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JÜRGEN GARLOFF§4

Abstract. Totally nonnegative matrices, i.e., matrices having all their minors nonnegative, and5
matrix intervals with respect to the checkerboard partial order are considered. It is proven that if the6
two bound matrices of such a matrix interval are totally nonnegative and satisfy certain conditions,7
then all matrices from this interval are totally nonnegative and satisfy these conditions, too, hereby8
relaxing the nonsingularity condition in a former paper [M. Adm, J. Garloff, Intervals of totally9
nonnegative matrices, Linear Algebra Appl. 439 (2013), pp.3796-3806].10

Key words. Matrix interval, Checkerboard partial order, Totally nonnegative matrix, Cauchon11
matrix, Cauchon Algorithm, Descending rank conditions.12

AMS subject classifications. 15B4813

1. Introduction. A real matrix is called totally nonnegative if all its minors14

are nonnegative. Such matrices arise in a variety of ways in mathematics and its15

applications. For background information the reader is referred to the monographs16

[9], [15]. In [2], the following interval property was shown: Consider the checkerboard17

order which is obtained from the usual entry-wise order on the set of the square real18

matrices of fixed order by reversing the inequality sign for each entry in a checkerboard19

fashion. If the two bound matrices of an interval with respect to the checkerboard20

order are nonsingular and totally nonnegative, then all matrices lying between the21

two bound matrices are nonsingular and totally nonnegative, too. The purpose of22

this paper is to relax the nonsingularity assumption on the two bound matrices and23

to allow rectangular matrices instead of square matrices. For a collection of various24

classes of matrices which enjoy an interval property see [11].25

We mention a closely related problem, viz. given a totally nonnegative matrix,26

find for each of its entries the maximum allowable perturbation such that the per-27

turbed matrix remains totally nonnegative. This problem was solved in [3] for the28

tridiagonal totally nonnegative and in [7] for the general totally nonnegative matrices.29

For the totally positive matrices, i.e., matrices having all their minors positive (here30

the perturbed matrix has in turn to be totally positive), it was established in [10], see31

also [9, Section 9.5], for a few specified entries and in [6] for arbitrary entries. The32

similar problem for a uniform perturbation of all the coefficients of a totally positive33

matrix was considered in [13, Section 7].34

The organization of our paper is as follows. In Section 2, we introduce our notation35

and give some auxiliary results which we use in the subsequent sections. In Section 3,36

we recall the condensed form of the Cauchon Algorithm and some of its properties. In37

Section 4, we present our new results on the application of the Cauchon Algorithm,38
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2 M. ADM, K. MUHTASEB, A. ABDELGHANI, AND J. GARLOFF

and apply them in the last section to the above mentioned interval problem.39

2. Notation and auxiliary results.40

2.1. Notation. We introduce the notation used in our paper. For integers
n,m, κ, we denote by S the set {1, . . . , n− 1} × {1, . . . ,m− 1}, and by Qκ,n the set
of all strictly increasing sequences of κ integers chosen from {1, 2, . . . , n}. Let A be a
real n-by-m matrix. For α = {α1, α2, . . . , ακ} ∈ Qκ,n, β = {β1, β2, . . . , βµ} ∈ Qµ,m,
we denote by A[α|β] the κ-by-µ submatrix of A contained in the rows indexed by
α1, α2, . . . , ακ and columns indexed by β1, β2, . . . , βµ. We suppress the curly brack-
ets when we enumerate the indices explicitly. A measure of the gaps in an index
sequence α ∈ Qκ,n is the dispersion of α, denoted by d(α), which is defined by
d(α) := ακ − α1 − κ + 1. If d(α) = 0, we call α contiguous, if d(α) = d(β) = 0, we
call the submatrix A[α|β] contiguous, and in the case κ = µ, we call the correspond-
ing minor contiguous. For any contiguous κ-by-κ submatrix A[α|β] of A, we call the
submatrix

A[α1, . . . , ακ, ακ + 1, . . . , n | 1, . . . , β1 − 1, β1, . . . , βκ]

of A having A[α|β] in its upper right corner the left shadow of A[α|β], and, analogously,
we call the submatrix

A[1, . . . , α1 − 1, α1, . . . , ακ | β1, . . . , βκ, βκ + 1, . . . ,m]

having A[α|β] in its lower left corner the right shadow of A[α|β]. By Eij we denote41

the matrix in Rn,m which has in position (i, j) a one, while all other entries are42

zero. A matrix A ∈ Rn,m is called totally nonnegative (abbreviated TN henceforth)43

if detA[α|β] ≥ 0, for all α, β ∈ Qκ,n′ , κ = 1, 2, . . . , n′, where n′ := min {n,m}. If a44

totally nonnegative matrix is also nonsingular, we write NsTN . If n = m, we set45

A# := TAT , where T = (tij) is the permutation matrix of order n (antidiagonal46

matrix) with tij := δi,n−j+1, i, j = 1, . . . , n. If A is TN , then A# is TN , too, e.g., [9,47

Theorem 1.4.1 (iii)].48

We endow Rn,m with two partial orders: Firstly, with the usual entry-wise partial49

order: For A = (akj), B = (bkj) ∈ Rn,m50

A ≤ B :⇔ aij ≤ bij , i = 1, . . . , n, j = 1, . . . ,m.

Secondly, with the checkerboard partial order, which is defined as follows

A ≤∗ B :⇔ (−1)i+jaij ≤ (−1)i+jbij , i = 1, . . . , n, j = 1, . . . ,m.

We denote by I(Rn,m) the set of all matrix intervals of order n-by-m with respect to
the checkboard partial order

[A,B] := {Z ∈ Rn,m | A ≤∗ Z ≤∗ B} .

2.2. Auxiliary results. In this subsection we list some facts that will be em-51

ployed in Sections 4 and 5. We will often make use of the following determinantal52

identity.53

Lemma 1. (Sylvester’s Determinantal Identity), see, e.g., [9, pp.29-30]
Partition A ∈ Rn,n, n ≥ 3, as follows:

A =

 c A12 d
A21 A22 A23

e A32 f

 ,
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INTERVALS OF TOTALLY NONNEGATIVE MATRICES 3

where A22 ∈ Rn−2,n−2 and c, d, e, f are scalars. Define the submatrices

C :=

(
c A12

A21 A22

)
, D :=

(
A12 d
A22 A23

)
,

E :=

(
A21 A22

e A32

)
, F :=

(
A22 A23

A32 f

)
.

Then if detA22 6= 0, the following relation holds

detA =
detC detF − detD detE

detA22
.

The following two lemmata provide information on the rank of certain submatrices54

of TN matrices.55

Lemma 2. [9, Theorem 7.2.8] Suppose that A ∈ Rn,m is TN , B := A[α | β] is a56

contiguous, rank deficient submatrix of A, and both A[1, . . . , n | β] and A[α | 1, . . . ,m]57

have greater rank than B. Then either the left shadow or the right shadow of B has58

the same rank as B.59

Lemma 3. E.g., [15, Theorem 1.13] All principal minors of an NsTN matrix are60

positive.61

Monotonicity properties of the determinant through matrix intervals are given in62

the next two lemmata.63

Lemma 4. [2, Lemma 3.2] Let [A,B] ∈ I(Rn,n), A be NsTN , and B be TN .
Then for any Z ∈ [A,B], the following inequalities hold

detA ≤ detZ ≤ detB.

Lemma 5. Let [A,B] ∈ I(Rn,n), A and B be TN , and A[2, . . . , n] be nonsingular.
Then for any Z ∈ [A,B], the following inequalities are true

detA

detA[2, . . . , n]
≤ detZ

detZ[2, . . . , n]
≤ detB

detB[2, . . . , n]
.

Proof. Put A1 := A+ εE11, Z1 := Z + εE11, and B1 := B + εE11 for some ε > 0.64

Then A1 ≤∗ Z1 ≤∗ B1, A1 is NsTN since A[2, . . . , n] is nonsingular, and B1 is TN .65

By [2, Lemma 3.2]66

67

detA1

detA1[2, . . . , n]
≤ detZ1

detZ1[2, . . . , n]
≤ detB1

detB1[2, . . . , n]
.(1)68

By Laplace expansion along the first row ofA1 we obtain detA1 = detA+εdetA[2, . . . , n],
with similar expansions of detZ1, and detB1, which we substitute into (1) to get

detA

detA[2, . . . , n]
+ ε ≤ detZ

detZ[2, . . . , n]
+ ε ≤ detB

detB[2, . . . , n]
+ ε,

from which the claim follows.69

Finally, we recall a certain type of rank conditions associated with the rank of70

sets of submatrices of a matrix.71
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4 M. ADM, K. MUHTASEB, A. ABDELGHANI, AND J. GARLOFF

Definition 6. Let A ∈ Rn,n. Then A satisfies the descending rank conditions72

if for all l with 1 ≤ l ≤ n − 1, for all z with 0 ≤ z ≤ l − 1, and for all p with73

l − z ≤ p ≤ n− z − 1, the following two sets of inequalities are satisfied74

rankA[p+ 1, . . . , p+ z + 1|1, . . . , l] ≤ rankA[p, . . . , p+ z|1, . . . , l],75

76

rankA[1, . . . , l|p+ 1, . . . , p+ z + 1] ≤ rankA[1, . . . , l|p, . . . , p+ z].77

3. The condensed form of the Cauchon Algorithm and some of its78

properties.79

3.1. The condensed form of the Cauchon Algorithm. We recall the defini-80

tion of Cauchon diagrams and from [4] the condensed form of the Cauchon Algorithm81

which reduces the complexity of the orginal algorithm [12], [14].82

In order to formulate the Cauchon Algorithm we need the following notation. We
denote by ≤ and ≤c the lexicographic and colexicographic orders, respectively, on N2,
i.e.,

(g, h) ≤ (i, j) :⇔ (g < i) or (g = i and h ≤ j),

(g, h) ≤c (i, j) :⇔ (h < j) or (h = j and g ≤ i).

Definition 7. An n-by-m Cauchon diagram C is an n-by-m grid consisting of83

n ·m squares colored black and white, where each black square has the property that84

either every square to its left (in the same row) or every square above it (in the same85

column) is black.86

We denote by Cn,m the set of all n-by-m Cauchon diagrams. We fix positions in87

a Cauchon diagram in the following way: For C ∈ Cn,m and i ∈ {1, . . . , n} , j ∈88

{1, . . . ,m} , (i, j) ∈ C if the square in row i and column j is black. Here we use the89

usual matrix notation for the (i, j) position in a Cauchon diagram, i.e., the square in90

the (1, 1) position of the Cauchon diagram is in its top left corner.91

Definition 8. Let A ∈ Rn,m and let C ∈ Cn,m. We say that A is a Cauchon92

matrix associated with the Cauchon diagram C if for all (i, j), i ∈ {1, . . . , n}, j ∈93

{1, . . . ,m}, we have aij = 0 if and only if (i, j) ∈ C. If A is a Cauchon matrix94

associated with an unspecified Cauchon diagram, we just say that A is a Cauchon95

matrix.96

We conclude this subsection with two results on the application of the Cauchon97

Algorithm, see Algorithm 1, to TN matrices.98

Theorem 9. [12, Theorem B4],[14, Theorem 2.6] Let A ∈ Rn,m. Then A is TN99

if and only if Ã is an (entry-wise) nonnegative Cauchon matrix.100

3.2. TN cells. For Rn,m, fix a set F of minors. The TN cell corresponding to101

the set F is the set of the n-by-m TN matrices for which all their zero minors are102

just the ones from F . In [14], it is proved that the Cauchon Algorithm provides a103

bijection between the nonempty TN cells of Rn,m and Cn,m. The following theorem104

gives more details about this mapping.105

Theorem 10. [14, Theorem 2.7]106

(i) Let A, B ∈ Rn,m be TN . Then A, B belong to the same TN cell if and only107

if Ã, B̃ are associated with the same Cauchon diagram.108

(ii) Let A ∈ Rn,m. Then A is contained in the TN cell associated with C ∈ Cn,m109

if and only if ãij = 0 if (i, j) ∈ C and ãij > 0 if (i, j) /∈ C.110
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Algorithm 1 (Condensed form of the Cauchon Algorithm) [1, Algorithm 3.3], [4,
Algorithm 3.2]

Let A = (aij) ∈ Rn,m. Set A(n) := A.

For k = n− 1, . . . , 1 define A(k) = (a
(k)
ij ) ∈ Rn,m as follows:

For j = 1, . . . ,m− 1,

set sj := min
{
h ∈ {j + 1, . . . ,m} | a(k+1)

k+1,h 6= 0
}

(set sj :=∞ if this set is empty),

for i = 1, . . . , k,

a
(k)
ij :=

 a
(k+1)
ij −

a
(k+1)
k+1,ja

(k+1)
i,sj

a
(k+1)
k+1,sj

, if sj <∞,

a
(k+1)
ij , if sj =∞,

and for i = k + 1, . . . , n, j = 1, . . . ,m, and i = 1, . . . , k, j = m

a
(k)
ij := a

(k+1)
ij .

Put Ã := A(1).

3.3. Lacunary sequences. We recall from [14] the definition of a lacunary111

sequence associated with a Cauchon diagram.112

Definition 11. Let C ∈ Cn,m. We say that a sequence113

γ := ((ik, jk), k = 0, 1, . . . , t),(2)114

which is strictly increasing in both arguments is a lacunary sequence with respect to115

C if the following conditions hold:116

1. (ik, jk) /∈ C, k = 1, . . . , t;117

2. (i, j) ∈ C for it < i ≤ n and jt < j ≤ m.118

3. Let s ∈ {1, . . . , t− 1}. Then (i, j) ∈ C if119

(a) either for all (i, j), is < i < is+1 and js < j,120

or for all (i, j), is < i < is+1 and j0 ≤ j < js+1121

and122

(b) either for all (i, j), is < i and js < j < js+1123

or for all (i, j), i < is+1, and js < j < js+1.124

We call t the length of γ.125

126

We recall now from [4] and [8] the construction of two special lacunary sequences.127

In the first case, let δij := detA[i0, i1, . . . , ip | j0, j1, . . . , jp] be the minor of A associ-128

ated to the sequence γ given by (2) starting at position (i, j) = (i0, j0) which is formed129

by the following procedure. We explain the construction only from the starting pair130

to the next index pair. The process is then continued analogously.131

Procedure 12. [4, Procedure 5.2] Construction of the sequence γ given by (2)132

starting at (i0, j0) to the next index pair (i1, j1) for the n-by-m TN matrix A.133

If i0 = n or j0 = m or U := {(i, j) | i0 < i ≤ n, j0 < j ≤ m, and 0 < δij} is134

void then terminate with p := 0;135

else136
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6 M. ADM, K. MUHTASEB, A. ABDELGHANI, AND J. GARLOFF

if δij0 = 0 for all i = i0 + 1, . . . , n then put (i1, j1) := minU with137

respect to the colexicographic order138
else139

put i′ := min {k | i0 < k ≤ n such that 0 < δkj0},140

J := {k | j0 < k ≤ mmboxsuchthat 0 < δi′,k};141

if J is not void then put (i1, j1) := (i′,min J)142

else put (i1, j1) := minU with respect to the lexicographic order;143

end if144

end if145

end if.146

The following proposition provides a representation of the determinant of the147

submatrix associated to a lacunary sequence with respect to CÃ.148

Proposition 13. [8, Corollary 3.3] Let A ∈ Rn,m be such that Ã is a Cauchon149

matrix and let γ = ((i0, j0), (i1, j1), . . . , (it, jt)) be a lacunary sequence with respect to150

CÃ. Then the representation151

detA[i0, i1, . . . , it|j0, j1, . . . , jt] = ãi0,j0 · ãi1,j1 · · · ãit,jt(3)152

holds.153

The following proposition shows that a certain sequence of zeros in a column or154

a row of Ã is the result of a zero column or row or submatrix in the bottom left or155

top right part of A.156

Proposition 14. Let A ∈ Rn,m be such that Ã ∈ Rn,m is a Cauchon matrix.157

Then158

(i) If Ã[i, . . . , n | j] = 0 for some i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}, then all159

entries of A[i, . . . , n | 1, . . . , j] are zero or the jth column of A is zero.160

(ii) If Ã[i | j, . . . ,m] = 0 for some i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}, then all161

entries of A[1, . . . , i | j, . . . ,m] are zero or the ith row of A is zero.162

Proof. We only give the proof for (i) since the proof of (ii) is parallel. Since Ã
is a Cauchon matrix and Ã[i, . . . , n | j] = 0, we have Ã[i, . . . , n | 1, . . . , j] = 0 or
Ã[1, . . . , n | j] = 0. In the following we assume that Ã[i, . . . , n | 1, . . . , j] = 0. We
proceed by decreasing induction on the row index to show that ast = 0, s = i, . . . , n,
t = 1, . . . , j. For s = n, by Algorithm 1, ant = ãnt = 0, t = 1, . . . , j. Assume
that aht = 0, h = s + 1, . . . , n, t = 1, . . . , j. We show that ast = 0, t = 1, . . . , j.
From each position (s, t), t = 1, . . . , j, we construct by Procedure 12 a lacunary
sequence γst = ((s, t), (s1, t1), . . . , (sp, tp)) with respect to CÃ. If γst = ((s, t)), then
by Proposition 13

ast = detA[s | t] = ãst = 0.

Therefore, we assume in the following that γst has positive length. By the induc-
tion hypothesis and Laplace expansion along the first column of A[s, s1, . . . , sp |
t, t1, . . . , tp], we obtain

detA[s, s1, . . . , sp | t, t1, . . . , tp] = ast detA[s1, . . . , sp | t1, . . . , tp].

Since γst and ((s1, t1), . . . , (sp, tp)) are lacunary sequences, it follows from Proposition163

13 that164

detA[s, s1, . . . , sp | t, t1, . . . , tp] = ãst · ãs1,t1 · · · ãsp,tp(4)165

= 0 · detA[s1, . . . , sp | t1, . . . , tp].166
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Moreover, detA[s1, . . . , sp | t1, . . . , tp] 6= 0 since ((s1, t1), . . . , (sp, tp)) is a lacunary167

sequence that starts from a nonzero entry. Therefore, we conclude from (4) that168

ast = 0. Since t ∈ {1, . . . , j} was chosen arbitrarily, we conclude that A[i, . . . , n |169

1, . . . , j] = 0. If the jth column of Ã is zero we proceed as above to show that then170

also the jth column of A is zero, which completes the proof.171

Let A ∈ Rn,m be such that Ã is a Cauchon matrix. Then by the following172

procedure a uniquely determined lacunary sequence is constructed which is related to173

the rank of A.174

Procedure 15. Let Ã ∈ Rn,m be a Cauchon matrix. Construct the sequence175

γ = ((ip, jp), . . . , (i0, j0))(5)176

as follows:177

• Put (i−1, j−1) := (n+ 1,m+ 1).178

• For k = 0, 1, . . ., define

Mk := {(i, j) | 1 ≤ i < ik−1, 1 ≤ j < jk−1, ãij 6= 0} .

If Mk = φ, put p := k − 1. Otherwise, put (ik, jk) := maxMk, where the179

maximum is taken with respect to the lexicographic order.180

Proposition 16. Let A ∈ Rn,m be such that Ã is a Cauchon matrix. Then for
all (i, j) ∈ S

rank(A[i, i+ 1, . . . , n | 1, 2, . . . , j]) = η + 1,

where η is the length of the sequence that is obtained by application of Procedure 15181

to Ã[i, i+ 1, . . . , n | 1, 2, . . . , j], provided that A[i, i+ 1, . . . , n | 1, 2, . . . , j] 6= 0.182

Proof. The matrix that is obtained by application of Algorithm 1 to B := A[i, i+183

1, . . . , n | 1, 2, . . . ,m] coincides with Ã[i, i + 1, . . . , n | 1, 2, . . . ,m]. Hence if we apply184

Procedure 15 to B̃[1, . . . , n−i+1 | 1, . . . , j] = Ã[i, i+1, . . . , n | 1, 2, . . . , j] and proceed185

parallel to the proof of [8, Theorem 3.4], we are done.186

Corollary 17. Let A ∈ Rn,m be such that Ã is a Cauchon matrix. Then for all
(i, j) ∈ S

rank(A[1, 2, . . . , i | j, j + 1, . . . ,m]) = η + 1,

where η is the length of the sequence that is obtained by application of Procedure 15187

to Ã[1, 2, . . . , i | j, j + 1, . . . ,m], provided that A[1, 2, . . . , i | j, j + 1, . . . ,m] 6= 0.188

Theorem 18. [8, Theorem 3.2] Let A ∈ Rn,m be such that Ã is a Cauchon189

matrix. Then for i = 1, . . . , n and 0 ≤ l ≤ n − i, the rows i, i + 1, . . . , i + l of A are190

linearly independent if and only if application of Procedure 15 to Ã[i, . . . , i+l|1, . . . ,m]191

results in a sequence of length l.192

Corollary 19. [8, Corollary 3.2] Let A ∈ Rn,m be such that Ã is a Cauchon ma-193

trix. Then for j = 1, . . . ,m and 0 ≤ l ≤ m−j, the columns j, j + 1, . . . , j + l of A are194

linearly independent if and only if application of Procedure 15 to Ã[1, . . . , n|j, . . . , j+l]195

results in a sequence of length l.196

3.4. Descending rank conditions. In this subsection, we link the descending197

rank conditions, see Definition 6, to Algorithm 1.198

Theorem 20. [8, Theorem 4.4] Let A ∈ Rn,n and B := A#. If A satisfies the199

descending rank conditions, then the following statements hold:200
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(i) If b̃ij = 0 for some i ≥ j, then b̃it = 0 for all t < j;201

(ii) if b̃ij = 0 for some i ≤ j, then b̃tj = 0 for all t < i;202

(iii) B̃ is a Cauchon matrix.203

Theorem 21. [8, Theorem 4.8] Let A ∈ Rn,n and B := A#. Then the following204

statements are equivalent:205

(a) A satisfies the descending rank conditions.206

(b) B satisfies (i) and (ii) in Theorem 20.207

4. Relaxing nonsingularity to linear independence of certain rows and208

columns. For the rest of the paper, we assume for the ease of presentation that the209

given TN matrices do not contain a zero row or column. This is not a restriction210

because after deletion of the respective rows and columns the resulting matrix is again211

TN .212

Definition 22. Let A ∈ Rn,m be such that Ã is a Cauchon matrix. For a given213

lacunary sequence γ = ((i0, j0), (i1, j1), . . . , (ip, jp)), the order of the sequence is given214

by215

l := min
{
k | Ã[ik + 1, . . . , n|jk] = 0 or Ã[ik|jk + 1, . . . ,m] = 0

}
;(6)216

we set l := p if the set in (6) is empty.217

Condition I. Let A ∈ Rn,m be such that Ã is a Cauchon matrix. For all (i, j) ∈ S,218

the rows i + 1, . . . , i + ` and columns j + 1, . . . , j + ` of A are linearly independent219

provided that ` > 0, where ` is the smallest among the orders of all the lacunary220

sequences with respect to CÃ that start from (i, j).221

222

In the sequel, it will always be clear from the context to which pairs (i, j) ∈ S223

the quantity ` refers. Therefore, it will not be necessary to indicate this dependency.224

Lemma 23. Let A ∈ Rn,m be such that Ã is a Cauchon matrix and assume that225

Condition I holds. Then for any (i, j) ∈ S with ` > 0, there exists a lacunary sequence226

γ = ((i, j), (i1, j1), . . . , (ip, jp)) with respect to CÃ of order ` starting from (i, j) such227

that228

d(i, i1, . . . , i`) = 0 or d(j, j1, . . . , j`) = 0,(7)229

where ` is given as in Condition I.230

Proof. Suppose on the contrary that there exists (i0, j0) ∈ S with ` > 0 such
that for any lacunary sequence γ = ((i0, j0), (i1, j1), . . . , (ip, jp)) with respect to CÃ of
order ` we have d(i0, i1, . . . , i`) > 0 and d(j0, j1, . . . , j`) > 0. Moreover, assume that
γ is chosen in such a way that (i0, j0) is the maximum such pair with respect to the
lexicographic order. Therefore, we may conclude that

d(i1, . . . , i`) = 0 or d(j1, . . . , j`) = 0.

Without loss of generality we may assume that d(j1, . . . , j`) = 0 and j1 = j0 + 2.
Case 1. i` = n or ãs,j` = 0, s = i` + 1, . . . , n.

If ãs,j` = 0, s = i` + 1, . . . , n, then it follows that Ã[i` + 1, . . . , n | 1, . . . , j`] = 0

because Ã is a Cauchon matrix. Hence, in either case it is easy to see that (i`, j`) is
the maximum pair with respect to the lexicographic order of the set

{(u, v) | 1 ≤ u ≤ n, 1 ≤ v ≤ j`, ãuv 6= 0} .
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Moreover, since d(j1, . . . , j`) = 0 and γ = ((i, j), (i1, j1), . . . , (ip, jp)) is a lacunary
sequence with respect to CÃ, for s = 1, . . . , ` − 1, we have (is, js) is the maximum
pair with respect to the lexicographic order of the set

{(u, v) | 1 ≤ u < is+1, 1 ≤ v < js+1, ãuv 6= 0} .

Therefore, the sequence which is obtained by the application of Procedure 15 to the
columns j1, j2, . . . , j` coincides with the sequence ((i1, j1), (i2, j2), . . . , (i`, j`)). Now
we apply Procedure 15 to the columns j0 + 1, j0 + 2, . . . , j0 + ` which coincide with
the columns j0 + 1 = j1 − 1, j2 − 1, . . . , j` − 1. This results in the lacunary sequence
((i′1, j

′
1), . . . , (i′τ , j

′
τ )), where τ ≤ `. If τ ≤ ` − 1, then by Corollary 19, the columns

j0+1, j0+2, . . . , j0+` are linearly dependent which contradicts Condition I. Therefore,
we have τ = ` and hence j′k = jk − 1, k = 1, 2, . . . , ` = τ . Since γ is a lacunary
sequence, ` ≥ 1, A does not have a zero row or column, and j1 = j0 + 2, we have

ãt,j0+1 = 0, t = 1, 2, . . . , i1 − 1,

which implies that i′1 > i0. Since application of Procedure 15 to the columns j1, j2, . . . , j`
results in the sequence ((i1, j1), (i2, j2), . . . , (i`, j`)) and d(j1, . . . , j`) = 0, we con-
clude that for g = 0, 1, . . . , ` − 1, if d(ig, ig+1) > 0, then it follows that ãuv = 0,
u = ig + 1, . . . , ig+1 − 1, v = 1, . . . , ig+1 − 1. Therefore, we may conclude that

i′k = ik, k = 1, 2, . . . , ` = τ.

Hence the sequence which is obtained by appending ((i0, j0), (i′1, j
′
1), . . . , (i′`, j

′
`)) to a231

lacunary sequence which starts from (i′`, j
′
`) is a lacunary sequence with respect to232

CÃ, has order `, and d(j0, j
′
1, . . . , j

′
`) = 0 which contradicts our assumption.233

Case 2. j` = m or ãi`,s = 0, s = j` + 1, . . . ,m.234

The proof is parallel to the one of Case 1.235

Lemma 24. Let A ∈ Rn,m be TN and suppose Condition I holds. Then for any
(i, j) ∈ S with ` > 0 we have

detA[i+ 1, i+ 2, . . . , i+ ` | j + 1, j + 2, . . . , j + `] > 0,

where ` is given as in Condition I.236

Proof. By Theorem 9, Ã is a Cauchon matrix. Suppose on the contrary that
there exists (i0, j0) ∈ S such that the determinant of the matrix

B := A[i0 + 1, i0 + 2, . . . , i0 + ` | j0 + 1, j0 + 2, . . . , j0 + `]

vanishes. Moreover, assume that (i0, j0) is the maximum such pair with respect to
the lexicographic order and let γ = ((i0, j0), (i1, j1), . . . , (ip, jp)) be an associated
lacunary sequence with respect to CÃ of order ` > 0 with d(i0, i1, . . . , i`) = 0 or
d(j0, j1, . . . , j`) = 0 which exists by Lemma 23. Without loss of generality, we may
assume that d(j0, j1, . . . , j`) = 0. By Lemma 2 and Condition I, the left or the right
shadow of B has rank at most `−1. Since ((i1, j1), . . . , (ip, jp)) is a lacunary sequence
with ãi1,j1 6= 0, we have by Proposition 13

detA[i1, . . . , ip | j1, . . . , jp] 6= 0,

and we conclude by Lemma 3 that

detA[i1, . . . , i` | j1, . . . , j`] 6= 0.
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Because A[i1, . . . , i` | j1, . . . , j`] lies completely in the left shadow of B, the left shadow
of B has rank at least `. By Theorem 18, application of Procedure 15 to the rows
i0+1, . . . , i0+` results in the lacunary sequence ((i0+1, β1), (i0+2, β2), . . . , (i0+`, β`)).
If β1 > j0, then by Corollary 17 the right shadow of A[i0+1, i0+2, . . . , i0+`|j0+1, j0+
2, . . . , j0 + `] has rank at least `. Now we assume that β1 ≤ j0. Let s ∈ {1, 2, . . . , `}
be the smallest integer such that βs > j0. Note that s ≥ 2. Define (i′0, j

′
0) = (i0, j0)

and for k = 1, 2, . . . , τ , let

(i′k, j
′
k) := min

{
(i, j) | i = i′k−1 + 1, j > jk−1, ãij > 0

}
,

where the minimum is taken with respect to the lexicographic order. Consider the237

sequence ((i′0, j
′
0), (i′1, j

′
1), . . . , (i′τ , j

′
τ )). If j′τ = m, then this sequence is a lacunary238

sequence with respect to CÃ since for each t = 0, 1, . . . , τ − 1, i′t+1 = i′t + 1 and there239

exists ξt+1 < j′t+1 such that ãi′t+1,ξt+1
> 0. Otherwise, we append it to a lacunary240

sequence starting from (i′τ , j
′
τ ) such that the resulting sequence is a lacunary sequence241

with respect to CÃ. Hence the order of this sequence is τ which is less than ` and242

d(i′0, i
′
1, . . . , i

′
τ ) = 0 which contradicts our assumption. Therefore, β1 > j0 and the243

right shadow of B has rank at least ` which implies by Lemma 2 that detB > 0, a244

contradiction. Since we have obtained a contradiction both in the event of a left and245

right shadow, the proof is completed.246

Now we turn to the construction of a lacunary sequence with the properties stated247

in Lemma 23. The procedure is based on the following lemma.248

Lemma 25. Let A ∈ Rn,m be such that Ã is a Cauchon matrix and suppose249

Condition I holds. Then for all (i, j) ∈ S such that Ã[i + 1, . . . , n|j + 1, . . . ,m] 6= 0,250

let251

sj := min {k ∈ {i+ 1, . . . , n} | ãkj 6= 0} ,252

ti := min {k ∈ {j + 1, . . . ,m} | ãik 6= 0} ,253

provided that both sets are not empty. Then it follows that

ãsj ,j+1 6= 0 or ãi+1,ti 6= 0.

Proof. Suppose on the contrary that there exists (i0, j0) ∈ S such that Ã[i0 +254

1, . . . , n|j0 + 1, . . . ,m] 6= 0 and ãsj0 ,j0+1 = 0 and ãi0+1,ti0
= 0. Hence Ã[i0 + 1, i0 +255

2, . . . , sj0 |j0 + 1, j0 + 2, . . . , ti0 ] 6= 0, Ã[i0 + 1, i0 + 2, . . . , sj0 |j0 + 1] = 0, and Ã[i0 +256

1|j0 + 1, j0 + 2, . . . , ti0 ] = 0 since Ã is a Cauchon matrix, ãsj0 ,j0 6= 0, and ãi0,ti0 6= 0.257

Therefore, for any lacunary sequence γ = ((i0, j0), (i1, j1), . . . , (ip, jp)) that starts from258

(i0, j0) we have d(i0, i1, . . . , i`) > 0 and d(j0, j1, . . . , j`) > 0, where ` is the order of γ,259

which contradicts Lemma 23.260

Procedure 26. Construction of a lacunary sequence γ = ((i0, j0), (i1, j1), . . . , (ip, jp))261

starting at (i0, j0) ∈ S to the next index pair (i1, j1) in the n-by-m matrix A such that262

Ã is a Cauchon matrix and A satisfies Condition I.263

If U := {(i, j) | i0 < i ≤ n, j0 < j ≤ m, and 0 < ãi,j} is void then termi-264

nate with p := 0;265

else266

if ãi,j0 = 0 for all i = i0 + 1, . . . , n or ãi0,j = 0 for all j = j0 + 1, . . . ,m267

then put (i1, j1) := minU with respect to the colexicographic order and268

lexicographic order, respectively;269

This manuscript is for review purposes only.



INTERVALS OF TOTALLY NONNEGATIVE MATRICES 11

else put270

i′ := min {k | i0 < k ≤ n such that ãk,j0 6= 0} ,271

j′ := min {k | j0 < k ≤ m such that ãi0,j 6= 0} ;272

if ãi′,j0+1 6= 0 then put (i1, j1) := (i′, j0 + 1);273

else put (i1, j1) := (i0 + 1, j′);274

end if275

end if276

end if.277

5. Application to intervals of totally nonnegative matrices. In this sec-278

tion, we consider matrices that satisfy Condition I. In [2], the proof of the interval279

property of the NsTN matrices relies on the fact that the entries of Ã obtained from280

A by application of Algorithm 1 can be represented as a ratio of contiguous minors281

of A. If we relax the nonsingularity assumption and would like to employ such a282

representation, we have to avoid division by a zero minor. We accomplish this by283

using Lemma 2, where the linear independence of the respective rows and columns is284

assured by Condition I. Then only the vanishing of the left or the right shadow of a285

zero contiguous minor has to be considered.286

287

Let A ∈ Rn,m be TN . For any (i0, j0) ∈ S, we can construct a lacunary se-
quence ((i0, j0), (i1, j1), . . . , (ip, jp)) with respect to the Cauchon diagram CÃ, and by
Proposition 13 we may conclude that

detA[i0, i1, . . . , ip|j0, j1, . . . , jp] = ãi0,j0 · ãi1,j1 · · · ãip,jp .

Hence by application of this representation to the lacunary sequence ((i1, j1), . . . , (ip,288

jp)) we obtain that289

ãi0,j0 =
detA[i0, i1, . . . , ip|j0, j1, . . . , jp]

detA[i1, . . . , ip|j1, . . . , jp]
.(8)290

Therefore, each entry of Ã can be represented as a ratio of two minors. We want to291

strengthen this representation in that each entry of Ã can even be represented as a292

ratio of two contiguous minors. We call p the order of the representation (8).293

Now let A in addition satisfy Condition I with ` > 0. Then by Procedure 26, for294

any (i0, j0) ∈ S we can construct a lacunary sequence ((i0, j0), (i1, j1), . . . , (ip, jp)) of295

order ` with (7). Without loss of generality, we may assume that d(j0, j1, · · · , j`) = 0296

holds. By Proposition 14, A[i`+1, . . . , n | 1, . . . , j`] = 0 or A[1, . . . , i` | j`+1, . . . ,m] =297

0 holds. By (8) and the zero-nonzero pattern of A, we have298

ãi0,j0 =
detA[i0, i1, . . . , ip|j0, j1, . . . , jp]

detA[i1, . . . , ip|j1, . . . , jp]
299

=
detA[i0, i1, . . . , i`|j0, j1, . . . , j`] detA[i`+1, . . . , ip|j`+1, . . . , jp]

detA[i1, . . . , i`|j1, . . . , j`] detA[i`+1, . . . , ip|j`+1, . . . , jp]
300

=
detA[i0, i1, . . . , i`|j0, j1, . . . , j`]

detA[i1, . . . , i`|j1, . . . , j`]
.(9)301
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Proposition 27. Let A = (aij) ∈ Rn,m be TN and suppose Condition I holds.302

Then the entries ãij of the matrix Ã can be represented as303

ãi,j =
detA[i, i+ 1, . . . , i+ `|j, j + 1, . . . , j + `]

detA[i+ 1, . . . , i+ `|j + 1, . . . , j + `]
,(10)304

where ` is given in Condition I and is assumed to be positive.305

Proof. By Theorem 9, Ã is a nonnegative Cauchon matrix. By the preced-306

ing consideration, for each position (i0, j0) ∈ S, there exists a lacunary sequence307

((i0, j0), (i1, j1), . . . , (ip, jp)) with respect to the Cauchon diagram CÃ of order ` such308

that309

ãi0,j0 =
detA[i0, i1, . . . , i`|j0, j1, . . . , j`]

detA[i1, . . . , i`|j1, . . . , j`]
.(11)310

Using Lemma 23, we can assume without loss of generality that d(j0, j1, . . . , j`) = 0.
By Proposition 13 and Lemma 3, detA[i1, i2, . . . , i`|j1, j2, . . . , j`] 6= 0 holds, since
((i1, j1), . . . , (ip, jp)) is a lacunary sequence and detA[i1, i2, . . . , ip|j1, j2, . . . , jp] 6= 0.
By Proposition 16, the rank of the matrix B := A[i0 + 1, i0 + 2, . . . , n|1, 2, . . . , j`] is
`. Let Ri0+1, Ri0+2, . . . , Rn be the rows of the matrix B. Hence we may represent

Rh =
∑`
s=1 αh,sRis , h = i0 + 1, i0 + 2, . . . , i0 + `. Therefore, we may conclude

A[i0 + 1, i0 + 2, . . . , i0 + ` | 1, 2, . . . , j`] = CA[i1, . . . , i`|1, 2, . . . , j`],

where C = (ct1,t2) ∈ R`,` with ct1,t2 = αi0+t1,t2 , t1, t2 = 1, 2, . . . , `.311

In particular, we obtain for a special choice of the column vectors312

A[i0 + 1, i0 + 2, . . . , i0 + `|j0 + 1, j0 + 2, . . . , j0 + `] = CA[i1, i2, . . . , i`|j0 + 1, j0 + 2, . . . , j0 + `]313

= CA[i1, i2, . . . , i`|j1, j2, . . . , j`],314

whence315

detA[i0 + 1, i0 + 2, . . . , i0 + `|j0 + 1, j0 + 2, . . . , j0 + `] =(12)316

detC detA[i1, i2, . . . , i`|j1, j2, . . . , j`].317

Since by Lemma 24

detA[i0 + 1, i0 + 2, . . . , i0 + `|j0 + 1, j0 + 2, . . . , j0 + `] 6= 0

and
detA[i1, i2, . . . , i`|j1, j2, . . . , j`] 6= 0,

we conclude that detC 6= 0.318

Moreover, we obtain319

A[i0, i0 + 1, . . . , i0 + `|j0, j0 + 1, . . . , j0 + `] = C ′A[i0, i1, . . . , i`|j0, j1, . . . , j`],320

where C ′ ∈ R`+1,`+1 is given by

C ′ =

[
1 0
0 C

]
which yields321

detA[i0, i0 + 1, . . . , i0 + `|j0, j0 + 1, . . . , j0 + `](13)322

= detC ′ detA[i0, i1, . . . , i`|j0, j1, . . . , j`].323

Since detC ′ = detC, the representation follows now from (11)-(13) .324
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Theorem 28. Let A = (akj), B = (bkj) ∈ Rn,m be TN such that Condition I325

holds and A ≤∗ B. Then Ã ≤∗ B̃ and the entries ãkj and b̃kj of Ã and B̃, respectively,326

can be represented as ratios of contiguous minors of the same order, k = 1, . . . , n,327

j = 1, . . . ,m.328

Proof. Let A and B be TN . Then by Theorem 9, Ã and B̃ are nonnegative329

Cauchon matrices. We show by decreasing induction with respect to the lexicographic330

order on (k, j) that if ãkj and b̃kj have representations as in (10) of order l and l′,331

respectively, then both of them can be represented as ratios of contiguous minors332

of the same order and (−1)k+j ãkj ≤ (−1)k+j b̃kj . For k = n or j = m, the result333

is trivial and follows by the application of Algorithm 1 and the assumption that334

A ≤∗ B. Suppose the claim holds for all (k◦, j◦) such that (k◦, j◦) > (k, j) with335

respect to the lexicographic order. We show that the claim holds for the entries in the336

position (k, j). Let ((k, j), (k1, j1), . . . , (kp, jp)) and ((k, j), (k′1, j
′
1), . . . , (k′p′ , j

′
p′)) be337

the lacunary sequences that start from the position (k, j) with respect to the Cauchon338

diagrams CÃ and CB̃ , respectively. Then by Proposition 27, ãkj and b̃kj allow the339

following representations1340

ãkj =
detA[k, . . . , k + l|j, . . . , j + l]

detA[k + 1, . . . , k + l|j + 1, . . . , j + l]
,(14)341

342

b̃kj =
detB[k, . . . , k + l′|j, . . . , j + l′]

detB[k + 1, . . . , k + l′|j + 1, . . . , j + l′]
,(15)343

where l and l′ are defined as in Condition I.
Let k+j be even; the proof of the case that k+j is odd is parallel. Then the following
three cases are possible:
Case 1: Suppose that l = l′. Then by (14), (15), and Lemma 5, we have

ãkj ≤ b̃kj .

Case 2: Suppose that l < l′. By Lemma 23 and without loss of generality, we
may assume that d(j0, j1, . . . , jl) = 0. If k = n − 1, then l′ = 1, l = 0. Hence
Ã[n | 1, . . . , j] = 0 or Ã[1, . . . , n − 1 | j + 1, . . . ,m] = 0 which implies by Proposi-
tion 14 that A[n | 1, . . . , j] = 0 or A[1, . . . , n − 1 | j + 1, . . . ,m] = 0. In particular,
anj = 0 or an−1,j+1 = 0. Thus bnj = 0 or bn−1,j+1 = 0 since n + j is odd and
A ≤∗ B which implies that B[n | 1, . . . , j] = 0 or B[1, . . . , n − 1 | j + 1, . . . ,m] = 0.
Therefore, B̃[n | 1, . . . , j] = 0 or B̃[1, . . . , n − 1 | j + 1, . . . ,m] = 0. Whence
l′ = 0 which is a contradiction. Let h := min {s : ãks+1,js = 0}. The sequence
((kh+1, jh), (kh+1, jh+1), . . . , (kp, jp)) is a lacunary sequence since d(j0, j1, . . . , j`) = 0.
Because ãkh+1,jh = 0 and d(j0, j1, . . . , j`) = 0, we conclude by the induction hypoth-
esis and Proposition 13 that

detA[kh + 1, kh + 2, . . . , kh + 1 + l − h|jh, jh + 1, . . . , jh + l − h] = 0.

Since kh = k + h and jh = j + h, we obtain

detA[k + h+ 1, k + h+ 2, . . . , k + 1 + l|j + h, j + h+ 1, . . . , j + l] = 0.

By Lemma 3, it follows that

detA[k + 1, . . . , k + l + 1|j, . . . , j + l] = 0,

1If l = 0 or l′ = 0, we employ the convention that the respective denominator is 1.
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and consequently by Lemma 4,

detB[k + 1, . . . , k + l + 1|j, . . . , j + l] = 0

since otherwise we would have detA[k + 1, . . . , k + l + 1|j, . . . , j + l] > 0. By using344

Sylvester’s Identity and again Lemma 3, we obtain345

b̃kj =
detB[k, . . . , k + l′|j, . . . , j + l′]

detB[k + 1, . . . , k + l′|j + 1, . . . , j + l′]
346

=
detB[k, . . . , k + l′ − 1|j, . . . , j + l′ − 1] detB[k + 1, . . . , k + l′|j + 1, . . . , j + l′]

detB[k + 1, . . . , k + l′|j + 1, . . . , j + l′] detB[k + 1, . . . , k + l′ − 1|j + 1, . . . , j + l′ − 1]
347

− detB[k, . . . , k + l′ − 1|j + 1, . . . , j + l′] detB[k + 1, . . . , k + l′|j, . . . , j + l′ − 1]

detB[k + 1, . . . , k + l′|j + 1, . . . , j + l′] detB[k + 1, . . . , k + l′ − 1|j + 1, . . . , j + l′ − 1]
348

=
detB[k, . . . , k + l′ − 1|j, . . . , j + l′ − 1]

detB[k + 1, . . . , k + l′ − 1|j + 1, . . . , j + l′ − 1]
.349

If l′ = l+ 1, then b̃kj has order l. Otherwise, apply Sylvester’s Identity repeatedly to
obtain the required order.
Case 3: Suppose that l′ < l. Without loss of generality assume that d(j′0, j

′
1, . . . , j

′
l′) =

0. Let A1 := A[k+1 . . . , k+l|j+1, . . . , j+l] and B1 := B[k+1 . . . , k+l|j+1, . . . , j+l],
then A1 is NsTN and A1 ≤∗ B1. By Lemma 4, we obtain

0 < detA1 ≤ detB1.

We conclude that B1 is nonsingular.
Let h := max {s : d(k′0, k

′
1, . . . , k

′
s) = 0}. Then define the sequence

((k′h + 1, j′h), (k′h+1, j
′
h+1), . . . , (k′p′ , j

′
p′))

which is a lacunary sequence. By the induction hypothesis, detB[k′h + 1, . . . , k′h +350

l′|j′h, . . . , j′h+l′−1] = 0. By Lemma 3, detB[k′h+1, . . . , k′h+l′+s|j′h, . . . , j′h+l′−1+s] =351

0, s = 1, 2, . . . .352

By using Sylvester’s Identity if l = l′ + 1, we obtain353

354

b̃kj =
detB[k, k + 1 . . . , k + l′ + 1|j, j + 1, . . . , j + l′ + 1]

detB[k + 1, . . . , k + l′ + 1|j + 1, . . . , j + l′ + 1]
355

=
detB[k, k + 1 . . . , k + l|j, j + 1, . . . , j + l]

detB[k + 1, . . . , k + l|j + 1, . . . , j + l]
.356

If l > l′+ 1, we apply Sylvester’s Identity repeatedly to arrive at the required order.357

Theorem 29. Let A,B,Z ∈ Rn,n be such that A ≤∗ Z ≤∗ B. Let A, B be TN358

and satisfy the descending rank conditions, and let A#, B# satisfy Condition I. Then359

Z is TN and satisfies the descending rank conditions.360

Proof. Put A1 := A#, B1 := B#, Z1 := Z#. Then A1 ≤∗ Z1 ≤∗ B1, A1, B1 are361

TN , and by assumption, Condition I holds for both A1 and B1. Then by Theorem362

9, Ã1 = (ãij) and B̃1 = (b̃ij) are nonnegative Cauchon matrices and satisfy condi-363

tions (i)-(ii) in Theorem 20. By Theorems 9 and 21 it suffices to show that Z̃1 is a364

nonnegative Cauchon matrix and satisfies conditions (i)-(ii) in Theorem 20.365
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By Theorem 28, ãij and b̃ij can be represented as ratios of contiguous minors of
the same order, i.e.,

ãij =
detA1[i, i+ 1 . . . , i+ `|j, j + 1, . . . , j + `]

detA1[i+ 1, . . . , i+ `|j + 1, . . . , j + `]
,

b̃ij =
detB1[i, i+ 1, . . . , i+ `|j, j + 1, . . . , j + `]

detB1[i+ 1, . . . , i+ `|j + 1, . . . , j + `]
,

for some `. By Lemma 5,366

Ã1 ≤∗ Z ′ ≤∗ B̃1,(16)367

where Z ′ = (z′ij) with

z′ij :=
detZ1[i, i+ 1, . . . , i+ `|j, j + 1, . . . , j + `]

detZ1[i+ 1, . . . , i+ `|j + 1, . . . , j + `]
.

From (16) it follows that Z ′ ≥ 0. If z′ii = 0, then by (16), ãii = 0. Since A satisfies the368

descending rank conditions we can apply Theorem 20 to conclude that ãsi = ãit = 0,369

s, t = 1, . . . , i. Again by (16), we conclude that b̃i−1,i = b̃i,i−1 = 0 and since B satisfies370

the descending rank conditions, we obtain that b̃it = b̃si = 0, s, t = 1, . . . , i−1. Hence371

z′it = z′si = 0, s, t = 1, . . . , i. We proceed in the same way if z′ij = 0, i < j or i > j, to372

obtain:373

(i) If z′ij = 0 for some i ≥ j, then z′it = 0 for all t < j;374

(ii) if z′ij = 0 for some i ≤ j, then z′tj = 0 for all t < i.375

Therefore, Z ′ is a Cauchon matrix. If we are able to show that Z ′ = Z̃1, then by376

Theorems 9 and 21 we are done.377

Claim: Z ′ = Z̃1.378

We proceed by decreasing induction with respect to the lexicographic order on the379

pairs (i, j), i, j = 1, . . . , n. By definition, z′nj = znj = z̃nj for all j = 1, . . . , n.380

Suppose that we have shown the claim for each pair (i◦, j◦) such that i◦ = i+1, . . . , n,381

j◦ = 1, . . . , n and i◦ = i, j◦ = j + 1, . . . , n. Without loss of generality we may382

assume that i + j is even. Let ((i, j), (i′′1 , j
′′
1 ), . . . , (i′′p1 , j

′′
p1)) be a lacunary sequence383

with respect to CZ′ such that `
′′

is the minimum order and d(i, i′′1 , . . . , i
′′
`′′) = 0 or384

d(j, j′′1 , . . . , j
′′
`′′) = 0. Without loss of generality, assume that d(j, j′′1 , . . . , j

′′
`′′) = 0 and385

i ≥ j. By (9) we have the following representation386

z̃ij =
detZ1[i, i′′1 , . . . , i

′′
`′′ |j, j′′1 , . . . , j′′`′′ ]

detZ1[i′′1 , . . . , i
′′
`′′ |j′′1 , . . . , j′′`′′ ]

.(17)387

By Proposition 16, rank(Z1[i′′1 , i
′′
1 + 1, . . . , n|j′′1 , . . . , j′′`′′ ]) = `′′ since the lacunary se-

quence ((i′′1 , j
′′
1 ), . . . , (i′′`′′ , j

′′
`′′)) coincides with the one that is constructed by Procedure

15 applied to the columns j′′1 , . . . , j
′′
`′′ of Z ′. Hence

Z1[i+ 1, i+ 2, . . . , i+ `′′|j + 1, j + 2 . . . , j + `′′] = CZ1[i′′1 , i
′′
2 , . . . , i

′′
`′′ |j′′1 , j′′2 , . . . , j′′`′′ ],

for some C ∈ R`′′,`′′ . We distinguish the following three cases:388

Case 1: ` = `′′389

We get from Lemma 4390

0 < detA1[i+ 1, i+ 2, . . . , i+ `|j + 1, j + 2 . . . , j + `]391

≤ detZ1[i+ 1, i+ 2, . . . , i+ `′′|j + 1, j + 2 . . . , j + `′′]392
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and conclude that detC 6= 0. Proceeding as in the proof of Proposition 27, we arrive393

at394

z̃ij =
detZ1[i, i+ 1 . . . , i+ `|j, j + 1 . . . , j + `]

detZ1[i+ 1 . . . , i+ `|j + 1 . . . , j + `]
= z′ij .395

Case 2: `′′ < `
By Lemma 3,

detA1[i+ 1, . . . , i+ `′′ + s | j + 1, . . . , j + `′′ + s] > 0

because A1[i+1, . . . , i+ `′′+s | j+1, . . . , j+ `′′+s] are leading principal submatrices
in A1[i+ 1, . . . , i+ ` | j + 1, . . . , j + `] for all s = 0, 1, . . . , `− `′′. By Lemma 4,

detZ1[i+ 1, . . . , i+ `′′ + s | j + 1, . . . , j + `′′ + s] > 0, s = 0, 1, . . . , `− `′′.

We proceed parallel to Case 1 to arrive at396

z̃ij =
detZ1[i, i′′1 , . . . , i

′′
`′′
|j, j′′1 , . . . , j′′`′′ ]

detZ1[i′′1 , . . . , i
′′
`′′ |j′′1 , . . . , j′′`′′ ]

397

=
detZ1[i, i+ 1, . . . , i+ `′′|j, j + 1, . . . , j + `′′]

detZ1[i+ 1, . . . , i+ `′′|j + 1, . . . , j + `′′]
.(18)398

By the induction hypothesis, Z1[i+ 1, . . . , n | j, j+ 1, . . . , n] is TN . By argueing as in399

Case 3 in the proof of Theorem 28 we may conclude that detZ1[i+ 1, . . . , i+ `′′ + 1 |400

j, j + 1, . . . , j + `′′] = 0. By Lemma 3, we have401

detZ1[i+ 1, . . . , i+ `′′ + 1 + s | j, j + 1, . . . , j + `′′ + s] = 0, s = 1, . . . , `− `′′ − 1.402

Application of Sylvester’s Identity step by step to the representation of z̃ij that is403

given in (18), we obtain404

z̃ij =
detZ1[i, i+ 1, . . . , i+ `′′|j, j + 1, . . . , j + `′′]

detZ1[i+ 1, . . . , i+ `′′|j + 1, . . . , j + `′′]
405

=
detZ1[i, i+ 1, . . . , i+ `′′ + 1|j, j + 1, . . . , j + `′′ + 1]

detZ1[i+ 1, . . . , i+ `′′ + 1|j + 1, . . . , j + `′′ + 1]
406

...(19)407

=
detZ1[i, i+ 1, . . . , i+ `|j, j + 1, . . . , j + `]

detZ1[i+ 1, . . . , i+ `|j + 1, . . . , j + `]
408

= z′ij .409

Case 3: ` < `′′

Define W := Z1[i+1, i+2, . . . , i+`′′|j+1, j+2 . . . , j+`′′]. If detW 6= 0, then z̃ij can
be written as in (18). Otherwise, by [15, Proposition 1.15] the rows i+ 1, . . . , i+ `′′ of
Z1 are linearly dependent or the right shadow of W in Z1[i+ 1, i+ 2, . . . , n|1, 2 . . . ,m]
has rank at most `′′ − 1 since by the induction hypothesis the later submatrix is TN
and d(j, j′′1 , . . . , j

′′
`′′) = 0. If i = j, then define (α0, β0) := (i, j) and for k = 1, . . . , τ ,

let
(αk, βk) := min

{
(α, β) | α = αk−1 + 1, β > βk−1, z

′
α,β 6= 0

}
,

where the minimum is taken with respect to the lexicographic order. This sequence
is a lacunary sequence or a part of a lacunary sequence of order τ since the entries of
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Z ′ satisfy the conditions (i) and (ii) above with possible gaps between columns and
τ < `′′ which is a contradiction. Hence if i = j, detW 6= 0. If i > j, then j < i − 1
since i + j is even. It is easy to see that the order of the sequence at the position
(i, j) is less than or equal to that of (i, j + 1). Hence by the induction hypothesis,
the rows i+ 1, . . . , i+ `′′ cannot be linearly dependent and the right shadow of W in
Z1[i + 1, i + 2, . . . , n|1, 2 . . . ,m] has not rank less than `′′. Thus detW 6= 0 and we
conclude that detC 6= 0. Therefore, z̃ij can be written as in (18). Proceeding as in
the proof of Theorem 28, Case 2 and by Lemma 3, we arrive at

detZ1[i+ 1, . . . , i+ `+ 1 + s | j, . . . , j + `+ s] = 0, s = 0, 1, . . . , `′′ − `− 1.

Now use Sylvester’s Identity to decrease step by step the order of the representation410

similarly as in (19) to obtain z̃ij = z′ij . This completes the proof.411

Theorem 30. Let A,B,Z ∈ Rn,m be such that A ≤∗ Z ≤∗ B. If A, B are TN ,412

belong to the same TN cell, and both satisfy Condition I, then Z is TN, satisfies413

Condition I, and belongs to the same TN cell that includes A and B.414

The proof of this theorem is parallel to the proof of the Theorem 29 and therefore415

omitted.416

417

The follwing example illustrates the difference between Theorem 29 and Theorem418

30.419

Example 31. Let420

A =

1 1 1
2 3 3
2 3 3

 , B =

1 1 1
2 3 3
2 3 7

 , and Z =

1 1 1
2 3 3
2 3 4

 .421

Then we have

A ≤∗ Z ≤∗ B

and obtain422

Ã =

 1
3 0 1
0 0 3
2 3 3

 and B̃ =

 1
3 0 1
0 12

17 3
2 3 7

 .423

A, B are TN but belong to two different TN cells and satisfy the descending rank424

conditions. A#, B# fulfill Condition I. Z is TN.425

In [2], two relaxations of the nonsingularity assumption are presented. The fol-426

lowing example shows that Theorem 29 covers a different situation.427

Example 32. Let428

A =

1 2 1
5 10 5
1 2 1

 and B =

2 2 1
5 10 5
1 2 13

 .429

Then we have

A ≤∗ B
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and obtain430

Ã =

0 0 1
0 0 5
1 2 1

 and B̃ =

1 0 1
0 120

13 5
1 2 13

 .431

A and B are TN , both A(= A#) and B(= B#) satisfy Condition I as well as the
descending rank conditions. Hence all matrices in [A,B] are TN . Neither [2, Theorem
3.6] nor [2, Corollary 3.7] can be used to draw this conclusion since A is singular and

detA[1, 2] = detA[2, 3] = 0.

Unfortunately, Condition I alone is not strong enough to guarantee the interval432

property as the following example documents.433

Example 33. Let434

A =

3 2 2 2
6 5 5 5
3 3 3 3

 , Z =

4 2 2 1
6 5 5 5
3 3 3 3

 , and B =

5 2 2 1
5 5 5 5
3 3 3 3

 .435

A and B are TN , satisfy Condition I, and A ≤∗ Z ≤∗ B. But Z is not TN since436

detZ[1, 2, 3 | 1, 2, 4] = −3 < 0.437
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