
Real Time Distributed Controller For Delta Robots

Ali Sharida, Iyad Hashlamon

Mechanical Engineering Department

Palestine Polytechnic University

Hebron, Palestine

156049@ppu.edu.ps, iyad@ppu.edu

Abstract: - This paper investigates a real time distributed controller for a 3 DOF delta robot using low-cost

educational simple microcontrollers. The parallel computing technique is used were the computational load is

divided among several microcontrollers networked to each other to implement control methods. More

specifically, the computation is distributed among four microcontrollers (MCU’s) which are connected to each

other using CAN bus protocol. The main MCU is used to compute the control law. Each of the remaining

MCU’s is connected to one actuator and its attached encoder to form an Intelligent sensor-actuator system

(ISAS). At each sample time, the ISAS broadcast a message using the CAN bus to the main MCU containing

the information about the motor position. Then according to the control law, ISAS receives the corresponding

controller value that has to be applied to the motor. All required periodic, aperiodic and sporadic tasks, were

implemented and will be handled by these MCU’s. Using this design, the computation time of control law can

be minimized and implemented using ARDUINO microcontrollers. More, this method increases the flexibility

of the system for additional equipment and control by adding more nodes to the network. The results show the

applicability of the proposed distributed controller, it can track different types of control signals with

acceleration up to 9.8 m/s^2 (1g).

Key-Words: - Real Time Control, Distributed Control, Delta Robot.

1 Introduction
Delta robots are widely used in applications

that require very fast motion and accuracy, such as

picking and placing [1, 2]. The main advantage of

these robots is the ability to produce high

acceleration at the end effector. Furthermore, as the

mass of the overall system is relatively low, these

robots can achieve a high load capacity. Therefore,

this robot attracted many researchers to develop

kinematic and dynamic models and controllers [3-

7].

However, delta robots control contains multiple

computational tasks that should be completed in

terms of modeling, planning and control [8], these

tasks require relatively long computational time. So,

it is very important to use a method to minimize

computational time in such applications.

Furthermore, the robot is equipped by 3 actuators

and 3 encoders, 1 encoder per actuator. Then, the

microcontroller should deal with 6 (2 channels for

each encoder) channels that generate digital pulses

with high frequency. Thus, hardware problems

appear low cost educational microcontrollers are

used for delta robots. In general, the frequency of

these pulses is very high due to the high speed

motion. Missing any of these pulses results in an

incremental error of measuring the angular position

of the actuated joints which is accumulated with

time.

The comparative study in [9] illustrates the

processing time of the fundamental three approaches

of modeling Delta robot “Principle of Virtual

Work, the Newton-Euler Formulation, and the

Lagrangian Formulation). Although the results

were: Principle of Virtual Work requires 0.73 sec,

Newton-Euler Formulation requires 1 sec, and

Lagrangian Formulation requires 0.37 sec, these

processing times are high for real time systems

when model-based control approaches are used and

the model is tuned online adaptively. The challenge

becomes harder when the control law and the

reading from the sensors are considered.

To overcome the aforementioned challenges,

distributed control approaches were used. In these

approaches, several microcontrollers (MCU’s) are

used, each controller is assigned its own job(s). The

microcontrollers communicate with each other using

a communication protocol to form an overall real

time Network Control System NCS.

Many protocols can be used to establish a real time

network, such as I2C [10], SPI [11] and CAN

protocol [12]. Among them, CAN protocol has

many advantages including very simple physical

construction, it supports auto retransmission of lost

massages and supports different error detection

capabilities. Therefore, it is considered the most

suitable communication method for real time

applications.

WSEAS TRANSACTIONS on SIGNAL PROCESSING
DOI: 10.37394/232014.2020.16.12 Ali Sharida, Iyad Hashlamon

E-ISSN: 2224-3488 99 Volume 16, 2020

A distributed controller is reported in [13],

where the controller is designed to control a slave

robot from a master arm using SPI protocol. In [14],

the researcher implemented an embedded controller

for 5 DOF manipulator using SPI protocol using a

simple PID controller. Although SPI is a very

simple protocol and depends on the principle of

master and slave communication, any fault in the

master MCU will lead to shut down all network.

Furthermore, SPI communication requires more

signal lines than other communication protocols,

which increase the complexity of the network.

To solve this problem, the principle of parallel

computing should be employed [15], where the

tasks of data acquisition and computing control law

are distributed on multiple controllers. This ensures

that the frequency of the controller is greater than

the frequency of controlled system, provides the

advantage of minimizing computational time and

increases the flexibility of adding new tasks (nodes)

or editing the existing ones.

In [16] a distributed CAN-Based

Architecture for hardware control and sensor data

integration was proposed for a mobile robot

platform. However, the algorithm was implemented

for general purpose computers. In the same context,

in [17], a CAN bus based distributed controller was

designed to control a mobile robot for picking and

placing. It employed the principle of parallel

processing to perform the functions of obstacle

avoidance, driving, path planning and inspection.

This paper proposes a real time control for the 3-

DOF delta robot. It uses four Microcontroller Units

(MCU), each one consists of a microcontroller and a

Controller Area Network bus (CAN bus) receiver-

transmitter. One MCU is used to compute the

control law. The other three MCU’s are connected

to the actuated joints through an electronic

interfacing module, each one of the three MCU’s

along with the actuator and sensory system forms an

intelligent sensor-actuator-system ISAS.

Each ISAS is connected to one actuator and one

sensor. Further, it can communicate with other

ISAS’s and the controller MCU through CAN bus

communication protocol. The ISAS reads the

actuator position through an encoder, forms the

necessary signal processing and prepares the ready

measured data in a massage and broadcasts it to the

CAN bus. This massage will be received by the

beneficiary MCU, and in the same way for all

ISAS’s.

The controller MCU computes the required control

law and broadcasts it on the CAN bus. Each ISAS

will receive its own massage and skip the others.

Then each ISAS analyses the massage and applies

the required signal on the actuator. This approach

enhances flexibility to the system for changing the

control approach and adding other jobs by adding

new nodes to the network containing the desired

tasks and jobs, these additional nodes can be used

for applications such as vision control. Adding a

new node will not change the physical structure of

the distributed controller, since each ISAS and the

main MCU controller will remain the same, the

added node will be used to supply the controller

with required information related to the new

function. Further, distributing the computational

load among 4 MCU’s minimizes the sampling time

which in turn increases the stability and accuracy of

the system. The work is simulated using MATLAB

with the TrueTime toolbox [18] and implemented

practically using ARDUINO microcontroller. The

overall block diagram of this approach is shown in

Fig.1.

Figure 1. Real time network structure.

2 Real time system design

The design of real time Network Control system

(NCS) starts by assigning the tasks with their timing

constraints. For this system there are three motors to

be actuated and controlled. In order to perform the

control law, the following data is required: the

reference signal or trajectory that the end effector

must track, the forward kinematics model to

transform the joint space variables to the task space

variables, inverse kinematic model to transform the

task space variables to joint space variables, the

robot dynamic and inverse dynamic model to

compute the control signal, a controller, and some

computations in addition to sending and receiving

data through the CAN bus as shown in table 1. The

control process is divided into 12 different tasks as

follows:

WSEAS TRANSACTIONS on SIGNAL PROCESSING
DOI: 10.37394/232014.2020.16.12 Ali Sharida, Iyad Hashlamon

E-ISSN: 2224-3488 100 Volume 16, 2020

Task 1: it is responsible to compute the angular

position and velocity of each actuator from the

signal measured from an encoder attached to the

actuator. This task is sporadic as the position should

be correctly computed within its time limits, any

delay in this task will cause drifting in position

computation, which will lead to instability of the

entire system.

Task 2: it is responsible to read the desired inputs

from the user. This task is aperiodic task, as the user

will not apply these inputs periodically.

Furthermore, there is no matter if these inputs were

used to compute control law in the next cycle.

Task 3: it is a periodic task, it has the jobs which

perform the forward kinematics. This task depends

on the results from Task 1. It takes the measured

angles as inputs, and then it computes the related

position of the end effector. This task should be

executed on each program cycle, so it is a periodic

task (Task 4 to 9 are periodic for the same reason).

Task 4: In this task, the inverse kinematics is

computed, which will be used later to generate the

required feedback variables for the controller.

Task 5: Jacobian matrix performs a

transformation of the velocities from joint space to

work space. This task is responsible to compute this

matrix in order to compute the velocity of the end

effector.

Task 6: In this task, the inverse of Jacobian will

be computed, in order to get the required angular

velocities of the actuators that required to control

the end effector.

Tasks 7 and 8: These tasks are responsible of

computing the required actuators torques to control

the motion of the end effector.

Task 9: In this task, a trajectory is designed

based on the received reference signal to ensure that

the motion of the end effector is smooth.

Tasks 10 and 11: These tasks are responsible of

sharing data among the MCU’s. They are an on

change based tasks, which will be enabled when the

current position or the computed torque is changed.

They should be executed directly when their flags

are enabled to ensure that the control law will be

computed correctly on any change of links

kinematics.

Task 12: This is an aperiodic task, it computes

the related voltage of the resulted torque signal. It

will be executed when the computed torque is

changed. It will apply torque signal to the actuator

by computing the equivalent voltage and applying it

to the actuator.

Table 1. Tasks time constraints.

Task Name Type
Execution
Time (ms)

Period= dead line
Time (ms)

Compute system states Sporadic 0.1 8.5

Read reference signal Aperiodic 0.3 8.5

Forward Kinematics Periodic 0.9 8.5

Inverse Kinematics Periodic 0.4 8.5

Jacobian Periodic 0.6 8.5

Inverse Jacobian Periodic 0.9 8.5

Dynamics Periodic 0.8 8.5

Inverse Dynamics Periodic 1.1 8.5

Trajectory Periodic 0.2 8.5

Data transmission (CAN

bus)
Sporadic 0.6 8.5

Data reception (CAN

bus)
Sporadic 0.7 8.5

Apply outputs Aperiodic 0.1 8.5

Total execution time 6.7 ms

The scheduling of the tasks is based on their type

and timing. The periodic tasks were scheduled using

the fixed priority algorithm Rate monotonic (RM).

Whereas the aperiodic and sporadic tasks were

scheduled by the principle of servers. In real time

systems multiple servers can be used to handle the

non-periodic tasks such as Bandwidth-preserving,

periodic and sporadic servers [19]. In this project

the non-periodic tasks were classified into two

types; Event based tasks that were executed using

sporadic server and on change based tasks that were

executed using periodic server.

An Event based task enables a flag when it is

released. This flag can be assumed to be a global

flag that can be noticed in any part of the algorithm

and can directly pre-empt the current executing task

and jumps to a service routine. This type of tasks

will be executed directly when its flag is on, and the

microcontroller will interrupt any executing task in

this case. Any event based task was assumed to be

WSEAS TRANSACTIONS on SIGNAL PROCESSING
DOI: 10.37394/232014.2020.16.12 Ali Sharida, Iyad Hashlamon

E-ISSN: 2224-3488 101 Volume 16, 2020

non-pre-emptible and will continue executing until

it is finished. For example, task 1 represents an

event based task, as each encoder is connected to

microcontroller’s external interrupt. This interrupt

will be enabled directly when the encoder generates

any signal.

An on change based task contains a flag that will

be turned on when the task is released. However,

this flag should be tested periodically to determine

readiness the task with its resources. Accordingly,

the algorithm decides if an interrupt is required or

not. These tasks have higher priority than the

periodic tasks but less than the event based tasks.

This type was handled using Periodic Server

algorithm which creates a periodic server that is

responsible of checking the flag of the task. If the

task is released, it will be executed, while if it is not

released, the server will be pre-empted until the next

period.

3 Schedulability test
The timing constraints are used the

schedulability test. Namely the execution time and

deadline of each task. The execution time of each

task was computed experimentally using

oscilloscope, each task was implemented

individually, a hardware flag was turned on at the

beginning of the execution and turned off at its end,

then the HIGH-interval was captured. The worst

case execution time (WCET) is considered as the

time required to complete all the tasks if they were

released at the same instant and their recourses are

available without violating their constraints .

According to table 1, the WCET is 6.7 ms. To avoid

processor over loading, the period was adjusted to

8.5 ms, this time was assumed to be the deadline for

all tasks in the current cycle, and the released time

for the next cycle. Each periodic task is released at

the beginning of the period, these tasks should be

executed before the deadline which presents the end

of current period.

In this project, the sampling time was selected to

be 8.5 ms. As the controller is distributed, all tasks

will be executed before the deadline, as the worst

case execution time occurs at the computation of

control law which requires 6.5 ms, it is schedulable

based on RM utilization factor test, as the utilization

factor is about 76%. RM algorithm is used here

because it is schedulable for identical parallel

Microcontrollers, where the execution time is the

same for a task if it is schedulable for identical

parallel Microcontrollers, where the execution time

is the same for a task if it is executed on any

processor [20]. Moreover, Fig. 2 shows that RM can

produce a feasible schedule for the system at

WCET. The shown schedule depends on the

parameters listed in Table 1. At the beginning of the

period (at t=0), all periodic tasks are released at the

same time, while the deadline of all tasks is located

at the end of the current period.

Figure 2. Tasks scheduling based on RM.

4 Data handling and frames creation
The previous tasks were distributed on 4

MCUs, each MCU represents a single node on the

network as shown in Fig. 3. The periodic tasks that

are required to compute the control law were

implemented on the controller MCU. Therefore, this

node will not deal with the outputs or inputs to the

actuators. At each program cycle, it will create a

CAN message frame at the end of this cycle, this

frame contains 6 bytes of data, each element of

torque vector is presented using 2 bytes, the 1st

Byte represents the direction of the torque, the other

one represents the absolute value of the torque

element as shown in Fig. 4. For the other nodes,

each one is connected to a single actuator and its

digital sensor. The digital encoder consists of 2

digital channels, these channels will continuously

change their values as the actuator is running.

Therefore, each MCU should enable the external

interrupt to compute the equivalent actuator’s joint

position and velocity states. Whenever one of

the states is changed, the MCU will directly create a

CAN message with data length of 4 bytes as shown

in Fig. 5.

WSEAS TRANSACTIONS on SIGNAL PROCESSING
DOI: 10.37394/232014.2020.16.12 Ali Sharida, Iyad Hashlamon

E-ISSN: 2224-3488 102 Volume 16, 2020

Figure 3. System network.

Figure 4. Control law data frame.

Figure 5. States data frame

5 Real time distributed control

algorithm (RTDCA)

The last step of implementing the proposed
approach is to develop an algorithm that satisfies the
scheduling requirements proposed previously. The
algorithm was developed using C programming
language as it provides the least computational time
compared with other programming languages
(except assembly language). RTDCA consists of 2
parts, the first one is the high level processing and
control stage, it is executed by the main controller.
The second part is composed of computing the
angular position and velocity of the actuated joints
and applying control signal on the actuators. It is
executed by the other three ISAS’s.

The tasks of the former part are executed
periodically at each program cycle. However, it
contains aperiodic and sporadic tasks. As any of the
sporadic interrupts is enabled, the algorithm will
pre-empt the running task and start executing the
sporadic one. For the aperiodic tasks, they were
handled by the mean of periodic non preserving
scheduling servers, such that, the aperiodic task will
be checked periodically. If it is released, it will be
executed, else, it will be pre-empted until the next
cycle, these steps were illustrated in the flowchart in
Fig.6.

Main controller Pseudo code:

1. Enable interrupts (timer 0 interrupt and external
interrupt).

2. Initialize variables, Initialize CAN-BUS.
3. Check interrupt flag

 If interrupt flag is HIGH
- Pre-empt current task, and execute the

sporadic task.

 Else
- Continue.

4. Compute position kinematics.
5. Compute velocity kinematics.
6. Compute next position.
7. Compute error.
8. Compute control law.
9. Create and decode CAN frame.
10. Transmit frame.
11. Check CAN-BUS for received frames.

 If there is new frame
- Receive frame.
- Decode frame.
- Update states.

 Else
- Continue.

12. Go to step 4.

 In the later part, each of the other three ISAS’s
checks periodically if there is a new frame. If yes, it
will receive the new frame then decodes the
message to extract the control law output. Then it
computes the control torque equivalent voltage in
order to apply it to the driver. Each MCU has a
hardware ID which is formed at the initialization
level, this ID consists of 2 binary bits represented
by 2 fixed hardware digital inputs. The ID of the
first MCU is (01)B. The second and third MCU’s
are assigned to ID’s (10)B and (11)B respectively. If
the acquired states by the encoder are changed, the
MCU will directly create CAN frame which consists
of its ID and the values of the states as described
previously. These steps are described in the
flowchart in Fig.7 along with the following Pseudo
code:

1. Enable interrupts (timer 0 interrupt).
2. Initialize variables, initialize CAN-BUS.
3. Check CAN-BUS for received frames.

o If there is new frame
- Receive frame.
- Decode frame.
- Compute required voltage.
- Apply voltage on actuator

through the driver.
o Else

- Continue.
4. Read actuator states

o If new states do no equal previous
states
- Encode new states.
- Create CAN frame.
- Assign MCU’s ID to the frame.
- Transmit frame.

o Else
- Continue.

5. Update states.
6. Go to step 4.

WSEAS TRANSACTIONS on SIGNAL PROCESSING
DOI: 10.37394/232014.2020.16.12 Ali Sharida, Iyad Hashlamon

E-ISSN: 2224-3488 103 Volume 16, 2020

Figure 6. Main controller algorithm.

Figure 7. Symmetrical ISAS algorithm.

6 Results

The system was implemented and simulated
using MATLAB, the design of the controller MCU
and ISAS 1 are shown in Fig.8, and 9 respectively.
The controller MCU receives angles frame from
other MCU’s, each frame contains data that
represent the amplitude and the direction of the
angular position along with the ID of the transmitter
MCU. Also it receives the desired position as a
vector of the desired coordinates [X ; Y ; Z]. This
signal is the reference signal. After that, MCU
controller computes the required actuator’s torque
and creates a frame of torque data to broadcasts it
through CAN bus.

Figure 8. controller MCU design.

The other 3 MCU’s are symmetrical, each one is
physically connected to an actuator and a position

incremental encoder. The measured state and

pseudo measured state will be transmitted to the
controller MCU by a frame that contains joint’s
information and the ID’s of the receiver and
transmitter (1:2 means that the MCU with ID 2 will
transmit frame to MCU with ID 1). The simulation
is carried on using the TrueTime toolbox.

Figure 9. ISAS 1 design.

The algorithm was implemented on a hardware
delta robot shown in Fig.10.a with parameters
shown in Fig.10.b listed in Table 2.

The system was controlled using PD inverse
dynamics (computed torque) algorithm as described
in [21], the control law can be written in the form,

() (,) ()M K e K e C G
d d p

 (1)

Where is 3 1 control vector, ()M is 3 3

mas matrix,
d

 is 3 1 desired angular acceleration,

e is angular speed tracking error, e is position

tracking error, (,)C is 3 3 coriolus matrix, ()G

is 3 1 gravity vector, , and are the angular

acceleration, velocity and position of the actuated

joints, and ,K K
p d

 are controller gains,

50 0 0

0 50 0

0 0 50

K K
p d

 (2)

WSEAS TRANSACTIONS on SIGNAL PROCESSING
DOI: 10.37394/232014.2020.16.12 Ali Sharida, Iyad Hashlamon

E-ISSN: 2224-3488 104 Volume 16, 2020

 As shown in Fig. 11, the response of the robot

tracks the reference signal [0.1; -0.1; 0.5]. The

results show that the response of the robot is stable

and can achieve its tasks in the desired manner

using the specified trajectory time. While Fig.12

shows the required torque on each actuated joint to

move the end effector from its initial to final

position [0.1; -0.1; 0.5] as was planned. Finally,

Fig.13 shows tracking error on each axis which

converges to zero during 0.5s.

Table 2. Delta robot parameters

Parameter Value

f 0.1 m

e 0.055 m

aL 0.18 m

bL 0.435 m

Mass of moving platform 0.196 kg

Mass of elbow 0.024 kg

Mass of the forearm 0.055 kg

Mass of upper arm 0.190 kg

Motor inertia 381.6 10

Motor gear ratio constant 0.01

Figure 10.a. Delta robot

prototype

Figure 10.b. Robot

kinematic diagram

Figure 11. Robot response for (0.1, -0.1, 0.5)

reference signal.

Figure 12. Actuated joints torque.

Figure13. Tracking error.

Moreover, a spiral reference signal was applied
as shown in Fig.14, the result shows that the
distributed controller can track not only a step
constant input, but also a spiral reference signal,
where the desired position changes continuously
with time.

WSEAS TRANSACTIONS on SIGNAL PROCESSING
DOI: 10.37394/232014.2020.16.12 Ali Sharida, Iyad Hashlamon

E-ISSN: 2224-3488 105 Volume 16, 2020

Figure 14. Tracking spiral signal.

7 Conclusion

 In this project, a real time distributed controller

was implemented for delta robots. The main

contribution of this paper is the design of a real time

flexible distributed control network using CAN Bus

protocol. This distributed controller minimizes the

sampling time and makes it more stable and

applicable for low cost microcontrollers such as

ARDUINO and PIC. More, the proposed distributed

controller is very flexible due to the ability to add

additional nodes for future features and new

functions. This design was able to handle and

execute all periodic, aperiodic and sporadic tasks

efficiently without any missing in their deadlines.

The response of the robot was stable and rapid.

Using this approach, the computation time was

minimized as it was distributed on 4 MCU’s. This

design can be applied for any type of manipulators.

Furthermore, this approach allows sampling time to

be reduced to 6.5 ms, while the sampling time was

adjusted to 8.5 ms to avoid processor overloading.

References

[1] J. Brinker, N. Funk, P. Ingenlath, Y.

Takeda, B. Corves, Comparative study

of serial-parallel delta robots with full

orientation capabilities, IEEE Robotics

Automation Letters, 2 (2017) 920-926.

[2] M. Rachedi, B. Hemici, M. Bouri,

Design of an H∞ controller for the Delta

robot: experimental results, Advanced

Robotics, 29 (2015) 1165-1181.

[3] P. Bai, J. Mei, T. Huang, D.G.

Chetwynd, Kinematic calibration of

Delta robot using distance

measurements, Journal of Mechanical

Engineering Science, 230 (2016) 414-

424.

[4] Y.-L. Kuo, P.-Y. Huang, Experimental

and simulation studies of motion control

of a Delta robot using a model-based

approach, International Journal of

Advanced Robotic Systems, 14 (2017).

[5] C. Wang, Y. Fang, S. Guo, Multi-

objective optimization of a parallel

ankle rehabilitation robot using

modified differential evolution

algorithm, Chinese Journal of

Mechanical Engineering, 28 (2015)

702-715.

[6] H.-Q. Zhang, H.-R. Fang, B.-S. Jiang,

S.-G. Wang, Dynamic performance

evaluation of a redundantly actuated and

over-constrained parallel manipulator,

International Journal of Automation

Computing, 16 (2019) 274-285.

[7] O. Ibrahim, W. Khalil, Inverse and

direct dynamic models of hybrid robots,

Mechanism machine theory

45 (2010) 627-640.

[8] B. Siciliano, L. Sciavicco, L. Villani, G.

Oriolo, Robotics: modelling, planning

and control, Springer Publishing

Company, 2010.

[9] J. Brinker, B. Corves, M. Wahle, A

comparative study of inverse dynamics

based on clavel’s delta robot, in:

Proceedings of the 14th World Congress

in Mechanism and Machine Science. ,

Taipei, Taiwan, 2015, pp. 25-30.

[10] J. Sastry, J.V. Ganesh, J.S. Bhanu, I2C

based networking for implementing

heterogeneous microcontroller based

distributed embedded systems, Indian

Journal of Science and Technology, 8

(2015) 1-10.

[11] J.J.R. Raj, S. Rahman, S.J.E.s. Anand,

a.i.j. technology, 8051 microcontroller

to FPGA and ADC interface design for

high speed parallel processing systems–

Application in ultrasound scanners,

Engineering science technology, an

international journal, 19 (2016) 1416-

1423.

WSEAS TRANSACTIONS on SIGNAL PROCESSING
DOI: 10.37394/232014.2020.16.12 Ali Sharida, Iyad Hashlamon

E-ISSN: 2224-3488 106 Volume 16, 2020

[12] A. Ashiebi, A. Khalil, J. Wang,

Networked control of parallel DC/DC

converters over CAN bus, in: IEEE

International Conference on Power

System Technology (POWERCON),

IEEE, 2016, pp. 1-6.

[13] I. Jaziri, L. Chaarabi, K. Jelassi, A

remote DC motor control using

Embedded Linux and FPGA, in: 7th

International Conference on Modelling,

Identification and Control (ICMIC),

IEEE, 2015, pp. 1-5.

[14] C. Urrea, J. Kern, Development of an

electronic controller applied to a

robotized manipulator, Computers

Electrical Engineering, 56 (2016) 648-

658.

[15] D. Henrich, J. Karl, H. Wörn, A review

of parallel processing approaches to

robot kinematics and jacobian,

Technische Universität Kaiserslautern,

(1997).

[16] D.P. Losada, J.L. Fernández, E. Paz,

R.J.S. Sanz, Distributed and modular

CAN-based architecture for hardware

control and sensor data integration,

Sensors, 17 (2017) 1-17.

[17] R. Chen, B. Liu, M. Pan, H. Zhou,

Design of Distributed Control System

for the Pick-up Robot Based on CAN

Bus, in: IEEE International Conference

on Mechatronics and Automation

(ICMA), IEEE, Tianjin, China, 2019, pp.

102-107.

[18] A. Cervin, D. Henriksson, B. Lincoln, J.

Eker, K.-E. Arzen, How does control

timing affect performance? Analysis and

simulation of timing using Jitterbug and

TrueTime, IEEE control systems

magazine, 23 (2003) 16-30.

[19] F. Liu, A. Narayanan, Q. Bai, Real-time

systems, Prentice Hall PTR, United

States, 2000.

[20] J.G. S.K Baruah, Rate-monotonic

scheduling on uniform multiprocessors,

IEEE Transactions on Computers, 52

(2003) 966-970.

[21] F.L. Lewis, D.M. Dawson, C.T.

Abdallah, Robot manipulator control:

theory and practice, CRC Press, 2003.

WSEAS TRANSACTIONS on SIGNAL PROCESSING
DOI: 10.37394/232014.2020.16.12 Ali Sharida, Iyad Hashlamon

E-ISSN: 2224-3488 107 Volume 16, 2020

