
  

  

Abstract—  The problem of adaptive human-machine interaction 
is investigated. It is sought that not only the human learns how 
to perform a task with a novel machine, but the machine itself 
co-adapts to the human style in the interaction. This requires 
solving the problem of two agents co-adapting or co-learning at 
the same time. Due to the lack of human learning and 
performance models, it is hypothesized that reinforcement 
learning with policy gradient algorithms are good candidates for 
addressing this problem with robustness and fast convergence.  

 

I. INTRODUCTION 

Classically in human-machine interaction (HMC), the 
burden of learning the interface lies completely at the side of 
the human. The human operator of a novel machine is 
instructed how to operate/interact with the machine and then 
starts, through practice, to learn the interface and to adapt 
his/her sensorimotor controls to optimize the interaction. In 
some cases, the interfacing modality is redundant at the side of 
the human. For example, one can use two 3-degree-of-freedom 
joysticks to manipulate the three-dimensional position of a 
robot end effector. This leaves the human operator with more 
degrees of freedom than the task requires. This redundancy 
could cause confusion and impose difficulty to the operator. 
However, if the interface, or more specifically the mapping of 
the human commands to the by-the-machine interpreted 
human desired commands is designed to be adaptive, then the 
concept of human-machine co-adaptation and co-learning can 
be realized. This makes the machine to appear more intelligent 
and friendlier to the user.  

This approach of adaptive HMC – in contrast to static 
HMC interaction where the function allocation and the 
interface design does not vary in run-time (see e.g. [1]) – tries 
to shift the burden from operating a machine from the user to 
the machine itself by an online allocation of the functions in 
questions (see e.g., [2]). Parasuraman [1] identified five main 
categories of techniques for implementing adaptive 
automation logic (1) on the basis critical events, (2) on 
operator/user performance measurements, (3) on operator/user 
physiological assessments, (4) on operator/user modeling, and 
(5) on hybrid methods combining one or more of these 
techniques. While these classical approaches to adaptive 
automation mainly use these techniques to allocate functions 
to either the human user or the machine at hand, the research 
at hand dynamically adapts the interfacing devices or 
modalities. There has been a preliminary research work on this 
[3]. It has been shown that humans are capable of internally 
representing different spaces (Euclidian and non-Euclidean) 
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and perform efficient transformations on these spaces. For this 
application, it is necessary to consider the user redundant 
command space (non-Euclidean) and the robot Euclidian 
physical space. The map between these two spaces (where 
classically it is the responsibility of the user to learn it 
statically) can be adapted to the user’s style in such a way to 
minimize efforts in the null space. In a later study, Danziger et 
al. [4] experimented with two machine-learning algorithms to 
adaptively change a transformation between finger motion 
recorded by a glove and a simulated robot arm. The two 
algorithms tested are LMS gradient descent and Moore-
Penrose (MP) pseudo-inverse transformation. The goal was to 
change the transformation in such a way to reduce the endpoint 
errors measured in past performance. It is reported in that work 
[4] that the MP group performed worse than the control group 
while the LMS group outperformed the control subjects; 
however even this LMS group failed to achieve better 
generalization than the control subjects.  

Traditional adaptive systems have been investigated along 
three directions [5]: (1) Adaptive interfaces or user-adaptive 
systems: a system adapts itself to changes in user-related or 
environmental characteristics. Such automatic adaptation is 
based on the evaluation of user behavior, assumes user needs, 
and takes explicit user inputs into account. The major concern 
is between an individual user and the machine. (2) Adaptive 
workflows: a system provides workflows that are appropriate 
to the working environment in order to assist users to work 
properly to accomplish their tasks. The major consideration is 
on functions. (3) Adaptive computing or adaptive services: a 
system adjusts its components, configurations, and structures 
based on dynamic situations to provide highly-available and 
highly-efficient computing services. The systems should be 
robust and efficient in the presence of changes [5]. 

However, the topic of human-machine coadaptation has 
been the subject of only a few studies. For example, in [6], the 
authors proposed a mechatronic adaptive architecture that 
corresponds to the human performance but relies on [6]: 

1. Modeling human and machine dynamics. Especially the 
variable constraints should be considered.  

2. Modeling the operation base on skill, rule, knowledge, 
decision combining event and dynamical systems.  

3. Modeling of the psycho-physical characteristics of human 
operator  

4. Development of Mechatronic systems supporting human 
operation not only assisting control action but also 
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providing proper data and knowledge for understanding 
the situation and giving better decision.    

It is clear from that work that the human operator and 
his/her performance needs to be modeled and identified online. 
Such an approach for dealing with coadaptation is thought to 
entail implementation difficulties especially regarding the 
stability and convergence of the adaptation scheme. 

Recently, human-machine coadaptation has become an 
important issue when designing brain-machine interfaces for 
the sake of controlling prosthesis or external devices [7].  
Ideally, interfaces with such machines should be as active and 
bidirectional as the interactions with other human beings or 
animals where the connection between the user and tool is such 
that both can experience the unique abilities of the counterpart 
[7].  Several research groups suggested different solutions to 
the machine adaptation problem. However, it is reported in [7] 
that these approaches are primarily data-driven techniques that 
seek out correlation and structure between the spatial-temporal 
neural activation and behavior. Further, it has also been shown 
that the time that it takes to achieve a certain level of 
``mastery'' of the prosthetic device can be extremely slow 
especially when the details of the dynamics of control are 
unknown to the user. It is argued in [7] that the symbioses will 
be easier to define and implement if both the user and neuro-
prosthetic share similar learning architectures. The authors [7] 
concluded that reinforcement learning (RL) became the 
natural choice since there is evidence that parts of the limbic 
system implement a reinforcement learning type of 
architecture [8].  

II. REINFORCEMENT LEARNING WITH POLICY GRADIENTS 

Reinforcement learning is a general description of the 
learning problem where the aim of the learning agent is to 
maximize a long-term objective. The learning system consists 
of an agent which interacts with the environment via its actions 
at discrete timesteps and receives each time a reward. As a 
result of its action, the agent finds itself in a new state and 
accordingly acts in a feedback manner. The sequence of 
actions, A, states, S, and rewards, R, forms a trajectory. The 
reward is an abstraction of the agent’s purpose or goals it tries 
to achieve and thus the objective of learning is to maximize the 
sum of rewards. So, it is imperative to formulate an appropriate 
award (a scalar) for a given problem.  

A discounted Markov Decision Process can be thought of 
as a describing framework: 

𝑝(𝑠$, 𝑟|𝑠, 𝑎) = Pr	[𝑆012 = 𝑠$, 𝑅012 = 𝑟|𝑆0 = 𝑠, 	𝐴0 = 𝑎] 

𝐺0 = 𝑅012 + 𝛾𝑅019 + 𝛾9𝑅01: + ⋯ 
 
where 𝑆0 , 𝑆012 ∈ 𝑆  (state space), 𝐴0, 𝐴012 ∈ 𝐴  (action 
space), 𝑅0, 𝑅012 ∈ 𝑅  (reward space),  𝑝 defines the dynamics 
of the process which is not known to (outside the control of) 
the agent and 𝐺0  is the discounted return. This MDP defines 
the probability of transitioning into a new state, getting some 
reward given the current state and the execution of an action. 
Although the agent cannot control the dynamics of the process, 
it follows however a policy in choosing its actions to maximize 
the reward: 

 

𝜋>?(𝐴0 = 𝑎|𝑆0 = 𝑠)	∀𝐴0 ∈ 𝐴(𝑠), 𝑆0 ∈ 𝑆 

where the policy 𝜋>?  is a probability distribution of actions 
given state and depending on a specific policy parameter 
vector 𝜃0. Accordingly, the reinforcement learning problem 
reduces here to how to update the parameter vector given a 
trajectory, 𝜏. In other words, the reinforcement learning 
objective is to maximize the expected reward following the 
policy: 

𝐽(𝜃) = 𝐸E[𝑟(𝜏)] 
A standard approach to solving this maximization problem is 
to employ gradient descent (ascent):  

𝜃012 = 𝜃0 + 𝛼∇𝐽(𝜃0) 
 
This imposes a challenge in finding the gradient of the 
objective which contains the expectation. The policy gradient 
theorem offers a computational solution [8]: 

∇𝐸E[𝑟(𝜏)] = 𝐸E[𝑟(𝜏)∇log𝜋>(𝜏)] 
which applies the gradient to the known policy rather than to 
the objective. This can be rewritten as: 

∇𝐸E[𝑟(𝜏)] = 𝐸E K𝑟(𝜏) LM∇log𝜋>(𝑎0|𝑠0)
N

0O2

PQ 

This is an important applicable result as it is free of the 
process dynamics, p, which makes this approach model free. 

III. REINFORCE WITH BASELINE ALGORITHM 

The reinforce with baseline algorithm [9] is adopted here. 
The baseline, b, reduces the variance of the sampled 
trajectories while not biasing the gradient: 

∇𝐸E[𝑟(𝜏)] = 𝐸E KLM(𝐺0 − b)∇log𝜋>(𝑎0|𝑠0)
N

0O2

PQ 

The corresponding algorithm is given as: 

Table 1: General likelihood ratio policy gradient estimator 
“Episodic REINFORCE” with an optimal baseline [9] 

 
input: policy parameterization 𝜽. 

1 repeat 
2 perform a trial and obtain 𝒙V:N, 𝑨V:N, 𝒓V:N 
3 for each gradient element 𝐺0  
4 estimate optimal baseline 

𝑏0 =
〈(𝛴]OVN 𝛻>? 	log	𝜋𝜽(𝑨]|𝒙]))

9𝛴_OVN 𝛾2𝑟_〉
〈(𝛴]OVN 𝜵>? 	log	𝜋>(𝑨]|𝒙]))9〉

 

 
5 estimate the gradient element 

𝑔0 = 〈c𝛴]OVN 𝜵>? 	log	𝜋𝜽(𝑨]|𝒙])d (𝛴_OV
N 𝛾_𝑟_ −

𝑏0)〉. 
6 end for. 
7 Until gradient estimate g converged. 

Return: gradient estimate	𝑔	(𝑜𝑟	∇𝐽(𝜃0))	
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IV. APPLICATION TO HM COADAPTATION 

In human-machine interaction, both the human and the 
machine contribute to the fulfilment of a specific task. 
Classically, the properties and behavior of the machine are 
static. For example, human commands are mapped into actions 
by the machine in a predetermined fashion that does not 
change with respect to human skill level nor to human style. 
To make human-machine interaction approaches human-
human interaction, some intelligent features should be added. 
Among these are intention recognition [10] and co-adaptation.  

Naturally, a human interacting with a machine adapts 
his/her behavior to the dynamics of the machine and the 
environment. So, what is left is to make the machine adapts its 
behavior to the performance of the human partner/user. The 
following are assumed: 

1. The human is rational in dealing with the machine 
(i.e., his/her actions are chosen to achieve the goal) 

2. The human co-adapts while interacting with the 
machine 

3. The machine follows a policy to achieve the goal. This 
policy includes some parameters that are to be updated 
(while learning/co-adapting) 

4. The human policy and dynamics (model) as well as 
the environment dynamics are not known to the 
machine 

5. The goal to be achieved is known to both the machine 
and the human and thus rewards can be computed 
relative to the goal 

6. The policy of the machine and the reward function are 
task specific and have to be determined a priori 

 

V. EXAMPLE APPLICATION 

A simple example is detailed here to show the applicability 
of the proposed method. A human interacts with the computer 
through a joystick to move an object in the two-dimensional 
space of the computer screen. For some reason, the orientation 
of the coordinate systems of the joystick and the screen are not 
identical but rather rotated with a certain angle as shown in 
Fig. 1. However, the user does not know that and believes that 
the two coordinate systems are identical. So, according to the 
position of the object and the target, the user plans the motion 
in the screen coordinate system and executes it in the joystick 
space as shown in Fig. 2. It is assumed that the user applies full 
speed in reaching the target to obtain the maximum reward.  

 

 

  
Fig. 1: Joystick - screen coordinates Fig. 2: Task in screen coordinates 

Ideally, the machine should rotate the “joystick” 
coordinate system with an angle, 𝜃, counter clockwise about 
the z-axis to obtain the mapped movement in the screen 
coordinate system: 

f
𝑣hi
𝑣jik = f cos𝜃 sin 𝜃

−sin𝜃 cos 𝜃k f
𝑣hp
𝑣jpk, 

Where the subscript “s” denotes screen coordinate system and 
the subscript “j” denoted the joystick coordinate system, “v” 
denotes the speed of motion towards the target. In the optimal 
learning case, 𝜃 is equivalent to 𝛾qrsi. 

 
Let the state, x, be: 

𝑥0 = f
𝑣hp
𝑣jpk, 

And the action, a, be: 

𝑎0 = f
𝑣hi
𝑣jik, 

then the machine policy, 𝜋>, is modelled as a probability 
distribution: 

𝑎0~𝜋>(𝑎0|𝑥0). 
Assuming a normal distribution with the average be given by 
a function 𝜇(𝑥, 𝜃) ∈ 𝑅9 and the covariance be given by the 
diagonal square matrix Σ ∈ 𝑅9h9 with the variance elements 
on the diagonal. Then: 

𝜋> =
2

y(9E)z|{|
𝑒}

~
z
(s}�)�{�~(s}�), 

accordingly,  

𝑙𝑜𝑔𝜋> = log�
1

y(2𝜋)9|Σ|
� − log	(−

1
2
(𝑎 − 𝜇)NΣ}2(𝑎 − 𝜇)) 

then 

∇𝑙𝑜𝑔𝜋> = −(Σ}2(𝑎 − 𝜇))N∇>𝜇 

where  

𝜇 = f
𝑣hi
𝑣jik = f cos𝜃 sin 𝜃

−sin𝜃 cos 𝜃k f
𝑣hp
𝑣jpk 

leading to 

∇>𝜇 = �
−sin(𝜃) 𝑣hp +	cos(𝜃)𝑣jp
− cos	( 𝜃) 𝑣hp −	sin( 𝜃)𝑣jp

� 

and finally 
∇𝑙𝑜𝑔𝜋>
=
(𝑎2 − cos	( 𝜃) 𝑣hp −	sin	(𝜃)𝑣jp)(−sin(𝜃) 𝑣hp + 	cos(𝜃)𝑣jp)

𝜎29

+
(𝑎9 + sin(𝜃) 𝑣hp −	cos(𝜃)𝑣jp)(−cos	(𝜃) 𝑣hp − 	sin	( 𝜃)𝑣jp)

𝜎99
 

where 𝜎29  and  𝜎99 are the variances. 
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Procedure: 

1. Choose 𝜎29  and  𝜎99 leading to Σ = diag(𝜎29, 𝜎99) 

2. Based on state 𝑥 = f
𝑣hp
𝑣jpk and current policy 

parameter 𝜃, find 

𝜇 = f cos𝜃 sin 𝜃
−sin𝜃 cos 𝜃k f

𝑣hp
𝑣jpk 

3. Select action 𝑎 = f
𝑣hi
𝑣jik according to the normal 

distribution 𝑎 = 𝑁(𝜇, Σ) 
4. Calculate reward r as (see Fig 3.): 

𝑟 =
|𝑑0}2| − |𝑑0|
|𝑝0 − 𝑝0}2|

 

which leads to 𝑟 = 1 for a perfect motion in the 
direction of the target and 𝑟 = −1 for a motion 
completely away from the target 

5. Update the parameter, 𝜃, according to the algorithm 
in Table 1. 

 

 
Fig. 3: Reward Calculation 

Implementation: 

For testing the proposed machine learning procedure, the 
following scenario is considered. An object of radius of 0.5 
unit exists somewhere on a screen of 70*70 units. A target of 
radius 1 unit pops up and the user is supposed to move the 
object to the target as fast as possible by applying a velocity 
vector through his/her twisted joystick. The user assumes that 
the both coordinate systems are identical but in reality, they 
are rotated (Fig. 1). For automation purposes an ideal human 
agent is programmed. This agent calculates the motion angle 
(of its action) as (see Fig. 2): 

𝛾0s���0 = 𝑡𝑎𝑛}2 �
𝑦0 − 𝑦V
𝑥0 − 𝑥V

�, 

and applies a full speed towards the target. However, and since 
the joystick coordinate system is twisted, the action will be: 

f
𝑣hp
𝑣jpk = �

cos	(𝛾0s���0 − 𝛾qrsi)
sin	(𝛾0s���0 − 𝛾qrsi)

� 𝑣�sh 

where 𝑣�sh = 1 ��r0
i��

 and 𝛾qrsi = 10	degrees. 

This forms the state that is translated to an action through the 
machine policy.  Accordingly, the object moves from the 
initial position 𝑝0}2 to the new position 𝑝0. 
Results: 

The scenario is implemented in MATLAB environment. 
Different experiments are performed to test the performance 
of the algorithm and its dependency on its parameters. Figure 
4 shows the effect of the reward factor, 𝛾, on the performance 
of computing the gradient, whereas the effect of the variance 
of the distribution, 𝜎29	and 𝜎99 is shown in Fig 5. It is clear that 
the performance of the algorithm is sensitive regarding the 
selection of these parameters. 

 
Fig. 4: Effect of reward factor on learning 

 

 
Fig. 5: Effect of variance on learning  

Accordingly, the following parameters are chosen: 𝛾 =
0.5, 𝛼 = 0.1, and	𝜎2 = 𝜎9 = 0.1. For these parameters, the 
policy parameter, 𝜃, as shown in Fig. 6 converges to its correct 
value of -10 degrees (to counter 𝛾qrsi). The computation of the 
gradient as well converges as shown in Fig. 7. 
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Fig. 6: Convergence of the policy parameter 𝜃 

 

 
Fig. 7: Convergence of the gradient 𝑔0  

VI. CONCLUSION 
The applicability of reinforcement learning with policy 
gradients to human-machine coadaptation is demonstrated. 
This group of algorithms do not require the knowledge of the 
process dynamics (model free). This attribute is crucial here 
as the interacting machine is freed from having a model for 
the interacting human. The results shown are collected from a 
simulation environment where the action of the interacting 
human is automated where rationality is assumed. For future 
works, learning will be added to human action to make the 
scenario resemble human-machine coadaptation. Further, 
experiments with real persons will be performed. 
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