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Abstract

The class of square matrices of order n having a negative determinant and all
their minors up to order n− 1 nonnegative is considered. A characterization
of these matrices is presented which provides an easy test based on the Cau-
chon algorithm for their recognition. Furthermore, the maximum allowable
perturbation of the entry in position (2, 2) such that the perturbed matrix
remains in this class is given. Finally, it is shown that all matrices lying
between two matrices of this class with respect to the checkerboard ordering
are contained in this class, too.
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1. Introduction

A real matrix is called sign regular and strictly sign regular if all its
minors of the same order have the same sign or vanish and are nonzero
and have the same sign, respectively. Sign regular matrices have found a
variety of applications, e.g., in computer aided geometric design [22] and
computer vision [20, Section 3.3]. If the sign of all minors of any order
is nonnegative (nonpositive) then the matrix is called totally nonnegative
(totally nonpositive). Totally nonnegative matrices arise in a variety of ways
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in mathematics and its applications. For background information the reader
is referred to the monographs [10], [12], [17], [23].

In [4], we apply the Cauchon algorithm [15], [19] to totally nonnegative
matrices and prove a long standing conjecture [13] posed by the second au-
thor on intervals of nonsingular totally nonnegative matrices, cf. Theorem
5.1 (ii) below: The underlying ordering is the checkerboard ordering which
is obtained from the usual entry-wise ordering in the set of the square real
matrices of fixed order by reversing the inequality sign for each entry in a
checkerboard fashion. Then all matrices lying between two nonsingular to-
tally nonnegative matrices with respect to this ordering are nonsingular and
totally nonnegative, too. The motivation for considering such an interval
property stems, e.g., from the investigation of systems of linear equations,
where the coefficients of the matrix and the right-hand side are due to un-
certainties, e.g., measurement errors, which can be bounded from above and
below. Then it is important to know whether all element matrices from the
resulting matrix interval have a certain property. For background informa-
tion the reader is referred to the survey article [14].

In this paper, we continue our study of the Cauchon algorithm and ap-
ply it to the class of sign regular matrices having all their minors nonnega-
tive with the exception of the determinant which is negative, termed below
NSTN− matrices. To the best of our knowledge, such matrices were for
the first time more thoroughly investigated in [16], where a characterization
and a bidiagonal factorization are presented. The nonsingular TN matrices
constitute a subclass of the P -matrices which are matrices having all their
principal minors positive. The NsTN− matrices whose minors of order n−1

formed by deleting the first (last) row and column are even positive1), consti-
tute a subclass of the almost P -matrices, which are matrices having all their
proper principal minors positive and a negative determinant. Such matrices
originated in the work of Ky Fan [11] and are closely connected with the
linear complementarity problem [21]. In [9, Theorems 4.3 and 4.5] and [11,
Lemma 3], three subclasses of the almost P -matrices are presented which
possess the interval property. Another class related to the NsTN− matrices
are the nonsingular totally nonpositive matrices which are matrices having
all their minors nonpositive: If A is NsTN− and S the diagonal matrix
diag(1,−1, 1,−1, . . .), then SA−1S is totally nonpositive [16, p.1247]. For

1)See Theorem 4.3 (v) below
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references and the interval property of these matrices see [6].
In this paper, we employ the Cauchon algorithm to provide further prop-

erties of the NsTN− matrices and show that these matrices possess the inter-
val property, i.e., all matrices lying between two such matrices with respect
to the checkerboard ordering are NsTN− matrices, too.

The organization of our paper is as follows. In Section 2, we introduce
our notation and give some auxiliary results which we use in the subsequent
sections. In Section 3, we recall from [5] the condensed form of the Cau-
chon algorithm on which our proofs heavily rely. In Section 4, we apply the
Cauchon algorithm to derive a new necessary and sufficient condition for a
matrix to be NsTN−. Also, we present the maximum allowable perturbation
of the entry in position (2, 2) of an NsTN− matrix such that the perturbed
matrix remains to be NsTN−. In Section 5, we prove the interval property
for NsTN− matrices and related classes of sign regular matrices.

2. Notation and auxilary results

2.1. Notation

We now introduce the notation used in our paper. For κ, n, we denote
by Qκ,n the set of all strictly increasing sequences of κ integers chosen from
{1, 2, . . . , n}. If α ∈ Qk,n, then αk̂ denotes the sequence α without its kth
member. The dispersion of α, denoted by d(α), is defined to be

d(α) = ακ–α1–(κ–1);

it represents a measure for the gaps in the sequence α. If d(α) = 0, i.e., α
is formed from consecutive integers, α is called contiguous. We use the set
theoretic symbols ∪, ∩, and \ to denote somewhat not precisely but intu-
itively the union, intersection, and difference of two index sequences, where
we consider the resulting sequence as strictly increasing ordered. Similarly,
we employ the symbol ε to denote membership in a sequence. Let A be a
real n × n matrix. For α = (α1, α2, . . . , ακ), β = (β1, β2, . . . , βκ) ∈ Qκ,n, we
denote by A[α|β] the κ×κ submatrix of A contained in the rows indexed by
α1, α2, . . . , ακ and columns indexed by β1, β2, . . . , βκ. If instead these rows
are removed from A, we denote the submatrix of A by A(α|β]; we use the
notation A[α|β) if the columns indexed by β are deleted. The matrix A(α|β)
is then the matrix obtained from A by deletion of its rows indexed by α
and its columns indexed by β. If α = β, we denote the principal submatri-
ces of A by A[α] and A(α). We suppress the brackets when we enumerate
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the indices explicitly. If α = (1, . . . , n), we write A[−|β] and A[−|β) and if
β = (1, . . . , n), we use the notation A[α|−] and A(α|−]. If d(α) = d(β) = 0,
we call the submatrix A[α|β] as well as its determinant contiguous. For any
contiguous κ-by-κ submatrix A[α|β] of A, we call the submatrix

A[α1, . . . , ακ, ακ + 1, . . . , n|1, . . . , β1 − 1, β1, . . . , βκ]

of A having A[α|β] in its upper right corner the left shadow of A[α|β], and,
analogously, we call the submatrix

A[1, . . . , α1 − 1, α1, . . . , ακ|β1, . . . , βκ, βκ + 1, . . . , n]

having A[α|β] in its lower left corner the right shadow of A[α|β].
Let ε = (ε1, . . . , εn) be a signature sequence, i.e., ε ∈ {1,−1}n. The matrix A
is called strictly sign regular (abbreviated SSR henceforth) and sign regular
(abbreviated SR) with signature ε if 0 < εκ detA[α|β] and 0 ≤ εκ detA[α|β],
respectively, for all α, β ∈ Qκ,n, κ = 1, 2, . . . , n. If A is SSR [SR] with
signature ε = (1, 1, . . . , 1), then A is called totally positive (abbreviated
TP ) [totally nonnegative (abbreviated TN)]. If A is SR with signature
ε = (1, . . . , 1,−1), then we denote this class of matrices by TN−. If A is
in a certain class of SR matrices and in addition also nonsingular then we
affix Ns to the name of the class. By Eij we denote the matrix having a 1 in
position (i, j) and all other entries zero. We reserve throughout the notation
Tn = (tij) for the backward identity matrix with tij := δn+1−i,j, i, j = 1, . . . , n,
and denote A# := TnATn. As in [10, p. 34] we obtain that if A is NsTN−

then so is A#.
We endow Rn,n, the set of the real n × n matrices, with two partial

orderings: Firstly, with the usual entry-wise ordering (A = (aij), B = (bij) ∈
Rn,n)

A ≤ B :⇔ aij ≤ bij, i, j = 1, . . . , n.

The strict inequality A < B is also understood entry-wise.
Secondly, with the checkerboard ordering, which is defined as follows. Let
S := diag(1,−1, . . . , (−1)n+1) and A∗ := SAS. Then we define

A ≤∗ B :⇔ A∗ ≤ B∗.

2.2. Auxiliary results
Lemma 2.1. [8, Corollary 1] Let A ∈ Rn,n be such that detA[γ|δ] 6= 0,
where γ, δ ∈ Qk,n and let B = (bij) be the matrix obtained from A by setting

bij :=
detA[γ ∪ {i} |δ ∪ {j}]

detA[γ|δ]
, for all

i ∈ {1, . . . , n} \ γ and
j ∈ {1, . . . , n} \ δ. (1)
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Then it holds that

rankA[γ ∪ γ′|δ ∪ δ′] = |γ|+ rankB[γ′|δ′],

where γ′, δ′ are strictly increasing sequences from {1, . . . , n− k} and γ∩γ′ =
δ ∩ δ′ = φ.

Lemma 2.2. [1, Lemma 1.7] Let A ∈ Rn,m, α = (α1, . . . , αl) ∈ Ql,n and
β = (β1, . . . , βl−1) ∈ Ql−1,m−1 with d(β) > 0. Then for all η such that
βl−1 < η ≤ m, k ∈ {1, . . . , l}, s ∈ {1, . . . , h}, and βh < t < βh+1 for some
h ∈ {1, . . . , l − 2} or βl−1 < t < η the following determinantal identity holds:

detA[αk̂|βŝ ∪ {t}] detA[α|β ∪ {η}] = detA[αk̂|βŝ ∪ {η}] detA[α|β ∪ {t}]
+ detA[αk̂|β] detA[α|βŝ ∪ {t, η}].

Lemma 2.3. [17, Corollary 9.1], [23, Theorem 1.13] All principal minors of
an NsTN matrix are positive.

Lemma 2.4. [23, Proposition 1.15] If A ∈ Rn,m is TN and rank A[i +
1, . . . , i+ r|j + 1, . . . , j + r] = r − 1, then

(i) either the rows i+ 1, . . . , i+ r or the columns j + 1, . . . , j + r of A are
linearly dependent, or

(ii) the right or left shadow of A[i + 1, . . . , i + r|j + 1, . . . , j + r] has rank
r − 1.

Theorem 2.5. [16, Theorem 4] Let A ∈ Rn,n. Then A is NsTN− if and
only if 

detA < 0, detA(1) ≥ 0,

detA[1, . . . , k|β] ≥ 0, β ∈ Qk,n, k = 1, . . . , n− 1,

detA[α|1, . . . , k] ≥ 0, α ∈ Qk,n, k = 1, . . . , n− 1,

detA[1, . . . , k] > 0, k = 1, . . . , n− 2.

(2)

Lemma 2.6. [7, Theorem 2.1] Let A ∈ Rn,m be of rank r and ε be a signature
sequence. If 0 ≤ εk detA[α|β] for all α, β ∈ Qk,n′, where n′ = min {n,m}, is
valid whenever d(β) ≤ n− r, then A is SR with signature ε.

Lemma 2.7. [18, Corollary 3.5] Let A,B,Z ∈ Rn,n, A and B be nonsingular,
and A ≤ Z ≤ B. If A−1, B−1 ≥ 0, then Z is nonsingular and B−1 ≤ Z−1 ≤
A−1.
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3. Cauchon diagrams and the Cauchon Algorithm

In this section we first recall from [15], [19] the definition of a Cauchon
diagram and from [5] the condensed form of the Cauchon algorithm.

Definition 3.1. An n×m Cauchon diagram C is an n×m grid consisting
of n · m squares colored black and white, where each black square has the
property that either every square to its left (in the same row) or every square
above it (in the same column) is black.

We denote by Cn,m the set of the n × m Cauchon diagrams. We fix
positions in a Cauchon diagram in the following way: For C ∈ Cn,m and
i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}, (i, j) ∈ C if the square in row i and column
j is black. Here we use the usual matrix notation for the (i, j) position in a
Cauchon diagram, i.e., the square in (1, 1) position of the Cauchon diagram
is in its top left corner.

Definition 3.2. Let A ∈ Rn,m and let C ∈ Cn,m. We say that A is a
Cauchon matrix associated with the Cauchon diagram C if for all (i, j),
i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}, we have aij = 0 if and only if (i, j) ∈ C. If
A is a Cauchon matrix associated with an unspecified Cauchon diagram, we
just say that A is a Cauchon matrix.

Algorithm 3.3. (Condensed form of the Cauchon Algorithm) [5, Algorithm
3.2] Let A = (aij) ∈ Rn,m. Set A(n) := A.

For k = n− 1, . . . , 1 define A(k) = (a
(k)
ij ) ∈ Rn,m as follows:

For i = 1, . . . , k,
for j = 1, . . . ,m− 1,

set sj := min
{
h ∈ {j + 1, . . . ,m} | a(k+1)

k+1,h 6= 0
}

(set sj :=∞ if this set is void),

a
(k)
ij :=

 a
(k+1)
ij −

a
(k+1)
k+1,ja

(k+1)
isj

a
(k+1)
k+1,sj

if sj <∞,

a
(k+1)
ij if sj =∞,

and for i = k+1, . . . , n, j = 1, . . . ,m, and i = 1, . . . , k, j = m, a
(k)
ij := a

(k+1)
ij .

Put Ã := A(1).

Lemma 3.4. [15], [4] The matrix A is TN if and only if Ã is an entry-wise
nonnegative Cauchon matrix. A is in addition nonsingular if and only if all
diagonal entries of Ã are positive.
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We recall from [19] the definition of a lacunary sequence associated with
a Cauchon diagram.

Definition 3.5. Let C ∈ Cn,m. We say that a sequence

γ := ((ik, jk), k = 0, 1, . . . , t), (3)

which is strictly increasing in both arguments is a lacunary sequence with
respect to C if the following conditions hold:

(i) (ik, jk) /∈ C, k = 1, . . . , t;

(ii) (i, j) ∈ C for it < i ≤ n and jt < j ≤ m.

(iii) Let s ∈ {1, . . . , t− 1}. Then (i, j) ∈ C if

(a) either for all (i, j), is < i < is+1 and js < j,
or for all (i, j), is < i < is+1 and j0 ≤ j < js+1

and

(b) either for all (i, j), is < i and js < j < js+1

or for all (i, j), i < is+1, and js < j < js+1.

Proposition 3.6. [2, Corollary 3.3] Let A ∈ Rn,m be such that Ã is a
Cauchon matrix and let γ = ((ik, jk), k = 0, 1, . . . , t) be a lacunary sequence.
Then the following representation holds

detA[i0, i1, . . . , it|j0, j1, . . . , jt] = ãi0,j0 · ãi1,j1 · . . . · ãit,jt . (4)

4. A necessary and sufficient condition for a matrix to be NsTN−

Lemma 4.1. Let A ∈ Rn,n be such that A(n), A[−|1), and A(1|−] are TN ,
and A(n|1) and A(1, n) are nonsingular. Then the following minors are
nonnegative

detA[1, . . . , `|β ∪ {n}], (5a)

detA[β ∪ {n} |1, . . . , `], (5b)

where ` = 1, . . . , n− 1, and β = (β1, . . . , β`−1) ∈ Q`−1,n−1 with β1 = 1.

Proof. We only prove (5a). The proof of (5b) is similar. For ` = 1, detA[1, . . . , `|β∪
{n}] = a1n which is nonnegative since A[−|1) is TN . Assume 2 ≤ ` ≤ n− 1
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and let α = (1, . . . , `), β1 = 1. Then by Lemma 2.2, we obtain choosing
k = s = 1 and η = n

detA[2, . . . , `|β1̂ ∪ {t})] detA[1, . . . , `|β ∪ {n}] = detA[2, . . . , `|β1̂ ∪ {n}]×
detA[1, . . . , `|β ∪ {t}] + detA[2, . . . , `|β] detA[1, . . . , `|β1̂ ∪ {t, n}],

for all t ∈ {1, . . . , n− 1} \ β. The minors on the right-hand side and
detA[2, . . . , `|β1̂ ∪ {t})] are nonnegative since they correspond to minors in
A(1|−], A[−|1), and A(n), for any t ∈ {1, . . . , n− 1} \ β. If for all ` =
2, . . . , n− 1, there exists t` ∈ {1, . . . , n− 1} \ β such that detA[2, . . . , `|β1̂ ∪
{t`})] > 0, then we are done. Otherwise, for some ` ∈ {2, . . . , n− 1},
detA[2, . . . , `|β1̂∪{t})] = 0 for all t ∈ {1, . . . , n− 1}\β. HenceA[2, . . . , `|2, . . . , n−
1] has rank at most ` − 2. By Lemma 2.3, we have for ` = 2, . . . , n − 2,
detA[2, . . . , `|3, . . . , `] are positive since A(n|1) is NsTN and by the assump-
tion detA(1, n) > 0. Hence A[2, . . . , `|2, . . . , n − 1] has rank ` − 1 for all
` = 2, . . . , n − 1 which is a contradiction. Hence for each ` = 2, . . . , n − 1,
there exists t` ∈ {1, . . . , n− 1} \ β such that detA[2, . . . , `|β1̂ ∪ {t`})] > 0.
Hence for ` = 1, . . . , n− 1, detA[1, . . . , `|β ∪ {n}] ≥ 0.

Lemma 4.2. Let A ∈ Rn,n be NsTN−. Then the following minors are
positive:

(i) For any α ∈ Qk,n such that k ≤ n− 2, detA[α] > 0;

(ii) for r = 1, . . . , n− 1,

detA[2, . . . , r + 1|1, . . . , r] > 0, detA[1, . . . , r|2, . . . , r + 1] > 0, (6)

detA[r + 1, . . . , n|r, . . . , n− 1] > 0, detA[r, . . . , n− 1|r + 1, . . . , n] > 0.(7)

In particular,

detA(1|n), detA(n|1) > 0. (8)

Proof. Let A be NsTN−. Assume (i) is not true. Then there exists α ∈ Qk,n

such that k ≤ n − 2 and detA[α] = 0. Assume that k0 is the smallest k,
1 ≤ k ≤ n − 2, such that statement (i) is not true. If k0 = 1, then assume
that aii = 0. Since A is nonsingular there must be nonzero entries in row
i and column i. By considering minors of order 2 it follows that the left or
the right shadow of aii is the nullmatrix which implies that A is singular. In
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the following assume 1 < k0. Then there exists α = (α1, . . . , αk0) ∈ Qk0,n

such that detA[α] = 0 and detA[αî0 ] > 0 for some i0 ∈ {1, . . . , k0}. Set
γ = δ := αî0 and define B as in Lemma 2.1. Since A is NsTN− we have B is
so. Moreover, bi0,i0 = 0 which implies that B is singular. Hence by Lemma
2.1, A is also singular which is a contradiction. This completes proof of (i).
To show (ii), we first prove (8). We apply Sylvester’s Determinant Identity,
e.g., [10, pp 29 - 30] to obtain

detA(1, n) detA = detA(1) detA(n)− detA(1|n) detA(n|1). (9)

By (i), detA(1, n) is positive. If detA(1|n) detA(n|1) = 0, then it follows
that

detA =
detA(1) detA(n)

detA(1, n)
≥ 0 (10)

which is a contradiction. Hence detA(1|n) > 0 and detA(n|1) > 0.
The remaining inequalities are now a simple consequence of (8) and Lemma
2.3.

Inequalities (6) are shown in [16, Lemma 2] by a lengthy and complicated
proof.

Theorem 4.3. Let A ∈ Rn,n be NsTN− and let Ã be the matrix obtained
from A by the application of Algorithm 3.3. Then the following statements
hold:

(i) Ã[−|1) and Ã(1|−] are nonnegative Cauchon matrices;

(ii) ãi,i+1, ãi+1,i > 0, i = 1, . . . , n− 1;

(iii) ãii > 0, i = 3, . . . , n.

(iv) If ã22 > 0, then ã11 < 0.

(v) ã22 = 0 if and only if detA(1) = 0.

Proof. (i) By the fact that the matrices that are obtained by the applica-
tion of Algorithm 3.3 to the submatrices A[−|1) and A(1|−] coincide
with the matrices Ã[−|1) and Ã(1|−], respectively, and A is NsTN−,
we have by Lemma 3.4 that the matrices are nonnegative Cauchon
matrices.
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(ii) By (i), Ã[−|1) and Ã(1|−] are nonnegative Cauchon matrices. By
(8) and proceeding by decreasing induction with respect to the lexico-
graphic order starting from position (n − 1, n) and (n, n − 1), respec-
tively, the following sequences are lacunary with respect to CÃ[−|1) and
CÃ(1|−]

((i, i+ 1), (i+ 1, i+ 2), . . . , (n− 1, n)),

((i+ 1, i), (i+ 2, i+ 1), . . . , (n, n− 1)),

i = 1, . . . , n−1. Therefore, by Proposition 3.6 and (8) we have ãi,i+1 > 0
and ãi+1,i > 0.

(iii) We proceed as in (ii) noticing that ((i, i), (i + 1, i + 1), . . . , (n, n)),
i = 3, . . . , n, are lacunary sequences with respect to CÃ(1|−] and us-
ing Lemma 4.2 (i).

(iv) By (i) and since ã22 > 0, Ã is a nonnegative Cauchon matrix with
except possibly ã11. Since the sequence ((1, 1), (2, 2), . . . , (n, n)) is a
lacunary sequence with respect to CÃ, we obtain by Proposition 3.6
that detA = ã11 · ã22 · . . . · ãnn. Therefore, by (iii) and ã22 > 0 we
conclude that ã11 < 0.

(v) By (i) and (iii), the sequence ((2, 2), (3, 3), . . . , (n, n)) is a lacunary
sequence with respect to CÃ(1|−]. Hence by Proposition 3.6, detA(1)
can be represented as

detA(1) = ã22 · ã33 · . . . · ãnn (11)

and we can conclude by (iii) that

ã22 =
detA(1)

ã33 · . . . · ãnn
. (12)

Therefore, detA(1) = 0 if and only if ã22 = 0.

The preceding results allow us now to present a sufficient criterion based
on Algorithm 3.3 for a real matrix to be NsTN−.

Theorem 4.4. Let A ∈ Rn,n be such that (i)-(iv) hold in Theorem 4.3, and
let detA(n) be nonnegative. Then A is NsTN−.
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Proof. We obtain by Theorem 4.3 (i) and arguing similarly as in its proof
that A[−|1) and A(1|−] are TN . Since ãi,i+1, ãi+1,i > 0, i = 1, . . . , n − 1,
the sequences ((1, 2), (2, 3), . . . , (n − 1, n)) and ((2, 1), (3, 2), . . . , (n, n − 1))
are lacunary with respect to CÃ[−|1) and CÃ(1|−], respectively. Hence by
Proposition 3.6 we have detA(n|1) > 0 and detA(1|n) > 0. Moreover, by
Lemma 2.3 we have detA(1, n|1, 2) > 0 and detA(1, 2|1, n) > 0. In the same
way we may conclude from (iii) that detA[3, . . . , n] > 0 and by Lemma 2.3
it follows that detA[3, . . . , n − 1] > 0. Therefore, if detA(1, n) = 0, then
rankA(1, n) = n− 3. By considering A(1, n) as a submatrix with rank n− 3
in the TN matrix A(1|−] we have by Lemma 2.4 that the rows 2, 3, . . . , n−1
or the columns 2, 3, . . . , n− 1 are linearly dependent or the left or the right
shadow of A(1, n) has rank n− 3 which contradicts that detA(1, n|1, 2) > 0
and detA(1, 2|1, n) > 0. Therefore, we obtain

detA(1, n) > 0. (13)

Let B := A(n).
Claim. B is TN .
The submatrices B[−|1) and B(1|−] are TN and and the matrices that are
obtained by the application of Algorithm 3.3 to these submatrices coincide
with the matrices B̃[−|1) and B̃(1|−], respectively. Application of Algorithm
3.3 to B yields B̃ with all its entries nonnegative with the exception of
possibly b̃11. Moreover, we obtain by Lemma 3.4, b̃kk > 0, k = 2, . . . , n − 1,
since B(1) = A(1, n) is NsTN and the application of Algorithm 3.3 to the
submatrix B(1) coincides with the submatrix B̃(1). Furthermore, B̃ is a
Cauchon matrix: if b̃ij = 0 for some i, j = 2, . . . , n− 1, then all of the entries
to its left in the same row must be zero whenever i > j or the entries above
it in the same column must be zero whenever i < j since B(1|−] and B[−|1)
are TN and b̃kk > 0, k = 2, . . . , n − 1. The sequence ((1, 1), (2, 2), . . . , (n −
1, n − 1)) is a lacunary sequence with respect to CB̃. Hence by Proposition
3.6, detB can be represented as detB = b̃11 · b̃22 · . . . · b̃n−1,n−1. Therefore, we
obtain

b̃11 =
detB

b̃22 · . . . · b̃n−1,n−1
=

detA(n)

b̃22 · . . . · b̃n−1,n−1
≥ 0.

Whence B̃ is a nonnegative Cauchon matrix and by Lemma 3.4, B is TN .
To show detA < 0, we distinguish the following two cases:
Case 1. ã22 > 0.
In this case, Ã is a Cauchon matrix and the sequence ((1, 1), (2, 2), . . . , (n, n))
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is a lacunary with respect to CÃ. Hence by Proposition 3.6, detA can be
represented as detA = ã11 · ã22 · . . . · ãnn, and we conclude by the assumption
(iv) that detA < 0.
Case 2. ã22 = 0.
We proceed as in proof of (v) in Theorem 4.3 to conclude that detA(1) = 0
since ã22 = 0. By Sylvester’s Determinant Identity, we obtain

detA(1, n) detA = detA(1) detA(n)− detA(1|n) detA(n|1)

= − detA(1|n) detA(n|1).

Because detA(1|n), detA(n|1), detA(1, n) > 0, we conclude from the last
equality that detA < 0.
To conclude the proof, by Lemma 2.6 it is enough to show that for all α, β ∈
Q`,n, ` = 1, . . . , n− 1, detA[α|β] ≥ 0 with d(α) = 0. If α1 > 1 or β1 > 1 or
α1 = 1 and β` < n, then detA[α|β] ≥ 0 since A[−|1), A(1|−], and A(n) are
TN . Hence we are left to show that the following minors are nonnegative

detA[1, . . . , `|β], (14)

where ` = 1, . . . , n−1, and β = (β1, . . . , β`) ∈ Q`,n−1 with β1 = 1 and β` = n.
By Lemma 4.1 such minors are nonnegative. Therefore, A is NsTN−.

Theorems 4.3 and 4.4 together provide a necessary and sufficient condition
for a matrix A ∈ Rn,n to be NsTN−. This provides a test which requires only
to run Algorithm 3.3 twice (one time in order to check the sign of detA(n)).
It is an alternative to the test based on [16, Theorem 8] which relies on
Neville elimination and bidiagonal factorization. Both tests require O(n3)
operations.

The analysis made so far shows that the coefficient in position (2, 2) in
an NsTN− matrix is the most critical one. In the following two theorems
we consider the invariance of the property of being NsTN− of the matrix A
under perturbations of a22.

Theorem 4.5. Let A ∈ Rn,n be NsTN− and let δ− := min
{

detA(n)
detA(2,n)

, detA(1)
detA(1,2)

}
.

Then for any x ∈ [0, δ−],
Bx := A− xE22

is NsTN−. The bound δ− is the best possible.
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Proof. Let x be any real number in [0,min δ−]. By Theorem 4.4, it is enough
to show that B̃x = (b̃ij) satisifies (i) - (iv) in Theorem 4.3 and detBx(n) ≥ 0,
where B̃x is the matrix obtained by the application of Algorithm 3.3 to
Bx. By the fact that the matrices that are obtained by the application of
Algorithm 3.3 to the submatrices Bx[−|1) and Bx(1|−] coincide with the
matrices B̃x[−|1) and B̃x(1|−], respectively, and

b̃i+1,i+1 = ãi+1,i+1 > 0,

b̃i,i+1 = ãi,i+1 > 0,

b̃i+1,i = ãi+1,i > 0,

 for i = 2, . . . , n− 1, (15)

we have that B̃x[−|1) and B̃x(1|−] are nonnegative Cauchon matrices with
except possibly b̃12, b̃21, and b̃22. By (15), the sequences ((1, 2), (2, 3), . . . , (n−
1, n)), ((2, 1), (3, 2), . . . , (n, n−1)), and ((2, 2), (3, 3), . . . , (n, n)) are lacunary
with respect to CB̃x(1|−] and CB̃x[−|1). Hence by Proposition 3.6, we obtain

b̃12 =
detBx(n|1)

b̃23 · . . . · b̃n−1,n
=

detA(n|1) + x detA(2, n|1, 2)

ã23 · . . . · ãn−1,n
> 0,

and similarly b̃21 > 0. The inequality

b̃22 =
detBx(1)

b̃33 · . . . · b̃nn
=

detA(1)− x detA(1, 2)

ã33 · . . . · ãn,n
≥ 0,

is valid if and only if x ≤ detA(1)
detA(1,2)

. Moreover, if b̃22 > 0, then B̃x is a Cauchon

matrix and the sequence ((1, 1), . . . , (n, n)) is lacunary with respect to CB̃x

and by Proposition 3.6, we obtain

b̃11 =
detBx

b̃22 · . . . · b̃nn
=

detA− x detA(2)

b̃22 · . . . · b̃n,n
< 0.

Finally,

detBx(n) = detA(n)− x detA(2, n) = detA(2, n)(
detA(n)

detA(2, n)
− x).

Hence detBx(n) ≥ 0 if and only if x ≤ detA(n)
detA(2,n)

. Therefore, Bx is NsTN−

for all x ∈ [0,min δ−].
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Theorem 4.6. Let A ∈ Rn,n be NsTN− and let S+ be the set of defined
quantities among − detA

detA(2)
, detA(n|1)
detA(2,n|1,2) ,

detA(1|n)
detA(1,2|2,n) . Define δ+ as follows:

δ+ :=

{
minS+ if S+ is not void,

∞ otherwise.
(16)

Then for any x ∈ [0, δ+),

Bx := A+ xE2,2

is NsTN−. The bound δ+ is the best possible.

Proof. By Lemma 4.2, δ+ is positive. In the following we may suppose that
x > 0. Firstly, we show that D := Bx[−|1) is TN for all 0 < x < detA(n|1)

detA(2,n|1,2)
if detA(2, n|1, 2) 6= 0 and for all x > 0 if detA(2, n|1, 2) = 0. We proceed
by showing that D̃ is a nonnegative Cauchon matrix (which is obtained from
D by Algorithm 3.3). By the definition of D and Lemma 4.2 we have for
k = 2, . . . , n− 1

detD[k, . . . , n− 1] = detA[k, . . . , n− 1|k + 1, . . . , n] > 0,(17)

detD[k + 1, . . . , n|k, . . . , n− 1] = detA[k + 1, . . . , n] > 0. (18)

Therefore, the matrices D[k, . . . , n − 1] and D[k + 1, . . . , n|k, . . . , n − 1] are
NsTN and by Lemma 3.4, the matrices obtained from both matrices by
Algorithm 3.3 are Cauchon matrices with positive diagonal entries from which
we can form lacunary sequences. By Proposition 3.6, we get for k = 2, . . . , n−
1 the following representation of entries of D̃

d̃kk =
detD[k, k + 1, . . . , n− 1]

detD[k + 1, . . . , n− 1]
, (19)

d̃k+1,k =
detD[k + 1, k + 2, . . . , n|k, k + 1, . . . , n− 1]

detD[k + 2, . . . , n|k + 1, . . . , n− 1]
. (20)

By (19), (20), A[−|1) is TN , and by the fact that D̃(1, 2|−] and D̃[−|1)
coincide with the matrices that are obtained by the application of Algo-
rithm 3.3 to the submatrices D(1, 2|−] and D[−|1), respectively, we conclude
that D̃ is a Cauchon matrix with all of its entries are nonnegative with ex-
ception of possibly d̃11 and d̃21. Since ((1, 1), (2, 2), . . . , (n − 1, n − 1)) and
((2, 1), (3, 2), . . . , (n, n − 1)) are lacunary sequences with respect to CD̃, we
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obtain the following representation of d̃11 and d̃21 from which we conclude
that

d̃11 =
detD[1, . . . , n− 1]

detD[2, . . . , n− 1]
=

detA(n|1)− x detA(2, n|1, 2)

detA(1, n|1, 2)
, (21)

d̃21 =
detD[2, . . . , n|1, . . . , n− 1]

detD[3, . . . , n|2, . . . , n− 1]
=

detA(1) + x detA(1, 2)

detA(1, 2)
(22)

Therefore, D̃ is a nonnegative matrix if and only if detA(n|1)−x detA(2, n|1, 2) >

0 which is equivalent to 0 < x < detA(n|1)
detA(2,n|1,2) if detA(2, n|1, 2) 6= 0 and x > 0

if detA(2, n|1, 2) = 0. In the same way we can show that Bx(1|−] is TN for

all 0 < x < detA(1|n)
detA(1,2|2,n) if detA(1, 2|2, n) 6= 0 and x > 0 if detA(1, 2|2, n) = 0.

We conclude the proof by showing that for any x ∈ (0, δ+), Bx is NsTN−.
If detA(2) = 0 or 0 < x < − detA

detA(2)
if detA(2) 6= 0, we obtain by Laplace

expansion along the second column that detBx < 0. Let α, β ∈ Qk,n, k =
1, . . . , n− 1. In the following, we show that detBx[α|β] ≥ 0. We distinguish
the following two cases:
Case 1. 2 /∈ α ∩ β.
In this case we have detBx[α|β] = detA[α|β] ≥ 0.
Case 2. 2 ∈ α ∩ β.
If in addition 1 ∈ α ∩ β, then we have

detBx[α|β] = detA[α|β] + x detA[α2̂|β2̂] ≥ 0.

Otherwise, 1 /∈ α or 1 /∈ β which implies that Bx[α|β] is a submatrix in
Bx(1|−] or Bx[−|1), respectively. Therefore, detBx[α|β] is nonnegative since
Bx(1|−] and Bx[−|1) are TN .

Example 4.7. Let

A =

1 1 1
1 1.75 3
1 3 6


which is NsTN− and Bx := A + xE22, x ∈ R. Then detBx = 5x − 0.25
and detBx(1) = 1.5 + 6x. If x = 0.05 = −detA

detA(2)
, detBx changes its sign

from − to +, whereas the other minors remain positive, and at −x = 0.25 =
detA(1)
detA(1,2)

, detBx(1) changes its sign from + to −, whereas the other minors

keep their sign. So the interval [−0.25, 0.05) provides the maximum allowable
perturbation such that Bx remains NsTN−.
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5. The interval property

In this section, we show that the class of NsTN− matrices possesses the
interval property. We will make use of the interval property of the NsTN
matrices. For a weakening of the nonsingularity assumption in (ii), see [3].

Theorem 5.1. [4, Lemma 3.2, Theorem 3.6, and Corollary 3.7] Let A,B,Z ∈
Rn,n be such that A ≤∗ Z ≤∗ B and let A and B be TN .

(i) If A(1) or A(n) is nonsingular, then Z is TN .

(ii) If A is nonsingular, then Z is NsTN .

Now we are in the position to state the interval property of NsTN−

matrices.

Theorem 5.2. Let A,B,Z ∈ Rn,n be such that A ≤∗ Z ≤∗ B and let A and
B be NsTN−. Then Z is NsTN−, too.

Proof. We show that the intermediate matrix Z fulfils the conditions of
Theorem 2.5. Since A ≤∗ B, we have S(−B)S ≤ S(−A)S, where S =
diag(1,−1, 1, . . . , (−1)n−1). By−SA−1S = (S(−A)S)−1,−SB−1S = (S(−B)S)−1 ≥
0, we may apply Lemma 2.7, to conclude that

−SZ−1S ≥ 0. (23)

Application of Lemma 4.2 (i), (8), and Theorem 5.1 (ii) yields that Z[1, . . . , n−
2], Z(1|n), and Z(n|1) are NsTN . By Lemma 4.2 (i) and Theorem 5.1 (i)
applied to A(n) and B(n), we conclude that Z(n) is TN . Similarly we
obtain that Z(1) is TN . To prove that detZ[1, . . . , k|β] ≥ 0, β ∈ Qk,n,
k = 1, . . . , n−1, we use that the remaining minors are all of the form (5a). To
apply Lemma 4.1, we have to show that Z[−|1) and Z(1|−] are TN (for the
assumption that detA(1, n) > 0 see (13)). We only prove that Z(1|−] is TN ,
the proof that Z[−|1) is TN is analogous. Since Z(1|n) is nonsingular, Z(1|−]
has rank n−1. By the fact that Z(1|n) and Z(1) are TN , and by Lemma 2.6,
we are left to show that the determinants of the submatrices which are lying
in the first and last columns of Z(1|−] and which are formed from consecu-
tive columns with the exception of a gap of one column are all nonnegative.
These are the minors detZ(1|1, . . . , j−1, j+ 1, . . . , n]. The entry in position

(j, 1) of –SZ−1S is − detZ(1,j)
detZ

which is nonnegative by (23), j = 2, . . . , n− 1.
Therefore, detZ(1, j) ≥ 0. To show that detZ[α|1, . . . , k] ≥ 0, α ∈ Qk,n,
k = 1, . . . , n− 1, we proceed similarly.
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Using Theorem 5.2, we obtain the interval property of further classes of
NsSR matrices.

Theorem 5.3. Let A,B,Z ∈ Rn,n be such that A ≤∗ Z ≤∗ B and let A and
B be NsSR matrices with the same signature ε = (ε1, . . . , εn). If ε is one of
the following signatures:

(i) εi = (−1)i, i = 1, . . . , n− 1, εn = (−1)n−1,

(ii) εi = (−1)
i(i−1)

2 , i = 1, . . . , n− 1, εn = (−1)
n(n−1)

2
+1,

(iii) εi = (−1)
i(i+1)

2 , i = 1, . . . , n− 1, εn = (−1)
n(n+1)

2
+1,

then Z is NsSR with signature ε.

Proof. D := diag (−1,−1, . . . ,−1) and Tn are NsSR matrices with signa-

tures εi = (−1)i and εi = (−1)
i(i−1)

2 , i = 1, . . . , n, respectively, and D−1 = D
and T−1n = Tn. Hence if A and B are NsSR matrices with the same signature
which is given in one of (i)-(iii), then by [7, Theorem 3.1] the following hold.
If ε is the signature in case

(i), then DA and DB,

(ii), then TnA and TnB,

(iii), then DTnA and DTnB

are NsTN−, and by Theorem 5.2, Z is an NsSR matrix with the same
signature.

Conclusion In this paper, we have provided by using the Cauchon algo-
rithm a new characterization of the matrices having all their proper minors
nonnegative and a negative determinant, the class NsTN−. We have pre-
sented the maximum allowable perturbation of the most critical entry of such
a matrix such that the perturbed matrix remains in the class. Finally, we
have shown that the NsTN− matrices possess the interval property. This
result provides a further class of nonsingular sign regular matrices which has
the interval property [6].
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