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Abstract: - This paper investigates a real time distributed controller for a 3 DOF delta robot using low-cost 

educational simple microcontrollers. The parallel computing technique is used were the computational load is 

divided among several microcontrollers networked to each other to implement control methods. More 

specifically, the computation is distributed among four microcontrollers (MCU’s) which are connected to each 

other using CAN bus protocol. The main MCU is used to compute the control law.  Each of the remaining 

MCU’s is connected to one actuator and its attached encoder to form an Intelligent sensor-actuator system 

(ISAS). At each sample time, the ISAS broadcast a message using the CAN bus to the main MCU containing 

the information about the motor position. Then according to the control law, ISAS receives the corresponding 

controller value that has to be applied to the motor. All required periodic, aperiodic and sporadic tasks, were 

implemented and will be handled by these MCU’s. Using this design, the computation time of control law can 

be minimized and implemented using ARDUINO microcontrollers. More, this method increases the flexibility 

of the system for additional equipment and control by adding more nodes to the network. The results show the 

applicability of the proposed distributed controller, it can track different types of control signals with 

acceleration up to 9.8 m/s^2 (1g). 
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1 Introduction 
Delta robots are widely used in applications 

that require very fast motion and accuracy, such as 

picking and placing [1, 2]. The main advantage of 

these robots is the ability to produce high 

acceleration at the end effector. Furthermore, as the 

mass of the overall system is relatively low, these 

robots can achieve a high load capacity. Therefore, 

this robot attracted many researchers to develop 

kinematic and dynamic models and controllers [3-

7]. 

However, delta robots control contains multiple 

computational tasks that should be completed in 

terms of modeling, planning and control [8], these 

tasks require relatively long computational time. So, 

it is very important to use a method to minimize 

computational time in such applications. 

Furthermore, the robot is equipped by 3 actuators 

and 3 encoders, 1 encoder per actuator. Then, the 

microcontroller should deal with 6 (2 channels for 

each encoder) channels that generate digital pulses 

with high frequency. Thus, hardware problems 

appear low cost educational microcontrollers are 

used for delta robots. In general, the frequency of 

these pulses is very high due to the high speed 

motion. Missing any of these pulses results in an 

incremental error of measuring the angular position 

of the actuated joints which is accumulated with 

time.  

The comparative study in [9] illustrates the 

processing time of the fundamental three approaches 

of modeling Delta robot “Principle of  Virtual 

Work, the Newton-Euler Formulation, and the 

Lagrangian Formulation). Although the results 

were: Principle of Virtual Work requires 0.73 sec, 

Newton-Euler Formulation requires 1 sec, and 

Lagrangian Formulation requires 0.37 sec, these 

processing times are high for real time systems 

when model-based control approaches are used and 

the model is tuned online adaptively. The challenge 

becomes harder when the control law and the 

reading from the sensors are considered.  

To overcome the aforementioned challenges, 

distributed control approaches were used. In these 

approaches, several microcontrollers (MCU’s) are 

used, each controller is assigned its own job(s). The 

microcontrollers communicate with each other using 

a communication protocol to form an overall real 

time Network Control System NCS.   

Many protocols can be used to establish a real time 

network, such as I2C [10], SPI [11] and CAN 

protocol [12]. Among them, CAN protocol has 

many advantages including very simple physical 

construction, it supports auto retransmission of lost 

massages and supports different error detection 

capabilities. Therefore, it is considered the most 

suitable communication method for real time 

applications.    
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A distributed controller is reported in [13], 

where the controller is designed to control a slave 

robot from a master arm using SPI protocol. In [14], 

the researcher implemented an embedded controller 

for 5 DOF manipulator using SPI protocol using a 

simple PID controller. Although SPI is a very 

simple protocol and depends on the principle of 

master and slave communication, any fault in the 

master MCU will lead to shut down all network. 

Furthermore, SPI communication requires more 

signal lines than other communication protocols, 

which increase the complexity of the network.  

To solve this problem, the principle of parallel 

computing should be employed [15], where the 

tasks of data acquisition and computing control law 

are distributed on multiple controllers. This ensures 

that the frequency of the controller is greater than 

the frequency of controlled system, provides the 

advantage of minimizing computational time and 

increases the flexibility of adding new tasks (nodes) 

or editing the existing ones.  

In [16] a distributed CAN-Based 

Architecture for hardware control and sensor data 

integration was proposed for a mobile robot 

platform. However, the algorithm was implemented 

for general purpose computers. In the same context, 

in [17], a CAN bus based distributed controller was 

designed to control a mobile robot for picking and 

placing. It employed the principle of parallel 

processing to perform the functions of obstacle 

avoidance, driving, path planning and inspection.  

This paper proposes a real time control for the 3-

DOF delta robot. It uses four Microcontroller Units 

(MCU), each one consists of a microcontroller and a 

Controller Area Network bus (CAN bus) receiver-

transmitter. One MCU is used to compute the 

control law. The other three MCU’s  are connected 

to the actuated joints through an electronic 

interfacing module, each one of the three MCU’s 

along with the actuator and sensory system forms an 

intelligent sensor-actuator-system ISAS.  

Each ISAS is connected to one actuator and one 

sensor. Further, it can communicate with other 

ISAS’s and the controller MCU through CAN bus 

communication protocol. The ISAS reads the 

actuator position through an encoder, forms the 

necessary signal processing and prepares the ready 

measured data in a massage and broadcasts it to the 

CAN bus. This massage will be received by the 

beneficiary MCU, and in the same way for all 

ISAS’s.  

The controller MCU computes the required control 

law and broadcasts it on the CAN bus. Each ISAS 

will receive its own massage and skip the others. 

Then each ISAS analyses the massage and applies 

the required signal on the actuator.  This approach 

enhances flexibility to the system for changing the 

control approach and adding other jobs by adding 

new nodes to the network containing the desired 

tasks and jobs, these additional nodes can be used 

for applications such as vision control. Adding a 

new node will not change the physical structure of 

the distributed controller, since each ISAS and the 

main MCU controller will remain the same, the 

added node will be used to supply the controller 

with required information related to the new 

function. Further, distributing the computational 

load among 4 MCU’s minimizes the sampling time 

which in turn increases the stability and accuracy of 

the system. The work is simulated using MATLAB 

with the TrueTime toolbox [18] and implemented 

practically using ARDUINO microcontroller. The 

overall block diagram of this approach is shown in 

Fig.1. 

 

Figure 1. Real time network structure. 

 

2 Real time system design 

The design of real time Network Control system 

(NCS) starts by assigning the tasks with their timing 

constraints. For this system there are three motors to 

be actuated and controlled. In order to perform the 

control law, the following data is required: the 

reference signal or trajectory that the end effector 

must track, the forward kinematics model to 

transform the joint space variables to the task space 

variables, inverse kinematic model to transform the 

task space variables to joint space variables, the 

robot dynamic and inverse dynamic model to 

compute the control signal, a controller, and some 

computations in addition to sending and receiving 

data through the CAN bus as shown in table 1. The 

control process is divided into 12 different tasks as 

follows:  
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Task 1: it is responsible to compute the angular 

position and velocity of each actuator from the 

signal measured from an encoder attached to the 

actuator. This task is sporadic as the position should 

be correctly computed within its time limits, any 

delay in this task will cause drifting in position 

computation, which will lead to instability of the 

entire system. 

Task 2: it is responsible to read the desired inputs 

from the user. This task is aperiodic task, as the user 

will not apply these inputs periodically. 

Furthermore, there is no matter if these inputs were 

used to compute control law in the next cycle. 

Task 3: it is a periodic task, it has the jobs which 

perform the forward kinematics. This task depends 

on the results from Task 1. It takes the measured 

angles as inputs, and then it computes the related 

position of the end effector. This task should be 

executed on each program cycle, so it is a periodic 

task (Task 4 to 9 are periodic for the same reason). 

Task 4: In this task, the inverse kinematics is 

computed, which will be used later to generate the 

required feedback variables for the controller. 

Task 5: Jacobian matrix performs a 

transformation of the velocities from joint space to 

work space. This task is responsible to compute this 

matrix in order to compute the velocity of the end 

effector. 

Task 6: In this task, the inverse of Jacobian will 

be computed, in order to get the required angular 

velocities of the actuators that required to control 

the end effector.  

Tasks 7 and 8: These tasks are responsible of 

computing the required actuators torques to control 

the motion of the end effector. 

Task 9:  In this task, a trajectory is designed 

based on the received reference signal to ensure that 

the motion of the end effector is smooth. 

Tasks 10 and 11: These tasks are responsible of 

sharing data among the MCU’s. They are an on 

change based tasks, which will be enabled when the 

current position or the computed torque is changed. 

They should be executed directly when their flags 

are enabled to ensure that the control law will be 

computed correctly on any change of links 

kinematics. 

Task 12: This is an aperiodic task, it computes 

the related voltage of the resulted torque signal. It 

will be executed when the computed torque is 

changed. It will apply torque signal to the actuator 

by computing the equivalent voltage and applying it 

to the actuator. 

Table 1. Tasks time constraints. 

Task Name Type 
Execution 
Time (ms) 

Period= dead line 
Time (ms) 

Compute system states Sporadic 0.1 8.5 

Read reference signal Aperiodic 0.3 8.5 

Forward Kinematics Periodic 0.9 8.5 

Inverse Kinematics Periodic 0.4 8.5 

Jacobian Periodic 0.6 8.5 

Inverse Jacobian Periodic 0.9 8.5 

Dynamics Periodic 0.8 8.5 

Inverse Dynamics Periodic 1.1 8.5 

Trajectory Periodic 0.2 8.5 

Data transmission (CAN 

bus) 
Sporadic 0.6 8.5 

Data reception (CAN 

bus) 
Sporadic 0.7 8.5 

Apply outputs Aperiodic 0.1 8.5 

Total execution time 6.7 ms 

The scheduling of the tasks is based on their type 

and timing. The periodic tasks were scheduled using 

the fixed priority algorithm Rate monotonic (RM). 

Whereas the aperiodic and sporadic tasks were 

scheduled by the principle of servers. In real time 

systems multiple servers can be used to handle the 

non-periodic tasks such as Bandwidth-preserving, 

periodic and sporadic servers [19]. In this project 

the non-periodic tasks were classified into two 

types; Event based tasks that were executed using 

sporadic server and on change based tasks that were 

executed using periodic server.  

An Event based task enables a flag when it is 

released. This flag can be assumed to be a global 

flag that can be noticed in any part of the algorithm 

and can directly pre-empt the current executing task 

and jumps to a service routine. This type of tasks 

will be executed directly when its flag is on, and the 

microcontroller will interrupt any executing task in 

this case. Any event based task was assumed to be 
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non-pre-emptible and will continue executing until 

it is finished. For example, task 1 represents an 

event based task, as each encoder is connected to 

microcontroller’s external interrupt. This interrupt 

will be enabled directly when the encoder generates 

any signal. 

An on change based task contains a flag that will 

be turned on when the task is released. However, 

this flag should be tested periodically to determine 

readiness the task with its resources. Accordingly, 

the algorithm decides if an interrupt is required or 

not. These tasks have higher priority than the 

periodic tasks but less than the event based tasks. 

This type was handled using Periodic Server 

algorithm which creates a periodic server that is 

responsible of checking the flag of the task. If the 

task is released, it will be executed, while if it is not 

released, the server will be pre-empted until the next 

period. 

 

 

3 Schedulability test 
The timing constraints are used the 

schedulability test. Namely the execution time and 

deadline of each task. The execution time of each 

task was computed experimentally using 

oscilloscope, each task was implemented 

individually, a hardware flag was turned on at the 

beginning of the execution and turned off at its end, 

then the HIGH-interval was captured. The worst 

case execution time (WCET) is considered as the 

time required to complete all the tasks if they were 

released at the same instant and their recourses are 

available without violating their constraints . 

According to table 1, the WCET is 6.7 ms. To avoid 

processor over loading, the period was adjusted to 

8.5 ms, this time was assumed to be the deadline for 

all tasks in the current cycle, and the released time 

for the next cycle. Each periodic task is released at 

the beginning of the period, these tasks should be 

executed before the deadline which presents the end 

of current period. 

In this project, the sampling time was selected to 

be 8.5 ms. As the controller is distributed, all tasks 

will be executed before the deadline, as the worst 

case execution time occurs at the computation of 

control law which requires 6.5 ms, it is schedulable 

based on RM utilization factor test, as the utilization 

factor is about 76%. RM algorithm is used here 

because it is schedulable for identical parallel 

Microcontrollers, where the execution time is the 

same for a task if it is schedulable for identical 

parallel Microcontrollers, where the execution time 

is the same for a task if it is executed on any 

processor [20]. Moreover, Fig. 2 shows that RM can 

produce a feasible schedule for the system at 

WCET. The shown schedule depends on the 

parameters listed in Table 1. At the beginning of the 

period (at t=0), all periodic tasks are released at the 

same time, while the deadline of all tasks is located 

at the end of the current period. 

 

Figure 2. Tasks scheduling based on RM. 

 

 

4 Data handling and frames creation 
The previous tasks were distributed on 4 

MCUs, each MCU represents a single node on the 

network as shown in Fig. 3.  The periodic tasks that 

are required to compute the control law were 

implemented on the controller MCU. Therefore, this 

node will not deal with the outputs or inputs to the 

actuators. At each program cycle, it will create a 

CAN message frame at the end of this cycle, this 

frame contains 6 bytes of data, each element of 

torque vector    is presented using 2 bytes, the 1st 

Byte represents the direction of the torque, the other 

one represents the absolute value of the torque 

element as shown in Fig. 4. For the other nodes, 

each one is connected to a single actuator and its 

digital sensor. The digital encoder consists of 2 

digital channels, these channels will continuously 

change their values as the actuator is running. 

Therefore, each MCU should enable the external 

interrupt to compute the equivalent actuator’s joint 

position   and velocity   states. Whenever one of 

the states is changed, the MCU will directly create a 

CAN message with data length of 4 bytes as shown 

in Fig. 5. 
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Figure 3. System network. 

 

Figure 4. Control law data frame. 

 

Figure 5. States data frame 
 

5 Real time distributed control 

algorithm (RTDCA) 

The last step of implementing the proposed 
approach is to develop an algorithm that satisfies the 
scheduling requirements proposed previously. The 
algorithm was developed using C programming 
language as it provides the least computational time 
compared with other programming languages 
(except assembly language).   RTDCA consists of 2 
parts, the first one is the high level processing and 
control stage, it is executed by the main controller. 
The second part is composed of computing the 
angular position and velocity of the actuated joints 
and applying control signal on the actuators. It is 
executed by the other three ISAS’s.  

The tasks of the former part are executed 
periodically at each program cycle. However, it 
contains aperiodic and sporadic tasks. As any of the 
sporadic interrupts is enabled, the algorithm will 
pre-empt the running task and start executing the 
sporadic one. For the aperiodic tasks, they were 
handled by the mean of periodic non preserving 
scheduling servers, such that, the aperiodic task will 
be checked periodically. If it is released, it will be 
executed, else, it will be pre-empted until the next 
cycle, these steps were illustrated in the flowchart in 
Fig.6.  

Main controller Pseudo code: 

 

1. Enable interrupts (timer 0 interrupt and external 
interrupt). 

2. Initialize variables, Initialize CAN-BUS. 
3. Check interrupt flag  

 If interrupt flag is HIGH 
- Pre-empt current task, and execute the 

sporadic task. 

 Else 
- Continue. 

4. Compute position kinematics. 
5. Compute velocity kinematics. 
6. Compute next position. 
7. Compute error. 
8. Compute control law. 
9. Create and decode CAN frame. 
10. Transmit frame. 
11. Check CAN-BUS for received frames. 

 If there is new frame 
- Receive frame. 
- Decode frame. 
- Update states. 

 Else  
- Continue. 

12. Go to step 4. 

 In the later part, each of the other three ISAS’s 
checks periodically if there is a new frame. If yes, it 
will receive the new frame then decodes the 
message to extract the control law output. Then it 
computes the control torque equivalent voltage in 
order to apply it to the driver. Each MCU has a 
hardware ID which is formed at the initialization 
level, this ID consists of  2 binary bits represented 
by 2 fixed hardware digital inputs. The ID of the 
first MCU is (01)B. The second and third MCU’s 
are assigned to ID’s (10)B and (11)B respectively. If 
the acquired states by the encoder are changed, the 
MCU will directly create CAN frame which consists 
of its ID and the values of the states as described 
previously. These steps are described in the 
flowchart in Fig.7 along with the following Pseudo 
code: 

 

1. Enable interrupts (timer 0 interrupt). 
2. Initialize variables, initialize CAN-BUS. 
3. Check CAN-BUS for received frames. 

o If there is new frame 
- Receive frame. 
- Decode frame. 
- Compute required voltage. 
- Apply voltage on actuator 

through the driver. 
o Else  

- Continue. 
4. Read actuator states 

o If new states do no equal previous 
states 
- Encode new states. 
- Create CAN frame. 
- Assign MCU’s ID to the frame. 
- Transmit frame. 

o Else 
- Continue. 

5. Update states. 
6. Go to step 4. 
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Figure 6. Main controller algorithm. 

 

Figure 7. Symmetrical ISAS algorithm. 

 

6 Results 

The system was implemented and simulated 
using MATLAB, the design of the controller MCU 
and ISAS 1 are shown in Fig.8, and 9 respectively. 
The controller MCU receives angles frame from 
other MCU’s, each frame contains data that 
represent the amplitude and the direction of the 
angular position along with the ID of the transmitter 
MCU. Also it receives the desired position as a 
vector of the desired coordinates [X ; Y ; Z]. This 
signal is the reference signal. After that, MCU 
controller computes the required actuator’s torque 
and creates a frame of torque data to broadcasts it 
through CAN bus.  

 

 

Figure 8. controller MCU design. 

The other 3 MCU’s are symmetrical, each one is 
physically connected to an actuator and a position 

incremental encoder. The measured state   and 

pseudo measured state   will be transmitted to the 
controller MCU by a frame that contains joint’s 
information and the ID’s of the receiver and 
transmitter (1:2 means that the MCU with ID 2 will 
transmit frame to MCU with ID 1). The simulation 
is carried on using the TrueTime toolbox. 

 

Figure 9. ISAS 1 design. 

The algorithm was implemented on a hardware 
delta robot shown in Fig.10.a with parameters 
shown in Fig.10.b listed in Table 2.  

The system was controlled using PD inverse 
dynamics (computed torque) algorithm as described 
in [21], the control law can be written in the form, 

( ) ( , ) ( )M K e K e C G
d d p

           
  

      (1) 

Where is 3 1  control vector, ( )M  is 3 3  

mas matrix, 
d

  is 3 1 desired angular acceleration, 

e  is angular speed tracking error, e  is position 

tracking error, ( , )C   is 3 3 coriolus matrix, ( )G 

is 3 1 gravity vector, ,   and   are the angular 

acceleration, velocity and position of the actuated 

joints, and ,K K
p d

 are controller gains, 

50 0 0

0 50 0

0 0 50

K K
p d

 
 

 
 
  

                (2) 
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  As shown in Fig. 11, the response of the robot 

tracks the reference signal [0.1; -0.1; 0.5]. The 

results show that the response of the robot is stable 

and can achieve its tasks in the desired manner 

using the specified trajectory time. While Fig.12 

shows the required torque on each actuated joint to 

move the end effector from its initial to final 

position [0.1; -0.1; 0.5] as was planned. Finally, 

Fig.13 shows tracking error on each axis which 

converges to zero during 0.5s.  

Table 2. Delta robot parameters 

Parameter Value 

f 0.1 m 

e 0.055 m 

aL  0.18 m 

bL  0.435 m 

Mass of moving platform 0.196 kg 

Mass of elbow 0.024 kg 

Mass of the forearm 0.055 kg 

Mass of upper arm 0.190 kg 

Motor inertia 381.6 10  

Motor gear ratio constant 0.01 
 

 

  

Figure 10.a. Delta robot 

prototype 

Figure 10.b. Robot 

kinematic diagram 
 

              

 

Figure 11. Robot response for (0.1, -0.1, 0.5) 

reference signal. 

 

Figure 12. Actuated joints torque. 

 

Figure13. Tracking error. 

Moreover, a spiral reference signal was applied 
as shown in Fig.14, the result shows that the 
distributed controller can track not only a step 
constant input, but also a spiral reference signal, 
where the desired position changes continuously 
with time. 
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Figure 14. Tracking spiral signal. 

 

7 Conclusion 

     In this project, a real time distributed controller 

was implemented for delta robots.  The main 

contribution of this paper is the design of a real time 

flexible distributed control network using CAN Bus 

protocol. This distributed controller minimizes the 

sampling time and makes it more stable and 

applicable for low cost microcontrollers such as 

ARDUINO and PIC. More, the proposed distributed 

controller is very flexible due to the ability to add 

additional nodes for future features and new 

functions. This design was able to handle and 

execute all periodic, aperiodic and sporadic tasks 

efficiently without any missing in their deadlines. 

The response of the robot was stable and rapid. 

Using this approach, the computation time was 

minimized as it was distributed on 4 MCU’s. This 

design can be applied for any type of manipulators. 

Furthermore, this approach allows sampling time to 

be reduced to 6.5 ms, while the sampling time was 

adjusted to 8.5 ms to avoid processor overloading. 
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