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We consider a class of molecules with C2 symmetry axis and three segments A, B, C which can
rotate independently about that axis, corresponding to two independent torsions (B vs. A and C
vs. B). The torsions may be feasible either in the electronic ground or in the excited states. We
determine the corresponding molecular symmetry group, i.e. the Abelian group GA

16 representing
16 feasible permutations and permutation-inversions, and its permutation subgroup with eight
permutations, together with their properties, e.g. their character tables and the corresponding 16 or
8 irreducible representations (IREPs), respectively. Accordingly, the molecules which belong to this
class have at most eight different nuclear spin isomers (NSIs). A subset of them “survives” at low
temperature, T → 0. The corresponding NSI selective wavefunctions contain products of torsional
times nuclear wavefunctions with specific IREPs. The NSIs are characterized by these IREPs. As an
example, we determine the molecular symmetry adapted torsional wavefunctions of the model 2-[4-
(cyclopenta-2,4-dien-1-ylidene)cyclohexa-2,5-dien-1-ylidene]-2H-1,3-dioxole, abbreviated as CCD.
In order to demonstrate the principles of the derivations, we employ a simple model, with the
C2 symmetry axis oriented along the laboratory Z-axis, and with all degrees of freedom frozen
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in the equilibrium structure of CCD, except the two torsional degrees of freedom. The resulting
torsional wavefunctions represent different NSIs of CCD, ready for subsequent applications, e.g.
for demonstrations of NSI selective dynamics.

1. Introduction
This paper aims at extending previous quantum mechanical studies of NSIs, from estab-
lished systems to a new class of molecules. This task will call for the appropriate, new
molecular symmetry group, with applications to nuclear spin isomer selective molecu-
lar properties. The following introduction guides the reader to the relevant topics, from
important historical aspects that serve as a reference, up to the state of the art.

The concept of NSIs was introduced independently by Heisenberg [1] and
Hund [2]. As an example, they considered molecular hydrogen and postulated that H2

should exist in the form of two NSIs, para-hydrogen (p-H2) and ortho-hydrogen (o-H2).
The corresponding nuclear spin wavefunctions are ungerade and gerade with respect
to permutations of the two protons, respectively. These nuclear spin wavefunctions are
multiplied by rotational wavefunctions with gerade (even rotational quantum numbers
J) and ungerade (odd values of J) parities, respectively. This way, Heisenberg and
Hund warranted antisymmetry of the total wavefunction with respect to the exchange
of the two fermionic nuclei.

The ansatz of Heisenberg and Hund implies enormous consequences: Essentially,
different NSIs have different properties, hence they appear as different species, at least
on time scales shorter than nuclear spin conversion. For example, the rotational ener-
gies of o-H2 and p-H2 are different, thus they have different temperature dependencies
of their concentrations or populations, of the internal energies and, as a consequence, of
the heat capacities [3,4]. The experimental verification of this prediction by Bonhoeffer
and Harteck [5] marks one of the great successes of quantum theory. At the same time,
the quantum theory of Heisenberg and Hund could explain the anomalous specific heat
capacity of normal hydrogen (n-H2), first measured by Eucken [6].

Another success of their theory came from extended applications to various
homonuclear diatomic molecules, explaining the intensity alternations in the rotational
spectra, which had first been reported by Mecke [7]. Subsequently, nuclear spin selec-
tive spectra were predicted and analyzed for small, rigid polyatomic molecules such as
CH4, C2H4, H2CO, H2O and various isotopomers, and finally also for non-rigid ones,
that is for molecules which perform large amplitude motions such as inversion of NH3;
for a recent survey, see Ref. [8].

On the theoretical side, the historic success of Heisenberg, Hund, Bonhoeffer and
Harteck supported the symmetrization postulate for identical and therefore indistin-
guishable particles [8], one of the keys to successful quantum evaluations of chemical
properties [3,4].

Today, NSI selectivity is an important topic in broad areas of chemistry and physics,
including not only the previous phenomena but also many new ones, e.g. selective reac-
tion rates [9], boiling or melting points [8,10], heats of vaporization [8,10], or nuclear
magnetic resonance (NMR) spectra [11–28].

As a consequence, selective NSIs may allow new, specific applications. For ex-
ample, NMR signals for molecules which have been prepared by means of pure p-H2
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may be enhanced by four to five orders of magnitude, compared to n-H2 – this ef-
fect allowed the development of the method with acronym PASADENA [29,30], which
was later also called “para-hydrogen induced polarization” (PHIP) [31]. This method
allowed the detection of reaction intermediates and the verification of reaction mech-
anisms, see Refs. [11,23,32,33] and the reviews [34–38], and is a powerful tool for
analysis of catalysis [23], in fact even regio- or enantio-selective catalysis [37], and
for the characterization of organometallic dihydrides [12–16,39]. PHIP may also be
used as a test of reversible hydrogenation [40,41], which, in turn, may support imaging
for purposes of diagnoses in medicine [42]. Other applications are based on deter-
minations of the temperature-dependent o-H2/p-H2 nuclear spin conversion rates [10,
15,16,19,20,28]; the resulting ratios of the densities of the NSIs may then serve as
a scale for the nuclear spin temperatures, even in remote objects such as Halley’s
comet [19,43].

All the fundamental properties, analyses and applications of NSIs which have been
listed so far are concerned with time-independent or quasi-static properties (that means
that they are robust on the relevant time scale for observation), e.g. thermodynamic
functions, spectra, nuclear spin conversion rates, and rate coefficients of chemical re-
actions. The latter ones imply nuclear spin selective time dependent rate processes
with new applications, e.g. analyses of specific reaction pathways, even in the time do-
main [25], e.g. keto-enol tautomerism [26]. Those rate processes enable NSI selective
chemical kinetics. They proceed incoherently, on time scales which are much longer, by
orders of magnitude, than coherent processes such as molecular rotations, vibrations, or
the formation of new chemical bonds during chemical reactions.

The most recent general breakthrough in the field is the discovery of nuclear spin
selective coherent quantum dynamics, again starting from applications to diatomic
molecules [44–46] via rather small, rigid polyatomic molecules [47–49] to non-rigid
ones [49–55]. The results are spectacular: Different NSIs of diatomic or rigid poly-
atomic molecules show different transient alignment after excitation with moderate
intense femtosecond laser pulses, opening new avenues to laser separations of nu-
clear spin isomers [44–49,55]. Moreover, NSIs of non-rigid polyatomic molecules may
have different periods of torsion in electronically excited states [50]; they show differ-
ent radiation-less decay through conical intersections after photo-excitation [51–54];
and they could be used to realize NSI selective molecular rotors [46,49,55]. Previous
quantum dynamical investigations of torsional motions suggest various additional ap-
plications of NSI selectivity, see e.g. Refs. [56–73].

We are now ready to specify the goal of the present paper: the extension of previ-
ous quantum mechanical investigations of NSIs, from non-rigid polyatomic molecules
with a single torsional degree of freedom (dof) to molecules with two torsional dof.
At the same time, the present work should lay the foundation for an extension of
earlier quantum dynamics simulations of nuclear spin selective torsions after photo-
excitation [50–54] to systems with two torsional dof. Ultimately, we aim at NSI
selective control of these molecular torsions. This goal is motivated by previous demon-
strations of quantum control of molecular torsions for various purposes, e.g. energy
transfer [77]; enhancement of transient absorption spectroscopy [73]; the ignition of
molecular motors [55,64,78]; and the preparation of pure enantiomers out of racemic
mixtures [59,61,63,65,73,79].
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Specifically, we shall investigate NSI selectivity of molecules which are character-
ized by two criteria:

(i) Their structures at the minima of the potential energy surface of the electronic
ground state (“minimum structures”) have a C2 symmetry axis.

(ii) The molecules have three non-identical “torsional” segments which can rotate inde-
pendently about that C2-axis, possibly in the electronic ground state or in electronic
excited states. Those three rotations correspond to two torsional degrees of freedom
for the torsions of two neighboring segments with respect to each other, plus the
overall rotation of the entire molecule about the C2-axis.

Rigorous evaluations of the quantum dynamics of molecules which belong to this class,
in full dimensionality (full-d) are all technically too demanding. To simplify this task,
we will assume that the C2 symmetry axis has been pre-oriented, e.g. parallel to the
laboratory fixed Z-axis. Pioneering experimental [80–82] and theoretical [47,83–91]
work suggests that this scenario may be prepared by means of laser pulses; for reviews,
see Refs. [92,93]. In fact, the first successful experimental and theoretical demonstra-
tions of sequential molecular orientation and ignition of molecular torsions have just
been published in Refs. [69] and [55,72,73,94], respectively, culminating in the joint
experimental and theoretical work [70].

Furthermore, this exploratory investigation shall employ a simple two-dimensional
(2d) model, focusing on the two torsional degrees of freedom. Corresponding low-
dimensional (low-d) quantum dynamics simulations of torsional motions in oriented
molecules with just two torsional segments have already been presented in Refs. [49–
73], for example.

The approach will be demonstrated for a model system, specifically the quin-
odimethane derivative 2-[4-(cyclopenta-2,4-dien-1-ylidene)cyclohexa-2,5-dien-1-
ylidene]-2H-1,3-dioxole, abbreviated as CCD. One of several equivalent minimum
structures (see below) is shown in Fig. 1. For simplicity, the carbon and oxygen nu-
clei are those of the isotopes 12C and 16O, i.e. the NSIs of CCD depend exclusively on
the spins of ten protons. The figure legend contains important information about the
nomenclature for the three torsional segments labeled A, B, C. Rotations about 180◦ of
these segments about the C2 symmetry axis interchange equivalent nuclei of fragments
(1) and (2), (3) and (4) and (5) and (6), respectively. Another set labeled (0) contains
the nuclei on the C2 symmetry axis.

Additional molecules belonging to the present types of systems are shown in Fig. 2.
System (I), 1,1-difluoro-quinodimethane, is another representative of the important
quinodimethane derivates – this group of molecules has attracted much attention be-
cause of their diradical properties [74]. Systems (II)–(V) are important representatives
of molecules exhibiting twist-induced charge transfer (TICT), giving rise to dual fluo-
rescence [75]. System (VI) is a promising building block for molecular rotors driven by
torsions about the molecular C2-axis [76].

Our investigations of the NSI selectivity of CCD, as representative of the present
class of molecules, will proceed in two steps: First, we shall identify the NSIs of CCD in
the electronic ground state. At this stage, we shall show that – in the limit of the present
2d model – the NSIs may be identified by different torsional states. This step recalls
the pioneering work of Heisenberg [1] and Hund [2], who had shown that the NSIs of
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Fig. 1. (Top) Side view of the structure of the quinodimethane derivative 2-[4-(cyclopenta-2,4-dien-1-
ylidene)cyclohexa-2,5-dien-1-ylidene]-2H-1,3-dioxole (CCD) at one of the four equivalent minima of the
potential energy surface for the electronic ground state (“minimum structure”). The local symmetry is C2v,
with the C2 symmetry axis oriented along the laboratory-fixed Z-axis, and with the planar molecule in the
X/Z plane. The molecule has three torsional segments labeled (A), (B) and (C) with equivalent fragments
(1) and (2), (3) and (4), and (5) and (6), respectively. The set of nuclei which are located on the C2 sym-
metry axis is called fragment (0). The nuclei are labeled by double indices ik where i denotes the fragment,
and k specifies the nucleus within the fragment, e.g. fragments (1) and (2) have hydrogen (light blue), car-
bon (orange) and oxygen (red) nuclei labeled 11, 12, 13 and 21, 22, 23, with the same labels k = 1, 2, 3
for equivalent nuclei in these fragments. (Bottom) top view of CCD after intramolecular rotations of the
segments (A), (B), (C) by angles ΦA, ΦB, ΦC, respectively, about the symmetry axis C2 (schematic). Also
shown are the corresponding torsional angles Φ1 = ΦB −ΦA and Φ2 = ΦC −ΦB describing torsions of the
neighboring segments (A) vs. (B) and (B) vs. (C), respectively, as well as the angle of overall rotation, Φ.
Rotations of the segments (A), (B) or (C) by ΦA = 180◦ degrees, ΦB = 180◦ or ΦC = 180◦ about the C2

symmetry axis exchange the equivalent fragments (1) and (2), (3) and (4) or (5) and (6), respectively. Nu-
clei with the same labels k in fragments (1) and (2), (3) and (4), or (5) and (6) are exchanged upon these
rotations, respectively.

H2 are associated with different rotational states – this analogy is valid irrespective of
the fact that Heisenberg and Hund had to deal with the exchange of just two protons,
whereas the present torsions of CCD involve exchanges of ten protons. Thus for H2,
there are 22 = 4 nuclear spin wavefunctions which can be separated into the familiar
two sets with 1 and 3 members which can be assigned to p-H2 and to o-H2, respectively.
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Fig. 2. Molecules with C2 symmetry axis and three segments that can rotate about that axis, see also the
criteria (i),(ii): (I) 1,1-difluoro-quinodimethane, (II) 1-pyrrolyl-4-nitro-benzene, (III) 1-pyrrolyl-4-phenyl-
benzene, (IV) 1-pyrrolyl-4-(per-fluoro-phenyl)-benzene, (V) para-nitro-biphenyl, (VI) para-phenyl-tolane.
The color code is: light blue for hydrogen, orange for carbon, yellow for fluorine, dark blue for nitrogen,
red for oxygen.

In contrast, CCD supports 210 = 1024 nuclear spin functions – one of the challenges of
this paper is to determine how these functions should be separated into corresponding
sets for NSIs, and even more fundamentally to discover the number and the characteris-
tics of those NSIs. Another problem that we shall solve is suggested by the well-known
fact that p-H2 is the only NSI which “survives” as the temperature approaches the limit
T → 0 [3,4]. By analogy, we shall determine the subset of NSIs of CCD which “sur-
vive” as T → 0. Obviously, these tasks are much more demanding for oriented CCD
than for H2, calling for new tools (see the next Paragraph). Suffice it here to say that the
present torsional wavefunctions will be evaluated for the potential energy surface (PES)
of the model CCD in the electronic ground state; the PES in turn will be calculated by
means of ab initio quantum chemistry methods. This first step is the topic of the present
paper. It is carried out, however, with the second step already in mind, i.e. to demon-
strate that electronic excitations of different NSIs may induce different time evolutions
of the torsional wavepacket dynamics in electronic excited states. In fact, this effect will
be demonstrated even for the case where there is no torsional dynamics in the electronic
ground state, due to an insuperable barrier of the PES. The general scope of that sec-
ond step is to show that selective laser excitations of different NSIs may yield selective
torsional dynamics and, ultimately, selective photochemistry. This will be the topic of
a sequel paper.

In order to determine the NSI selective torsional wavefunctions of the present class
of molecules, and to classify their symmetries, we shall employ a symmetry concept
which is based on those permutations of identical nuclei which may be achieved by
feasible torsions. The ubiquitous molecular point groups are not sufficient for this
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task: They are tailored to “local” molecular properties which are located at, or close
to stationary points on the potential energy surface, e.g. they provide the symmetry
properties of normal modes, i.e. vibrations with small amplitudes about the minimum
structures [95]. In contrast, the present class of molecules allows for large amplitude
motions after photo-excitation, i.e. torsions which cover domains on the potential en-
ergy surface even far away from the “local” minimum structures. As it was shown
by Longuet-Higgins [96] on the basis of preliminary works of Hougen [97,98] it
is, however, possible to define a group which can be used for the classification of
the molecular states for molecules allowing for internal large amplitude motions: the
molecular symmetry (MS) group [99]. It contains all the so-called “feasible” permu-
tations (P) and permutation-inversions (P)∗ of identical nuclei. From an experimental
point of view, the term “feasible” means, qualitatively speaking, that the permuta-
tions and permutation-inversions are observable on the time scale which is associated
with the resolution of the experiment. From the perspective of a quantum dynamicist,
the permutations and permutation-inversions are feasible if they can be simulated by
time-dependent wavepackets, within the time scales of the process which is investi-
gated. For the present class of molecules, with CCD as a model representative, those
wavepackets are torsional wavepackets. We shall show, as one of the important dis-
coveries of this paper, that the MS group for this class of molecules is GA

16. To the
best of our knowledge, this Abelian MS group has not been applied previously to any
other molecule. In any case, it is different from the non-Abelian group G16 which has
been employed in Refs. [100,101] for the description of the molecular symmetry of
ethylene-like molecules with just one feasible torsion. In order to distinguish the two
MS-groups, we shall call the present Abelian group GA

16, with superscript “A” repre-
senting “Abelian”. Since GA

16 is a new group, we also will report various important
properties, e.g. the irreducible presentations (IREPs), to facilitate the task of finding the
NSIs of the model CCD, as representative of the present class of molecules.

The rest of this paper is organized as follows: In Sect. 2 the theory, the model and
the techniques are described necessary to identify the NSIs for the present class of
molecules with the properties (i) and (ii), using CCD as an example. In Sect. 3 the re-
sults are presented and discussed. The conclusions and an outlook to photo-chemical
and quantum dynamical applications and extensions are contained in Sect. 4. This
includes a discussion of the implications the results of this paper have for further inves-
tigations on photo-excited torsions.

2. Model and techniques

This section is divided into four subsections. We begin with specifying the Hamiltonian
in full dimensionality and derive the corresponding molecular symmetry group GA

16. In
Sect. 2.2 we proceed with the reduction of the Hamiltonian from full dimensionality to
the 2d model for the two torsional dof in the frame of the Born–Oppenheimer approx-
imation. Sect. 2.3 presents details for the quantum chemical calculations of the “first”
molecular equilibrium structure and the neighboring domains of the potential energy
surfaces in the electronic ground and excited states, and for the evaluations of the tor-
sional wavefunctions. The section closes with Sect. 2.4 which discusses how the NSIs
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of an arbitrary molecule can be identified with the help of the MS group and the sym-
metrization postulate. In every Subsection, CCD serves as an example for the present
class of molecules, see items (i), (ii) in Sect. 1, with the notations which are explained
in the legend of Fig. 1. We use SI units throughout this section.

2.1 Hamiltonian in full dimensionality, and derivation of the molecular
symmetry group

The present class of molecules, e.g. CCD, suggests divisions into fragments labeled
(0)–(6), as shown in Fig. 1. It is convenient to write the complete Hamiltonian with
notation that corresponds to this division,

Ĥ = Ĥ {1} + Ĥ {2} + T̂e + V̂ee (1)

where

Ĥ {1} =
6∑

i=0

Ĥ {1}
i (2)

and

Ĥ {2} =
6∑

i=0

6∑
j=i

Ĥ {2}
ij (3)

denote contributions which can be attributed to the individual (superscript {1}) nuclei
in fragments i = 0, . . ., 6, or to the interactions of two (superscript {2}) nuclei, one of
them in fragment i = 0, . . ., 6 and the other one in fragment j = i, . . ., 6. The num-
bers of nuclei in fragments i are denoted with Ni , so that the total number of nuclei
is Nn = ∑6

i=0 Ni . The terms T̂e and V̂ee account for the kinetic energies and for the
Coulomb interactions of the total number of Ne electrons – these are delocalized, so
they are, of course, not attributed to any molecular fragments,

T̂e =
Ne∑

n=1

− h2

2me

∇2
n (4)

V̂ee =
Ne−1∑
m=1

Ne∑
n=m+1

e2
0

4πε0|�rm − �rn| (5)

where �rm denotes the position of electron m, m = 1, . . ., Ne. Likewise,

Ĥ {2}
ij =

Ni∑
k=1

N j∑
l=1

Zik Z jle2
0

4πε0| �Rik − �Rjl|
(6)

are the Coulomb interactions between all the nuclei (labeled with k) of fragment (i) at
�Rik with all the nuclei (labeled with l) of fragment ( j) at �Rjl. For identical fragments
(i = j), the double sum in Eq. (6) runs from k = 1 to Ni −1 and from l = k +1 to Ni .
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For simplicity, we neglect spin orbit interactions or any other interactions involving
electronic or nuclear spins. Correspondingly,

Ĥ {1}
i = T̂i + V̂i,e

=
Ni∑

k=1

− h2

2Mik

∇2
m −

Ni∑
k=1

Ne∑
m=1

Zike2
0

4πε0| �Rik − �rm| (7)

is the sum of the kinetic energies of all the nuclei in fragment (i) plus their Coulomb
interactions with all electrons. Here Mik, Zike0 and �Rik denote the mass, the charge and
the position of nucleus k in fragment (i). Note the consistent use of Capital and small
letters for nuclear and electronic properties, respectively; accordingly, nuclear and elec-
tronic wavefunctions will be written as Ψ and ψ, respectively, angles of intramolecular
rotations or torsions are denoted Φ, etc.

In order to determine the MS group of CCD or any other representative of the
class of molecules which satisfy the criteria (i), (ii) from Sect. 1, we consider the sce-
nario where, on one hand, the total energy E of the molecule is sufficiently low so that
the bonds in fragments (0)− (6) cannot break, but on the other hand, E is sufficiently
high so that the equivalent fragments (1) and (2) or/and (3) and (4) or/and (5) and (6)

can be exchanged at once. In other words: the nuclei in fragment (i) keep their labels
k = 1− Ni , without any exchange of the nuclei within the fragments, but all the nuclei
k = 1, . . ., Ni in fragment (i) = (1), (3) or (5) may be exchanged by the equivalent nu-
clei k = 1, . . ., Nj in fragments ( j) = (2), (4) or (6), respectively, e.g. by intramolecular
rotations of the segments (A), (B), or (C). The corresponding permutations of the frag-
ments will be denoted with (12), (34) and (56), respectively. In addition, simultaneous
exchanges of two fragments, either (1) and (2) and (3) and (4), or (1) and (2) and (5)

and (6), or (3) and (4) and (5) and (6), are denoted (12)(34), (12)(56) and (34)(56), re-
spectively. The exchange of all fragments at once is denoted (12)(34)(56). Obviously,
the Hamiltonian Eq. (1) is robust with respect to these permutations of fragments, or in
other words, the set P of permutations (P)

P= {E, (12), (34), (56), (12)(34), (12)(56), (34)(56), (12)(34)(56)} , (8)

with E denoting the identity, commutes with the Hamiltonian Eq. (1),

[
Ĥ,R

]
= 0 for R ∈P . (9)

Moreover, the Hamiltonian from Eq. (1) is invariant with respect to inversion E∗ of all
electronic and nuclear coordinates,

[
Ĥ, E∗

]
= 0 . (10)

As a consequence, Ĥ commutes with all elements R ∈ P and with eight feasible
permutation-inversions, which can be written as (P)E∗ ≡ (P)∗. Since it is impossible
to find any feasible permutation or permutation-inversion (P)∗ with (P) 	∈P without
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Table 1. The multiplication table for the group GA
16. The abbreviations are: F = (12); G = (34); H =

(12)(34); I = (56); J = (12)(56); K = (34)(56); L = (12)(34)(56); F∗ = (12)∗; G∗ = (34)∗; H ∗ =
(12)(34)∗; I∗ = (56)∗; J ∗ = (12)(56)∗; K ∗ = (34)(56)∗; L∗ = (12)(34)(56)∗ .

GA
16 E F G H I J K L E∗ F∗ G∗ H ∗ I∗ J ∗ K ∗ L∗

E E F G H I J K L E∗ F∗ G∗ H ∗ I∗ J ∗ K ∗ L∗

F F E H G J I L K F∗ E∗ H ∗ G∗ J ∗ I∗ L∗ K ∗

G G H E F K L I J G∗ H ∗ E∗ F∗ K ∗ L∗ I∗ J ∗

H H G F E L K J I H ∗ G∗ F∗ E∗ L∗ K ∗ J ∗ I∗

I I J K L E F G H I∗ J ∗ K ∗ L∗ E∗ F∗ G∗ H ∗

J J I L K F E H G J ∗ I∗ L∗ K ∗ F∗ E∗ H ∗ G∗

K K L I J G H E F K ∗ L∗ I∗ J ∗ G∗ H ∗ E∗ F∗

L L K J I H G F E L∗ K ∗ J ∗ I∗ H ∗ G∗ F∗ E∗

E∗ E∗ F∗ G∗ H ∗ I∗ J ∗ K ∗ L∗ E F G H I J K L
F∗ F∗ E∗ H ∗ G∗ J ∗ I∗ L∗ K ∗ F E H G J I L K
G∗ G∗ H ∗ E∗ F∗ K ∗ L∗ I∗ J ∗ G H E F K L I J
H ∗ H ∗ G∗ F∗ E∗ L∗ K ∗ J ∗ I∗ H G F E L K J I
I∗ I∗ J ∗ K ∗ L∗ E∗ F∗ G∗ H ∗ I J K L E F G H
J ∗ J ∗ I∗ L∗ K ∗ F∗ E∗ H ∗ G∗ J I L K F E H G
K ∗ K ∗ L∗ I∗ J ∗ G∗ H ∗ E∗ F∗ K L I J G H E F
L∗ L∗ K ∗ J ∗ I∗ H ∗ G∗ F∗ E∗ L K J I H G F E

breaking bonds within one fragment, we can write the set of sixteen feasible permuta-
tions and permutation-inversions which commute with Ĥ , Eq. (1), as

GA
16 =P⊗{E, E∗} (11)

= {E, (12), . . ., (12)(34)(56)∗} (12)

It can be verified easily that the set Eq. (11) forms a group – the MS group of CCD, GA
16.

Its multiplication table is given in Table 1. Note, that GA
16 is the MS group not only of

CCD, but also for all other molecules which satisfy the criteria (i) and (ii), cf. Sect. 1.
As is well known from group theory [95,99,102], groups are uniquely defined by

their presentations, i.e. the generators of the groups and the set of relations between
them. For GA

16

GA
16 = 〈

(12), (34), (56), E∗∣∣(12)2 = (34)2 = (56)2 = (E∗)2 = E
〉
, (13)

where (12)2 means (12)(12), etc. Thus, GA
16 is generated by the four elements (12), (34),

(56), E∗. With the help of Eq. (13) alone, we can generate the complete group GA
16,

which will be very helpful in Sect. 2.4, as we identify the symmetry adapted torsional
eigenfunctions. Additionally, since GA

16 can be written as

GA
16 = {E, (12)}⊗ {E, (34)}⊗ {E, (56)}⊗ {E, E∗} , (14)

we can directly deduce from the fundamental theorem of finite Abelian groups that GA
16

must be Abelian [102].
The character table of GA

16, displaying all its irreducible representations (IREPs),
is shown in Table 2. The multiplication table, containing all cogitable direct products
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Table 2. The character table of the group GA
16. The abbreviations are: F = (12); G = (34); H = (12)(34);

I = (56); J = (12)(56); K = (34)(56); L = (12)(34)(56); F∗ = (12)∗; G∗ = (34)∗; H ∗ = (12)(34)∗; I∗ =
(56)∗; J ∗ = (12)(56)∗; K ∗ = (34)(56)∗; L∗ = (12)(34)(56)∗ .

GA
16 E F G H I J K L E∗ F∗ G∗ H ∗ I∗ J ∗ K ∗ L∗

Γ +
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Γ +
2 1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1

Γ +
3 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1

Γ +
4 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1

Γ +
5 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1

Γ +
6 1 −1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1

Γ +
7 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1

Γ +
8 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1 1 −1

Γ −
1 1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1

Γ −
2 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1

Γ −
3 1 1 −1 −1 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1

Γ −
4 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1 1 1 −1 −1

Γ −
5 1 −1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1

Γ −
6 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1 1 −1 1 −1

Γ −
7 1 −1 −1 1 1 −1 −1 1 −1 1 1 −1 −1 1 1 −1

Γ −
8 1 −1 −1 1 −1 1 1 −1 −1 1 1 −1 1 −1 −1 1

of the IREPs of GA
16 is shown in Table 3. From the characters χΓi [R] for operation

R of IREP Γi in Table 2, we obtain molecular symmetry projection operators for the
irreducible representations

P̂ Γi = 1

16

∑
R

χΓi [R] R with R ∈ GA
16 . (15)

The fact that the Hamiltonian Eq. (1) commutes with all operations R of the group GA
16

implies that the projection operators P̂ Γi also commute with Ĥ ,
[
Ĥ, P̂ Γi

]
= 0 . (16)

Moreover, by construction Eq. (15), all the projection operators P̂ Γi are mutually orth-
ogonal, i.e. they commute with each other [99,102],

[
P̂ Γi , P̂ Γ j

]
= 0 . (17)

As a consequence, all the molecular eigenstates are labeled simultaneously by the
eigenvalues of Ĥ and all the P̂ Γi . It follows that all the molecular eigenstates of CCD
are specified by their energy (the eigenvalue of Ĥ) and by one of the sixteen IREPs
which are listed in the character table. This simplified notation – IREP label instead
of sixteen eigenvalues of the individual P̂ Γi , i = 1, . . ., 16 – is a consequence of the
orthogonality expressed in Eq. (17), and the idempotence of the P̂ Γi

P̂ Γi P̂ Γi = P̂ Γi , (18)
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Table 3. Product table for the group GA
16.

GA
16 Γ +

1 Γ +
2 Γ +

3 Γ +
4 Γ +

5 Γ +
6 Γ +

7 Γ +
8 Γ −

1 Γ −
2 Γ −

3 Γ −
4 Γ −

5 Γ −
6 Γ −

7 Γ −
8

Γ +
1 Γ +

1 Γ +
2 Γ +

3 Γ +
4 Γ +

5 Γ +
6 Γ +

7 Γ +
8 Γ −

1 Γ −
2 Γ −

3 Γ −
4 Γ −

5 Γ −
6 Γ −

7 Γ −
8

Γ +
2 Γ +

2 Γ +
1 Γ +

4 Γ +
3 Γ +

6 Γ +
5 Γ +

8 Γ +
7 Γ −

2 Γ −
1 Γ −

4 Γ −
3 Γ −

6 Γ −
5 Γ −

8 Γ −
7

Γ +
3 Γ +

3 Γ +
4 Γ +

1 Γ +
2 Γ +

7 Γ +
8 Γ +

5 Γ +
6 Γ −

3 Γ −
4 Γ −

1 Γ −
2 Γ −

7 Γ −
8 Γ −

5 Γ −
6

Γ +
4 Γ +

4 Γ +
3 Γ +

2 Γ +
1 Γ +

8 Γ +
7 Γ +

6 Γ +
5 Γ −

4 Γ −
3 Γ −

2 Γ −
1 Γ −

8 Γ −
7 Γ −

6 Γ −
5

Γ +
5 Γ +

5 Γ +
6 Γ +

7 Γ +
8 Γ +

1 Γ +
2 Γ +

3 Γ +
4 Γ −

5 Γ −
6 Γ −

7 Γ −
8 Γ −

1 Γ −
2 Γ −

3 Γ −
4

Γ +
6 Γ +

6 Γ +
5 Γ +

8 Γ +
7 Γ +

2 Γ +
1 Γ +

4 Γ +
3 Γ −

6 Γ −
5 Γ −

8 Γ −
7 Γ −

2 Γ −
1 Γ −

4 Γ −
3

Γ +
7 Γ +

7 Γ +
8 Γ +

5 Γ +
6 Γ +

3 Γ +
4 Γ +

1 Γ +
2 Γ −

7 Γ −
8 Γ −

5 Γ −
6 Γ −

3 Γ −
4 Γ −

1 Γ −
2

Γ +
8 Γ +

8 Γ +
7 Γ +

6 Γ +
5 Γ +

4 Γ +
3 Γ +

2 Γ +
1 Γ −

8 Γ −
7 Γ −

6 Γ −
5 Γ −

4 Γ −
3 Γ −

2 Γ −
1

Γ −
1 Γ −

1 Γ −
2 Γ −

3 Γ −
4 Γ −

5 Γ −
6 Γ −

7 Γ −
8 Γ +

1 Γ +
2 Γ +

3 Γ +
4 Γ +

5 Γ +
6 Γ +

7 Γ +
8

Γ −
2 Γ −

2 Γ −
1 Γ −

4 Γ −
3 Γ −

6 Γ −
5 Γ −

8 Γ −
7 Γ +

2 Γ +
1 Γ +

4 Γ +
3 Γ +

6 Γ +
5 Γ +

8 Γ +
7

Γ −
3 Γ −

3 Γ −
4 Γ −

1 Γ −
2 Γ −

7 Γ −
8 Γ −

5 Γ −
6 Γ +

3 Γ +
4 Γ +

1 Γ +
2 Γ +

7 Γ +
8 Γ +

5 Γ +
6

Γ −
4 Γ −

4 Γ −
3 Γ −

2 Γ −
1 Γ −

8 Γ −
7 Γ −

6 Γ −
5 Γ +

4 Γ +
3 Γ +

2 Γ +
1 Γ +

8 Γ +
7 Γ +

6 Γ +
5

Γ −
5 Γ −

5 Γ −
6 Γ −

7 Γ −
8 Γ −

1 Γ −
2 Γ −

3 Γ −
4 Γ +

5 Γ +
6 Γ +

7 Γ +
8 Γ +

1 Γ +
2 Γ +

3 Γ +
4

Γ −
6 Γ −

6 Γ −
5 Γ −

8 Γ −
7 Γ −

2 Γ −
1 Γ −

4 Γ −
3 Γ +

6 Γ +
5 Γ +

8 Γ +
7 Γ +

2 Γ +
1 Γ +

4 Γ +
3

Γ −
7 Γ −

7 Γ −
8 Γ −

5 Γ −
6 Γ −

3 Γ −
4 Γ −

1 Γ −
2 Γ +

7 Γ +
8 Γ +

5 Γ +
6 Γ +

3 Γ +
4 Γ +

1 Γ +
2

Γ −
8 Γ −

8 Γ −
7 Γ −

6 Γ −
5 Γ −

4 Γ −
3 Γ −

2 Γ −
1 Γ +

8 Γ +
7 Γ +

6 Γ +
5 Γ +

4 Γ +
3 Γ +

2 Γ +
1

which is imposed by construction Eq. (15) [99,102]. Relation Eq. (18) implies that the
eigenvalues of P̂ Γi are either 1 or 0. Furthermore, the orthogonality Eq. (17) suggests
that if the eigenvalue of P̂ Γi is equal to 1, then it is equal to zero for all other projection
operators P̂ Γ j , j 	= i . The set of projection operators P̂ Γi is therefore associated with
symmetry quantum numbers {0, 0, . . ., 0, 1, 0, . . ., 0}, where the position i of the sin-
gle number “1” is mapped in a unique, bijective manner to the IREP of the projection
operator P̂ Γi . The specification of the IREP is thus equivalent to the list of all sixteen
quantum numbers of the projection operators.

For the identification of the NSIs of CCD, however, only the permutation subgroup
GPSMS

[
GA

16

]
is relevant [49]. As can be seen by comparison of Eqs. (8) and (11) this

group is identical to the setP, with only eight instead of sixteen elements. The character
table of this group is shown in Table 4. This character table, Table 4, already provides
the answer to one of the questions which have been raised in the Introduction, i.e. CCD
has at most eight different NSIs which are characterized by the irreducible representa-
tions IREPs of their nuclear spin wavefunctions. Moreover, since GPSMS[GA

16] is Abelian
(because it is a subgroup of the Abelian group GA

16), we can utilize its character table
for direct construction of the symmetry-adapted torsional and nuclear spin wavefunc-
tions with the help of projection operators P̂ Γi for the irreducible representation Γi . The
definition of these symmetry projection operators,

P̂ Γi = 1

8

∑
R

χΓi [R] R with R ∈ GPSMS[GA
16] (19)

and all their properties (see Eqs. 16–18) are entirely analogous to the projection op-
erators of GA

16. We shall employ these projection operators below, in order to generate
symmetry adapted torsional wavefunctions. In practice, we shall start by calculation of
a wavefunction Ψl, which is localized (subscript “l”) in a single potential well so that
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Table 4. The character table of GPSMS[GA
16], the permutation subgroup of the MS group of CCD, GA

16. It has
eight real valued representations.

GPSMS[GA
16] E (12) (34) (12)(34) (56) (12)(56) (34)(56) (12)(34)(56)

Γ1 1 1 1 1 1 1 1 1
Γ2 1 1 1 1 −1 −1 −1 −1
Γ3 1 1 −1 −1 1 1 −1 −1
Γ4 1 1 −1 −1 −1 −1 1 1
Γ5 1 −1 1 −1 1 −1 1 −1
Γ6 1 −1 1 −1 −1 1 −1 1
Γ7 1 −1 −1 1 1 −1 −1 1
Γ8 1 −1 −1 1 −1 1 1 −1

it is not yet symmetry adapted. Next, we shall apply the symmetry projection operator
P̂ Γi – the idempotence Eq. (18) then implies that P̂ Γi Ψl is automatically an eigenfunc-
tion of P̂ Γi , because

P̂ Γi (P̂ Γi Ψl) = P̂ Γi Ψl , (20)

with eigenvalues 1 or 0 if P̂ Γi Ψl 	= 0 or P̂ Γi Ψl = 0, respectively. If P̂ Γi Ψl 	= 0, then we
define the symmetry-adapted torsional wavefunction with IREP Γi ,

Ψ Γi = NiP̂
Γi Ψl (21)

where Ni is a normalization constant. The relations we discussed in this Subsection will
be important for the later discussion, see Sects. 2.4 and 3.

2.2 Reduction of the Hamiltonian from full dimensionality to a model with
two torsional degrees of freedom

In order to reduce the Hamiltonian from Eq. (1) from full dimensionality to a model
Hamiltonian for the present class of molecules, characterized by two coaxial torsions
about the C2 symmetry axis which is oriented along the laboratory Z-axis (see items
(i) and (ii) in Sect. 1), we employ the approach of Ref. [67]. There, the same type of
steps have been demonstrated in order to derive a model Hamiltonian for analogous
molecules with a single torsional degree of freedom. The approach will be explained
using the model system CCD as an example.

The first step is the familiar Born–Oppenheimer (BO) separation of the electronic
and nuclear degrees of freedom [103]. Accordingly, the total wavefunction is written,
in general, as a sum of products of electronic wavefunctions ψe(q; Q) depending on the
set of electronic (spatial and spin) coordinates q, times nuclear wavefunctions Ψe,n(Q, t)
depending on the set of nuclear coordinates Q and, in principle, also on time t,

Ψ mol(q, Q, t) =
∑

e

ψe(q; Q)·Ψe,n(Q, t) (22)
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Note that the symbol Ψ mol is used here and below for wavefunctions which depend
on electronic and nuclear coordinates beyond the Born–Oppenheimer approximation.
The sum in Eq. (22) is over electronic states labeled by a set of quantum numbers e
which specify the electronic energy, and possibly also complementary properties, e.g.
the electronic spin multiplicity, and symmetry. The nuclear wavefunctions carry addi-
tional labels n which characterize the initial states; typically, n denotes a set of quantum
numbers which specify the rovibronic energies and symmetries. In the present paper,
we focus on stationary states, so that the time t will be dropped, for simplicity of the
notation; time dependent extensions will be demonstrated in a sequel paper.

The electronic wavefunctions ψe(q; Q) depend parametrically on the nuclear coor-
dinates Q. They are obtained as solutions of the electronic Schrödinger equation

Ĥelψe(q; Q) = Ve(Q)ψe(q; Q) , (23)

together with the potential energy surfaces (PES) Ve(Q) depending on Q. Here Ĥel is
the electronic Hamiltonian – it is the same as the Hamiltonian expressed in Eq. (1), but
without the terms for the nuclear kinetic energies. Details of the quantum chemical so-
lution of Eq. (23) will be presented in Sect. 2.3, using the set of coordinates Q which
will be specified below. In the present case, we shall focus on electronic singlet states;
the electronic quantum numbers e = 0, 1, 2, then label the electronic energies. In par-
ticular, the quantum chemistry calculations provide the PES V0(Q) of the electronic
ground state. The search for the minimum of V0(Q) yields the minimum structure, also
called equilibrium geometry Qeq of the molecule. For convenience, the value of V0 at
Qeq is set equal to zero, V0(Qeq) = 0. As we shall show below, the present molecu-
lar symmetry group GA

16 implies that V0 actually supports several equivalent minimum
structures. The quantum chemistry calculations will be employed to determine just one
of these minimum structures (called “the first one”, Qeq1

), together with the PES in
a domain around this minimum. The other equilibrium structures Qeq2

, Qeq3
, etc. with

surrounding domains of the PES will be generated by means of the symmetry opera-
tors which have been introduced in Sect. 2.1 The “first” equilibrium structure is used
in order to specify the notation for the molecular segments A, B, C and the fragments
i = 0, 1, . . ., 6, and to assign the labels k of the nuclei which belong to these fragments,
as shown in Fig. 1. The determination of V0(Q) by means of quantum chemistry and
molecular symmetry, and the “first” equilibrium structure Qeq1

with the correspond-
ing fragments, are important results of this first step of the approach; they should be
consistent with the criteria (i) and (ii) that defines the present set of molecules, e.g.
the equilibrium structure should have a rotational symmetry axis C2 oriented along the
laboratory-fixed Z-axis. If the equilibrium structure is planar, as for the case of CCD,
then for reference, the molecule should be placed in the X/Z plane.

The second step reduces the nuclear Hamiltonian (which describes the nuclear mo-
tions within the BO separation of electronic and nuclear dof) from full-d to the degrees
of freedom dof of interest – in the present case these are just the two torsional dofs. This
step starts from the potential energy surface V0(Q) and the kinetic energy operator

T̂ = T̂3Nn =
∑

i

∑
k

�̂P
2

ik

2Mik

(24)
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of all nuclei; the index 3Nn = 78 for CCD specifies the original total number of nuclear
degrees of freedom. At this stage, it is convenient to employ the set Q of all 3Nn Carte-
sian coordinates �Rik = (Xik, Yik, Zik) in the laboratory frame, together with the nuclear
spin variables, with the nuclear center-of-mass as origin and with the C2 symmetry axis
oriented along the laboratory-fixed Z-axis. The momentum operators are conjugate to
these nuclear Cartesian coordinates. According to the approach of Ref. [67], it is then
convenient to replace the Cartesian coordinates �Rik = (Xik, Yik, Zik) of nucleus k in frag-
ment i by cylindrical coordinates (Rik, Φik, Zik). Subsequently, more and more of these
coordinates, or suitable linear combinations of these coordinates, are frozen in the equi-
librium geometry, in a step-by-step manner, corresponding to systematic freezing of
those vibrational and rotational dof which will not be considered in the model. For the
present simple model CCD, all nuclear coordinates are frozen in the “first” equilibrium
structure, except the angles ΦA, ΦB, ΦC describing the internal rotations of fragments
A, B, C about the C2 symmetry axis, respectively. The nuclear kinetic energy operator
describing these internal molecular rotations is

T̂3 = L̂2
A

2IA

+ L̂2
B

2IB

+ L̂2
C

2IC

, (25)

with internal angular momenta L̂ S = −ih ∂

∂ΦS
for the rotations of the segments S =

A, B, C about the C2-axis, and with the corresponding moments of inertia IS which are
determined by the “first” equilibrium geometry of the model system.

In the last step, the angles ΦA, ΦB and ΦC are replaced by the two torsional an-
gles Φ1 = ΦB −ΦA and Φ2 = ΦC −ΦB, and by the angle for overall rotation about the
C2-axis, Φ = cA·ΦA + cB·ΦB + cC·ΦC with coefficients cS = IS

(IA+IB+IC)
. Separating the

overall rotation, the kinetic energy operator is reduced to

T̂2 = L̂2
1

2I1

+ L̂1· L̂2

IB

+ L̂2
2

2I2

(26)

with reduced moments of inertia

I1 = IA· IB

IA + IB

and I2 = IB· IC

IB + IC

. (27)

The first and last terms of T̂2 describe torsions of the neighboring segments A vs. B
and B vs. C, respectively. The middle term represents torsional coupling. The deriva-
tion of T̂2 from T̂3 is entirely analogous to the derivation of the kinetic energy operator
of the familiar Thiele–Wilson Hamiltonian [104] for the coupled vibrations of bonds
AB and BC of a triatomic molecule ABC. Finally, neglecting nonadiabatic and dipole
couplings, the 2d model Hamiltonians describing adiabatic torsions along Φ1 and Φ2 in
electronic states e are written as

Ĥ2e(Φ1, Φ2) = T̂2 + Ve(Φ1, Φ2) (28)

with the PES depending explicitly on the torsional angles Φ1 and Φ2, while all other dof
are frozen in the “first” equilibrium geometry. Note, that this derivation of the nuclear
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Hamiltonian started from all nuclear Cartesian coordinates in the laboratory frame,
whereas it ends with the expression in terms of the molecule-fixed torsional angles,
analogous to Ref. [67].

The derivation allows various extensions. For example, one may include addi-
tional vibrational degrees of freedom [67]. If the molecule interacts with a linearly
Z-polarized laser field E(t) = (0, 0, EZ(t)), the Hamiltonian is written in dipole approx-
imation as

Ĥ2(Φ1, Φ2, t) =

⎛
⎜⎜⎜⎝

H00 0 0
0 H11 0
0 0 H22

...
...

...
. . .

⎞
⎟⎟⎟⎠− Ez(t)

⎛
⎜⎜⎜⎝

MZ,00 MZ,01 MZ,02

MZ,10 MZ,11 MZ,12

MZ,20 MZ,21 MZ,22

...
...

...
. . .

⎞
⎟⎟⎟⎠ (29)

where MZ,ee = MZ,ee(Φ1, Φ2) are the Z-components of the dipole operators depending
on the torsional angles, whereas MZ,ee′ = MZ,ee′ (Φ1, Φ2) are the corresponding dipole
transition matrix elements for transitions between states e and e′, respectively. The
model Hamiltonian may also be extended by nonadiabatic couplings [67,71].

2.3 The quantum chemistry of CCD and the method for calculation of
a localized torsional wavefunction

To calculate the PES along the two torsional degrees of freedom, an active space with
12 electrons in 10 orbitals (12,10) was chosen such that all π orbitals of the molecule
are included, that are relevant for the singlet ground and two lowest excited states
of ππ∗ character. This chosen reduced active space, compared to the full π-system
(18,16), is the best compromise between computational efforts and a precise descrip-
tion of all relevant excitations. With this active space, a complete active space self-
consistent field (CASSCF) [105] calculation is performed, using the cc-pVDZ [106]
basis set.

Firstly, a geometry optimization for the electronic ground state is performed to
locate the ground state equilibrium conformation. This calculation is done using the
program package PC GAMESS [107,108].

Based on this equilibrium geometry, a scan of the two-dimensional PES of the three
lowest singlet states is performed using the State-Averaged CASSCF method by vary-
ing the torsional angle Φ1 between − π

2
and π

2
and the torsional angle Φ2 between 0 and

π

2
with a step size of 0.028·π, (i.e. 5◦), while keeping the other dof frozen. The con-

sistency of the active space along both coordinates, Φ1 and Φ2, is ensured by carefully
selecting fully converged CASSCF wavefunctions of previous steps as an initial guess
and by close inspection of several one-electron properties like nonadiabatic couplings
and transition dipole moments.

From this data, the full two-dimensional PES describing a full 2π torsion along
both angles is constructed following the symmetry operations described in Sect. 2 and
illustrated in Fig. 3. All CASSCF calculations were carried out with the Molpro2010
program package [109].

The torsional eigenfunctions in the electronic ground state are calculated by directly
diagonalizing Ĥ2e(Φ1, Φ2), Eq. (28), using the Fourier Grid Hamiltonian method [110]
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Fig. 3. Potential energy surface and torsional wavefunctions of CCD and four NSIs of CCD in the elec-
tronic ground state, vs. torsional angles Φ1 and Φ2. All other degrees of freedom of CCD are frozen in
the “first” equilibrium structure of CCD (Φ1,eq1

, Φ2,eq1
), abbreviated as (0, 0), see Fig. 1. (a) Scheme for

generation of three equivalent equilibrium structures (0, π), (π, 0), (π, π) of CCD by application of the
generators (12), (56), (34) of the molecular symmetry group GA

16 to (0, 0), and scheme for generating
the potential energy surface V0(Φ1, Φ2) in the domains Ib, II , III , IV by application of the generators
E∗ and subsequently (12), (34) and (56) to V0(Φ1, Φ2) in domain Ia and in domain I = Ia and Ib, re-
spectively. (b) Contour plots of V0(Φ1, Φ2) and the torsional wavefunction Ψl(Φ1, Φ2) localized in the
potential well close to (0, 0). (c)–(f): Molecular symmetry adapted torsional wavefunctions Ψ Γ1 (Φ1, Φ2),
Ψ Γ4 (Φ1, Φ2), Ψ Γ7 (Φ1, Φ2), Ψ Γ6 (Φ1, Φ2) embedded in V0(Φ1, Φ2), respectively. Potential contours are
drawn for V0(Φ1, Φ2) = (0.5, 1, 1.5, 2, 2.5, 3) eV. Contours of the wavefunctions are drawn for ±0.9, ±0.5
and ±0.1 times the maximum absolute values of symmetry adapted wavefunctions. Positive and negative
values of the wavefunctions are indicated by green and red colors, respectively.

for the domain of the single potential energy well around the “first” equilibrium struc-
ture, within the range of − π

2
to π

2
for both torsional angles Φ1 and Φ2. For each degree

of freedom a grid of 256 points for each dof was chosen.
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2.4 The NSIs of CCD

To identify the NSIs of molecules several techniques are necessary: the symmetrization
postulate [8], the permutation subgroup of the molecular symmetry group [96,99] and
the nuclear spin hypothesis [111], see also [49]. We will derive the conditions which
every molecular state must agree with to fulfill the symmetrization postulate, i.e. we
find the irreducible molecular representation Γ mol. Afterwards, the symmetry of the nu-
clear spin states and the torsional states of CCD within the molecular symmetry group
are found. This Subsection closes with determining the NSIs of CCD.

According to the symmetrization postulate every state of a quantum system must
hold its sign if a pair of identical bosons is exchanged, and must change its sign if a pair
of identical fermions is exchanged once. To apply this theorem the spin quantum num-
bers of the nuclei which are exchanged have to be known. For CCD, we have three types
of nuclei, 1H, 12C, 16O, which carry the spins 1

2
, 0, 0, respectively. Consequently, the nu-

clei 12C and 16O are bosons, since they carry an integer spin; the nuclei 1H are fermions,
they carry half-integer spin. Since the symmetrization postulate states nothing about
permutation-inversions, the group which is relevant for the identification of the NSIs
of CCD is the permutation subgroup of GA

16, i.e. the group GPSMS[GA
16], see Eq. (8) [49].

Some of the consequences for the identification of the NSIs, when limiting the number
of permutations to those which are feasible, are discussed in Sect. 4.1 of Ref. [49]. The
influence of the field which is used to orient the molecule on the symmetry of the system
is not trivial. It will be discussed in detail in a subsequent publication, see also Sect. 5.5
of Ref. [49]. Here, it suffices to say that the results of this section will remain valid.

To find Γ mol, we need only to consider the transformation properties of the system’s
wavefunctions under the generators of GPSMS[GA

16]. For CCD these are the operations
(12), (34) and (56). Thus

R (12) (34) (56)

Ψ mol (−1)·Ψ mol (+1)·Ψ mol (+1)·Ψ mol
(30)

since (12) permutes an odd number of pairs of fermionic nuclei, and (34) and (56)

permute even numbers of pairs of fermionic nuclei. The characters −1, 1, 1 of the
generators (12), (34), (56) then yield the irreducible representation

Γ mol = Γ5 , (31)

for the present class of molecules, compare with Table 4.
For defining a NSI of a molecule based on the conditions from Eq. (30), the nuclear

spin hypothesis is used [111]. This hypothesis states that for any molecular state it is
appropriate to write

Ψ mol = ψe·Ψe,n ≈ Ψ rve·Ψ nu.sp (32)

where Ψ rve denotes the rovibronic wavefunction and Ψ nu.sp labels the wavefunctions
for the nuclear spins. Different combinations of wavefunctions Ψ rve and Ψ nu.sp with the
product of the two transforming according to Γ mol are defined as different NSIs. Ob-
viously, this assumption is an approximation – on very long time scales NSIs are not
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stable species of a chemical compound, due to intramolecular interactions of nuclear
spins. However, at least for closed shell molecules, the time-scale of interconver-
sion of NSIs is much slower than the torsional dynamics, which shall be investigated
here [8,10].

How the symmetry of the nuclear spin states of a molecule can be found with the
help of the molecular symmetry group is well described in the literature [99]. To find
the representation which is spanned by the entity of all nuclear spin states, one has
to count the number of spin states which are invariant under a given operation of the
group GPSMS[GA

16]. They give the character of the representation Γ nu.sp for the opera-
tion in question. CCD, for example, has in total 210 = 1024 spin states – each proton
contributes 2 states, all other nuclei do not posses any nuclear spin. If one applies the
operation (12) to these states, all states of fragment 3 to 6 remain unchanged, as well as
the αα and ββ states of the oxo-ring. Only the states αβ and βα are interchanged. Thus,
2· 28 = 29 = 512 states are invariant under the operation (12) which gives the character
of the reducible representation spanned by all spin states. Proceeding analogously for
the remaining spin states one obtains

R (1) (12) (34) (56) (12)(34) (12)(56) (34)(56) (12)(34)(56)

Γ nu.sp. 1024 512 256 256 128 128 64 32
.

(33)

Reducing this representation into its irreducible components gives

Γ nu.sp. = 300 ·Γ1 ⊕180 ·Γ2 ⊕180 ·Γ3 ⊕108 ·Γ4 ⊕
⊕100 ·Γ5 ⊕60 ·Γ6 ⊕60 ·Γ7 ⊕36 ·Γ8 . (34)

The result Eq. (34) provides the answer to another question which has been asked in the
Introduction, i.e. how to separate the 1024 nuclear spin eigenfunctions of CCD into sets
which can be assigned to its eight NSIs, characterized by the IREPs Γ1 – Γ8. Next, these
nuclear spin states have to be combined with the torsional states to fulfill Eq. (31).

Before the correct torsional states are identified, a few aspects about the rotational
and the vibronic states are worth mentioning. In the electronic ground state CCD is
a rigid molecule, i.e. the time scales of any contorsional motion are much longer than
the time scales on which molecular events typically take place. As a consequence, it is
appropriate to write any molecular state in the electronic ground state in the form

Ψ mol ≈ Ψ rot ·Ψ tor ·Ψ vib ·Ψ nu.sp. ·ψelec (35)

and to assume that the rotational motions can be manipulated separately from the tor-
sional motion. In Eq. (35) Ψ rot denotes the wavefunction for the rotational motions, Ψ vib

the wavefunction for the vibrational motions except the torsions, ψelec the wavefunction
for the electrons and Ψ nu.sp. the wavefunction for the nuclear spins. Here, it is assumed
that the translational motion of the molecule is separated from internal motions. Some
authors call the molecular wavefunction excluding the translational motions internal
wavefunction [99]; this distinction will be omitted in this paper. If the temperature
before the interaction with the laser pulse used to orient the molecule is so low that basi-
cally only the lowest rotational state is populated and, additionally, the vibronic ground
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state is non-degenerate

Ψ rot ·Ψ vib ·ψelec ∼ Γ1 . (36)

Using this, different NSIs are identified by

Γ tor ⊗Γ nu.sp. != Γ mol ; (37)

different combinations of Γ tor and Γ nu.sp fulfilling this equation represent different NSIs.
To find the symmetry of the torsional states it is sufficient to find the symmetries of

the basis functions

ΨkΦ1 ,kΦ2
(Φ1, Φ2) = ΨkΦ1

(Φ1) ·ΨkΦ2
(Φ2)

= 1

2π
exp

(
ikΦ1Φ1

)
exp

(
ikΦ2Φ2

)
, (38)

since: (i) the true eigenfunctions can always be written as linear combinations of basis
functions of type Eq. (38), no matter how reasonable this ansatz is; (ii) exact eigenfunc-
tions can be composed exclusively of basis functions of the same symmetry [112]. The
symmetry of the functions Eq. (38) in the group GPSMS[GA

16] can be found once the trans-
formation properties of the angles Φ1 and Φ2 under the generators (12), (34) and (56)

are known. The angles Φ1 and Φ2 transform under these operations as

R (12) (34) (56)

Φ1 Φ1 +π Φ1 −π Φ1

Φ2 Φ2 Φ2 +π Φ2 −π

(39)

and therefore

R (12) (34) (56)

ΨkΦ1
(−1)kΦ1 ·ΨkΦ1

(−1)kΦ1 ·ΨkΦ1
ΨkΦ1

ΨkΦ2
ΨkΦ2

(−1)kΦ2 ·ΨkΦ2
(−1)kΦ2 ·ΨkΦ2

. (40)

Now one can conclude that

ΨkΦ1 ,kΦ2
(Φ1, Φ2) ∼

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Γ1 if kΦ1 even and kΦ2 even

Γ4 if kΦ1 even and kΦ2 odd

Γ7 if kΦ1 odd and kΦ2 even

Γ6 if kΦ1 odd and kΦ2 odd

. (41)

The result Eq. (41) provides the answer to still another question which has been asked in
the Introduction, i.e. four (Γ1, Γ4, Γ6,Γ7) out of eight (Γ1–Γ8) NSIs “survive” as T → 0.

In the last step, the torsional eigenstates with IREPs Γ1, Γ4, Γ6, Γ7 have to be com-
bined with the nuclear spin states from the previous section to fulfill Eqs. (30). The
correct combinations of torsional and nuclear spin states can be easily found with the
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help of the direct product table of GPSMS[GA
16], which is obtained from the 8×8 entries

in the top left of Table 3, without the labels “+”. For CCD one obtains the four NSIs
Γ tor[Γ nu.sp.]

Γ1 [Γ5] (100 nuclear spin states) (42)

Γ4 [Γ8] (36 nuclear spin states) (43)

Γ7 [Γ3] (180 nuclear spin states) (44)

Γ6 [Γ2] (180 nuclear spin states) (45)

where the number of spin states are obtained from Eq. (34).
For later investigations, the symmetry of the torsional states of each nuclear spin

isomer in the full MS group will be interesting as well. In particular, the parity of the
torsional states is important, i.e. their transformation properties under the fourth gener-
ator E∗. For the two torsional angles, Φ1 and Φ2, it holds that

R E∗

Φ1 −Φ1

Φ2 −Φ2

, (46)

i.e. E∗ transforms every basis function, Eq. (38), into its complex conjugate Ψ−kΦ1 ,−kΦ2
.

Thus, the parity adapted eigenfunctions must be real linear combinations of ΨkΦ1 ,kΦ2
and

Ψ−kΦ1 ,−kΦ2
. Two real linear combinations can be found

Ψ +
kΦ1 ,kΦ2

≡ 1√
2

(
ΨkΦ1 ,kΦ2

+Ψ−kΦ1 ,−kΦ2

)
(47)

Ψ −
kΦ1 ,kΦ2

≡ i√
2

(
ΨkΦ1 ,kΦ2

−Ψ−kΦ1 ,−kΦ2

)
(48)

with Ψ +
kΦ1 ,kΦ2

having even parity and Ψ −
kΦ1 ,kΦ2

having odd parity. Since we can form these
combinations for every pair of quantum numbers kΦ1 and kΦ2 each NSI can have tor-
sional states with either even or odd parity. We will illustrate this further in Sect. 3.5.

3. Results and discussion
This section is subdivided into five subsections. All of them present and discuss re-
sults for the model system CCD which has been specified in Sects. 1, 2.1 and 2.2 as
representative of the new class of molecules which satisfy the criteria (i), (ii) given
in the Introduction. Sect. 3.1 summarizes those results of Sect. 2.4 which are relevant
for the rest of this section. The other four subsections present and discuss specific re-
sults which are obtained by means of the methods presented in Sect. 2.3 combined with
Sect. 2.4. Specifically, Sect. 3.2 has the quantum chemical results for the “first” equilib-
rium structure, as well as for the potential energy surface V0(Φ1, Φ2) in a neighboring
domain, with restricted values of the two torsional angles. Sect. 3.3 employs molecular
symmetry to generate the complete set of equivalent minimum structures, and to ex-
tend V0(Φ1, Φ2) from a restricted range to all values of the torsional angles. Sect. 3.4
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presents a torsional wavefunction which is localized in the single well of the potential
energy surface in the domain close to the “first” equilibrium structure. Sect. 3.5 applies
molecular symmetry projection operators to that “localized” wavefunction in order to
generate molecular symmetry adapted torsional eigenfunctions for the different NSIs of
CCD. Atomic units are employed throughout this section, unless stated otherwise.

3.1 Results of molecular symmetry

As shown in Sect. 2.4, CCD supports eight NSIs. Each one of them is characterized
by a specific IREP of the subgroup GPSMS[GA

16] of the molecular symmetry group GA
16,

cf. Table 4, for the symmetry-adapted nuclear spin wavefunction. Here we focus on
the subset of four NSIs with IREPs Γ5, Γ8, Γ3 and Γ2, see Eqs. (41), respectively,
which “survive” as T → 0. These selected nuclear spin wavefunctions are multiplied
by torsional wavefunctions with specific IREPs Γ1, Γ4, Γ7, Γ6, see again Eqs. (41), re-
spectively. In the following subsections, we shall determine the energetically lowest
quadruplet of those torsional eigenfunctions.

It is remarkable that this subset of four NSIs at T → 0 contains just half of the eight
NSIs which are available for CCD. This is reminiscent of Heisenberg’s and Hund’s ex-
ample of molecular hydrogen, where p-H2 “survives” at T → 0, i.e. just one out of two
NSIs of hydrogen.

3.2 The “first” equilibrium structure of CCD, and the potential energy
surface V0 in a neighboring domain

The quantum chemistry calculations Sect. 2.3 yield the “first” equilibrium structure of
CCD, as shown in the top panel of Fig. 1. Its molecular point group is C2v, i.e. it is
planar, and it has a C2 symmetry axis. We assume that this C2-axis has been oriented
along the laboratory Z-axis, cf. the discussions in Sects. 1 and 2.1. This “first” equi-
librium structure will be called Qeq1

. It is used to specify the notations, see the figure
legend 1. For example, the two torsional angles describing torsions of fragments B vs.
A and C vs. B are set to Φ1,eq1

= 0 and Φ2,eq1
= 0, respectively. The subsequent results

are obtained by “freezing” all degrees of freedom at the values for Qeq1
, except the two

torsional angles Φ1 and Φ2. The values of the corresponding torsional moments of iner-
tia are I1 = 2.21 ·105 me ·a2

0 and I2 = 2.36 ·105 me ·a2
0, respectively. These are obtained

from the moments of inertia at the “first” equilibrium structure, IA = 3.47 ·105 me ·a2
0,

IB = 6.07 ·105 me ·a2
0, and IC = 3.86 ·105 me ·a2

0 for intramolecular rotations of the frag-
ments A, B, and C around the axis C2, respectively, using Eq. (27).

The quantum chemistry calculations also yield the PES Ve(Φ1, Φ2), as explained in
Sect. 2.3. Here we focus on the PES V0 for the electronic ground state. It is efficient
to carry out those rather expensive evaluations of V0(Φ1, Φ2) in a domain which is as
small as possible, close to Qeq1

, and to generate the rest of V0(Φ1, Φ2) in complemen-
tary domains, by means of operations based on molecular symmetry. For this purpose,
we define the following domains, cf. Fig. 3a:

domain Ia: − π

2
≤ Φ1 < π

2
, 0 ≤ Φ2 < π

2
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domain Ib: − π

2
≤ Φ1 < π

2
,− π

2
≤ Φ2 < 0

domain I: − π

2
≤ Φ1 < π

2
,− π

2
≤ Φ2 < π

2

domain II: π

2
≤ Φ1 < 3π

2
,− π

2
≤ Φ2 < π

2

domain III: − π

2
≤ Φ1 < π

2
, π

2
≤ Φ2 < 3π

2

domain IV: π

2
≤ Φ1 < 3π

2
, π

2
≤ Φ2 < 3π

2

Note that domain I consists of domains Ia plus Ib, surrounding the “first” equilibrium
structure Qeq1

.
In practice, the quantum chemistry calculations are carried out just in the “first”

domain Ia, neighboring to Qeq1
. The PES V0(Φ1, Φ2) in domain Ia is included in Fig. 3b.

3.3 Generation of all equivalent equilibrium structures of CCD, and of the
PES V0 for arbitrary torsional angles

The complete set of all equivalent equilibrium structures of CCD may be generated by
applying the molecular symmetry operators E, (12), (34), . . . , (12)(34)(56)∗ of the
molecular symmetry group GA

16 to the “first” equilibrium structure Qeq1
, cf. Eqs. (11)

and (12). Due to the transformation properties of the two torsional angles, see Eqs. (39)
and (46), CCD has altogether four equivalent equilibrium structures which are char-
acterized by the torsional angles (Φ1,eql

, Φ2,eql
) = (0, 0), (0, π), (π, 0) and (π, π) for

l = 1, 2, 3, 4, respectively, see Fig. 3a. Apparently, the set of equilibrium structures
(0, π), (π, 0) and (π, π) can be generated by a applying just the generators (12), (56)

and (34) of GA
16 to (0, 0).

Likewise, the potential energy surface V0(Φ1, Φ2) in domain Ib is obtained by ap-
plication of the generator E∗ of GA

16, i.e. inversion E∗ of V0(Φ1, Φ2) in domain Ia,
see Fig. 3a. This provides V0(Φ1, Φ2) in the domain I which surrounds the “first”
equilibrium structure Qeq1

. Subsequent applications of the other generators (12), (56),
(34) of GA

16 to V0(Φ1, Φ2) in domain I provide V0(Φ1, Φ2) in the domains II, IV and
III surrounding the equilibrium structures (0, π), (π, 0) and (π, π), respectively, cf.
Fig. 3a.

The resulting V0(Φ1, Φ2) for arbitrary torsional angles is illustrated in Fig. 3b. It
shows four equivalent potential wells which are centered at the equilibrium structures
(0, 0) - (π, π) and separated from each other by potential barriers. Note that the po-
tential barriers for torsions along Φ1 are higher than those for torsions along Φ2. The
potential has cyclic boundaries for the torsions along Φ1 or Φ2, allowing cyclic ex-
tensions of V0(Φ1, Φ2) to arbitrary torsional angles, even beyond the domain shown
in Fig. 3b. The molecular symmetry group GA

16 implies that V0(Φ1, Φ2) is invariant
with respect to applications of the generators (12), (34), (56) and E∗, corresponding to
the mappings V0(Φ1, Φ2) → V0(Φ1 +π,Φ2), V0(Φ1 +π,Φ2 +π), V0(Φ1, Φ2 +π) and
V0(−Φ1,−Φ2), respectively. On first glance, Fig. 3b may suggest additional symme-
tries, e.g. the abscissa and ordinates (Φ2 = 0 and Φ1 = 0) appear as symmetry lines for
reflection, but close inspection reveals that V0(Φ1, Φ2) 	= V0(−Φ1, Φ2) and V0(Φ1, Φ2)

	= V0(Φ1,−Φ2). In fact, the molecular symmetry group G16 does not contain any sym-
metry operators which correspond to the hypothetical mappings (Φ1, Φ2) → (−Φ1, Φ2)

or → (Φ1,−Φ2), respectively.
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3.4 The torsional wavefunction localized close to the “first” equilibrium
structure

Figure 3b shows the “localized” torsional wavefunction Ψl(Φ1, Φ2) embedded in the
potential V0(Φ1, Φ2) which has been computed for the domain I surrounding the “first”
equilibrium structure (0, 0), by means of the Fourier Grid Hamiltonian method [110],
as outlined in Sect. 2.3. Apparently, Ψl(Φ1, Φ2) has ellipsoidal shape. The modest rota-
tion of the ellipsoidal axes with respect to the abscissa (Φ2 = 0) and ordinate (Φ1 = 0)
is due to the torsional coupling term of the CCD model Hamiltonian, cf. Eqs. (26)
and (28).

3.5 2d molecular symmetry adapted torsional wavefunctions for NSI of CCD

The symmetry projection operators P̂Γl , l = 1, 4, 7, 6 (see Eq. 19) of the permuta-
tion subgroup GPSMS[GA

16] of GA
16 operating on the “localized” torsional wavefunction

Ψl(Φ1, Φ2) (Fig. 3b) generate the symmetry-adapted torsional wavefunctions (Eq. 21)
with IREPs Γ1, Γ7, Γ4, Γ6, respectively. These wavefunctions Ψ Γl (Φ1, Φ2), l = 1, 7, 4, 6
multiply the nuclear spin functions for the NSIs of CCD, with selective IREPs Γ5, Γ3,
Γ8, Γ2, cf. Eqs. (41) and (42). They are illustrated in Figs. 3c, 3d, 3e and 3f, respectively,
in the order of increasing torsional energies. Apparently, the quadruplet of torsional
wavefunctions shown in Figs. 3c–3f consists of four “torsional” lobes which are located
close to the equilibrium structures (0, 0), (0, π), (π, 0), and (π, π). By construction,
i.e. due to the generation of these lobes by means of the symmetry projection operators
Eq. (19), the four torsional lobes all have the same ellipsoidal shapes and orientations
of their ellipsoidal axes, but the signs of the torsional lobes may differ, indicating nodal
lines between the lobes with opposite signs.

From their nodal patterns we deduce that Ψ Γ1(Φ1, Φ2), which has zero nodes,
represents the torsional ground state. The torsional wavefunctions Ψ Γ4(Φ1, Φ2) and
Ψ Γ7(Φ1, Φ2) have nodal lines essentially parallel to the abscissa (Φ2 = 0) and the or-
dinate (Φ1 = 0), indicating that they represent the next higher states for torsions along
Φ1 and Φ2, respectively. Accordingly, one can consider Ψ Γ1(Φ1, Φ2) and Ψ Γ4(Φ1, Φ2)

as the energetically lowest doublet of states for torsion along Φ1, whereas Ψ Γ1 and Ψ Γ7

represent the corresponding doublet for torsion along angle Φ2. Since the barrier height
for tunneling along Φ1 is higher than for tunneling along Φ2, and since the values of
the corresponding torsional moments of inertia I1 and I2 are about equal, it follows
that the tunneling times are longer and the tunneling splittings are smaller for tunneling
along Φ1 than along Φ2; this determines the energetic order of the torsional eigenstates
which are shown in Figs. 3d and 3e, respectively. The wavefunction Ψ Γ6(Φ1, Φ2) which
is shown in Fig. 3f has two nodal lines, so that Ψ Γ6(Φ1, Φ2) has the highest energy of
the quadruplet of torsional wavefunctions Ψ Γ1(Φ1, Φ2), Ψ Γ7(Φ1, Φ2), Ψ Γ4(Φ1, Φ2) and
Ψ Γ6(Φ1, Φ2) for the NSIs with nuclear spin functions having the symmetry Γ5, Γ3, Γ8,
Γ2, respectively.

Finally, we identify the parity of all four torsional states. As can be seen clearly in
Fig. 3c–f, the torsional ground state of each NSI is even under inversion. However, as
our investigations show, the first excited torsional states of each NSI have odd parity.
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4. Conclusions
The present derivations, with exemplary demonstrations for the model CCD, show in
general that molecules which have a C2 symmetry axis and three segments A, B, C
which can rotate independently about that axis (corresponding to two independent tor-
sions, B vs. A and C vs. B, cf. items (i) and (ii) of the Introduction), have at most eight
NSIs; for example, CCD has, indeed, eight NSIs, and four of them “survive” as T → 0.
Each NSI is characterized by a specific tandem of two (out of eight) irreducible repre-
sentations (IREPs) for the nuclear spin and the torsional wavefunctions, provided by the
character table of the subgroup GPSMS[GA

16] of the molecular symmetry group GA
16.

The model applications to CCD demonstrate the principles of the approach. It of-
fers various possibilities for extensions, e.g. to include additional vibrational degrees of
freedom (cf. Ref. [67]), and/or additional electronic excited states. The molecular sym-
metry adapted wavefunctions with selective labels of IREPs represent different NSIs
which may also serve as initial states for subsequent applications, e.g. for quantum
simulations of NSI selective spectroscopy and dynamics. Work along this line is in
progress. The approach may also be applied to different isotopomers, and in general
to any other molecule that belongs to the class of molecules characterized by the two
properties, items (i) and (ii).
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78. G. Pérez-Hernández, A. Pelzer, L. González, and T. Seideman, New. J. Phys. 12 (2010)

075007.
79. M. Shapiro and P. Brumer, Quantum Control of Molecular Processes, 2nd edn., Wiley – VCH,

Weinheim (2012), 397.



1048 S. Belz et al.

80. H. Ohmura and T. Nakanaga, J. Chem. Phys. 120 (2004) 5176.
81. L. Holmegaard, J. H. Nielsen, I. Nevo, H. Stapelfeldt, F. Filsinger, J. Küpper, and G. Meijer,

Phys. Rev. Lett. 102 (2009) 023001.
82. F. Filsinger, J. Küpper, G. Meijer, L. Holmegaard, J. Nielsen, I. Nevo, J. L. Hansen, and

H. Stapelfeldt, J. Chem. Phys. 131 (2009) 064309.
83. B. Friedrich and D. Herschbach, J. Chem. Phys. 111 (1999) 6157.
84. B. Friedrich and D. Herschbach, J. Phys. Chem. A 103 (1999) 10280.
85. C. M. Dion, A. D. Bandrauk, O. Atabek, A. Keller, H. Umeda, and Y. Fujimura, Chem. Phys.

Lett. 302 (1999) 215.
86. I. Sh. Averbukh and R. Arvieu, Phys. Rev. Lett. 87 (2001) 163601.
87. M. Machholm and N. E. Henriksen, Phys. Rev. Lett. 87 (2001) 193001.
88. S. Guérin, L. P. Yatsenko, H. R. Jauslin, O. Faucher, and B. Lavorel, Phys. Rev. Lett. 88 (2002)

233601.
89. H. Sakai, S. Minemoto, H. Nanjo, H. Tanji, and T. Suzuki, Phys. Rev. Lett. 90 (2003)

083001.
90. E. Gershnabel, I. Sh. Averbukh, and R. J. Gordon, Phys. Rev. A 73 (2006) 061401.
91. K. Nakajima, H. Abe, and Y. Ohtsuki, J. Phys. Chem. A 116 (2012) 11219.
92. H. Stapelfeldt and T. Seideman, Rev. Mod. Phys. 75 (2003) 543.
93. T. Seideman and E. Hamilton, Adv. At. Mol. Opt. Phys. 52 (2005) 282.
94. S. Belz, S. Zilberg, M. Berg, T. Grohmann, and M. Leibscher, J. Phys. Chem. A 116 (2012)

11189.
95. Cotton, F. A., Chemical Applications of Group Theory, 2nd edn., Wiley, New York (1971).
96. H. C. Longuet-Higgins, Mol. Phys. 6 (1963) 445.
97. J. T. Hougen, J. Chem. Phys. 37 (1962) 1433.
98. J. T. Hougen, J. Chem. Phys. 39 (1963) 358.
99. P. R. Bunker and P. Jensen, Molecular Symmetry and Spectroscopy, 2nd edn. National Re-

search Council of Canada, Ottawa, (2002).
100. A. J. Merer and J. K. G. Watson, J. Mol. Spectrosc. 47 (1973) 499.
101. B. Lasorne, M. A. Robb, H.-D. Meyer, and F. Gatti, Chem. Phys. 377 (2010) 30.
102. R. Mirman, Group Theory: an Intuitive Approach, World Scientific, Singapore, reprint edi-

tion (2007).
103. M. Born and J. R. Oppenheimer, Ann. Phys. 84 (1927) 457.
104. E. Thiele and D. J. Wilson, J. Chem. Phys. 35 (1961) 1256.
105. B. O. Roos, P. R. Taylor, and P. E. M. Siegbahn, Chem. Phys. 48 (1980) 157.
106. T. H. Dunning Jr., J. Chem. Phys. 90 (1989) 1007.
107. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen,

S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, and J. A. Mont-
gomery, J. Comput. Chem. 14 (1993) 1347.

108. Alex A. Granovsky, PC GAMESS version 7.1, http://classic.chem.msu.su/gran/firefly/index.
html.

109. H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, P. Celani, T. Korona,
R. Lindh, A. Mitrushenkov, G. Rauhut, K. R. Shamasundar, T. B. Adler, R. D. Amos, A. Bern-
hardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll,
C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A. W. Lloyd,
R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklass, D. P. O’Neill,
P. Palmieri, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni,
T. Thorsteinsson, M. Wang, and A. Wolf, MOLPRO, version 2010.1, a package of ab initio
programs, see http://www.molpro.net.

110. C. C. Marston and G. G. Balint-Kurti, J. Chem. Phys. 91 (1989) 3571.
111. M. H. Levitt, Spin Dynamics: Basics of Nuclear Magnetic Resonance, 2nd edn., Wiley –

VCH, Weinheim (2008).
112. R. McWeeny, Symmetry: an Introduction to Group Theory and its Applications, Dover, New

York (2002).

http://classic.chem.msu.su/gran/firefly/index.html
http://classic.chem.msu.su/gran/firefly/index.html
http://www.molpro.net

	1 Introduction
	2 Model and techniques
	2.1 Hamiltonian in full dimensionality, and derivation of the molecular symmetry group
	2.2 Reduction of the Hamiltonian from full dimensionality to amodel with two torsional degrees of freedom
	2.3 The quantum chemistry of CCD and the method for calculation of alocalized torsional wavefunction
	2.4 The NSIs of CCD

	3 Results and discussion
	3.1 Results of molecular symmetry
	3.2 The ``first'' equilibrium structure of CCD, and the potential energy surface V0 in aneighboring domain
	3.3 Generation of all equivalent equilibrium structures of CCD, and of the PES V0 for arbitrary torsional angles
	3.4 The torsional wavefunction localized close to the ``first'' equilibrium structure
	3.5 2d molecular symmetry adapted torsional wavefunctions for NSI of CCD

	4 Conclusions
	Acknowledgement
	References

