
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

An Efficient Approach for Secure Data Outsourcing
using Hybrid Data Partitioning

Sultan Badran
College of Graduate Studies

Palestine Polytechnic University (PPU)

Hebron, Palestaine
176030@ppu.edu.ps

Nabil Arman
Dept. of Computer Science and IT

Palestine Polytechnic University (PPU)

Hebron, Palestaine
narman@ppu.edu

Mousa Farajallah
Dept. of Computer Engineering

Palestine Polytechnic University (PPU)

Hebron, Palestaine
mousa_math@ppu.edu

Abstract— This paper presents an implementation of a novel

approach, utilizing hybrid data partitioning, to secure sensitive

data and improve query performance. In this novel approach,

vertical and horizontal data partitioning are combined together

in an approach that called hybrid partitioning and the new

approach is implemented using Microsoft SQL server to

generate divided/partitioned relations. A group of proposed

rules is applied to the query request process using query binning

(QB) and Metadata of partitioning. The proposed approach is

validated using experiments involving a collection of data

evaluated by outcomes of advanced stored procedures. The

suggested approach results are satisfactory in achieving the

properties of defining the data security: non-linkability and

indistinguishability. The results of the proposed approach were

satisfactory. The proposed novel approach outperforms a well-

known approach called PANDA.

Keywords— hybrid data partitioning implementation, data

outsourcing, data sensitivity, cloud.

I. INTRODUCTION

Generally, data outsourcing is vulnerable to different types
of attacks. Secure and efficient retrieval of outsourced data is
still an open challenge. Data sensitivity is one of the most
critical security issues that need to be investigated. Generally,
the data owner avoids data outsourcing (sensitive and non-
sensitive data). Alternatively, they outsource all data in
encrypted form to protect sensitive data. In this research, the
data partitioning techniques, based on data sensitivity, is
considered to secure data outsourcing.

Accordingly, hybrid data partitioning techniques are
addressed [1]. However, to improve data security against
attacks, data partitioning techniques (PANDA) were proposed
in [2], [4], and [5]. These techniques divide a relation into a
set of relations based on data sensitivity. While good
partitioning techniques prevent data leakage against inference
attacks, these techniques must have specific characteristics to
be considered secure, such as non-linkability and
indistinguishability.

This paper aims to improve query execution time, secure
the sensitive data against inference attacks, and prevent data
leakage while outsourcing data to a public database for storage
by encrypting less amount of data than PANDA. A hybrid data
partitioning technique is used to divide relations into vertical
and horizontal relations based on data sensitivity. Query
binning (QB) techniques [3] are applied for securing sensitive
data and enhancing the performance of query execution time.

The remaining sections of this paper are organized as
follows: The hybrid data partitioning technique is presented in
section II. Section III shows experiments demonstration and
evaluation. And in section IV conclude the paper.

II. HYBRID DATA PARTITIONING TECHNIQUE

A. Hybrid Data Partitioning Model

In this paper, consider that the following two entities in the
proposed model:

1) Trusted Database on-premises contains the whole data
in plaintext format and executes queries and sends
query requests to untrusted DB on the cloud. assume
that a relation R has attributes, say A1, A2, A3 . . . , An,
containing all sensitive and non-sensitive values in
tuples t1, t2, t3 …, tm. According to values stored with
specific attributes, the DB owner determines which
attributes are sensitive or not and lays rules that
determine when the tuple is sensitive.

The database (DB) owner divides relation R into several
relations based on the tuples' data sensitivity using a hybrid
technique that divides the tuple into three tuples at max; each
divided tuple is stored in a different relation. The first one
contains the total values stored in the attributes marked as
sensitive. The second contains the total values stored in the
attributes marked as non-Sensitive, and the rest of the values
may either include sensitive or non-sensitive values. This
means that the third tuple may either be considered sensitive
or non-sensitive. The DB owner outsources the relations that
contain non-sensitive data to a public cloud in plaintext form.
The tuples of the relations that contain sensitive data are
encrypted using any existing non-deterministic encryption
mechanism before outsourcing to the same public cloud.

In the proposed model setting, the DB owner must store
metadata such as a mapping relation that stores the original
tuple ID with the new tuple IDs in each of the divided
relations. The Metadata will be used for appropriate query
formulation using the Query Binning (QB) proposed in [3] and
explained in section B.

2) Untrusted Database on Cloud that hosts the databases
contains the partitioned relations, executes queries, and
provides answers to the trusted DB stored on-premises.

To explain query execution in the proposed model, let
assume a query σ over the relation R and p is a preposition,

denoted by σp(R). The query is executed on trusted DB with
no limitation on number of attributes in WHERE condition
clause. The results of the query include four attributes:

• Tuple ID: the original ID for each tuple.

• IDE: tuple ID representing the primary tuple key in
new relation for sensitive data (RE).

• IDP: tuple ID representing the primary tuple key in
new relation for non-sensitive data (RP).

• IDP_E: tuple ID representing the primary key of
relation RP_E in plaintext or relation RE_P in encrypted
form.

After that, the query process splits the execution of σp(R)
into four subqueries. As shown in equation 1, each subquery
is sent to an untrusted DB to be executed. Then the results of
subqueries are returned to the Trusted DB. Then inside the
trusted DB, there will be two subqueries ((RP_E and RE_P)) that
have the same scheme, for which a union operation is
performed. Then join operations are performed to join the
union result with RP and RE. In particular, the query σ on a
relation R is executed, as:

σ��R� = σ��R�� ⋈ σ��R	� ⋈ �σ�
R	_��Uσ��R�_	�� (1)

Example: Let us illustrate the hybrid data-partitioning
model using the relation presented in Table 1.

TABLE 1 EMPLOYEE RELATION

 Attributes No

 a1 a2 a3 a4 a5 a6

 ID Name Department Salary Location Password

t1 1 Ali IT 1,000 Jerusalem *******

t2 2 Intisar Marketing 900 Jerusalem *******

t3 3 Mahmoud IT 1,200 Hebron *******

t4 4 Susan Marketing 1,500 Ramallah *******

t5 5 Sultan Marketing 1,450 Bethlehem *******

t6 6 Kazem HR 1,050 Nablus *******

t7 7 Alaa Marketing 1,460 Bethlehem *******

t8 8 Ahmad HR 980 Nablus *******

Table 1 considers an Employee relation R. Note that the

notation ai (1 ≤ i ≤ 6) is an attribute in the relation; it indicates
the ith attribute. In this relation, note that the notation tj (1 ≤ j
≤ 8) of the relation is used this to indicate the jth tuple. In this
relation, the DB owner considers that the password attribute
values are not outsourced data, and the salary attribute values
are sensitive. Moreover, all values in department attribute that
meet Department = "Marketing" are sensitive. In such a case,
and after applying the Hybrid partitioning, the metadata are
generated as shown in Table 2. Metadata includes four
attributes as described. It is worth mentioning that IDE, IDP,
and IDP_E attributes are unique identifiers of 50 characters.

TABLE 2 METADATA TABLE FOR RELATION R

Tuple

No

Tuple

ID

IDE IDP IDP_E

t1 1 848CC055...A 43AACEF7...P F0D9C43C...R

t2 2 DF8BC1A8...C 2CF79E45...O 485F36AB...J

t3 3 03E47A30...E 1AC4E44F...Y CAF5A05C...Q

t4 4 5E1A2955...A 990D4BF7...I 17EDA383...8

t5 5 EF036F92...F BA921C43...G F1859688...Y

t6 6 CB1CCD4D...K 4276A931...K A03E7373...D

t7 7 116DB16E...H 10E7C843...U 14C0E88B...X

t8 8 F2220062...P 892285C5...D 05B4FA48...Z

The Employee relation may be stored on the cloud as:

1) Relation 1, which contains all sensitive values in
Salary's attribute and stores values in encrypted form, as
shown in TABLE 3.

TABLE 3 RELATION 1

Attributes No IDE a4

Tuple No ID Salary

t1 848CC055...A E(1000)

t2 DF8BC1A8...C E(900)

t3 03E47A30...E E(1200)

t4 5E1A2955...A E(1500)

t5 EF036F92...F E(1450)

t6 CB1CCD4D...K E(1050)

t7 116DB16E...H E(1460)

t8 F2220062...P E(980)

2) Relation 2, which contains all non-sensitive values in all
attributes marked as ,non-sensitive attributes and store
values in plaintext form, as shown in Table 4.

TABLE 4 RELATION 2

Attributes No IDP a2 a5

Tuple No ID Name Location

t1 43AACEF7...P Ali Jerusalem

t2 2CF79E45...O Intisar Jerusalem

t3 1AC4E44F...Y Mahmoud Hebron

t4 990D4BF7...I Susan Ramallah

t5 BA921C43...G Sultan Bethlehem

t6 4276A931...K Kazem Nablus

t7 10E7C843...U Alaa Bethlehem

t8 892285C5...D Ahmad Nablus

3) Relation 3, which contains all tuples that the attributes

include sensitive values. In the example, all sensitive
values in Department attribute, where Department =
Marketing", are stored encrypted as shown in Table 5.

TABLE 5 RELATION 3

Attributes No IDP_E a3

Tuple No ID Department

t2 CAF5A05C...Q E(Marketing)

t4 17EDA383...8 E(Marketing)

t5 A03E7373...D E(Marketing)

t7 05B4FA48...Z E(Marketing)

4) Relation 4, which contains all sensitive values in Name

and Location, where Department= "Marketing" and
saved as plaintext as shown in Table 6.

TABLE 6 RELATION 4

Attributes No IDP_E a3

Tuple No ID Name

t1 F0D9C43C...R IT

t3 485F36AB...J IT

t6 F1859688...Y HR

t8 14C0E88B...X HR

Hence, the sensitive data stored in Relation 1 and Relation

3 are encrypted before being outsourced to an untrusted
database. In contrast, Relation 2 and Relation 4, including only
non-sensitive data, are outsourced in plaintext form. The
partitioning is executed on the tuple level, which means every
time a tuple insertion, modification, or deletion operation
occurred, a trigger is fired and run the partitioning code as
presented in Algorithm 1.

Algorithm 1 Insert Tuple

 Inputs: t: inserted/updated tuple.

Variable: Metadata: table to store metadata about t. a[] list of
attributes. v[] sensitive values list for each attributes. IDE, IDP,
IDP_E

1 Function Insert Tuple (t) begin

2
a[]←Relation attributes v[]←Relation attributes Sensitive
Values

3 IDE ← Generate Unique Identifier key
4 tE ← IDE

5
tE ← Encrypt all values store in attributes marked as
sensitive in t

6 Send tE to RE in cloud
7 IDp ← Generate Unique Identifier key
8 tP ← IDP

9
tP ← all values store in attributes marked as non-sensitive

in t
10 Send tP to RP in cloud
11 IDTemp ← Generate Unique Identifier key
12 If the rest of the values in t marked as sensitive values

13 tE_P ← IDTemp
14 tE_P ← Encrypt all values marked as sensitive in t
15 Send tE_P to RE_P in the cloud
16 Else
17 tP_E ←IDTemp
18 TP_E ← all values marked as non-sensitive in t
19 Send tP_E to RP_E in the cloud

20 Metadata ← t.ID, IDP, IDE,IDTemp
21 Return

To continue with example 1, consider a query σ: SELECT
Name, Department from Employee where Location =
N’Jerusalem’. In the trusted DB, the query σ Location =

N‘Jerusalem(R) is executed on relation R, then as shown in
Algorithm 2, the results of the query are joined with metadata
relation, after that, they produce four queries that are sent and
executed in Untrusted DB:

• σIDe in (query results)(RE) executes on RE relation.

• σIDp in (query results)(RP) executes on RP Relation.

• σ IDp_e in (query results)(RP_E) executes on RP_E Relation.

• And the last query σ IDe_p in (query results)(RE_P) executes on
RE_P Relation.

The queries’ results are sent back to trusted DB, and SQL
operation is performed as shown in 1. Algorithm 2 shows how
the query request process works. It is worth mentioning that
the partitioning computation occurs during the insertion of
tuples into R relation. That saves time instead of doing the
partitioning of the whole data at once.

Algorithm 2 Query Request

Inputs: SQLstr: Select query statement, Metadata: table to store
metadata about tuples

 Outputs: Results: Query results
Variable: T_R: temporary data table to store metadata about SQL

results, Result1 temporary relation

1 Function run_SQL (SQLstr) begin
2 T_R ← Execute(SQLstr)⋈ Metadata
3

Result1 ←Execute_on_Cloud(RE_P, Domain(T_R.IDE_P))⋃

Execute_on_Cloud(RP_E,
Domain(T_R.IDP_E))

4

Result1 ← Result1 ⋈ Execute_on_Cloud(RP,
Domain(T_R.IDP))

5

Result1 ← Result1 ⋈
Execute_on_Cloud(RE,Domain(T_R.IDE))

6

Query results← retrieve tuple from Result1 match the original
where clause

7 Return Query results

B. Query Binning Technique

QB involves two steps: first, the creation of the query bins.
The second step consists of rewriting the query based on the
binning. Could be say that the QB in the base case is a one-to-
one relationship between one sensitive tuple and one non-
sensitive tuple. Accordingly, this means that both tuples
cannot be sensitive or non-sensitive. Before describing QB,
present the concept of approximate square factors of a number
used to create the bins is needed. As defined in [3], “two
numbers, say x and y, are approximately square factors of
number n, where n > 0, if x × y = n, and x and y are equal or
close to each other. So that the difference between x and y is
less than the difference between any two factors, say x′ and y′,
of n such that x′ × y′ = n”. In this research, the QB uses tuples
stored in partitions divided horizontally to create the binning.
Continuing with the example in section A, to calculate the
approximately square factors, let us consider that n = number
of non-sensitive tuple = 4 tuples, according to the definition of

Approximately square factors, x = 2 and y = 2, this satisfies
the definition of the Approximately square factors. Now two
sensitive bins and two non-sensitive bins are created. After
creating the bins, filling them with tuples using the algorithm
described in [3]. That links between sensitive tuples and non-
sensitive tuples. The results of this operation are shown in Fig.
1. In the example shown below, the location attribute in
WHERE clause are used and the same data in example1 (Table
1), and the tuples retrieved as follows:

• Retrieve tuples corresponding to employees who work in
Location =’Jerusalem’.

• Retrieve tuples corresponding to employees who work in
Location =’Hebron’,

• And retrieve tuples corresponding to employees who
work in Location =’Bethlehem’.

Fig. 1 QB for four sensitive and four non-sensitive tuples.

Adversarial view
Assume that the adversary has access to Untrusted DB and

to the transactions log file, which means that when answering
a query, the adversary knows the retrieved encrypted tuples
and the complete information of the retrieved non-sensitive
tuples. This information is known to the adversary as the
adversarial view, shown in Table 7. This table contains the
retrieved tuples without applying the QB.

TABLE 7 QUERIES RESULTS, WITHOUT APPLY QB

Query
value

Returned tuples/Adversarial view

Relation 1 Relation 2 Relation 3 Relation 4

Jerusalem E(t1), E(t2) t2 E(t2) t1

Hebron E(t3) t3 Null t3

Bethlehem E(t5), E(t7) t5 , t7 E(t5), E(t7) null

To apply the QB bins technique, need to modify the query

request performed, so Algorithm 3 shows how to query
request work with QB. To understand the QB effects on the
query request process, the adversarial view will be changed
after Algorithm 3 is applied;

Algorithm 3 Query Request with QB

Inputs: SQLstr: Select query statement, Metadata: table to store
metadata about tuples

 Outputs: Results: Query results

Variable:T_R_B: temporary data table with Bins, T_R_B: temporary
data table without Bins, T_R: temporary data table to
store metadata about SQL results, Result1 temporary
relation

1 Function run_SQL (SQLstr) begin
2 T_R_W ← Execute(SQLstr)
 T_R_B ← Retrieve_Bins(T_R_W)
 T_R ←T_R_B ⋈ Metadata
3

Result1 ←Execute_on_Cloud(RE_P, Domain(T_R.IDE_P))⋃

Execute_on_Cloud(RP_E,
Domain(T_R.IDP_E))

4

Result1 ← Result1 ⋈ Execute_on_Cloud(RP,
Domain(T_R.IDP))

5

Result1 ← Result1 ⋈ Execute_on_Cloud (RE,
Domain(T_R.IDE))

6

Query results← retrieve tuple from Result1 match the original
where clause

7 Return Query results

Table 8 shows the query request result for an adversary
using the QB technique. In this example, will use the same
conditions in the previous example after applying the QB
technique.

TABLE 8 QUERY RESULT USING QB

Query
value

Returned tuples/Adversarial view

Relation 1 Relation 2 Relation 3 Relation 4

Jerusalem E(t1),E(t2),
E(t5), E(t6)

t1,t2,t5,t6 E(t2), E(t5

)
t1,t6

Hebron E(t2),E(t3),
E(t5), E(t8)

t2, t3,t5,t8 E(t2), E(t5

)
t3,t8

Bethlehem E(t2),E(t4),
E(t5), E(t7),
E(t3), E(t8)

t2, t3, t4, t5,

t7, t8
E(t2),E(t4),
E(t5), E(t7

)

t3, t8

C. Data Partitioning Security

Using a non-deterministic encryption for sensitive data
achieves the property of cipher-text indistinguishability (i.e.,
an adversary cannot distinguish between two cipher-texts) [3].
Hence, the same plaintext values have two different cipher-
text values. Furthermore, the non-linkability will be achieved
in two positions, first in the public database by using ID for
each tuple stored in each divided relation different from the
original ID in the private database. Second, in the query
request process, this is achieved by using query binning (QB).
Fig. 2 illustrates the security context.

Fig. 2 Map mind

Adversarial view: the authors want to explain the
adversarial view that assumes that the adversary has full
access to Untrusted DB and the transactions log file. This
means that when answering a query, the adversary can retrieve
the all-Select SQL statements, and re-execute these statements
and retrieve the encrypted tuples and the complete information
of the retrieved non-sensitive tuples. The adversarial view lets
the adversary knows this information. Besides, the adversary
has no access to Trusted DB.

Based on the adversarial view, proof of data security is
needed. For that, should be first explain the notion of
partitioned data security used in PANDA [3] that is established
when a partitioned computation over sensitive and non-
sensitive data does not leak any sensitive information. Note
that an adversary may infer sensitive information using the
adversarial view that was created during query processing,
knowledge of frequency counts, and workload characteristics.
In PANDA, they begin by clarifying the concepts of
associated values, associated tuples, and the relationship
between counts of sensitive values.

The definitions used are the same notation used in [3] with
additional notation added to prevent data leakage after hybrid
partitioning:

1) t1, t2. . . ,tm are tuples of a sensitive relation, say RE_P.
Thus, the relation RE_P stores the encrypted tuples
E(t1), E(t2), . . . , E(tm).

2) s1, s2, . . . , sm’ are values of an attribute, say A, that
appears in one of the sensitive tuples of RE_P . Note
that m′ ≤ m, since a number of tuples may have an

identical value. Additionally, si ∈ Domain(A),i = 1,
2, . . . ,m′.

3) |s (si)|, refer to the number of sensitive tuples with si
as the value for attribute A. They further define |s

(v)| = 0, ∀v ∈ Domain(A), v < s1, s2, . . . , sm′ .
4) t1, t2, . . . , tn are tuples of a non-sensitive relation,

say RP_E.
5) ns1, ns2, . . . , nsn′ are values of the attribute A that

appears in one of the non-sensitive tuples of RP_E. In
equivalence with the case where the relation is

sensitive, n′ ≤ n, and nsi ∈ Domain(A), i = 1, 2, . . .
,n.

Associated values. Let us say ei = E(ti)[A] is the encrypted
demonstration of an attribute value of A in a sensitive tuple of
the relation RE_P, and nsj is a value of the attribute A for some
tuple of the relation RP_E. They said that ei is associated with
nsj (denoted by ��) if the plaintext value of ei is identical to the
value nsj. Because hybrid data partitioning used, this
association applies only to tuples divided horizontally.

Associated tuples. Let us say ti is a sensitive tuple of the
relation RE_P (i.e., RE_P stores encrypted representation of ti)
and tj is a non-sensitive tuple of the relation RP_E. the authors
state that ti is associated with tj (for an attribute, say A) if the
value of the attribute A in ti is associated with the value of the
attribute A in tj (i.e., ti[A] �� tj[A]). Note that this is the same
as stating that the two values of attribute A are equal for both
tuples.

Relationship between counts of sensitive values. Let vi
and vj be two different values in Domain(A). They denote the
relationship between the counts of sensitive tuples with these
A values (i.e., |s (vi)| (or |s (vj)|)) by vi ~� vj .

Note that ~� can be one of <, =, or > relationships. Such as,
in example, the t2 ~� t4 corresponds to =, since both values have
exactly one sensitive tuple in relation divided horizontally
RE_P (see Table 5).

Given the above definitions, the authors formally state the
security requirements needed for selecting SQL queries over
sensitive (encrypted values) and non-sensitive (plaintext
values) data so that it does not leak any information. Before
that, it is worthy of mentioning the security definition in the
context. The inference attack in partitioned computing can be
considered under the known-plaintext attack (KPA) category.
The adversary could know some plaintext data hidden in a set
of cipher-text. The adversary's goal in KPA is to designate
cipher-text data that are related to a given plaintext, i.e., define
a mapping between cipher-text and the corresponding
plaintext data representing the same value. In the adversarial
view, non-sensitive values are visible to the adversary in
plaintext. However, the attacks are different since, unlike the
case of KPA, in the proposed setup, the cipher-text data might
not contain any data value that is the same as some non-
sensitive data visible to the adversary in plaintext. That means
by assuming the useing of the non-deterministic encryption to
encrypt the sensitive data, the adversary cannot launch the
chosen plaintext attack (CPA) and the chosen-ciphertext

attack (CCA). It is not subject to the cipher-text only attack
(COA).

D. Encryption Technique

In the proposed solution, the authors create an Microsoft
.NET Framework common language runtime (CLR) functions
to encrypt and decrypt data. CLR function is created as a
database object inside an instance of SQL Server as a
programmed assembly. CLR function is built using Microsoft
visual studio 2015 with C# language, and the encryption
implemented using the AES encryption technique. Algorithm
4 shows how the encryption is applied.

Algorithm 4 Encryption

 Inputs: Tuple_ID, Attributes_Value

Outputs: Cipher-Text
Variable: Encryption_Key

1 Function Encryption (Tuple_ID, Attributes_Value) begin
2 Encryption_Key ← GenerqateKey (Tuple_ID)
3

Cipher-Text ← AES_Encryption (Attributes_Value,

Encryption_Key)
4 Return Cipher-Text

III. IMPLEMENTATION, RESULTS, AND DISCUSSION

This Section presents the implementation's practical
approach by applying Hybrid Partitioning and QB to the
trusted and untrusted Databases, respectively.

To demonstrate the proposed approach effectiveness, the
proposed approach is tested against inference attacks. The
inference attacks are applied with and without adopting the
proposed approach. The results are discussed at the end of this
Section.

The rest of this Section is organized as follows; Section A
introduces the tools used for implementing the proposed
approach. Section B describes the steps of implementing the
proposed approach. Finally, section C presents Experiment
Results and Discussion.

A. Experimental Tools

This section introduces the tools used to implement and
test the proposed solution; the authors used Microsoft SQL
server 2014 installed on Windows Server 2012 R2 to store the
database and build the proposed solution. Besides, they used a
stored procedure as a tool to log the performance of query
requests. Besides, they used Microsoft Visual studio 2015 to
write SQL assembly files for encryption and decryption of
data.

The experiment environment specification used to
evaluate the proposed approach: includes Processor Intel(R)
Xeon(R) CPU E5-2620 v2 @ 2.10GHz (2 CPUs), Installed
Memory 32 GB RAM, Hard Disk 512 GB, Microsoft SQL
Server 2014, and Windows Server 2012 R2 Standard 64-bit.

B. Implementation of Proposed Approach

This section explains the practical approach and the
implementation of the Hybrid partitioning technique used. Fig.
3 shows a general overview of the proposed approach
architecture where the two database servers host the trusted
and untrusted databases, respectively. The first database server
is connected to the internet and private network and hosts the
trusted database. The second database server is connected to
the internet and is hosting the untrusted database. The Client's
devices are connected to the private network.

Fig. 3 General architecture of the proposed approach

The rest of this section describes how the proposed
approach is implemented.

1) Data Partitioning

A stored procedure in SQL server is built to implement the
Hybrid data partitioning.

2) Data Encryption

Data encryption is implemented by writing two functions
in C# language using Microsoft Visual Studio 2015 and
Advanced Encryption Standard (AES).

C. Experiment Results and Discussion

To evaluate the proposed approach, experiments are
conducted with a different number of tuples retrieved from the
database, starting from 2000 tuples, and then the number is
increased by 2000 until it reaches 20,000 tuples, and in each
experiment, the number of attributes that contain sensitive
values is gradually increased from 1 to 10. Besides, these
attributes contain 50% of the sensitive values only. The
following subsections describe the results of the trials in more
detail.

1) Security Proof and Experiments

In [3], the authors proved that QB is secure and satisfies
the definition of partitioned data security and proved that all
the sensitive bins are associated with all the non-sensitive by
proving that equations mentioned in [3]. have satisfied the data
security properties (non-linkability and indistinguishability).
Furthermore, after using Hybrid partitioning, a new security
gap is raised: the adversary can learn and link the encrypted
values (sensitive attributes) to values that are not encrypted
(non-sensitive attributes) in the same tuple. This gap does not
satisfy new equation in [1]. However, using different keys in
the public database for each tuple ensures that equation in [1]
is satisfied. It is worth mentioning that the adversary cannot
learn anything from the encrypted data since the DB owner is
the only party who knows the keys and the Metadata. The
Metadata relation is hidden from the adversary [1].

All experiments show that the result of equation 1 to
retrieve the original relation from divided relations on public
database has 0 tuples all the time. This satisfies equation in
[1]and therefore satisfies the data security property (non-
linkability).

The first experiment that is being discussed is a query to
retrieve 2000 tuples. Table 9 shows the experimental results
of the comparison between the proposed approach and
PANDA. Experiment results of query execution performance
to retrieve 2000 tuple assume %50 of values in sensitive
attributes are sensitive.

TABLE 9 QUERY EXECUTION EXPERIMENT RESULTS FOR 2000 TUPLES, 50%

OF VALUES ARE SENSITIVE IN EACH ATTRIBUTE

of Sensitive

attributes

Technique
Enhancement

percentage
Proposed

approach
PANDA

1 2.89 9.08 68%

2 4.00 9.08 56%

3 4.97 9.08 45%

4 5.54 9.08 39%

5 6.10 9.08 33%

6 7.09 9.08 22%

7 7.52 9.08 17%

8 8.33 9.08 8%

9 9.49 9.08 ~0%

10 9.88 9.08 ~0%

Equation 2 shows how the enhancement percentage (EP)

of query execution times is calculated.

�� = �1 �
��� ������ ℎ "#$%

�&'(& "#$%
�) 100% (2)

Fig. 4 illustrates the performance of query execution time
for ten different partitioned relations according to the number
of sensitive attributes in the original relation, 2000 tuples and
50% of tuples contain sensitive values for the proposed
approach and PANDA. Unites are measured in seconds.

Fig. 4 Query execution experiment results for 2000 tuples, 50% values are
sensitive in each attribute.

Overall, the PANDA technique takes more query
execution time than the proposed approach in the given
attributes range. Both PANDA and the proposed approach
spend most of their query execution times when all attributes
contain sensitive values.

Finally, the rest of experiments retrieved 4000, 6000,
8000, 10000, 12000, 14000, 16000, 18000, 20,000 tuples. For
each experiment, a different number of tuples and ten different
partitioned relations according to the original relation's
number of sensitive attributes. The sensitive attributes have
50% of tuples with sensitive PANDA values, and the proposed
approach, Unites, is measured in seconds.

Overall, the PANDA technique takes more query
execution time than the proposed approach in each
experiment's attributes range. Both PANDA and the proposed
approach spend most of their query execution times in each
experiment when sensitive attributes are nine. Furthermore,
the most significant difference in performance between the
two techniques is when the number of sensitive attributes is

one. On the other hand, the proposed approach increases
slightly on the number of attributes 10.

TABLE 10 AVERAGE OF PERFORMANCE ENHANCEMENT OF PROPOSED

APPROACH

of Sensitive

Attributes

Enhancement

Percentage

1 82

2 72

3 62

4 54

5 44

6 35

7 27

8 16

9 6

10 ~0

In General, according to Table 10, there is an enhancement
in the performance of query execution time. It is worth
mentioning that most of the relations do not fully contain
sensitive values.

IV. CONCLUSION

In this paper, a Hybrid approach for data partitioning
aimed to secure sensitive data when outsourcing data is
presented. The proposed approach is essential to secure the
sensitive data that is outsourced to a public database. The
proposed approach has the main advantage of improving
query performance and securing sensitive data against
inference attacks. The proposed approach has been evaluated
using a set of experiments of partitioning data in an untrusted
database. Besides, comparisons of the results with the
PANDA technique are presented. The results of the proposed
approach were satisfactory in which the properties of defining
the data security satisfy the non-linkability and
indistinguishable. Furthermore, the proposed approach results
are satisfactory, where the performance of query execution is
better than the results of PANDA performance.

References

[1] S. K. Badran, N. Arman and M. Farajallah, "Towards a
Hybrid Data Partitioning Technique for Secure Data
Outsourcing," in The International Arab Conference on

Information Technology ACIT, Cairo, 2020.

[2] S. Mehrotra, S. Sharma, J. D. Ullman and A. Mishra,
"Partitioned Data Security on Outsourced Sensitive and
Non-Sensitive Data," 2019 IEEE 35th International

Conference on Data Engineering (ICDE), pp. 650-661,
2019.

[3] S. MEHROTRA, S. SHARMA, J. D. ULLMAN, D.
GHOSH and P. GUPTA, "PANDA: Partitioned Data
Security on Outsourced Sensitive and Non-sensitive
Data," ACM Transactions on Management Information

Systems, 05 2020.

[4] M. A. Abdelraheem, T. Andersson, C. Gehrmann and
C. Glackin, "Practical Attacks on Relational Databases
Protected via Searchable Encryption," International

Conference on Information Security, pp. 171-191, 9
September 2018.

[5] S. Mehrotra, Y. O. Kerim and S. Shantanu, "Exploiting
Data Sensitivity on Partitioned Data," From Database

to Cyber Security, pp. 274-299, 2018.

