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Abstract--  Delta robots are of nonlinear dynamics, therefore 
applying linear controllers to satisfy the required trajectory 
tracking is a challenge which becomes more significant when the 
robot model is unknown. This paper proposes a stable virtual 
sensor to be used for feedback linearization for delta robots with 
unknown dynamic model.  The sensor design is based on the 
second order sliding mode observer. This sensor considers that 
only the inertia of the robot upper links with the motor inertia 
are known. As a measurement, only the active joints position 
angles are measured. The stability is proven using Lyapunov 
theory and explicit relations for the design parameters are 
obtained. To overcome the effect of the transient response of this 
sensor, an adaptive tuning gain with maximum value of unity is 
introduced in the feedback to improve the compensation 
performance. The results validate this sensor and prove its 
dramatic performance improvement in trajectory tracking when 
combined with the PD controller.  

Index Term--  Delta robot, sliding mode observer, disturbance 
estimation, adaptive control, virtual sensor. 

1. INTRODUCTION 

Virtual sensors are considered to be software sensors that 
use measured variables in relatively simple models, they are 
used in several applications [1-5]. The use of these sensors 
increases the measurement redundancy and reliability of the 
measurement systems and overcomes the hardware size and 
cost limitations [6, 7]. Further, virtual sensors can be used in 
systems with unknown models as in this paper.  

Trajectory tracking using classical control approaches is 
reported [8, 9 , 10-12]. However,  unmodeled dynamics and 
disturbances deteriorate the controller performance[13]. 
Neglecting the coupling effects is the design principle in 
Proportional–derivative (PD) and Proportional- integral 
derivative PID controllers used to control delta robots[14], 
this requires improving the tracking errors [15]. Recent 
nonlinear PD with sliding mode control was reported in [16], 
however, sliding mode controller’s major problem is 
chattering. The research on adaptive control of delta robot is 
still ongoing [17] to restrain model uncertainties problems.  

 

Obtaining linearized model via feedback linearization  
simplifies the application of linear controllers using linear 
pole placement techniques [18, 19], it assumes that the exact 
dynamic model is obtained and available. However, it 
becomes more challenging when the robot model is partially 
known or unknown like the case in this paper. Sliding mode 
observers are employed here to overcome this challenge. 

 The sliding mode observers are characterized by the 
finite-time convergence and robustness to uncertainties [20]. 
Generally the observer is designed by injecting a nonlinear 
discontinuous term. This injector must be designed to force 
the system trajectories to remain on the a sliding surface in the 
error space, this results in disturbance rejection [21].  First 
order sliding mode observers are restricted to systems with 
output relative degree of one and may cause chattering [22].  
Higher order sliding modes can improve the first order sliding 
mode observers [23]. The second order sliding mode observer 
with twisting algorithm is studied in [20], the stability 
analysis is based on the majorant curve. The author in [24] 
studied the stability and convergence based on Lyapunov 
function.  

This paper contributes in proposing a virtual sensor which 
is designed based on a second order sliding mode observer for 
delta robots with unknown dynamic model. It is considered 
that only the active joint position is measured, and the model 
is unknown except the constant diagonal matrix that 
represents the inertia of the links and the motors. The inertia 
matrix, Coriolis and centrifugal torques, gravitational terms 
acting on the robot and joint friction are unknown and 
considered as lumped disturbance vector to be estimated. The 
stability is proven based on Lyapunov theory. This leads to  
obtain explicit relations for the design parameters. An 
adaptive tuning gain surface is developed  based on the error 
between the actual and desired joint angles. This gain scales 
the estimated disturbance adaptively to overcome the 
overshoot at the beginning of the estimation process. The 
tuned disturbance is added to the control signal of a designed 
PD controller to study the tracking trajectory performance.  



                       International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS Vol:20 No:05           236 

                                                                                                              205205-3434-IJMME-IJENS © October 2020 IJENS                                                                      I J E N S 

The rest of the paper is organized as follows: the delta 
robot model is in section  2, section  3 introduces the problem 
statement, the virtual sensor design is in section  4. Section  5 
shows the control approach, section  6 discusses the results, 
the paper is concluded in section  7.  

2. DELTA ROBOT 

The schematic of the three degree of freedom (3-DoF) delta 
robot is shown in Fig. 1. The robot  structure is composed of 
fixed plate, three active revolute joints and links, three passive 
links and the moving platform. 

 
Fig. 1. Delta robot 

The kinematics and dynamics models of the robot are well 
explained in the literature, e.g. see [25-32].  The Delta robot is 
described by the differential equations as  

( ) ( , ) ( )M C G   θ θ θ θ θ θ τ τ
F

    ,  (1)  

where   3
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T   θ  is the set of the actuated 

joints vector. θ  is measured using joint encoders attached to 

the joint actuators . 3 3M   is the positive definite inertia 

matrix,   3,C θ θ θ    vector represents the Coriolis and 

centrifugal torques,   3G θ   contains the gravitational 

terms acting on the robot, 29.81 /g m s  is the gravity 

constant, 3Fτ   is the joint frictional vector and 3τ   is 

the generalized joint control vector. The above terms include 
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The inertia of motors with the upper links I  is represented 
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where 3I  is the identity matrix of size three. Then the 

matrices in Eq (1)  M , C  and G   are given as 
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 . J  and J  

represent the Jacobian and its time derivative respectively. 

The Jacobian is a function of both the actuated angles i  and 

the position of the end effector which is found using the 
forward kinematics. For more details refer to [28] . 

3. PROBLEM DEFINITION AND FORMULATION 

In general, for known dynamic model, feedback 
linearization with PD controller will achieve the desired 
transient and steady state response for a manipulator by using 
simple linear pole placement techniques [33]. However, it is 
not always the case were the dynamic models are known and 
there is no disturbance, further, the system parameters may 
change due the environment and time such as joint friction 
[34, 35].  

This paper considers that the delta robot dynamic model is 
unknown and it is controlled using PD controller with 
feedback linearization. It considers that only the constant 
diagonal matrix I  is known. In other words, the inertia matrix 

is written as ( ) ( )M M θ I θ  where M is the uncertainty  in

M .  

For the system in Eq (1), define the states  1 1 2 3

T  x  

and 1 2 1 2 3

T
      x x    , then Eq (1) can be written in 

state space representation as 
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where 1x  is the measured robot actuated joints position. Let 

all the uncertain terms be combined as lumped nonlinear 

disturbance vector called    1 2 3

T  ζ , then Eq (2) can 

be rewritten as 

1 2

2

1

1

y





 


I

x x

x τ ζ

x



  , (3) 

where 1 Iζ ζ  and ζ  is given by 

 
      1 2 2 1 1 2
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The paper will show the design of a virtual disturbance sensor 
for the original system in Eq (1), when only the position 

vector 1θ x  for the three joints is measured.  The joints 

angular velocity vector 2θ x  is to be observed. The 

proposed method does not require the calculation of the ,M C  

and G  matrices in Eq (2). Therefore the Jacobian calculation 

is avoided.  

 The stability proof is based on Lyapunov approach. The 
solutions to the system in Eq (3) are in the sense of  Filippov 
[24]. 

4. VIRTUAL SENSOR DESIGN BASED ON SLIDING MODE 

Consider the super twisting observer of the form  

2

1
2 2

ˆ ˆ

ˆ 

1 1x = x + z

x = I τ + z




 (5) 

where 1x̂ and 2x̂  are the state estimation of the real states 1x  

and 2x  respectively. , 1, 2iz i  are the observer injectors and 

used to eliminate the error between the estimated states and 
the actual states. They are defined as 
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where 1x  is the error and expressed as ˆ1 1 1x = x - x . 1  and 2  

are the observer gains. Define  ˆ2 2 2x = x - x , then the error 

dynamics are 

2

2 2

1 1x = x - z ,

x = ζ - z ,

 


 (7) 

For this robot, the actuator angular motion is bounded. Thus,  
it is assumed that the states are bounded and there is a positive 
constant ρ  such that   

ζ ρ  (8) 

holds for 1x  and 2x̂  for all time t. The structure of the virtual 

sensor is shown in Fig. 2.  

 
Fig. 2. Virtual sensor main structure 

Theorem: for the given system in Eq (3) and the observer in 

Eq (5), the estimated states x̂  will converge to the real states 
x  if the condition in Eq (8) holds and the observer gains are 
selected as  
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where diag  stands for diagonal matrix,  11 12 13, , 0     and 
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  for 1, 2,3.i    

Proof: to prove this theorem, it is important to show that the 

error 1x and 1x  converge to zero. i.e. , 01 1x x  . For sake of 

simplicity, only the scalar case 1 2,x x   is considered, 1  

and 2  are considered to be scalar too. The proof depends on 

the Lyapunov approach.  

Consider the strong Lyapunov function  V x  [24]  

    21/22
1 2 2 1 2 1 1 1 2
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This function is continuous everywhere and not differentiable 

at  1 0x  . Therefore, a nonsmooth version of Lyapunov 

theory is required [36].  Further, the identity 

/ sign d x dt x x   is used here. Since  0,0 0V   then the 

point 1 0x   and 2 0x   is an equilibrium point. Further,  
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 1 2, 0V x x    for 2 0   . The time derivative of Eq (11) is 

given by 

    1 2 1 2 11/ 2
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Applying the bound in inclusion in Eq (8), Eq (12) can be 
written as  
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For the stability and convergence to the equilibrium point, it is 

required that  1 2,V x x   to be negative definite. This condition 

is satisfied if the matrix 1Q  is positive definite. The matrix 

1 0Q   if  
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Hence selecting 
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Guarantees that 1Q is positive definite and  1 2,V x x    is 

negative definite. Thus the trajectories converges to the 
equilibrium point.   

Equation (15) is then extended for the three equations and 
written as in Eq (9).It follows that the estimated disturbance 

ζ̂  is 

2
ˆ ˆ Iζ x τ   (16) 

Which is the output of the virtual sensor. 

5. CONTROL APPROACH  

As mentioned earlier, once the estimated lumped 

disturbance vector ζ̂ converged to the true value of ζ , i.e. 

ˆ 0 ζ ζ , then the model becomes a linearized model where 

simple linear pole placement techniques can be used to design 
a controller. A PD controller is designed to track the reference 
trajectory according to Eq (3) where  the error dynamics is 
given as 

0d pk k  e e e   , (17) 

where  1 1 1 2 3

T

d e e e  e x x , 1dx  is the desired 

trajectory vector, pk  and dk  are the positive gains of the PD 

controller which can be determined using pole placement 
technique. 

For the feedback linearization as in Fig. 3, the estimated 
disturbance is added directly to the PD controller output. 
However, the estimation has the drawback of the overshoot. 
To overcome this limitation, the estimated disturbance is 
adaptively tuned according to the error e  and the maximum 

allowable error in the system 
max max maxmax 1 2 3

T
e e e   e . The 

tuning gain range is (0,1], 1,2,3ik i   and given by 

max

1
1it

i i
i

k
k e

e


     (18) 

where 
it

k  is a positive number with the inclusion 0 1
it

k  . 

Thus the control law is the PD controller output PD  and the 

tuned disturbance and given by ˆ
PD k  ζ  with 

 1 2 3, ,k diag k k k  .  

 

Fig. 3:Adaptive feedback linearization and control of delta robot 
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6. RESULTS 

MATLAB environment is used as an experimental 
platform to carry out simulations on the robot model. To be 
more realistic, Gaussian noise was added using MATLAB 
Simulink Gaussian noise generator with zero mean and 
variance 0.001. The sampling time of this simulation T=1 ms. 
The original nonlinear model of the robot is used throughout 
the simulation. The friction was generated using the function 
[37]  

      1 2 3 4 5 6tanh tanh tanh        Fτ θ θ θ θ      

where , 1, , 6i i    are positive constants. The model has the 

viscous dissipation term 6 θ , the Stribeck effect term  

   2 3tanh tanh θ θ  , the static coefficient of friction 

1 4   and the coulomb friction  4 5tanh  θ .  The friction 

model constants are in Table I. 

Table I: Friction model paramters 

 1  2  3  

1  0.7 0.6 5 

2  10 10 10 

3  10 10 10 

4  0.6 0.5 0.4 

5  50 100 10 

6  0.9 0.9 0.9 

The robot parameters are given in Table II.   

Table II: Robot parameters 

Description Symbol Unit 

Length of the upper arm aL  0.18m 

Length of the lower arm bL  0.435m 

Radius of the base platform f  0.1m 

Radius of the moving platform e  0.055m 

Mass of the upper arm am  0.190Kg 

Mass of the lower arm bm  0.055 Kg 

Mass of the moving platform pm  0.196Kg 

Gravity acceleration g  -9.8 2/m s  

Elbow mass em  0.024 Kg 

Motor inertia mI  
381.6 10 ;

Kg.m2 
Gear ratio constant mk  0.01 

The observer parameters are selected to be 100  , 

1 50i   and 2 5000i   for 1,2,3i  . The adaptive gain 

parameters are selected as: max [1 1 1]e and 0.1
it

k   

for 1,2,3i  . The used PD controller has the transfer 

function 

  p d

s
PD s k k N

s N
 


 , (19) 

with 325pk I , 3dk I  and N=100. s refers to Laplace 

transform.  

Define the disturbance estimation error ζ  as ˆ ζ ζ ζ . 

where ζ  is the true value generated using the true model with 

the friction, ζ̂  is the estimated value. The aim is that 0ζ  

in finite time which is depicted in Fig. 4. However, before the 
convergence, the oscillations in the transient response affect 
the control low adversely, the significant effect is when the 
initial conditions are far from the correct one. Here the initial 
conditions for the observer are given to be 0.5 for the position 
and zero for the angular velocity. This can be shown in the 

phase portrait in Fig. 5 for the first state. The initial position 
error is at -0.5. Since the error is negative, the velocity error 

must be positive  in order to drive 1x  to zero. Once 1 0x  , 

1 2x x   trajectory intersects with the point  20, 0x  . 

Then the trajectory inters the half-plane 1 0x  , this 

trajectory is concave down with a conclusion of 1 2 0x x     

which explains driving the velocity error to zero. The same 

discussion goes when 1 0x   and 1 2 0x x    until the 

trajectory reaches the equilibrium point at 

   1 1 2, 0,0x x x     and remains there. 

The trajectory tracking response without disturbance 
compensation as depicted in Fig. 6 is based on the selected 
PD controller parameters. This figure shows the error between 
the desired and the actual trajectories and how the response 
starts from its initial position at the origin point in the x y  

plane to track the desired trajectory. On the other hand, the 
response with disturbance compensation is depicted in Fig. 7 
for the same controller and conditions. It shows that the 
tracking error converges to zero.  

Although Fig. 4 shows the quality of the estimated 
disturbance, however, the transient estimation response 

affects the control law diversely. Therefore the tuning gain k  

is used with the aforementioned parameters. The gain k  
values are changing as in Fig. 8. The maximum value of this 
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gain is one, i.e. at the steady state this gain has no effect and 
the same estimated disturbance is added to the controller 
output. In the transient period, this gain has an important role 
in terms of decreasing the effect of the estimated disturbance 
on the control law.  

 
Fig. 4. Disturbance estimation error 

 
Fig. 5. Phase portrait 

 
Fig. 6. Trajectory response without disturbance compensation. 

 

Fig. 7. Trajectory response with disturbance compensation 

As can be read from Fig. 8, at the initial run, 2 3 1e e e  . 

As shown the gain for 1  starts with value of larger than 0.8 

in the period of the transient response of the estimated 

disturbance. This indicates that the estimated disturbance 1̂

has more effect on the control law than 3̂  in the transient 

response. In the same way, 3̂  has more effect on the control 

law than 2̂  in the transient response. In the control context, 

this adaptively tuned gain can be used to increase the speed of 
convergence by changing the values of its parameters that will 

increase the gain k  . However, this costs overshoot and 

oscillated response as in Fig. 9. 

 

Fig. 8. The tuning gain values 
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Fig. 9. Trajectory response with disturbance compensation with high kt 

7. CONCLUSION  

This paper introduces a stable virtual sensor based on 
second order sliding modes. This virtual sensor is used for 
feedback linearization of the nonlinear model of the delta 
robot. It assumes that the robot model is unknown, it requires 
only the measured joint position. The convergence and 
stability are proven based on Lyapunov function. The 
estimated disturbance is added to the control law through an 
adaptively tuned gain to decrease the effect of the transient 
response of the estimation on the control signal. The results 
confirmed that this proposed sensor is stable and converges in 
finite time, further, the control approach decreases the 
tracking error to zero.  
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