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ABSTRACT 
This paper presents the optimal solutions of the induction 
motor (IM) fluxes and currents that minimize the total 
energy of the motor. A second order model based on 
vector control approach relating motor fluxes (states) and 
currents (controls) is considered. Optimal state and 
control trajectories of IM are obtained by solving 
algebraic Riccati equation. In addition, the simulation 
results for different weight are presented. Also this paper 
considers and compares between two cases based on the 
second order model. 
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1.  Introduction 
 
The Induction motors (IM) for many years have been 
regarded as the workhorse in industry. 
     Recently, the induction motors were evolved from 
being a constant speed motors to a variable speed. In 
addition, the most famous method for controlling 
induction motor is by varying the stator voltage or 
frequency. To use this method, the ratio of the motor 
voltage and frequency should be approximately constant. 
With the invention of Field Orientated Control [1-12, 17-
20], the complex induction motor can be modeled as a DC 
motor by performing simple transformations. 
     These transformations are known as the abc-dq 
transformations, where the stator currents are transformed 
into two dc currents using Clarke transformation. The two 
dc currents are then transformed into a rotating reference 
frame using Park transformation. 
     Transforming the stator currents allows the motor to be 
modelled as a DC motor and not a complex three-phase 
motor. 
     Using the vector control approach, several methods 
have been proposed in the literature to control the IM, for 
example, H. Zidan et al successfully applied the 

estimation method to control the induction motor drives 
without using speed sensors; they used simple speed 
estimation method for IM drive at low speed, this method 
uses the current and the input voltages in closed loop for 
rotor parameter estimation [1]. 
     While, B. Hovingh, et al presented an algorithm to 
estimate the rotor’s speed and torque from the terminal 
voltage and input current to the motor. They showed that 
measurement of the stator voltage and currents are 
sufficient to determine the rotor position, speed and 
torque of an induction motor during any conditions, 
whether transient or steady state. Their work is being 
performed to analyze the response of a Field Orientated 
Control system when the estimated waveforms are used as 
an input into the control loop [2]. 
     On the other hand, Jose Ramirez and Carlos Canudas 
de Wit presented experimental results of a nonlinear 
torque-flux optimal control for induction motor drives. 
This controller minimizes the stored magnetic energy and 
the coil losses, while satisfying torque tracking control 
objectives [3].  
     In addition, H. Rasmussen used an adaptive approach 
leading to a completely new method called Field Angle 
Adaptation (FAA). The new contribution to the 
conventional current control system in rotor field oriented 
dq-coordinates is a signal added to the field angle in the 
transformation from rotor field coordinates to stator fixed 
coordinates. This signal adapts the field angle estimate to 
the correct rotor field angle [4]. 
     In this paper, the optimal control method is applied to 
induction motor modelled by vector control or field 
oriented control (FOC). Based on the second order model 
for induction motor, which presented in [5, 7], two cases 
have been considered in this paper. The optimal controls 
and the optimal states of each case are obtained using the 
algebraic Riccati equation.  To show the effectiveness of 
the proposed method simulations results are shown in this 
paper. 
     The paper organized as follows: Section 2 reviews the 
vector control and induction motor’s second order linear 

model, section 3 formulate the optimal control problem of 
the induction motor modeled by vector control.  Section 4 
presents the two cases based on the linear model that have 

been treated and section 5 shows the simulation of both 
cases.  Finally, section 6 concluded this paper. 
 



2.  Vector control and induction motor model 
 
2.1 Direct and Quadrature axis transformation (d-q) 
 
The vector control technique uses the dynamic equivalent 
circuit of the induction motor, and this technique enables 
the induction motor to be controlled in a method similar 
to DC motor [2]. The conversion of three-stator currents 
into two DC currents enables the speed and torque of the 
motor to be calculated in manner similar to DC motor 
(figure 1). The direct and quadrature axis transformation 
(abc-dq) converts a three-phase signal of three different 
vectors in two dimensional frame using Clarke and Park 
transformations [2, 7]. 
 

 
                 

Figure 1: 3-phase to dq equivalents 
 
     A d-q axis transformation eliminates the mutual 
magnetic coupling of the phase winding, making 
magnetic flux linkage of the current are independent to 
each other. 
     The transformation from three-phase system to two 
phase system and vice versa is as given in equations (1) 
and (2), respectively [6-9]: 
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And 
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  Moreover, the stator voltages are related to the d-q 
rotating frame of induction motor (IM) as given in 
equation (3): 
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     Where scsbsa iii ,,  are the stator currents in abc frame, 

scsbsa vvv ,,  are stator voltages in abc frame, sdsq ii , are  

the stator currents in dq rotating frame, and  sdsq vv ,  are 

stator voltages in dq rotating  frame, θ : the phase angle 
between rotating frame and stationary frame. 
 
2.2 Induction motor model 
 
Figure 2 shows the d-q equivalent circuits for a three 
phase symmetrical squirrel cage induction motor in 
arbitrary rotating frame with zero sequence component 
neglected [6, 7, 9, 10]. 
     From the dynamic equivalent circuit, the induction 
motor parameters can be expressed in matrix equation (4), 
assuming that the rotor bars in squirrel cage induction 
motor are shorted out and the rotor voltages equal zero. 
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     Where rs RR ,  are the stator and the rotor resistance 

per phase respectively,  rs LL ,  are the stator, and the 

rotor inductance per phase, respectively, 
dt
dp =  

operator, ms ωω ,  are synchronous and rotor speeds 
respectively. 

 
Moreover, the rotor flux linkages are given by equation (5 
& 6): 
 

 
(a) Equivalent in q-axis 

 
(b) Equivalent in d-axis 

Figure 2: Dynamic equivalent circuit for induction motor. 
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Solving for driqri ,  we obtain:  
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Substituting equation (5) in equation (4) and using the 
equation (6), the following state equation model can be 
obtained [7]:  
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Equation (7) represents a second order model for the 
induction motor in terms of the flux parameter and the 
currents. This equation can be rewritten in a compact 
form as: BuAxx +=& . 

     Where [ ] [ ]Tdrqr
Txxx ψψ== 21  (Flux 

components), and [ ] [ ]Tdsqs
T iiuuu == 21  (Current 

components). 
 
 
3.  Optimal Control problem 
 
The standard theory of the optimal control is presented in 
[14,15,16]. For linear time invariant system with state 
vector (x) and control vector (u), the optimal control 
problem is given by: 
Find the optimal control vector u* that minimizes the 
performance index 

( )∫ +=
ft

TT dtRuuQxxJ
02

1                       (8) 

Subject to state equation constraints  
 

)()()( tButAxtx +=&                                   (9) 
 
     Where Q is a positive semi-definite real symmetric 
state weighting matrix and R is positive definite real 
symmetric control weighting matrix. 
     The choice of the element Q and R allows the relative 
weighting of individual state variables of fluxes and 
individual control inputs of current components as well as 
relative weighting  state vector (fluxes) and control vector 
(current components) against each other. 
     In case of the time invariant system A, the optimal 
control feedback matrix K results in constant –gain state 

feedback comparable to multivariable P- controller with 
currents. 
     It is well known that the optimal state feedback control 
that solves this problem is given by 
 

)()(* tKxxu −=                                                (10) 
 
     And matrix gain K is given by 
 

PBRK T1−=                                                              (11) 
 
     For the case of the time invariant system, and tf=∞ the 
optimal control feedback gain matrix K is constant. And P 
is the solution of the algebraic Riccati equation 
 

01 =+−+ − QPBPBRPAPA TT                          (12) 

     And P>0, ( )BKAPBBRA T −=− −1  stable (all 
eigenvalues in the open left half-plane) [13]. 
     For our problem we consider the following 
performance index:  
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     which minimizes total energy in the induction motor 
which is the sum of the stored magnetic energy in the 
inductance, the dissipated energy in the rotor and stator 
resistances, the dissipated energy due to core losses 
(Foucault currents and magnetic hysterics), and 
mechanical energy [11, 16, 17]. 
 
4. Problem Formulation 
 
Based on the second order model of the induction motor   
shown in equation 6, we will consider the following two 
cases: 
 
• Case I: The frequency difference between 
the synchronous speed and the mechanical 
speed [5, 20], i.e. 0=− ms ωω . Therefore, 
equation (7) become 
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     And the optimal control problem is to determine the 
optimal feedback control vector [iqs ids], that minimizes 
the performance index  
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Subject to state equation (14). 
     This problem is solved using the optimal control 
technique presented in section 3. 
 
• Case II:  The difference between the 
synchronous speed and the mechanical speed is 
given by: 

sslms ωωω .=−                                                        (16) 
     Where sl: represent the induction motor slip [7, 18]. 
     By substituting (16) into equation (7) will get: 

⎥
⎦

⎤
⎢
⎣

⎡
+⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−−
=⎥
⎦

⎤
⎢
⎣

⎡

dsi
dsi

rR
rL
mL

dr
qr

rR
rL

ssl

ssl
rR
rL

dr
qr

ψ
ψ

ω

ω

ψ
ψ
&

&

   
                                                                                      (17)    
     And the optimal control problem is to find the optimal 
feedback control vector that minimizes (15) subject to 
(17). 
Also, this problem is solved using the method presented 
in section 3. 
 
 
5.  Simulation 
 
To show the solution of the two problems given in the 
previous section, a simulation program using MATLAB 
and SIMULINK is implemented.  Different weighting 
matrices have been considered. 
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eigenvalues 0, 21 ≥qq  , and 0, 21 >rr . 
     The simulation has been performed using five sets of 
Q and R; 100,10,1,1.0,01.0, 21 =qq , and 

.100,10,1,1.0,01.0, 21 =rr  respectively. 
     In addition, we show the simulation of the rotor speed 
given by [19]: 
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     Where z is the number of the poles of the induction 
motor, I is the moment of inertia, F is the viscous friction 
coefficient, Tl is the torque load. 
      Figure 3 shows the simulation result of (case I) 
presented in section 4. Figure 3.a shows the state 
feedback control vector, figure 3.b shows the states, and 
figure 3.c for the motor speed under load torque 1.5 Nm, 
rated speed =1440 rpm, z= 2 poles, Rs=1.15 Ω, Rr=1.44 Ω, 
Lm=0.144 H, Ls=Lr= 0.156 H, I= 0.013 kg.m², 
F=0.002Nm.s/rad and initial states [-5 -5] weber. 

    While Figure 4 shows the simulation result of the (case 
II) of section 4. Where figure 4.a shows the state feedback 
control vector, figure 4.b shows the states, and figure 4.c 
for the motor speed under load torque 1.5 Nm and with 
same previous motor parameters.   
 

 
(a) 

 
(b) 

 
(c) 

Figure 3: Case I Simulation 
 

 
(a) 

 
(b) 

 
(c) 

Figure 4: Case II Simulation 
 
     From the previous simulation, we noticed that 
changing the weighting matrices do not effect the optimal 
control or the optimal states. 
 



 
3.  Conclusion 
 
In this paper, we obtained the optimal trajectories of states 
(IM fluxes) and controls (IM currents). These trajectories 
are obtained by minimizing the quadrature performance 
measure or total energy of the induction motor. 
     The simulation is carefully done to obtain the controls, 
states trajectories using matlab and simulink programs. 
     Using different state and control weighting matrices (Q 
and R) didn’t affect the response as shown in the figures 
(3a, 3b, 4a, 4b), so that the speed response wasn’t affected 
too as shown in figures (3c and 4c). 
     Moreover, the speed responses of the different cases 
presented in section 4 are not different as shown in figures 
(3c and 4c). 
 
 
References: 
 
[1] H. Zidan, S. Fujii, T. Hanamoto & T. Tsuji, Simple 
sensorless vector control for variable speed induction 
motor drives, T IEE,120-D(10), 2000, 1165-1170. 
 
[2] B. Hovingh , W.W.L Keerthipala, & W. Y. Yan, 
Sensorless speed estimation of an induction motor in a 
field orientated control system, School of Electrical and 
Computer Engineering Curtin University of Technology, 
Australia, In Press. 
 
[3] J. Ramirez & C. Canudas de Wit, Performance 
evaluation of induction motors under optimal-energy 
control,  Laboratoire d'Automatique de Grenoble, 
Submitted to the IEEE Trans. on control systems 
technology, In Press. 
 
[4] H. Rasmussen, Adaptive field oriented control of 
induction motors, Aalborg Univesity, 2002. 
 
[5] Z. Ismail, L. Luc, & F. Christophe, An extended filter 
and appropriate model for the real time estimation of the 
induction motor variables and parameters, LEC, UTC, In 
press. 
 
[6] O. I. Okoro, MATLAB simulation of induction 
machine saturable leakage and magnetizing inductance, 
Pracific Journal of science and technology, 5(1), 2003, 5-
15. 
[7] M. H. Rashid, Power electronics circuit, devices and 
applications, Pearson Prentice Hall, 2004. 
 
[8] O. Barambones, A.J. Garrido & F.J. Maseda, A 
sensorless robust vector control of induction motor drives, 
Universidad del Pa´ıs Vasco. In Press, 1 -6. 
 
[9] R. Marino, S. Peresada, & P. Valigi, Adaptive input 
output linearizing control of induction motor, IEEE Tran. 
Automatic Control, 38(2), 1993, 208-221.  
 

[10] B. Ozpineci and L. M. Tolbert, Simulink 
implmetation of induction machine model- a modular 
approche, IEEE, 2003, 728-734. 
 
[11] O. Wasynczuk, S. D. Sudhoff, I. G. Hansen, & L. M. 
Taylor, A maximum torque per ampere control strategy 
for induction motor drives, NASA Lewis Research Center, 
In Press. 
 
[12] S. H. Kim, T. S. Park, J. Y. Yoo, & G. T. Park, 
Speed-sensorless vector control of an induction motor 
using neural network speed estimation, IEEE Tran. on 
Industrial Electronics, 48(3), 2001, 609-615. 
 
[13] A. E. Rryson, Jr & Y. C. Ho, Applied Optimal 
control, Hemisphere publication corporation.1975. 
 
[14] F. L. Lewis and V. L. Syrmos, Optimal Control 
theory, A Wiley Intersciece Publication, 1995. 
 
[15] D. E. Kirk, Optimal Contro1, Prentice Hall Inc., 
1970. 
 
[16] J. Ramirez & C. Canudas de Wit, Optimal torque 
control for current-fed induction motors, Submitted to the 
IEEE Trans. on control systems technology, In Press. 
 
[17] D. Georges, J. Ramirez & Carlos Canudas de Wit, 
Nonlinear H2 and H∞ optimal controllers for current-
feeded induction motors, Submitted to the IEEE Trans. on 
control systems technology, In Press. 
 
[18] G K Dubey , Fundamentals of electrical drives, 
Narosa  Publishing House, 1995. 
 
[19] M. A. Ouhrouche & C. Volat., Simulation of a direct 
field-oriented controller for an induction motor using 
MATLAB/SIMULINK software package, Proc. of the 
IASTED International Conf. on modeling and simulation, 
Pennsylvania, USA , 2000, 082-087. 
 
[20] MATLAB (6.5) and SIMULINK (5.5) tutorials, 
2002. 


