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Abstract—Designing a solution for an optimization problem re-
quires two main aspects; the optimization technique (e.g., search
strategy) and the evaluation criteria (i.e., objective function). In
this paper, an enhanced binary version of a recent metaheuristic
algorithm, the Harris Hawk Optimization algorithm (EBHHO),
is presented to find a (near) optimal solution for the Feature
Selection (FS) problem. Moreover, three different classifiers called
K-nearest neighbors (kNN), Decision Trees (DT), and Linear
Discriminant Analysis (LDA) were used as evaluation criteria
to formulate the objective function. In addition to reducing
the dimensionality of the dataset using the FS technique, the
Adaptive Synthetic (ADASYN) oversampling technique was used
to enhance the quality of the learning algorithm by re-balancing
the dataset. A set of well-known datasets in the field of Software
Fault Prediction (SFP) were used to validate the efficiency of the
proposed approach. The obtained results showed that EBHHO
is superior over the basic HHO as well as proved the ability of
the EBHHO algorithm to produce the best result among a set of
well-known optimization methods.

Index Terms—Optimization, Approximation Algorithms,
Metaheuristics, Harris Hawks Optimization, Feature Selection,
Software Fault Prediction, Imbalanced Data, Adaptive synthetic
Sampling, Classification.

I. INTRODUCTION

Most of the real-world optimization problems are NP-hard

[1]. There is no effective algorithm that can solve these prob-

lems in polynomial time. Therefore, approximation algorithms

are introduced as an efficient alternative to handle these kinds

of problems [2]. Metaheuristics are a significant subclass of

approximation algorithms that proved their ability to explore

the search space for the problem being solved and find the

(near) optimal solution in a reasonable time [3].

Metaheuristic algorithms can be classified into a single

solution based and population-based [1]. In the population-

based algorithms, a collection of solutions (called population)

are generated at the beginning of the optimization process,

and each solution in the population is manipulated accord-

ing to a specific mechanism, depending on the behavior of

the algorithm. Population-based algorithms have two phases;

exploration and exploitation, which help in avoiding being

stuck at local optima. At the beginning of the optimization

process, the algorithm starts exploring the search space to

find the promising regions, while in exploitation, the algorithm

searches for the best solution in a specific area of the search

space. Swarm Intelligence (SI) algorithms are population-

based metaheuristics which recently exploitedto tackle differ-

ent optimization problems, including Feature Selection (FS)

[4] [5].

FS is a combinatorial optimization problem that aims to

reduce the complexity of data mining processes, when dealing

with high dimensional datasets, by eliminating the irrelevant

and/or redundant features [6]. With the emergent of the ad-

vanced data collection tools, the FS step becomes crucial and

mandatory to enhance the performing of the mining process.

The main challenge in the FS process is searching for the best

feature combination. For those datasets with a small number

of features, one can use the complete (exhaustive) search that

tends to test all possible combinations and then selects the best

performing one, or the exact search algorithms These search

strategies become impractical and time-consuming when deal-

ing with high dimensional datasets, where the search space is

exponentially increased. That’s to say, for a dataset with N
features; the search space consists of 2N − 1 feature subsets.

Thus, metaheuristics algorithms are the best alternative to the

previously mentioned search strategies.

As an optimization problem, in addition to adopting the

right optimization technique, an evaluation criteria should

be defined. In FS, there are two main models to evaluate

a feature subset, filters and wrappers. In filter model, the

evaluation is based on the data itself without considering a

learning technique. While in wrappers, a learning algorithm

(e.g., classifier) is considered to evaluate the goodness of the

selected features [7].

In addition to the high dimensionality problem, some

datasets may have another problem that may degrade the

performance of the learning algorithms, where one class (the

minority class) is much rarer than other classes (the majority

class) in the dataset. This problem is known as imbalanced

data [8]. To solve this problem, various approaches have been

proposed, such as kernel-Based methods, Active Learning

methods, Cost-Sensitive methods, and sampling methods [8].

One of the major topics that may suffer from these both
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Fig. 1: The proposed SFP model

challenges is known as Software Fault Prediction (SFP), that

tends to predict the faulty components in a software project. In

SFP, many metrics (features) can be considered, at the same

time, the faulty components are rarely occurred in software

projects.

In this paper, we propose an efficient SFP model based on a

wrapper FS approach augmented with the Adaptive Synthetic

Oversampling (ADASYN) to increase the prediction perfor-

mance in real-world software projects. The main contributions

are summarized as follows:

• An enhanced binary version of HHO (EBHHO) using a

multi-swarm strategy is designed as a search method in

the wrapper FS approach.

• The ADASYN oversampling technique is used to re-

balance the used datasets.

• The proposed model is evaluated on 15 real datasets of

software projects.

The rest of this paper is organized as follows. Section II

reviews the related works for SFP, including pure machine

learning models, and those augmented with FS as a prepos-

sessing technique. The proposed methodology, as well as the

employed methods, are presented deeply in Section III. Section

IV presents the experimental results, discussion, and analysis.

Finally, Section V concludes the overall results as well as

future work directions.

II. REVIEW OF RELATED WORKS

There are many research papers investigating the SFP prob-

lem in the literature. Most recent articles employed machine

learning methods to build an acceptable model(s) for this

challenging problem. Some articles applied pure machine

learning methods without any pre-processing on the input

datasets [9], while other researchers perform a set of pre-

processing on the datasets such as feature selection to reduce

the dimensionally of input datasets [10], or noise removal that

comes from imbalanced datasets [11], [4].

Erturk and Sezer [12] applied an Artificial Neural Net-

work (ANN) and Adaptive Neuro-Fuzzy Inference System for

SFP problem. Erturk and Sezer [9] employed three different

machine learning classifiers (i.e., ANN, SVM, and ANFIS).

Manjula and Florence [13] proposed a hybrid method between

genetic algorithm (GA) and deep neural network (DNN) to

handle the SFP problem. Rhmann et al. [14] employed a set

of hybrid machine learning algorithms to predict software fault

for an android project. Jayanthi and Florence [15] employed

Principle Component Analysis (PCA) with ANN as a feature

reduction for SFP.

Turabieh et al.[10] employed an iterated feature selection

using a layered recurrent neural network to predict object-

oriented faults. The authors used a pool of population-based

feature selection algorithms (i.e., binary genetic algorithm,

binary particle swarm optimization, and binary ant colony

optimization) to select the most valuable features. The ob-

tained results explore the importance of feature selection for

this domain. Tumar et al. [11] introduced an intelligent model

for SFP problem based on a Binary Moth Flame Optimization

(BMFO) as wrapper feature selection and ADASYN to handle

the problem of imbalanced data. Thaher et al. [4] proposed a

Wrapper-based feature selection model for SFP by employing

Binary Queuing Search Algorithm (BQSA). They utilized

Synthetic Minority Oversampling Technique (SMOTE) to re-

balance the datasets.

It is clear that from previous literature, there are tremendous

research papers that investigate the software fault prediction

problem. In reality, each project has its attributes, so it is

essential to develop a good model that analyzes the collected

data in advance. This motivates us to employ HHO as a feature

selection algorithm as the first step in order to achieve a high-

quality classifier.

III. THE PROPOSED METHODOLOGY

In this research, we propose a novel SFP model based on

wrapper FS method augmented with ADASYN oversampling

technique. An enhanced binary version of recent HHO algo-

rithm is employed for searching the most valuable features.

Figure 1 illustrates the abstract of the proposed framework in

details. For each candidate subset of features (i.e., candidate

solution) generated by the BHHO algorithm, the evaluation

process is done using the k-folds cross-validation method

(where k=5). The method starts by dividing up the dataset

into five blocks, such that four blocks (80%) are used for

training, and the remaining block (20%) is used for testing. For

each training and testing procedure, the ADASYN technique

is used to over-sample the imbalanced training part, while the
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testing part remains the same. This procedure is repeated k
times, and the prediction results are summarized at the end.

The overall approach is repeated until reaching the maximum

number of allowable iterations. In the following subsections,

we will clarify the framework components deeply.

A. Harris Hawks Optimization (HHO)

HHO is a recent nature-inspired metaheuristic algorithm

classified under the umbrella of swarm intelligence algorithms.

It was proposed by Heidari et al. in 2019 [16] to mimic the

natural behavior of Harris hawks, which employ distinctive

chasing styles to trap the prey.

HHO is classified as a population-based algorithm in which

a group of hawks (each represents a candidate solution)

cooperates using various chasing styles to follow the loca-

tion of prey (the fittest candidate solution). The proposed

mathematical model in the original paper of HHO showed a

compelling performance in handling various constrained and

unconstrained problems. It can balance between exploration

and exploitation through employing six updating phases; two

phases of exploration and four phases of exploitation.

1) Exploration phases: In this stage, the search agents

are updated using two strategies. This achieved by assuming

a probability of 50% to select between the two updating

methods. So agents are updated based on another randomly

selected agent or based on the best solution obtained so far.

2) Transformation from exploration to exploitation: HHO

model employs an adaptive parameter called escaping energy

(E) which decreases linearly over time to smoothly transfer

from exploration to exploitation. The idea of this mechanism

comes from that the energy of the rabbit decreases through

the escaping behavior.

3) Exploitation phases: HHO utilizes various time-varying

mechanisms with a greedy scheme to model the exploitation

phase. The choice between the four updating mechanisms

depends on the energy (E) and the escaping behaviors of the

rabbit. The employed phases are: soft besiege, hard besiege,

soft besiege with progressive rapid dives, and hard besiege

with progressive rapid dives. More details about the mathe-

matical model can be found in the original paper [16].

B. The enhanced multi-swarm HHO

Despite the effectiveness of the HHO algorithm, it suffers

like the most of metaheuristics from the premature conver-

gence problem (i.e., the earlier convergence into local optima).

To maintain the population diversity through the search pro-

cess and to overcome the premature convergence problem, a

multi-swarm approach has been introduced. The idea of this

approach is based on dividing up the swarm into three smaller

groups. Each group is guided by a high-quality solution called

the leader. To maintain a balance between exploration and

exploitation potentials, the top three agents (i.e., the fittest)

obtained so far are selected as leaders.

Based on the idea that the fittest leader has the ability to

guide more agents, the number of search agents in each swarm

is calculated as in Eq.(1)

swarmi = N ×
1/fi

1/f1 + 1/f2 + 1/f3
(1)

where swarmi (i=1,2,3) denotes the number of search agents

in the ith swarm, N represents the total number of search

agents, fi (i=1,2,3) represents the fitness value for the selected

leaders (which are the fittest three agents obtained so far).

The process of distributing search agents into groups is done

randomly. Then the agents in each swarm are manipulated

according to the updating mechanisms in the original HHO.

The multi-swarm with multi-leader strategy allows the search

agents to explore various regions at once and thus avoid

trapping early into sub-optimal solutions.

C. The proposed Binary HHO (BHHO)

Most of the well-known meta-heuristic algorithms including

HHO have been originally designed to work on continuous

search spaces. However, some real-world problems such as FS

has a binary search space. For this purpose, these algorithms

should be reformulated efficiently to work on binary spaces

[17].

In this work, the Two-step binarization method was em-

ployed to introduce a binary version of HHO called (BHHO).

In this technique, The Transfer Function (TF) is utilized in the

first step to convert the solution from Rn to an intermediate

solution, represents the probability of turning the solution to

1 or 0. In the second step, a binarization rule is used to map

the output of TF into binary form.
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Fig. 2: The types of used TFs

There are two leading families of TFs used in literature:

S-shaped (Sigmoid) and V-shaped (tanh) as shown in Figure

2. S-shaped TF was initially introduced by Kennedy and

Eberhart [18] to propose a binary variant of Particle Swarm

Optimization (PSO) based on Eq. 2 as a first step, and Eq. 3

as a binarization rule.

T (xj
i (t)) =

1

1 + e−x
j

i
(t)

(2)

where xj
i is the real value corresponds to the jth dimension of

the ith solution at iteration t , and T (xj
i (t)) is the probability

value resulted from TF.

xj
i (t+ 1) =

{

0 If r < T (xj
i (t))

1 otherwise
(3)
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where Xj
i (t + 1) is the binary value corresponds to the jth

dimension of the ith solution, T (xj
i (t)) is the probability value

calculated by TF in Eq. (2), and r is a uniformly distributed

random number inside (0,1) .

Rashedi et al. [19] was firstly introduced the V-shaped TF

to propose a binary version of Gravitational Search Algorithm

(BGSA). The two-step method using V-shaped was modeled

using Eqs. 4 and 5.

T (xj
i (t)) = | tanh(xj

i (t))| (4)

xj
i (t+ 1) =

{

¬xk
i (t) r < T (xj

i (t))

xj
i (t) otherwise

(5)

where ¬ indicates the complement of current dimension, and

T (xi) is the probability value provided by Eq. (4).

In this paper, two variants of Binary HHO denoted by

(SBHHO) and (VBHHO) were presented by exploiting the

aforementioned S-shaped and V-shaped TFs, respectively.

These TFs showed a superior results in several previous works

for combinatorial problems [20] [17].

D. BHHO-Based Feature Selection

In this research, we propose a wrapper-based FS that

exploits the BHHO as a search strategy to enhance the

prediction accuracy for SFP. Two major aspects should be

considered when adapting metaheuristic algorithms to deal

with an optimization problem: the representation (or encoding)

of solutions and the guiding objective function.

• Representation of solutions: In FS problem, each feature

is either selected or not, so the candidate solution is

encoded as a one-dimensional vector of zeros and ones

such that X = {x1, x2, x3, ..., xN}, where N is the total

number of features.

• Objective function: It is useful to guide the search

process by assigning each candidate solution with a real

value represents its quality. The major desired objectives

of FS method are to minimize the number of selected

features that maximize the classification performance. In

this work we used a single objective HHO algorithm,

so the two contradictory objectives are combined in one

fitness function as in Eq. 6

↓ Fitness = α× E + β ×
|R|

|N |
(6)

where E is the classification error rate, |R| is the number

of selected features, |N | is the total number of features

in the handled dataset. α and β (the complement of α)

are two user-defined parameters ∈ [0, 1] which are used

to balance between the importance of both criteria [5].

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Fifteen well-regarded SFP datasets from PROMISE Soft-

ware Engineering Repository are employed to study the ef-

fectiveness of the proposed model. These datasets are free of

noise and missing values and having various sizes of 109–965

instances. Moreover, each dataset has 20 different object-

oriented metrics (features) as input and a single fault value

as an output variable. Table I presents a brief explanation for

each dataset. By inspecting the table, it can be easily observed

that all datasets are highly imbalanced, where the occurrences

of the defective instances are very low when compared to

the normal ones.The proposed model is evaluated using three

common metrics; specificity, sensitivity, and area under the

curve (AUC) [4]. The experimental work in this research was

TABLE I: List of SFP datasets

Dataset version #features #instances #defective instances %defective instances

ant 1.7 20 745 166 0.223

camel

1.0 20 339 13 0.038
1.2 20 608 216 0.355
1.4 20 872 145 0.166
1.6 20 965 188 0.195

jedit

3.2 20 272 90 0.331
4.0 20 306 75 0.245
4.1 20 312 79 0.253
4.2 20 367 48 0.131
4.3 20 492 11 0.022

log4j

1.0 20 135 34 0.252
1.1 20 109 37 0.339
1.2 20 205 189 0.922

xalan
2.4 20 723 110 0.152
2.7 20 909 898 0.988

performed in four stages. In the first stage, we evaluated the

sensitivity of BHHO to the number of employed search agents

as well as the impact of oversampling ratio, with ADASYN,

on the overall prediction quality. In this stage, the basic

SBHHO (i.e., HHO with S-shaped TF) and KNN classifier

were used. In the second stage, the SBHHO augmented

with the ADASYN technique was assessed on three different

classifiers (KNN, DT, and LDA) to select the suitable one

that provides better prediction performance. In the third stage,

The BHHO with V-shaped TF (VBHHO) is implemented and

compared with SBHHO to investigate the impact of TF on

the efficiency of BHHO. In the last stage, the best settings

obtained in the previous stages were used, and the enhanced

versions (ESBHHO and EVBHHO) were compared with the

basic versions (SBHHO and VBHHO). In addition, their

performance was confirmed by comparing with other state-

of-the-art approaches. The experimental design conducted in

this research is demonstrated in Table II. In all experiments,

TABLE II: The experimental design conducted to evaluate the

performance of BHHO

Experiment No. search agents TF Classifier ADASYN ratio

exp1 5, 10, 20, 30, 40, 50 S shaped KNN 0

exp2 40 S shaped KNN 0.2, 0.5, 0.8, 1

exp3 40 S shaped KNN, DT, LDA 0.8

exp4 40
S shape

LDA 0.8V shape

the classification model was trained and tested using the k-

folds cross-validation method(where k=5). to perform a fair

comparison, all algorithms in this research were evaluated

using the same common parameters (150 iterations and 40

search agents). The other specific parameters were selected

based on recommended settings in the original papers and

related works on FS. The proposed approach is coded in
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MATLAB-R2017b, and tested on a PC with Intel Core i7-

8550U, 2.2 GHz CPU, 8 GB RAM.

A. Sensitivity of BHHO to the number of search agents

In this part, Extensive experiments with different values

of search agents were performed to identify the suitable

number of agents for handling our problem. We concluded

that SBHHO with 40 agents had obtained the best AUC

results. Using a small number of agents causes the premature

convergence problem due to the loss of diversity. Accordingly,

the subsequent experiments will be conducted using 40 search

agents.

B. Handling Imbalanced data using ADASYN

To confirm the effectiveness of the ADASYN technique, we

conducted two experiments. In the beginning, the performance

of SBHHO combined with ADASYN was investigated by

employing different values of oversampling ratios After deter-

mining the suitable oversampling ratio, we deeply compared

the overall performance of SBHHO on the original datasets

(i.e., without ADASYN) and the re-balanced datasets (i.e.,

after applying ADASYN).

After conducting several experiments on all datasets, the

obtained results showed that the oversampling ratio of 0.8 had

achieved the best rank. This can be justified by the fact that the

data is highly imbalanced, as the number of defective instances

is much less than the number of the normal ones. Therefore,

using a low oversampling ratio is not enough to re-balance the

data. Accordingly, the balance ratio of 0.8 is adopted in the

subsequent experiments.

Table III explores the comparison between SBHHO over

imbalanced and balanced data in terms of specificity, sensitiv-

ity, and AUC rates. It is observed that applying ADASYN

improves the ability to predict the instances with minority

class (i.e., sensitivity), while it is decreased for those with

majority class (i.e., specificity) for all datasets. This is because

the learning model is biased to the majority class when using

unbalanced data. To balance between the two different behav-

iors, we focus on the AUC as a performance evaluation metric.

By Inspecting the results, it can be seen that the SBHHO

with ADASYN is superior in 80% of cases. This proved

the significant impact of ADASYN in improving prediction

accuracy. Kindly note that all subsequent experiments are

based on balanced data.

C. Impact of selected classifiers

Different types of classification algorithms are available in

the literature. However, it is difficult to identify which one is

the best. It depends on the nature of the used datasets. For

this purpose, extensive experiments are performed in this part

to select a suitable classifier. Three classifiers from different

categories were used: KNN, DT, and LDA.

The obtained results by SBHHO with different classifiers

show that LDA classifier declares superior results in 66.7 %

of the datasets. As per F-test, LDA attained the best rank,

followed by LNN and DT, respectively.

TABLE III: comparison of SBHHO before and after using

ADASYN in terms of sensitivity, specificity, and AUC metrics

Dataset
Sensitivity Specificity AUC

original ADASYN original ADASYN original ADASYN

ant-1.7 0.4877 0.7386 0.8983 0.7138 0.6930 0.7262

camel-1.0 0.0462 0.5154 0.9957 0.7957 0.5209 0.6555

camel-1.2 0.3602 0.5755 0.8056 0.6148 0.5829 0.5951

camel-1.4 0.2448 0.5917 0.9530 0.6873 0.5989 0.6395

camel-1.6 0.2128 0.6011 0.9263 0.6753 0.5695 0.6382

jedit-3.2 0.6533 0.7500 0.8258 0.7110 0.7396 0.7305

jedit-4.0 0.4920 0.7120 0.8944 0.7229 0.6932 0.7175

jedit-4.1 0.5418 0.7646 0.8884 0.7558 0.7151 0.7602

jedit-4.2 0.3646 0.7750 0.9433 0.7643 0.6539 0.7696

jedit-4.3 0.0545 0.5091 0.9850 0.8191 0.5198 0.6641

log4j-1.0 0.5912 0.7500 0.9485 0.7446 0.7698 0.7473

log4j-1.1 0.7054 0.7514 0.9194 0.8236 0.8124 0.7875

log4j-1.2 0.9857 0.7265 0.3875 0.7063 0.6866 0.7164

xalan-2.4 0.2509 0.7409 0.9519 0.7039 0.6014 0.7224

xalan-2.7 0.9987 0.9855 0.7091 0.8091 0.8539 0.8973

W—L 2—13 13—2 13—2 2—13 3—12 12—3

D. Comparison of BHHO variants

In the current part, the efficiency of the proposed multi-

swarm variants of HHO (ESBHHO, and EVBHHO) are ap-

praised and compared with the basic variants (SBHHO AND

VBHHO) by inspecting the AUC rates, and size of the selected

feature.

By observing the reported results in Table IV, it can bee seen

that the EVBHHO achieves the higher values of the prediction

accuracy in 80 % of the datasets, whereas ESBHHO obtained

the best results on 20 % of datasets. As per the number of

selected features, EVBHHO scores the best results on 46% of

cases followed by VBHHO, which gives the best values on

40% of cases, while both show no superiority on each other

on 14% of cases. Besides, the integration between the BHHO

and V-shaped TF outperforms the S-shaped TF in terms of

AUC and the number of selected features.

TABLE IV: Comparison between BHHO and the enhanced

variant EBHHO using S-shaped and V-shaped TFs in terms

of AUC and number of selected features.

Dataset
AUC No. of features

SBHHO VBHHO ESBHHO EVBHHO SBHHO VBHHO ESBHHO EVBHHO

ant-1.7 0.7471 0.7541 0.7683 0.7727 11.8 7.7 11.5 6.9
camel-1.0 0.7044 0.7549 0.8013 0.8107 8.8 5.9 7 5.9
camel-1.2 0.6174 0.6217 0.6464 0.6467 14.1 9.7 13.8 9.4
camel-1.4 0.6745 0.6776 0.7051 0.7029 12.2 9.7 11.9 9.8
camel-1.6 0.6549 0.6532 0.6731 0.6762 14.1 10.3 12.8 9.8
jedit-3.2 0.7958 0.7994 0.8271 0.8270 13.5 9.3 13.6 10.4
jedit-4.0 0.7149 0.7308 0.7602 0.7661 11.4 7.1 10 6.4
jedit-4.1 0.7715 0.7775 0.8071 0.8133 11.8 7.8 11.1 8.1
jedit-4.2 0.7808 0.7901 0.8256 0.8290 10.4 7 12.5 6.5
jedit-4.3 0.5907 0.6407 0.8053 0.8081 11.1 7.1 12.9 8.2
log4j-1.0 0.7786 0.7766 0.8214 0.8297 7.8 5.1 8.1 4.9
log4j-1.1 0.7495 0.7762 0.8337 0.8395 12.6 4 10.9 5.2
log4j-1.2 0.6606 0.6837 0.7767 0.7761 11.8 7.3 11.1 5.9
xalan-2.4 0.7149 0.7220 0.7467 0.7521 10.2 6.4 10.2 6.7
xalan-2.7 0.8699 0.8633 0.9006 0.9269 6.9 2.7 6.8 2.7

W—T—L 3.80 3.20 1.80 1.20 3.70 1.53 3.30 1.47

E. Comparison with well-known algorithms

In this part, we will confirm the effectiveness of the

proposed ESBHHO and EVBHHO versions by compar-

ing them with well-established algorithms including BGSA,

BGOA,bWOA, BB, GA, and BALO. For this purpose, all

algorithms were implemented and tested on the same proposed

model using the same common configurations.
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Based on the reported AUC results in Table V, it can

be recognized that EVBHHO outperforms other algorithms

in about 60% of datasets. Based on the F-Test ranking, the

EVBHHO ranked first, followed by BGOA, ESBHHO, BALO,

BWOA, BBA, BGSA, and GA, respectively.

The excellent performance of the proposed multi-swarm

HHO over other algorithms can be justified by its abil-

ity to explore more several regions at once. Moreover, the

HHO algorithm employes six updating mechanisms to balance

between the exploration and exploitation behaviors, which

improves the ability to perform well with various problems.

TABLE V: Comparison with other well-known algorithms in

term of AUC results

Dataset ESBHHO EVBHHO BGSA BGOA WOA BBA GA2 bALO

ant-1.7 0.7683 0.7727 0.7624 0.7710 0.7671 0.7644 0.7612 0.7665
camel-1.0 0.8013 0.8107 0.7792 0.8028 0.7836 0.7794 0.7538 0.7821
camel-1.2 0.6464 0.6467 0.6368 0.6423 0.6336 0.6362 0.6280 0.6461
camel-1.4 0.7051 0.7029 0.7009 0.7098 0.6928 0.7030 0.6863 0.7067
camel-1.6 0.6731 0.6762 0.6648 0.6788 0.6566 0.6597 0.6586 0.6813

jedit-3.2 0.8271 0.8270 0.8202 0.8312 0.8146 0.8173 0.8105 0.8337
jedit-4.0 0.7602 0.7661 0.7510 0.7583 0.7504 0.7589 0.7404 0.7553
jedit-4.1 0.8071 0.8133 0.7996 0.8139 0.8008 0.7984 0.7893 0.8080
jedit-4.2 0.8256 0.8290 0.8139 0.8279 0.8177 0.8159 0.8090 0.8176
jedit-4.3 0.8053 0.8081 0.7690 0.7911 0.7303 0.7590 0.7458 0.7819
log4j-1.0 0.8214 0.8297 0.8174 0.8233 0.8194 0.8172 0.7963 0.8110
log4j-1.1 0.8337 0.8395 0.8330 0.8413 0.8346 0.8331 0.8018 0.8344
log4j-1.2 0.7767 0.7761 0.7590 0.7724 0.7469 0.7568 0.7359 0.7691
xalan-2.4 0.7467 0.7521 0.7364 0.7476 0.7432 0.7391 0.7303 0.7425
xalan-2.7 0.9006 0.9269 0.8651 0.9021 0.9171 0.8746 0.8889 0.8893

Rank (F-test) 3.00 1.80 6.07 2.27 5.40 5.80 7.73 3.93

The convergence behaviors for selected datasets are demon-

strated in Fig. 3. It can be observed that EVBHHO achieves

faster acceleration rate of convergence to the best solution.
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Fig. 3: Convergence curves behavior on selected datasets

V. CONCLUSION AND FUTURE DIRECTIONS

In this paper, a novel feature selection method that is

based on an enhanced binary HHO algorithm was proposed to

enhance the perfromance of a learning algorithm for SFP prob-

lem. Moroever, the ADYSON technique was used to rebalance

the datasets. Three classifiers were used with the objective

function to evaluate the selected features by the optimization

algorithm. Fifteen datasets in the field of SFP were used to

assess the performance of the proposed approach. The obtained

results indicated that the enhanced HHO approach augmented

with ADASYN method recorded the best results among all

other algorithms when used with LDA classfier.

The future directions are related to the following: first,

exploring the efficiency of other binarization techniques as

well as other versions of TFs. Second, different classifiers can

be tested with the proposed model, such as Artificial Neural

Networks.
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