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Abstract— This paper presents an implementation of a novel 

approach, utilizing hybrid data partitioning, to secure sensitive 

data and improve query performance. In this novel approach, 

vertical and horizontal data partitioning are combined together 

in an approach that called hybrid partitioning and the new 

approach is implemented using Microsoft SQL server to 

generate divided/partitioned relations. A group of proposed 

rules is applied to the query request process using query binning 

(QB) and Metadata of partitioning. The proposed approach is 

validated using experiments involving a collection of data 

evaluated by outcomes of advanced stored procedures. The 

suggested approach results are satisfactory in achieving the 

properties of defining the data security: non-linkability and 

indistinguishability. The results of the proposed approach were 

satisfactory. The proposed novel approach outperforms a well-

known approach called PANDA. 

Keywords— hybrid data partitioning implementation, data 

outsourcing, data sensitivity, cloud.  

I. INTRODUCTION 

Generally, data outsourcing is vulnerable to different types 
of attacks. Secure and efficient retrieval of outsourced data is 
still an open challenge. Data sensitivity is one of the most 
critical security issues that need to be investigated. Generally, 
the data owner avoids data outsourcing (sensitive and non-
sensitive data). Alternatively, they outsource all data in 
encrypted form to protect sensitive data. In this research, the 
data partitioning techniques, based on data sensitivity, is 
considered to secure data outsourcing.  

Accordingly, hybrid data partitioning techniques are 
addressed [1]. However, to improve data security against 
attacks,  data partitioning techniques (PANDA) were proposed 
in [2], [4], and [5]. These techniques divide a relation into a 
set of relations based on data sensitivity. While good 
partitioning techniques prevent data leakage against inference 
attacks, these techniques must have specific characteristics to 
be considered secure, such as non-linkability and 
indistinguishability. 

This paper aims to improve query execution time, secure 
the sensitive data against inference attacks, and prevent data 
leakage while outsourcing data to a public database for storage 
by encrypting less amount of data than PANDA. A hybrid data 
partitioning technique is used to divide relations into vertical 
and horizontal relations based on data sensitivity. Query 
binning (QB) techniques [3] are applied for securing sensitive 
data and enhancing the performance of query execution time. 

The remaining sections of this paper are organized as 
follows: The hybrid data partitioning technique is presented in 
section II. Section III shows experiments demonstration and 
evaluation. And in section IV conclude the paper. 

II. HYBRID DATA PARTITIONING TECHNIQUE 

A. Hybrid Data Partitioning Model 

In this paper, consider that the following two entities in the 
proposed model: 

1) Trusted Database on-premises contains the whole data 
in plaintext format and executes queries and sends 
query requests to untrusted DB on the cloud. assume 
that a relation R has attributes, say A1, A2, A3 . . . , An, 
containing all sensitive and non-sensitive values in 
tuples t1, t2, t3 …, tm. According to values stored with 
specific attributes, the DB owner determines which 
attributes are sensitive or not and lays rules that 
determine when the tuple is sensitive. 

The database (DB) owner divides relation R into several 
relations based on the tuples' data sensitivity using a hybrid 
technique that divides the tuple into three tuples at max; each 
divided tuple is stored in a different relation. The first one 
contains the total values stored in the attributes marked as 
sensitive. The second contains the total values stored in the 
attributes marked as non-Sensitive, and the rest of the values 
may either include sensitive or non-sensitive values. This 
means that the third tuple may either be considered sensitive 
or non-sensitive. The DB owner outsources the relations that 
contain non-sensitive data to a public cloud in plaintext form. 
The tuples of the relations that contain sensitive data are 
encrypted using any existing non-deterministic encryption 
mechanism before outsourcing to the same public cloud. 

In the proposed model setting, the DB owner must store 
metadata such as a mapping relation that stores the original 
tuple ID with the new tuple IDs in each of the divided 
relations. The Metadata will be used for appropriate query 
formulation using the Query Binning (QB) proposed in [3] and 
explained in section B. 

2) Untrusted Database on Cloud that hosts the databases 
contains the partitioned relations, executes queries, and 
provides answers to the trusted DB stored on-premises. 

To explain query execution in the proposed model, let 
assume a query σ over the relation R and p is a preposition, 

denoted by σp(R). The query is executed on trusted DB with 
no limitation on number of attributes in WHERE condition 
clause. The results of the query include four attributes:  

• Tuple ID: the original ID for each tuple. 

• IDE: tuple ID representing the primary tuple key in 
new relation for sensitive data (RE). 

• IDP: tuple ID representing the primary tuple key in 
new relation for non-sensitive data (RP). 

• IDP_E: tuple ID representing the primary key of 
relation RP_E in plaintext or relation RE_P in encrypted 
form.  



After that, the query process splits the execution of σp(R) 
into four subqueries. As shown in equation 1, each subquery 
is sent to an untrusted DB to be executed. Then the results of 
subqueries are returned to the Trusted DB. Then inside the 
trusted DB, there will be two subqueries ((RP_E and RE_P)) that 
have the same scheme, for which a union operation is 
performed. Then join operations are performed to join the 
union result with RP and RE. In particular, the query σ on a 
relation R is executed, as: 

σ��R� = σ��R�� ⋈ σ��R	� ⋈ �σ�
R	_��Uσ��R�_	��     ( 1) 

Example: Let us illustrate the hybrid data-partitioning 
model using the relation presented in Table 1. 

TABLE 1 EMPLOYEE RELATION 

 Attributes No 

 a1 a2 a3 a4 a5 a6 

 ID Name Department Salary Location Password 

t1 1 Ali IT 1,000 Jerusalem ******* 

t2 2 Intisar Marketing 900 Jerusalem ******* 

t3 3 Mahmoud IT 1,200 Hebron ******* 

t4 4 Susan Marketing 1,500 Ramallah ******* 

t5 5 Sultan Marketing 1,450 Bethlehem ******* 

t6 6 Kazem HR 1,050 Nablus ******* 

t7 7 Alaa Marketing 1,460 Bethlehem ******* 

t8 8 Ahmad HR 980 Nablus ******* 

 
Table 1 considers an Employee relation R. Note that the 

notation ai (1 ≤ i ≤ 6) is an attribute in the relation; it indicates 
the ith attribute. In this relation, note that the notation tj (1 ≤ j 
≤ 8) of the relation is used this to indicate the jth tuple. In this 
relation, the DB owner considers that the password attribute 
values are not outsourced data, and the salary attribute values 
are sensitive. Moreover, all values in department attribute that 
meet Department = "Marketing" are sensitive. In such a case, 
and after applying the Hybrid partitioning, the metadata are 
generated as shown in Table 2. Metadata includes four 
attributes as described. It is worth mentioning that IDE, IDP, 
and IDP_E attributes are unique identifiers of 50 characters. 

TABLE 2 METADATA TABLE FOR RELATION R 

Tuple 

No 

Tuple 

ID 

IDE IDP IDP_E 

t1 1 848CC055...A 43AACEF7...P F0D9C43C...R 

t2 2 DF8BC1A8...C 2CF79E45...O 485F36AB...J 

t3 3 03E47A30...E 1AC4E44F...Y CAF5A05C...Q 

t4 4 5E1A2955...A 990D4BF7...I 17EDA383...8 

t5 5 EF036F92...F BA921C43...G F1859688...Y 

t6 6 CB1CCD4D...K 4276A931...K A03E7373...D 

t7 7 116DB16E...H 10E7C843...U 14C0E88B...X 

t8 8 F2220062...P 892285C5...D 05B4FA48...Z 

The Employee relation may be stored on the cloud as: 

1) Relation 1, which contains all sensitive values in 
Salary's attribute and stores values in encrypted form, as 
shown in TABLE 3. 

TABLE 3 RELATION 1 

Attributes No IDE a4 

Tuple No ID Salary 

t1 848CC055...A E(1000) 

t2 DF8BC1A8...C E(900) 

t3 03E47A30...E E(1200) 

t4 5E1A2955...A E(1500) 

t5 EF036F92...F E(1450) 

t6 CB1CCD4D...K E(1050) 

t7 116DB16E...H E(1460) 

t8 F2220062...P E(980) 

2) Relation 2, which contains all non-sensitive values in all 
attributes marked as ,non-sensitive attributes and store 
values in plaintext form, as shown in Table 4. 

TABLE 4 RELATION 2 

Attributes No IDP a2 a5 

Tuple No ID Name Location 

t1 43AACEF7...P Ali Jerusalem 

t2 2CF79E45...O Intisar Jerusalem 

t3 1AC4E44F...Y Mahmoud Hebron 

t4 990D4BF7...I Susan Ramallah 

t5 BA921C43...G Sultan Bethlehem 

t6 4276A931...K Kazem Nablus 

t7 10E7C843...U Alaa Bethlehem 

t8 892285C5...D Ahmad Nablus 

 
3) Relation 3, which contains all tuples that the attributes 

include sensitive values. In the example, all sensitive 
values in Department attribute, where Department = 
Marketing", are stored encrypted as shown in Table 5.  

TABLE 5 RELATION 3 

Attributes No IDP_E a3 

Tuple No ID Department 

t2 CAF5A05C...Q E(Marketing) 

t4 17EDA383...8 E(Marketing) 

t5 A03E7373...D E(Marketing) 

t7 05B4FA48...Z E(Marketing) 

 
4) Relation 4, which contains all sensitive values in Name 

and Location, where Department= "Marketing" and 
saved as plaintext as shown in Table 6.  

TABLE 6 RELATION 4 

Attributes No IDP_E a3 

Tuple No ID Name 

t1 F0D9C43C...R IT 

t3 485F36AB...J IT 

t6 F1859688...Y HR 

t8 14C0E88B...X HR 

 
Hence, the sensitive data stored in Relation 1 and Relation 

3 are encrypted before being outsourced to an untrusted 
database. In contrast, Relation 2 and Relation 4, including only 
non-sensitive data, are outsourced in plaintext form. The 
partitioning is executed on the tuple level, which means every 
time a tuple insertion, modification, or deletion operation 
occurred, a trigger is fired and run the partitioning code as 
presented in Algorithm 1. 

Algorithm 1 Insert Tuple 

 Inputs: t: inserted/updated tuple.    

 
Variable: Metadata: table to store metadata about t. a[] list of 
attributes. v[] sensitive values list for each attributes. IDE, IDP, 
IDP_E 

1 Function Insert Tuple ( t ) begin  

2   
a[]←Relation attributes v[]←Relation attributes Sensitive 
Values 

3   IDE ← Generate Unique Identifier key 
4   tE ← IDE 

5   
tE ← Encrypt all values store in attributes marked as 
sensitive in t  

6   Send tE to RE in cloud 
7   IDp ← Generate Unique Identifier key 
8   tP ← IDP 

9   
tP ← all values store in attributes marked as non-sensitive 

in t  
10   Send tP to RP in cloud 
11   IDTemp ← Generate Unique Identifier key 
12   If the rest of the values in t marked as sensitive values 



13   tE_P ← IDTemp 
14   tE_P ← Encrypt all values marked as sensitive in t  
15   Send tE_P to RE_P in the cloud 
16   Else  
17   tP_E ←IDTemp 
18   TP_E ← all values marked as non-sensitive in t  
19   Send tP_E to RP_E in the cloud 

20   Metadata ← t.ID, IDP, IDE,IDTemp 
21   Return  

     

 

To continue with example 1, consider a query σ: SELECT 
Name, Department from Employee where Location = 
N’Jerusalem’. In the trusted DB, the query σ Location = 

N‘Jerusalem(R) is executed on relation R, then as shown in 
Algorithm 2, the results of the query are joined with metadata 
relation, after that, they produce four queries  that are sent and 
executed in Untrusted DB: 

• σIDe in (query results)(RE) executes on RE relation. 

• σIDp in (query results)(RP) executes on RP Relation.  

• σ IDp_e in (query results)(RP_E) executes on RP_E Relation.  

• And the last query σ IDe_p in (query results)(RE_P) executes on 
RE_P Relation.  
 

The queries’ results are sent back to trusted DB, and SQL 
operation is performed as shown in 1. Algorithm 2 shows how 
the query request process works. It is worth mentioning that 
the partitioning computation occurs during the insertion of 
tuples into R relation. That saves time instead of doing the 
partitioning of the whole data at once. 

Algorithm 2 Query Request 

 
Inputs: SQLstr: Select query statement, Metadata: table to store 
metadata about tuples 

 Outputs: Results: Query results 
Variable: T_R: temporary data table to store metadata about SQL 

results, Result1 temporary relation 
 

1 Function run_SQL ( SQLstr ) begin 
2   T_R ← Execute( SQLstr )⋈ Metadata 
3 

  
Result1 ←Execute_on_Cloud(RE_P, Domain(T_R.IDE_P))⋃  

Execute_on_Cloud(RP_E, 
Domain(T_R.IDP_E)) 

4 
  

Result1 ← Result1 ⋈ Execute_on_Cloud(RP, 
Domain(T_R.IDP)) 

5 
  

Result1 ← Result1 ⋈ 
Execute_on_Cloud(RE,Domain(T_R.IDE)) 

6 
  

Query results← retrieve tuple from Result1 match the original 
where clause 

7   Return Query results 
     

B. Query Binning Technique 

QB involves two steps: first, the creation of the query bins. 
The second step consists of rewriting the query based on the 
binning. Could be say that the QB in the base case is a one-to-
one relationship between one sensitive tuple and one non-
sensitive tuple. Accordingly, this means that both tuples 
cannot be sensitive or non-sensitive. Before describing QB, 
present the concept of approximate square factors of a number 
used to create the bins is needed. As defined in [3], “two 
numbers, say x and y, are approximately square factors of 
number n, where n > 0, if x × y = n, and x and y are equal or 
close to each other. So that the difference between x and y is 
less than the difference between any two factors, say x′ and y′, 
of n such that x′ × y′ = n”. In this research, the QB uses tuples 
stored in partitions divided horizontally to create the binning. 
Continuing with the example in section A, to calculate the 
approximately square factors, let us consider that n = number 
of non-sensitive tuple = 4 tuples, according to the definition of 

Approximately square factors, x = 2 and y = 2, this satisfies 
the definition of the Approximately square factors. Now two 
sensitive bins and two non-sensitive bins are created. After 
creating the bins, filling them with tuples using the algorithm 
described in [3]. That links between sensitive tuples and non-
sensitive tuples. The results of this operation are shown in Fig. 
1. In the example shown below, the location attribute in 
WHERE clause are used and the same data in example1 (Table 
1), and the tuples retrieved as follows:  

• Retrieve tuples corresponding to employees who work in 
Location =’Jerusalem’. 

• Retrieve tuples corresponding to employees who work in 
Location =’Hebron’,  

• And retrieve tuples corresponding to employees who 
work in Location =’Bethlehem’.  

 

Fig. 1 QB for four sensitive and four non-sensitive tuples. 

Adversarial view  
Assume that the adversary has access to Untrusted DB and 

to the transactions log file, which means that when answering 
a query, the adversary knows the retrieved encrypted tuples 
and the complete information of the retrieved non-sensitive 
tuples. This information is known to the adversary as the 
adversarial view, shown in Table 7. This table contains the 
retrieved tuples without applying the QB. 

TABLE 7 QUERIES RESULTS, WITHOUT APPLY QB 

Query 
value 

Returned tuples/Adversarial view 

Relation 1 Relation 2 Relation 3 Relation 4 

Jerusalem E(t1 ), E(t2 ) t2 E(t2) t1 

Hebron E(t3 ) t3 Null t3 

Bethlehem E(t5 ), E(t7 ) t5 , t7 E(t5 ), E(t7 ) null 

 
To apply the QB bins technique, need to modify the query 

request performed, so Algorithm 3 shows how to query 
request work with QB. To understand the QB effects on the 
query request process, the adversarial view will be changed 
after Algorithm 3 is applied; 

Algorithm 3 Query Request with QB 

 
Inputs: SQLstr: Select query statement, Metadata: table to store 
metadata about tuples 

 Outputs: Results: Query results 

 

Variable:T_R_B: temporary data table with Bins, T_R_B: temporary 
data table without Bins, T_R: temporary data table to 
store metadata about SQL results, Result1 temporary 
relation 

1 Function run_SQL ( SQLstr ) begin 
2   T_R_W ← Execute( SQLstr )  
   T_R_B ← Retrieve_Bins( T_R_W) 
   T_R ←T_R_B ⋈ Metadata 
3 

  
Result1 ←Execute_on_Cloud(RE_P, Domain(T_R.IDE_P))⋃  

Execute_on_Cloud(RP_E, 
Domain(T_R.IDP_E)) 

4 
  

Result1 ← Result1 ⋈ Execute_on_Cloud(RP, 
Domain(T_R.IDP)) 

5 
  

Result1 ← Result1 ⋈ Execute_on_Cloud (RE, 
Domain(T_R.IDE)) 

6 
  

Query results← retrieve tuple from Result1 match the original 
where clause 

7   Return Query results 

     

 



Table 8 shows the query request result for an adversary 
using the QB technique. In this example, will use the same 
conditions in the previous example after applying the QB 
technique. 

TABLE 8 QUERY RESULT USING QB 

Query 
value 

Returned tuples/Adversarial view 

Relation 1 Relation 2 Relation 3 Relation 4 

Jerusalem E(t1),E(t2), 
E(t5 ), E(t6 ) 

t1,t2,t5,t6 E(t2), E(t5 

) 
t1,t6 

Hebron E(t2),E(t3), 
E(t5 ), E(t8 ) 

t2, t3,t5,t8 E(t2), E(t5 

) 
t3,t8 

Bethlehem E(t2),E(t4), 
E(t5 ), E(t7 ), 
E(t3 ), E(t8 ) 

t2, t3, t4, t5, 

t7, t8 
E(t2),E(t4), 
E(t5 ), E(t7 

) 

t3, t8 

C. Data Partitioning Security  

Using a non-deterministic encryption for sensitive data 
achieves the property of cipher-text indistinguishability (i.e., 
an adversary cannot distinguish between two cipher-texts) [3]. 
Hence, the same plaintext values have two different cipher-
text values. Furthermore, the non-linkability will be achieved 
in two positions, first in the public database by using ID for 
each tuple stored in each divided relation different from the 
original ID in the private database. Second, in the query 
request process, this is achieved by using query binning (QB). 
Fig. 2 illustrates the security context.  

 
Fig. 2 Map mind 

Adversarial view: the authors want to explain the 
adversarial view that assumes that the adversary has full 
access to Untrusted DB and the transactions log file. This 
means that when answering a query, the adversary can retrieve 
the all-Select SQL statements, and re-execute these statements 
and retrieve the encrypted tuples and the complete information 
of the retrieved non-sensitive tuples. The adversarial view lets 
the adversary knows this information. Besides, the adversary 
has no access to Trusted DB. 

Based on the adversarial view, proof of data security is 
needed. For that, should be first explain the notion of 
partitioned data security used in PANDA [3] that is established 
when a partitioned computation over sensitive and non-
sensitive data does not leak any sensitive information. Note 
that an adversary may infer sensitive information using the 
adversarial view that was created during query processing, 
knowledge of frequency counts, and workload characteristics. 
In PANDA, they begin by clarifying the concepts of 
associated values, associated tuples, and the relationship 
between counts of sensitive values. 

The definitions used are the same notation used in [3] with 
additional notation added to prevent data leakage after hybrid 
partitioning: 

1) t1, t2. . . ,tm are tuples of a sensitive relation, say RE_P. 
Thus, the relation RE_P stores the encrypted tuples 
E(t1), E(t2), . . . , E(tm).  

2) s1, s2, . . . , sm’ are values of an attribute, say A, that 
appears in one of the sensitive tuples of RE_P . Note 
that m′ ≤ m, since a number of tuples may have an 

identical value. Additionally, si ∈ Domain(A),i = 1, 
2, . . . ,m′.  

3) |s (si)|, refer to the number of sensitive tuples with si 
as the value for attribute A. They further define |s 

(v)| = 0, ∀v ∈ Domain(A), v < s1, s2, . . . , sm′ .  
4) t1, t2, . . . , tn are tuples of a non-sensitive relation, 

say RP_E.  
5) ns1, ns2, . . . , nsn′ are values of the attribute A that 

appears in one of the non-sensitive tuples of RP_E. In 
equivalence with the case where the relation is 

sensitive, n′ ≤ n, and nsi ∈ Domain(A), i = 1, 2, . . . 
,n. 

Associated values. Let us say ei = E(ti)[A] is the encrypted 
demonstration of an attribute value of A in a sensitive tuple of 
the relation RE_P, and nsj is a value of the attribute A for some 
tuple of the relation RP_E. They said that ei is associated with 
nsj (denoted by �� ) if the plaintext value of ei is identical to the 
value nsj. Because hybrid data partitioning used, this 
association applies only to tuples divided horizontally.  

Associated tuples. Let us say ti is a sensitive tuple of the 
relation RE_P (i.e., RE_P stores encrypted representation of ti ) 
and tj is a non-sensitive tuple of the relation RP_E. the authors 
state that ti is associated with tj (for an attribute, say A) if the 
value of the attribute A in ti is associated with the value of the 
attribute A in tj (i.e., ti[A]  ��  tj[A]). Note that this is the same 
as stating that the two values of attribute A are equal for both 
tuples. 

Relationship between counts of sensitive values. Let vi 
and vj be two different values in Domain(A). They denote the 
relationship between the counts of sensitive tuples with these 
A values (i.e., |s (vi )| (or |s (vj )|)) by vi  ~�  vj . 

Note that  ~�  can be one of <, =, or > relationships. Such as, 
in example, the t2  ~�  t4 corresponds to =, since both values have 
exactly one sensitive tuple in relation divided horizontally 
RE_P (see Table 5). 

Given the above definitions, the authors formally state the 
security requirements needed for selecting SQL queries over 
sensitive (encrypted values) and non-sensitive (plaintext 
values) data so that it does not leak any information. Before 
that, it is worthy of mentioning the security definition in the 
context. The inference attack in partitioned computing can be 
considered under the known-plaintext attack (KPA) category. 
The adversary could know some plaintext data hidden in a set 
of cipher-text. The adversary's goal in KPA is to designate 
cipher-text data that are related to a given plaintext, i.e., define 
a mapping between cipher-text and the corresponding 
plaintext data representing the same value. In the adversarial 
view, non-sensitive values are visible to the adversary in 
plaintext. However, the attacks are different since, unlike the 
case of KPA, in the proposed setup, the cipher-text data might 
not contain any data value that is the same as some non-
sensitive data visible to the adversary in plaintext. That means 
by assuming the useing of the non-deterministic encryption to 
encrypt the sensitive data, the adversary cannot launch the 
chosen plaintext attack (CPA) and the chosen-ciphertext 



attack (CCA). It is not subject to the cipher-text only attack 
(COA). 

D. Encryption Technique 

In the proposed solution, the authors create an Microsoft 
.NET Framework common language runtime (CLR) functions 
to encrypt and decrypt data. CLR function is created as a 
database object inside an instance of SQL Server as a 
programmed assembly. CLR function is built using Microsoft 
visual studio 2015 with C# language, and the encryption 
implemented using the AES encryption technique. Algorithm 
4 shows how the encryption is applied. 

Algorithm 4 Encryption 

 Inputs: Tuple_ID, Attributes_Value 

 
Outputs: Cipher-Text 
Variable: Encryption_Key 

1 Function Encryption ( Tuple_ID, Attributes_Value ) begin 
2  Encryption_Key  ← GenerqateKey (Tuple_ID)  
3 

 
Cipher-Text ← AES_Encryption (Attributes_Value, 

Encryption_Key) 
4   Return  Cipher-Text 

     

III. IMPLEMENTATION, RESULTS, AND DISCUSSION 

This Section presents the implementation's practical 
approach by applying Hybrid Partitioning and QB to the 
trusted and untrusted Databases, respectively. 

To demonstrate the proposed approach effectiveness, the 
proposed approach is tested against inference attacks. The 
inference attacks are applied with and without adopting the 
proposed approach. The results are discussed at the end of this 
Section. 

The rest of this Section is organized as follows; Section A 
introduces the tools used for implementing the proposed 
approach. Section B describes the steps of implementing the 
proposed approach. Finally, section C presents Experiment 
Results and Discussion. 

A. Experimental Tools 

This section introduces the tools used to implement and 
test the proposed solution; the authors used Microsoft SQL 
server 2014 installed on Windows Server 2012 R2 to store the 
database and build the proposed solution. Besides, they used a 
stored procedure as a tool to log the performance of query 
requests. Besides, they used Microsoft Visual studio 2015 to 
write SQL assembly files for encryption and decryption of 
data. 

The experiment environment specification used to 
evaluate the proposed approach: includes Processor Intel(R) 
Xeon(R) CPU E5-2620 v2 @ 2.10GHz (2 CPUs), Installed 
Memory 32 GB RAM, Hard Disk 512 GB, Microsoft SQL 
Server 2014, and Windows Server 2012 R2 Standard 64-bit. 

B. Implementation of Proposed Approach 

This section explains the practical approach and the 
implementation of the Hybrid partitioning technique used. Fig. 
3 shows a general overview of the proposed approach 
architecture where the two database servers host the trusted 
and untrusted databases, respectively. The first database server 
is connected to the internet and private network and hosts the 
trusted database. The second database server is connected to 
the internet and is hosting the untrusted database. The Client's 
devices are connected to the private network. 

 
Fig. 3 General architecture of the proposed approach 

 

The rest of this section describes how the proposed 
approach is implemented. 

1) Data Partitioning  

A stored procedure in SQL server is built to implement the 
Hybrid data partitioning.  

2) Data Encryption  

Data encryption is implemented by writing two functions 
in C# language using Microsoft Visual Studio 2015 and 
Advanced Encryption Standard (AES).  

C. Experiment Results and Discussion 

To evaluate the proposed approach, experiments are 
conducted with a different number of tuples retrieved from the 
database, starting from 2000 tuples, and then the number is 
increased by 2000 until it reaches 20,000 tuples, and in each 
experiment, the number of attributes that contain sensitive 
values is gradually increased from 1 to 10. Besides, these 
attributes contain 50% of the sensitive values only. The 
following subsections describe the results of the trials in more 
detail. 

1) Security Proof and Experiments 

In [3], the authors proved that QB is secure and satisfies 
the definition of partitioned data security and proved that all 
the sensitive bins are associated with all the non-sensitive by 
proving that equations mentioned in [3]. have satisfied the data 
security properties (non-linkability and indistinguishability). 
Furthermore, after using Hybrid partitioning, a new security 
gap is raised: the adversary can learn and link the encrypted 
values (sensitive attributes) to values that are not encrypted 
(non-sensitive attributes) in the same tuple. This gap does not 
satisfy new equation in [1]. However, using different keys in 
the public database for each tuple ensures that equation in [1] 
is satisfied. It is worth mentioning that the adversary cannot 
learn anything from the encrypted data since the DB owner is 
the only party who knows the keys and the Metadata. The 
Metadata relation is hidden from the adversary [1]. 

All experiments show that the result of equation 1 to 
retrieve the original relation from divided relations on public 
database has 0 tuples all the time. This satisfies equation in 
[1]and therefore satisfies the data security property (non-
linkability).  

The first experiment that is being discussed is a query to 
retrieve 2000 tuples. Table 9 shows the experimental results 
of the comparison between the proposed approach and 
PANDA. Experiment results of query execution performance 
to retrieve 2000 tuple assume %50 of values in sensitive 
attributes are sensitive.  



TABLE 9 QUERY EXECUTION EXPERIMENT RESULTS FOR 2000 TUPLES, 50% 

OF VALUES ARE SENSITIVE IN EACH ATTRIBUTE 

# of Sensitive 

attributes 

Technique 
Enhancement 

percentage 
Proposed 

approach 
PANDA 

1 2.89 9.08 68% 

2 4.00 9.08 56% 

3 4.97 9.08 45% 

4 5.54 9.08 39% 

5 6.10 9.08 33% 

6 7.09 9.08 22% 

7 7.52 9.08 17% 

8 8.33 9.08 8% 

9 9.49 9.08 ~0% 

10 9.88 9.08 ~0% 

 
Equation 2 shows how the enhancement percentage (EP) 

of query execution times is calculated. 

�� = �1 �
��� ������ ℎ "#$% 

�&'(& "#$% 
� ) 100% (2) 

Fig. 4 illustrates the performance of query execution time 
for ten different partitioned relations according to the number 
of sensitive attributes in the original relation, 2000 tuples and 
50% of tuples contain sensitive values for the proposed 
approach and PANDA. Unites are measured in seconds. 

 

Fig. 4 Query execution experiment results for 2000 tuples, 50% values are 
sensitive in each attribute. 

Overall, the PANDA technique takes more query 
execution time than the proposed approach in the given 
attributes range. Both PANDA and the proposed approach 
spend most of their query execution times when all attributes 
contain sensitive values.  

Finally, the rest of experiments retrieved 4000, 6000, 
8000, 10000, 12000, 14000, 16000, 18000, 20,000 tuples. For 
each experiment, a different number of tuples and ten different 
partitioned relations according to the original relation's 
number of sensitive attributes. The sensitive attributes have 
50% of tuples with sensitive PANDA values, and the proposed 
approach, Unites, is measured in seconds. 

Overall, the PANDA technique takes more query 
execution time than the proposed approach in each 
experiment's attributes range. Both PANDA and the proposed 
approach spend most of their query execution times in each 
experiment when sensitive attributes are nine. Furthermore, 
the most significant difference in performance between the 
two techniques is when the number of sensitive attributes is 

one. On the other hand, the proposed approach increases 
slightly on the number of attributes 10. 

TABLE 10 AVERAGE OF PERFORMANCE ENHANCEMENT OF PROPOSED 

APPROACH 

# of Sensitive 

Attributes 

Enhancement 

Percentage 

1 82 

2 72 

3 62 

4 54 

5 44 

6 35 

7 27 

8 16 

9 6 

10 ~0 
 

In General, according to Table 10, there is an enhancement 
in the performance of query execution time. It is worth 
mentioning that most of the relations do not fully contain 
sensitive values. 

IV. CONCLUSION 

In this paper, a Hybrid approach for data partitioning 
aimed to secure sensitive data when outsourcing data is 
presented. The proposed approach is essential to secure the 
sensitive data that is outsourced to a public database. The 
proposed approach has the main advantage of improving 
query performance and securing sensitive data against 
inference attacks. The proposed approach has been evaluated 
using a set of experiments of partitioning data in an untrusted 
database. Besides, comparisons of the results with the 
PANDA technique are presented. The results of the proposed 
approach were satisfactory in which the properties of defining 
the data security satisfy the non-linkability and 
indistinguishable. Furthermore, the proposed approach results 
are satisfactory, where the performance of query execution is 
better than the results of PANDA performance. 
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