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Abstract—The continuous growth of demand experienced

by wireless networks creates a spectrum availability chal-

lenge. Cognitive radio (CR) is a promising solution capable

of overcoming spectrum scarcity. It is an intelligent radio

technology that may be programmed and dynamically con-

figured to avoid interference and congestion in cognitive

radio networks (CRN). Spectrum sensing (SS) is a cogni-

tive radio life cycle task aiming to detect spectrum holes.

A number of innovative approaches are devised to monitor

the spectrum and to determine when these holes are present.

The purpose of this survey is to investigate some of these

schemes which are constructed based on machine learning

concepts and principles. In addition, this review aims to

present a general classification of these machine learning-

based schemes.

Keywords—cognitive radio, cooperative spectrum sensing, IEEE

802.22, machine learning, spectrum sensing.

1. Introduction

Cognitive radio (CR) is an intelligent radio technology ca-

pable of determining the frequencies that are in use, de-

tecting the available spectrum holes, and then reconfigur-

ing transceiver parameters based on the radio environment

information obtained. Spectrum sensing (SS) is the first

task in cognitive radio life cycle. It has been gaining in

significance, since it allows to detect spectrum holes.

Several authors have attempted to come up with different

classifications of spectrum sensing methodologies utilized

in cognitive radio networks (CRNs) [1]–[3]. The authors

in [1] categorized SS schemes based on the mode that was

relied upon in SS decision making, namely local or co-

operative sensing. In [2], [3], the authors categorized SS

schemes based on the radio communication types adopted,

mainly into narrow- and wide-band sensing. Although cog-

nitive radio is based on artificial intelligence (AI) concepts

and principles [4], only a few works were devoted to ma-

chine learning schemes relied upon in cooperative spectrum

sensing. In contrast, this survey examines different machine

learning-based schemes proposed for cooperative spectrum

sensing (ML-based CSS) in CRN.

This paper concludes that three main types of ML-based

CSS schemes exist. The first one is known as unsupervised-

based CSS. Here, features are extracted using a suitable

feature extraction algorithm. These features are then fed

into a machine learning (ML) model that tends to divide

data into different clusters that are characterized by their

corresponding centroids. Consequently, it makes a deci-

sion about the channel’s availability status by comparing

each centroid with a predefined threshold value. This ap-

proach offers reasonable performance levels but its accu-

racy is rather low compared to other methods [5].

The second approach is referred to as supervised-based co-

operative spectrum sensing (CSS). In contrast to the previ-

ous method, specific features are fed to a classifier along

with their labels that are assigned to them for training pur-

poses. The training process then aims to find the best de-

cision boundary that is capable of separating this labeled

data into classes. Therefore, the decision is taken based

on that boundary. This approach is more accurate than

others, but the labeling process generates some overhead

during the training phase [6]. The third method is known

as reinforcement learning-based CSS. Here, the algorithm

focuses on a certain problem, like throughput and energy

consumption. Then, it tries to solve that problem by finding

the optimal CSS policy which returns the highest cumula-

tive reward. However, used in CSS, this approach creates

several challenges, such as high computational complexity

and the requirement for a policy that is needed to make

decisions in real time [7].

The remaining part of this paper is organized as follows:

Section 2 presents the background of SS tasks performed

in CRNs. The general model of CSS, as well as the classi-

fication of ML-based CSS schemes, are presented in Sec-

tion 3. In Section 4, feature extraction methods are in-

troduced, while ML-based CSS schemes are explained in

Section 5. Section 6 discusses the problem of evaluating

performance of ML-based CSS schemes and, finally, Sec-

tion 7 contains some concluding remarks.
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2. Spectrum Sensing Task in CRNs

2.1. Cognitive Radio Technology: An Overview

CR is defined as intelligent radio being aware of the sur-

rounding environment and knowing the frequencies that are

in use. One of the most notable features of cognitive radio

networks (CRN) is their ability to switch between different

radio access methods, as well as ability to transmit within

different portions of the radio spectrum [8]. CR is the pri-

mary component of any CRN structure and there are two

main types of users operating CRNs. They are classified

into [9] two categories.

Primary users (PUs) are licensed users who have a legal

right to use a part of the spectrum. However, PUs are not

granted the exclusive use of that part of the spectrum, they

are merely granted a higher priority than other users, and

enjoy additional interference protection guarantees.

Secondary users (SUs) are the remaining users who have

the opportunity to use a part of the spectrum alongside

the PUs. However, their right is conditioned on the activi-

ties of the PUs and they can use their part of the spectrum

if it is temporarily not occupied by the PUs, or if they

are able to share the spectrum. Small scale CRNs consist

of one PU and a few SUs [5], [6], [10]–[16] with each

one being able to use multiple antennas [12]. In contrast,

large scale CRNs consist of more than one PU [4], [7],

[17]–[21]. However, in modeling CRNs, multiple PUs may

operate within the same CRN area and each one may oc-

cupy several sub-bands [7], [21].

2.2. Spectrum Sensing

Spectrum sensing (SS) is a task that is of key importance

in CR. CR learns and is conscious of the surrounding en-

vironment, trying to detect any existing spectrum holes.

SS was first formulated as a binary hypothesis test for

radar signal detection [22]. Later, the same test was used

to describe the general SS problem:

y(k) =

{

w(k), H0

α s(k)+w(k), H1
, (1)

where y(k) is the received signal that was received by SU

under ambient noise w(k) (usually w(k) is the additive

white Gaussian noise (AWGN) with 0 mean and variance

of 1), s(k) is the PU’s signal and k = 1, . . . , to K are signal

samples received by the SU. Parameter α denotes the chan-

nel’s fading coefficient between the PU and the SU. The SU

checks whether PU’s signals are present and the channel is

considered idle under the null hypothesis (H0 condition)

and busy under the alternative hypothesis (H1 condition).

Two types of errors are faced in connection with detection

of the PU’s signals. The first one, type 1, is a false alarm

(FA). The decision made indicates that the PU exists, while

it is not present, in fact (the decision is H1|H0). The other

error, type 2, is known as missed detection (MD) and occurs

when a busy channel is identified as being idle (the decision

is H0|H1). The two types of errors referred to above are

described by the probability of a false alarm (PFA) and of

a missed detection (PMD), respectively. The IEEE 802.22

work group recommended that PFA should not exceed 10%,

while the probability of detection PD = 1−PFA being higher

than 90% [23]. If type 1 errors occur frequently, i.e. PFA
increases, the SU will lose numerous opportunities to use

the communication channel concerned. In contrast, if type

2 errors occur frequently, i.e. PMD increases, then interfer-

ence between PU and SU is inevitable [22].

The task of SS may be performed in non-cooperative or

cooperative modes. In the non-cooperative mode, each SU

determines the channel’s state individually. This mode is

suitable when the nodes are unable to share their SS in-

formation. In cooperative spectrum sensing (CSS), SUs

work together to determine the channel’s status. CSS of-

fers a high accuracy level, as all SUs take part in making

a shared decision about the channel’s condition.

3. ML-based Cooperative Spectrum

Sensing

3.1. General Model of ML-based CSS

In conventional CSS schemes, an SU investigates whether

the PU’s signal exists and makes a decision about the chan-

nel’s availability status. Such an approach to CSS is based

on ML schemes (ML-based CSS) and encompasses several

steps that are shown in Fig. 1. After aggregating the sensing

information from all SUs, useful features that differentiate

the PUs’ signal samples are extracted. Then, these features

are fed to the ML model used for decision making. Lastly,

the final sensing decision is made upon the result obtained

with the use of the ML model. Several ML algorithms re-

lied upon in numerous research projects will be explained

next.

Fig. 1. General model of ML-based CSS schemes.

3.2. Classification of ML-based CSS

ML-based CSS schemes, as shown in Fig. 2, are general-

ly classified based on the ML algorithm used. The three

main types are unsupervised ML-based CSS, supervised

ML-based CSS, and reinforcement ML-based CSS. In un-

supervised ML-based CSS, the features are fed to the model

without any labels during the training phase [10]–[13], [15],

[17], [19], [21], [24], [25]. Many unsupervised machine

learning algorithms may be found in the literature, some of

which are mentioned in Fig. 2. Clustering paradigms are
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Fig. 2. Classification of ML-based CSS.

the most famous ones, e.g. the very well-known k-means

clustering algorithm that will be discussed later in this

paper (alongside its variant, the Gaussian mixture model

(GMM).

On the contrary, the training of supervised ML-based meth-

ods requires that features be fed to the classifier along with

their labels [4]–[6], [14], [16], [20], [26]–[28]. Artificial

neural networks (ANN) are the most famous supervised

machine learning model. They come in two variants, with

traditional architecture and deep neural networks archi-

tecture that serves as a basis for modern deep learn-

ing schemes. Other examples of the supervised model in-

clude support vector machines (SVM), k-nearest neighbors

(KNN), and ensemble classifiers. This paper will focus pri-

marily on supervised-based CSS contributions that utilize

both neural networks and support vector machine architec-

tures, since they are the most famous and the most com-

monly used architectures.

Reinforcement ML-based methods consider certain charac-

teristics of the signal in SS [7], [18] such as power con-

sumption, throughput, energy efficiency, etc. The agent is

provided with rewards in order to evolve its behavior. These

rewards are constructed depending on which problems need

to be solved. Q-learning is a famous technique for reinforc-

ing learning algorithms.

Regardless of which ML algorithms (k-mean, GMM, SVM,

ANN) are used, several mathematical algorithms have been

innovated in order to extract useful features from the sig-

nal. As shown in the bottom part of Fig. 2, these algo-

rithms are divided into three categories. The first category

covers energy detection-based (ED) algorithms [4]–[6],

[10], [14], [16], [17], [20], [21], [26], [27]. Here, en-

ergy samples of the PU’s signal are collected and are

then transformed into energy vectors. The second cate-

gory covers signal processing-based solutions [14], [16],

[19], [25]. Here, the focus is placed on finding circularly

characteristics that help differentiate between transmitted

and noise signals. The third category is known as the co-

variance matrix [11]–[13], [15], [24] and relies on con-

structing feature matrices from the sensing samples, and

on performing specific computations. These methods are

presented in detail in Section 4.

4. Feature Extraction Methods

Feature extraction is the second phase of the general ML-

based CSS model. Various algorithms have been designed

in order to perform the feature extraction task. This section

will explain some of these algorithms.

4.1. ED-based Feature Extraction

A general CSS model encompasses P PUs and N SUs.

In numerous research projects, a single PU is used, since

it reduces the degree of complexity. This paper will also

focus on a single PU (unless mentioned otherwise) in order

to facilitate the explanation. When the n-th SU receives K
samples of the transmitted PU’s signal, it computes the

average energy (E) level of the signal:

En =
1
K

K

∑
k=1

|Zn(k)|2 , (2)

where |Zn(k)|2 is the energy value corresponding to k-th

sample and estimated by SU n. After computing E value

by all N SUs, the column vector of the energy values

{E1, E2, . . . , En, . . . , EN}
T is fed to the ML model as a fea-

ture vector to make the final sensing decision. Probability

vectors method is one of ED-based feature extraction sce-

narios. This method reduces multidimensional energy vec-
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tors into two-dimensional probability vectors [11]. In this

method, new probability vectors of the two binary hypothe-

ses (H0 and H1) are defined under the probability density

function (PDF) of the multivariate Gaussian distribution,

taking the mean and the covariance matrix of each hypoth-

esis as input parameters and constructing the probability

vector based thereon.

4.2. Covariance Matrix-based Feature Extraction

The Si sensing matrix is constructed based on the PU’s

signal received. Thanks to the random matrix theory, co-

variance matrix R is reconstructed from that sensing matrix:

R =
1
K

K

∑
k=1

Si ·SiT . (3)

Several proposals stem from this approach, including eigen-

value/eigenvector methods. Let us suppose that λ1 ≥ λ2 ≥
·· · ≥ λn ≥ ·· · ≥ λN are the eigenvalues of covariance ma-

trix R. Then, the eigenvector (~νn) of R corresponding to

the eigenvalue may be computed as:

R~ν = λ~ν . (4)

Numerous schemes relied on the eigenvalue/eigenvector

in several ways, as a feature of the ML model. For ex-

ample, the ratio of the maximum and minimum eigen-

values (MME) and the difference between the maximum

eigenvalue and the average eigenvalue (MSE) are used

in [11], [24], whereas the improved MME (IMME) and

the improved MSE (MSE) are used in [12] after computing

the principal component of the eigenvector of matrix Si.

4.3. Signal Processing-based Feature Extraction

Signal processing is based on transforming the received

PU’s signal from the time domain to the frequency do-

main, using the Fourier transform. Waveform-based de-

tection (WFD) or coherent-based detection (CD) and

cyclostationarity-based feature detection (CFD) are the

most common techniques of this type. CD assumes that

patterns of the control signal, such as the pilot, preambles,

spreading sequence, midambles, etc. are known and can

be efficiently utilized [14]. The notion of cyclostationar-

ity, as used in CFD, indicates the periodic characteristic

of a certain signal. Usually, cyclostationarity of the re-

ceived PU signal is described in terms of its mean and

auto-correlation [29], [14]. In contrast, noise signal does

not have such periodic characteristics, so the difference be-

tween the transmitted signals and noise may be relied upon.

The presence of a cycle-stationary pattern of the PU signal

received may be determined using the so-called spectral

correlation density function (SCD) [14]. In order to de-

termine whether a PU signal is present, one may rewrite

Eq. (1) using the SCD function, as:

Sω
y(k)[k] =

{

Sω
w(k)[k], H0

|α |2Sω
s(k)[k]+Sω

w(k)[k], H1
, (5)

where Sω
y(k)[k] is the SCD of the transmitted PU signal at

some cyclic frequency ω and α is the channel gain coef-

ficient.

5. ML-based Cooperative Spectrum

Sensing Schemes

A large number of researchers considered applying ML al-

gorithms in constructing CSS systems. Table 1 summarizes

some of these algorithms and the feature extraction methods

used. The classification of these research projects was ex-

plained in Subsection 3.2, where they are categorized into

supervised, unsupervised and reinforcement ML-based ap-

proaches. This section explains how the problem of CSS

may be tackled using these algorithms.

5.1. Unsupervised-based CSS

After collecting a sufficiently large number of training fea-

ture vectors created by any type of feature extraction algo-

rithm, the ML model is trained to make a decision about

the channel’s availability state. In unsupervised methods,

these features are fed to the ML model to produce the global

decision about PUs’ state. Several released proposals [21],

[15], [25] suggested applying different types of unsuper-

vised learning algorithms to resolve the CSS problem in

CRNs. This part explores some of these most prominent

algorithms.

K-means is an algorithm that maps a collection of data

samples into non-overlapping clusters [15]. The assign-

ment of a certain point to a given cluster is determined

based on a distance measure (usually Euclidean distance).

The point will be assigned to the cluster whose center is

closest to that point. Let us assume that the collection of

feature vectors constructs a set called Ψ. Each Ψ represents

a cluster and is indexed by j ( j ∈ {0,1} under the binary

hypotheses condition). Each cluster has its own centroid

C j representing the arithmetic mean of that cluster. There-

fore, the distortion function Θ computes, for all samples,

the overall square distance to the corresponding centroid.

Here, the k-means algorithm aims at minimizing the distor-

tion function Θ.

After training the k-means model, the members and the cen-

troid of each cluster are determined. In the testing phase,

the model is able to predict the suitable decision, i.e. the

channel’s availability state. Let two clusters i and j rep-

resent the channel’s availability and unavailability states,

respectively. l′ denotes a new test vector (data point) that

needs to be assigned to a cluster. Then, the model decides

about the membership based on a predefined threshold ζ :

||l′−Ci||

||l′−C j||
≤ ζ . (6)

This means that vector l′ is classified into the cluster Ci (i.e.

the channel is available) if the ratio of the distance between

that vector and Ci and the distance between that vector and

C j is lower than threshold ζ .
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Table 1

Classification table

Reference ML algorithms types ML algorithms, number of clusters Features extraction

[10] Unsupervised k-means, k = 2 ED

[11] Unsupervised GMM and k-mean, k = 2 Eigenvalue/eigenvector

[12] Unsupervised k-medoids, k = 2 IMSE/IMME

[13] Unsupervised Fuzzy c-means, c = 2 Geodesic distance

[17] Unsupervised Kernel fuzzy c-means, c = 3 Emax

[24] Unsupervised WEMD (with k-means), k = 2 DMEAE/DMM

[19] Unsupervised HDP, cls = 9, 18, 36 Fourier coefficients (CFD)

[21] Unsupervised Bayesian learning model (BP-SHMM) ED

[15] Unsupervised k-means (multi-bands based), k = 2 Eigenvalue

[25] Unsupervised Blind-CHMM (k-means-based) CWT (singularity detection)

[5] Supervised Lin/poly-SVM, cls = 2 Probability vectors

[4] Supervised 2-phase SVM, cls = 2 ED

[6] Supervised
DNN (CNN)

ED (as inputs)

[20] Supervised CSVM (multi-class SVM) ED

[14] Supervised Lin/second-order PC (polynomial classifier) ED/CFD/CD

[16] Supervised
Ensemble classifier (based on decision

CFD
trees and AdaBoost algorithm)

[26] Supervised
Back propagation neural network

ED and LRS-G2 (as inputs)

[28] Supervised SVM Beamformer-aided

[27] Supervised CSVM (multi-class SVM)
ED (for the received signal and

the residual energy of SU)

[18] Reinforcement
Sensing policy (based on ε-greedy policy)

Q-value (throughput)

[7] Reinforcement
POMDP (Q-learning-based)

Q-value (number of idle channels)

The Gaussian mixture model (GMM) provides a smoother

membership function than the k-means algorithm. The

distribution function of GMM may be defined under the

Gaussian density function N (l|µ j,R j) which indicates that

training vector l belongs to cluster j whit the mean µ j
and the covariance matrix R j being its parameters [11].

The training phase in GMM involves estimating parame-

ters µ j, R j and π j for each class, where π j is a mixing

probability coefficient defining how big/small the Gaussian

function will be. The estimation process is performed us-

ing an expectation-maximization algorithm, with the details

thereof described in [11]. Finally, the testing vectors are

assigned to each cluster based on this classifier rule (as-

suming the binary hypotheses test is adopted):

ln
π1N (l′|µ1,R1)

π2N (l′|µ2,R2)
≥ ζ . (7)

Then, the test vector is assigned to the “channel available”

cluster when the previous equation is satisfied, and to the

“channel unavailable” cluster otherwise.

As stated above and as may be seen in Table 1, unsu-

pervised CSS methods are widely adopted in many re-

search projects. K-means with ED-based feature extraction

is adopted in [10], whereas geodesic distance as feature vec-

tors with the fuzzy c-mean is proposed in [13]. In addition,

paper [17] proposes filtering the energy vector collected in

order to get maximum one vector as a cleaned feature of the

kernel fuzzy c-means. The eigenvalue/eigenvector features

with k-means were adopted in [12], while they are used with

GMM in [11]. Non-parametric Bayesian learning model hi-

erarchical Dirichlet process and beta process sticky hidden

Markov model (BP-SHMM) are proposed [19] and [21], re-

spectively. The hierarchical Dirichlet process converts the

received signal into the frequency domain in order to find

the Fourier coefficients. Then, it uses these coefficients

as feature vectors, whereas the beta process sticky hidden

Markov model is ED-based.

Additionally, article [24] introduces a signal process-

ing scheme called wavelet empirical mode decomposi-

tion (WEMD). This scheme combines the empirical mode

decomposition algorithm and the wavelet threshold algo-
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rithm in order to remove noise components, hence reducing

noise effects. Then, after filtering noise from the trans-

mitted signal, features are extracted using the difference

between the maximum eigenvalue and the average energy,

and the difference between the maximum and minimum

eigenvalue methods. Finally, k-means is adopted as an ML

model, relying on these two types of features extraction

methods. Last but not least, a blind continuous hidden

Markov model (blind-CHMM) scheme is proposed in [25].

This algorithm is capable of recognizing the transmitted

power level of the PU. It uses the k-means algorithm to

detect the presence of a PU, as well as the continuous

wavelet transform method for feature extraction. Moreover,

in that scheme, two strategies are proposed. The first ap-

plies the ED method to build the observation sequence be-

fore computing the continuous wavelet transform, while the

other uses the minimum-maximum eigenvalues as feature

vectors.

5.2. Supervised-based CSS

To train a supervised-based CSS system, the features are

extracted from the received signal and are then assigned

with a certain label corresponding to their class affiliation.

Due to the binary hypothesis, binary labels may be repre-

sented in the following manner. Label 1 indicates that PU

is absent and the channel is available, whereas label 0 in-

dicates that PU is present and the channel is not available.

However, multi-class hypotheses are more complex, thereby

resulting in the need to form label codes corresponding to

each class [20], [27], [28].

Support vector machines (SVM) and neural networks (NN)

are the most famous examples of supervised-based CSS.

SVM is an algorithm that aims to find the optimal hyper-

plane that leaves the maximum margin from all potential

classes. Due to the binary hypothesis test, two potential

classes reflect the channel’s availability state. In more com-

plicated scenarios, the multi-class SVM with one-versus-all

(OVA) strategy is used. OVA is a commonly used approach

in which a certain class is marked as the positive class, and

the remaining classes are marked as negative [20], [27].

Many research contributions proposed using SVM as a ma-

chine learning model. Probability vectors were proposed

as feature vectors for SVM, with linear and polynomial

kernels, in [5], whereas [4] proposed applying SVM in

two phases, along with the ED-based method, for feature

extraction. In the first phase, the data samples are ran-

domly split into two sets. The first set contains training

samples, whereas the other is used for testing (the true la-

bels are omitted). In the second phase, the samples with

their labels work as a training set. The reason for apply-

ing the second phase is to neutralize the misclassification

of the first phase. Finally, the multi-class SVM ED-based

approach with multiple PUs is adopted in [20], [27], and

the beamformer-based approach is adopted in [28].

Neural networks are a collection of algorithms encompas-

sing a set of interconnected virtual neurons intended to

work in a manner closely resembling a biological neuron

network or electronic structures. A few CSS schemes based

on neural networks were proposed in the literature. One is

deep CSS (DCSS), based on convolutional neural networks

(CNNs) from [6].

Generally, a CNN architecture is a layered architecture with

each type of layers having a specific task. Three types of

layers may be identified: convolutional layers, max pooling

layers, and fully connected layers. The general architecture

may be mainly divided into two parts: the convolution part

and the fully connected part (FC), as shown in Fig. 3. The

convolution part contains the convolutional layers and the

maximum pooling layers. The convolutional layers contain

a set of filters (kernels) that are convolved with the input

matrix. The main task of these filters is to extract the most

important features of the input matrix. Unlike in the case

of manually-defined filters, the contents of these filters are

determined during the training of the network. This means

that the process of feature extraction becomes a part of the

network learning process, and the traditional stage of man-

ual feature engineering disappears. The size of the kernel

(e.g. 3× 3) is a hyperparameter that should be decided in

advance. Usually, the size of 3× 3 is a good choice that

works very well.

The objective of the max pooling layers is to downsample

the input matrix to reduce data dimensionality, leading to

lower computational costs. Maximum pooling helps also

in reducing overfitting in the network. Max pooling divides

the input matrix into distinct blocks and the maximum value

from each block is kept only. So, if the input is 4×4 matrix

and the block size is set to equal 2× 2, the output of the

max pooling layer will be a 2×2 matrix. Rectified linear

unit (ReLU) layers are also found in the CNN architecture.

The purpose of the ReLU unit is to increase nonlinearity

of data.

Fully-connected layers are needed for the classification pro-

cess. They resemble a traditional feed-forward neural net-

work. The output of the convolution part is flattened into

a column vector and fed to this feed-forward neural network

for classification purposes.

The model proposed in [6] uses the CNN architecture de-

scribed above. In this model, a small-scale network with

one PU is adopted that may operate several sub-bands.

Each SU examines the existence of PU within a given

sub-band and produces a two-dimensional array from the

labeled sensing data, as illustrated in Fig. 3 (the label as-

sumes the value of 0 or 1, indicating whether the channel

is available or not). Then, the 2D array is fed to the convo-

lution part which encompasses the 3×3 convolution layer,

the rectifier linear unit layer and the max pooling layer.

The first layer extracts spatial correlation of the sensing

data, whereas the remaining layers deal with the non-linear

behavior and reduce the size of the sensing data, respec-

tively. The FC layer multiplies the weights and adds the

biases to the result produced by the previous layer. Finally,

the softmax operator is used at the end of the FC layer for

making decisions regarding the presence of PUs.

41



Sundous Khamayseh and Alaa Halawani

Fig. 3. CNN model for DCSS [6].

Another scheme that is based on traditional (non-deep) ar-

tificial neural networks (ANN) was proposed in [26]. This

scheme utilizes the ED and Zhang statistic from likelihood

statistic test to train the ANN for decision making purposes.

Moreover, another supervised scheme, i.e. the ensemble-

based classifier, is introduced in [16]. The design of this

scheme is based on the decision tree and on AdaBoost al-

gorithms, while the features extraction method that is relied

upon is CFD-based.

5.3. Reinforcement CCS

Reinforcement learning means that the action is taken

which brings the maximum reward. Q-value Q(a) denotes

the reward granted, corresponding to action a taken. In

a reinforcement ML-based paradigm, the agent initially

estimates the action that should be taken next time, based

on a certain policy [18], [7]. Then, it gets a reward r(a)
that reflects the validity of the action taken. There is a fre-

quently used term when speaking of reinforcement ML-

based algorithms – namely balance between exploration and

exploitation. Exploitation indicates that the agent takes an

action upon the highest estimated Q-value, whereas explo-

ration indicates the random selection of a certain action

regardless of action-value estimation [18].

Sensing based on the ε-greedy policy is proposed in [18],

whereas an efficient sub-band selection policy based on

replicated Q-learning is proposed in [7]. In the sensing

policy, the reward represents the instantaneous throughput

for the sub-band selection. Assuming that the sub-band is

denoted with sd, in this policy the SU which had the per-

mission to access the sd feeds back information about the

achieved throughput towards the FC. Herein, FC updates

the Q-value for a particular SU by comparing its decision

with the SU’s decision. Then, the obtained reward is up-

dated based on the following rule:

rt+1 ∼

{

dnt+1(SU,sd), dnt+1(FC,sd) = 1

Qt(SU,sd), dnt+1(FC,sd) = 0
, (8)

where dnt+1(SU, sd) indicates the local decision taken by

the SU on sd while dnt+1(FC, sd) is the global decision

initiated by the FC. After updating all Q-values based on

that rule, FC exploits its knowledge and informs SUs to

sense the sub-band that has the maximum Q-values.

Finally, [7] proposed an efficient sub-band selection policy

which is modeled based on the partially observable Markov

decision process (POMDP) in which the highest rewards are

granted to the action that identifies the largest number of

idle channels, and the lowest rewards are granted based on

the lowest number of idle channels identified.

6. Comparison and Discussion

This section analyzes the performance of several ML-based

CSS approaches at low signal-to-noise ratio (SNR) levels.

The performance of ML-based CSS schemes was measured

based on the receiver operating characteristic (ROC) curve,

i.e. a plot showing the probability of detection PD versus

that of a false alarm PFA. According to the ROC curve,

performance of the proposed schemes is somewhat con-

vergent, regardless of which ML type (unsupervised or

supervised) is used for decision making. Moreover, con-

sidering the IEEE 802.22 standard, one may observe that

the majority of schemes offer superior performance even

at low SNR levels, as may be seen in Table 2a-b. Perfor-

mance of the reinforcement-based CSS scheme is usually

measured based on the throughput obtained, as shown in

Table 2c.

6.1. ROC for Performance Evaluation

Unsupervised-based CSS schemes showed good perfor-

mance – according to the ROC curve presented in Ta-

ble 2a. The unsupervised wavelet empirical mode decom-

position scheme [24], with the difference between max-

imum eigenvalue and the average energy, and the dif-

ference between maximum and minimum eigenvalue fea-

tures, showed the best performance exceeding the IEEE
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Table 2

Performance evaluation of ML-based CSS

A: ROC for performance evaluation, unsupervised-based CSS

Reference PD (PFA)
Number of Number of

SNR
Number of training (M)/ Performance

PUs (P) SUs (N) testing samples improvement

[10] 0.98 (0.1) 1 3 –12 dB 500/500
SNR+, N+, M+, k-, depends

on channel type

[11]

0.81 (0.1) GMM E-val,

1 –10 dB 200 samples
SNR+, N+, M+ (≥ 4),0.65 (0.1) GMM E-vec

E-val does better0.78 (0.1) k-mean E-val,

0.73 (0.1) k-mean E-vec

[12]
0.97 (0.1) IMSE,

1 4 –15 dB 1000/1000
SRN+, N+, IMSE

0.94 (0.1) IMME does better

[13] 0.98 (0.1) 1 10 –15 dB 1000/1000 SNR+, N+, M+

[17] 0.89 (0.3) 4 30 –15 dBW (PU TX power) 2000 samples SNR+, N+, M+, P-

[24]
0.96 (0.1) DMEAE,

1 4 –18 dB 500/500
SNR+, N+, DMEAE

0.94 (0.1) DMM does better

[19]
0.96 (0.1) clts 8

30
0 dB 100 simulation SNR+, cluster size (number of

= 9 (2 active) (–90 dBm noise floor) scenarios SUs)+, number of clusters-

[21] 0.98 (0.1)
8

9 50 mW (PU TX power) N+, P-, PU TX power-
(2 active)

[15] 0.99 (0.025)
10 sub-bands

–13 dB

300 samples

SNR+, a little affected by noise

4 occupied
(5000 simulation

uncertainly, affected considera-

trails)

bly by unequal noise variances,

affected considerably by the

number of occupied sub-bands

[25]
0.90 (0.1) strategy 1

1 –10 dB 5000 (observation size) SNR+, M+
0.75 (0.01) strategy 2

B: ROC for performance evaluation, supervised-based CSS

Reference PD (PFA)
Number of Number of

SNR
Number of training (M)/ Performance

PUs (P) SUs (N) testing samples improvement

[5]
0.96 lin,

1 9 300 mW (PU TX power) 800/600

SNR+, N+, M+, affected a little

0.94 poly
by the kernel

function, PFA=0.05

[4] 0.84 (0.1) 2 25 200 mW (PU TX power) 560 samples SNR+

[6] 0.91 (0.1) 1 32
–164 dBm/Hz (noise

200 sample SNR+, N+, M+
power density)

[20] 0.89 (0.1) 2 5 –15 dB 400/600 SNR+, N+, M+

[14]

0.92 (0.1) lin/

5

–10 dB

200 bits
SNR+, N+, window

second-order-ED

(observation
size+

0.90 (0.1) lin-CFD, –18 dB

window size)0.86 (0.1) second-order CFD

0.94 (0.1) lin-CD, –14 dB

0.90 (0.1) second-order CD

[16] 0.99 (0.1) –12 dB

2000 samples
SNR+, almost same with

(1000 of them with
different OFDM signals

noise only)

[26]

0.90 (0.022) FM broadcast

–14 dB 500

SNR+, M+, affected by
0.82 (0.02) GSM-900 DL

different types of
0.96 (0.013) DCS-1800 DL

radio technology
0.97 (0.019) UHF television

[28] 0.97 (0.02) 1
8 number of

–18 dB 2000 samples SNR+, M+, P-
antennas

C: Throughput for performance evaluation

Reference Throughput
Training/testing samples Throughput

The reference Notes
or number of iterations improvement

[27]
37% (SNR = –5 dB)

500/2000
Fixed when the battery Max/min of PU TX

2/2 (number of PU/number of SU)
33% (SNR = –15 dB) capacity ≥ 1500 packets, SNR+ power

[18]
83% (ε = 0.1)

2000
Convergence at

The ideal policy
60% (ε = 0.5) 200 iterations

[7]
∼1.7 normalized

5000
Convergence at

Other schemes
The discount factor γ = 0.4

accumulative rewards 5000 ε = 0.8

Legend:

PU TX power is an abbreviation of the PU’s transmitted power

E-val and E-vec are the eigenvalue and the eigenvector, respectively

+ sign means increased by an increase

– sign means increased by an decrease
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802.22 standard (≥ 90%) at the lowest SNR (−18 dB).

K-medoids with an improved ratio of the maximum and

minimum eigenvalues and the difference between the max-

imum eigenvalue and the average eigenvalue [12], fuzzy

c-means with geodesic distance [13], and kernel fuzzy c-

means with max energy [17] showed the second lowest SNR

result (−15 dB). However, kernel fuzzy c-means with max

energy failed to meet the requirement of the IEEE.802.22

standard related to PD and PFA (0.89 and 0.3 respectively).

This is caused by the fact that the system model of the

scheme in question is more complicated, as there are four

PUs that are active in the CRN.

Strategy 1 of the blind continuous hidden Markov model

with the continuous wavelet transform [25] achieved the

requirement of the IEEE 802.22 standard related to PD per-

centage, but failed to achieve it with regard to low SNR.

However, its performance may be improved by increasing

the PU’s transmit power or by increasing the number of

collaborating SUs. GMM, k-means with the eigenvalue and

eigenvector [11] and the strategy 2 of the blind continuous

hidden Markov model [25] failed to achieve the require-

ments of the IEEE 802.22 standard concerning PD percent-

age (<< 0.9) or SNR (−10 dB).

Supervised-based CSS schemes also showed good per-

formance related to ROC curve, as shown in Table 2b. Su-

pervised SVM with beamformer-aided scheme and linear

classifier with the CFD method exhibited the best perfor-

mance, exceeding the IEEE 802.22 standard (≥ 90%) at

the lowest SNR (−18 dB). On the contrary, 2-order polyno-

mial classifier with the CFD method, as well as linear and

2-order polynomial classifier with the ED method failed

to achieve the requirements of the IEEE 802.22 standard

(0.86 in the case of PD percentage and −10 dB in the case

of SNR, respectively). However, performance of 2-order

polynomial classifier with the CFD method may be im-

proved by increasing the PU’s transmitting power. 2-phase

SVM [4] and multi-class SVM [20] with the ED method

failed to achieve the requirements of the IEEE 802.22

standard concerning PD percentage (< 0.90), despite multi-

class SVM with the ED method achieving the second low-

est SNR. Linear and 2-order polynomial classifier with the

CD method [14], as well as the back propagation neu-

ral network (with ED and likelihood ratio test statistic as

input samples) that is employed in different radio tech-

nologies, achieved the third lowest SNR (−14 dB), show-

ing superior performance in terms of PD percentage as

well (≥ 0.90 despite the use of GSM-1800 DL radio tech-

nology).

In general, the superior performance of several unsuper-

vised- and supervised-based CSS approaches is usually re-

lated to the small scale of CRNs. Small scale networks

are less complex and less prone to signal interference. So,

they are expected to offer higher performance compared to

large-scale networks. In principle, overall performance of

unsupervised- and supervised-based CSS is mainly affected

by four different factors. First, the PU’s transmission power

(the higher the better). Second, the number of collabo-

rating SUs (the higher the better). Third, the number of

PUs present (the lower the better), and finally, the number

of training samples. A higher number of samples will lead

to better training results in general.

6.2. Throughput for Performance Evaluation

As stated above, performance was also measured using

throughput [27], [18], [7] – as shown in Table 2c. The su-

pervised multi-class SVM with ED methods [27] achieved

37% and 33% of the maximum throughput at −5 dB

SNR and −15 dB SNR, respectively. The maximum

throughput may be achieved by ensuring that the PU

is sending with the highest possible transmission power.

The sensing approach based on the ε-greedy policy [18]

achieved the result of 83%, compared to the result of an

ideal policy equaling ε = 0.1. Ideal policy assumes that

the sub-bands with the highest instantaneous throughput

may be selected, and the highest instantaneous throughputs

may then be found. Finally, replicated Q-learning-based

sub-band selection [7] achieved a normalized accumu-

lated reward of approximately 1.7, representing a through-

put that is comparable with that of several sub-band se-

lection policies, such as Bellman-optimality equation and

Markov decision process. However, in reinforcement-based

CSS schemes, throughput converges as the system trains

more, meaning that these schemes cannot be applied in

real time.

In general, unsupervised-based CSS schemes offer rea-

sonable performance, but their accuracy is slightly lower

compared to other approaches [5]. Supervised-based CSS

schemes are more accurate than others, but generate some

overhead during the training phase, because of the label-

ing process [6]. Reinforcement-based CSS schemes lead

to several challenges, such as high computational complex-

ity and the policy needed to operate in real-time, so this

type is rarely used when proposing new ML-based CSS

schemes [7].

7. Conclusion

This paper considered the main types of machine learning

algorithms and categorized the proposed ML-based CSS

schemes into three classes, namely unsupervised-based

CSS, supervised-based CSS, and reinforcement-based CSS.

It also categorized the mathematical algorithms used for

feature extraction, dividing them into three types: energy

detection-based feature extraction, cyclostationary-based

feature extraction, and signal processing-based feature ex-

traction. Finally, analysis of the results of several proposed

schemes showed that unsupervised-based CSS is less com-

plex but a bit less accurate than other approaches. On the

other hand, supervised-based CSS offered excellent accu-

racy, but caused a slight overhead during the training phase.

Reinforcement learning offers reasonable accuracy and im-

proves throughput, but may be hard to apply in real time

and requires high computational complexity.
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