on the server side and

on the resource computing involved in the grid.

- Middleware Investigation And Learning : 3 weeks

 Read the middleware software documentation

 Learn how to deal with middleware layer.

26

 Read more about grid computing and its implementation.

 Learn server programming.

- Project Implementation and coding: 10 weeks

1) Build architectural infrastructure

 Review the architectural design

 Code and test components that enable architectural infrastructure.

 Acquire reusable architectural patterns.

 Test the infrastructure to ensure interface integrity.

2) Build a software component

 Review the component-level design.

 Create a set of unit tests for the component.

 Code component data structures and interfaces.

 Code internal algorithms and related processing functions.

 Review code as it is written

 Look for correctness.

 Ensure that coding standards have been maintained.

 Ensure that the code is self-documenting.

3) Unit test the component

 Conduct all unit tests.

 Correct errors uncovered.

 Reply unit test.

4) Integrate completed component into the architectural infrastructure.

- Project Testing And Modification: 2 weeks

 Test all project components, and modify when detecting errors.

27

3.2.2 Time estimation (Gantt chart): The following figure shows the overall project

time estimation that starts from September of 2013 and continues to May of 2014.

3.3 project methodology

 Firstly, we will state the steps that will be followed to evaluate the project, and then

we will discuss the available options in the project.

3.3.1 Flow of the project work

 Firstly, we will evaluate the need of some facilities of PPU University to more

powerful computational resources. This will be done by making meetings with the staff

of these facilities.

 Secondly ,we will evaluate the utilization percentage of some resources in the

university labs during their work ,by installing some dedicated software programs to log

Figure 3.1: Project time line.

28

the CPU and memory usage at small scattered periods then we will averaging these

values to get a more general term that represents the usage percentage of these resource.

 Thirdly, we will study and make use of the previous studies to choose the most

suitable middleware to use in our project.

 Fourthly, we will use this middleware to build our grid on a sample of one or two

labs. Finally we will provide a portal that users can load there computational jobs

through. These jobs will be computed using the grid resources.

3.3.2 Options and analysis

 Middleware:

 Middleware provides the tools that enable the various elements to

participate in a grid. “The middleware layer is the brain behind a computing

grid” [23], there are many middleware frameworks that can be used, some of

them are:

 Berkeley Open Interface for Network Computing (BOINC):

according to reference [24] we state the following description about

BOINC:

- BOINC is a set of software modules that enable the use of

idle CPU cycles on a personal computer. It is an open source

middleware platform for PRC. It provides one of the most

powerful supercomputers in the world.

- BOINC is a client-server architecture: the server generates

tasks and distributes them to clients then collects their

results. The following figure shows BOINC architecture.

29

Figure 3.2: BOINC Architecture, Source [3].

 Entropia:

- Commercial product.

- Supports windows desktop grid system by aggregating

desktop resources into a single logical resource.

- Depends on a central job manager that administers various

desktop clients.

- Provides a centralized interface to manage all of the clients on

the Entropia grid.

This description stated according to reference [3].

30

 Distributed.net:

- Volunteer computing middleware.

- Focuses only on two specific projects.

- Its server code cannot be obtained and thus used for any other

projects [3].

 Grid MP:

- Commercial distributed computing software package.

- It is centralized architecture: a Grid MP Service represents the

manager. It accepts tasks from the user and schedules them on

the resources having Grid MP agents. The Grid MP agents

can be deployed on clusters. Grid MP agents receive tasks

and execute them on resources, advertise their resource

capabilities on Grid MP services and return results to the Grid

MP services [25].

 Alchemi .NET: according to references [26, 27] we stated the

following about Alchemi.

- Dedicated to build PC Grid projects.

- Layered architecture : as shown in Figure 3.2

- Alchemi follows the master-worker parallel programming

paradigm: central component dispatches independent tasks for

parallel execution to workers and manages them.

- Object oriented .NET programming environment.

31

Figure 3.3: Alchemi layer architecture, Source [23].

- It was shut down after 2006 means that support is currently

unavailable.

- Aneka is the successor of Alchemi: it is commercial package.

Alchemi.Net architecture is shown in the figure 3.3 below.

 All of the middleware frameworks that were stated previously are commercial

products except BOINC and Alchemi .NET that were free software packages. BOINC

provides many features that are related to our project.

 Operating system on the server machine:

 Windows.

32

 Linux.

 The choice between Linux and windows depends on the middleware

framework because different middleware frameworks show different

performance on different operating systems. In general Linux has an

advantage over windows which is providing more security levels.

Security is very important characteristic to the grid system.

 Grid hosts: lab PCs that will be used as computing resources of the grid.

 The grid hosts will be one of the labs of university. These labs may differ

in their utilization percentage and the performance of their machines in

addition to the availability and authorization issues.

33

 3.2.3 Risk Management

The following table states the risks that may arise during the project implementation.

 Each of these risks has its own risk information sheet that clarifies the risk and

show how to deal with it when happening. All of these sheets are shown in the following

tables:

Risks Category Probability Impact

Lack of experience Staff experience 70% critical

Going beyond Schedule (late delivery) Schedule risk 50% marginal

Lack of testing experience Performance risk 40% critical

Low staff productivity Schedule risk 35% marginal

Lack of training on tools Development environment 30% negligible

Loss of team member Staff size 20% critical

Inaccurate Cost estimations Cost risk. 15% Marginal

Table 3.1: Risk Management

34

Table 3.2: lack of experience information sheet.

Risk Information Sheet

Project Name < Grid Computing In PPU >

ID<risk id:PO1> lack of experience Identified<12-10-2013>

Impact< high> Risk Statement(Description)

Lack of experience with network management, security and web

programming may affect on the performance of the final software.

Probability<70%>

Context :

Subcondition1:

The system requires a high experience in network administration and management in

addition to Linux experience.

Subcondition2:

Also a good web programming experience is needed in this project.

Mitigation strategy

1- The team adequate training on website design and such programming language.

2- An intensive work on server and network configuration with Linux scripts to get

better experience which is very important to be able to build the grid.

Contingency plan and trigger

- Taking intensive training courses in network configuration and web

programming.

Status / date

<1-1-2014>: Mitigation steps initiated.

Originator: Muhammad Dwaib Assigned: Ibrahim Qdemat

35

Table 3.3: Late delivery information sheet.

Risk Information Sheet

Project Name < Grid Computing In PPU >

ID<risk id:PO2> Late delivery Identified<16-10-2013>

Impact<high> Risk Statement(Description)

The degree of uncertainty that the project schedule will be

maintained and the product will be delivered on time.

Probability<50%>

Context

Subcondition1: poor experience of time estimation may cause an unrealistic end date

Subcondition2: Ambiguity in the system requirements.

Subcondition3: A need to unavailable software.

Subcondition4: Lack of effective project team integration and project assembling

problems

Mitigation strategy:

1- Define the scope accurately.

2- Create a realistic and achievable schedule. Some level of risk analysis is required.

3- Analyze risks and adjust the schedule.

Contingency plan and trigger:

1- Abandon (give up) some additional features that does not affect the whole

system.

2- Increase the team productivity.

3- Evaluate the basic functional requirements of system.

Status / Date

<During first semester>: Mitigation steps initiated.

Originator: Ibrahim Qdemat Assigned: Muhammad Dwaib

36

Table 3.4: Lack of testing experience information sheet.

Risk Information Sheet

Project Name < Grid Computing In PPU >

ID<risk id:PO6> Lack of testing experience Identified<12-10-2013>

Impact< high> Risk Statement(Description)

This project may need to a good knowledge about quality

assurance to be able to track the system and find problems to

solve.

Probability<40%>

Context :

Subcondition:

Many tests may be required to examine the overall system performance and to detect

any problem that need to be solved.

Mitigation strategy

1- Take a help from experts of quality assurance.

Contingency plan and trigger

2- Offer the system to the quality assurance testers to help in problems detection.

Status / date

<10-10-2013>: Mitigation steps initiated.

Originator: Ibrahim Qdemat Assigned: Muhammad Dwaib

37

Table 3.5: low staff productivity information sheet.

Risk Information Sheet

Project Name < Grid Computing In PPU >

ID<risk id:PO3> low staff productivity Identified<14-10-2013>

Impact< high> Risk Statement(Description)

Project team may need longer time than expected to perform the

required work.

Probability<35%>

Context :

Subcondition1:

The project team may not be familiar with the project environment as fast as expected.

Subcondition2:

The project team may need to intensive efforts to be able to perform the work.

Mitigation strategy

- The team determine a period of time before the evaluation work start for training

on website design and network management on Linux operating systems to get

better experience which is very important to be able to build the grid.

Contingency plan and trigger

Taking intensive training courses in network management and web programming.

Status / date

<1-1-2014>: Mitigation steps initiated.

Originator: Muhammad Dwaib Assigned: Ibrahim Qdemat

38

Table 3.6: Lack of training on tools information sheet.

Risk Information Sheet

Project Name < Grid Computing In PPU >

ID<risk id:PO5> Lack of training on tools Identified<12-10-2013>

Impact< high> Risk Statement(Description)

To perform this project; team members may need to deal with

new tools which they don’t have any previous experience with.

Probability<30%>

Context :

Subcondition:

The system requires a good knowledge on dealing with many software tools, like some

middleware frameworks. The project team may need to work on some tools that never

deals with previously

Mitigation strategy

1- Try to identify all the needed tools in the project to take an experience courses

with these tools.

Contingency plan and trigger

2- Intensifies work on these tools with some experiments.

Status / date

<10-10-2013>: Mitigation steps initiated.

Originator: Ibrahim Qdemat Assigned: Muhammad Dwaib

39

Table 3.7: Loss of team member information sheet.

Risk Information Sheet

Project Name < Grid Computing In PPU >

ID<risk id:PO4> Loss of team member Identified <12-10-

2013>

Impact< high> Risk Statement(Description)

The team consists of two students only, so any loss of members

will be so critical.

Probability<20%>

Context :

Subcondition:

This project may need three members to be manipulated well. Since the team members

are two only so they have to work intensively to evaluate this project correctly, and any

loss of project team may cause unexpected results on the project.

We have two types of loss of team member :

1- Temporary absent which may come from illness or any other causes.

2- Permanent absent which may come from death.

Mitigation strategy:

 Really this type of risk doesn’t have any mitigation strategies.

Contingency plan and trigger:

- Permanent absence:

 Refine the project scope.

- Temporally absence:

 Try to work overtime and intensively to perform the work.

Status / date

<1-1-2014>: Mitigation steps initiated.

Originator: Muhammad Dwaib Assigned: Ibrahim Qdemat

40

Table 3.8: Inaccurate cost estimations information sheet.

Risk Information Sheet

Project Name < Grid Computing In PPU >

ID<risk id:PO7> Inaccurate cost estimations Identified<12-10-2013>

Impact< high> Risk Statement(Description)

Cost estimations may be determined inaccurately.
Probability<15%>

Context :

Subcondition1:

Lack of experience on costs estimations or an ambiguity in the required components may

lead to inaccurate project estimation.

Mitigation strategy

- Try to clarify all of the project requirements.

Contingency plan and trigger:

- Search for free alternatives.

- Search for financial support.

Status / date

<10-10-2013>: Mitigation steps initiated.

Originator: Muhammad Dwaib Assigned: Ibrahim Qdemat

41

3.4 Project components and resource cost estimations

 This project aims to operate a grid computing system with minimal costs. Basically

the cost is represented by three aspects, which are the hardware components, software

components and human resources. These components are stated in the following

subsections.

3.4.1 Hardware Components

Grid computing consists of basic HW components that represented as:

- Computational and storage resources:

 Grid server: a certain computer will work as a grid server, it is cost will be

approximately 1000$. No need to use a dedicated hardware server in this

project.

 Grid clients: These are all the computers in the labs that will participate in

the grid system.

- Communication:

 Network: The network will connect the different components of the grid

together.

These components are summarized in the following table:

Table 3.9: Hardware Components.

Component Price

Grid server 1000$

Grid clients Available

Network Available

42

3.4.2 Software components

- Middleware: as stated previously there are many options of middleware frameworks

to work on, the preferred middleware is the free one. So the software components

may also have no costs.

- PHP editor: for web page design.

- Mysql DB server: to build the needed DB for the project.

- Apache server: which is http server used to generate web pages as a response for

users requests.

These components are summarized in the following table:

3.4.3 Human resource costs

- The team of this project consists of two under graduation computer system

engineering (CSE) students.

Table 3.10: Software Components.

Component Price

Ubuntu 12.04 Linux distribution Free

Middleware Free

PHP editor Free

MySQL DB server Free

Apache server Free

Shell scripting Free

43

3.5 Summary

 In this chapter we defined all the project task sets then we generated the project

Gantt chart. We briefly described how the work will goes during the project

manipulation, and then we stated the available options to use in the project

implementation. Some of project risks was stated and analyzed. Finally, we define all

the components that are needed for the project evaluation in addition to the costs

estimations.

44

Chapter Four

 Software Requirements Specification

4.1 Overview

 In this chapter we clarify the system requirements by identifying the possible actors

and their expected interactions with the system. Scenarios and use-case diagrams are used

to describe the system actors and their interaction with the system. This chapter also

presents the class responsibilities collaborator modeling that contains the functions and

attributes of each class and it's helping classes. Finally, it states the hierarchies of classes

and their relationships.

4.2 Requirements Description

 In this section we show all possible system's actors and describe the system

requirements in terms of scenarios and use-case diagrams.

4.2.1 System Actors

 There are four possible actors. Here we briefly describe them:

 Grid Administrator :

This is the person that has the absolute control over the grid system and its

resources. He manages, maintains and monitors the grid and its overall

functionalities.

 Grid User :

This is the end user of the grid system who can log into his account and

upload his jobs that is to be performed on the grid resources and download results

45

back. He also can delete the results, abort jobs execution and modify his account

information.

 Grid System :

This is the main actor, consists of the middleware and the configurations

to evaluate the system. It is responsible about utilizing available resources,

scheduling jobs and monitoring their execution, validate results and prepare them

for download.

 Grid Client :

This represents the computer machines at the computer labs. These

machines will not be involved in decision making; they are forced to perform

submitted jobs in their idle time and return the results back.

4.2.2 Use-case templates

 The interaction between the possible actors and the grid system can be clarified using

expected scenarios; here we provide all expected scenarios that will be initiated by the

system actors.

Grid administrator:

There are eight use-cases that are initiated by the grid administrator. These use-cases are:

1- Creating/deleting projects.

2- Adding/deleting users.

3- Attaching/deleting resources.

4- Updating resources.

5- Stopping/starting/restarting project.

6- Modifying user information.

7- Managing computing preferences.

8- Monitoring project status.

46

Analysis for each use-case:

Each use-case analyzed by use-case template as follow:

Table 4.1: Creating/deleting project use case template.

Use case template for creating/deleting project:

Use case:

- Creating/deleting projects.

Primary actor:

- Administrator.

Goal:

- Adding new project or deleting an existing one.

Precondition:

- Verifying the administrator authenticity.

Trigger:

- Administrator clicks on delete button.

Scenario:

- Creating project: Administrator login to the system, goes to project creation part, enter the

project name, select the project type and finally click on create project button.

- Deleting project: Administrator login to the system, select one of project at the system, click on

delete button.

Exception:

- Connection loses during the process.

47

Use case template for Adding/deleting user:

Use case: Adding/deleting users.

Primary actor: Administrator.

Goal:

- Adding a new user to the grid-users.

- Or deleting a specific user from the grid-users.

Precondition:

- Verifying the administrator authenticity.

Trigger:

- Select adding a new user, or select one user to delete.

Scenario:

- Adding new user: A specific request for adding or deleting user received by the

administrator, admin enters the user information and click add button.

- Deleting user: Administrator select a user and click on delete button.

Exception:

- Losing connection during process.

Table 4.2: Adding/deleting user use case template.

48

Use case template for Attaching/deleting resource:

Use case: Attaching/deleting resources.

Primary actor: Administrator.

Goal:

- Attaching a resource to a project.

- Or deleting a resource from serving a project.

Precondition:

- Verifying the administrator authenticity.

Trigger:

- Administrator decides to add or remove some resources from serving the project.

Scenario:

- Admin select a project

- Enters the resource IP address.

- Click on attach/delete button to attach or delete the resource.

Table 4.3: Attaching/deleting resource use case template.

49

Table 4.4: Update resource use case template.

Use case template for Update resource :

Use case: Update resource.

Primary actor: Administrator.

Goal:

- Refresh the connection between the resource and the project.

Precondition:

- Verifying the administrator authenticity

Trigger: Administrator select update resource function.

 Scenario:

- Administrator logs into the grid portal.

- Select a project.

- Enter the resource IP address.

- Click on the update function.

50

Table 4.5: Stopping/starting/restarting project use case template.

Use case template for Stopping/starting/restarting project:

Use case: Stopping/starting/restarting project.

Primary actor: Administrator.

Goal:

- Control the project status.

Precondition:

- Verifying the administrator authenticity.

Trigger:

- Administrator select stop/start/restart function.

Scenario:

- Admin select a project

- Click on the button start to start running a stopped project.

- Click on the button stop to stop running a project.

- Click on the button restart to restart the project running; needed for the cases when

some diamonds are stopped while the project is running.

51

Table 4.6: Modifying user information use case template.

Use case template for Modifying user information :

Use case: Modifying user information.

Primary actor: Administrator.

Goal:

- Modify user information.

Precondition:

- Verifying the administrator authenticity.

Trigger:

- Select a specific user to modify his information.

Scenario:

- Admin show system users.

- Select one of them.

- Show his information.

- Modify the information and clock on update information button.

52

Table 4.7: Managing computing preferences use case template.

Use case template for Managing computing preferences:

Use case: Managing computing preferences.

Primary actor: Administrator.

Goal:

- Control the resource usage of CPU, memory and other preferences.

Precondition:

- Verifying the administrator authenticity.

- Verifying the project account authenticity.

Trigger:

- Administrator selects computing preferences.

Scenario:

- Admin select a project

- Click on the computing preferences link.

- Modify the computing preferences and click on save button.

53

Grid-user:

Grid-user is responsible about initiating some use-cases in the system. These use cases

are:

1- Upload a new job.

2- Monitor jobs execution status.

3- Abort jobs while it is in progress state.

4- Download the results of completed jobs.

5- Delete the results of completed jobs.

6- Modify account information.

Analysis for each use-case using use-case template:

Table 4.8: Monitoring project status use case template.

Use case template for Monitoring project status :

Use case: Monitoring project status.

Primary actor: Administrator.

Goal:

- Monitor the project status.

Precondition:

- Verifying the administrator authenticity.

Trigger:

- Administrator click on the project status link.

Scenario:

- Admin select a project

- Click on the project status link.

54

Table 4.9: Upload a new job use case template.

Use-case template for Upload a new job:

Use case: Upload a new job.

Primary actor: User.

Goal: uploading new job for execution on the grid system.

Precondition: Verifying the user authenticity.

Trigger: a user open Job Submission page to submit a new job.

Scenario:

1- A user open job submission page.

2- A user selects a job for uploading from his device.

3- A user selects the platform for executing the job.

4- Enters any arguments if needed by the executed job.

5- Click on upload button.

Exception:

- A user selects invalid job type for submission.

- A user doesn’t select the platform.

55

Table 4.10: Monitor jobs execution status use case template.

Use-case template for Monitor jobs execution status:

Use case: Monitor jobs execution status.

Primary actor: User.

Goal:

- Monitoring jobs execution status.

Precondition: Verifying the user authenticity.

Trigger:

- User login to the system.

- User goes the home page.

 Scenario:

1- A user login to the home page.

2- All uploaded jobs displayed at this page with their status.

56

Table 4.11: Abort jobs while it is in progress state.

Use-case template for Abort jobs while it is in progress state:

Use case: Abort jobs while it is in progress state.

Primary actor: User.

Goal: Aborting job execution.

Precondition:

- Verifying the user authenticity.

- A user has a job in the progress status.

Trigger: A user click on abort button.

 Scenario:

1- User enters to the portal.

2- Show all his jobs.

3- Click on abort button for one of in progress status job.

Exception:

- Display the status in progress for a job having a status not in progress; since the page is not

updated such that the real status of the job is changed and the effect doesn’t appear yet on the

portal.

57

Table 4.12: Download the results of completed jobs.

Use-case template for Download the results of completed jobs

Use case: Download the results of completed jobs.

Primary actor: User.

Goal: Download the results of completed jobs.

Precondition:

- Verifying the user authenticity.

- A user has a result for his uploaded job.

Trigger: A user click on download link.

 Scenario:

4- User enters to the portal.

5- Show all his jobs.

6- Click on download link for a job result.

Exception:

- Result folder was deleted by the system or the server admin.

58

Table 4.13: Delete the results of completed jobs.

Use-case template for Delete the results of completed jobs

Use case: Delete the results of completed jobs.

Primary actor: User.

Goal: Delete the results of completed jobs.

Precondition:

- Verifying the user authenticity.

- A user has a result for his uploaded job.

Trigger: A user click on download link.

 Scenario:

7- User enters to the portal.

8- Show all his jobs.

9- Select jobs for deletion.

10- Clock on delete button.

Exception:

- Result folder was deleted by the system or the server admin.

59

Grid System:

There are four use-cases that are initiated by the grid system actor. These use-cases are:

1- Generating instance of job.

2- Sending instance to a client.

3- Validating results.

4- Preparing results for download by users.

Analysis for each use-case:

Each use-case analyzed by use-case template as follow:

Table 4.14: Modify account information.

Use-case template for Modifying account information.

Use case: Modify account information.

Primary actor: User.

Goal: Modify account information.

Precondition:

- Verifying the user authenticity.

Trigger: A user goes to "my Account" page.

 Scenario:

11- A user enters to the portal.

12- Goes to "my account" page.

13- A user modifies his account information.

14- Click on modify information button.

60

Table 4.15: Generate instance of job use case template.

Use case template for Generate instance of job :

Use case:

- Generate instance of job.

Primary actor:

- System.

Goal:

- Generate instance of job for executing on one of the computing resources.

Precondition:

- Valid executable job submitted by one of the grid users.

Trigger:

- Job is submitted by user.

Scenario:

- System handles a new submitted job or handles fail of the previous instance of the job.

- System generate instance of the job for execution on one of the computing resources.

Exception:

- Lose the result before arriving to the server. The job will fall in the status "in progress on host…".

The solution here is just aborting the job by the user and submits the job again.

61

Table 4.16: Send instance to a client use case template.

Use case template for Send instance to a client:

Use case: Send instance to a client.

Primary actor: System.

Goal:

- Send the job instance for execution on a client.

Precondition:

- Valid executable job submitted by one of the grid users.

- System generated an instance of the job for sending to a client.

Trigger:

- New instance of the job is available at the system.

Scenario:

- System handle new instance of the job waiting to submit to a client for execution.

- System selects the available client and sends the instance to.

Exception:

- No clients are currently available.

- No client has the suitable platform to execute the job.

62

Use case template for Validate results:

Use case: Validate results.

Primary actor: System.

Goal:

- Check the validity of the results.

Precondition:

- Job is executed by one of the clients or aborted while executing.

Trigger:

- Client uploads results of execution of the Job.

Scenario:

- Job is executed by a client.

- A connection between the client and server is activated.

- Result is uploaded.

- System checks the validity of the results by a pre-determined mechanism.

Table 4.17: Validate results use case template.

63

Grid Client:

This actor has the Job execution scenario.

 Job-Execution :

 When a job is to be executed the grid client machine and the grid server are

involved in this process. They cooperate with each other to achieve the job.

The following template shows how the scenario happens:

Table 4.18: Prepare results for download by users.

Use case template for Prepare results for download by users :

Use case: Prepare results for download by users.

Primary actor: System.

Goal:

- Prepare the result for download by the user.

Precondition:

- Job execution is completed.

Trigger: a user requires downloading the completed job.

 Scenario:

- A user logs into the grid portal.

- Select a completed job for download.

- System does the appropriate compression mechanism to prepare the job for download.

64

Table 4.19: Job Execution use case template.

Use case template for Job Execution:

Use case: Job Execution.

Primary actors: Grid Client, Grid System (Server).

Goal:

- Executing an uploaded job on one of available computing resource (machine).

Precondition:

- The Job is submitted to the project and its associated input and output files are determined so the

project is ready to execute.

Trigger:

- Job is added to a running project.

- It is on the top of the server scheduler.

 Scenario:

- The unutilized Grid Client (computer machine) gets a set of tasks from the project's scheduling

server.

- Grid Client downloads executable and input files from the project's data server.

- Grid Client runs the application programs (jobs), producing output files.

- Grid Client uploads the output files to the data server.

- After a period of time the grid client reports the completed tasks to the scheduling server, and

gets new tasks.

- This cycle is repeated indefinitely while project running.

65

4.2.3 Use-case Diagrams

 This subsection clarifies the interaction between actors and the grid system, as shown in

figures below.

Figure 4.1: Admin use-case diagram.

66

 Figure 4.2: User use-case diagram.

67

Figure 4.3: system and client use-case diagram.

68

4.3 Class-Responsibility-Collaborator Modeling (CRC)

 This section identifies the classes required in the project implementation. Also, it

provides a simple mean about the functionality of each class, and the class relationships.

All the classes are represented using CRC modeling as follow:

1) DBConnection class:

Class : DBConnection

Description: this class has the responsibility of creating and managing connections with DB's.

Responsibility: Collaborator:

Setting the connection with DB following

to a specific user at a specific server.

ProjectCreation class.

ProjectManagment class.

UserCreation class. Getting a DB connection.

2) ProjectCreation Class:

Class : ProjectCreation

Description: this class has the responsibility of creating different types of projects.

Responsibility: Collaborator:

Generate the form to enable the admin

enter the inputs needed for project creation.

DBConnection class.

Validate the project name.

Create project.

Table 4.20: DBConnection CRC.

Table 4.21: ProjectCreation CRC.

69

3) ProjectManagment Class:

Class : ProjectManagment

Description: this class has the responsibility of managing the grid system project.

Responsibility: Collaborator:

Stop project. DBConnection class.

Start project.

Restart project.

Attach clients.

Delete clients.

Update client.

Validate IP.

Delete project.

Generate the form.

4) UserCreation class:

Table 4.22: ProjectManagment CRC.

Table 4.23: UserCreation CRC.

Class : UserCreation

Description: this class has the responsibility of providing the functionality for adding

new users to the system.

Responsibility: Collaborator:

Generate the form to enable adding new

users.

DBConnection class.

Validate the new user name.

Validate the new user email.

Validate the new user password.

Adding the new user.

70

5) JobSubmission class:

Table 4.24: JobSubmission CRC.

Class : JobSubmission

Description: this class has the responsibility of providing the functionality for

submitting new jobs.

Responsibility: Collaborator:

Generate the form to enable submitting

new jobs.

DBConnection class.

Validate the type of the job folder.

Check all inputs.

Uploading the job folder.

Extracting the folder.

Submitting job to a specific project.

Adding the job to the DB

71

4.4 Class Hierarchies and relationships

 This section shows the relations between classes using class hierarchy and

relationship diagram as shown in figure 4.4:

More details about this section will be discussed in chapter five.

Figure 4.4: Class Hierarchies and relationships diagrams.

72

4.5 Summary

 System requirements were introduced in this chapter by defining system actors, use-

cases templates, use-cases diagrams, CRC modeling and the class hierarchy and

relationship. System actors defined as four basic actors, those actors are: Administrator,

User, System and Grid Client (computing resource). All scenarios that may occur

introduced in the use case templates. Each actor can initiate some of use-cases which

clarified in use-case diagrams. At CRC modeling we define five classes which are

system, resources, projects, jobs generator and result handler. Finally, class hierarchy and

relationship clarify the relations between the classes in the system.

73

Chapter 5

Software design description

5.1 Overview

 This chapter describes the overall system design. It describes the lower level of the

system which is the BOINC middleware, then it goes in more details in describing the

higher level of the system.

5.2 BOINC Middleware

 Berkeley Open Interface for Network Computing (BOINC) is an open source

middleware platform. BOINC has been developed by a team based at the Space Sciences

Laboratory (SSL) at the University of California, Berkeley led by David Anderson, who

also leads SETI@Home. SETI@HOME tries to fine extraterrestrial life by analyzing

radio signals [29].

 BOINC is designed to be a free structure for anyone wishing to start a volunteer

computing project. It is a set of software modules that enable the use of idle CPU cycles

on a personal computer to do scientific computing.

 BOINC is the most popular desktop grid systems today with the aggregated

computational power of more than 2,576,332 participants is about 8,361.840 Teraflops,

thus providing one of the most powerful ―supercomputers in the world [30, 31].

5.2.1 BOINC Architecture

 The structure of BOINC is simple. BOINC follows the client-server architecture;

the server generates work units (WUs), distributes them to clients and collects their

http://en.wikipedia.org/wiki/Space_Sciences_Laboratory
http://en.wikipedia.org/wiki/Space_Sciences_Laboratory
http://en.wikipedia.org/wiki/University_of_California,_Berkeley
http://en.wikipedia.org/wiki/David_P._Anderson

74

Figure 5.1: BOINC architecture [3].

results. Each PC, acting as a client, communicates with the server to get WUs which

include executables and input files and return results of computation, BOINC is not peer-

to-peer; the clients do not communicate with each other [32]. These components are

shown in Fig. (5.1) and are explained below.

5.2.2 BOINC Server

 BOINC server runs on Linux and uses Apache, PHP, and MySQL as a basis for its

web and database systems, which easily scales to projects of any size. BOINC server

consists of the following components:

 Web interfaces: uses Apache web server and PHP, for user account and team

management, message boards, current server status, and other features.

 The task server: creates tasks, posts them to clients, and processes returned

tasks.

 The data server: downloads input files and executables, and uploads output file,

uses HTTP protocol.

75

Figure 5.2: BOINC Client.

5.2.3 BOINC Client

 Four components construct the BOINC client: core client, manager, screensaver, and

command line tool. These components are shown in Fig. 5.2 below.

1- The core client takes care of scheduling among jobs from different projects,

possibly preempting jobs, downloading and uploading results to the different

projects to which it is attached [1].

2- BOINC manager enables control over the core client via user preferences. Some

of these preferences are project specific and some are not. As a project specific

preference the user can set a minimum and a maximum amount of work the client

should keep on the computer for the given project [1].

3- The screensaver displays application specific graphics as a screensaver just to

attract and entertain volunteer users in the first place [1].

76

4- BOINC command tools provide non-GUI version of BOINC manager [1]. The

client is available for Windows and Linux on Intel x86 architectures, for Mac OS

X on PowerPC, and Solaris on Sparc architectures, but since it is open source it

should not be too difficult to get it running on other platforms as well.

5.2.4 BOINC Database

 A MySQL database stores all information relevant to the BOINC project. This

includes information about registered users and their associated hosts, about applications

and application versions, about BOINC core clients and the versions involved and of

course about WUs and their associated results. Basically the entire state of the server is

stored in this database and queried by among others the above mentioned daemons [1].

5.3 System configuration design

 This section includes a description for installing BOINC server software, creating

and running a BOINC Project and deploying BOINC clients.

5.3.1 Installing BOINC Server Software

 This involves setting up BOINC software, and other required open-source

software, on a Linux computer. The software requirements installation process is

shown in figure 5.3.

77

Figure 5.3: Installing BOINC Server Software.

1. Hardware

 For experimentation and debugging, you can use almost any computer as a BOINC

server. For better performance, availability, and security, the server needs the

requirements [54]:

 The Internet connection should have adequate performance and reliability. The

server must have a static IP address.

 The server should have good CPU speed (dual Xeon or Opteron), at least 2 GB of

RAM, and at least 40 GB of free disk space. For a high-traffic project, use a

machine with 8 GB of RAM or more and 64-bit processors.

 Other requirements to make it highly reliable (UPS power supply, RAID disk

configuration, hot-swappable spares, temperature-controlled machine room, etc.).

78

2. Operating System installation:

BOIC server runs almost on any up-to-date UNIX or Linux variant machine so we

can use for example Ubuntu Linux distribution.

3. Network configuration:

The server should be given a static IP out of the range of IPs available in the

university.

4. BOINC Server Dependencies Installation:

BOINC server needs the following components and prerequisites to run:

 make 3.79+, m4 1.4+, libtool 1.5+

 autoconf 2.58+, automake 1.8+, GCC 3.0.4+ pkg-config 0.15+

 Python 2.2+ with MySQL DB module 0.9.2+

 MySQL 4.0.9 or higher (with mysql-dev(el), and mysql-client)

 SQLite 3.1 or higher (packages sqlite-dev(el) and SQLite)

 Apache web server with mod_ssl and PHP5+

 PHP5 with cli support and the GD and MySQL modules (packages php5-cli and

php5-gd)

 OpenSSL version 0.9.8+

5.3.2 Creating And Running A BOINC Project

 A BOINC project is the environment under which the grid application runs.

Project creation block diagram is shown in figure 5.4.

79

 Template Files for applications

 In order to run the application, its input and output files must be described via

XML template files; commonly these are called workunit.xml and result.xml. The

former describes the application and its input data while the latter describes the output

data and the process which occurs once the application has executed. Template files

must reside in the projectName/templates/ directory.

1. A Typical Workunit (Input) Template

<input_ template>

<file_ info>

 <number>0</number>

Figure 5.4: Creating And Running A BOINC Project.

80

</file_ info>

<file_ info>

 <number>1</number>

</file_ info>

<workunit>

 <file_ ref>

<file_ number>0</file_ number>

<open_ name>in_data1.txt</open_name>

 <file_ ref>

 <file_ ref>

<file_ number>1</file_number>

<open_ name>in_data2 . txt</open_name>

 <file_ ref>

</workunit>

</ input_template>

 This input template specifies that there are two input files called in_data1.txt and

 in_data2.txt. If an input file has been specified in the input template, this must be

manually placed in the download directory before starting the project. The XML

components above have the following meanings:

file_ info: specifies the number of input files.

workunit: defines a unit of work. In this case, the executable only has two input files,

hence the executable and the two input files can then be passed to the client and run.

file_ref: provides a reference to the file entered between the open_name tags.

81

Others XML descriptors can be entered dependent on the application resource

requirements. These can be found at references [33, 34].

2. A Typical Result (Output) Template

<output_template>

<file_ info>

 <name><OUTFILE_ 0/></name>

 <generated_ locally />

 <upload_when_present />

 <max_nbytes>5000</max_nbytes>

 <url><UPLOAD_URL/></url>

</ file_ info>

<result>

 <file_ ref>

 <file_ name><OUTFILE_0/></ file_ name >

 <open_ name>out . txt</open_name>

 </file_ ref>

</result>

</output_template>

 This output template describes the result of the application, specifies the unique

name of the output file out.txt and that it is generated on the client and does not have

to be downloaded. When present, it is automatically uploaded to the BOINC server

and must not exceed the 5000 byte limit else it will fail to upload. The XML

components above have the following meanings:

82

file_ info: provides information of the resulting output file.

name/OUTFILE_0: gives the output file the unique name of workunitName_N.

generated_locally: indicates that the file will be generated on the client, rather than

downloaded.

upload_when_present: indicates that the file should be uploaded when the

application finishes.

url/UPLOAD_URL: this is replaced with the upload URL.

max_nbytes: if the output file is larger than this, an error will occur and it will not be

uploaded.

file_ref: references the file and gives it a unique name related to the project and

workunit identifier.

More information about the output file and the complete list of XML descriptors can

be found at references [33, 34].

5.3.3 Deploying BOINC Clients

 The last part in the installation process after setting up BOINC server and

preparing the project to handle jobs, is installing BOINC client software in computer

labs. Figure 5.5 shows a block diagram for the deployment process:

83

 For the PPU campus environment, the BOINC client must be deployed to meet the

following requirements:

 The BOINC Client must run all the time (even when no one is logged in).

 Project attachment must be automatic.

 BOINC manager must be disabled: no user intervention is required in client

configuration (the student cannot attach to or disconnect from a project, cannot

create a new user, or start/stop/pause/exit the BOINC client).

 Screen saver must be disabled: no screensaver is needed because it looks strange

for students, they may think the PC is occupied/busy and choose not to use it.

 To insure security, no internet connection is required for the BOINC client since it

runs within the university's LAN.

 For a large number of PCs, deployment must be performed automatically, not

manually.

Fig. 5.5: Deploying BOINC Clients.

84

 After deploying server and client software and attaching the clients to the created

project, the project is now ready to send work units to clients and receive results back

from them.

5.4 Object relational model and object design

The system has five basic software objects that are:

 DBConnection: manages the connection with the system DB's. all the

other classes have the "access to" relation as shown in the class hierarchy

in chapter 4.

 ProjectCreation: provides the functionality for project creation.

 ProjectManagmant: provides the functionality for project management.

 UserCreation: provides the functionality for adding new users to the grid

system.

 JobSubmission: enable users submitting jobs.

The following tables show more details about the functionality of each class.

85

Table 5.2 ProjectCreation class.

DBConnection

setDBServer(){

set the IP address of the DB server;

}

setDBUser(){

set the DB account username;

}

setDBUserPassword(){

set the password of the user account;

}

setDB(){

set the DB;

}

getDBConnection(){

return a connection to the DB specified;

}

Table 5.1: DBConnection class

ProjectCreation

getForm(){

return html code, represent a form to enable project creation

}

validateName(){

return boolean value based on the name entered for the project

to be created.// project name may be a combination of

letters,digits and //underscore or one of them.

generate error massages for invalid inputs.

}

createProject(){

add the project to grid_system DB;

execute the appropriate shell script that perform the project

creation process;

}

86

Table 5.3: Project Management class.

Project Management

getForm(){

return html code, represent a form to enable project management functions}

attachClient(){

call the validateIP function to check the validity of the entered IP address;

add the client who has the entered IP address to the computing resources that serve the

project;

generate error massages in the case of invalid IP address format;

}

deattachClient(){

call the validateIP function to check the validity of the entered IP address;

delete the client who has the entered IP address from the computing resources that serve

the project;

generate error massages in the case of invalid IP address format;

}

stopProject(){

execute the shell script stopProject.sh;// stop all project diamonds

modify the project status to not running status;

}

startProject(){

execute the shell script startProject.sh;// start all project diamonds

modify the project status to running status;

}

restartProject(){// needed at the case when some diamonds are stopped working.

execute the shell script restartProject.sh;// restart all project diamonds

modify the project status to running status;

}

deleteProject(){

execute the shell script deleteProject.sh;// delete the project directory and //DB

delete the project from grid_system DB;

delete the project name from users following to this project;

}

validateIP(){

return Boolean value based on the entered IP address;//entered IP must match with the

//correct IP address format

generate error massages for invalid inputs.

}

87

Table 5.4: User Creation class.

UserCreation

getForm(){

return html code, represent a form to enable adding new users;

}

validateName(){

return boolean value based on the name entered for the new user;// project name may be

a combination of letters,digits and underscore or one of them.

generate error massages for invalid inputs.

}

validateEmail(){

return Boolean value based on the email entered for the new user;//email //must match

with the correct email format.

generate error massages for invalid email format or in the case that the entered email is

used by a user in the grid_system;

}

addUser(){

//in the case of valid inputs:

add a new user to the grid_system DB having the information entered;

create a directory for the new user;// to enable uploading the user jobs inside that

//directory

}

88

Table 5.5: JobSubmission class.

5.5 System functionalities

This section describes the system functionalities and how they are processed.

System functionalities are classified as admin side functionalities, user side

functionalities, and system functionalities. Admin side functionalities include project

creation, project management, adding users to the system, and users’ management. User

side functionalities include submitting new jobs, monitoring jobs execution status,

downloading results, deleting results, and aborting jobs execution. System functionalities

handle managing the system at the lower level.

JobSubmission

getForm(){

return html code, represent a form to enable submitting jobs;

}

validateInputs(){

check that all inputs are set;

check the type of selected file to upload;// it must be one of compression types

return a Boolean value based on these parameters;

}

uploadFolder(){

upload the selected file to a specific folder;

}

extractFolder(){

extract the uploaded folder;

}

submitJob(){

submit the job to a specific project;

add the job to DB;

}

89

5.5.1 Admin side functionalities

Admin can create or delete projects, mange projects, add or delete users, and

manage users.

Project creation:

Creating a BOINC project is done as shown in the flowchart below.

Figure 5.6: Project creation.

dispaly form

enter name,

select type

validate inputs
display error

massage

invalid

inputs

create project

create account

to add resources

disable account

creation

end

valid inputs

start

90

Project management:

Project management includes attach resources, delete resources, start, stop or

restart project, disable or enable account creation, and project deletion. The following

flowcharts describe these functionalities.

Figure 5.7: stopping/starting/restarting project.

dispaly form

select choice

stopping

project
starting project

start

end

stop

restarting

project

restart

update project

status

start

91

Figure 5.8: attaching/detaching client to a BOINC project.

dispaly form

set resource

IP

validate IP
display error

massage

invalid

IP

attach/deattach

resource

valid IP

end

start

92

Figure 5.9: disable/enable account creation.

93

User creation and management:

 Adding new user to the system is done as described in the figure below.

Figure 5.10: adding new user to a BOINC project.

dispaly form

set inputs

validate inputs
display error

massage

invalid

inputs

add user to DB

create directory

for new user

end

valid inputs

start

94

Managing users is done by enabling the modification of some important

information of the user, like moving the user from one project to another, or even by

deleting the user.

Figure 5.11: Users management.

display all

users

select a user

select choice

read inputs

modify

informatio

n

modify user

information

delete user

directory

delete

user

delete user

from DB

end

start

95

5.5.2 User side functionalities

Users can submit jobs, monitor execution status, abort jobs, download results,

delete results and modify their account information.

Job submission:

 Job submission is done as in figure 5.11.

Figure 5.12: job submission.

select file

and platform

validate inputs

upload job

folder

valid inputs

extract job

folder

submit to

project

display error

massage
invalid inputs

display

submission form

end

start

96

select job

status

being

assimilated

completed

display all

submitted jobs

select choice
downloadcompress

result folder

download

result

delete

delete result

directory

delete DB entry

that points to the

job

choice
in progress

do nothing
do nothing

aborting job

abort

start

Jobs management:

Jobs management includes monitoring execution status, aborting jobs while

execution, downloading results of completed jobs, and deleting the results.

Figure 5.13: jobs management.

97

5.5.3 System functionalities

System needs to perform some functions automatically as a response for some

functions from the higher level. Functions that are purely initiated by the system exist at

the job execution stage. This stage described below.

Job execution:

As stated in chapter four; job execution is initiated by the system, while the

overall process of the job execution is done by the cooperation between the server and the

client. Figure below clarifies the process of job execution.

Figure 5.14: Job Execution.

98

5.6 Software interface design

This section describes user interfaces that will be implemented to enable the

interaction between the system and grid users.

The About page interface:

Figure 5.15: The About Page.

99

Contact page interface:

Figure 5.16: Contact page.

100

Login page intrface:

Figure 5.17: Login Page Interface.

101

Admin home page interface:

Figure 5.18: Admin home page interface.

102

Users page interface:

Figure 5.19: Users page interface.

103

Project management page interface:

Figure 5.20: Project management page interface.

104

Modify user information page interface:

Figure 5.21: Modify user page interface.

105

Job submission page interface:

Figure 5.22: Job submission page interface.

106

Modify account information page:

Figure 5.23: modify account page interface.

107

5.7 Data Base Design

 The controlling DB named grid_system and has the ERD as in figure 5.22. This

DB manages the overall system since it is project independent; it connects all projects

together, stores all users of different projects, and manages the users’ jobs.

 There is another DB which is project dependent; each BOINC project has its own

DB. So, in the case of many projects exists on the same server, there will be many DBs in

the system. More information about the BOINC project DB can be found in appendix B.

Figure 5.24: Grid System DB ERD.

108

5.8 Hardware interface Design

Basic hardware components in the system are:

1- Server: System coordinator.

2- Routers, switches.

3- Grid clients: the computing resources that perform the computations assigned to

the grid system.

PPU LAN represents the system infrastructure.

 Figure 5.25: Hardware interface design.

109

5.9 Overall Work Summary

 The work during the last semester was mainly concentrated on trying to better

understand the project, determine its components, costs and time schedule. In addition, a

lot of time was paid for analyzing and designing the project. This was done through five

chapters, in each chapter we discussed a particular issue associated with this project. In

the following paragraphs we summarize the work which was done in each chapter.

 In chapter one, we talked about the project idea. Then we presented some of the

project motivations. In addition, we have discussed the project scope which addressed

these topics: system input and output, project requirements, components, deliverables,

assumptions, boundaries constraints, and the Initial project organization.

 In chapter two, we presented an overview of grid computing technology and its related

issues. In addition, we discussed some of previous grid-based projects and studies and analyzed

their results.

 In chapter three, we defined all the project task sets and sketched the project Gantt chart.

Then we stated the available options to be used in the project implementation. Also some of

project risks were stated and analyzed. Finally we define all the components that are needed for

the project evaluation in addition to the costs estimations.

 In chapter four, we defined the system actors, use-cases templates, use-cases diagrams, CRC

modeling and the class hierarchy and relationship. All scenarios that may occur were introduced

in the use case templates. Each actor can initiate some of use-cases which clarified in use-case

diagrams.

110

 In chapter five, we stated the basic features of the system design. These features include

object relational model, state behavioral model and System configuration design. It includes also,

software interface, hardware interface and database design.

5.10 What Is Next?

 The work of this project during the next four months of project life will be divided

into three parts. First, we will measure the CPU utilization in selected computer lab PCs

in the university. In order to get a realistic results, the study should be performed during

the university work days (from Sunday to Thursday), and during work hours only (from

08:00 to 16:00).

 In the second part, we start the system configuration process to build a local desktop

grid using BOINC middleware. This grid consists of the server device, which can be a

real server or one of our available high performance computers, and three or more grid

clients(PCs), each one can be any computer available in our labs.

 Finally, in the third part we will start testing the grid and trying to build the grid

interface. This interface enables grid users like researchers to make use of the grid which

was built in the second part by providing them the capability to submit jobs to grid's

clients and get the results back.

111

5.11 Summary

This chapter stated the basic features of the system design. These features include each of

the following:

- System configuration design: It has a large part of the final project design. That

includes server and clients’ configuration, software installation, project creation

and deployment and other configurations.

- Object relational model: as shown previously there are five basic software objects

that need to be implemented for this system. They are: ProjectCreation,

ProjectManagement, UserCreation, and JobSubmission.

- System functionalities: describes all system functions using flowcharts.

- Software interface design: shows the main portal pages interfaces that will be

implemented.

- Data base design: this section defines in context the basic structure of the

controlling data base. This data base will contain basically three tables – project,

user, and job.

- Hardware interface Design: it shows the system hardware environment.

 In the last two sections we talked about what was accomplished until now during the

first four months of life cycle of this project. Then we presented the major parts and the

set of tasks which will be done in the next semester during the remaining time for this

project.

112

Chapter Six

Implementation and Testing

6.1 Overview

In this chapter, we explain the implementation procedure at two levels. At the first

level (the low level), we describe the system configuration steps to prepare the grid

environment in addition to grid system core functions implemented using Linux bash

scripts. At the second level (the higher level), we describe the portal implementation and

how the core functions were enabled remotely. Also this chapter includes the testing

applied on all system functionalities at both higher and lower levels.

6.2 System Configuration and Core Functions

In this section we describe the implantation of system configuration part of this

project. This part represents the low level layer of the project. We show the process of

setting up the grid environment.

Shell scripts using bash interpreter were used at this level to communicate directly

with the operating system, the BOINC core client software and the BOINC middle-ware

as a whole. The PPU Grid System Portal is built above this layer.

6.2.1 BOINC Server Deployment

The first step of building our grid system is to configure and prepare BOINC server to

work. Our BOINC server computer has the following properties:

 Processor: core i5 3.2GHz.

 RAM: 4GB

 Disk storage capacity: 320GB.

 Network: 100Mbps.

 Global IP address: 195.3.191.24

 Local IP address: 10.10.16.12

113

BOINC server runs on UNIX operating systems. In our project we used Ubuntu12.04

LTS 64-bit Linux distribution. In addition, we installed the BOINC server software

prerequisites and dependencies. Furthermore, we solved some problems that appeared

during the deploying of BOINC server. The detailed explanation the BOINC server

setting up process is described in appendix A.

6.2.2 BOINC Client Deployment

At the client side, BOINC client software was installed on each computer

participated in our grid system. We installed BOINC client as a service by checking

the Service Install checkbox. In addition, we disabled screen saver option and prevented

other users (usually students) from controlling BOINC client software.

To make the communication between the BOINC core client and a remote computer

secure, two files are added to BOINC data directory (where BOINC's data files will be

stored). These files are:

1. gui_rpc_auth.cfg file

This file contains the BOINC client password. Any remote computer

wants to communicate with BOINC core client must provide this password in its

communication commands.

2. remote_hosts.cfg file

This file contains the IPs or DNS names of remote hosts that are allowed

to communicate with BOINC core client if they provide the correct password

stored in gui_rpc_auth.cfg file. Any other host will be prevented from

communicating with BOINC core client.

The technical details of preparing grid clients (PCs) to participate in the grid

system are described in appendix A.

6.2.3 Project Creation

 A project is an entity that does distributed computing using BOINC. Projects are

independent; each one has its own applications, database, web site, and servers, and is not

114

affected by the status of other projects. Each project is identified by a master URL, the

URL of its web site. Multiple projects can coexist on a single server computer [37].

At the implementation level, a project consists of [37]

 a directory tree, containing files related to the project, and

 a MySQL database.

 We created BOINC projects for different purposes, two types of these projects are:

1. New/Empty Project

 The process of creating a BOINC project requires you to follow a certain

steps and instructions given by BOINC documentation. At the end of these steps

you may need to solve some problems regarding server Linux distribution. The

process of creating New/Empty project on Ubuntu 12.04 LTS is described in

appendix B.

 The Empty project is a BOINC project that doesn't contain any application.

Creating an Empty project requires well Linux administrative skills and a long list

of steps. In addition, it needs to solve some problems regarding server Linux

distribution (Ubuntu 12.04). Furthermore, one will find himself forced to repeat

all these steps when he decides to create another project.

 To facilitate project creation process, we need to automate this process. For

this purpose, we create a bash script called createProject.sh. This script executes

all required steps to create a project and solve all problems.

 createProject.sh bash script

 Usage: bash createProject.sh projectName [installroot]

Where:

projectName: the name of the project

installroot: the path of the folder containing the project. It is optional

argument, if not determined then the default (/home/boincadm /projects) is

used.

http://boinc.berkeley.edu/trac/wiki/ServerComponents#ThemasterURL

115

Usage Example: bash createProject.sh emptyProject

2. Test/Example Project

 Test/Example Project is an Empty Project that has an example application for test

purposes. The example application is a single-thread native BOINC application [38].

This application has application versions to run on different well known platforms.

The application reads an input file, converts the file to upper case and writes it to an

output file.

 To create a BOINC project running the test application example you can follow

the same scenario with creating empty BOINC project with some changes. This

process is described in appendix B. Figure 6.1 describes the main steps of creating

Test/Example application.

 createTestProject.sh bash script

 Usage: bash createTestProject.sh projectName [installroot]

Where:

projectName: the name of the project

installroot: the path of the folder containing the project. It is optional

argument, if not determined then the default (/home/boincadm /projects) is

used.

Usage Example: bash createTestProject.sh testProject

116

6.2.4 Create Admin Account

 For each project you can create one or more accounts, any computing resource must

follow a certain account. In our case, we only need one account since that all computing

resources will be under the control of campus grid system Administrator (Admin

account) for each project.

 Admin account creation can be done using BOINC manager interface, but in our

system we assumed the BOINC manager is not used. To solve this problem we created a

bash script called (createAccount.sh) which uses boinccmd tool commands to create the

admin account for a certain project.

 The createAccount.sh bash script implements the steps of creation admin account

that are depicted in Figure 6.2 show below:

 createAccount.sh bash script

 Usage: createAccount.sh projectName

Where: projectName: is the name of the project

Figure 6.1: Create Test Project Algorithm

117

6.2.5 Disable/Enable Account Creation

 Since we need only one account (admin account) that is responsible for all computing

resources in our grid system, we should disable account creation after creating this

account.

 Disabling account creation for a certain project can be done by adding the following

line <disable_account_creation/> between <config>...</config> tags inside config.xml

file which exists in the project directory. To enable account creation again, we need to

remove the previously added line from config.xml file.

Figure 6.2: Create Account Algorithm

118

 To automate the process of enabling/disabling account creation for a particular

project, we created two bash scripts which automatically add or remove the needed line.

These scripts are: disable_account_creation.sh and enable_account_creation.sh.

 disable_account_creation.sh bash script

 Usage: bash disable_account_creation.sh projectName [installroot]

Where:

projectName: the name of the project.

installroot: the path of the folder containing the project. It is optional

argument, if not determined then the default (/home/ boincadm /projects)

is used.

Usage Example: bash disable_account_creation.sh test

 enable_account_creation.sh bash script

 Usage: bash enable_account_creation.sh projectName [installroot]

Where:

projectName: the name of the project

installroot: the path of the folder containing the project. It is optional

argument, if not determined then the default (/home/ boincadm /projects)

is used.

Usage Example: bash enable_account_creation.sh test

6.2.6 Client to Project Attachment/Detachment

 After creating a project and admin account, clients (computing resources) can be

attached to a certain project under the control of admin account of that project. Once the

client (computer) becomes attached to a project, it becomes ready to download jobs from

that project, execute them and return the results back to the project server.

 The client attachment to a certain project can be done using BOINC manager

interface. However, we want to attach the computing resources silently without any user

interaction. For this purpose, we created a bash script called attach.sh that does the

attachment process automatically.

119

 The attach.sh bash script can attach multiple clients to the same project at the same

time given their IP addresses and using boinccmd tool to communicate with BOINC core

client.

 In contrast, if we used the BOINC manager interface approach, we would have to

repeat the attachment process on each client (computer) separately which is effort and

time consuming especially if the number of the clients to be attached is large. The

explanation below shows the implementation and the usage of attach.sh bash script.

 Attachment script

 Usage: bash attach.sh projectName client_ip

OR : bash attach.sh projectName 'client_ip [other client_ips]'

Where: ProjectName: the name of the project

 client_ip: the ip of the client machine

Note: If you have more than one ip, put them between single quotations.

Example 1: attach.sh ProjectX 192.168.1.5

As result of example 1 script calling, the client (computer) with IP

addresses 192.168.1.5 will be attached to ProjectX.

Example 2: attach.sh ProjectX '192.168.1.5 192.168.1.6'

 As result of example 2 script calling, the two clients (computers) with

IP addresses 192.168.1.5 and 192.168.1.6 will be attached to ProjectX.

 On the other hand, sometimes we want to detach a certain client from a particular

project. In other words, we want to stop a certain computing resource from serving a

particular project. This process is called client detachment and it is done using another

bash script called deattach.sh.

 Detachment script

 Usage: bash deattach.sh projectName client_ip

OR : bash attach.sh projectName 'client_ip [other client_ips]'

Where: ProjectName: the name of the project

 client_ip: the ip of the client machine

Note: If you have more than one ip, put them between single quotations.

Example 1: deattach.sh ProjectX 192.168.1.5

120

As result of example 1 script calling, the client (computer) with IP

addresses 192.168.1.5 will be detached from ProjectX.

Example 2: deattach.sh ProjectX '192.168.1.5 192.168.1.6'

As result of example 2 script calling, the two clients (computers) with IP

addresses 192.168.1.5 and 192.168.1.6 will be detached from ProjectX.

 The attachment/detachment scripts implements the algorithm shown in figure 6.3.

Figure 6.3: Attachment/Detachment Algorithm

121

6.2.7 Project Control

 During the project life time we need to control BOINC project in different ways.

BOINC has the following Python scripts control a project [67]:

 bin/start

Start the project: start all daemons, and remove the stop_sched and stop_daemon

files (see below).

 bin/stop

Stop the project (create the stop_sched and stop_daemon files)

 bin/start --cron

If the project is started, perform all periodic tasks that are past due, and start any

daemons that aren't running. Otherwise do nothing.

 bin/status

Show whether the project is stopped. Show the status of all daemons. Show the

status of all periodic tasks (e.g., when they were last executed).

 We created four bash scripts to control a certain project using the previous Python

scripts. These bash scripts are:

 Start project script

 Usage: bash startProject.sh projectName [installroot]

Where:

 projectName: the name of the project

installroot: the path of the folder containing the project. It is optional

argument, if not determined then the default (/home/ boincadm /projects)

is used.

Usage Example 1: bash startProject.sh test

Usage Example 2: bash startProject.sh test /home/boincadm /myprojects

 Stop project script

 Usage: bash stop.sh projectName [installroot]

 Implementation: the same as the startProject.sh with the last line replaced

by ./bin/stop

 Restart project script

 Usage: bash stopProject.sh projectName [installroot]

 Implementation: the same as the startProject.sh with the last line replaced

by:

 ./bin/stop

122

 ./bin/start

 Project status project script

 Usage: bash projectStatus.sh projectName [installroot]

 Implementation: the same as the startProject.sh with the last line replaced

by ./bin/status

6.2.8 Update Attached Projects

 At the client side the core client which attached to one or more projects the

admin needs sometimes to update the attached projects. Project update causes the

BOINC core client to contact scheduling server immediately.

 The bash script updateAttachedProject.sh is created in order to update all a

client's attached projects. It can be called on a local or a remote client using client

IP address. Multiple clients can be updated with same call.

 Update script

 Usage: bash updateAttachedProject.sh projectName client_ip

OR: bash updateAttachedProject.sh projectName 'client_ip [other

client_ips]'

Where: ProjectName: the name of the project

 client_ip: the ip of the client machine

Note: If you have more than one ip, put them between single quotations.

Example 1: updateAttachedProject.sh.sh ProjectX 192.168.1.5

As result of example 1 script calling, all projects to which the client

(computer) with IP addresses 192.168.1.5 will be updated.

Example 2: updateAttachedProject.sh ProjectX '192.168.1.5

192.168.1.6'

As result of example 2 script calling, all projects to which the two clients

(computers) with IP addresses: 192.168.1.5 and 192.168.1.6 will be

updated.

123

The updateAttachedProject.sh script implements the algorithm shown in figure 6.4.

6.2.9 Project Deletion

To delete a particular project, we have to do two things:

 Delete the project directory tree, containing files related to the project, and

 Delete the project MySQL database.

Figure 6.4: Update Attached Projects Algorithm

124

We implemented the project deletion using deleteProject.sh bash script. Figure 6.5

describes the project deletion steps.

 deleteProject.sh bash script

 Usage: bash deleteProject.sh projectName [installroot]

Where:

projectName: the name of the project

installroot: the path of the folder containing the project. It is optional

argument, if not determined then the default (/home/boincadm /projects) is

used.

Usage Example: bash delete.sh test

 Figure 6.5 Project Deletion Algorithm.

125

6.2.10 Single Job Project

This is the third type of projects that is supported by our grid system. It is designed to

support the single job submission mechanism.

6.2.10.1 Single job submission mechanism

 BOINC is designed to handle streams of millions of jobs. It takes some work to set

up a stream: you need to create applications and application versions, workunit (WU)

and result templates, validators, assimilators, etc [39].

 BOINC's single job submission mechanism lets you run a job without any of these

hassles. In order to do this, one should configure BOINC project to handle single jobs.

The configuration steps are described in [39]. Jobs submitted by this way will have some

estimates and limit parameters. These parameters are [39]:

Job estimates and limits

 processing estimate: 1 GFLOPS-hour

 processing bound: 1 GFLOPS-day

 memory bound: 500MB

 disk bound: 1GB

 delay bound: 1 week

You can change these parameters by editing the boinc_submit script (see below).

6.2.10.2 Single Job Project Creation

 We used single job mechanism supported by BOINC to build a single job project. To

explain the process of configuring single job project, we assume the following:

 The directory of the BOINC Server source code is: /home/boincadm/boinc/

 The root directory of the BOINC project that is to be configured to work with

single job submission mechanism: /home/boincadm/projects/SingleJobProject

 The boincadm user home directory is: $HOME = /home/boincadm/ = ~

126

-Steps for the server platform

1. Create Empty/New project (see appendix B)

bash createProject.sh projectname

2. Initially the wrapper for the server platform in

/home/boincadm/boinc/samples/wrapper is not compiled. To compile it, we

need to do the following:

a) cd /home/boincadm/boinc/samples/wrapper

b) make

Note: you need to do this only one time to compile the wrapper. Once it is

compiled, it can be used in the next step without any need to

recompilation.

3. Configure BOINC Project for single jobs:

a. change directory (cd) to project folder(directory)

b. html/ops/single_job_setup.php path-to-boinc-samples

c. follow the resulting instructions of the previous command

e.g. cd /projects/SingleJob

 html/ops/single_job_setup.php /home/boincadm/boinc/samples

4. Set the environment variable BOINC_PROJECT_DIR to the root directory of

the project.

export BOINC_PROJECT_DIR=$HOME/projects/SingleJobProject

5. go to the path that contains the application(executable) and its input and

output files:

cd /path/to/application

127

6. After configuring single job project, we use the boinc_submit PHP script to

submit a job (see the subsection 6.2.10.4).

~/boinc/tools/boinc_submit [boinc-options] program [program-options]

The boinc-options are:

--infile name

specifies an input file.

--stdin name

direct the given file to the program's stdin.

--outfile name

specifies an output file.

--stdout name

direct the program's stdout to the given file.

--platform

the platform on which the program is to be run (default: the server's

platform; assumed to be Linux).

- Using other platforms

 In order to use other platforms, we need to do further steps, let us take

windows_intelx86 platform as an example. In this case you need to do the following:

1. Go to your project's apps directory

2. Create directories apps/single_job_windows_intel86/1.0/windows_intelx86.

Note: 1.0 is the application version

3. Download the BOINC wrapper executable for windows_intelx86, and put it in

the windows_intelx86 directory.

4. Add single job application for windows_intelx86 platform. This is done by

editing the file $HOME/projects/SingleJobProject/project.xml, adding the

following lines before </boinc> tag:

 <app>

 <name>single_job_windows_intelx86</name>

128

 <user_friendly_name> Jobs for Microsoft Windows (98 or later)

running on an Intel x86-compatible CPU </user_friendly_name>

 </app>

5. Add single_job_assimilator and sample_trivial_validator daemons. This is

done by editing the file $HOME/projects/SingleJobProject/config.xml, adding

the following lines before </daemons> tag:

 <daemon>

<cmd>single_job_assimilator -app single_job_windows_intelx86</cmd>

<output>single_job_assimilator_windows_intelx86.out</output>

<pid>single_job_assimilator_windows_intelx86.pid</pid>

 </daemon>

 <daemon>

<cmd>single_job_assimilator -app single_job_windows_intelx86</cmd>

<output>single_job_assimilator_${friendly_name}.out</output>

<pid>single_job_assimilator_${friendly_name}.pid</pid>

 </daemon>

6. Go to your project's root directory

7. Run bin/xadd

8. Run bin/update_versions. Answer yes to all questions.

9. Restart the project.

 bin/stop

 bin/start

You can then submit jobs to Windows/x86 hosts:

1. Create a directory with a Windows executable for your application, say app.exe

2. cd /path/to/application

3. Type a command of the form: boinc_submit --platform windows_intelx86 app.exe

129

Example: testBoinc.exe is C++ program compiled on windows_intelx86 computer, it

reads from standard input (cin) and writes to standard output(stdout). A job can be

submitted using the following command:

1. Go to application directory that contains the files: testBoinc.exe , stdin and

stdout(optional: created if not exist).

cd /path/to/application

2. Run the command:

~/boinc/tools/boinc_submit --platform windows_intelx86 --stdin in --stdout

out testBoinc.exe

 BOINC developers have built wrappers for different platforms. Table 6.1 shows

the BOINC supported platforms wrappers. To develop applications for hosts of these

platforms, you should follow the same previous steps for windows_intelx86 platform

with the following changes:

 Create directories

 apps/single_job_PlatformTechnicalName/1.0/PlatformTechnicalName.

Note: 1.0 is the application version

 Add single job application for particular platform. This is done by editing the file

$HOME/projects/SingleJobProject/project.xml, adding the following lines

before </boinc> tag:

<app>

 <name>single_job_PlatformTechnicalName</name>

 <user_friendly_name> PlatformUserFriendlyName

</user_friendly_name>

 </app>

 Download the BOINC wrapper executable for a particular platform from BOINC

website, and put it in the PlatformTechnicalName directory.

130

 Add single_job_assimilator and sample_trivial_validator daemons for

application of particular platform. This is done by editing the file

$HOME/projects/SingleJobProject/config.xml, adding the following lines

before </daemons> tag:

 <daemon>

 <cmd>single_job_assimilator -app

single_job_PlatformTechnicalName</cmd>

 <output>single_job_assimilator_PlatformTechnicalName.out</output>

 <pid>single_job_assimilator_PlatformTechnicalName.pid</pid>

</daemon>

 <daemon>

<cmd>single_job_assimilator -app

single_job_PlatformTechnicalName</cmd>

<output>single_job_assimilator_PlatformTechnicalName out</output>

<pid>single_job_assimilator_PlatformTechnicalName.pid</pid>

 </daemon>

 For each particular platform:

 PlatformTechnicalName: is platform technical name that is adopted by

BOINC and used in the code. These names are shown in table 6.1 under

Technical Names title.

 PlatformUserFriendlyName: is platform user-friendly name that appear

to end users. These names are shown in table 6.1 under User-friendly

Names title.

131

 If you want to support all BOINC supported platforms, you have to use previous

steps to add a single job application and wrapper for each platform. By doing this, you

will have a single job project which can be used to submit jobs compiled on different

platforms. According to that, you will be able to exploit more hosts(computers) that have

different architectures (platforms).

6.2.10.3 Automatic SingleJob Project Configuration

 As it is obvious from previous explanation, the process of creating and configuring

single job project contains a lot of hassle and requires you to follow a long list of steps.

Also, if you want to let the single job project supporting different platforms, then the

difficulty will increase. In addition, if we want to create more than one single job project,

we will have to repeat all previous steps again which will become a headache for

developers.

User-friendly names Technical names

Jobs for Microsoft Windows (98 or later) running on an Intel x86-

compatible CPU

windows_intelx86

Jobs for Microsoft Windows running on an AMD x86_64 or Intel

EM64T CPU

windows_x86_64

Jobs for Linux running on an Intel x86-compatible CPU

i686-pc-linux-gnu

Jobs for Linux running on an AMD x86_64 or Intel EM64T CPU x86_64-pc-linux-gnu

Jobs for Mac OS 10.4 or later running on Intel i686-apple-darwin

Jobs for Intel 64-bit Mac OS 10.5 or later x86_64-apple-darwin

Table 6.1: Supported Platforms

132

Figure 6.6: Single Job Configuration Algorithm

 The best solution of such problem is to automate this process. In Linux systems this

can be done by writing a shell script that does the whole job. For this purpose we wrote a

shell script using bash interpreter to configure an Empty/New project as a single job

project. This script is called singleJob.sh.

 However, singleJob.sh script assumes that two folders are stored in $HOME

directory. The first folder is called wrappers which contains all pre-compiled wrappers

for different platforms that are downloaded from BOINC website and stored with certain

names in this folder. The second folder is called ppu_boinc which contains two PHP

files relating job submission and monitoring.

 singleJob.sh script is called after calling createEmpty.sh script that creates an

Empty/New project (see appendix B). The work flow of singleJob.sh is described in the

algorithm shown in the figure 6.6.

133

6.2.10.4 Job Submission

 After configuring the project to work as a single job project, you can submit jobs for

hosts that are running on any platform supported by your project. To do this, BOINC

single job submission mechanism provides an executable PHP file that is called

boinc_submit. This file can be used to submit a job as follows:

1. go to the path that contains the application(executable) and its input and output

files:

cd /path/to/application

2. call boinc_submit script (script path: ~/boinc/tools/boinc_submit)

~/boinc/tools/boinc_submit [boinc-options] program [program-options]

The boinc-options are:

--infile name

specifies an input file.

--stdin name

direct the given file to the program's stdin.

--outfile name

specifies an output file.

--stdout name

direct the program's stdout to the given file.

--platform

the platform on which the program is to be run (default: the server's platform;

assumed to be Linux).

Notes: [39]

 You can include as many --infile and --outfile options as you want, and at most

one of others.

 The program-options will be passed as command-line arguments to the program

when it runs on the remote machine.

134

 --platform option is followed with one of platform technical names shown in

table 6.1.

 If the program requires any non-standard libraries, link these statically. Otherwise

it will fail on machines that lack these libraries.

 You can run boinc_submit from any host that NSF-mounts your project directory

and can access the MySQL database.

 When the job is completed successfully, the output files will appear in the job

directory.

 During the testing process, we found that boinc_submit script deals all command line

arguments as one single argument. We explored the source code of this script carefully,

and we were able to solve this problem.

 In addition, we modified and created a new version of boinc_submit. The new

modified version is called ppu_boinc_submit. This modification is done to facilitate the

integration of job submission mechanism in our Grid System. The following points

summarize the performed modifications:

1. The new version prints the wuid(job Id) as a return value. The job Id can be

stored and used to check job status

2. This version solves a problem in the origin boinc_submit that has a bug which

deal all commmand line arguments as one argument. To solve this problem, the

line:

 $cmdline_args .= ''.$argv[$i]; is replaced with $cmdline_args .= ' '.$argv[$i];

3. A general modification is done to make the file suitable to submit a job in PPU

Grid System (e.g. remove calling some functions)

 After a job is submitted we need a mechanism to monitor the job status. For

this purpose we create an executable PHP script called ppu_boinc_job making

135

use of the functions provided in boinc_submit script. This script is used as

follows:

 ppu_boinc_job PHP script

 Usage: ppu_boinc_job project_dir job-options

project_dir: is the path to the single job project

job-options:

 --show_job

 Show job id and whether the job is in progress, being assimilated or

completed

 --show_status jobID

 Show job's status (show more information than '--show_job jobID')

 --show_status2 jobID

 the same as --show_status jobID but without showing jobID and

current date.

 --job_status jobID

 shows job status without showing job id ('in progress','being

assimilated' and 'completed')

 --show_host

 shows the instance(s) of Job location (on which host, the instance of

job is being handled)

 --wait jobID

 Wait for the completion of an existing job

136

 --abort jobID

 Abort an existing job

 --jobs

 Show pending jobs

 --help

 Print this (print the usage)

 The ppu_boinc_submit and ppu_boinc_job PHP scripts are usually used by single

job projects so they are stored in ppu_boinc folder to facilitate the automation of single

job configuration which is done by singleJob.sh bash script. The folder ppu_boinc is

stored inside home directory ($HOME/ppu_boinc).

 When a singleJob.sh bash script is called to configure the project as a single job

project the ppu_boinc folder is copied to project directory for later use. By doing this,

each single job project will contain its own version of ppu_boinc folder that contains the

two PHP scripts to submit a job and monitor its status.

6.2.10.5 Job Submission Automation

 Calling ppu_boinc_submit.sh script differs according to the job to be submitted. Here

are some examples:

 Job1: contains one input file (myInput), one output file (myOutput) and the

executable file (program1). The job is submitted to the default platform (server

platform).

ppu_boinc_submit --infile myInput --outfile myOutput program1

 Job2: contains two input file (in1 and in2), one output file (out1 and out2), and the

executable file (program2).The job is submitted to the windows_intelx86

platforms.

137

ppu_boinc_submit --infile in1--infile in2 --outfile out1 --outfile out2 --platform

windows_intelx86 program2

 Job3: contains standard input file (input), standard output file (out1), one output

file (out) and the executable file (program3). The job is submitted to computers

with platform of type x86_64-pc-linux-gnu.

ppu_boinc_submit --stdin input --stdout out1 --outfile out2 --platform

windows_intelx86 program3

 As we can see from previous examples, there are different versions of calling the

submission script (calling with different arguments) depending on the application to be

submitted. For each job we must determine the following:

 Input files: each input file used by job executable must be stated after --infile

option

 Output files: each output file used by job executable must be stated after --outfile

option

 Standard input file: Any job that reads from standard input (keyboard) which is

equivalent to “cin” statements in c/c++ must be redirected to a file since there is

no user input in the grid system. The name of this file must be stated after --stdin

option.

 Standard output file: Any job that reads from standard output (screen) which is

equivalent to “cout” statements in c/c++ must be redirected to a file. The name of

this file must be stated after --stdout option.

 Platform name: the name of the platform type that job executable is compiled to

run on .The name of this platform comes after --platform option. In other words,

this option determines the computers that can execute this job.

 Executable file: this is the executable file which is compiled to run on a

particular platform type.

138

 To automate the process of submitting a certain job, we put a set of guidelines

(restrictions) on the structure of the job to be submitted. The submitted Job folder should

follow the following conventions (guides) accurately:

 Contains one executable file for specific platform supported by the project.

 All other files are optional but if any of them exists, it must be compatible with

the following guides:

 - Name of standard input file must be stdin.

 - Name of standard output file must be stdout.

 - All other input files must be located in a folder named inputs.

 - All other output files must be located in a folder named outputs.

 After that we created submit.sh bash script which parses the job folder that is

assumed to follow previous guides and generates the correct call (using correct

arguments) of ppu_boinc_submit script. The work flow of submit.sh is described

in the algorithm shown in the figure 6.7.

 submit.sh bash script

 Usage: bash submit.sh projectName jobPath platform

Where:

projectName: the name of the single job project under which the job is

submitted.

jobPath: the path of the folder containing the job.

platform: is the platform name where the program can be executed. This

argument is put after --platform option in ppu_boinc_submit.sh call.

Note: projects are assumed to be stores in /home/boincadm/projects so the

project path is /home/boincadm/projects/projectName

 Usage Example: bash submit.sh SingleJobProject $HOME/Jobs/job1

windows_intelx86

139

Figure 6.7: Submit Job Algorithm

Furthermore, we created another bash script called output_handler.sh to handle

the result of the submitted job when it is completed and returned back to the server. This

script put the output files, job_summary file, stdin and stdout files if any in a

compressed result folder. The output_handler.sh implements the algorithm shown in the

figure 6.8.

 The job_summary file contains the final state of the job. If the job is executed

successfully, then the job_summary file contains on which host (computer) the job is

executed and the CPU time needed for executing that job. Otherwise, if the job is not executed

successfully, then the job_summary file will contain an error message.

140

Figure 6.8: Output Handler Algorithm

 output_handler.sh bash script

 Usage: bash output_handler.sh projectName jobPath jobID

Where:

projectName: the name of the single job project under which the job is

submitted.

jobPath: the path of the folder containing the job.

jobID: the Job ID. The Job Id is returned when ppu_boinc_submit.sh is called.

Note: projects are assumed to be stores in /home/boincadm/projects so the

project path is /home/boincadm/projects/projectName

 Usage Example: bash output_handler.sh SingleJobProject $HOME/job1 1

141

6.3 Portal implementation

 Here we clarify the system higher level implementation which is the portal

implementation. Firstly, we talk about the software development tools that were used in

implementing the portal. Secondly, we show the invisible pages and the sub-pages that

support the main pages functionalities. Finally, we state the main pages of the portal and

describe their functionalities.

6.3.1 Software development tools and programming languages

 This subsection includes programming languages used to implement the portal

and the IDE used. It also states the software servers needed to support the portal

functionalities.

Programming languages used in the portal implementation:

 PHP.

 HTML.

 JavaScript.

 CSS.

The IDE used in the portal development:

 NetBeans7.4 IDE.

Software servers need to be installed on the portal server to enable the system

functionalities:

 BOINC server.

 Apache server.

 MYSQL server.

6.3.2 Portal subpages:

 Portal sub-pages are the pages that called by the main pages to perform a specific

functionalities. These pages are:

142

1. PageLeftPart: this page required by all portal main pages. It displays information

about the logged user. See figures below.

Figure 6.10: User page left part.

Figure 6.9: Admin page left part.

143

2. PageRightPart: this page supports the administrator main pages functionalities.

It manages the content of the right side of the admin pages. PageRightPart

declares objects from the classes ProjectCreation, ProjectManagement, and

UserCreation- discussed in chapter five.

 PageRightPart is required from three different pages:

2.1 Admin Home page: Requiring page Right Part from this page lunches

calling getForm() - the function of the projectCreation object. The

generated form is shown in figure 6.11.

Project creation process:

 Admin requests creating a BOINC project by doing the following steps:

- Enter a project name.

- Select the project type.

- Click on create button.

 As a response for the admin request the following steps done:

Figure 6.11: Project creation form.

144

- Calling the function createProject($projectName,$ProjectType,$con) –

function of the ProjectCreation object.

Where:

 $projectName: is a variable contains the name of the project.

 $projectType: is a variable contains the type of the project.

 $con: is the DB connection.

The function $createProject(..) do the following:

- Validate the name of the project with a specific format- a valid project name

must be only letters, digits, underscores.

- Generate error massages in the case of invalid project name. See figure 6.12.

- If the entered name is valid, the process goes into the steps below:

 Add the project to the list of projects in the grid_system DB.

 Execute the appropriate shell script; based on the selected project type.

Execute the script createTestProject.sh for the first choice. Execute the

script createProject.sh for the second and the last choices. Execute

additional script for the second choice which is singleJob.sh, and create a

directory named users in the project directory.

 Create admin account following to this project by executing the script

createAccount.sh.

 Disable account creation by executing the script

disable_account_creation.sh.

Figure 6.12: Project creation form.

145

2.2 Users page: Requiring page Right Part from Users page lunches calling

getForm() - the function of the userCreation object. The generated form is

shown in figure 6.13.

Adding a new user:

- Admin requests adding new user by doing the steps:

 Enter the name of new user.

 Enter the email.

 Enter a password.

 Select a Project to allow submitting jobs to that project from

this new user.

 Select the level of the user to be admin or user.

 Click on add user button.

- System response to admin request by doing the steps:

 Calling the function createUser($con,$email,$userName,Password,$level)-

function of the UserCreation object.

- The function createUser(…) in tern calls the following functions:

6.13: Add new user form.

146

 validateName($userName): is a function of the UserCreation object. It

checks the validity of the user name to a specific format (letters, digits, and

underscores only). It also generates error massages in the case of mismatch

the correct format.

 validateEmail($email): is a function of the UserCreation object. It checks

the validity of the email and checks if this email exists in the DB or not.

Generate error massage in both cases: invalid email format or the email exist

in the DB previously.

 validatePassword($password): is a function of the UserCreation object. It

checks the validity of the password – valid password must be at least five

digits.

- After calling these three functions, createUser(..) check if neither of the errors was

generated, then perform the steps:

 Add the new user to the DB.

 Create a directory for this user inside the users directory that is exist in the

directory of the selected project.

- In the case of errors exist the form will be re-generated with errors

massages.

6.14: Add new user form.

147

2.3 Project management page: Requiring page Right Part from Project

Management page lunches calling getForm() - the function of the

projectManagement object. The generated form is shown in figure 6.15.

6.15: Project management form.

148

Through the project management form, admin can attach or de-attach computing

resources to the project, update the projects running on a specific resource, start the

project if it is stopped and stop the project if it is running, disable account creation if it is

enabled and enable account creation if it is disabled, and he also can delete the project.

Attaching new resource/s:

 Admin enter the IP address/es of the computing resource/s to be attached then

click on attach button.

 System calls a function attachClient($ipList) - a function of projectManagement

object.

 attachClient($ipList) calls the function validateIPs($ipList).

 validateIPs($ipList) expands the $ipList in to array of IP's and calls the function

validateIP($ip) for each array element.

 validateIP($ip) checks the IP format and generate error massage in the case of

invalid IP.

 When error appears no resources will be attached and error massages will be

displayed like the figure 6.16.

 At the case of no errors the function will attach the resource/s by calling the script

attach.sh.

 Figure 6.16: Client attachment.

149

Detaching a computing resource:

 Admin enter the IP address/es of the computing resource/s to be deleted

from the computing resources list then click on delete button.

 System calls a function deattachClient($ipList) - a function of

projectManagement object.

 This function calls the same function as in the attachment process.

 When error appears no resources will be de-attached and error massages

will be displayed; same as in the attachment process.

 At the case of no errors the function will delete the attached resource/s by

calling the script deattach.sh.

Updating projects at a client:

 Admin enter the IP address of the computing resource to update the

attached projects then click on update button.

 System calls a function updateProject ($ipAddress) - a function of

projectManagement object.

 updateProject ($ipAddress) calls the function validateIP($ipAdress) –

stated above.

 When error appears error massages will be displayed; same as in the

attachment process.

 At the case of no errors the function will update the attached projects by

calling the script updateAttachedProjects.sh.

Stopping project:

 Admin clicks on stop button.

 System stops the project by executing the script stopProject.sh and

modifies the project status to be 'not running' in the DB.

Starting project:

 Admin clicks on start button.

150

 System starts the project by executing the script startProject.sh and

modifies the project status to be 'running' in the DB.

Restarting project:

 Admin clicks on restart button.

 System restarts the project by executing the script resartProject.sh and

modifies the project status to be 'running' in the DB.

Disabling account creation:

 Admin clicks on disable button.

 System disables account creation by executing the script

disable_account_creation.sh and modifies the account_creation_status to

be 'disabled' in the DB.

Enabling account creation:

 Admin clicks on enable button.

 System enables account creation by executing the script

enable_account_creation.sh and modifies the account_creation_status to

be 'enabled' in the DB.

Deleting project:

 Admin clicks on delete button.

 System deletes the project directory and the project DB by executing the

script deleteProject.sh.

 System deletes the project from the projects table.

 System deletes all jobs following to this project.

 System sets the project_name to all users following to this project to

'NULL'.

151

3. Header: manages pages headers, menu, and the slide bar. Figure below show the

header of the home page.

4. Footer: displays the footer in all pages as in the figure 6.18.

5. Logout: destroys the existent session and logs the user out.

6. AjaxResponse: used to asynchronously abort the selected job – abort the job

while processing other functionality in the main page without stopping. Aborting

jobs is done by executing the PHP script called abort_job.

7. Download: enable downloading results.

Figure 6.18: Footer subpage.

Figure 6.17: Header subpage.

152

8. Results: supports the functionality of the user Home page by doing the functions:

 Displays all submitted jobs and their execution status. The job execution

status is retrieved by executing the PHP script show_status.

 Enable aborting jobs during the execution using AjaxResponse page.

 Enable downloading results using Download page.

 Enable deleting results.

Figure 6.20: Results subpage.

Figure 6.19: Download result.

153

9. Config: declares the global variables needed in all pages.

6.3.3 Portal main pages

The portal main pages are classified into three types:

1- Common pages.

2- Admin pages.

3- User pages.

1. Common pages:

The common pages are displayed for all visitors and the system users before login. These

pages are:

- About: provides basic definitions of the grid computing, the importance of grid

computing, and the project future vision.

- Contact: states more dedicated information about the project team, project

organization, and the middleware used to build the grid system.

- Login: authenticates the access to the system for authorized users.

2. Admin Pages:

Admin Pages is the pages that can be accessed by the admin users only. Those pages are:

- Home: requires the PageRightPart and PageLeftPart. Also it displays all

existing projects with links for projects management. See figure 6.21.

Figure 6.21: Admin home page.

154

- Users: requires the PageRightPart and PageLeftPart. Also it displays all system

users with links for modify their information. See figure 6.22.

- Account: displays the account information and enable the admin to modify his

them.

- Project management: requires PageRightPart, PageLeftPart, and states basic

information about the project with important links to the main pages of the project.

- Modify user information: enable the admin to modify the account information for

any user.

3. User pages:

- Home: requires PageRightPart, PageLeftPart, and Results pages.

- Job submission:

 Requires PageLeftPart.

 Display the submission form.

 Validate the inputs.

Figure 6.22: Users page.

155

 Generate error massages.

 Upload the job folder.

 Extract the job folder and generate a unique name.

 Submit job for execution and add a new entry to the jobs table.

- Account: displays the account information and enable the user to modify his them.

6.4 Security Issues

 In this section, we talk about the project’s security issues. We explain the security

mechanisms supported by BOINC. In addition, we show our security measures to make

our grid system project secure.

6.4.1Securing the Server and the Clients

 To secure the grid server, BOINC advises to read and implement the UNIX

Security Checklist 2.0 from AusCERT and CERT/CC. According to that we

can give the proper permissions for users, groups and others to ensure the

security.

 In addition, we can put the server and all client computers behind the

university firewall that lets through minimal traffic (e.g., HTTP and SSH

where needed). Also, we read about MySQL general security guidelines, and

we follow these guides to make MySQL server as secure as possible.

 At the client side, we installed the BOINC core client as a service on admin

account and we prevent other users (usually students) from controlling the

boinc client software. Only the admin can control the BOINC client software.

 In addition, BOINC was configured to use account-based sandboxing - that

is, to run project applications under an unprivileged account [70]. This is the

http://www.cert.org/tech_tips/usc20_full.html
http://www.cert.org/tech_tips/usc20_full.html
http://dev.mysql.com/doc/refman/5.0/en/security-guidelines.html

156

default on Android, Mac OS X and on the installers provided by Linux

distributions. Currently, it is not the default on Windows because GPU

applications can't run under unprivileged accounts [70]. However, we enabled

it on Windows by checking the “Service Install” checkbox in advanced option

during installation.

 On the other side, the developers of BOINC applications should make sure

that the application does not become infected and secure their source-code

repository. Also, they should read about Secure Programming for Linux and

UNIX, especially if the application does network communication.

6.4.2 Client/ Server Authentication and Authorization

 The BOINC client typically is controlled by the BOINC Manager or the

Boinccmd tool (see appendix D) running on the same machine. The two programs

communicate over a local connection, using 'GUI RPC' (Graphical User Interface

Remote Procedure Call). It is also possible to use the BOINC Manager to control a

client on a different host.

 The BOINC command tool (boinccmd) provides a command-line interface to a

running BOINC client (local or remote). This provides an alternative to the BOINC

Manager, e.g. on systems with no graphics display.

 In our grid system we want to run the core client software silently in the

background without any user intervention; so we used Boinccmd tool to

communicate with the core client instead of BOINC Manager.

 We continuously need to communicate with BOINC core clients remotely from

the server. This communication is needed to control our computers like attaching them

to our projects in addition to get their status and for other purposes (see appendix D for

more information). This remote communication (remote RPC) must be secure and

safe.

 To make the system secure, all remote RPCs are authenticated using the GUI RPC

password which is stored in gui_rpc_auth.cfg file inside BOINC data directory on

http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/index.html
http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/index.html
http://boinc.berkeley.edu/wiki/BOINC_Client
http://boinc.berkeley.edu/wiki/BOINC_Manager
http://boinc.berkeley.edu/wiki/Boinccmd_tool
http://boinc.berkeley.edu/wiki/BOINC_Client
http://boinc.berkeley.edu/wiki/Boinccmd_tool
http://boinc.berkeley.edu/wiki/BOINC_Manager

157

each computer participating in our grid. By default, remote RPCs are not accepted

from any host. To specify a set of hosts from which RPCs are allowed, we created a

file remote_hosts.cfg in BOINC data directory containing a list of allowed DNS host

names or IP addresses (one per line). In our case, this file contains the server IP

address (10.10.16.12). Therefore, only the server will be able to connect to core client

software installed on our computers.

 For example if a host A wants to communicate with a BOINC core client on a

remote computer X, host A must satisfies two conditions. First, the IP of host A should

be included in remote_hosts.cfg file on computer X. Second, host A should give GUI

RPC password of the computer X in his RPC command (using boinccmd tool). If any

of previous conditions is missed, then host A will not be able to connect to machine X.

6.4.3 Protecting Administrative web interface

Each BOINC project has an administrative web interface that lets you [40]:

 Browse the database

 Screen user profiles

 Administer "special users" (e.g., forum moderators)

 Create and edit applications and app versions

 Send mass email to users (note: a more flexible way of doing this is

described here).

 Send emails to users with malfunctioning hosts.

 See a distribution of how many FLOPs results are using.

 Cancel work units

 View recent results, and analyze failures

 Browse strip charts

 Browse log files

 If project's URL is for example http://a.b.c.d/test, then the URL of the admin web

interface is http://a.b.c.d/test_ops. The directory containing the admin pages

is ~/projects/test/html/ops/.

http://boinc.berkeley.edu/trac/wiki/ProfileScreen
http://boinc.berkeley.edu/trac/wiki/VolunteerRecruit
http:/a.b.c.d/test
http:/a.b.c.d/test_ops

158

 Because the admin interface lets you do things like see user email addresses, it's

extremely important that it be secure. There are two levels of protection: protection by

.htaccess and Project-defined protection policy. These two techniques are clarified in

appendix C.

6.4.4 Securing the Web Portal

 Web portal provides interfaces for administrator and users. Administrator interfaces

provide critical information and control for the overall system. Users interfaces display

information about the user account and enable all the user functionalities described

previously. Since of that, system portal must be secure enough to prevent any

unauthorized access. Below we describe briefly the mechanisms implemented to make

the system portal secure.

 One of the expected attacks to the system through the portal is the SQL code

injection. SQL code injection is a code injection technique, in which malicious SQL

statements are inserted into an entry field for execution. These SQL statements may cause

for example deleting the system DB. To secure the portal against this type of attack, we

implement validation mechanisms that handle all the user inputs and insure that the

inputs match the proper formats before making any execution on these inputs. It also

returns error massages in the case of invalid formats of inputs.

 It is important that any user needs to access to the system must firstly prove his

authenticity using his email address and password in the login page. In addition the same

user mustn’t be able to login from different locations at the same time. The criteria

implemented in this system that the last login to a user from a specific location is the only

active login to that user; if a user login to the system from a location then the same user

login from another location then the first login will be destroyed directly.

 All passwords are encrypted before storing them in the DB using MD5 encryption

mechanism. So, when a user enters his password for login this password encrypted firstly

then compared with the password stored in the DB.

159

6.5 Testing

 In this section, we explain the testing procedure at two levels. At the first level (the

lower level), we test the functionality of each shell script independently. At the second

level (the higher level), we test the integration of the portal functionalities with

underlying level of the system.

 6.5.1 Testing system functionalities (Testing lower level)

 In this subsection we provide figures that were captured during the testing of the

functionality of the shell scripts.

1. Testing the script createProject.sh

The command used in testing this script was:

 bash creatProject.sh NewProject

 The execution of this command will create a BOINC project named NewProject. If

the project name is not set in the command the script will handle this error and display a

help massage. Also the script takes another optional parameter, that is, the root directory

of the NewProject where the project directory tree will be stored. If the user enters an

invalid directory, the script will handle this error and display a help massage. Figures

below show the output of the execution of this script in two cases: in the case of correct

usage and in the case of missing the name of the project in the command.

Figure 6.23: Create Project case 1.

160

After executing the script, the project home page looks like shown in the figure below.

Figure 6.24: Project home page.

Figure 6.25: Project creation case 2(wrong usage). Figure 6.26: Project creation case 3(wrong usage).

161

 All of our scripts support error handling mechanisms. Since there are too

many cases of the errors that can occur and need to be handled by the scripts; it

will not be easy to show all of these cases within this subsection. All of the

remaining tests show only the output of the scripts in the case of correct usage of

their execution commands.

2. Testing the script creatTestProject.sh

The execution command:

 bash creatTestProject.sh ExampleProject

The result of execution is creating the Test example project. Figure 6.27 shows

the output of the script execution.

3. Testing the script creatAccount.sh

The execution command:

 bash creatAccount.sh ExampleProject

Figure 6.28 shows the output of the script execution.

Figure 6.27: Create Test Project.

162

4. Testing the script attach.sh

The execution command:

 bash attach.sh ExampleProject 192.168.1.100

Figure 6.29 show the output of the script execution.

Figure 6.30 shows the BOINC manager interface after attaching the client.

Figure 6.28: Create Account.

Figure 6.29: Attach client.

163

5. Testing the script update.sh

The execution command:

 bash updateAttachedProject.sh 192.168.1.105

Figure 6.31 shows the script execution.

Figure 6.30: Attached client BOINC manager.

Figure 6.31: Update attached projects.

164

6. Testing the script deattach.sh

The execution command:

 bash deattach.sh ExampleProject 192.168.1.105

Figure 6.33 shows the output of the script execution.

Figure 6.32: BOINC manager after executing updateAttachedProject.sh

Figure 6.33: Detach a client.

165

7. Testing the script stopProject.sh

The execution command:

 bash stopProject.sh ExampleProject

Figure 6.35 shows the output of the script execution.

Figure 6.34: BOINC manager after executing deattach.sh.

166

8. Testing the script startProject.sh

The execution command:

 bash startProject.sh ExampleProject

Figure 6.36 shows the output of the script execution.

Figure 6.35: Stop project.

Figure 6.36: Start project.

167

9. Testing the script restartProject.sh

The execution command:

 bash restartProject.sh ExampleProject

Figure 6.37 shows the output of the script execution.

10. Testing the script singleJob.sh

The execution command:

 bash singleJob.sh singleJob

Figure 6.38 shows the output of the script execution.

Figure 6.37: Restart project.

168

Figure 6.38: Customize project to single Job project.

Figure 6.39: Project status executing singleJob.sh.

169

11. Testing the script submitJob.sh

 The execution command:

bash submitJob.sh singleJob home/ibrahim/job2 x86_64-pc-linux-gnu

Figure 6.40 show sthe output of the script execution. It return the wuid(work unit

id) assigned to the submitted job which is 1 in this case as shown in the figure

below.

12. Testing the php script abort

The execution command:

php5 ppu_boinc_job ~/projects/singleJob/ --abort 1

Figure 6.41 shows the output of the script execution.

Figure 6.40: Submit job.

Figure 6.41: Abort job.

170

13. Testing the script output_handler.sh

The execution command:

bash submitJob.sh ExampleProject home/ibrahim/job2 1

Figure 6.42 shows the output of the script execution.

\

14. Testing the script enable_account_creation.sh

The execution command:

 bash enable_account_creation.sh ExampleProject

Figure 6.43 shows the output of the script execution.

Figure 6.42: Output handler.

171

The project home page will show the option of creating account as shown in the

figure below.

15. Testing the script disable_account_creation.sh

The execution command:

 bash disable_account_creation.sh ExampleProject

Figure 6.45 shows the output of the script execution.

Figure 6.43: Enable account creation.

Figure 6.44: Project home page after executing enable_account_creation.sh.

172

The project home page will remove the option of creating account as shown in the

figure below.

16. Testing the script projectStatus.sh

The execution command:

 bash projectStatus.sh ExampleProject

Figure 6.47 shows the output of the script execution.

Figure 6.45: Disable account creation.

Figure 6.46: Project home page after executing disable_account_creation.sh.

173

17. Testing the script deleteProject.sh

The execution command:

 bash deleteProject.sh ExampleProject

This script deletes the project directory as well as the project DB. Figure 6.48

shows the script execution.

Figure 6.47: Project status.

Figure 6.48: Project deletion.

174

6.5.2 Testing Portal functionalities (Testing higher level)

 Through this section we test all the functionalities provided by the system portal.

These tests discussed below.

1. Project creation

 Admin can create BOINC projects remotely using the system portal. The created

project is ready for adding computing resources and users to submit jobs. Through the

project creation many scripts are executed; createTestProject.sh for Test example

project, createProject.sh for empty and single job project, singleJob.sh for single

job project, createAccount.sh and disable_account_creation.sh. Each of these

scripts is described previously in the implementation section.

 Creating project is done through the project creation form. Admin enters the

project name and project type and click on the create button. The system must

validate the name of the project before creating it, and displays error massages for

invalid names. The test of this functionality was done by entering an invalid name

(TestSystem?). The result is shown in the figure below.

Figure 6.49: Project creation test 1.

175

The second test was done by entering the name “TestSystem”. Figure 6.50 shows the

portal interface during the project creation process. A successful project creation is

shown in figure 6.51.

Figure 6.50: Project creation test 2.

Figure 6.51: Successful Project Creation.

176

 The same tests were applied to all project types and all of them followed the same

scenario.

2. Adding new user

 The first test is applied by entering invalid inputs; the result is shown in figure 6.52.

 The second is test applied by entering valid inputs; the result is shown in figure 6.53.

Figure 6.52: Error handling test for adding new user.

177

3. Attaching/ de-attaching client to a project:

Test the error handling was done by entering invalid IP addresses as shown in the

figure below.

Figure 6.53: Test adding new user.

Figure 6.54: Error handling test for attaching client.

178

 These tests applied also on de-attach and update functionalities, the same results

retrieved.

 Another test was done by entering a valid IP address. Figure 6.55 and Figure 6.56

show the BOINC manager of the target client before and after the attachment.

Figure 6.55: before attaching a client.

Figure 6.56: After attaching a client.

179

4. Update client attached projects:

Figure 6.57 show the BOINC manager of the target client. It is appear that the

target client is doing contact with the attached project.

5. Stop, start and restart project:

Figure 6.58 below shows the project status after the admin click on the stop

project button.

Figure 6.57: BOINC manager of the updated client.

180

Figure 6.59 shows the project status after the admin click on the either start or

restart project button.

Figure 6.58: Project status page after project stop.

Figure 6.59: Project status page after start/restart project.

181

6. Delete project:

Project directory and project DB are deleted when admin click on delete

project button. As a result all the project pages were deleted also. Figure 6.60 shows

the project home page after deletion.

7. Modifying Account Information

 Any user can modify his account information through account form. First, a test

is applied by entering an invalid password and click on modify account. The

result is shown in figure 6.61 below.

Figure 6.60: Project management page after deleting the project.

182

Many other tests were applied to all cases of errors; all of them were handled

successfully.

Another test of modification with correct inputs was applied, the result is shown

in figure 6.62.

Figure 6.61: Invalid account modification.

Figure 6.62: Valid account modification.

183

8. Modifying User Information

 Admin can modify some information of users through user account form.

Figures below show the user information before and after modification.

Figure 6.63: User information before modification.

Figure 6.64: User information after modification.

184

9. Enable/disable account creation

Testing enabling account creation was done by clicking on Enable button exist in

the project management page. Result is shown below.

Testing disabling account creation was done by clicking on disable button exist in

the project management page. Result is shown in figure 6.66.

Figure 6.65: Enabling account creation.

185

10. Delete users

 Admin can delete users from Users page by checking the users to be deleted,

and then click on “Delete users” button. Figures below show a test applied on

this functionality.

Figure 6.66: Disabling account creation.

Figure 6.67: Checking users for deletion.

186

11. Job submission:

Error handling test was applied by choosing an invalid job file and trying to submit

the job without selecting a platform, result shown in the figure6.69.

Figure 6.69: Error job submission.

Figure 6.68: Users deletion.

187

Another test of job submission with valid inputs is shown in figure 6.70.

12. Aborting job execution

When the user clicks on abort button, system displays a confirmation massage as

shown in figure 6.69. If the user click on “Ok” job will be aborted. Figure 6.72

shows the process while aborting a job.

Figure 6.70: Valid job submission.

188

Figure 6.71: Aborting Job confirmation.

Figure 6.72: Aborting job.

189

13. Job execution:

Test applied by submitting a job and monitoring its status during the execution.

As shown in the figures below that the job was moved successfully through the

execution states arriving to the completion state.

Figure 6.73: Job execution (state 1).

Figure 6.74: Job execution (state 2).

190

Figure 6.75: Job execution (state 3).

Figure 6.76: Job execution (state 4).

191

14. Download Results

 A user can download results of an executed job by clicking on the

“Download” link. A test applied on one of the completed jobs; download

window was lunched as shown in the figure below, and finally result was

downloaded successfully.

15. Delete results

 A user can delete the results by checking them, and then click on “Delete jobs”

button. Figures below show a test applied on this functionality.

Figure 6.77: Download window.

192

Figure 6.78: Check results to delete.

Figure 6.79: Home page after click Delete Jobs.

193

6.6 Summary

 This chapter clarifies the system implementation at the lower level which consists of

set of shell scripts that perform the system main functionalities. Also, it describes the

implementation of the higher level of the system. The higher level of the system includes

performing the system functionalities remotely and through user friendly interfaces.

Finally, we stated the procedures followed in testing the system.

194

Chapter Seven

Experiments and Results

7.1 Overview

 In this chapter we talk about the CPU utilization at PPU computer labs.

Through this experiment we uses CPU Usage Logger and Altra CPU monitor –

freeware programs – in order to arrive to approximation to the average CPU usage at

PPU computer labs. Also we examine how many floating point operations per second

can be obtained from the PPU environment.

7.2 Average CPU usage at PPU computer labs

This section has two main subsections; the first one clarifies the environment,

describes the programs used to get the average CPU usage and the difficulties that we

face during this stage. The second one states the practical work to get the average

CPU usage in PPU labs.

7.2.1 Environment specification and work difficulties

PPU contains approximately 1000 PC computers distributed over computer

labs. These computers are interconnected with local area network (LAN) of 100Mbps

speed, which is suitable for grid clients. A continuously upgrading and maintaining

are performed to these computers; so they are almost have a computational power

much far exceeds their usage by students for learning and internet access purposes.

During this project we monitored the CPU usage for a selected sample of PCs in some

of labs. These labs are: Al-Beruni(I), Al-Razi, Al-khwarizmi, PC1, and the security

lab. The following table shows the specifications of the PCs in these labs.

195

Monitoring CPU usage done during working hours (from 08:00am to

04:00pm).the study was applied approximately for 20 days distributed over semester.

Two main utility programs were used to log the CPU usage during the study. These

programs are ultra CPU usage monitor and CPU usage logger. The result from this

study generalized to represent the average CPU usage for all labs at the university.

CPU Usage Logger:

CPU Usage Logger is used to log the CPU usage to a text file. It is

recommended by many researchers and developers to perform this work; “since it is

small, simple and reliable freeware utility that offers a handy way for developers and

software testers to easily monitor and log CPU usage for any period of time”[18].

This program has many advantages to perform this work. Some of them: it

logs the CPU usage to a log file so that we can retrieve these log files at any time even

if the computer got unexpected shut down during working hours. In addition, it

doesn’t produce extra load to the CPU or memory usage during its running since it is

lightweight program. It doesn’t need an installation sequence to be running on the

system. Just copy it’s folders to any place on the free space of disk and double click

on the executable file, it will start running directly. On the other hand it has a critical

disadvantage; which is the need for user interaction to direct its output to a specific

Lab Building CPU specification

Beruni(I) B,2
nd

 floor Core 2 duo /2.66GHz

Beruni(II) B,2
nd

 floor Core 2 duo/2.66GHz

Al-Razi B,2
nd

 floor Core 2 duo /2.66GHz

Al-khwarizmi B,2
nd

 floor Core i5 /3.2GHz

PC1 B+,1
nd

 floor Dual core /2GHz

Security C,1
nd

 floor Core i5 /3.2GHz

Table 7.1: Computers specifications.

196

log file; this is needed each time the program is running. So it can’t be added to the

start-up list.

CPU usage logger will display the interface shown in figure 6.1 when it is run; we

can direct its output to a specific log file using that interface. It will add entry to the

file each 5sec. This entry will contain the columns headers as follow:

 Date of reading

 Time of reading

 Percentage of CPU usage between (90-100) percent during the last 5sec.

 Percentage of CPU usage between (80-90) percent during the last 5sec.

 Percentage of CPU usage between (70-80) percent during the last 5sec.

 Percentage of CPU usage between (60-70) percent during the last 5sec.

 Percentage of CPU usage between (50-60) percent during the last 5sec.

 Percentage of CPU usage between (40-50) percent during the last 5sec.

 Percentage of CPU usage between (30-40) percent during the last 5sec.

 Percentage of CPU usage between (20-30) percent during the last 5sec.

 Percentage of CPU usage between (10-20) percent during the last 5sec.

 Percentage of CPU usage between (0-10) percent during the last 5sec.

Figure 7.1: CPU usage logger program.

197

Ultra CPU monitor:

Ultra CPU monitor is a professional application designed to be a small CPU

monitoring tool that shows its activity as a diagram in the system tray. This free

software tool can display many icons. Each monitor can display its activity as a text or

as a diagram. Ultra CPU Monitor works on Windows operating systems [43].

 Ultra CPU monitor has important advantages; it can be added to the start-up

list, so it runs automatically when the system start. It also averages the CPU usage

while the running period. In addition it doesn’t produce extra loads to the CPU while

it’s running. It doesn’t need an installation sequence to be running on the system. Just

copy it’s folders to any place on the free space of disk and double click on the

executable file, it will start running directly. On the other hand, this program doesn’t

produce a log file, so if the computers got unexpected shut down during the running

period we can’t retrieve any previous results.

Ultra CPU monitor will add 3 basic icons to the system toolbar as shown in figure

6.2; we can get the average CPU usage using those icons.

Figure 7.2: Ultra CPU monitor program.

198

7.2.2 Practical Work

 During this subsection we will perform the computations needed to arrive

to a general term that represent the overall average CPU usage at PPU computer

labs. This work will basically depend on the data collected by the freeware

programs that stated in the previous section. The work goes on 3 levels that are:

 Collect the daily results about the average CPU usage and perform the

needed computation to get the average usage in that day.

 Averaging all the data for each lab that represents the average CPU usage

in that lab.

 The overall average CPU usage at PPU labs will be the average of all of

CPU usage for all labs during the study period

Table 7.2 shows the average CPU usage on the computers at AL-Beruni(I) lab

for one day. Figure 7.3 show a part of the log file generated by CPU usage logger

which used in the computations to get the results shown in table 7.2.

PC

name

Average CPU usage(using

Ultra CPU monitor

program)

CPU usage less than 10% (CPU usage

logger program)

PC1 7% 92%

PC2 15% 86%

PC3 9% 91%

PC4 11% 88%

PC5 20% 83%

PC6 3% 96%

Table 7.2: Average CPU usage at AL-Beruni(I) lab for one day.

199

The following table summarizes the average CPU usage in each lab according

to both of programs and the number of computers that were monitored in each lab.

Where U_CPU_M is the ultra CPU monitor program and CPU_U_L is CPU usage

logger program.

Lab Name Sample size Avg. CPU usage(U_CPU_M) Avg. CPU usage(CPU_U_L)

Al-Beruni(I) 6 12% Less than 10% for 83% of the time.

Al-Razi 6 13% Less than 10% for 82% of the time

Al-khwarizmi 10 8% Less than 10% for 91% of the time.

PC1 10 10% Less than 10% for 86% of the time.

security lab 10 6% Less than 10% for 93% of the time.

Table 7.3 Average CPU usage in PPU computer labs.

Figure 7.3: Sample of the log file generated by CPU usage logger.

200

Average CPU usage for each lab is displayed in the chart diagram below.

The stated averages in the previous table represent the average of CPU usage

in the labs during the lectures since most of times the computers are turned off after

each lecture. So they are running only when they are under use. This means that the

average CPU usage of the computers will be decreased much more than shown, that is

if they remain running all the time, and so increase the ability of providing more

computational power.

Depending on table 7.3; the average CPU usage at the stated labs together is:

 approximately 9.3% using Ultra CPU monitor

 and approximately less than 10% for 87.9% of the time, using CPU usage

logger:

The previous results can be generalized to represent the average CPU usage at PPU

computer labs. They are come in favour with many researches on CPU utilization of

PCs, some of them:

 Bader Al-Ajrab stated that "the average CPU usage is not far exceed 10% for

90% of the time"[18], his research applied at Al-Quds Open University in

2013.

0%

2%

4%

6%

8%

10%

12%

14%

Al-Beruni(I) Al-Razi Al-khwarizmi PC1 security lab

Averge CPU usage

Figure 7.4: Average CPU usage at PPU labs.

201

 Domingues stated CPU idleness is impressively high with an average of

97.93%"[36].

Results show that computers at PPU computer labs have a large computational power

that is not utilized, so it can be used to build a grid computing system.

7.3 Examination the performance of PPU Environment

 The goal of this experiment is basically to prove that the Grid System is running

and working properly. By this experiment we show that our grid computing

environment is ready for further studies and researches .In addition, we try to get an

approximate estimation of the PPU environment performance. Arriving to an exact

estimation of the PPU environment performance is out of the scope of this project.

 We used the Giga floating point operations per second (GFLOPS) that is

obtained from the system as the performance metric. Larger number of GFLOPS

obtained from a system means better performance of this system. GFLOPS can be

calculated using the equation below:

 ……………. [44]

 Where:

- F: CPU frequency.

- C: number of cores.

- n: number of floating point operations per CPU cycle. Most likely

equals 4.

Pre-requirements needed for doing this experiment:

- A running BOINC Test project.

- Sample of computing resources ready for attaching to the Test project.

To handle these requirements we do the following:

- Create a BOINC Test project named PPUTest.

202

- Install the BOINC client software on all PCs of Al-Khwarizmi lab and set the

appropriate configurations. The details of installation and setting

configurations are discussed in appendix A.

 The specification of Al- Khwarizmi lab PCs are Intel, Core i5-3470 CPU,

3.20GHz. The theoretical number of GFLOPS obtained by one of these

PCs can be calculated using the previous equation as follow:

GFLOPs= 4 (cores) × 3.2 GHz × 4 (floating operations per cycle) = 51.2GFLOPS.

 The practical gained GFLOPS is smaller than the theoretical. There are many

factors that make the practical GFLOPS smaller than the theoretical:

- A computer cannot run at the maximum utilization all the time; it may

be exposed to a hardware failure.

- CPU is not always available for the test computations; it is shared for

all purposes.

- Many times computers are not running, or even not connected to the

network.

- Many times server itself is not running or not connected to the

network.

- The test application used in the experiment is so simple so it doesn’t

need to a large computational power.

 The applied experiment has totally 39 PCs working as grid clients and having the

same specifications. This experiment was applied for ten days. We obtained

approximately 96 GFLOPS as the average of GFLOPS can be produced from all of

these PCs together. Through the analysis of the results we found that:

 Twelve of these PC were not working properly (this found from the number of

work units done by these PCs, which was too low comparing with other

computers). This may happen because these PCs were disconnected to the

network for long periods of time during the experiment. So, we will ignore

these PCs and their effect which is about 3 GFLOPS.

As a result we have 27 PCs producing 93 GFLOPS:

203

 GFLOPS per PC =

 =

 = 3.45GFLOPS

 PPU has approximately 1000PCs distributed over all the university. If we

suppose that all PPU PCs have a similar specification of AL-Khwarizmi lab

PCs, then attaching all PPU PCs to the grid system produces:

 GFLOPS = GFLOPS per PC × number of PC = 3.45 × 1000 = 3.45TeraFLOPS

Many limitations must be considered when taking this result:

 It is generalized from one test of a small sample. To determine the

performance of the environment many tests with different sample sizes are

needed to be performed.

 The test was done over ten days only, which is a short period to generalize

on all semester. Computers usage may differ during the semester life

cycle, which surly affects the number of GFLOPS obtained from each PC.

 The test is applied only on windows 7 operating system PCs. So, it

doesn’t take into consideration the effect of the operating system. Tests

must be applied on different OS since each OS make different usage to the

PC resources.

 Network effect is not taken into consideration since only AL-Khwarizmi

lab computers were used in this test. Grid clients may exist in different

locations that have different link speeds which surly affect the

performance.

 Only one application was used in the test; which is the BOINC test

application. CPU usage may differ for different applications that make

different access to memory or Input/Output. So, many tests with different

applications must be performed.

 The BOINC test application used in the test is so small and simple which

is not the case of many real applications. So, it may not increase the

utilization of the CPU usage as well.

204

7.4 Summary

 In this chapter we talked about the CPU utilization at PPU computer labs.

Through this experiment we found that the average CPU usage at PPU labs doesn’t

far exceed 9%; this mean there is a huge computational power can be obtained by

these resources to perform important researchs. Also we performed a small

experiment to estimate how many FLOPs can be obtained from the PPU environment.

Thruogh this experiment we found that each PC prooduces approximatly

3.45GFLOPS.

502

Chapter Eight

Conclusion and Future Work

8.1 Overview

 In this chapter, we introduce the overall project conclusion and talk about the

challenges appeared during the project. Also, we talk about some fields that are

important to be taken in to consideration within the future work.

8.2 Conclusion

 This project has two main objectives. The first objective is to highlight the

amount of wasted computing power during idle CPU cycles. The second objective is

to build a local PC grid computing system in the university to utilize the available

idle CPU power in computer labs.

 The first objective is achieved by performing a study to find the CPU utilization

percentage in the university. The result of this study shows that CPU utilization in

computer labs is very low. The average CPU utilization for a whole working day

(08:00-16:00) is less than 10%, this agrees with all surveyed researches in this field.

Our results emphasize the fact that available idle CPU power is large, and can be

employed to build a local Grid computing system.

 The second objective is achieved by building the Campus Grid Computing

System which is done as follow:

 Installing BOINC server on one of the university PCs.

 Installing BOINC client on a sample of the university PCs.

502

 Creating shell scripts that provide the core functionalities of the system.

 Creating a web portal for Campus Grid Computing System.

 Campus Grid Computing System implements two levels of transparency. The

lower level of transparency consists of shell scripts that provide the core

functionalities of the system. The higher level of transparency which is the web

portal is built over the lower level. This level provides user interfaces that enable

performing any functionality without the need to write a terminal commands directly

on the server; Users can perform any functionality remotely through user friendly

interfaces and without seeing the underlying levels of the system.

 One of the experiments that were done using the Campus Grid Computing

System is examining how many FLOPs can be obtained from the PPU environment.

This study proved that the Grid System is running and working properly. Through

this experiment each PC produces approximately 3.45 GFLOPS.

 BOINC middleware is centralized system where the server works on managing

all resources and jobs. This has some drawbacks, which are:

 The need for a powerful central server to manage all slave computing

nodes.

 Single point of failure; if the grid server crashed all the system will

stop evaluation.

8.3 Challenges

 During the work over this project we face many challenges and difficulties. The

following paragraphs talk about these challenges and difficulties.

 Project scope is large and requires the team members to be from different

backgrounds to work on. Project team must be experienced with parallel

502

programming, Linux administrative skills, web development, and security

considerations for all of these sides.

 BOINC is a powerful tool that supports volunteer computing, which we

customized to support grid computing. In contrast, there are many challenges for

using BOINC. The complexity of BOINC; such that developers need to put large

efforts on learning the BOINC environment before being able to start using it.

 Moreover, BOINC environment is still under construction. So, BOINC

documentation is not complete and many topics are mentioned abstractly. Many

times we arrived to solutions based on our overall understanding of BOINC

complexity.

 In addition, the lack of previous studies in this field increases the difficulty of

going on with this project. This project approximately considered the first graduation

project specialized in the field of grid computing over BOINC middleware.

 Many difficulties also come with the experiments that we perform over PPU

environment. We need to enter the labs many times each day of the study of CPU

utilization to run the CPU usage logger program and at the end of the day we need to

come back to take the results. But, we were not being able to enter to labs freely

during the lectures. Moreover, all the labs were heavily loaded with lectures. So we

forced to wait the breaks between lectures to do our work that is too short and not

enough to finish the work.

 In addition, turning off the programs by the users was one of the most annoying

difficulties. Both of the programs used in the study of CPU utilization don't have the

ability to run in background so many times users close them. When we come back at

the end of the day to take the results we shocked that programs are closed and no

valid data exist. Since of that we were forced to do the work again and again.

502

 Another difficulty that we face is shutting down the computers at the end of

lectures. This affect the results of both of the programs used at the CPU utilization

study. It also affects the number of work units performed by the computers which

represents their performance at the grid system.

8.4 Future Work

 Although, we have obtained promising initial results, but still the following

points may help to further contributions in Grid computing:

1. Developing GPU Applications

 While our project mainly focuses on utilizing idle CPUs power in our

computer labs, BOINC supports applications that use coprocessors. The

supported coprocessor types are NVIDIA, AMD, and Intel GPUs [45]. The

Graphical Processing Unit (GPU) provides a very large computing power

which is usually not utilized well.

 The computing power of GPUs has increased rapidly, and they are now

often much faster than the computer's main processor, or CPU [46]. The

wasted power of computers' GPUs can be utilized by building BOINC GPU

applications. You can develop your application using any programming

system, e.g. CUDA (for NVIDIA), CAL (for ATI) or OpenCL [45].

502

2. Grid Data Archival

 PCs nowadays have large disk space capacities while only small portion

of this space is used by normal users. A study can be performed on the

university PCs to find the available disk space capacities and their utilization

percentage. In the light of this study, we can determine the efficiency of

building a distributed data storage system to make use of unused disk

capacities.

 BOINC is currently used for computation, but it also provides primitives

for distributed data storage: file transfers, queries, and deletion [47]. It is

possible to develop a system that uses these primitives to implement a

distributed data archival system

3. Testing BOINC client performance

 Most of our experiments were done under Windows XP and Windows 7.

However, we can test the BOINC client software performance under different

platforms like UNIX based operating systems. Also, it is a good idea to test

BOINC client under Windows 8 which takes its place in the market and it

may be used in our labs in near future.

4. Mass Deployment Of BOINC Client Software

 Deploying BOINC client software manually on a large number of

computers is not an easy task; it needs a large effort and takes a lot time

repeating the same process.

 The BOINC installer uses the Microsoft MSI technology framework so

we can customize the BOINC installer properties. In addition, we can control

510

certain aspects on the installation process by launching the BOINC installer

with certain command line options. For example, we can automate the

process of client deployment using unattended or silent install by executing a

installer command with untended or silent command line argument (see

reference [48]).

5. Developing and porting BOINC applications

 This involves meeting the researchers, identifying those with

computationally-intensive problems that map well to grid computing. The

applications used by those researchers are then ported to BOINC.

 On the other hand, adopting an existing application to run within BOINC

environment can be reached by two approaches:

a. Using BOINC wrappers

 This is the simplest way. The existing application can be run with no

modifications.

b. Writing Native BOINC applications

With some minor source code modifications, you can run an

application directly without need for the wrapper [49]. The changes

are [49]:

 Adding calls to BOINC initialization and finalization routines.

 Preceding each fopen() call with a BOINC function that maps

logical to physical names.

 Linking it with the BOINC runtime library

511

6. Test BOINC Wrappers

 Any existing application (or sequence of applications) can be run under

BOINC using a wrapper program supplied by BOINC. The wrapper runs the

applications as sub-processes, and handles all communication with the

BOINC client (e.g., to report CPU time and fraction done) [50].

 A study can be performed to test the effect of using BOINC wrappers to

run the applications. The study should determine the overhead, effectiveness,

advantages and disadvantages of wrappers. The result of this study may

suggest mechanisms to enhance wrappers performance.

 In addition, it will be a good idea to compare the performance of an

application; one time is run under BOINC wrapper and the other time is run

as native BOINC application.

7. Determine Best Parameters (BOINC experiments)

 BOINC provides different parameters to control and specify preferences

that limit when and how BOINC uses the computers under a certain account.

Many experiments can be performed to determine the best values for these

parameters like processor, disk and memory usage.

8. Use BOINC with different programming languages

 BOINC is originally designed to work with C/C++ applications, but it

provides some mechanisms to adopt other programming languages like Java

and Python. We can try to develop applications for these programming

languages. In addition, we can enhance the single job submission to include

new programming languages other than C/C++.

515

9. Build BOINC software add-ons using BOINC API

 BOINC Project is still under work and it is developed on volunteer bases.

One can participate in different fields of this project as a volunteer and can be

part of the world wide effort in this area.

10. Build a volunteer computing system (Investigate Volunteer Computing).

 Because of the huge number (more than one billion) of PCs in the world,

volunteer computing can supply more computing power to science than does

any other type of computing [51]. BOINC is originally designed for volunteer

computing; so it can be used to build a volunteer system.

11. Deploy BOINC server on different UNIX and Linux distributions.

 The BOINC server must be a UNIX computer, generally running Linux

[52]. In this project we deployed the BOINC server on Ubuntu 12.04, but we

can try to get the experience of deploying the BOINC server on different

Linux distributions.

12. Build a tool to control BOINC clients remotely

 The BOINC manager provides a graphical user interface to facilitate the

communication with only one BOIC core client locally or remotely. In a real

campus grid system, it is essential to control the BOINC core client remotely

on all computers participate in the grid. For this purpose, an add-on tool can

be built using boinccmd tool or BOINC APIs.

512

13. Build a Palestine Universities Grid System (PUGS)

 We can generalize the project idea by building a large scale grid system

that encloses all the Palestinian universities. This grid system will provide a

large computational power that will develop and enhance scientific researches

in Palestine.

14. Launch our first BOINC based real project that does real computation or

performs a scientific research.

 This can be done by helping researchers in the university to develop

BOINC based projects that serve their research fields. The publication of

such projects and their results can increase the publicity of the university.

15. BOINC For Android

 Mobile devices such as smartphones and tablets are small, but they have

serious computing power - as much as 25% of an average desktop computer

[53]. In addition there are a huge number of android devices in the world and

their market is growing rapidly.

 BOINC client software is now available for android devices; so it is

important to develop applications for android devices exploit their

computational power which may play an important role in the future for

scientific computing.

16. Investigating other grid computing middle-wares and tools (e.g. Globus,

Alchemi).

512

17. Mobile Agent Grid System

 BOINC follows a client-server centralized approach. This centralization

of the system produces some limitations on the BOINC based systems.

 Mobile agent works on decentralization manner. It also supports the

interaction and the communication between agents during their execution on

different hosts. So, mobile agent based systems can avoid the limitations

come from centralization. But in the other hand, different limitations will

appear since of the nature of mobile agents.

 As an example of mobile agent based middleware systems is Agent

Teamwork “is a grid-computing middleware system that dispatches a

collection of mobile agents to coordinate a user job over remote computers in

a decentralized manner”[69].

8.5 Summary

 In this Chapter, we summarized the main results that were found through this

project, then talk about the challenges that appeared during the project. Finally, we

stated the main issues that are considered as a future work.

512

References

[1] BOINC: Berkeley Open Infrastructure for Network Computing,

http://boinc.berkeley.edu/, (accessed on 13/11/2013).

[2]What is grid computing?, http://www.gridcafe.org/EN/what-is-the-grid.html,

(accessed in September, 2013).

[3] Bader Ahmed Bader Ajrab,” PC Grid Computing Environment In Higher

Education Institutions”, master thesis at AlQuds university, Palestine, 2013.

[4] Grid computing in 30 seconds, http://www.gridcafe.org/EN/grid-in-30-sec.html ,

(accessed in September, 2013).

[5]D.P. Vidyarthy, B.K. Sarker, L.T.Yang, "Scheduling in Distributed Computing

Systems Analysis, Design & Models", A Research Monograph, pp.(244-245),2009

[6] Grid architecture, http://www.gridcafe.org/EN/grid-architecture.html , (accessed

in October, 2013).

[7] Middleware, http://www.gridcafe.org/EN/middleware.html, (accessed in October,

2013).

[8] Ault, M. and Tumma, M., "Oracle10g Grid Computing with RAC", Oracle RAC -

Types of Grid computing, 2004.

[9]Stanoevska K., Wozniak T., Ristol S.,"Grid and Cloud Computing: A Business

Perspective on Technology and Applications", Springer, 2010.

[10]Goyal B, Lawande S (2005) Grid Revolution: An Introduction to Enterprise Grid

Computing. McGraw-Hill, Emeryville, CA, 2005

[11]Joseph J., Fellenstein C., "Grid Computing", Pearson Education, 2004.

[12]Ian Foster, Carl Kesselman, The Grid: Blueprint for a New Computing

Infrastructure, Morgan Kaufmann, 2004.

[13]Fox, G., Furmanski, W. (1998) High performance commodity computing,

Chapter 10, in Foster, I. and Kesselman, C. (eds) The Grid: Blueprint for a New

Computing Infrastructure. San Francisco, CA: Morgan Kaufmann Publishers.

[14] Foster, I. and Kesselman, C.,"The grid: Blueprint for a new computing

infrastructure", Morgan Kaufmann, San Francisco, CA,1998.

http://boinc.berkeley.edu/
http://www.gridcafe.org/EN/what-is-the-grid.html
http://www.gridcafe.org/EN/grid-in-30-sec.html
http://www.gridcafe.org/EN/grid-in-30-sec.html
http://www.gridcafe.org/EN/grid-architecture.html
http://www.gridcafe.org/EN/grid-architecture.html
http://www.gridcafe.org/EN/middleware.html

511

 [15]Fran Berman, Anthony J.G. Hey, Geoffrey C. Fox,

"Grid Computing Making the Global Infrastructure a Reality", Wiley Series in

Communications Networking and Distributed Systems, pp.(722-723),2003.

[16] Grid-powered projects, http://www.gridcafe.org/EN/grid-powered-project.html ,

(accessed in October, 2013).

[17] Volunteer computing , http://www.gridcafe.org/EN/volunteer-computing.html

,(accessed on September, 2013).

[18] Desktop Grid, http://boinc.berkeley.edu/trac/wiki/DesktopGrid, (accessed in

October, 2013).

[19] Volunteer computing vs. cloud vs. grid vs. HPC ,

http://www.volunteer-computing.org/EN/volunteer-computing-vs-cloud-vs-grid-vs-

HPC.html, (accessed in October, 2013).

[20] Volunteer computing , http://en.wikipedia.org/wiki/Volunteer_computing,

(accessed in October, 2013).

[21] Desktop_Grid:Westminster_Local_DG,

http://wgrass.wmin.ac.uk/index.php/Desktop_Grid:Westminster_Local_DG,

(accessed in October, 2013).

[22] NEW DIY SUPERCOMPUTER SAVES £1,000S,

 http://www.westminster.ac.uk/news-and-events/news/2011/university-of-

westminster-launches-new-diy-supercomputer-saving-hundreds-of-thousands-of-

pounds, (accessed in October, 2013).

[23] Middleware - Volunteer garage, http://www.volunteer-

computing.org/EN/middleware.html, (accessed in October, 2013).

[24] Anderson,” BOINC: A system for public-resource computing and storage”, 5th

IEEE/ACM International Workshop on Grid Computing, Pittsburgh, PA, USA, pp. 4-

10,Dec,2004.

 [25] Grid MP - Wikipedia, the free encyclopedia

http://en.wikipedia.org/wiki/Grid_MP, (accessed in October, 2013).

 [26] Alchemi v0.6.1 Documentation,

http://www.cloudbus.org/~alchemi/doc/0_6_1/index.html, (accessed in October,

2013).

http://www.gridcafe.org/EN/grid-powered-project.html
http://www.gridcafe.org/EN/volunteer-computing.html
http://boinc.berkeley.edu/trac/wiki/DesktopGrid
http://www.volunteer-computing.org/EN/volunteer-computing-vs-cloud-vs-grid-vs-HPC.html
http://www.volunteer-computing.org/EN/volunteer-computing-vs-cloud-vs-grid-vs-HPC.html
http://www.volunteer-computing.org/EN/volunteer-computing-vs-cloud-vs-grid-vs-HPC.html
http://en.wikipedia.org/wiki/Volunteer_computing
http://wgrass.wmin.ac.uk/index.php/Desktop_Grid:Westminster_Local_DG
http://www.westminster.ac.uk/news-and-events/news/2011/university-of-westminster-launches-new-diy-supercomputer-saving-hundreds-of-thousands-of-pounds
http://www.westminster.ac.uk/news-and-events/news/2011/university-of-westminster-launches-new-diy-supercomputer-saving-hundreds-of-thousands-of-pounds
http://www.westminster.ac.uk/news-and-events/news/2011/university-of-westminster-launches-new-diy-supercomputer-saving-hundreds-of-thousands-of-pounds
http://www.volunteer-computing.org/EN/middleware.html
http://www.volunteer-computing.org/EN/middleware.html
http://en.wikipedia.org/wiki/Grid_MP
http://www.cloudbus.org/~alchemi/doc/0_6_1/index.html

512

[27] Alchemi [.NET Grid Computing Framework],

http://www.cloudbus.org/~alchemi/, (accessed in October, 2013).

[28] Akshay Luther, Rajkumar Buyya, Rajiv Ranjan, and Srikumar Venugopal,

“Peer-to-Peer Grid Computing and a .NET-based Alchem Framework”, Grid

Computing and Distributed Systems (GRIDS) Laboratory, Department of Computer

Science and Software Engineering, The University of Melbourne, Australia.

[29] SETI, http://setiathome.berkeley.edu/, (accessed on 13/11/2013)

[30] BOINCstats, http://boincstats.com/, (accessed on 13/11/2013)

[31] TOP500 list, http://www.top500.org/list/2012/11/, (accessed on 13/11/2013).

[32] Anderson, D., Korpela, E. and Walton, R., ―High-Performance Task

Distribution for Volunteer Computing‖, Proceedings of the First IEEE International

Conference on e-Science and Grid, . Melbourne, Australia, 2005.

[33] JobSubmission-Boinc. http://boinc.berkeley.edu/trac/wiki/JobSubmission,

(accessed in January, 2014).

[34] JobTemplates-Boinc. http://boinc.berkeley.edu/trac/wiki/JobSubmission,

(accessed in January, 2014).

[35] Free CPU usage monitor programs, http://softwaresolution.informer.com/Free-

CPU-Usage-Monitor/.(accessed in January, 2014).

[36] Patricio Domingues, Paulo Marques, Luis Silva,”Resources Usage of Windows

Computer Laboratories”, αEscola Superior de Tecnologia e Gestão – Instituto

Politécnico de Leiria – Portugal βDepartamento Eng. Informática, Universidade de

Coimbra – Portugal, Jan, 2005.

, http://boinc.berkeley.edu/trac/wiki/BasicConceptsBOINC, -[37] BasicConcepts

(accessed on 06/05/2014).

[38] Example applications, http://boinc.berkeley.edu/trac/wiki/ExampleApps#no1,

(accessed on 8/5/2014).

, (accessed on http://boinc.berkeley.edu/trac/wiki/SingleJobBOINC, -[39] SingleJob

07/05/2014).

, (accessed on http://boinc.berkeley.edu/trac/wiki/HtmlOps BOINC,-] HtmlOps40[

04/04/2014).

[41] M. Alfalayleh and L. Brankovic, "an overview of security issues and techniques

in mobile agents", The University of Newcastle, 2004.

http://www.cloudbus.org/~alchemi/
http://setiathome.berkeley.edu/
http://boincstats.com/
http://www.top500.org/list/2012/11/
http://boinc.berkeley.edu/trac/wiki/JobSubmission
http://boinc.berkeley.edu/trac/wiki/JobSubmission
http://boinc.berkeley.edu/trac/wiki/ExampleApps#no1
http://boinc.berkeley.edu/trac/wiki/HtmlOps

512

, (accessed on http://boinc.berkeley.edu/trac/wiki/SecureHttpBOINC, -[42] SecureHttp

02/04/2014).

-CPU-http://softwaresolution.informer.com/Free] Free CPU Usage Monitor, 3[4

2014)., (accessed on 10/01/Monitor/-Usage

, http://en.wikipedia.org/wiki/FLOPSWikipedia, the free encyclopedia, -] FLOPS 4[4

(accessed 22/05/2014).

, (accessed http://boinc.berkeley.edu/trac/wiki/AppCoprocessor[45] AppCoprocessor,

on 06/05/2014).

 [46] GPU Computing-BOINC, http://boinc.berkeley.edu/wiki/GPU_computing,

(accessed on 06/05/2014).

, http://boinc.berkeley.edu/trac/wiki/ResearchProjectsBOINC, -ResearchProjects [47]

(accessed on 06/05/2014).

[48] Creating custom installers,

http://boinc.berkeley.edu/wiki/Creating_custom_installers, (accessed on 06/05/2014).

 [49] AppIntro-BOINC, http://boinc.berkeley.edu/trac/wiki/AppIntro, (accessed on

08/05/2014).

[50] WrapperApp-BOINC, http://boinc.berkeley.edu/trac/wiki/WrapperApp,

(accessed on 08/05/2014).

[51] VolunteerComputing-BOINC,

http://boinc.berkeley.edu/trac/wiki/VolunteerComputing, (accessed on 10/05/2014).

[52] Creating and Configuring a BOINC Project,

http://www.spy-hill.net/myers/help/boinc/Create_Project.html#server, (accessed on

10/05/2014).

 [53] Android FAQ-BOINC,http://boinc.berkeley.edu/wiki/Android_FAQ, (accessed

on 10/05/2014).

[54] Setting up a BOINC server, http://boinc.berkeley.edu/trac/wiki/ServerIntro,

(accessed on 10/1/2014).

[55] BOINC server guide installation,

https://wiki.debian.org/BOINC/ServerGuide/Initialisation, (accessed 15/1/2014).

, accessed on http://boinc.berkeley.edu/wiki/Installing_BOINC[56] Installing BOINC,

02-May- 2014

[57] Installing BOINC On Ubuntu,

, (accessed on untuhttp://boinc.berkeley.edu/wiki/Installing_BOINC_on_Ub

02/05/2014).

http://boinc.berkeley.edu/trac/wiki/SecureHttp
http://softwaresolution.informer.com/Free-CPU-Usage-Monitor/
http://softwaresolution.informer.com/Free-CPU-Usage-Monitor/
http://en.wikipedia.org/wiki/FLOPS
http://boinc.berkeley.edu/wiki/Android_FAQ
http://boinc.berkeley.edu/trac/wiki/ServerIntro
https://wiki.debian.org/BOINC/ServerGuide/Initialisation
http://boinc.berkeley.edu/wiki/Installing_BOINC
http://boinc.berkeley.edu/wiki/Installing_BOINC_on_Ubuntu

512

 [58] Controlling BOINC Remotely,

, (accessed on http://boinc.berkeley.edu/wiki/Controlling_BOINC_remotely

02/05/2014).

, (accessed on http://boinc.berkeley.edu/trac/wiki/DataBaseBOINC DB, [59]

8/5/2014).

, http://boinc.berkeley.edu/trac/wiki/ServerDirs[60] Server directory structure,

(accessed on 8/5/2014).

, http://boinc.berkeley.edu/trac/wiki/ProjectConfigFile[61] Project configuration file,

(accessed on 8/5/2014).

, http://boinc.berkeley.edu/trac/wiki/ServerComponents[62] Server Components,

(accessed on 8/5/2014).

, http://boinc.berkeley.edu/trac/wiki/ServerIntro[63] Setting up a BOINC server,

(accessed on 8/5/2014).

[64] anonscm.debian.org Git - pkg-boinc, http://anonscm.debian.org/gitweb/?p=pkg-

boinc/scripts.git;a=blob;f=server-examples/boinc_project_maker.sh, (accessed in

January, 2014).

[65] Code signing, http://boinc.berkeley.edu/trac/wiki/CodeSigning, (accessed on

02/04/2014).

[66] KeySetup-BOINC, http://boinc.berkeley.edu/trac/wiki/KeySetup, (accessed on

02/04/2014).

[67] StartTool-BOINC, http://boinc.berkeley.edu/trac/wiki/StartTool, (accessed on

12/05/2014).

, (accessed http://boinc.berkeley.edu/wiki/Boinccmd_toolBOINC, -tool Boinccmd[68]

on 07/04/2014).

[69] The design concept and initial implementation of Agent Teamwork grid

, http://www.academicpub.com/map/items/3933371.html, computing middleware

(accessed on 28/5/2014).

, http://boinc.berkeley.edu/wiki/BOINC_Security, BOINC-rityuecS BOINC]70[

(accessed on 30/05/2014).

http://boinc.berkeley.edu/wiki/Controlling_BOINC_remotely
http://boinc.berkeley.edu/trac/wiki/DataBase
http://boinc.berkeley.edu/trac/wiki/ServerDirs
http://boinc.berkeley.edu/trac/wiki/ProjectConfigFile
http://boinc.berkeley.edu/trac/wiki/ServerComponents
http://boinc.berkeley.edu/trac/wiki/ServerIntro
http://anonscm.debian.org/gitweb/?p=pkg-boinc/scripts.git;a=blob;f=server-examples/boinc_project_maker.sh
http://anonscm.debian.org/gitweb/?p=pkg-boinc/scripts.git;a=blob;f=server-examples/boinc_project_maker.sh
http://boinc.berkeley.edu/trac/wiki/CodeSigning
http://boinc.berkeley.edu/trac/wiki/KeySetup
http://boinc.berkeley.edu/wiki/Boinccmd_tool
http://www.academicpub.com/map/items/3933371.html
http://boinc.berkeley.edu/wiki/BOINC_Security

220

Appendix A

Server and Client Software Installation

 This appendix describes the deployment process of BOINC software. First, we

show the installation and configuration process of BOINC server, then we describe

the installation of BOINC client software on different platforms.

A.1 BOINC server Pre-installation requirements

There are pre-installation requirements that must be satisfied before installing

the BOINC server. These requirements are classified as hardware requirements and

software requirements.

A.1.1 Hardware requirements

Hardware requirements which are needed for running a BOINC server vary

according to the size of the grid system and the type of services provided by the

system. In general, any computer can be used as a BOINC server if its usage just for

experiments and debugging purposes. However, before deploying the system more

widely, we have to make sure that the server has adequate performance, availability,

and security. Here are some factors [54]:

 Internet connection should have adequate performance and reliability.

 Server must have a static IP address.

 Server should have:

o Good CPU speed(dual Xeon or Opteron):

o At least 2 GB of RAM,

o At least 40 GB of free disk space.

o For a high-traffic project, use a machine with 8 GB of RAM or more.

 All these factors suppose that the server used to serve only one BOINC

project, more details about BOINC project stated in Appendix B.

In our case the server has:

 Processor: core i5 3.2GHz.

221

 RAM: 4GB

 Disk storage capacity: 320GB.

 Network: 100Mbps.

 Global IP address: 195.3.191.24

 Local IP address: 10.10.16.12

A.1.2 Software requirements

The currently stable and up to date version of BOINC server runs on any 64-

bit UNIX operating system. In our project we used Ubuntu12.04 LTS.

There are some additional software dependences needed for BOINC server

like apache server, PHP, MYSQL, and other packages that must be installed before

BOINC server installation. These dependences can be installed by running the

following terminal command:

 sudo apt-get install git build-essential apache2 php5 \

mysql-server php5-gd php5-cli php5-mysql python-mysqldb \

libtool automake autoconf pkg-config libmysql++-dev libssl-

dev

A.2 BOINC server installation process

System installation process goes into the following steps:

1. Download BOINC source:

 git clone git://boinc.berkeley.edu/boinc-v2.git boinc

2. Compile BOINC:

 cd boinc

 ./_autosetup

 ./configure --disable-client --disable-manager

 make

222

A.3 Trouble Shooting

 This section shows some problems that may arise during the compilation process

of BOINC server and provides solutions for these problems.

 Fatal error: curl/curl.h: No such file or directory:

Solution: sudo apt-get install libcurl4-gnutls-dev

 Problem: error with (m4) :

 Solution: download and install m4-1.4.1

 sudo apt-get install m4.1

 Problem: configure: WARNING: fcgi-stdio.h not found.

--

Disabling FCGI. Will not build components that require FCGI

--

Solution: Install the follwoing library [55]: libfcgi-dev

 sudo apt-get install libfcgi-dev

 Problem with openssl directory.

 Solution: use instead of the Compile BOINC commands (step 2 in section

A.2) the following one:

cd boinc; ./_autosetup; ./configure --with-ssl=/usr/include/openssl --disable-

client --disable-manager; make

 For assurance that we have updated version of the BOINC source code we

need to execute the command:

 git pull

 After fixing all the problems we need to re-compile the BOINC source code.

223

The following figures show the compilation process that has some problems:

Figure A.3.1 BOINC installation problems 1.

Figure A.3.2 BOINC installation problems 2.

224

When the compilation finished properly, the result will be as shown in figure A.3.4

below:

Figure A.3.4 Proper BOINC installation.

Figure A.3.3 BOINC installation problems 3.

225

Figure A.4.1: BOINC Client Deployment Step 1

A.4 BOINC Client Installation

 This section describes the deployment process of BOINC client software on

different platforms.

A.4.1 Microsoft Windows

 Most of installation work is done on Microsoft Windows operating system which

is used by most of our computers. First, we need to download the BOINC installer for

Windows, and then double-click the installer icon. After that, we follow the

installation process that is described in the figures below (Figure A.4.1 to Figure

A.4.8).

226

Figure A.4.2: BOINC Client Deployment Step 2

Figure A.4.3: BOINC Client Deployment Step 3

227

Figure A.4.4: BOINC Client Deployment Step 4

Figure A.4.5: BOINC Client Deployment Step 5

228

Figure A.4.6: BOINC Client Deployment Step 6

Figure A.4.7: BOINC Client Deployment Step 7

229

Figure A.4.8: BOINC Client Deployment Step 8

 Note:

 In step 4 which is shown in Figure A.4.4 we chose to install BOINC client

as service by checking the Service Install checkbox. In addition, we disabled screen

saver option and prevented other users (usually students) from controlling BOINC

client software.

A.4.2 Linux

You can install BOINC on a Linux computer in any of three ways [6]:

 Use the package management system of your Linux distribution;

 Use the "Berkeley installer" provided by BOINC (a self-extracting archive, not

distro-specific);

 Build directly from source code.

230

 Installing BOINC as a package [6]

 Some Linux distributions (Fedora, Ubuntu, Debian, Gentoo, possibly others)

have BOINC packages that you can install using your distro's package manager.

Compared to using the Berkeley Installer, this has several advantages [6]:

 The resulting BOINC installation runs applications under an unprivileged

account, and is therefore more secure.

 The BOINC binaries are dynamically linked; therefore they require less

memory than the binaries in the Berkeley Installer.

 The package manager checks for dependencies and installs any additional

libraries required to run BOINC on your Linux distro.

 BOINC is installed as a daemon (BOINC runs automatically at boot time

even if no user is logged in).

 BOINC updates can be automated if your Linux distro has automated

package update capability (most popular distros do)

 Installing BOINC On Ubuntu[57]

 Ubuntu is a popular distribution of the GNU/Linux operating system. We used

Ubuntu as an example of Linux distributions to deploy BOINC client as a

package:

 Basic Installation

 You can easily install the BOINC client software on Ubuntu Linux

to run as a daemon, which autostarts the BOINC client at boot time,

and to put a BOINC Manager icon on the applications menu. Simply

open a Terminal window (via the menu Applications -> Accessories ->

Terminal) to get a command line (aka "shell") and give the following

command:

 sudo aptitude install boinc-client boinc-manager

231

 Non-graphics Installation

 If you have a "headless" computer with no graphics then you do not

want or need the BOINC Manager. In this case just install the client by

itself, with the command

sudo aptitude install boinc-client

A.4.3 Other Platforms

 BOINC client is also set to work with other platforms and operation systems other

than Microsoft Windows and Linux. Examples of supported platforms are: Mac OS

X, FreeBSD and OpenBSD. The process of installing BOINC client on these

platforms and other can be found in reference [56].

A.4.4 BOINC Client Security

To make the communication between the boinc core client and a remote computer

secure, two files are added to BOINC data directory (where BOINC's data files will

be stored). These files are:

1. gui_rpc_auth.cfg file

 This file contains the BOINC client password. Any remote computer

wants to communicate with BOINC core client must provide this password in

its communication commands.

2. remote_hosts.cfg file

 This file contains the IPs or DNS names of remote hosts that are allowed to

communicate with BOINC core client if they provide the correct password stored

in gui_rpc_auth.cfg file. Any other host will be prevented from communicating

with BOINC core client.

 In our case, we used this mechanism to protect our machines and to secure

the communication between the client and the server. We added a unified

password inside gui_rpc_auth.cfg on all of our clients (computers). In addition,

232

we added only the server IP to remote_hosts.cfg file so only the server can

communicate with BOINC core clients remotely and any other remote

communication is prevented.

 Boinc data directory[58]

 The files: gui_rpc_auth.cfg and remote_hosts.cfg need to be placed in the

BOINC data directory.

 Windows XP/2000

On Windows XP/2000 the BOINC data directory is by default

C:\Documents and Settings\All Users\Application Data\BOINC

 This is a hidden directory so if you can't navigate to it via Windows

Explorer Folder view, just paste the whole path name, "C:\Documents and

Settings\All Users\Application Data\BOINC" into the Windows Explorer

address line and it'll jump you there.

 Windows Vista/7/8/8.1

On Windows Vista/7/8/8.1 the BOINC data directory is by default

C:\Programdata\BOINC

 This is a hidden directory so if you can't navigate to it via Windows

Explorer Folder view, just paste the whole path

name, "C:\Programdata\BOINC", into the Windows Explorer address line and

it will jump you there.

 Linux

 If you installed the boinc-client package from a package manager

in Debian or Ubuntu, client data is stored in /var/lib/boinc-client

 Mac OS X

On a Mac, the client data is in: /Library/Application Support/BOINC Data

http://boinc.berkeley.edu/wiki/Installing_BOINC_on_Debian
http://boinc.berkeley.edu/wiki/Installing_BOINC_on_Ubuntu

233

 All platforms

 If you are in any doubt, to find the BOINC data directory, go to the client message

log. Near the top of the start-up section there will be a line similar to these examples:

11/02/2010 9:04:24 AM Data directory: C:\Documents and Settings\All

Users\Application Data\BOINC

26-Apr-2010 13:08:53 [---] Data directory: /var/lib/boinc-client

234

Appendix B

Project Creation

 This appendix describes what the BOINC project is, shows the pre-

requirements of the project creation, then it clarifies the project creation process.

Finally, it includes a description for installing phpMyAdmin on Ubuntu12.04LTS

with solutions for some problems that may arise.

B.1 BOINC Project

BOINC project is built over BOINC middleware. It is used to do distributed

computing and/or storage by making the use of the available computing

resources. Each project has its own applications, database, web site, and servers.

BOINC project consists of:

 A MySQL database.

 A directory structure.

 A configuration file, which specifies options, daemons, and periodic tasks.

B.1.1 Project DB

Information is stored in a MySQL database. It has the following main tables [59]:

- Platform: A platform is a compilation target (combination of CPU architecture

and an operating system). BOINC defines a set of standard platforms.

- App (Applications): An application includes several programs (for different

platforms) and a set of work units and results. A project can include multiple

applications.

- App_version (application versions): An application program may go through a

sequence of versions. A particular version compiled for a particular platform is

called an application version.

235

- User: Describes users, including their email address, name, password, and

authenticator.

- Host: Describes hosts.

- Workunit: A workunit is a computation to be performed (Job). It may include

any number of input files. It has various attributes, such as resource

requirements and deadline.

- Result: A result describes an instance of a computation, either not started, in

progress, or completed. Each result is associated with a workunit. In some

cases there may be several instances of a given workunit.

- Account: Each volunteer in a project has an account, identified by an email

address and password. An account has an associated amount of credit; a

numerical measure of the work done by that volunteer's computers. In our

case, volunteers are disabled; all hosts (computing resources) are following to

the university. So, all computing resources will follow to the same account.

B.1.2 Project Directory

The directory structure for a typical BOINC project looks like shown below [60]:

PROJECT/

 apps/

 bin/

 cgi-bin/

 log_HOSTNAME/

 pid_HOSTNAME/

 download/

 html/

 inc/

 ops/

 project/

236

 stats/

 user/

 user_profile/

 keys/

 upload/

Where: PROJECT is the name of the project.

 Main folders at the project directory are:

- apps: application and core client executables.

- bin: server daemons and programs.

- download: storage for data server downloads.

- upload: storage for data server uploads.

- html: PHP files for public and private web interfaces.

B.1.3 Project configuration file

 Project configuration is described by a config.xml file exist within the project

directory.

The config.xml file has the format[61]:

<boinc>

 <config>

 [configuration options]

 </config>

 <daemons>

 [list of daemons]

 </daemons>

 <tasks>

 [list of periodic tasks]

237

 </tasks>

</boinc>

More details about BOINC project can be found at reference [62].

B.2 Project creation pre-requirements

As we know that each project has its own DB. To create and manage the DB we

need a MySQL user. This MySQL user must be granted the right privileges that

enable him creating and managing DB. This user also must be created before going to

the project creation process, since the project DB will be under the control of this user

account. In our case we will give this user the name 'boincadm'.

 Creating DB user is done by:

1- going to mysql through the terminal using the command:

 Mysql –u root –p

2- Creating the user named 'boincadm' by running the mysql terminal command:

 CREATE USER 'boincadm'@'localhost' IDENTIFIED BY

'Boincadm2014';

3- Granting privileges to boincadm:

 GRANT ALL PRIVILEGES ON * . * TO 'boincadm'@'localhost'

IDENTIFIED BY ' Boincadm2014' WITH GRANT OPTION ;

 Where ' Boincadm2014' is the password for boincadm.

B.3. Project Creation Process

 This section talks about creating a BOINC project. Firstly, it describes

creating empty project (project doesn't have any application). Secondly, it describes

creating BOINC project having the test application example.

238

B.3.1 Creating an Empty BOINC Project

We need to set some parameters to be used during the project creation process. These

parameters are:

 PPUTest: The name of the project.

 boincadm: the name of DB user; the owner of project DB. Also it is the

name of the system user; the owner of the project directory.

 Boincadm2014: the password for boincadm DB user and the password for

the system user.

 195.3.191.24: is the IP address of the server.

Project creation process:

Project creation goes into the following steps:

1. Creating project directory and DB, setting the default configurations and

deleting any previous project having the same name. This is done by executing

the commands:

 cd boinc/tools

 sudo ./make_project --url_base http://195.3.191.24 --db_name PPUTest --

db_user boincadm --delete_prev_inst --drop_db_first --db_passwd

Boincadm2014 --project_root home/boincadm/projects/PPUTest --srcdir

home/boincadm/boinc/ PPUTest "PPU Test"

2. Some specific files in the project directory need custom setting to their

permissions to allow the project works well. These permissions are set by

executing the commands:

 cd home/boincadm/projects/PPUTest

 sudo -S chown boincadm:boincadm -R . <<<Boincadm2014

 sudo chmod g+w -R .

 sudo chmod 02770 -R upload

 sudo chmod 02770 -R html/cache

239

 sudo chmod 02770 -R html/inc

 sudo chmod 02770 -R html/languages

 sudo chmod 02770 -R html/languages/compiled

 sudo chmod 02770 -R html/user_profile

 sudo chgrp -R www-data log_ubuntu upload

 sudo chmod o+x html/inc

 sudo chmod -R o+r html/inc

 sudo chmod o+x html/languages/

 sudo chmod o+x html/languages/compiled

More information about setting permissions can be found at reference [63].

3. Appending the project http.conf file to the apache server http.conf file to allow

browsing the project web site:

 Open the file home/boincadm/projects/PPUTest/html/http.conf.

 Copy its content.

 Open the file /etc/apache2/http.conf.

 Paste that content there and save changes. Note that you need to open

the file as administrator to be able to save changes.

 Restart apache server to make the changes take effect.

 You can use the command: sudo service apache2 restart

After doing these three steps, we can open the link 195.3.191.24/PPUTest/ to see the

project home page as shown in figure B.1.

http://195.3.191.24/PPUTest/

240

4. Setting the project name to appear in project url:

 Open the file

home/boincadm/projects/PPUTest/html/project/project.inc

 Change the statements "REPLACE WITH PROJECT NAME" with

"PPUTest" and save changes.

Before the changes the home page looks like shown in figure B.2:

Figure B.1 Project home page.

241

After the changes you can see the difference as shown in figure B.3 below:

Figure B.2: Adding project name 1.

Figure B.3: Adding project name 2.

242

5. Setting the copy right holder in project URL:

 Open the file

home/boincadm/projects/PPUTest/html/project/project.inc

 Change the statement "REPLACE WITH COPYRIGHT

HOLDER" with "PPU Grid Team: Ibrahim Qdemat and

Muhammad Dwaib" and save changes.

Before these changes, the page will be as shown in figure B.4.

Figure B.4: Adding copy rights 1.

243

After the changes are done, you can see the difference as shown in figure B.5

6. Setting password for project administrative webpage.

This can be done by executing the commands:

 cd home/boincadm/projects/PPUTest/html/ops/

 htpasswd -b -c .htpasswd boincadm Boincadm2014

 Where: boincadm is the admin username and Boincadm2014 is the

admin password.

 Before doing this step you will not be able to open the project administrative

page 195.3.191.24/PPUTest_ops/ . It will ask you for a login username and password

but they are not set yet. So, the administrative page will just show a massage as in the

figure B.7.

Figure B.5: Adding copy rights 2.

http://195.3.191.24/PPUTest_ops/

244

Figure B.6: Setting admin. Account 1.

Figure B.7: Invalid login to admin page.

245

After setting the administrator username and password, you can point the

browser to 195.3.191.24/PPUTest_ops/. Enter the username ‘boincadm’ and the

password 'Boincadm2014', then you will see the administrative page shown in figure

B.9.

Figure B.8: Setting admin Account 2.

Figure B.9: Administrative page.

http://195.3.191.24/PPUTest_ops/

246

7. By default the example application provided by BOINC will be added to the

project, so you need to remove this application as follow:

 Open the file home/boincadm/projects/PPUTest/project.xml.

 Remove the lines that define example application from this file and

save changes. Those lines are:

 <app>

 <name>example_app</name>

 <user_friendly_name>Example

Application</user_friendly_name>

 </app>

8. Starting PPUTest project daemons is done by executing:

 cd home/boincadm/projects/PPUTest

 ./bin/start

Before doing this step, the project status page

http://195.3.19.124/PPUTest/server_status.php will look like shown in figure B.10

Figure B.10: Project status 1.

http://195.3.19.124/PPUTest/server_status.php

247

After starting daemons the project status page will appear as shown below:

9. If the path of pid file of upload/download server is not determined in project's

config.xml as following: <uldl_pid>path</uldl_pid>, then the default which is

/etc/httpd/run/httpd.pid will be used. In our case: the pid file of

upload/download server is /var/run/apache2.pid. To resolve this problem do

the following:

 Open the file home/boincadm/projects/PPUTest/config.xml

 Copy the line "<uldl_pid>/var/run/apache2.pid</uldl_pid>"

and paste it within the "<config>...</config>" tag

 Save changes to enable upload/download.

Figure B.11: Project status 2.

248

Before:

After:

Figure B.13: Project status 4.

Figure B.12: Project status 3.

249

10. Solving “ the antique file deleter is not working” problem:

 This problem can be found at the antique_file_deleter.out log file which has

the path '/home/boincadm/projects/log_ubuntu/test/antique_file_deleter.out'.

The problem appears as follows:

2014-03-26 11:45:02.7498 Starting

2014-03-26 11:45:02.7545 [CRITICAL] Couldn't find http_user 'apache' in passwd

2014-03-26 11:45:02.7545 [CRITICAL] delete_antiques() returned with error -1

2014-03-26 11:45:02.7545 Done

File deleter problem is caused by the BOINC default configurations set the

user of the web-server to be 'apache' but in Ubuntu the default web-server user

is 'www-data'.

In order to solve this problem, do the following:

 Open the file home/boincadm/projects/PPUTest/config.xml

 Add the line <httpd_user>www-data</httpd_user> within the

<config></config> tag and save changes.

11. Enabling the project forum:

 Open the file

home/boincadm/projects/PPUTest/html/ops/create_forums.php

 Delete the line starting with “die();”

 Run create_forums.php. You can do that by execute the commands:

 cd home/boincadm/projects/PPUTest /html/ops/

 php5 create_forums.php

250

Before:

Figure B.14: Project forum 1.

After:

Figure B.15: Project forum 2.

251

Now the project is running and ready for adding applications. As it can be

inferred from the previous steps, the process of creating BOINC project is not an easy

task. In addition to the long steps must be followed, there are a lot of problems and

bugs that need to be handled and solved. In order to simplify this process, we created

a shell script named creatProject.sh. This script is responsible for performing all the

steps of creating BOINC project and solving the problems that appear during the

project creation process.

B.3.2 Creating a project with a test application example

 Test application example is an example single-thread native BOINC

application [38]. It is used to perform tests for environments that use the BOINC as a

middleware. This application has application versions that run on computers with

different well known platforms. The example application reads an input file, converts

the file to upper case and writes it to output file.

 To create a BOINC project running the test application example you can follow

the same scenario with creating empty BOINC project with some changes stated

below:

1. Replace the second command at step 1 to include the example application at

the project creation. The command will be as follow:

sudo ./make_project --url_base http://195.3.191.24/ --test_app PPUTest --

db_name PPUTest --db_user boincadm --delete_prev_inst --drop_db_first --

db_passwd Boincadm2014 --project_root home/boincadm/projects/PPUTest --

srcdir home/boincadm/boinc/ PPUTest "PPU Test"

2. Follow the same steps until arriving to step 7. Now you need to replace this

step with the following one:

Preparing the application example for running by executing the commands:

 cd home/boincadm/project/PPUTest/

 crontab PPUTest.cronjob

 Make the tasks running periodically.

 ./bin/xadd

252

 Adds the application example.

 ./bin/update_versions

 Adds the application versions.

 You need to answer yes to all questions.

Follow all remaining steps without changes.

You can see the difference between the empty project and this one directly at

the page http://195.3.191.24/PPUTest/server_status.php. Additional three

daemons were added. See figure below:

Since it is not an easy task to go through all of the previous steps to

create a test application project; we created another shell script named

createTestProject.sh. This script creates the test application project taking in

consideration all of previous steps.

Figure B.16: Test example application project status.

http://195.3.191.24/PPUTest/server_status.php

253

The createTestProject.sh script was built to work on Ubuntu Linux

distribution by making use of a similar script that was made for Debian Linux

distribution. The similar script is called boinc_project_maker and can be found

at reference [64].

B.4 phpMyAdmin Installation

phpMyAdmin provides a GUI interfaces for MySQL databases. You can use

it to simplify monitoring and controlling MySQL databases and reduce the need for

writing SQL queries as a terminal commands.

To get phpMyAdmin running on Ubuntu follow the steps below:

1. Install the phpMyAdmin:

 sudo apt-get install phpMyAdmin

2. Include the phpMyAdmin configurations by appending the file

/etc/apache2/apache2.conf with the following line:

 Include /etc/phpmyadmin/apache.conf

 Once previous steps are done, a user can point his browser to

195.3.191.24/phpmyadmin (in our case) to start using phpMyAdmin. A user should

be able to login using the account created in MySQL (see section B.2). phpMyAdmin

login page is shown below in Figure B.17.

Figure B.17: phpMyAdmin login

page.

254

Some problems may arise after installing phpMyAdmin, some of them are discussed

below:

1. Getting a 404 "Not Found" error when pointing the browser to the location of

phpMyAdmin. The issue is likely caused by either:

 Not checking the 'Apache 2' selection during installation. To handle

this problem run the following commands:

a. sudo dpkg-reconfigure -plow phpMyAdmin

b. Then select Apache 2 for the webserver you wish to configure.

 Or if this does not work, then you can do the following to include the

phpMyAdmin-shipped Apache configuration into Apache:

a. sudo ln -s /etc/phpmyadmin/apache.conf

/etc/apache2/conf.d/phpmyadmin.conf

b. sudo /etc/init.d/apache2 reload

2. Sometimes at the development stage, one may set the root user without a

password, this may cause another problem. This problem appears when you

attempt to login to the root user:

 “Login without a password is forbidden by configuration”.

The solution of this problem is done by uncommenting or adding the

following line (if it is not exist) to the file /etc/phpmyadmin/config.inc.php:

 $cfg['Servers'][$i]['AllowNoPassword'] = TRUE;

Note that you need to open this file as administrator to be able to save changes.

Also you have to make sure to retrieve these configurations and setting a

password for root user before deploying the system.

522

Appendix C

Security

 In this appendix, we show the technical details of enabling different security

mechanisms supported by BOINC. In addition, we show our technical security

measures to make our grid system project secure.

C.1 Introduction

 BOINC was originally designed for volunteer computing. Volunteer computing

has a lot of security issues that need to be handled properly to ensure security.

Because of this, BOINC provides security mechanisms that address the major issues,

making volunteer computing safe.

 Although it was originally designed for volunteer computing, BOINC works

very well for grid computing. So as we build our grid system using BOINC

middleware, we can make use of its rich security mechanisms to make our grid

system more safe and secure.

 If we do not use these mechanisms correctly, our projects will be vulnerable to a

variety of attacks. In the worst case, these projects could be used as a vector to

distribute malicious software to large numbers of computers.

 In our grid system, the computing resources are under our control so they can be

trusted. In other words, we can assume that the PCs do not return results that are

intentionally wrong. Hence there is typically no need for replication.

 We deal with the security issues from different sides, securing the server and the

clients’ machines, authentication between the client and the server and securing the

http://boinc.berkeley.edu/trac/wiki/SecurityIssues

522

software components. If we deal with all of these security issues properly, we end up

with a secure system as a whole.

 C.2 Protecting Administrative web interface

 Each BOINC project has an administrative web interface. If project's URL is for

example http://a.b.c.d/test, then the URL of the admin web interface is

http://a.b.c.d/test_ops. The directory containing the admin pages

is ~/projects/test/html/ops/. Because the admin interface lets you do things like see

user email addresses, it's extremely important that it be secure. There are two levels

of protection [40]:

C.2 .1 Protection by .htaccess

 The “.htaccess” file is a configuration file for use on web servers running the

Apache Web Server software. The original purpose of .htaccess file was to allow

per-directory access control, by for example requiring a password to access the

content.

 When a project is created, a file html/ops/.htaccess is created that disallows

access to the admin web interface. You can use htpasswd to create a .htpasswd file

containing credentials for yourself:

htpasswd -c .htpasswd username

 The previous line code creates a hidden password file named “.htpasswd” for user

“username” and print the user to enter the password. The password is hashed and

stored in “.htpasswd” file. When you want to visit the administrative webpage, you

must enter the username and the password entered in the previous step.

http:/a.b.c.d/test
http:/a.b.c.d/test_ops
http:/a.b.c.d/test_ops
http:/a.b.c.d/test_ops

522

 The following chunk of code is an example of setting the administrative

webpage password in our grid system,

#setting password for project administrative webpage

installroot=/home/ibrahim/projects

fileprojectname=PPU_Project

#Project administrative webpage password

adminWebPagePasswd=boincadm

#name of database user (project admin)

dbuser=boincadm

cd "$installroot"/"$fileprojectname"/html/ops/

htpasswd -b -c .htpasswd $dbuser $adminWebPagePasswd

C.2 .2 Project-defined protection policy

The config file html/project/project.inc can specify a function auth_ops() that

defines a project-specific policy for protecting the admin interface. Possible

policies:

 Access only if logged in as user from a given list.

 Access only to users with ADMIN or DEV flag set in

forum_preferences.privileges.

 Access only from specific IP addresses.

 Any other policy you can think of.

Some examples are given in the function auth_ops_example() in the default

config file.

522

C.3 Other Techniques

 In addition to previous security measures, there are other techniques that can

be used to ensure more security. Code signing and secure socket layer two examples

of such techniques.

C.3.1 Code Signing

 The Code Signing technique ensures the integrity of the code

downloaded from the Internet. It enables the platform to verify that the code

has not been modified since it was signed by its creator. Code Signing cannot

reveal what the code can do or guarantee that the code is in fact safe to run

[41].

 BOINC uses digital signatures to allow the core client to authenticate

executable files. It is important that we use a proper code-signing procedure

for publicly-accessible projects. If we don't, and our server is broken into,

hackers will be able to use our BOINC project to distribute malware. This

could result in the end of the project, and will negatively impact all BOINC

projects.

 BOINC advises to follow a given procedure to properly use code signing

and provides some file signing utilities. We explain the BOINC advisable

code singing procedure in addition to technical details of code singing

utilities in appendix C.

 BOINC uses digital signatures to allow the core client to authenticate

executable files. It is important that we use a proper code-signing procedure

for publicly-accessible projects. If we don't, and our server is broken into,

hackers will be able to use our BOINC project to distribute malware. This

could result in the end of our project, and will negatively impact all BOINC

522

projects. BOINC advises to follow the following procedure to properly use

code signing [65]:

 Choose a computer (an old, slow one is fine) to act as your "code

signing machine". After being set up, this computer must remain

physically secure and disconnected from the network (i.e. keep it in

a locked room and put duct tape over its Ethernet port). You'll need

a mechanism for moving files to and from the code-signing

machine, such as a USB memory stick.

 Install crypt_prog(see appendix D) on the code signing machine (it's

easiest if the machine runs Linux or Mac OS X; Windows can be

used but requires Visual Studio 2005).

 Run crypt_prog -genkey to create a code-signing key pair. Copy the

public key to your server. Keep the private key on the code-signing

machine, make a permanent, secure copy of the key pair (e.g. on a

CD-ROM that you keep locked up), and delete all other copies of

the private key.

 To sign an executable file, move it to the code-signing machine,

run crypt_prog -sign to produce the signature file, then move the

signature file to your server.

 Use update_versions to install your application, including its

signature files, in the download directory and database.

http://boinc.berkeley.edu/trac/wiki/KeySetup
http://boinc.berkeley.edu/trac/wiki/AppVersionNew

522

 File signing utilities [66]

Use sign_executable to sign executable files:

sign_executable file_to_sign private_key_file >

signature_file

sign_executable is compiled in the lib/ directory, and installed in your

project's bin/ directory. It writes the signature to stdout.

 Creating encryption keys [66]

The program lib/crypt_prog performs various encryption tasks.

crypt_prog -genkey nbits private_keyfile public_keyfile

Create a key pair with nbits bits (always use 1024). Write the keys

in encoded ASCII form to the indicated files.

 The following commands generate the file upload and code signing

key pairs. BOINC_KEY_DIR is the directory where the keys will be

stored. The code signing private key should be stored only on a highly

secure (e.g., a disconnected, physically secure) host.

crypt_prog -genkey 1024 BOINC_KEY_DIR/upload_private

BOINC_KEY_DIR/upload_public

crypt_prog -genkey 1024 BOINC_KEY_DIR/code_sign_private

BOINC_KEY_DIR/code_sign_public

Other functions of crypt_prog:

crypt_prog -sign file private_keyfile

Create a digital signature for the given file (same as

sign_executable).

522

crypt_prog -sign_string string private_keyfile

Create a digital signature for the given string, write it to stdout.

crypt_prog -verify file signature_file public_keyfile

Verify a signature for the given file.

crypt_prog -test_crypt private_keyfile public_keyfile

Perform an internal test, checking that encryption followed by

decryption works.

crypt_prog -cert_verify file signature_file certificate_dir ca_dir

Verify a certificate-based signature for the given file.

crypt_prog -convsig o2b/b2o input_file output_file

Convert a signature from OpenSSL form to/from BOINC form.

crypt_prog -convkey o2b/b2o priv/pub input_file output_file

Convert a key from OpenSSL form to/from BOINC form.

C.3.2 Secure Socket Layer (SSL)

 BOINC supports and encourages enabling SSL on project's web servers. To

use SSL, we will need to buy an SSL certificate. Self-signed certificates can't be

used. To enable SSL will then need to configure BOINC projects and change our

Apache configuration as described below [42]:

 BOINC configuration

For each project, add the following line to html/project/project.inc file:

define("SECURE_URL_BASE", "https://your_url/");

where the URL is that of our HTTPS server (typically our project's master

URL with "https://" at the start).

525

 Apache configuration

 Use the Linux "wget" program to test your HTTPS; it uses libcurl, same

as the BOINC client.If you use virtual hosts your Apache config file will

need an entry like the following:

<VirtualHost *:443>

ServerName setiathome.berkeley.edu

DocumentRoot ... path to your /html/user

SSLEngine On

SSLCertificateFile

/etc/pki/tls/certs/setiathome.berkeley.edu.SAN.cert

SSLCertificateKeyFile

/etc/pki/tls/private/setiathome.berkeley.edu.SAN.key

SSLCertificateChainFile /etc/httpd/conf/ssl.crt/in_common.crt

</VirtualHost>

 If we do this, and follow the previous instructions, the following

communication will be protected from man-in-the-middle attacks [42]:

 The web RPCs used for account creation, which carry volunteer email

addresses.

 HTTP requests that carry volunteer email addresses and passwords,

such as the login form.

 If, in addition, we use HTTPS for our scheduler URLs, scheduler requests

(which carry account authenticators, which can be used to log in to accounts)

will be encrypted.

263

Appendix D [68]

Boinccmd tool

 The BOINC command tool (boinccmd) provides a command-line interface to a

running BOINC client (local or remote). This provides an alternative to the BOINC

Manager, e.g. on systems with no graphics display.

The usage of boinccmd is:

boinccmd [--host hostname] [--passwd passwd] command

 If you run boinccmd in the same directory as the BOINC client, you don't need to

supply either a host name or a password.

 Otherwise you need to supply (as password) the string stored in the

file gui_rpc_auth.cfg in the client's data directory. If you run boinccmd remotely you also

need to configure the client to accept remote control.

If the client uses a non-default GUI RPC port, you can specify it as hostname: port.

D.1 Account query and attach

--lookup_account URL email password

Look up account and print account key.

--create_account URL email password name

Create account with the given email address, password, and user name

--project_attach URL account_key

Attach to an account

--join_acct_mgr URL name password

Attach to an account manager (or do RPC if already attached).

http://boinc.berkeley.edu/wiki/BOINC_Client
http://boinc.berkeley.edu/wiki/Controlling_BOINC_remotely

264

--quit_acct_mgr

Detach from the current account manager.

D.2 State queries

--get_cc_status

Show CPU/GPU/network run modes and network connection status (version

6.12+)

--get_state

Show complete client state

--get_tasks

Show tasks

--get_simple_gui_info

Show projects and active tasks

--get_file_transfers

Show file transfers

--get_project_status

Show status of all projects

 --get_disk_usage

Show disk usage by project

 --get_proxy_settings

Get proxy settings

--get_messages seqno

Show messages with sequence numbers beyond the given seqno

--get_host_info

Show host info

--version, -V

Show core client version

265

D.3 Control operations

--task URL task_name operation {--window_station ws} {--desktop dt} {--display dp}

Do operation on a task, identified by the project master URL and the task name.

operations:

 suspend: temporarily stop work on task

 resume: allow work on task

 abort: permanently stop work on task

 graphics_window: open graphics in a window. The

optional desktop/window_station (Windows) or display (X11) arguments specify

the display.

 graphics_fullscreen: open graphics fullscreen

--project URL operation

Do operation on a project, identified by its master URL. Operations:

 reset: delete current work and get more;

 detach: delete current work and don't get more;

 update: contact scheduling server;

 suspend: stop work for project;

 resume: resume work for project;

 nomorework: finish current work but don't get more;

 allowmorework: undo nomorework

 detach_when_done: detach project

--file_transfer URL filename {retry | abort}

Do operation on a file transfer

266

--set_run_mode {always | auto | never} [duration]

Set run mode.

 always: do CPU work always

 auto: do work only when allowed by preferences

 never: don't do work

If duration is zero or absent, this mode is permanent. Otherwise, after

'duration' seconds elapse, revert to last permanent mode.

--set_gpu_mode {always | auto | never} [duration]

 Set GPU mode. Like set_run_mode but applies to GPU computation.

--set_network_mode {always | auto | never} [duration]

 Set network mode. Like set_run_mode but applies to network transfers

--set_proxy_settings http_server_name http_server_port http_user_name

http_user_passwd socks_server_name socks_server_port socks_version

socks5_user_name socks5_user_passwd

Set proxy settings (all fields are mandatory). (exists but doesn't work

before 6.6.12).

--run_benchmarks

 Run CPU benchmarks

--set_screensaver_mode on|off blank_time {--desktop desktop} {--

window_station window_station} {--display display}

Tell the core client to start or stop doing fullscreen graphics, and going to

black after blank_time seconds. The optional arguments specify which

desktop/windows_station (Windows) or display (X11) to use.

--read_global_prefs_override

Tell the core client to read the [PrefsOverride global_prefs_override.xml]

file, and incorporate any global preferences indicated there.

--quit

Tell the core client to quit

267

--read_cc_config

Reread the configuration file (cc_config.xml)

--set_debts URL1 STD1 LTD1 {URL2 STD2 LTD2 ...}

Set the short- and long-term debts of one or more projects. Note: if you

adjust the debts of a project, the debts of other projects are changed, so if

you want to set the debts of multiple projects, do it in a single command.

--help, -h

Show options and commands

D.4 Examples

 It's not hard to write useful scripts based on boinccmd, as long as you know your

way around Unix tools. Here's one to run 'update' on all attached projects on your client:

for url in $(boinccmd --get_project_status | sed -n 's/\s*master URL: //p'); do

 boinccmd --project ${url} update;

done

 If you have remote RPCs set up on your clients, it's easy to, for example, attach a

project on all 50 machines, by looping over a list of IPs instead of a list of projects:

for num in $(seq 2 50); do

 boinccmd --host 192.168.42.${num} --passwd 1234 \

 --project_attach http://project_url/ a84dc0bec631cbf81e25e6e7cd9ca826;

done;

 That will connect to the machines 192.168.42.2 - 192.168.42.50 using the RPC

password '1234' and make them attach to http://project_url/ with the specified account

key.

268

Appendix E

Glossary

 PC: Personal Computer

UK: United Kingdome

BOINC: Berkeley Open Infrastructure for Network Computing

GFLOPS: Giga Floating Point Operations per second

LAN: Local Area Network

CPU: Central Processing Unit

CRC: Class Responsibility Collaborator.

RAM: Read Access Memory

ROM: Read Only Memory

I/O: Input/Output

GUI: Graphical User Interface

APIs: Application Programming Interfaces

PPU: Palestine Polytechnic University

IT: Information Technology

NSF: National Science Foundation

PACI: Partnership for Advanced Computational Infrastructure

NIH: National Institute of Health

OS: Operating System

DB: Database

HW: Hardware

SW: Software

RPC: Remote Procedure Call

GUI: Graphical User Interface

IDE: Integrated Development Environment

GFLOPS: Giga Floating-point Operations Per Second

٢١٥

References

[1] BOINC: Berkeley Open Infrastructure for Network Computing,
http://boinc.berkeley.edu/, (accessed on 13/11/2013).

[2]What is grid computing?, http://www.gridcafe.org/EN/what-is-the-grid.html,
(accessed in September, 2013).

[3] Bader Ahmed Bader Ajrab,” PC Grid Computing Environment In Higher
Education Institutions”, master thesis at AlQuds university, Palestine, 2013.

[4] Grid computing in 30 seconds, http://www.gridcafe.org/EN/grid-in-30-sec.html ,
(accessed in September, 2013).

[5]D.P. Vidyarthy, B.K. Sarker, L.T.Yang, "Scheduling in Distributed Computing
Systems Analysis, Design & Models", A Research Monograph, pp.(244-245),2009

[6] Grid architecture, http://www.gridcafe.org/EN/grid-architecture.html , (accessed
in October, 2013).

[7] Middleware, http://www.gridcafe.org/EN/middleware.html, (accessed in October,
2013).

[8] Ault, M. and Tumma, M., "Oracle10g Grid Computing with RAC", Oracle RAC -
Types of Grid computing, 2004.

[9]Stanoevska K., Wozniak T., Ristol S.,"Grid and Cloud Computing: A Business
Perspective on Technology and Applications", Springer, 2010.

[10]Goyal B, Lawande S (2005) Grid Revolution: An Introduction to Enterprise Grid
Computing. McGraw-Hill, Emeryville, CA, 2005

[11]Joseph J., Fellenstein C., "Grid Computing", Pearson Education, 2004.

[12]Ian Foster, Carl Kesselman, The Grid: Blueprint for a New Computing
Infrastructure, Morgan Kaufmann, 2004.

[13]Fox, G., Furmanski, W. (1998) High performance commodity computing,
Chapter 10, in Foster, I. and Kesselman, C. (eds) The Grid: Blueprint for a New
Computing Infrastructure. San Francisco, CA: Morgan Kaufmann Publishers.

[14] Foster, I. and Kesselman, C.,"The grid: Blueprint for a new computing
infrastructure", Morgan Kaufmann, San Francisco, CA,1998.

٢١٦

[15]Fran Berman, Anthony J.G. Hey, Geoffrey C. Fox,

"Grid Computing Making the Global Infrastructure a Reality", Wiley Series in
Communications Networking and Distributed Systems, pp.(722-723),2003.

[16] Grid-powered projects, http://www.gridcafe.org/EN/grid-powered-project.html ,
(accessed in October, 2013).

[17] Volunteer computing , http://www.gridcafe.org/EN/volunteer-computing.html
,(accessed on September, 2013).

[18] Desktop Grid, http://boinc.berkeley.edu/trac/wiki/DesktopGrid, (accessed in
October, 2013).

[19] Volunteer computing vs. cloud vs. grid vs. HPC ,

http://www.volunteer-computing.org/EN/volunteer-computing-vs-cloud-vs-grid-vs-
HPC.html, (accessed in October, 2013).

[20] Volunteer computing , http://en.wikipedia.org/wiki/Volunteer_computing,
(accessed in October, 2013).

[21] Desktop_Grid:Westminster_Local_DG,
http://wgrass.wmin.ac.uk/index.php/Desktop_Grid:Westminster_Local_DG,

(accessed in October, 2013).

[22] NEW DIY SUPERCOMPUTER SAVES £1,000S,

http://www.westminster.ac.uk/news-and-events/news/2011/university-of-
westminster-launches-new-diy-supercomputer-saving-hundreds-of-thousands-of-
pounds, (accessed in October, 2013).

[23] Middleware - Volunteer garage, http://www.volunteer-
computing.org/EN/middleware.html, (accessed in October, 2013).

[24] Anderson,” BOINC: A system for public-resource computing and storage”, 5th
IEEE/ACM International Workshop on Grid Computing, Pittsburgh, PA, USA, pp. 4-
10,Dec,2004.

[25] Grid MP - Wikipedia, the free encyclopedia
http://en.wikipedia.org/wiki/Grid_MP, (accessed in October, 2013).

[26] Alchemi v0.6.1 Documentation,
http://www.cloudbus.org/~alchemi/doc/0_6_1/index.html, (accessed in October,
2013).

٢١٧

[27] Alchemi [.NET Grid Computing Framework],
http://www.cloudbus.org/~alchemi/, (accessed in October, 2013).

[28] Akshay Luther, Rajkumar Buyya, Rajiv Ranjan, and Srikumar Venugopal,
“Peer-to-Peer Grid Computing and a .NET-based Alchem Framework”, Grid
Computing and Distributed Systems (GRIDS) Laboratory, Department of Computer
Science and Software Engineering, The University of Melbourne, Australia.

[29] SETI, http://setiathome.berkeley.edu/, (accessed on 13/11/2013)

[30] BOINCstats, http://boincstats.com/, (accessed on 13/11/2013)

[31] TOP500 list, http://www.top500.org/list/2012/11/, (accessed on 13/11/2013).

[32] Anderson, D., Korpela, E. and Walton, R., ―High-Performance Task
Distribution for Volunteer Computing‖, Proceedings of the First IEEE International
Conference on e-Science and Grid, . Melbourne, Australia, 2005.

[33] JobSubmission-Boinc. http://boinc.berkeley.edu/trac/wiki/JobSubmission,

(accessed in January, 2014).

[34] JobTemplates-Boinc. http://boinc.berkeley.edu/trac/wiki/JobSubmission,

(accessed in January, 2014).

[35] Free CPU usage monitor programs, http://softwaresolution.informer.com/Free-
CPU-Usage-Monitor/.(accessed in January, 2014).

[36] Patricio Domingues, Paulo Marques, Luis Silva,”Resources Usage of Windows
Computer Laboratories”, αEscola Superior de Tecnologia e Gestão – Instituto
Politécnico de Leiria – Portugal βDepartamento Eng. Informática, Universidade de
Coimbra – Portugal, Jan, 2005.

,http://boinc.berkeley.edu/trac/wiki/BasicConceptsBOINC,-[37] BasicConcepts
(accessed on 06/05/2014).

[38] Example applications, http://boinc.berkeley.edu/trac/wiki/ExampleApps#no1,
(accessed on 8/5/2014).

, (accessed onhttp://boinc.berkeley.edu/trac/wiki/SingleJobBOINC,-[39] SingleJob
07/05/2014).

, (accessed onhttp://boinc.berkeley.edu/trac/wiki/HtmlOpsBOINC,-] HtmlOps40[
04/04/2014).

[41] M. Alfalayleh and L. Brankovic, "an overview of security issues and techniques
in mobile agents", The University of Newcastle, 2004.

٢١٨

, (accessed onhttp://boinc.berkeley.edu/trac/wiki/SecureHttpBOINC,-[42] SecureHttp
02/04/2014).

-CPU-http://softwaresolution.informer.com/Free] Free CPU Usage Monitor,3[4
2014)., (accessed on 10/01/Monitor/-Usage

,http://en.wikipedia.org/wiki/FLOPSWikipedia, the free encyclopedia,-] FLOPS4[4
(accessed 22/05/2014).

, (accessedhttp://boinc.berkeley.edu/trac/wiki/AppCoprocessor[45] AppCoprocessor,
on 06/05/2014).

[46] GPU Computing-BOINC, http://boinc.berkeley.edu/wiki/GPU_computing,
(accessed on 06/05/2014).

,http://boinc.berkeley.edu/trac/wiki/ResearchProjectsBOINC,-ResearchProjects[47]
(accessed on 06/05/2014).

[48] Creating custom installers,
http://boinc.berkeley.edu/wiki/Creating_custom_installers, (accessed on 06/05/2014).

[49] AppIntro-BOINC, http://boinc.berkeley.edu/trac/wiki/AppIntro, (accessed on
08/05/2014).

[50] WrapperApp-BOINC, http://boinc.berkeley.edu/trac/wiki/WrapperApp,
(accessed on 08/05/2014).

[51] VolunteerComputing-BOINC,
http://boinc.berkeley.edu/trac/wiki/VolunteerComputing, (accessed on 10/05/2014).

[52] Creating and Configuring a BOINC Project,
http://www.spy-hill.net/myers/help/boinc/Create_Project.html#server, (accessed on
10/05/2014).

[53] Android FAQ-BOINC,http://boinc.berkeley.edu/wiki/Android_FAQ, (accessed
on 10/05/2014).

[54] Setting up a BOINC server, http://boinc.berkeley.edu/trac/wiki/ServerIntro,
(accessed on 10/1/2014).

[55] BOINC server guide installation,
https://wiki.debian.org/BOINC/ServerGuide/Initialisation, (accessed 15/1/2014).

, accessed onhttp://boinc.berkeley.edu/wiki/Installing_BOINC[56] Installing BOINC,
02-May- 2014

[57] Installing BOINC On Ubuntu,
, (accessed onuntuhttp://boinc.berkeley.edu/wiki/Installing_BOINC_on_Ub

02/05/2014).

٢١٩

[58] Controlling BOINC Remotely,
, (accessed onhttp://boinc.berkeley.edu/wiki/Controlling_BOINC_remotely

02/05/2014).

, (accessed onhttp://boinc.berkeley.edu/trac/wiki/DataBaseBOINC DB,[59]
8/5/2014).

,http://boinc.berkeley.edu/trac/wiki/ServerDirs[60] Server directory structure,
(accessed on 8/5/2014).

,http://boinc.berkeley.edu/trac/wiki/ProjectConfigFile[61] Project configuration file,
(accessed on 8/5/2014).

,http://boinc.berkeley.edu/trac/wiki/ServerComponents[62] Server Components,
(accessed on 8/5/2014).

,http://boinc.berkeley.edu/trac/wiki/ServerIntro[63] Setting up a BOINC server,
(accessed on 8/5/2014).

[64] anonscm.debian.org Git - pkg-boinc, http://anonscm.debian.org/gitweb/?p=pkg-
boinc/scripts.git;a=blob;f=server-examples/boinc_project_maker.sh, (accessed in
January, 2014).

[65] Code signing, http://boinc.berkeley.edu/trac/wiki/CodeSigning, (accessed on
02/04/2014).

[66] KeySetup-BOINC, http://boinc.berkeley.edu/trac/wiki/KeySetup, (accessed on
02/04/2014).

[67] StartTool-BOINC, http://boinc.berkeley.edu/trac/wiki/StartTool, (accessed on
12/05/2014).

, (accessedhttp://boinc.berkeley.edu/wiki/Boinccmd_toolBOINC,-toolBoinccmd[68]
on 07/04/2014).

[69] The design concept and initial implementation of Agent Teamwork grid
,http://www.academicpub.com/map/items/3933371.html,computing middleware

(accessed on 28/5/2014).

,http://boinc.berkeley.edu/wiki/BOINC_Security,BOINC-SecurityBOINC70][
(accessed on 30/05/2014).

	Campus Grid Computing System (CGCS).pdf
	11) References.pdf

