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The part of speech (PoS) tagging is a core component in many natural language processing (NLP) applications. In fact, the
PoS taggers contribute as a preprocessing step in various NLP tasks, such as syntactic parsing, information extraction, machine
translation, and speech synthesis. In this paper, we examine the performance of a modern standard Arabic (MSA) based tagger
for the classical (i.e., traditional or historical) Arabic. In this work, we employed the Stanford Arabic model tagger to evaluate
the imperative verbs in the Holy Quran. In fact, the Stanford tagger contains 29 tags; however, this work experimentally evaluates
just one that is the VB ≡ imperative verb. The testing set contains 741 imperative verbs, which appear in 1,848 positions in the Holy
Quran. Despite the previously reported accuracy of the Arabic model of the Stanford tagger, which is 96.26% for all tags and 80.14%
for unknown words, the experimental results show that this accuracy is only 7.28% for the imperative verbs. This result promotes
the need for further research to expose why the tagging is severely inaccurate for classical Arabic. The performance decline might
be an indication of the necessity to distinguish between training data for both classical and MSA Arabic for NLP tasks.

1. Introduction

The part of speech (PoS) tagging, also known as word-
category disambiguation, is a process to determine the tag
of each word in a given input text. The tagging process
uses the context to label words using syntactic tags, such as
noun, adjective, verb, or preposition that are also known as
parts of speech, word-classes, grammatical categories, lexical
class markers, or syntactic categories. Tagging is performed
either manually by linguistic experts or automatically by
machine learning algorithms; intuitively, this work considers
the computational track. Word tags are mainly used to
describe the words and their jobs according to the context for
further processing. That is, each word has a particular role
based on the position and the adjacent words in the sentence.
The tagset is a predefined list that generally includes some
symbols, such as nouns, pronouns, adjectives, verbs, adverbs,
propositions, conjunctions, and the definite and indefinite
articles (sometimes called “determiners”). Of course, the
tagset is prepared by the language linguistic scholars to

describe the language’s membership or word family. The size
of the tagset is variable and depends on the requirements or
the capacity of developing applications. In any case, the tagset
should best fit and efficiently serve the intended purposes.
Hence, there is no predefined tagset for all languages and
there is no standard (i.e., unique) tagset for a certain language.
Rather, it is a debatable matter.

The PoS is increasingly becoming a vital factor in the
related natural language processing (NLP) applications. In
fact, creating knowledge base resources (e.g., tag relation-
ships) is one objective of the PoS tagging that can be later
used in other NLP tools. In fact, PoS tagging has many roles
in the field of NLP as a basic prepossessing step. For instance,
some ofNLPPoS tagging based applications include syntactic
parsing, information extraction, machine translation, speech
synthesis, and named entity recognition (NER). This work
is aimed at exploring the performance of the PoS for the
classical Arabic using a modern standard Arabic (MSA)
tagger that is the Stanford tagger [1]. Since it is difficult to
evaluate the Stanford tagger for all tags (29 tags) as it requires
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a large annotated corpus, the Quranic imperative verbs were
chosen in the evaluation process. The Stanford tagger uses
the label VB to mark the imperative verbs. That is, this work
is restricted to a testing dataset that contains a list of all
imperative verbs in the Holy Quran that is obtained from
[2].This work is distinguished by presenting an experimental
study of the classical Arabic performance using one of the
freely available taggers and, therefore, making it clear for
comparison purposes. This work also aims to demonstrate
the tagging problems from different points of view, such
as the Arabic PoS tagging benefits and challenges, tagsets
capacities, tagging algorithms, and the recent studies in this
field.

In spite of the importance of taggers’ performance for
both classical andMSAArabic, few studies have explored the
accuracy for the classical Arabic. On the other hand, most of
the previous studies focused on the tagsets and the tagging
approaches. For instance, one study [3] proposed an Arabic
tagset with detailed hierarchical levels of the categories and
their relationships (i.e., a tree of different levels). As indicated,
this study focused on the imperative verbs in theHoly Quran.
The reason for choosing the imperative is that it is easier to
find such annotated testing collections due to the previous
effort of Arabic scholars to serve the Quranic studies. In
addition, theArabic language is distinguished to have a stand-
alone form of imperative verbs whereas it is mixed with the
present verb as found in the English language. For instance,
the English language has the verb “go” as an imperative and
present verb, while the same verbs have a different form in the
Arabic language as the imperative is “�� �

���” and the present
is “�� �

��	
” which are completely different words in terms of
transcription and tense.

Even though the documentation of the Stanford tagger
[4] indicates that the accuracy of the Arabic model is 96.26%
on an MSA test portion as described in [5] and 80.14% for
unknown words, our measure shows extremely less accuracy.
In this work, the Stanford tagger scored only 7.28 % accuracy
for a collection of Arabic imperative verbs. It is worth
indicating that the Stanford tagger works at word level (i.e.,
the tag is given to the whole word instead of its parts, such
as prefixes, stems, and suffixes as some other taggers do).
Despite diacritics playing an important role in the tagging
process, nevertheless, they are discarded in this work since
the Stanford tagger does not consider the diacritics of the
input text. However, we do keep the Hamza (e.g.,

�
�) and the

Madd (
�
�) symbols in the corresponding characters. That is,

the testing dataset is a nonvocalized Arabic text. The output
of this work highlights the importance of reinvestigating
the tagging problem for the Arabic language since many of
previous studies report accuracies into the nineties percentile.
Reinvestigation includes different aspects of training data as
either classical or MSA, the tagsets, the corpora sizes, etc.

The rest of this paper is organized as follows. In the next
section, we demonstrate the benefits of the tagging for various
NLP applications. In Section 3, we present why tagging is a
challenging task. We exhibit the literature review in Section 4
followed by the Stanford tagset in Section 5. The proposed

method is described in Section 6 and the experimental results
in Section 7. Finally, we conclude in Section 8.

2. The Benefits of Tagging

The PoS tagging is the core of many NLP algorithms due
to the useful information it gives about a word and its
neighbors. In fact, NLP applications employ the output of
the PoS tagging for different purposes, such as checking
the correctness of the syntactic structure around the word.
For instance, regarding the Arabic language, adjectives are
preceded by nouns while nouns are preceded by adjectives
in the English language such as “A beautiful school←→� � �
 ���

� ��� �”. Similarly, nouns are preceded by verbs in
the English such as “He runs fast”, while the Arabic allows
both directions, such as “����� �� ��	
 ����� �←→ the teacher

writes the lesson” and “ ��� �� �� � �� � �� � � 	
 ←→ the
teacher writes the lesson.” Therefore, the Google translator
gives the same translation for two different word order
Arabic sentences. Hence, knowing the syntax of word order
is extremely important for some NLP applications since it
limits the output candidates and increases the probabilities of
correct answers. The following are some of NLP applications
that utilize the PoS tagging:

(i) Capturing common syntactical rules: [6] presents
a data mining based method to extract the com-
mon syntactical rules in the Holy Quran. The study
reported that the common relationships between the
words’ tags (i.e., the common rule) are tag1=RP
tag2=NN tag3=WP 91 ⇒ tag4=VBD 90 accuracy
(0.97912). Formore information of the tags, the reader
refers to Section 5 in this paper.

(ii) Enhancing the performance in speech recognition:
[7] employs the PoS to generate new words based
on the neighboring word tags. The study used com-
pound nouns that are followed by adjectives and the
preposition followed by any word. After recognition,
the compound words were placed back to their
original states (i.e., two parts). This method shows
performance enhancement.

(iii) Named Entity Recognition (NER): [8] employs a
tagger for named entities recognition (NER). NER
aims at extracting the names such as people, orga-
nizations, locations, cities, or companies. NER is
beneficial for certain applications such as classifying
content for news providers. This facilitates catego-
rization and content discovery. NER also speeds up
the search process in sizeable data that contains,
for instance, millions of articles. Other applications
include using powering content recommendations,
customer support, and research papers.

(iv) Syntactic Parsing: [9] employs the PoS tagging for
syntactic parsing. Syntactic parsing is a process to
confirm that the input sentence follows the language’s
formal grammar. Figure 1 shows a parsing tree for
a simple sentence. The parsing tree represents the



Advances in Fuzzy Systems 3

sentence

noun phrasenoun phrase verb phrase

noun nounverbarticle

the cat ate mouse

Figure 1: An example of a parsing tree.

syntactic structure of the text and is mainly used for
analyzing the input sentence.

(v) Other PoS tagging based applications include:
semantic role labeling [10], speech synthesis [11],
speech recognition [12], information extraction [13],
summarization [14], sentiment analysis also called
opinion mining [15], diacritization [16], software
engineering [17], question answering [18], translation
[19], plagiarism detection [20], key phrases extraction
[21], ontology [22], and extracting Arabic noun com-
pound [23].

3. The Challenge of Tagging

That fact that a word can take different tags makes the PoS
tagging a challenging task. That is, a word can be labeled by
different tags based on the context. Therefore, the goal of the
PoS tagging algorithms is to remove such ambiguity and label
the words correctly. Table 1 shows some examples of words
that take different tags based on the context. As shown in the
table, the word “gold ←→ �� � �� ” in sentence 1 is tagged
as VBD (verb, past tense) while it is tagged as NN (noun,
singular or mass) in sentence 2. Similarly, the word “Said
←→ � �
 ��” in the first sentence is tagged as NNP (proper
noun, singular) while it is tagged as JJ (adjective) in sentence
3. This shows how a particular word can have different labels,
which is the challenge of the PoS tagging process. Hence,
the problem of the PoS tagging is to resolve ambiguities by
choosing the proper tag considering the surrounded words.
Of course, the absence of diacritics in the Arabic formal
writing system adds evenmore ambiguity. For instance, there
is no ambiguity to know that the diacritized word “gold←→
���
�� ���” is a noun and the diacritized word “went ←→ ���

�� ���
” is a verb. The figure also shows the tagging output for the
translated sentences using the English model of the Stanford
tagger.

4. Literature Review

Despite the importance of the PoS tagging for both MSA
and classical Arabic, most of the previous tagging studies
have mainly focused on the MSA. In addition, the literature
shows there is an active research to consider suitable tagsets

that truly reflect the linguistic items of Arabic as one of
the morphologically rich languages. In this literature, we
demonstrate the up-to-date Arabic tagging research which
focused on the main aspects and components, such as the
type of the training text (i.e., MSA, classical, tweets), tagsets,
tagging algorithms, unknown words, stemming. In [30], the
study indicated that stemming (i.e., removing prefixes and
postfixes or suffixes) enhances the tagging performance. In
[31], the study presented a method to tag tweets that is
usually written out of the formal and proper spelling of the
language. In [28], the study considered a method to handle
the “unknown words”, which are the words that did not
appear in the training corpus. In [26], the study considered
the problem which arises when estimating the transition
probabilities in limited amounts of training data. The study
proposed decision trees basedmethod to handle this problem
that generally occurs in the hidden Markov models (HMM)
tagging technique. In [32], the study implemented themaster-
slave technique for the PoS tagging; they used HMM as a
master tagger and maximum match (MM) and Brill taggers
as slaves. There are many approaches to perform the PoS
tagging, the most widely used is the statistical approach that
is based on the HMM. Another approach is not-statistical,
which is on a number of hand-crafted disambiguation rules
to find the most appropriate tag for each word as in
[33].

The recent studies of part of speech tagging include
different aspects. For instance, [34] developed a part of speech
tagger for the Arabic heritage. They scored an accuracy of
96.22%.They also reported that themost of the tagging errors
are results of segmentation. Reference [35] employs part of
speech tagging to enhance the performance of Arabic text
classification. Reference [36] demonstrates part of speech
tagging for the Arabic Gulf dialect. For the tagging process,
they employ Support Vector Machine (SVM) classifier and
bidirectional Long Short Term Memory (Bi-LSTM). Refer-
ence [37] presents a tagging based study regarding Arabic
dialects identification. Reference [38] uses part of speech
and semantic tagging to extract features for training Neural
Machine Translation.

Table 2 presents some information regarding tagging
systems, such as tagging algorithms, tagsets, corpora, and
accuracies. We are aware that the accuracy is not a matter
since each work has its own corpus; nevertheless, reporting
these measures might give an indication of the overall
accuracy of the Arabic PoS tagging. Similarity, even the tagset
size is important; however, it is more important to have
enough training set to cover the tags used; otherwise, zero
valuesmight be assigned to theHMM transition probabilities
which raises a tagging problem.

5. Stanford Tagset

As indicated in the literature review, there are many tagsets
that are used in the previous studies. Mainly, the tags are
divided into two classes (i.e., categories), which are closed
class and open class.The closed class has a fixedmembership,
such as prepositions while the open class can accept new
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The proposed algorithm
1. Obtain the text of the Holy Quran from [24] and remove the diacritics.
2. Install the full version of the Stanford Arabic model tagger from [25].
3. Have the text of the Holy Quran tagged.
4. Obtain a list of all imperative verbs in the Holy Quran from [2].
5. Find all words that have the tag VB ≡ imperative verb.
6. Compare the two lists; the one we obtained in step 5 and the list we obtained in step 4 to find the correctly tagged imperative verb.
7. Find the accuracy based on the information that is obtained in step 6.

Algorithm 1: Evaluating imperative verbs using the Stanford tagger.

Table 2: Some of the literature tagging research.

No Ref. Tagging Method Tagset Size Corpus Size Accuracy
(tags) (words) (%)

1 [26] A decision tree based tagger 110 78K &500K 91.65 → 97.18
2 [27] Support Vector Machines (SVM) 24 140K 95.49
3 [28] Hidden Markov Models 24 29,300 95.0 → 97.1
4 [29] SVM and a Neural network 21 6,844 91.0
5 [1] Maximum Entropy based tagger 29 588,244 96.1

words especially in the technology fields as “to fax”. Table 3
shows the 29 tags of the Arabic model of the Stanford tagger.

6. The Proposed Method

This section presents the steps that we follow to find the
performance of the Stanford tagger against the Quranic
imperative verbs. The first step is the tagging process that
produces an annotated text file of the entire Quranic sen-
tences.Thenwe used a number of Python programs to extract
the correctly tagged imperative verbs as well as the wrongly
tagged imperative verbs, etc. The textual version of the
Holy Quran is obtained from the Quran Printing Complex,
Saudi Arabia website [36]. Algorithm 1 summarizes the
implemented steps.

The input testing set is the nondiacritized textual form of
the Holy Quran. Figure 2 shows what the testing set looks
like. The figure contains the first chapter or Surah of the
Holy Quran (Sūrat al-Fātih. ah—The Opening) in addition
to the first three sentence of the second chapter (Sūrat
Al-Baqarah—The Cow). Figure 3 shows the output of the
Stanford tagger for the Quranic sentences that appear in
Figure 2. As it is observed, Figure 3 shows some correctly
tagged words such as the following: { �0


)�1�� �/DTJJ, �-� �	
�
�

/VBD, �"	

��� �/WP, �2/ ��� �/	
/VBP}. The figure also shows some

wrongly tagged words such as the following: { �034�/NNP, 5(	
��
/VBD, ( �	���/VBD}.

The tagger output that is shown in Figure 3 is the main
content that can be used for further analysis to find the
behavior of the tagger. Of course, the correctly tagged words
are required (i.e., the correct labels of the testing words) in
order to measure the accuracy which adds more difficulty in
this kind of research. In other words, if we want to measure

the accuracy for the “entire” Holy Quran, we have to prepare
an annotated version of the Holy Quran which is a difficult
task. This is why we chose a subset that contains only the
imperative verbs.

7. The Experimental Results

For the evaluation, we used the full Stanford tagger (129
MB) that is freely available at the website of the Stanford
natural language processing group through the link [37].
It is relatively simple to execute the tagger by running the
command shown in Figure 4 in the Windows, Command
Prompt program. That is, the tagger does not require special
systems, as we run it on the Command prompt of the
Windows 10 home operating system. The figure shows that
77,749 words are tagged in a very short time.

The experimental results are demonstrated in Table 4.
The table exposes the information regarding the imperative
verbs; however, this work can be expanded to measure
the performance for different tags such as noun or verb.
Similarly, it is possible to find the performance of the Stanford
tagger regarding the prepositions in the Holy Quran, in
which the same steps can be followed to get the accuracy
for prepositions, or the overall accuracy of all tags. Finally,
exploring the performance for the Stanford tagger as well
as for the other taggers will lead to discover more weakness
points to be avoided in future NLP systems.

8. Conclusions

This work explored the performance of the Stanford tagger
for the Arabic language. The experimental results show the
importance of distinguishing between training data when
preparing taggers. That is, the tagger that is prepared for
poetry is different from the tagger that is prepared for prose.
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Figure 2: A part of Quranic testing set.

Figure 3: A part of the Stanford tagger output.

Figure 4: The running command of the Stanford tagger.

Similarly, the tagger used in the old text is different than
one that is prepared for MSA. The tweets are also different
from MSA. This is the main observation of this study as the
performance of theMSAbased tagger sharply declines for the
classical text. The study also shows the differences between
the literature tagsets which promotes a better study and work
for a standard tagset that thoroughly covers the language.
However, preparing a comprehensive tagset requires an
extensive double check of the transition probabilities between
all tags since zero probabilities might give errors especially in
HMM based taggers. As a future work, it might be good to
merge between hand-crafted rules and statistical approaches
for the PoS tagging. It is also important to consider word
segmentation before tagging, as many Arabic words contain
different tags, such as a preposition and a noun for example
as in the word“ � ��� ��( 	� ≡ at school”. Finally, the Arabic
language is characterized by sizeable vocabulary as well as
an extremely rich morphology that requires an endless effort

towards optimal NLP systems. It is worth indicating [39, 40]
as they have a thorough discussion of the Arabic challenges,
as well as some recent Arabic NLP contribution such as
stemming, corpora, and classifiers.
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