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Abstract Permutation or randomization test is a nonparametric test in which
the null distribution (distribution under the null hypothesis of no relationship
or no effect) of the test statistic is attained by calculating the values of the
test statistic overall permutations (or by considering a large number of ran-
dom permutation) of the observed dataset. The power of permutation test
evaluated based on the observed dataset is called conditional power. In this
paper, the conditional power of permutation tests is reviewed. The use of the
conditional power function for sample size estimation is investigated. More-
over, reproducibility and generalizability probabilities are defined. The use of
these probabilities for sample size adjustment is shown. Finally, an illustration
example is used.

Keywords Generalizability probability - Permutation test - Reproducibility
probability - Sample size adjustment - Sample size estimation

1 Introduction

The permutation test was first studied by Fisher (1934, 1935). He investigated
the permutation approach for exact inference within the conditionality and
sufficiency principles of inference. For example, he introduced the permutation
test as the exact test for the relationship between two binary variables when
the frequencies in some cells are small; that is, when the chi-square test fails
in the sense that its asymptotic distribution can be quite far away from the
exact. It is also useful for one sided testing. In addition, Fisher introduced
the exact test for testing differences between means of two populations when
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the assumptions of the two-sample t-test are not realized. He pointed out that
the type I error probability for the two-sample permutation test in quite mild
conditions is closely approximated by the normal theory.

Pitman (1937a,b, 1938) developed permutation tests in agreement with the
F-test for the comparison of k > 2-samples and for bivariate correlation. For
two-sample design, Pitman introduced a test statistic which is a monotonic
increasing function of the square of the t-test statistic.

Permutation tests constitute a subclass of nonparametric tests (Lehmann
and Romano, 2005; Pesarin and Salmaso, 2010). They are computationally
intensive, but modern computational powerful tools make permutation tests
feasible if, in place of complete enumeration of permutation sample space, a
random sample is obtained so as to satisfy any desirable accuracy in com-
puting p-values (See Algorithm 1 below). Nonparametric test statistics do not
depend on any particular distribution. In fact, they are distribution free since
pooled observed data are always sets of sufficient statistics for the underlying
unknown distribution, assuming the null hypothesis is true (See Pesarin and
Salmaso, 2010, Sec. 2.1.3)). Some minimal assumptions are required to the
data (e.g. exchangeability in the null hypothesis, often referred to as equal-
ity in distribution). The exchangeability assumption is generally assured by
randomly assigning treatments to experimental units in experimental designs.
In case of observational study, exchangeability in the null hypothesis shall be
assumed in order to obtain exact testing solutions. If this assumption cannot
be justified, then approximate permutation solutions are obtained in the same
way as the nonparametric Behrens-Fisher testing (Pesarin, 2001).

The theory of optimal permutation tests is developed by Lehmann and
Stein (1949). Hoeffding (1952) studied the behavior of asymptotic power of
permutation tests. He found that for the randomized block design and for the
two-sample designs they are asymptotically as powerful as their corresponding
tests based on the parametric approach when these are working within their
ideal conditions. For instance, the permutation test for the randomized block
design is asymptotically as powerful as F-test, and the two-sample permuta-
tion test is asymptotically as powerful as student’s t-test.

Permutation tests are widely used in many research fields such as agri-
culture, clinical trials, educational statistics, business statistics and industrial
statistics, etc. For more works on permutation test and its variations see Edg-
ington (1995), Salmaso (2003), Good (2005), Basso et al (2009), Pesarin and
Salmaso (2010), Samonenko and Robinson (2015), McDonald et al (2016),
Amro and Pauly (2017), and the references therein.

2 Two-sample permutation test

In this paper, testing problems for one-sided alternative hypotheses, as pro-
duced by treatments with non-negative effect size 8, are considered. Particu-
larly, the fixed additive effects model is considered. This is written as

Xii=p+o+oEy,i=1,...,n; Xoy=p+oEy, i=1,...,ny (1)
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where p is a common location parameter, E;; are random error deviates (sup-
posed to be exchangeable) with location parameter zero and scale parameter
one, o is a scale parameter independent on experimental units and treatment
levels, and 0 is the effect size (treatment effect) which is typically unknown.
In practice, for comparing X; = (Xi1,...,X1s,) to Xo = (Xo1,..., Xon,),
and, without any loss of generality, since no specific assumptions on nuisance
parameters p and o are required by permutation tests, 4 = 0 and ¢ = 1 are
assumed. Therefore, the dataset can be also written as X(d§) = (E; + 6, Es)
where § = (61,...,0,,) (For simplicity, set 6; = 6 > 0, for ¢ = 1,...,n1),
E, =(E11,...,E1p,), and Ey = (Ea1,. .., Fa,,). The hypothesis of interest is

Hy:6=0versus Hy : § > 0. (2)

A suitable test statistic should be chosen such that, without any loss of
generality, large values of it are considered to be against Hy. For more details
about the choice of statistic in the permutation framework see Page 84 of
Pesarin and Salmaso (2010). In our setting, 7 = X; — X5 is used as a test
statistic.

Now, for determining the p-value, an appropriate reference distribution
is needed which is called the permutation distribution. For the two-sample
design, the permutation test is carried out as follows.

1. Randomly assign experimental units to one of the two groups with n; units
assigned to the first group (treatment group) and ns units assigned to the
second group (control or placebo group). Then, the observed datasets, X3
and Xy, are obtained and the test statistic is evaluated, T° = T'(X).

2. Permute the n = ny +ny observations between the two groups. Write down
the set of all possible permutations, X. The cardinality of this support is
nl.

3. For each permutation X* € X, compute the test statistic, T* = T(X*).
Since sample means are invariant with respect to the order of imputed
data, the cardinality of related permutation space X reduces to

n n!
ny n1!n2! '

number of T*’s > T°
(m)

5. If a preassigned level of significance, «, has been set, declare the test to be
significant if the p-value is not larger than this level.

4. Compute the p-value,

Ar(X) =

Since it is tedious or even practically impossible to write down and enu-
merate the whole members of permutation sample space X', conditional Monte
Carlo simulation based on B random permutations from X (Algorithm 1) is
used to approximate the p-value at any desired accuracy.
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Algorithm 1 Conditional Monte Carlo (CMC)

1. For the given dataset X, calculate the observed test statistic, 7° = T'(X).

2. From X take a random permutation X* of X, and calculate the corresponding test
statistic T = T'(X*).

3. Independently repeat Step 2 a large number, e.g. B times, giving B values for T, say
{T;,b=1,...,B}.

4. The permutation p-value is estimated as

B
N C LT >T°
g () = S 1T 2 7).

where I(+) is the indicator function.

Note that Ap(X) is an unbiased estimate of the true Ar(X) and, due to
the Glivenko-Cantelli theorem (Shorack and Wellner, 1986), as B diverges it is

strongly consistent. Moreover, the standard error for Ap(X) is VAr(X) (1 - (X)) /B.
Therefore, a 100(1 — a))% approximate confidence interval for Ay (X) is

. Ar(X) (1 - 5\T(X))
Ap(X) + Zs =

3 Conditional power function of permutation test

The statistical power of a hypothesis test is defined as

. _Ja if Hy is true
Pr(reject Hol9) = { 1—p3(9) if Hy is false
where « is the type I error probability and 3 is the type II error probability.
The power of permutation tests calculated based on the observed dataset is
called the conditional power. 1t is calculated as

W [(8;m, 0, T)|X] = E {I[\r (X (8)) < ]| ¥}, (3)

which is a function of the effect & for a given sample size n, of preassigned level
of significance « and of suitable test statistic 7' conditional on the permutation
space X associated with the given pooled dataset X. Note that Ar(XT(d)) is
evaluated based on the dataset XT(8) = (E! + 8, El), where Ef € £ is any
reassignment (a permutation) of unobserved error deviates E.

Apparently, the true value of the conditional power function is not only
tedious but it is also difficult to attain exactly; since [n!/(n;!ny!)]? permuta-
tions have to be considered. Instead, empirical conditional power is evaluated
based on iterated CMC simulation. Algorithm 2 is used for estimating it.
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Algorithm 2 Empirical Conditional Power Function

1. Consider the set of error deviates E = E; |f E2 and the effect size d, where 4 is the
symbol for concatenating two vectors.

2. From E take a re-randomization Ef of E, and define X(d) = (EJ{ + 4, E;)

Use the CMC algorithm to calculate Ap(XT(8)).
4. Independently repeat Steps 2 and 3 a large number, e.g. R times, giving R estimated

p-values, say {S\T(Xi(é)), r=1,...,R}.
5. The empirical conditional power is evaluated as

bl

)\ T
W((8;n, o, T)|X] = Y HP‘T(}-:(T(J)) < a].

6. Repeat Steps 1-5 for different values of § to attain a function in §.

3.1 Empirical post-hoc conditional power function

It is clear from Algorithm 2 that in order to evaluate the empirical conditional
power E must be known, but X = d + E is observed and its components (E
& 8) cannot be separately observed in general. Thus, the conditional power is
just a wvirtual notion. However, in lieu of W[(d;n, «,T)|X], the so-called em-
pirical post-hoc conditional power W|[(8;8,n,a,T)|X] may be achieved. The
main point is to find an empirical estimate of E, E, by subtracting a suitable
estimate of the effect 8, &, from the observed dataset X. Thus, the empirical
pooled set of error deviates is given by E=F HE; = (X; — 3) t) X5. Note
that this gives rise to approximate solution because exchangeability condition
is now approximate as B , being essentially calculated from data of first group
X, is not a permutation invariant quantity. It is worth noting that the em-
pirical post-hoc conditional power W[(5;5,n,a,T)|X] is essentially ruled by
the given data set X only. Also it is important to note that, according to
(Pesarin and Salmaso, 2010, p. 98), this can be viewed as a least squares con-
sistent estimate of the unconditional power function specific of the same test
T, Wp(d;n,a,T) say. Actually, such a property resides on that Wp(d;n, a, T')
is nothing but the mean value of W|[(6; 8, n, o, T)|X] with respect to the under-
lying population distribution P. We use it as the basic notion that provides a
rational justification to our application proposals as discussed from Section 4
onwards.

There are different approaches to estimate § which depend on the design
of study (Cooper and Hedges, 1997; Hedges and Olkin, 1985; Cohen, 1988)
and on the test statistic T actually used. For instance, in the two sample
design when the test statistic T is based on comparison of two sample means
typically it is 6 =X —Xo. Algorithm 3 is used to find the empirical post-hoc
conditional power function.
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Algorithm 3 Empirical Post-Hoc Conditional Power Function

1. For the given dataset X, find an estimate of 4, 8. Then consider the consequent empirical
error deviates E = (X1 — 9) 4§ Xo.

2. From E take a random re-randomization E' of E, and for any chosen 8 define X' () =
(B} + 6, E)).

3. Use the CMC algorithm to calculate the related p-value A (XT(8)).

4. Independently repeat Steps 2 and 3 a large number, e.g. R times, giving R estimates of
empirical p-values, say {XT(Xi(J)), r=1,...,R}.

5. The empirical post-hoc conditional power is given by

SR I (XE(8)) < af

W((6:8.m, 0. 7)) = Sr=L008 :

6. Repeat Steps 2-5 for different values of d to attain a function in 4.

4 Some applications of empirical conditional power function

In general, the power of a particular test is affected by many factors (Kraemer
and Thiemann, 1987; Lipsey, 1990; Hallahan and Rosenthal, 1996). In respect
of a two-sample design, under mild regularity conditions, the main three factors
are:

1. Sample size, n. Everything else being fixed, if test statistic 7" is consistent,
the greater the sample size, the greater the power.

2. Significance level, a. Everything else being fixed, the greater the signifi-
cance level, the greater the power.

3. (Standardized) effect size, A = §/0. It is easier to expose a large effect
than to expose a small effect; that is, the greater the effect size, the greater
the power.

Power analysis is discussed in different fields of studies. Cohen (1988) stud-
ied power analysis for the behavioural sciences; he provided power tables for
various common parametric statistical tests that can be consulted to deter-
mine the sample size for specified values of o, A and power. Moher et al (1994)
studied power analysis in clinical trials and Markowski and Markowski (1999)
studied power analysis in business researches.

For most common statistical tests, power is easily calculated from tables.
For example, see Cohen (1988) for some parametric tests and Randles and
Wolfe (1979) for some one- and two-sample nonparametric tests. Owen (1965)
provided power tables for various tests which use the student ¢-distribution.
Moreover, statistical computer software (e.g. R, SPSS, etc.) are used to eval-
uate the statistical power. For more complex tests, and for most nonparametric
tests, ready tables are often not available and not easily expressed. In these
cases, Monte Carlo simulations can be used to approximate the power. For
example, Collings and Hamilton (1988) proposed a bootstrap method which
does not require any knowledge of the underlying distribution P for estimating
the power of the two-sample Wilcoxon test. See also Epstein (1955), Teichroew
(1955) and Hemelrijk (1961). However, some authors derived the power func-
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tions and/or tables but only in limited cases. For example, see Dixon (1954),
Barton (1957), Bell et al (1966), Haynam and Govindarajulu (1966) and Mil-
ton (1970).

In the following sections, some applications of empirical conditional power
function of permutation tests are investigated. In particular, the use of empir-
ical conditional power for sample size estimation, reproducibility probability,
generalizability probability, and sample size adjustment are investigated.

4.1 Sample size calculation

Sample size calculation is an important and often difficult step in planning
a research design. Large sample size may waste time, resources and money,
while small sample size may procure inaccurate results. There are different
approaches for sample size calculation including confidence interval approach
(McHugh, 1961) and Bayesian approach (Wang et al, 2005). One of the most
popular approaches involves studying the power of a test (See for example
Aguirre-Urreta and Ronkko, 2015; Akobeng, 2016; Giraudeau et al, 2016). In
our context, the empirical conditional power function of permutation test is
used as an important tool for estimating a suitable and proper sample size for
a particular study.

Consider the two-sample design in which X; = {X11,..., X1, } are iid in
P(z+ A) and Xy = {Xo1,...,Xop, } are iid in P(z) and the two samples are
independent of one another. Let Hy : A = 0 versus H; : A > 0 be the hypothe-
ses of interest. Under the normality assumption of the study distribution, the
power of the test is evaluated as

1. _ _Mmnz
1-8=1 45(2& A‘/n1+n2>’ (4)

where @(-) is the standard normal cumulative distribution function and z,
is the upper « critical value. It is worthwhile to observe that the power is
monotonic non-decreasing in n; and/or ne. Moreover, for fixed total sample
size, the highest power is attained when ny = ns.

For a preassigned level of significance «, the sample size required to expose
an effect size A with a desired level of power 1 — 8 can be calculated from
Equation 4 (See for example Chow and Liu, 2004, pages 445-451). Let ny = pn,
where 0 < p < 1 and n = ny + ng, then

n i (75 ®)

See also Chow et al (2002) for sample size determination based on non-central
t-distribution.

Noether (1987) studied sample size determination for some nonparametric
tests. For the two-sample Wilcoxon test, the total sample size is given by

2
1 zZg + Za
n= , 6
12/3(1 - P) <ANoether - 05) ( )
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where Apnoether = Pr(Xy > X3) is Noether’s effect size. One possible way of

estimating Anoether 1S

4U

ANoether = T35
n

where U is the Mann-Whitney statistic. Simonoff et al (1986) showed that the
maximum likelihood estimator of Anoeiner is given by

X — X,

\/ 5%, + %,
where X; and 5)2(1 are the mean and variance of the first dataset X; and X,
and 5)2(2 are the corresponding quantities for the second dataset X5. Hamilton
and Collings (1991) used the results of Collings and Hamilton (1988) to suggest
a procedure to determine sample size of the two-sample Wilcoxon test.

Within the permutation framework, De Martini (2002) studied the use of
the estimated unconditional power of permutation tests for sample size esti-
mation. In this section, the sample size is estimated by the use of conditional
power function of permutation tests.

For a preassigned level of significance «, the sample size required to expose

an effect size A with a desired level of power W € (a,1) can be obtained by
solving

ANoether =9

n = argmin{W[(4;n, o, T)|X] = W}.

Since it is generally not possible to write the conditional power function in
closed form, the sample size cannot be exactly determined. Therefore, simu-
lation study is considered to estimate it. Algorithm 4 is used for sample size
estimation to expose an effect size A with a desired power W.

Algorithm 4 Sample Size Estimation

1. Start with a pilot sample of size n = nj + n2; where nj to be drawn from the treatment
population and ng from the control population, without assuming the knowledge of their
distributions.

2. Calculate the empirical conditional power w. ~

Adjust the sample size n to achieve desirable empirical conditional power W.

4. To obtain a function in n, Steps 1 and 2 are repeated for different values of n.

@

The required sample size n for exposing the effect size A with a desired
power that is equal to the power at a given effect size A with a total sample
size n is derived in the following way.

W45, o, T)|X] = W[(A;#i, a,T)|X]

A2 ) M2
ny + ng ny + ng

if and only if
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Let ny =pn (0 < p<1)and iy = pn (0 < p < 1), then

N
p(l—p)n [ A
n= u = . (7)
p(l—p) \ A
It is worthwhile to observe that this equality is asymptotically true and
approximation is good for relatively small sample sizes. This approximation is

mainly due to differences on supports for the involved permutation distribu-
tions.

4.2 Reproducibility probability

Suppose that one study has been carried out and the result of the test is
significant. One may ask this question: What is the probability that a second
study (using the same study population) will also generate a significant result?
In other words, what is the probability that the result of the first study is
reproducible? Statistically, if the two studies are independent, the probability
of having a significant result in the second study is given by the power of the
test, irrespective of the result of the first study whether was significant or not.
However, such information from the first study may be useful in predicting the
result of the second study. This results in getting the notion of reproducibility
probability, which is different from the unconditional power of the test.

Shao and Chow (2002) defined the reproducibility probability as a person’s
subjective probability of observing a significant result from a future study,
when significant results from one or several previous studies are observed.
Goodman (1992) defined the reproducibility probability as an estimated power
of the future study using the data from the previous study. With other terms,
the reproducibility probability is defined as the power evaluated at A = AO,
where Ay is the estimated effect size of the first study (or a previous study).

Within the permutation framework, Pesarin and Salmaso (2010) defined
the reproducibility probability or the actual post-hoc conditional power as the
power with A replaced by its estimate A obtained before randomization, in
our notation it is denoted by W[(A; A, n,a,T)|X]. Onwuegbuzie and Leech
(2004) and Lenth (2007) pointed out that such reproducibility probability can
provide useful information for replication studies. Brewer and Sindelar (1988)
argued that this is merely a rephrasing of the a priori problem, namely, ” What
would the power be if I used my o, n and post-hoc (observed) effect size A9,
It is worthwhile to observe that the outcome (significance or non-significance)
of a test using suitable sample size definitely will not affect the power, «, and
chosen effect size. These in genaral are statistical test concepts and are not
devoted or related to a single study. Moreover, p-value and reproducibility
probability are not equivalent notions in the sense that the later implies re-
randomization whereas the former does not. However, they are quite closely
related (Thomas, 1997; Levine and Ensom, 2001; Onwuegbuzie and Leech,
2004). The most recent work on reproducibility probability for nonparametric
tests is done by De Capitani and De Martini (2016).
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4.3 Generalizability probability

As discussed in the previous section, the reproducibility concept is used to
evaluate whether the obtained results are reproducible from study to study
of one specific population. One may be concerned in evaluating how likely
the obtained results of a single study from a particular population can be
reproduced to a different but similar population, where similar means that
they are provided with about the same standardized distribution. For example,
in clinical development (See Shao and Chow, 2002), after the investigational
drug product has been shown to be effective and safe with respect to a target
patient population (e.g. adults), it is often of interest to study a similar but
different patient population (e.g. elderly patients with the same disease under
study or a patient population with different ethnic factors) to see how likely the
clinical result is reproducible in the different population. This information can
be useful in regulatory submission for supplement new drug application (for
example, when generalizing the clinical results from adults to elderly patients)
and regulatory evaluation for bridging studies (for example, when generalizing
clinical results from a European to an Asian patient population). For this
purpose, the concept of generalizability probability is proposed. It is simply
the reproducibility probability in a different population.

Let A and B be two different but similar populations. In population A,
the effect size is given by A = (1 — p2)/o. Suppose now, in population B, the
difference in means is u; — p2 +n and the population variance is C202, so the
new effect size is given by

p—p2tn D(p1 — p2)
Co o ’

where
L+n/(p1 — p2)

C

is a measure of change in the effect size for the population difference. In prac-
tice, n < (u1 — pe) and, thus, D > 0.

If the power of the current study (under population A) is W[(A;n, a, T')|X],
then the power of the future study (under population B) is W[(DA;n, o, T)|X].
If D is known, then the generalizability probability is just the reproducibility
probability W[(DA; A, n, o, T)|X], that works as a least square estimate. If
the true value of D is unknown, a set of D-values may be considered.

D=

4.4 Sample size adjustment

If the sample size of a previous study was calculated based on conditional
power function with a priori effect size A and preassigned level of significance
a, then it is reasonable to adjust the sample size for the current study using the
information of the previous study. The concept of reproducibility probability
is useful in providing important information for adjusting the sample size. If
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the reproducibility probability is smaller than the desired power level of the
current study, then sample size should be increased. Otherwise, the sample
size may be decreased to avoid wasting resources.

The sample size n can be adjusted to n according to the reproducibility
probability as follows. The reproducibility probability is set to be equal to the
a priori power W which is evaluated at a virtual effect size A with total sample
size 1, then the new sample size n is derived. To this end,

WI[(A; A,n,a,T)|X] = W[(A; A,y o, T)| X

A ning :A~ /ﬁ1~ﬁ2.
V n n

Let ny = pn, 0 < p < 1 (one may consider p = p = 1y /n), then

if and only if

Also, the sample size can be adjusted using the generalizability probability.
The new total sample size n to be drawn from the new population is derived
as follows. The generalizability probability is set to be equal to the a priori
power W which is evaluated from the first population at a virtual effect size
A with total sample size 71, then the new sample size n to be drawn from the
second population is derived.

W((DA; A,n,a,T)|X] = W[(A; A, 7i, , T)|X]

DA /™M"2 _ 4 ﬁ1~ﬁ2
n n

Let n; = pn, 0 < p < 1 (one may consider

if and only if

5 Illustration example: degree of reading power

In his Ph.D thesis, Schmitt (1987) was interested in testing whether directed
reading activities in the classroom help elementary school students improve
aspects of their reading ability. A treatment class of 21 third-grade students
participated in these activities for eight weeks, and a control class of 23 third-
graders followed the same curriculum without the activities. After the eight-
week period, students in both classes took a Degree of Reading Power (DRP)
test which measures the aspect of reading ability that the treatment is designed
to improve. The DRP scores are reported in Table 1.
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Table 1 Degree of reading power scores for third-graders.

Treatment Group, X; Control Group, X,
24 43 58 71 61 44 42 43 55 26 33 41
67 49 59 52 62 54 19 54 46 10 17 60
46 43 57 43 57 56 37 42 55 28 62 53
53 49 33 37 42 20 48 85

For testing Hy : A = py—p. = 0 versus Hy : A = py—p. > 0, Algorithm 1 is
used. The difference between the sample means is considered as a test statistic.
The observed test statistic is 7° = X; — Xo = 9.954 and the conditional p-
value estimate, based on B = 5000 CMC replicates, is A = 0.015. At @ = 0.05
the null hypothesis is rejected.

Figure 1 shows the permutation distribution of 7.

5 7[;3‘

T0=9.954

p-valie=0.015

T T T T T T 1
-15 -10 -5 0 5 10 15

Test Statistics

Fig. 1 DRP data: The permutation distribution.

Figure 1 shows that the distribution of 7 has almost normal shape. Since
the permutation distribution approximates the unconditional sampling distri-
bution of T', which is roughly normal. Therefore, the usual two-sample t-test
can safely be applied provided that data are assumed homoschedastic both in
Hy and in H,, i.e. by assuming that treatment does not influence the data
variability. Using the usual t-test, the p-value is 0.013, which is very close to
the p-value obtained using the permutation test.

Assuming the underlying distribution is normal, the estimated uncondi-
tional (parametric) power function can be obtained as follows.

W(é;n,a,T,P) = 1—Ft(t3f_a,df,ncp), (10)
where F; is the cumulative distribution of the student ¢, df = ny+mno—2 is the
degrees of freedom, ttlif_ % is the 1—a quantile of a student ¢-distribution with de-

—-1/2
grees of freedom df and non-centrality parameter ncp = ¢ (Sg( + i)) ,

1
ny n2
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ni L X.)2 n2 L X5)2 ~
§2 — Zim (X );1)+Z§i2:1(xm X2)” is the pooled variance. Note that W(-) is

P
an estimate of W( ) since the nep is a data dependent quantity.

Figure 2 shows the empirical post-hoc conditional power function together
with the unconditional (parametric) power function.

10

0.6

Power

04

X

i — Empirical Cond Power
— - Unconditional Power
T T T T T T T T

[ 2 4 8 8 10 12 14
Effect Size

00

Fig. 2 DRP data: The parametric unconditional power and the empirical post-hoc condi-
tional power functions.

Sample size calculation Algorithm 4 is used to calculate the required sample
sizes to detect an effect size § = u; — p. = 14. The results are reported in
Table 2. For example, if the desired power is W = 0.90, one may consider
ny =13 and ny = 7.

Table 3 reports the (parametric) unconditional power calculated using
Equation 10 as a function with the sample sizes. It is clear that balanced
designs are more powerful than unbalanced. For example, consider the total
sample size n = 20, then the highest power does occur when n; = ny = 10.
Moreover, the power when n; > ns is higher than the power when ny < no,
this is due to the sample variances; the sample variance of the treatment group
is less than the sample variance of the control group.

Now, given the information reported in Table 2 or 3, the sample sizes to
expose an effect size § = 10 can be calculated using Equation 7. Assuming
p=p=0.5and n = 20, then n = 39.2 ~ 40. Hence, n; = 20 and ny = 20.
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Table 2 DRP Example: Empirical conditional power and sample sizes, § = 14.

n2
5 7 10 13 16 20
5 0.54 0.71 080 0.69 0.61 0.48
7 0.68 0.84 090 0.79 0.74 0.61
n1 10 078 091 096 0.89 087 0.75
13 078 090 095 092 091 0.84
16 078 090 095 094 093 0.88
20 0.86 096 099 098 098 0.95

Table 3 DRP Example: parametric unconditional power and sample sizes, § = 14.

n2

5 7 10 13 16 20

5 0.68 0.77 087 0.68 0.61 0.53

7 0.80 0.87 094 081 0.74 0.65

ny 10 089 094 098 090 085 0.78
13 0.87 093 098 093 090 0.84

16 0.84 092 098 094 092 0.89

20 091 096 099 098 097 0.94

Reproducibility probability According to Table 2 or 3, the required sample sizes
to expose the virtual effect size § = 14 at level of significance a = 0.05 with a
desired level of power W = 0.85 are n; = 7 and ny = 7. Recall the observed
effect size is & = 9.954 or equivalently A=46 /Sp =~ 0.68 based on sample sizes
n1 = 21 and ny = 23. Therefore, the reproducibility probability is given by
W[(A; A,n,a,T)|X] = 0.722 (see Figure 2). That is, with a new independent
random experiment the probability is as high as 72.2% to obtain a significant
result with same sample sizes, test T, at effect size § = 5 =9.954 and a = 0.05.

Sample size adjustment Hence, in order to have a reproducibility probability
equals to 0.85, one may adjust the sample size using Equation 8. Let 6= 14,
fi=14 and § = 9.954, then n = 27.6942 =~ 28 and hence ny = ny, = 14.
That is, in order to expose an effect size 9.954 with a desired reproducibility
probability of 0.85, the sample sizes should be ny = ny = 14.

6 Concluding Remarks

In this paper, two-sample permutation test procedure is discussed and the use
of conditional Monte Carlo algorithm for evaluating the permutation (con-
ditional) p-value is used. Then, the notion of conditional power function of
permutation test is reviewed. The following are some applications of the em-
pirical conditional power function that were discussed:
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— Sample size estimation. A pilot sample with a reasonable size is drawn from
the population of interest, without assuming the knowledge of its distri-
bution, and then the empirical conditional power is calculated. The size is
to be increased (or may be reduced) till a desired power is achieved. It is
shown that two-sample balanced design is more powerful than unbalanced.

— Reproducibility probability. It is an important tool for sample size adjust-
ment, and is used to measure the reliability of the test.

— Generalizability probability, which is also used for sample size adjustment.
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