

Semi-Automated Classification of Arabic User
Requirements into Functional and Non-Functional

Requirements using NLP Tools
Karmel Shehadeh

Deanship of Graduate Studies/Master’s
of Informatics Program

 Palestine Polytechnic University

Hebron, Palestine
kshehadeh@ppu.edu

Nabil Arman
Department of Computer Science and

Information Technology
Palestine Polytechnic University

Hebron, Palestine
narman@ppu.edu

Faisal Khamayseh
Department of Computer Science and

Information Technology
Palestine Polytechnic University

Hebron, Palestine
faisal@ppu.edu

Abstract— Functional and non-functional requirements are

equally important in software engineering. Both of them are

mixed together within the same software requirement

document. Usually, they are expressed in natural languages. So,

a lot of human effort is required to classify them. Software

requirements classification is a challenging task. Requirements

classification can help developers to deliver quality software

that meets users' expectations completely. In this paper, we

present a Semi-Automated classification approach of Arabic

functional and non-functional requirements using a natural

language processing (NLP) tool. We propose a set of heuristics

based on basic constructs of Arabic sentences in order to extract

information from Arabic software requirements to classify the

requirements into functional and non-functional requirements.

This research aims to help software engineers by reducing the

cost and time required in performing manual classification of

software requirements.

Keywords— Requirements Classification, Automated

Software Engineering, NLP Tools, Functional Requirements,

Non-Functional Requirements.

I. INTRODUCTION

The functional requirements (FR) of a system describe
what the system should do and Non-Functional Requirements
(NFR) show how the system behaves with respect to some
observable attributes like reliability, reusability,
maintainability, etc. Both FR and NFR are organized and
specified in a Software Requirements Specification (SRS)
document [1].

 There is a clear and unanimous definition of the FRs and
NFRs. FRs are statements about what services the system
should provide, how it should act in specific situations and
how it should respond to specific inputs. The system's
functional requirements may also state what it should not do.
On the other hand, NFRs are constraints and limitations on
the system's services and functions. They include timing
constraints, constraints imposed by standards, and constraints
on the development process. NFR often applies to the whole
system rather than particular system services or features. In a
nutshell, FRs describe the functionality of a system, whereas
NFRs describe the system's constraints and properties [2].

 There are several techniques for software requirements
classification. According to the review of the literature, most
of the techniques for software requirements classification are

using machine learning. However, the learning approach
needs to train the model. If the training data are not available,
then the researchers have to prepare training data manually.
This drawback of machine learning methods in software
requirements classification is related to the amount of pre-
categorized requirements required to achieve good levels of
precision in the classification process.

 Manual classification of software requirements from the
software specification document is a challenging and time-
consuming task. In our research, we attempt to solve this
drawback by providing a Semi-Automated classification of
software requirements using an NLP tool parser with a set of
heuristics based on basic constructs of Arabic sentences. We
will present our approach towards an effective technique for
semi-automatic classification of textual requirements into
two categories, namely FRs and NFRs. The main objective
of this research is to propose a novel approach to classify
Arabic functional and non-functional requirements using a
semi-automated method based on NLP tools.

The rest of the paper is organized as follows: Section II
and III highlight the related work and background
respectively. Section IV presents the proposed classification
approach. Section V is the section of validation. Finally, the
conclusion is presented in section VI.

II. RELATED WORK

A. Software Requirements Classification Researches

 Hussain et al [3] presented methodology for automatic
requirement classification using a text classifier with a part-
of-speech (POS) tagger. Researchers demonstrated that
linguistic knowledge can assist in performing well in this
classification task.

 Some categories of words can be an indication to classify
the sentence as NFR by their occurrences in the sentences.
For example, NFR sentences often describe the quality
attributes of the components or the system as a whole, and
such sentences are likely to include adjectives and adverbs.
Following these characteristics of NFR the authors chose a
list of syntactic features as candidates and tested their
probabilities of occurrence in the collection of NFR
sentences, and thus, validated them to the most representative
list of syntactic features. To classify the sentences, they

developed a Java-based feature extraction program that
parses the sentences from the corpora, and extracts the values
of all the features chosen by the authors, and uses Weka to
train C4.5 decision tree learning algorithms.

Singh. et al in this paper [4] combined automated software
requirement identification and classification into NFR sub-
classes with a rule-based classification technique based on
thematic roles and determining the priority of extracted NFR
based on their occurrence in multiple NFR classes.

As shown in Figure 1 [4], the proposed design consists of
three phases: input SRS or a corpus of multiple documents to
the first phase of the design for document pre-processing,
thematic roles annotation using General Architecture for Text
Learning (GATE) in the next phase, and finally, classification
of annotated sentences into various NFR classes. They used
PROMISE corpus for creating Java rules, testing these rules,
and then prioritizing these extracted NFRs based on their
occurrence in different NFR classes again using Java rules.
They used Concordia RE corpus to verify that their classifier
works on unstructured documents or documents other than
SRS documents.

Figure 1. Three-phase system design.

Kurtanovi´c and Maalej [5] studied how accurately can
automatically classify requirements as functional (FR) and
non-functional (NFR) in the dataset with supervised machine
learning. They used a second RE17 data challenge dataset.
They also looked at how accurately they could identify
different types of NFRs, such as usability, security,
operational, and performance requirements. They developed
and evaluated a supervised machine learning approach using
meta-data, syntactical, and lexical features.

Haque et al [6] proposed an automatic NFR classification
approach for quality software development by combining
machine learning feature extraction and classification
techniques. PROMISE software requirement dataset has been
used. To find out the best pair of machine learning algorithms
and selection approaches they applied an empirical study to
automatically classify NFR with seven machine learning
algorithms and four feature selection approaches.

The seven machine learning algorithms include MNB,
GNB, BNB, KNN, SVM, SGD, SVM, and DTree. In addition
to using Bow, TF-IDF (character level), TF-IDF (word level),
and TF-IDF (n-gram) for feature extraction techniques which
act as input of machine learning algorithms. The whole
process of this framework is divided into four steps as shown
in Figure 2 [6] which include: Data Preprocessing, Feature
Extraction, Train Classifier, Classification requirements. As
a result, this paper recommended TF-IDF (character level) for
feature extraction with SGD SVM algorithm to predict the
best results in NFR classification.

Figure 2. Proposed Method Overview.

Younas et al [7] proposed approach manipulates the
textual semantic of functional requirements to identify the
non-functional requirements. The semantic similarity is
determined by the co-occurrence of patterns in large human
knowledge repositories of Wikipedia. The similarity distance
between popular indicator keywords and requirement
statements is found in this study to determine the type of non-
functional requirement. The proposed approach is applied to
PROMISE NFR dataset.

In this paper, they used a semi-supervised machine
learning method. There is no need for a training dataset.
However, it can be supervised to some extent that the authors
train their model with the Wikipedia dump of data. The
proposed approach is described in the multistep procedure.

B. Automated Software Arabic Requirement Researches

using NLP tools:

Jabbarin and Arman [8][9] proposed a semi-automated
approach to generating use case models from Arabic user
requirements using natural language processing. A set of
heuristics are presented to obtain use cases. These heuristics
use the tokens produced by a natural language processing
tool, namely Stanford parser.

Arman [10] proposed an approach to generate the use case
diagrams by analyzing the Arabic user requirements. Using
MADA+TOKAN for parsing different statements of the user
requirements written in Arabic to obtain different
components of sentences. A set of steps are presented to
construct a use case model from Arabic user requirements.

Nassar and Khamayseh [11] proposed a semi-automated
approach for constructing the activity diagrams from Arabic
user requirements. They split and tokenize the Arabic user
requirements using MADA+TOKAN parser. They present a
set of heuristics based on basic constructs of Arabic sentences
in order to extract information from Arabic user requirements
to generate the activity diagrams. This study aims to assist
software engineers in reducing the cost and time required to
perform manual processes and activities during the analysis
phase.

 Alami et al [12][13] proposed a Semi-automated
Approach for generating sequence diagrams from Arabic user
requirements. They generated part of speech tags by parsing
user Arabic requirements with a natural language processing
tool. They proposed a set of heuristics for obtaining sequence

diagram components such as objects, messages, and
workflow transitions (messages). They generated sequence
diagrams to be represented using XMI to be drawn using
sequence diagram drawing tools.

III. BACKGROUND

Arabic language is a prominent member of the Semitic
languages family. It consists of 28 letters and it is written
from right to left. Grammar in Arabic language is a collection
of rules that describes well informed sentences.

Arabic language is not an easy task to parse because first,
the particularities of the Arabic language make it more
ambiguous than other natural languages this is due to its
morphological [14], syntactic and semantic characteristics,
second the significant lack of digital resources of the Arabic
language, especially concerning the grammars and corpora
[15].

A. Software Requirements Specification

The software requirements specification (SRS), also
known as the software requirements document, is a formal
description of what system developers should implement. It
includes both the user and system requirements. Both of them
can be included in a single description. In some cases, the
user requirements are defined in the introduction of the
system requirements specification. Also, if there are a large
number of requirements, the detailed system requirements
may be presented in a separate document [2].

The level of detail required in the requirements document

is determined by the type of system and the development
process employed. A detailed requirement document is
needed when the system is critical because safety and security
need accurate analysis. Also, when a separate company will
develop the system. But, if the development process is done
within the same organization, the system specifications can
be much less detailed and any ambiguities can be resolved
during the development process [2].

B. Arabic User Requirements

User and system requirements are usually written in
natural languages supplemented by relevant diagrams and
tables. It should be clear, unambiguous, complete, easy to
understand, and consistent [2].

C. Natural Language Processing Tools

There are many tools for Arabic morphological analysis.
Each has different Characteristics. This is based on how those
tools are developed and what database is used. There are four
tools that are freely available and very suitable for tokenizing
Arabic text: Stanford, MADA+TOKAN, CAMEL POS and
MADAMIRA Tools:

● Stanford CoreNLP is a multilingual Java library, CLI
and server providing multiple NLP components with
varying support for different languages. Arabic
support is provided for parsing, tokenization, POS
tagging, sentence splitting [16].

● MADA+TOKAN is a versatile and freely available
system that can derive extensive morphological and
contextual information from raw Arabic text, and
then use this information for a multitude of crucial
NLP tasks. Applications include high-accuracy part-

of-speech tagging, discretization, lemmatization,
disambiguation, stemming, and glossing. MADA
operates by examining a list of all possible analyses
for each word and then selecting the analysis that
matches the current context best by means of support
vector machine models classification for 19 distinct,
weighted morphological features. All
disambiguation decisions are made in one step
because the selected analysis contains complete
diacritic, lexemic, glossary, and morphological
information. TOKEN takes the information provided
by MADA to generate tokenized output in a wide
variety of customizable formats [17].

● CAMeL Tools are a Python-based collection of open-
source tools for Arabic natural language processing.
These tools currently provide utilities for pre-
processing, morphological modeling, dialect
identification, named entity recognition and
sentiment analysis [18].

● MADAMIRA Tools are a system for morphological
analysis and disambiguation of Arabic. It enabled
features such as part-of-speech tagging,
segmentation, lemmatization, tokenization, NER,
and base-phrase chunking. It supports both MSA and
Egyptian and primarily provides a CLI, a server
mode, and a Java API [19].

IV. PROPOSED CLASSIFICATION APPROACH

We propose a high-level approach to illustrate the detailed
steps to classify Arabic user requirements into functional and
non-functional requirements. To analyze Arabic user
requirements, we present the basic grammar rules for the
simple verbal sentences [20] as the following:

● Sentence � Nominal Sentence | Verbal Sentence.
● Nominal Sentence:

1. Nominal Sentence � [Annuler] + Subject
Phrase + Predicate Phrase.

2. Annuler � Original Particle | Transformed
Particle.

3. Original Particle � Negative Particle |
Interrogative Particle | Preposition.

4. Transformed Particle � Verbal Transformed
Particle | Adjective Preposition.

5. Adjective Particle � “Inna” and Her Sister.
6. Subject Phrase � Subject + [Expansion

Phrase].
7. Subject � Noun | Pronoun.
8. Adverb � Adverb of Place | Adverb of Time.

● Verbal Sentence:

1. Verbal Sentence � Verb + subject + object.
2. Verb � Past | Present | Imperative mood.
3. Subject � Noun | Pronoun.
4. Noun � Proper noun | demonstrative

|Relative.
5. Object � Noun | Quasi Sentence.
6. Quasi Sentence � Preposition phrase |Adverb

phrase.
7. Preposition Phrase � Preposition + Noun.
8. Adverb Phrase � Adverb + Noun.

To analyze the Arabic sentence, we will use an NLP tool
for parsing, tokenization, part of speech, and sentence
splitting.

Currently, we are reviewing several software graduation
projects for PPU students and SRS documents for developers
to extract features that distinguish functional from non-
functional requirements. These features will be used in
proposing a set of heuristics for our approach. We extracted
the following features that distinguish non-functional from
functional requirements:

1. The appearance of cardinals indicates high
probability of NFR.

2. The appearance of non-Arabic words often denotes
techniques, like (SQL, HTML…etc.). They are
usually found in the description of NFR.

3. The appearance of adjectives/adverbs indicates a
high probability of NFR.

4. The sentence contains keywords of non-functional
requirements, that have been mentioned in [20].

Finally, we will develop a Python-based classification
program to evaluate our proposed heuristics. Figure 3.
illustrates our approach as a block diagram.

Figure 3. Proposed Approach Block Diagram.

For the advantage of loose coupling, so that the program
could be flexible, testable and maintainable, we apply the
dependency injection approach in our research. We break
down our logic into different classes, each one is responsible
for a single task, then these classes can collaborate to
complete the job. For example, a class for analyzing the tags
based on the proposed heuristics to classify the requirements
will depend on the services of the class that tags the tokens of
the statement.

To classify the Arabic requirements into FR and NFR, we

proposed a set of heuristics for Arabic sentences depending
on the output of the MADAMIRA tool. These heuristics are
presented as follows:

1. The appearance of cardinals/numbers is indicating a
high probability of NFR.
If a cardinals\numbers are existing in sentences in
any sentence syntax then it raises the likelihood that
the sentence is a non-functional requirement such as
the following sentences:

a) For example:” يقوم النظام بتحديث العرض كل ستين
 ”ثانية
A translation of the example:” The system
updates the display every sixty seconds”
Using MADAMIRA POS, the statement is
divided into: يقوم/Verb النظام/Noun بتحديث/Noun
 Number/ستين Quantity Noun/ كل Noun/العرض
Noun ثانية/Numerical Adjectives

b) For example:” يجب أن يكون المشاهدين قادرين على
متر 30قراءة بيانات الحدث من مسافة عرض تبلغ ”

A translation of the example:” Viewers should
be able to read event data from a viewing
distance of 30 meters”
Using MADAMIRA POS, the statement is
divided into: يجب/Verb أن/Subordinating
Conjunction يكون/Verb المشاهدين/Noun
 Noun/قراءة Preposition /على Adjective/قادرين
 Preposition /من Noun/الحدث noun/بيانات
 Verb 30/Digit/تبلغ Noun/عرض Noun/مسافة

As shown in the above examples, POS of
cardinals/numbers using MADAMIRA is “Number
Noun” if it is written in letters and “Digit” if it is
written in numbers.

2. The appearance of non-Arabic words often denotes

techniques, like (SQL, HTML…etc.). They are
usually found in the description of NFR.
If foreign words are existing in sentences in any
sentence syntax, then it raises the likelihood that the
sentence is a non-functional requirement such as the
following sentences:

a) For example:” Windows XP يعمل النظام ضمن نظام

 ”التشغيل
A translation of the example:” The system
works within the Windows XP operating
system”
Using MADAMIRA POS, the statement is
divided into: يعمل/Verb النظام/Noun ضمن/Noun
 Noun Windows/Foreign/التشغيل Noun/نظام
Xp/Foreign

b) For example:” MySQL أو HSQL سيحتاج نظام إدارة
 ” قواعد البيانات
A translation of the example:” The database
management system will need MySQL or
HSQL”
Using MADAMIRA POS, the statement is
divided into: يحتاج/Verb نظام/Noun ادارة/Noun
 Noun MySQL/Foreign/البيانات Noun/قواعد
 Conjunction HSQL/Foreign/أو

As shown in the above examples, POS of non-

Arabic words using MADAMIRA is “Foreign”.

3. The appearance of adjectives/adverbs indicates a
high probability of NFR. We propose a set of
heuristics for verbal and nominal sentences as
follows:
a) For example:” يجب أن يكون النظام بديهياً و واضحا ً◌”

A translation of the example:” The product
should be intuitive and clear”

Using MADAMIRA POS, the statement is
divided into: يجب/Verb أن/Subordinating
conjunction يكون/Verb النظام/Noun
 Conjunction/و Adjective/◌ً بديهيا
 Adjective/◌ً واضحا

b) For example:” النظام يجب أن يكون بديهياً وواضحا ً◌”
A translation of the example:” The product
should be intuitive and clear”
Using MADAMIRA POS, the statement is
divided into: النظام/Noun يجب/Verb
 Verb/يكون Subordinating conjunction/أن
 Conjunction/و Adjective/◌ً بديهيا
 Adjective/◌ً واضحا
As shown in the above examples, POS of the
adjectives using MADAMIRA is “Adjective”
and the adverbs is “Adverb”.

4. If the sentence contains keywords of non-functional

requirements, that have been mentioned in [20].
Then it raises the likelihood that the sentence is a
non-functional requirement such as the following
sentences:

We propose a set of heuristics for the nominal

sentences as follows:
a) If the statement is simple:

 For example:” سهولة التعامل مع النظام”
A translation of the example:” Ease of handling
the system”
Using MADAMIRA POS, the statement is
divided into: سهولة/Noun التعامل /Noun مع/Noun
 Noun/النظام
The main subject is سهولة.

b) If the statement contains the connector (و)
without any verb or subject in the second
statement:
 For example:” بياناتأمان النظام وسرية ال ”
 A translation of the example:” System security
and data confidentiality”
Using MADAMIRA POS, the statement is
divided into: أمان/Noun النظام/Noun
 Noun/البيانات Conjunction/و

 The first subject is أمان.
The second subject is سرية.

We propose a set of heuristics for the verbal

sentences. These heuristics presented as follows:
a) If the statement is simple:

 For example:” يقدم النظام مرونة عالية لمستخدميه”
A translation of the example:” The system
offers high flexibility to its users”
Using MADAMIRA POS, the statement is
divided into: يقدم/Verb النظام /Noun
 Noun/لمستخدميه Noun/عالية Adjective/مرونة
 The main object is مرونة.

b) If the statement contains the connector (و)
without any verb or actor in the second
statement:
For example," النظام مرونة عالية و سهولة يقدم
 "لمستخدميه
A translation of the example: “The system
offers high flexibility and ease to its users.”

Using MADAMIRA POS, the statement is
divided into: يقدم/Verb النظام /Noun
 Conjunction/و Noun/عالية Adjective/مرونة
 Noun/لمستخدميه Noun/سهولة
The first object is مرونة.
The second object is سهولة.

We can determine whether this sentence is a non-

functional requirement by returning the
subjects/objects to their Lemma using
MADAMIRA tool Lemmas then comparing them
with the lemma of Keywords [21].

V. EVALUATION

The next step in this research is the evaluation of the
proposed approach. The purpose of this evaluation is to
calculate the accuracy of our approach and to compare the
result with previous related researches and to check if our
approach is better than these researches or not. To evaluate
the accuracy of our approach, we will perform a test of one-
third of the pre-classified requirements that we will use for
this study. Then we will measure two evaluation metrics:
recall and precision. These metrics are used to evaluate
natural language processing-based knowledge extraction
systems as of the following [22]:

a) Recall: The completeness of the results produced by
the system.

b) Precision: It expresses the accuracy of the designed
system.

VI. CONCLUSION

In this paper, we proposed a novel approach for

classification of Arabic user requirements into functional and
nun functional requirement. In this approach, a natural
language processing tool is used to analyze the sentences of
the Arabic user requirements. Based on the outcome of the
analysis, a set of heuristics are presented to guide the
classification process. These heuristics use the tokens
produced by the chosen NLP tool. This research aims to help
software engineers in the analysis phase by reducing the cost
and the time required in performing manual classification.

REFERENCES

[1] IEEE COMPUTER SOCIETY. SOFTWARE ENGINEERING STANDARDS

COMMITTEE AND IEEE-SA STANDARDS BOARD, 1998. IEEE

RECOMMENDED PRACTICE FOR SOFTWARE REQUIREMENTS

SPECIFICATIONS (VOL. 830, NO. 1998). IEEE.

[2] Sommerville, I., 2011. Software engineering 9th Edition. ISBN-

10, 137035152, p.18
[3] Hussain, I., Kosseim, L. and Ormandjieva, O., 2008, June. Using

linguistic knowledge to classify non-functional requirements in SRS
documents. In International Conference on Application of Natural
Language to Information Systems (pp. 287-298). Springer, Berlin,
Heidelberg.

[4] Singh, P., Singh, D. and Sharma, A., 2016, September. Rule-based
system for automated classification of non-functional requirements
from requirement specifications. In 2016 International Conference on

Advances in Computing, Communications and Informatics
(ICACCI) (pp. 620-626). IEEE.

[5] Kurtanović, Z. and Maalej, W., 2017, September. Automatically
classification functional and non-functional requirements using
supervised machine learning. In 2017 IEEE 25th International

Requirements Engineering Conference (RE) (pp. 490-495). Ieee.

[6] Haque, M.A., Rahman, M.A. and Siddik, M.S., 2019, May. Non-
Functional Requirements Classification with Feature Extraction and
Machine Learning: An Empirical Study. In 2019 1st International

Conference on Advances in Science, Engineering and Robotics

Technology (ICASERT) (pp. 1-5). IEEE.
[7] Younas, M., Jawawi, D.N., Ghani, I. and Shah, M.A., 2020. Extraction

of non-functional requirement using semantic similarity
distance. Neural Computing and Applications, 32(11), pp.7383-7397.

[8] Jabbarin, S. and Arman, N., 2014, January. Constructing use case
models from Arabic user requirements in a semi-automated approach.
In 2014 World Congress on Computer Applications and Information
Systems (WCCAIS) (pp. 1-4). IEEE.

[9] Arman, N. and Jabbarin, S., 2015. Generating use case models from
Arabic user requirements in a semiautomated approach using a natural
language processing tool. Journal of Intelligent Systems, 24(2),
pp.277-286.

[10] Arman, N., 2015. Using MADA+ TOKAN to Generate Use Case
Models from Arabic User Requirements in a Semi-Automated
Approach. ICIT 2015 The 7th International Conference on Information
Technology.

[11] Nassar, I.N. and Khamayseh, F.T., 2015, April. Constructing activity
diagrams from Arabic user requirements using Natural Language
Processing tool. In 2015 6th International Conference on Information
and Communication Systems (ICICS) (pp. 50-54). IEEE.

[12] Alami, N., Arman, N. and Khamyseh, F., 2017, May. A semi-
automated approach for generating sequence diagrams from Arabic
user requirements using a natural language processing tool. In 2017
8th International Conference on Information Technology (ICIT) (pp.
309-314). IEEE.

[13] Alami, N., Arman, N. and Khamayseh, F., 2020. Generating sequence
diagrams from arabic user requirements using mada+ tokan tool. Int.
Arab J. Inf. Technol., 17(1), pp.65-72.

[14] Alqrainy, S., Muaidi, H., & Alkoffash, M. S. (2012). Context-free
grammar analysis for Arabic sentences. International Journal of
Computer Applications, 53(3).

[15] Khoufi, N., Aloulou, C., & Belguith, L. H. (2016). Parsing Arabic
using induced probabilistic context free grammar. International Journal
of Speech Technology, 19(2), 313-323.

[16] Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J.R., Bethard, S. and
McClosky, D., 2014, June. The Stanford CoreNLP natural language
processing toolkit. In Proceedings of 52nd annual meeting of the
association for computational linguistics: system demonstrations (pp.
55-60).

[17] Habash, N., Rambow, O. and Roth, R., 2009, April. MADA+ TOKAN:
A toolkit for Arabic tokenization, diacritization, morphological
disambiguation, POS tagging, stemming and lemmatization. In
Proceedings of the 2nd international conference on Arabic language
resources and tools (MEDAR), Cairo, Egypt (Vol. 41, p. 62).

[18] Obeid, O., Zalmout, N., Khalifa, S., Taji, D., Oudah, M., Alhafni, B.,
Inoue, G., Eryani, F., Erdmann, A. and Habash, N., 2020, May.
CAMeL tools: An open source python toolkit for Arabic natural
language processing. In Proceedings of the 12th language resources
and evaluation conference (pp. 7022-7032).

[19] Pasha, A., Al-Badrashiny, M., Diab, M.T., El Kholy, A., Eskander, R.,
Habash, N., Pooleery, M., Rambow, O. and Roth, R., 2014, May.
Madamira: A fast, comprehensive tool for morphological analysis and
disambiguation of arabic. In LREC (Vol. 14, No. 2014, pp. 1094-
1101).

[20] Daimi, K., 2001. Identifying syntactic ambiguities in single-parse
Arabic sentence. Computers and the Humanities, 35(3), pp.333-349.

[21] Chung, L., Nixon, B.A., Yu, E. and Mylopoulos, J., 2012. Non-

functional requirements in software engineering (Vol. 5). Springer
Science & Business Media.

[22] Bajwa, I. S., and Choudhary, M. A. (2012). From natural language
software specifications to UML class models. In Enterprise
Information Systems (pp. 224-237). Springer Berlin Heidelberg.

